Science.gov

Sample records for permeability surface cerebral

  1. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  2. EPA Permeable Surface Research - Poster

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  3. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using (/sup 15/O)water and (/sup 11/C)butanol

    SciTech Connect

    Herscovitch, P.; Raichle, M.E.; Kilbourn, M.R.; Welch, M.J.

    1987-10-01

    We have previously adapted Kety's tissue autoradiographic method for measuring regional CBF in laboratory animals to the measurement of CBF in humans with positron emission tomography (PET) and H/sub 2/(/sup 15/)O. Because this model assumes diffusion equilibrium between tissue and venous blood, the use of a diffusion-limited tracer, such as H/sub 2/(/sup 15/)O, may lead to an underestimation of CBF. We therefore validated the use of (/sup 11/C)butanol as an alternative freely diffusible tracer for PET. We then used it in humans to determine the underestimation of CBF that occurs with H/sub 2/(/sup 15/)O, and thereby were able to calculate the extraction Ew and permeability-surface area product PSw of H/sub 2/(/sup 15/)O. Measurements of the permeability of rhesus monkey brain to (/sup 11/C)butanol, obtained by means of an intracarotid injection, external detection technique, demonstrated that this tracer is freely diffusible up to a CBF of at least 170 ml/min-100 g. CBF measured in baboons with the PET autoradiographic method and (/sup 11/C)butanol was then compared with CBF measured in the same animals with a standard residue detection method. An excellent correspondence was obtained between both of these measurements. Finally, paired PET measurements of CBF were made with both H/sub 2/(/sup 15/)O and (/sup 11/C)butanol in 17 normal human subjects. Average global CBF was significantly greater when measured with (/sup 11/C)butanol (53.1 ml/min-100 g) than with H/sub 2/(/sup 15/)O (44.4 ml/min-100 g). Average global Ew was 0.84 and global PSw was 104 ml/min-100 g. Regional measurements showed a linear relationship between local PSw and CBF, while Ew was relatively uniform throughout the brain. Simulations were used to determine the potential error associated with the use of an incorrect value for the brain-blood partition coefficient for (/sup 11/C)butanol and to calculate the effect of tissue heterogeneity and errors in flow measurement on the calculation of PSw.

  4. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage

    PubMed Central

    Hou, Sheng Tao; Nilchi, Ladan; Li, Xuesheng; Gangaraju, Sandhya; Jiang, Susan X.; Aylsworth, Amy; Monette, Robert; Slinn, Jacqueline

    2015-01-01

    Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into the cerebral cortex, caused dose- and time-dependent increases in vascular permeability, with a degree comparable to that caused by injection of a known vascular permeability factor vascular endothelial growth factor receptors (VEGF). Application of Sema3A to cultured endothelial cells caused disorganization of F-actin stress fibre bundles and increased endothelial monolayer permeability, confirming Sema3A as a permeability factor. Sema3A-mediated F-actin changes in endothelial cells were through binding to the neuropilin2/VEGFR1 receptor complex, which in turn directly activates Mical2, a F-actin modulator. Down-regulation of Mical2, using specific siRNA, alleviated Sema3A-induced F-actin disorganization, cellular morphology changes and endothelial permeability. Importantly, ablation of Sema3A expression, cerebrovascular permeability and brain damage were significantly reduced in response to transient middle cerebral artery occlusion (tMCAO) and in a mouse model of cerebral ischemia/haemorrhagic transformation. Together, these studies demonstrated that Sema3A is a key mediator of cerebrovascular permeability and contributes to brain damage caused by cerebral ischemia. PMID:25601765

  5. Specific surface area model for foam permeability.

    PubMed

    Pitois, O; Lorenceau, E; Louvet, N; Rouyer, F

    2009-01-01

    Liquid foams were recognized early to be porous materials, as liquid flowed between the gas bubbles. Drainage theories have been established, and foam permeability has been modeled from the microscopic description of the equivalent pores geometry, emphasizing similarities with their solid counterparts. But to what extent can the theoretical work devoted to the permeability of solid porous materials be useful to liquid foams? In this article, the applicability of the Carman-Kozeny model on foam is investigated. We performed measurements of the permeability of foams with nonmobile surfactants, and we show that, in introducing an equivalent specific surface area for the foam, the model accurately describes the experimental data over two orders of magnitude for the foam liquid fraction, without any additional parameters. Finally, it is shown that this model includes the previous permeability models derived for foams in the dry foams limit. PMID:19032030

  6. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

  7. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Durr, H.H.; Manning, A.H.; Van Beek, L. P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ???5 ?? 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Copyright ?? 2011 by the American Geophysical Union.

  8. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array.

    PubMed

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-01-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer's disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases. PMID:26047027

  9. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  10. Spatiotemporal changes in blood-brain barrier permeability, cerebral blood flow, T2 and diffusion following mild traumatic brain injury.

    PubMed

    Li, Wei; Watts, Lora; Long, Justin; Zhou, Wei; Shen, Qiang; Jiang, Zhao; Li, Yunxia; Duong, Timothy Q

    2016-09-01

    The blood-brain barrier (BBB) can be impaired following traumatic brain injury (TBI), however the spatiotemporal dynamics of BBB leakage remain incompletely understood. In this study, we evaluated the spatiotemporal evolution of BBB permeability using dynamic contrast-enhanced MRI and measured the volume transfer coefficient (K(trans)), a quantitative measure of contrast agent leakage across the blood and extravascular compartment. Measurements were made in a controlled cortical impact (CCI) model of mild TBI in rats from 1h to 7 days following TBI. The results were compared with cerebral blood flow, T2 and diffusion MRI from the same animal. Spatially, K(trans) changes were localized to superficial cortical layers within a 1mm thickness, which was dramatically different from the changes in cerebral blood flow, T2 and diffusion, which were localized to not only the superficial layers but also to brain regions up to 2.2mm from the cortical surface. Temporally, K(trans) changes peaked at day 3, similar to CBF and ADC changes, but differed from T2 and FA, whose changes peaked on day 2. The pattern of superficial cortical layer localization of K(trans) was consistent with patterns revealed by Evans Blue extravasation. Collectively, these results suggest that BBB disruption, edema formation, blood flow disturbance and diffusion changes are related to different components of the mechanical impact, and may play different roles in determining injury progression and tissue fate processes following TBI. PMID:27208495

  11. MEASUREMENT OF THE SURFACE PERMEABILITY OF BASEMENT CONCRETES

    EPA Science Inventory

    The report discusses the development, testing, and use of a portable surface permeameter suitable for field use in measuring the surface permeability of concrete in new houses. he permeameter measures the airflow induced by a pressure difference across a temporary test seal appli...

  12. MEAUSREMENT OF THE SURFACE PERMEABILITY OF BASEMENT CONCRETES

    EPA Science Inventory

    The report discusses the development, testing, and use of a portable surface permeameter suitable for field use in measuring the surface permeability of concrete in new houses. he permeameter measures the airflow induced by a pressure difference across a temporary test seal appli...

  13. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    SciTech Connect

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  14. Enteral ecoimmunonutrition reduced enteral permeability and serum ghrelin activity in severe cerebral stroke patients with lung infection.

    PubMed

    Xu, Xiao-Di; Shao, Feng

    2015-01-01

    The study analyzed how enteral ecoimmunonutrition, which comprises probiotics, glutamine, fish oil, and Enteral Nutritional Suspension (TPF), can impact on the enteral permeability and serum Ghrelin activity in severe cerebral stroke patients with lung infection. Among 190 severe cerebral stroke patients with tolerance to TPF, they were randomized into control and treatment groups after antibiotics treatment due to lung infections. There were 92 patients in the control group and 98 patients in treatment group. The control group was treated with TPF and the treatment group was treated with enteral ecoimmunonutrition, which comprises probiotics, glutamine, fish oil, and Enteral Nutritional Suspension. All patients received continuous treatments through nasoenteral or nasogastric tubes. 7, 14, and 21 days after the treatments, the enteral tolerance to nutrition was observed in both groups. The tests included abdominal pain, bloating, diarrhea, and lactulose/mannitol (L/M) ratio. Serum Ghrelin levels were determined by ELISA. The incidence of abdominal pain, bloating, diarrhea was lower in the treatment group and enteral tolerance to nutrition was also superior to the control group. No difference in serum Ghrelin level was observed between the control and treatment groups with enteral intolerance to nutrition. However, in patients with enteral tolerance to nutrition, the treatment group showed lower enteral nutrition and lower enteral permeability compared to the control group. In severe cerebral stroke patients with lung infection, enteral ecoimmunonutrition after antibiotics treatment improved enteral tolerance to nutrition and reduced enteral permeability; meanwhile, it lowered the serum Ghrelin activity, which implied the high serum Ghrelin reduces enteral permeability. PMID:25142270

  15. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    PubMed

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value. PMID:20087768

  16. Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor.

    PubMed

    Ewing, James R; Brown, Stephen L; Lu, Mei; Panda, Swayamprava; Ding, Guangliang; Knight, Robert A; Cao, Yue; Jiang, Quan; Nagaraja, Tavarekere N; Churchman, Jamie L; Fenstermacher, Joseph D

    2006-03-01

    Vasculature in and around the cerebral tumor exhibits a wide range of permeabilities, from normal capillaries with essentially no blood-brain barrier (BBB) leakage to a tumor vasculature that freely passes even such large molecules as albumin. In measuring BBB permeability by magnetic resonance imaging (MRI), various contrast agents, sampling intervals, and contrast distribution models can be selected, each with its effect on the measurement's outcome. Using Gadomer, a large paramagnetic contrast agent, and MRI measures of T(1) over a 25-min period, BBB permeability was estimated in 15 Fischer rats with day-16 9L cerebral gliomas. Three vascular models were developed: (1) impermeable (normal BBB); (2) moderate influx (leakage without efflux); and (3) fast leakage with bidirectional exchange. For data analysis, these form nested models. Model 1 estimates only vascular plasma volume, v(D), Model 2 (the Patlak graphical approach) v(D) and the influx transfer constant K(i). Model 3 estimates v(D), K(i), and the reverse transfer constant, k(b), through which the extravascular distribution space, v(e), is calculated. For this contrast agent and experimental duration, Model 3 proved the best model, yielding the following central tumor means (+/-s.d.; n = 15): v(D) = 0.07 +/- 0.03 for K(i) = 0.0105 +/- 0.005 min(-1) and v(e) = 0.10 +/- 0.04. Model 2 K(i) estimates were approximately 30% of Model 3, but highly correlated (r = 0.80, P < 0.0003). Sizable inhomogeneity in v(D), K(i), and k(b) appeared within each tumor. We conclude that employing nested models enables accurate assessment of transfer constants among areas where BBB permeability, contrast agent distribution volumes, and signal-to-noise vary. PMID:16079791

  17. ANKS1B Interacts with the Cerebral Cavernous Malformation Protein-1 and Controls Endothelial Permeability but Not Sprouting Angiogenesis

    PubMed Central

    Moll, Iris; Yang, Wan-Jen; Wüstehube-Lausch, Joycelyn; Fischer, Andreas

    2015-01-01

    Cerebral cavernous malformations are fragile blood vessel conglomerates in the central nervous system that are caused by mutations in the CCM1/KRIT1, CCM2 or CCM3 genes. The gene products form a protein complex at adherens junctions and loss of either CCM protein disrupts endothelial cell quiescence leading to increased permeability and excessive angiogenesis. We performed a yeast 2-hybrid screen to identify novel proteins directly interacting with KRIT1. The ankyrin repeat and sterile alpha motif domain-containing protein 1B (ANKS1B) was identified as a novel binding partner of KRIT1. Silencing of ANKS1B or the related gene ANKS1A in primary human endothelial cells had no significant effects on cellular proliferation, migration and sprouting angiogenesis. However, silencing of ANKS1B expression disturbed endothelial cell barrier functions leading to increased permeability. Forced ANKS1B expression reduced permeability. This was independent of Rho kinase activity and the presence of KRIT1. Taken together, ANKS1B was identified as a novel KRIT1-interacting protein that selectively controls endothelial permeability but not angiogenesis. PMID:26698571

  18. Fractal dimension of cerebral surfaces using magnetic resonance images

    SciTech Connect

    Majumdar, S.; Prasad, R.R.

    1988-11-01

    The calculation of the fractal dimension of the surface bounded by the grey matter in the normal human brain using axial, sagittal, and coronal cross-sectional magnetic resonance (MR) images is presented. The fractal dimension in this case is a measure of the convolutedness of this cerebral surface. It is proposed that the fractal dimension, a feature that may be extracted from MR images, may potentially be used for image analysis, quantitative tissue characterization, and as a feature to monitor and identify cerebral abnormalities and developmental changes.

  19. Permeable Surface Corrections for Ffowcs Williams and Hawkings Integrals

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Casper, Jay H.

    2005-01-01

    The acoustic prediction methodology discussed herein applies an acoustic analogy to calculate the sound generated by sources in an aerodynamic simulation. Sound is propagated from the computed flow field by integrating the Ffowcs Williams and Hawkings equation on a suitable control surface. Previous research suggests that, for some applications, the integration surface must be placed away from the solid surface to incorporate source contributions from within the flow volume. As such, the fluid mechanisms in the input flow field that contribute to the far-field noise are accounted for by their mathematical projection as a distribution of source terms on a permeable surface. The passage of nonacoustic disturbances through such an integration surface can result in significant error in an acoustic calculation. A correction for the error is derived in the frequency domain using a frozen gust assumption. The correction is found to work reasonably well in several test cases where the error is a small fraction of the actual radiated noise. However, satisfactory agreement has not been obtained between noise predictions using the solution from a three-dimensional, detached-eddy simulation of flow over a cylinder.

  20. Surface Reconstruction and Optimization of Cerebral Cortex for Application Use.

    PubMed

    Shin, Dong Sun; Park, Sang Kyu

    2016-03-01

    For the purposes of virtual surgery, medical education, medical communication, and realistic surface models of anatomic structures are required. In the most involved method, surface models can be made using segmentation and three-dimensional reconstruction procedures. Such models, however, are computationally expensive, and can be difficult to use. Therefore, optimization is often performed manually, but this is a time-consuming job that requires considerable artistic talent. In this article, the authors describe a method that uses Maya and ZBrush to construct optimized surface models of anatomic structures. The authors take 235 anatomic images generated from a cadaver, and perform segmentation and surface reconstruction using Photoshop and Mimics. Reconstructed surface models of the cerebral cortex are then optimized and divided by a morphing technique in Maya and ZBrush for use in medical applications. The optimized surface models do not require significant storage space, and are easily manufactured and modified. The resulting surface models can be displayed off-line and on-line in real time, as well as on smart phones. Using commercial software with the specialized functions described in this study, it is expected that the efficiencies produced by the proposed method will enable researchers to conveniently create surface models from serially sectioned images such as computed tomographs and magnetic resonance images. The surface models created in this research will also have widespread applications in both medical education and communication. PMID:26854785

  1. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats.

    PubMed

    Fang, Zhi; He, Quan-Wei; Li, Qian; Chen, Xiao-Lu; Baral, Suraj; Jin, Hui-Juan; Zhu, Yi-Yi; Li, Man; Xia, Yuan-Peng; Mao, Ling; Hu, Bo

    2016-06-01

    The mechanism of blood-brain barrier (BBB) disruption, involved in poststroke edema and hemorrhagic transformation, is important but elusive. We investigated microRNA-150 (miR-150)-mediated mechanism in the disruption of BBB after stroke in rats. We found that up-regulation of miR-150 increased permeability of BBB as detected by MRI after permanent middle cerebral artery occlusion in vivo as well as increased permeability of brain microvascular endothelial cells after oxygen-glucose deprivation in vitro. The expression of claudin-5, a key tight junction protein, was decreased in the ischemic boundary zone after up-regulation of miR-150. We found in brain microvascular endothelial cells that overexpression of miR-150 decreased not only cell survival rate but also the expression levels of claudin-5 after oxygen-glucose deprivation. With dual-luciferase assay, we confirmed that miR-150 could directly regulate the angiopoietin receptor Tie-2. Moreover, silencing Tie-2 with lentivirus-delivered small interfering RNA reversed the effect of miR-150 on endothelial permeability, cell survival, and claudin-5 expression. Furthermore, poststroke treatment with antagomir-150, a specific miR-150 antagonist, contributed to BBB protection, infarct volume reduction, and amelioration of neurologic deficits. Collectively, our findings suggested that miR-150 could regulate claudin-5 expression and endothelial cell survival by targeting Tie-2, thus affecting the permeability of BBB after permanent middle cerebral artery occlusion in rats, and that miR-150 might be a potential alternative target for the treatment of stroke.-Fang, Z., He, Q.-W., Li, Q., Chen, X.-L., Baral, S., Jin, H.-J., Zhu, Y.-Y., Li, M., Xia, Y.-P., Mao, L., Hu, B. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. PMID:26887441

  2. Amyloid Triggers Extensive Cerebral Angiogenesis Causing Blood Brain Barrier Permeability and Hypervascularity in Alzheimer's Disease

    PubMed Central

    Biron, Kaan E.; Dickstein, Dara L.; Gopaul, Rayshad; Jefferies, Wilfred A.

    2011-01-01

    Evidence of reduced blood-brain barrier (BBB) integrity preceding other Alzheimer's disease (AD) pathology provides a strong link between cerebrovascular angiopathy and AD. However, the “Vascular hypothesis”, holds that BBB leakiness in AD is likely due to hypoxia and neuroinflammation leading to vascular deterioration and apoptosis. We propose an alternative hypothesis: amyloidogenesis promotes extensive neoangiogenesis leading to increased vascular permeability and subsequent hypervascularization in AD. Cerebrovascular integrity was characterized in Tg2576 AD model mice that overexpress the human amyloid precursor protein (APP) containing the double missense mutations, APPsw, found in a Swedish family, that causes early-onset AD. The expression of tight junction (TJ) proteins, occludin and ZO-1, were examined in conjunction with markers of apoptosis and angiogenesis. In aged Tg2576 AD mice, a significant increase in the incidence of disrupted TJs, compared to age matched wild-type littermates and young mice of both genotypes, was directly linked to an increased microvascular density but not apoptosis, which strongly supports amyloidogenic triggered hypervascularity as the basis for BBB disruption. Hypervascularity in human patients was corroborated in a comparison of postmortem brain tissues from AD and controls. Our results demonstrate that amylodogenesis mediates BBB disruption and leakiness through promoting neoangiogenesis and hypervascularity, resulting in the redistribution of TJs that maintain the barrier and thus, provides a new paradigm for integrating vascular remodeling with the pathophysiology observed in AD. Thus the extensive angiogenesis identified in AD brain, exhibits parallels to the neovascularity evident in the pathophysiology of other diseases such as age-related macular degeneration. PMID:21909359

  3. Surface potential and permeability of rock cores under asphaltenic oil flow conditions

    SciTech Connect

    Alkafeef, S.F.; Gochin, R.J.; Smith, A.L.

    1995-12-31

    The surface properties, wetting behaviour and permeability of rock samples are central to understanding recovery behaviour in oil reservoirs. This paper will present a method new to petroleum engineering to show how area/length ratios for porous systems can be obtained by combining streaming potential and streaming current measurements on rock cores. This has allows streaming current measurements (independent of surface conductivity errors) to be made on rock samples using hydrocarbon solvents with increasing concentrations of asphaltene. Negative surface potentials for the rock became steadily more positive as asphaltene coated the pore surfaces, with permeability reduction agreeing well with petrographic analysis.

  4. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels

    PubMed Central

    Zhang, Lin; Zeng, Min; Fan, Jie; Tarbell, John, M.; Curry, Fitz-Roy E.; Fu, Bingmei M.

    2016-01-01

    Objective Sphingosine-1-phosphate (S1P) was found to protect the endothelial surface glycocalyx (ESG) by inhibiting matrix metalloproteinase (MMP) activity-dependent shedding of ESG in cultured endothelial cell studies. We aimed to further test that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels. Methods We quantified the ESG in post-capillary venules of rat mesentery and measured the vascular permeability to albumin in the presence and absence of 1 μM S1P. We also measured permeability to albumin in the presence of MMP inhibitors and compared the measured permeability with those predicted by a transport model for the inter-endothelial cleft. Results We found that in the absence of S1P, the fluorescence intensity of the FITC-anti-heparan sulfate labeled ESG was ~10% of that in the presence of S1P, while the measured permeability to albumin was ~6.5 fold that in the presence of S1P. Similar results were observed with MMP inhibition. The predictions by the mathematical model further confirmed that S1P maintains microvascular permeability by preserving ESG. Conclusions Our results show that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels, consistent with parallel observation in cultured endothelial monolayers. PMID:27015105

  5. Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface Roughness

    SciTech Connect

    Chih-Ying Chen

    2005-06-30

    Two-phase flow through fractured media is important in petroleum, geothermal, and environmental applications. However, the actual physics and phenomena that occur inside fractures are poorly understood, and oversimplified relative permeability curves are commonly used in fractured reservoir simulations. In this work, an experimental apparatus equipped with a high-speed data acquisition system, real-time visualization, and automated image processing technology was constructed to study three transparent analog fractures with distinct surface roughnesses: smooth, homogeneously rough, and randomly rough. Air-water relative permeability measurements obtained in this study were compared with models suggested by earlier studies and analyzed by examining the flow structures. A method to evaluate the tortuosities induced by the blocking phase, namely the channel tortuosity, was proposed from observations of the flow structure images. The relationship between the coefficients of channel tortuosity and the relative permeabilities was studied with the aid of laboratory experiments and visualizations. Experimental data from these fractures were used to develop a broad approach for modeling two-phase flow behavior based on the flow structures. Finally, a general model deduced from these data was proposed to describe two-phase relative permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting for the molecular transport through liquid-vapor interfaces. For the steam water relative permeabilities, we conducted steam-water flow experiments in the same fractures as used for air-water experiments. We compared the flow behavior and relative permeability differences between two-phase flow with and without phase transformation effects

  6. a Study on Improvement and its Evaluation for the Surface Layer of Concrete Placed with Permeable Form

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryoichi; Habuchi, Takashi; Amino, Takahiko; Fukute, Tsutomu

    Permeable form can improve the quality of the surface layer of concrete and can enhance the durability of concrete structures. In this study, the improvement and its evaluation for the surface layer of concrete placed with permeable form were investigated. For these purposes, accelerated carbonation test, chloride ion penetration test, air permeability test, rebound hummer test and water permeability test were conducted using the concrete specimen. As a result, it was found that the air permeability correlates the carbonation depth, chloride ion penetration depth, rebound number and water permeable volume of concrete. Moreover, the possibility that the improvement for the surface layer of concrete can be quantitatively evaluated by air permeability test was shown.

  7. Surface tension driven processes densify and retain permeability in magma and lava

    NASA Astrophysics Data System (ADS)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.

    2016-01-01

    We offer new insights into how an explosive eruption can transition into an effusive eruption. Magma containing >0.2 wt% dissolved water has the potential to vesiculate to a porosity in excess of 80 vol.% at atmospheric pressure. Thus all magmas contain volatiles at depth sufficient to form foams and explosively fragment. Yet gas is often lost passively and effusive eruptions ensue. Magmatic foams are permeable and understanding permeability in magma is crucial for models that predict eruptive style. Permeability also governs magma compaction models. Those models generally imply that a reduction in magma porosity and permeability generates an increased propensity for explosivity. Here, our experimental results show that surface tension stresses drive densification without creating an impermeable 'plug', offering an additional explanation of why dense magmas can avoid explosive eruption. In both an open furnace and a closed autoclave, we subject pumice samples with initial porosity of ∼70 vol.% to a range of isostatic pressures (0.1-11 MPa) and temperatures (350-950 °C) relevant to shallow volcanic environments. Our experimental data and models constrain the viscosity, permeability, timescales, and length scales over which densification by pore-scale surface tension stresses competes with density-driven compaction. Where surface tension dominates the dynamics, densification halts at a plateau connected porosity of ∼25 vol.% for our samples. SEM, pycnometry and micro-tomography show that in this process (1) microporous networks are destroyed, (2) the relative pore network surface area decreases, and (3) a remaining crystal framework enhances the longevity of macro-pore connectivity and permeability critical for sustained outgassing. We propose that these observations are a consequence of a surface tension-driven retraction of viscous pore walls at areas of high bubble curvature (micro-vesicular network terminations), and that this process drives bulk

  8. Evaluation of Surface Infiltration Testing Procedures in Permeable Pavement Systems

    EPA Science Inventory

    The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete provides limited guidance on how to select testing locations, so research is needed to evaluate how testing sites should be selected and how results should be interpreted to assess surface ...

  9. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  10. Methods to Use Surface Infiltration Tests in Permeable Pavement Systems to Determine Maintenance Frequency

    EPA Science Inventory

    Currently, there is limited guidance on selecting test sites to measure surface infiltration rates in permeable pavement systems to determine maintenance frequency. The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete suggest to either (1) p...

  11. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution.

    PubMed

    Gouze, Philippe; Luquot, Linda

    2011-03-01

    Numerical programs for simulating flow and reactive transport in porous media are essential tools for predicting reservoir properties changes triggered by CO(2) underground injection. At reservoir scale, meshed models in which equations are solved assuming that constant macroscopic properties can be defined in each cells, are widely used. However, the parameterization of the dissolution-precipitation problem and of the feedback effects of these processes on the flow field is still challenging. The problem arises from the mismatch between the scales at which averaged parameters are defined in the meshed model and the scale at which chemical reactions occur and modify the pore network geometry. In this paper we investigate the links between the dissolution mechanisms that control the porosity changes and the related changes of the reactive surface area and of the permeability. First, the reactive surface area is computed from X-ray microtomography data obtained before and after a set of dissolution experiments of pure calcite rock samples using distinctly different brine-CO(2) mixtures characterizing homogeneous to heterogeneous dissolution regimes. The results are used to validate the power law empirical model relating the reactive surface area to porosity proposed by Luquot and Gouze (2009). Second, we investigate the spatial distribution of the effective hydraulic radius and of the tortuosity, two structural parameters that control permeability, in order to explain the different porosity-permeability relationships observed for heterogeneous and homogeneous dissolution regimes. It is shown that the increase of permeability is due to the decrease of the tortuosity for homogeneous dissolution, whereas it is due to the combination of tortuosity decrease and hydraulic radius increase for heterogeneous dissolution. For the intermediate dissolution regime, identified to be the optimal regime for increasing permeability with small changes in porosity, the increase of

  12. Surface porosity and permeability of porous media with a periodic microstructure

    SciTech Connect

    Dmitriev, N.M.

    1995-07-01

    Various ways of determining the surface porosity, the relation between the porosity and the surface porosity and the presentation of the permeability in terms of the characteristics of the microstructure of the porous medium are analyzed with reference to model porous media with a periodic microstructure. It is shown that it is necessary to distinguish between the geometric (scalar) and physical (tensor) surface porosities and that the geometric surface porosity, the physical surface porosity and the porosity are different characteristics of the porous medium.

  13. A Surface-Modified Hydrogen-Permeable Palladium-Silver Plate

    NASA Astrophysics Data System (ADS)

    Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.

    2015-12-01

    A composite target is developed for magnetron sputtering of alloys using silver and palladium with different area ratios. A process is proposed for modification of both surfaces of palladium-silver films formed by PVD and electroplating to improve hydrogen permeability of the amorphous palladium layer electrodeposited from a water solution of its salt at the current density exceeding the diffusion current density for these conditions. The modified palladium-silver membrane becomes hydrogen-permeable at room temperature at the overpressure values up to 0.3 MPa.

  14. Influence of thickness and permeability of endothelial surface layer on transmission of shear stress in capillaries

    NASA Astrophysics Data System (ADS)

    Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert

    2015-07-01

    The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.

  15. Effect of perfusate hematocrit on urea permeability-surface area in isolated dog lung

    SciTech Connect

    Parker, R.E.; Roselli, R.J.; Haselton, F.R.; Harris, T.R.

    1986-10-01

    Seven dog lower left lung lobes were statically inflated and perfused at a constant rate for each lobe with a perfusate in which the hematocrit was altered over a wide range. The permeability-surface area of urea was calculated from multiple indicator dilution curves using two separate injectates for each hematocrit level. One injectate contained only /sup 125/I-albumin as the vascular reference tracer and the other contained both /sup 51/Cr-erythrocytes and /sup 125/I-albumin as the vascular reference tracers; both contained (/sup 14/C)urea as the permeating tracer. The results strongly indicate that the phenomenon of erythrocyte trapping of urea does not affect the calculation of urea permeability-surface area product provided the appropriate albumin-erythrocyte composite reference tracer is utilized in its calculation.

  16. High Guanidinium Permeability Reveals Dehydration-Dependent Ion Selectivity in the Plasmodial Surface Anion Channel

    PubMed Central

    Bokhari, Abdullah A. B.; Mita-Mendoza, Neida K.; Fuller, Alexandra; Pillai, Ajay D.; Desai, Sanjay A.

    2014-01-01

    Malaria parasites grow within vertebrate erythrocytes and increase host cell permeability to access nutrients from plasma. This increase is mediated by the plasmodial surface anion channel (PSAC), an unusual ion channel linked to the conserved clag gene family. Although PSAC recognizes and transports a broad range of uncharged and charged solutes, it must efficiently exclude the small Na+ ion to maintain infected cell osmotic stability. Here, we examine possible mechanisms for this remarkable solute selectivity. We identify guanidinium as an organic cation with high permeability into human erythrocytes infected with Plasmodium falciparum, but negligible uptake by uninfected cells. Transport characteristics and pharmacology indicate that this uptake is specifically mediated by PSAC. The rank order of organic and inorganic cation permeabilities suggests cation dehydration as the rate-limiting step in transport through the channel. The high guanidinium permeability of infected cells also allows rapid and stringent synchronization of parasite cultures, as required for molecular and cellular studies of this pathogen. These studies provide important insights into how nutrients and ions are transported via PSAC, an established target for antimalarial drug development. PMID:25243175

  17. The neuroprotective effect of olive leaf extract is related to improved blood-brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia.

    PubMed

    Mohagheghi, Fatemeh; Bigdeli, Mohammad Reza; Rasoulian, Bahram; Hashemi, Payman; Pour, Marzyeh Rashidi

    2011-01-15

    Recent studies suggest that olive extracts suppress inflammation and reduce stress oxidative injury. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each of 18 Wister rats, were studied. One (control) group received distilled water, while three treatment groups received oral olive leaf extract (50, 75 and 100mg/kg/day respectively). After 30 days, blood lipid profiles were determined, before a 60 min period of middle cerebral artery occlusion (MCAO). After 24h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood-brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. Olive leaf extract reduced the LDL/HDL ratio in doses 50, 75, and 100mg/kg/day in comparison to the control group (P<0.001), and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 50mg/kg/day vs. 75 mg/kg/day vs. 100mg/kg/day, attenuated corrected infarct volumes were 209.79 ± 33.05 mm(3) vs. 164.36 ± 13.44 mm(3) vs. 123.06 ± 28.83 mm(3) vs. 94.71 ± 33.03 mm(3); brain water content of the infarcted hemisphere 82.33 ± 0.33% vs. 81.33 ± 0.66% vs. 80.75 ± 0.6% vs. 80.16 ± 0.47%, and blood-brain barrier permeability of the infarcted hemisphere 11.22 ± 2.19 μg/g vs. 9.56 ± 1.74 μg/g vs. 6.99 ± 1.48 μg/g vs. 5.94 ± 1.73 μg/g tissue (P<0.05 and P<0.01 for measures in doses 75 and 100mg/kg/day vs. controls respectively). Oral administration of olive leaf extract reduces infarct volume, brain edema, blood-brain barrier permeability, and improves neurologic deficit scores after transient middle cerebral artery occlusion in rats. PMID:21183324

  18. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    PubMed Central

    Kim, Eun Soo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    Objective The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Materials and Methods Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Results Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min-1 vs. 0.07 ± 0.02 min-1, p = 0.661 for Ktrans; 0.30 ± 0.05 min-1 vs. 0.37 ± 0.11 min-1, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Conclusion Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group. PMID:27587960

  19. Specific binding of a mutated fragment of Clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability.

    PubMed

    Liao, Zhuangbin; Yang, Zhenguo; Piontek, Anna; Eichner, Miriam; Krause, Gerd; Li, Longxuan; Piontek, Joerg; Zhang, Jingjing

    2016-07-01

    The vertebrate blood-brain barrier (BBB) creates an obstacle for central nervous system-related drug delivery. Claudin-5 (Cldn5), expressed in large quantities in BBB, plays a vital role in restricting BBB permeability. The C-terminal domain of Clostridium perfringens enterotoxin (cCPE) has been verified as binding to a subset of claudins (Cldns). The Cldn5-binding cCPE194-319 variant cCPEY306W/S313H was applied in this study to investigate its ability to modulate the permeability of zebrafish larval BBB. In vitro results showed that cCPEY306W/S313H is able to bind specifically to Cldn5 in murine brain vascular endothelial (bEnd.3) cells, and is transported along with Cldn5 from the cell membrane to the cytoplasm, which in turn results in a reduction in transendothelial electrical resistance (TEER). Conversely, this effect can be reversed by removal of cCPEY306W/S313H. In an in vivo experiment, this study estimates the capability of cCPEY306W/S313H to modulate Cldn5 using a rhodamine B-Dextran dye diffusion assay in zebrafish larval BBB. The results show that cCPEY306W/S313H co-localized with Cldn5 in zebrafish cerebral vascular cells and modulated BBB permeability, resulting in dye leakage. Taken together, this study suggests that cCPEY306W/S313H has the capability - both in vitro and in vivo - to modulate BBB permeability temporarily by specific binding to Cldn5. PMID:27095710

  20. Surface Infiltration Rates of Permeable Surfaces: Six Month Update (November 2009 through April 2010)

    EPA Science Inventory

    At the end of October 2009, EPA opened a parking lot on the Edison Environmental Center that included three parking rows of permeable pavement. The construction was a cooperative effort among EPA’s Office of Administration and Resources Management, National Risk Management Resea...

  1. Correlations between effective permeability and marrow contact channels surface of vertebral endplates.

    PubMed

    Laffosse, Jean-Michel; Accadbled, Franck; Molinier, François; Bonnevialle, Nicolas; de Gauzy, Jérôme Sales; Swider, Pascal

    2010-09-01

    Homeostasis of the intervertebral disc relies on nutrient supply and waste clearance through the dense capillary network that is in contact with the cartilage endplate (CEP). We developed a micro-computerized tomography (micro-CT) method to quantify the marrow contact channel surface (MCCS) with the CEP and to validate the hypothesis according to which MCCS was correlated to the effective permeability of the vertebral endplate (VEP) and influenced by the mechanical stimuli. The influence of compression loading on local vascularization was investigated. Six 4-week-old skeletally immature pigs were instrumented with left pedicle screws and rod at both T5-T6 and L1-L2 levels to create asymmetrical spine tethers. After 3 months of growth, three cylindrical specimens of the VEP (one central and two lateral right and left) were obtained from both the instrumented and the control levels. We used a previously validated method for measuring permeability. Micro-CT analysis (resolution 12 microm) yielded a gray-scale 2D-image of the discal end of each specimen converted into a binary 2D-image to derive the MCCS. Correlations between MCCS and effective permeability were assessed. Effective permeability and MCCS were significantly decreased compared to the control group especially on the tethered side (-41.5%, p = 0.004 and -52.5%, p = 0.0009, respectively). Correlations were significant and showed maximal value (r(2) = 0.430, p < 0.0001) on the tethered side involving maximal compressive loadings. Mechanical stimuli, due to unbalanced growth, altered the vascularization and the convective properties of the CEP. The cascade of mechanobiological events should offer perspectives for research on disc degeneration and attempted treatment. PMID:20225324

  2. An automated pipeline for cortical surface generation and registration of the cerebral cortex

    NASA Astrophysics Data System (ADS)

    Li, Wen; Ibanez, Luis; Gelas, Arnaud; Yeo, B. T. Thomas; Niethammer, Marc; Andreasen, Nancy C.; Magnotta, Vincent A.

    2011-03-01

    The human cerebral cortex is one of the most complicated structures in the body. It has a highly convoluted structure with much of the cortical sheet buried in sulci. Based on cytoarchitectural and functional imaging studies, it is possible to segment the cerebral cortex into several subregions. While it is only possible to differentiate the true anatomical subregions based on cytoarchitecture, the surface morphometry aligns closely with the underlying cytoarchitecture and provides features that allow the surface of the cortex to be parcellated based on the sulcal and gyral patterns that are readily visible on the MR images. We have developed a fully automated pipeline for the generation and registration of cortical surfaces in the spherical domain. The pipeline initiates with the BRAINS AutoWorkup pipeline. Subsequently, topology correction and surface generation is performed to generate a genus zero surface and mapped to a sphere. Several surface features are then calculated to drive the registration between the atlas surface and other datasets. A spherical diffeomorphic demons algorithm is used to co-register an atlas surface onto a subject surface. A lobar based atlas of the cerebral cortex was created from a manual parcellation of the cortex. The atlas surface was then co-registered to five additional subjects using a spherical diffeomorphic demons algorithm. The labels from the atlas surface were warped on the subject surface and compared to the manual raters. The average Dice overlap index was 0.89 across all regions.

  3. Lactobacillus fermentum AGR1487 cell surface structures and supernatant increase paracellular permeability through different pathways.

    PubMed

    Sengupta, Ranjita; Anderson, Rachel C; Altermann, Eric; McNabb, Warren C; Ganesh, Siva; Armstrong, Kelly M; Moughan, Paul J; Roy, Nicole C

    2015-08-01

    Lactobacillus fermentum is commonly found in food products, and some strains are known to have beneficial effects on human health. However, our previous research indicated that L. fermentum AGR1487 decreases in vitro intestinal barrier integrity. The hypothesis was that cell surface structures of AGR1487 are responsible for the observed in vitro effect. AGR1487 was compared to another human oral L. fermentum strain, AGR1485, which does not cause the same effect. The examination of phenotypic traits associated with the composition of cell surface structures showed that compared to AGR1485, AGR1487 had a smaller genome, utilized different sugars, and had greater tolerance to acid and bile. The effect of the two strains on intestinal barrier integrity was determined using two independent measures of paracellular permeability of the intestinal epithelial Caco-2 cell line. The transepithelial electrical resistance (TEER) assay specifically measures ion permeability, whereas the mannitol flux assay measures the passage of uncharged molecules. Both live and UV-inactivated AGR1487 decreased TEER across Caco-2 cells implicating the cell surfaces structures in the effect. However, only live AGR1487, and not UV-inactivated AGR1487, increased the rate of passage of mannitol, implying that a secreted component(s) is responsible for this effect. These differences in barrier integrity results are likely due to the TEER and mannitol flux assays measuring different characteristics of the epithelial barrier, and therefore imply that there are multiple mechanisms involved in the effect of AGR1487 on barrier integrity. PMID:25943073

  4. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    Geological underground utilisation inducing pore pressure changes in underground reservoirs is generally accompanied by hydro-mechanical processes. Thereby, pore pressure increase due to fluid injection may trigger ground surface uplift, while a decrease in pore pressure due to reservoir fluid production is known to induce ground subsidence. Different coupled hydro-mechanical simulation studies (e.g. Klimkowski et al., 2015, Kempka et al., 2014, Tillner et al., 2014) indicate that ground surface displacements can achieve a magnitude of several decimetres, if storage or production operations are being carried out at an industrial scale. Consequently, detailed knowledge on the parameters impacting ground surface uplift or subsidence is of major interest for the success of any geological underground utilisation in order to avoid surface infrastructure damage by spatially varying deformations. Furthermore, ground subsidence may result increased groundwater levels as experienced in different underground coal mining districts. In the present study, we carried out coupled hydro-mechanical simulations to account for the impact of caprock permeability on ground surface displacements resulting from geological underground utilisation. Thereto, different simulation scenarios were investigated using a synthetic 3D coupled numerical simulation model with varying caprock permeability and vertical location of the open well section in the target reservoir. Material property ranges were derived from available literature, while a normal faulting stress state was applied in all simulation scenarios. Our simulation results demonstrate that caprock permeability has a significant impact on the pressure development, and thus on vertical displacements at the ground surface as well as at the reservoir top. An increase in caprock permeability from 1 x 10-20 m2 by two orders of magnitude doubles vertical displacements at the ground surface, whereas vertical displacements at the reservoir top

  5. Continuum percolation on nonorientable surfaces: the problem of permeable disks on a Klein bottle

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Grekhov, A. M.; Tronin, V. N.; Tronin, I. V.

    2015-11-01

    The percolation threshold and wrapping probability (R ∞) for the two-dimensional problem of continuum percolation on the surface of a Klein bottle have been calculated by the Monte Carlo method with the Newman-Ziff algorithm for completely permeable disks. It has been shown that the percolation threshold of disks on the Klein bottle coincides with the percolation threshold of disks on the surface of a torus, indicating that this threshold is topologically invariant. The scaling exponents determining corrections to the wrapping probability and critical concentration owing to the finite-size effects are also topologically invariant. At the same time, the quantities R ∞ are different for percolation on the torus and Klein bottle and are apparently determined by the topology of the surface. Furthermore, the difference between the R ∞ values for the torus and Klein bottle means that at least one of the percolation clusters is degenerate.

  6. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  7. The effect of surface active agents on the relative permeability of brine and gas in porous media

    SciTech Connect

    Conway, M.W.; Schraufnagel, R.A.; Smith, K.; Thomas, T.

    1995-11-01

    All oil and gas producing wells produce hydrocarbon at some residual water saturation. Therefore, the relative permeability to the hydrocarbon at the effective water saturation dictates performance and not the absolute permeability of the formation. Surface active agents are included in most aqueous treating fluids to improve the compatibility of aqueous fluids with the hydrocarbon containing reservoir. A review of the literature indicates very little core flow data to describe the effects to be expected. Traditionally, it is believed that the reduced surface tension will reduce capillary pressure and enhance the recovery of water after the treatment. The reduced water saturation is then believed to result in higher effective gas saturation and higher relative permeability to gas after the treatment. The principal emphasis of this study has been the development of non-damaging stimulation fluids to improve the production of methane from coalbed methane and other low permeability gas reservoirs.

  8. Atomic diffusion on vicinal surfaces: step roughening impact on step permeability

    NASA Astrophysics Data System (ADS)

    Ranguelov, B.; Michailov, M.

    2014-12-01

    The problem of mass transport in material science for systems with reduced dimensionality holds special academic and technological attention since the fine diffusion control of adatoms could initiate exotic nanoscale patterning at epitaxial interfaces. The present study brings out important details of the atomic diffusion mechanisms on vicinal surfaces, accounting for the subtle competition between an external field imposed on the migrating adatoms and the roughening of the steps bordering the atomic terraces. The computational model reveals a temperature gap for breakdown of step permeability in the vicinity of the step roughening transition and sheds light on recently observed experimental results for atomic step dynamics on Si surfaces. The present study also demonstrates the extended capability of atomistic models in computer simulations to unravel simultaneous effects, to distinguish between them, and finally to assess their specific contribution to experimentally observed complex physical phenomena.

  9. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm. PMID:26429141

  10. Boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid

    NASA Astrophysics Data System (ADS)

    Othman, Noor Adila; Yacob, Nor Azizah; Bachok, Norfifah; Ramli, Nazirah; Ishak, Anuar

    2015-10-01

    A steady mixed convection boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid is investigated. The velocity of the external flow is assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically using the Keller box method with the help of MATLAB software. The effects of physical parameters such as the suction/injection parameter, Brownian motion parameter, thermophoresis parameter and Lewis number on the heat and mass transfer rate at the surface as well as the temperature and concentration profiles are analyzed and discussed. Both assisting and opposing flows are considered. It is found that, increasing the thermophoresis parameter, Brownian motion parameter and Lewis number are to decrease the heat transfer rate at the surface, but on the other hand increase the mass transfer rate at the surface for both assisting and opposing flows. In addition, increasing suction parameter tends to increase the heat transfer rate at the surface. However, the opposite behavior occurs for the effect of mass transfer rate at the surface.

  11. An integrated software suite for surface-based analyses of cerebral cortex

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Dickson, J.; Harwell, J.; Hanlon, D.; Anderson, C. H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  12. Acoustic Effects on Colloid/Surface Interactions and Porous-Media Permeability

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; Abdel-Fattah, A. I.; Duran, J.

    2004-12-01

    Acoustic and seismic waves have been observed to influence porous fluid-flow behavior in the Earth and geomaterials over a wide range of scale lengths (microns to kilometers). Examples include oil reservoir production increases induced by seismic (1 to 500 Hz) waves, and mobilizing colloidal clays in sandstone cores by ultrasonic (10 to 50 kHz) energy. The effects of stress-wave propagation on both colloid electrokinetics and fluid-flow dynamics in porous media are not understood. In particular, the coupling of acoustic and seismic waves with colloid behavior is an important mechanism to understand because the distribution of colloids in a porous medium will directly affect its permeability. Recent experimental observations indicate that very-high-frequency (0.5 to 5 MHz) acoustic energy can induce attachment and detachment of micron-size colloids at solid surfaces. Using a microscopic, video image-processing system focused on a glass flow-visualization cell, the behavior of 0.5- to 3-micron diameter polystyrene spheres suspended in 0 to 0.1 M aqueous solution was observed. Initial image-processing-based analysis of acoustically-induced colloid/surface detachment events indicates that very-high-frequency acoustics not only increases particle detachment, but may also permanently "deactivate" colloid attachment (or "active") sites on the glass cell surface. The ability of acoustics to attach or detach colloids also appears to depend on the colloid size and ionic strength of the suspending solution. Other experiments show that seismic-band (1 to 1000 Hz) mechanical stress oscillations can change the permeability of centimeter-size sandstone cores due to mobilization of micron-size colloids contained in the pore space. A unique core-holder apparatus that mechanically strains 2.54-cm-diameter porous rock samples during constant-rate fluid flow was used for these experiments. During single-phase brine flow through sandstone, axial stress oscillations at 50 Hz mobilized

  13. Activation of G protein-coupled estrogen receptor 1 (GPER-1) ameliorates blood-brain barrier permeability after global cerebral ischemia in ovariectomized rats.

    PubMed

    Lu, Dan; Qu, Yan; Shi, Fei; Feng, Dayun; Tao, Kai; Gao, Guodong; He, Shiming; Zhao, Tianzhi

    2016-08-19

    G protein-coupled estrogen receptor 1 (GPER-1) plays important roles in estrogen-mediated neuroprotection. However, protective effects of GPER-1 on blood-brain barrier (BBB) after ischemic stroke have not been determined. The aim of present study was to determine whether GPER-1 activation ameliorates BBB permeability in ovariectomized rats with induced global cerebral ischemia (GCI). GCI was induced by 4-vessel occlusion for 20 min followed by 24 h reperfusion period. The GPER-1 agonist (G1) was bilaterally administered immediately upon reperfusion by intracerebroventricular (icv) injection. We found that the GPER-1 agonist could significantly decrease immunoglobulin G (IgG) extravasation and increase the levels of tight junctions (occludin and claudin-5) in the CA1 at 24 h of reperfusion after GCI. Further, protein levels of vascular endothelial growth factor A (VEGF-A) was significantly decreased in the ischemic CA1 by G1. Our results suggest that GPER-1 activation reduce tight junctions disruption via inhibition of VEGF-A expression after ischemic injury. PMID:27311857

  14. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    PubMed Central

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  15. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus.

    PubMed

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  16. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, R.R.; Schroeder, J.L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

  17. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, Robert R.; Schroeder, John L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

  18. Surface Vulnerability of Cerebral Cortex to Major Depressive Disorder

    PubMed Central

    Li, Gang; Fralick, Drew; Shen, Ting; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Shen, Dinggang; Fang, Yiru

    2015-01-01

    Major depressive disorder (MDD) is accompanied by atypical brain structure. This study first presents the alterations in the cortical surface of patients with MDD using multidimensional structural patterns that reflect different neurodevelopment. Sixteen first-episode, untreated patients with MDD and 16 matched healthy controls underwent a magnetic resonance imaging (MRI) scan. The cortical maps of thickness, surface area, and gyrification were examined using the surface-based morphometry (SBM) approach. Increase of cortical thickness was observed in the right posterior cingulate region and the parietal cortex involving the bilateral inferior, left superior parietal and right paracentral regions, while decreased thickness was noted in the parietal cortex including bilateral pars opercularis and left precentral region, as well as the left rostral-middle frontal regions in patients with MDD. Likewise, increased or decreased surface area was found in five sub-regions of the cingulate gyrus, parietal and frontal cortices (e.g., bilateral inferior parietal and superior frontal regions). In addition, MDD patients exhibited a significant hypergyrification in the right precentral and supramarginal region. This integrated structural assessment of cortical surface suggests that MDD patients have cortical alterations of the frontal, parietal and cingulate regions, indicating a vulnerability to MDD during earlier neurodevelopmental process. PMID:25793287

  19. Surface vulnerability of cerebral cortex to major depressive disorder.

    PubMed

    Peng, Daihui; Shi, Feng; Li, Gang; Fralick, Drew; Shen, Ting; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Shen, Dinggang; Fang, Yiru

    2015-01-01

    Major depressive disorder (MDD) is accompanied by atypical brain structure. This study first presents the alterations in the cortical surface of patients with MDD using multidimensional structural patterns that reflect different neurodevelopment. Sixteen first-episode, untreated patients with MDD and 16 matched healthy controls underwent a magnetic resonance imaging (MRI) scan. The cortical maps of thickness, surface area, and gyrification were examined using the surface-based morphometry (SBM) approach. Increase of cortical thickness was observed in the right posterior cingulate region and the parietal cortex involving the bilateral inferior, left superior parietal and right paracentral regions, while decreased thickness was noted in the parietal cortex including bilateral pars opercularis and left precentral region, as well as the left rostral-middle frontal regions in patients with MDD. Likewise, increased or decreased surface area was found in five sub-regions of the cingulate gyrus, parietal and frontal cortices (e.g., bilateral inferior parietal and superior frontal regions). In addition, MDD patients exhibited a significant hypergyrification in the right precentral and supramarginal region. This integrated structural assessment of cortical surface suggests that MDD patients have cortical alterations of the frontal, parietal and cingulate regions, indicating a vulnerability to MDD during earlier neurodevelopmental process. PMID:25793287

  20. Consequences of Anisotropic Permeability and Surface Tension for Magmatic Segregation in Deforming Mantle Rock

    NASA Astrophysics Data System (ADS)

    Taylor-West, J.; Katz, R. F.

    2014-12-01

    The mechanics of partially molten regions of the mantle are not well understood--in part due to the inaccessibility of these regions to observation. However it is widely agreed that experiments performed on synthetic mantle rocks [e.g KZK10] act as a reasonable test of theoretical models of magma dynamics. One robust feature of experiments on partially molten mantle rocks deformed under strain is the emergence of high-porosity bands at an angle of between 15° and 20° to the shear plane. A number of theoretical approaches have been made to reproduce the formation of these low angle bands in models. The most recent approaches, for example by Takei and Katz [TK13], have involved the inclusion of anisotropic viscosity in diffusion creep arising from the grain-scale redistribution of melt as formulated in a theoretical model by Takei and Holtzman [TH09]. It is reasonable to assume that this melt-preferred orientation (MPO) that leads to anisotropy in viscosity may also lead to anisotropy in permeability. However, the effect of anisotropic permeability remains unexplored. We investigate its impact on the dynamics of partially molten rock, and specifically on its role in low-angle band formation in deformation under simple shear. We work with the continuum model of two-phase-flow as formulated by McKenzie [M84] with the addition of anisotropic permeability. There are some apparent inconsistencies in this model. Firstly, the model predicts continued segregation of melt into bands of 100% porosity, while experiments report maximum porosities in the region of 30%. Secondly, linear stability analyses find maximal growth-rates for porosity perturbations that vary on arbitrarily small length-scales. We study how the inclusion of surface forces into the model could regulate these effects. REFERENCES: KZK10 = King, Zimmerman, & Kohlstedt (2010), J Pet, 10.1093/petrology/egp062. TK13 = Takei & Katz (2013), JFM, 10.1017/jfm.2013.482. TH09 = Takei & Holtzman (2009a), JGR, 10

  1. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  2. Bactericidal/permeability-increasing protein promotes complement activation for neutrophil-mediated phagocytosis on bacterial surface

    PubMed Central

    Nishimura, H; Gogami, A; Miyagawa, Y; Nanbo, A; Murakami, Y; Baba, T; Nagasawa, S

    2001-01-01

    The neutrophil bactericidal/permeability-increasing protein (BPI) has both bactericidal and lipopolysaccharide-neutralizing activities. The present study suggests that BPI also plays an important role in phagocytosis of Escherichia coli by neutrophils through promotion of complement activation on the bacterial surface. Flow cytometric analysis indicated that fluorescein-labelled E. coli treated with BPI were phagocytosed in the presence of serum at two- to five-fold higher levels than phagocytosis of the bacteria without the treatment. In contrast, phagocytosis of the fluoresceined bacteria with or without treatment by BPI did not occur at all in the absence of serum. The phagocytosis stimulated by BPI and serum was dose-dependent. The effect of BPI on phagocytosis in the presence of serum was not observed on Gram-positive bacteria (Staphylococcus aureus). Interestingly, the complement C3b/iC3b fragments were deposited onto the bacterial surface also as a function of the BPI concentration under conditions similar to those for phagocytosis. Furthermore, the BPI-promoted phagocytosis was blocked completely by anti-C3 F(ab′)2 and partially by anti-complement receptor (CR) type 1 and/or anti-CR type 3. These findings suggest that BPI accelerates complement activation to opsonize bacteria with complement-derived fragments, leading to stimulation of phagocytosis by neutrophils via CR(s). PMID:11529944

  3. Surface altered zeolites as permeable barriers for in situ treatment of contaminated groundwater

    SciTech Connect

    1996-11-01

    The authors characterized surfactant-modified zeolite (SMZ) for its ability to sorb organic and inorganic contaminants from water. The ultimate objective is to use SMZ as a permeable barrier to prevent migration of contaminants in groundwater. This report summarizes results under Phase 1 of a three-phase project leading to a full-scale field demonstration of SMZ permeable- barrier technology.

  4. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  5. Changes in the permeability and morphology of dentine surfaces after brushing with a Thai herbal toothpaste: A preliminary study

    PubMed Central

    Vajrabhaya, La-ongthong; Korsuwannawong, Suwanna; Harnirattisai, Choltacha; Teinchai, Chayada

    2016-01-01

    Objectives: The aim of this study was to evaluate dentine permeability after brushing with Twin Lotus®, Thai herbal toothpaste by comparing with Sensodyne Rapid Relief®, a commercial desensitizing toothpaste, and also after artificial saliva (AS) immersion or citric acid challenge. Materials and Methods: Dentine discs from human mandibular third molars were divided into three groups (n = 20) and brushed with either experimental toothpaste or water (control) for 2 min with an automated toothbrush. Then, 10 discs were immersed in AS, and the other 10 discs were immersed in 6% citric acid to simulate the conditions of the oral environment. The dentine permeability of each specimen was measured before brushing and after each treatment using a fluid filtration system. Morphological changes in the dentine were observed using scanning electron microscopy (SEM). Results: Both toothpastes significantly reduced dentine permeability, and a crystalline precipitate was observed on the dentine surface under SEM observation. No significant difference was found between the two toothpaste groups with regard to dentine permeability after brushing and AS or acid immersion. Conclusions: The dentine permeability reduction caused by the two toothpastes did not differ after brushing or after AS or citric acid immersion. PMID:27095904

  6. Entrance surface dose in cerebral interventional radiology procedures

    SciTech Connect

    Barrera-Rico, M.; Lopez-Rendon, X.; Rivera-Ordonez, C. E.; Gamboa-deBuen, I.

    2012-10-23

    At the Instituto Nacional de Neurologia y Neurocirugia (INNN) diagnostic as well as therapeutic procedures of interventional radiology are carried out. Since the procedures can last from some minutes to several hours, the absorbed dose for the patient could increase dangerously. An investigation had begun in order to determine the entrance surface dose (ESD) using 25 thermoluminiscent dosimeters TLD-100 and 8 strips of 15 Multiplication-Sign 1 cm{sup 2} of Gafchromic XR-QA2 film bound in a holder of 15 Multiplication-Sign 15 cm{sup 2} in the posteroanterior (PA) and lateral (LAT) positions during all the procedure. The results show that maximum ESD could be from 0.9 to 2.9 Gy for the PA position and between 1.6 and 2.5 Gy for the lateral position. The average ESD was between 0.7 and 1.3 Gy for the PA position, and from 0.44 to 1.1 Gy for the lateral position in a therapeutic procedure.

  7. Entrance surface dose in cerebral interventional radiology procedures

    NASA Astrophysics Data System (ADS)

    Barrera-Rico, M.; López-Rendón, X.; Rivera-Ordóñez, C. E.; Gamboa-deBuen, I.

    2012-10-01

    At the Instituto Nacional de Neurología y Neurocirugía (INNN) diagnostic as well as therapeutic procedures of interventional radiology are carried out. Since the procedures can last from some minutes to several hours, the absorbed dose for the patient could increase dangerously. An investigation had begun in order to determine the entrance surface dose (ESD) using 25 thermoluminiscent dosimeters TLD-100 and 8 strips of 15 ×1 cm2 of Gafchromic XR-QA2 film bound in a holder of 15×15 cm2 in the posteroanterior (PA) and lateral (LAT) positions during all the procedure. The results show that maximum ESD could be from 0.9 to 2.9 Gy for the PA position and between 1.6 and 2.5 Gy for the lateral position. The average ESD was between 0.7 and 1.3 Gy for the PA position, and from 0.44 to 1.1 Gy for the lateral position in a therapeutic procedure.

  8. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.

    PubMed Central

    Xiang, T X; Anderson, B D

    1997-01-01

    Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine

  9. Optimized water vapor permeability of sodium alginate films using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Xu, Jiachao; Gao, Xin; Fu, Xiaoting

    2013-11-01

    The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaCl2 solution immersion time. The coefficient of determination ( R 2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g·mm/(m2·h·kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.

  10. Reaction-Induced Permeability Change in Thermally Cracked and Deformed Aplite: Importance of Reactive Surface Area and Mineralogy

    NASA Astrophysics Data System (ADS)

    Tenthorey, E.

    2004-12-01

    This experimental study investigates hydrothermal reactions in a granitic system and attempts to quantify how such reactions affect hydrologic properties, namely specimen permeability. Of specific interest is the evolution of permeability under variable differential stress conditions, from the compactional and dilatancy regimes to that of shear failure. Under these different stress conditions, reactive surface area will vary, possibly affecting the rate and absolute magnitude of permeability change. Experiments were conducted using a Paterson gas apparatus capable of independently controlling confining pressure (Pc), pore pressure (Pp) and axial load. Most experiments were conducted at Pc=100 MPa and Pp=50 MPa with temperatures of 200-600° C. Under isostatic conditions, permeability was observed to increase with temperature due to increased thermal cracking at grain boundaries. As differential stress was increased in each experiment, permeability was first observed to decrease, presumably due to crack closure. Upon continued loading to higher stresses, dilatancy resulted in significant permeability enhancement. In later experiments, permeability was allowed to evolve at each stress level and was observed to decay by an exponential function of the form k α 1-μ (1-exp(-rt))2, suggesting a precipitation type mechanism for the observed permeability change. The rate constant AƒAøAøâ_sA¬A.â_orAƒAøAøâ_sA¬? progressively increased up to 500° C, but was much smaller in the 600° C experiment, indicating a possible change in the precipitating mineral assemblage as suggested by experimental studies in the KNASH system. Overall, reaction rates were enhanced during dilatancy and after rupture, an observation suggesting a negative feedback effect, in which enhanced mineral precipitation moderates permeability generation during episodes of deformation. The nature of fluid flow in such systems is crucial to the formation of porphyry metal deposits and also plays a

  11. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration.

    PubMed

    Beyer, Marco; Lau, Steffen; Knoche, Moritz

    2005-01-01

    Water uptake and transpiration were studied through the surface of intact sweet cherry (Prunus avium L.) fruit, exocarp segments (ES) and cuticular membranes (CM) excised from the cheek of sweet cherry fruit and astomatous CM isolated from Schefflera arboricola (Hayata) Hayata, Citrus aurantium L., and Stephanotis floribunda Brongn. leaves or from Lycopersicon esculentum Mill. and Capsicum annuum L. var. annuum Fasciculatum Group fruit. ES and CM were mounted in diffusion cells. Water (deionized) uptake into intact sweet cherry fruit, through ES or CM interfacing water as a donor and a polyethyleneglycol (PEG 6000, osmotic pressure 2.83 MPa)-containing receiver was determined gravimetrically. Transpiration was quantified by monitoring weight loss of a PEG 6000-containing donor (2.83 MPa) against dry silica as a receiver. The permeability coefficients for osmotic water uptake and transpiration were calculated from the amount of water taken up or transpired per unit surface area and time, and the driving force for transport. Permeability during osmotic water uptake was markedly higher than during transpiration in intact sweet cherry fruit (40.2-fold), excised ES of sweet cherry fruit (12.5- to 53.7-fold) and isolated astomatous fruit and leaf CM of a range of species (on average 23.0-fold). Partitioning water transport into stomatal and cuticular components revealed that permeability of the sweet cherry fruit cuticle for water uptake was 11.9-fold higher and that of stomata 56.8-fold higher than the respective permeability during transpiration. Increasing water vapor activity in the receiver from 0 to 1 increased permeability during transpiration across isolated sweet cherry fruit CM about 2.1-fold. Permeability for vapor uptake from saturated water vapor into a PEG 6000 receiver solution was markedly lower than from liquid water, but of similar magnitude to the permeability during self-diffusion of (3)H(2)O in the absence of osmotica. The energy of activation for

  12. Functional specializations in human cerebral cortex analyzed using the Visible Man surface-based atlas

    NASA Technical Reports Server (NTRS)

    Drury, H. A.; Van Essen, D. C.

    1997-01-01

    We used surface-based representations to analyze functional specializations in the human cerebral cortex. A computerized reconstruction of the cortical surface of the Visible Man digital atlas was generated and transformed to the Talairach coordinate system. This surface was also flattened and used to establish a surface-based coordinate system that respects the topology of the cortical sheet. The linkage between two-dimensional and three-dimensional representations allows the locations of published neuroimaging activation foci to be stereotaxically projected onto the Visible Man cortical flat map. An analysis of two activation studies related to the hearing and reading of music and of words illustrates how this approach permits the systematic estimation of the degree of functional segregation and of potential functional overlap for different aspects of sensory processing.

  13. Lassen's equation is a good approximation of permeability-surface model: new α values for 99mTc-HMPAO and 99mTc-ECD

    PubMed Central

    Kameyama, Masashi

    2014-01-01

    Brain perfusion tracers like [99mTc] d,l-hexamethyl-propyeneamine oxime (99mTc-HMPAO) and [99mTc] ethyl-cysteinate dimer (99mTc-ECD) underestimate regional cerebral blood flow (rCBF) at high flow values. To improve linearity between tracer accumulation and rCBF, two different models have been proposed. One is Lassen's correction algorithm for back-diffusion of tracer, and the other is based on the permeability-surface (PS) model for correction of low first-pass extraction. Although both these models have the same goal, they have completely different forms of equation. It was demonstrated that mathematical approximation of the PS model equation leads to Lassen's equation. In this process, the relationship between PS, CBF values and Lassen's parameter was acquired, and how to correct both the back-diffusion and low first-pass extraction was also demonstrated. A computer simulation confirmed that the two models provided similar consequences when the parameter value is chosen according to the relationship found. Lassen's equation can be used to correct not only back-diffusion but also low first-pass extraction. To perform overall correction, the parameter value we have been using for decades may be too weak. I estimated that the parameter value for overall correction of HMPAO would be around 0.5, and that of ECD would be around 0.65. PMID:24736892

  14. The Influence of Selected Liquid and Soil Properties on the Propagation of Spills over Flat Permeable Surfaces

    SciTech Connect

    Keller, Jason M.; Simmons, Carver S.

    2005-02-15

    In an effort to determine spill characteristics, information about a spill's spatial distribution with time is being studied. For permeable surfaces, spill phenomenology is controlled by liquid and soil properties, the most relevant of which are presented in this report. The pertinent liquid and soil properties were tabulated for ten liquids and four soils. The liquids represented an array of organic compounds, some of which are or are soon to be documented in the liquid spectra library by the Environmental Molecular Science Laboratory at Pacific Northwest National Laboratory. The soils were chosen based on ongoing surface spectra work and to represent a range of relevant soil properties. The effect of the liquid and soil properties on spill phenomenology were explored using a spill model that couples overland flow described by gravity currents with the Green-Ampt infiltration model. From the simulations, liquid viscosity was found to be a controlling liquid property in determining the amount of time a spill remains on the surface, with the surface vanish time decreasing as viscosity decreased. This was attributed to decreasing viscosity increasing both the hydraulic conductivity of the soil and allowing for the spill to more quickly spread out onto an unsaturated soil surface. Soil permeability also controlled vanish times with the vanish times increasing as permeability decreased, corresponding to finer textured materials. Maximum spill area was found to be largely controlled by liquid viscosity on coarse, highly permeable soils. On the less permeable soils maximum spill area began to be controlled by the steady-area spill height due to the restricting of infiltration to the extent that the spill is then able to reach its steady-area spill height. Simulations performed with and without the inclusion of capillarity in the Green-Ampt infiltration model displayed the importance of capillarity in describing infiltration rate in fine textured soils. In coarse textured

  15. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  16. Regional Cerebral Blood Flow (rCBF) in Developmental Dyslexia: Activation during Reading in a Surface and Deep Dyslexic.

    ERIC Educational Resources Information Center

    Hynd, George W.; And Others

    1987-01-01

    The exploratory study examined patterns of regional cerebral blood flow in a surface and a deep dyslexic during reading. Significant differences in gray matter blood flow were found between subjects and normal controls. Also differences existed between the surface and deep dyslexic in the distribution of cortical perfusion. (Author/DB)

  17. Water Quality Performance of Three Side-by-Side Permeable Pavement Surface Materials: Three Year Update

    EPA Science Inventory

    Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...

  18. Martian Post-Impact Hydrothermal Systems: Effects of Permeability and Freezing on Surface Discharge and Water:Rock Ratios

    NASA Astrophysics Data System (ADS)

    Barnhart, C. J.; Nimmo, F.; Travis, B. J.

    2008-12-01

    A km-scale bolide delivers enough energy to heat subsurface water, and drive hydrothermal circulation (Abramov and Kring, 2005). This post-impact hydrothermal (PIH) circulation can lead to surface discharge of water, and chemical alteration - both are potentially detectable. We present the effects that permeability and freezing have on discharge and water:rock (W/R) ratios. We simulate the evolution of PIH systems using MAGHNUM (detailed in Travis et al., 2003). MAGHNUM solves the time-dependent transport of water and heat through a porous medium, incorporating phase transitions between ice (applicable to Mars), vapor and water. PIH evolution depends on heat sources and permeability (k); these, in turn, control discharge and chemical alteration which depends on both the peak temperatures and the W/R ratio (Schwenzer and Kring, 2008). Recently, CRISM detected phyllosilicate-rich material within ~45 km craters (Mustard et al., 2008) and the HiRISE camera imaged gullies, some emanating from central peaks, within many high latitude craters. We model a 45 km crater created by a 3.9 km dia., 7 km/s impactor. Simulations run for 100,000 yrs in a 2D axisymmetric domain with a heat flux of 32.5 mW m-2. Thus far we have tested systems with a range of surface k's (10-4 to 1 darcys) that decay exponentially with depth and are exposed to two surface temperatures (5°C and -53°C). In general W/R ratios increase with increased k. Focusing in on the upper 200 m at the center of the crater, fluid temperatures remain > 100°C for 9000 yrs and flow yields W/R ratios of 10 when exposed to a surface temperature of 5°C. Dropping the surface temperature below freezing to a Mars-like - 53°C maintains upper 200 m temperatures > 100°C for only 600 yrs and W/R ratios are reduced to 1. Higher permeabilities yield higher W/R ratios but reduced time exposure to high temperatures. When surface temperatures are below freezing total system discharge is roughly independent of k for modest

  19. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Pengfei Zhang; Xian Tao

    2002-03-01

    This report summarizes experiments to develop and test surfactant-modified zeolite/zero-valent iron (SMZ/ZVI) pellets for permeable reactive barriers to treat groundwater contamination. Coating a glass foam core with a mixture of hexadecyltrimethylammonium surfactant, zeolite, and ZVI produced a high hydraulic conductivity, mechanically stable pellet. Laboratory experiments showed that the pellets completely removed soluble chromate from aqueous solution, and reduced perchloroethylene (PCE) concentrations more than pellets that lacked surfactant. Based upon the laboratory results, they predicted a 1-m-wide SMZ/ZVI barrier that would reduce PCE concentrations by four orders of magnitude. Thirteen cubic meters (470 cubic feet) of SMZ/ZVI pellets were manufactured and emplaced in a permeable barrier test facility. A controlled plume of chromate and PCE was allowed to contact the barrier for four weeks. The entire plume was captured by the barrier. No chromate was detected downgradient of the barrier. The PCE broke through the barrier after four weeks, and downgradient concentrations ultimately exceeded 10% of the influent PCE. The less-than-expected PCE reduction was attributed to insufficient surfactant content, the large size, and pH-altering characteristics of the bulk-produced pellets. The pellets developed here can be improved to yield a performance- and cost-competitive permeable barrier material.

  20. Effect of Seat Surface Inclination on Postural Stability and forward Reaching Efficiency in Children with Spastic Cerebral Palsy

    ERIC Educational Resources Information Center

    Cherng, Rong-Ju; Lin, Hui-Chen; Ju, Yun-Huei; Ho, Chin-Shan

    2009-01-01

    The purpose of this study was to examine the effect of seat surface inclination on postural stability and forward reaching efficiency in 10 children with spastic cerebral palsy (CP) and 16 typically developing (TD) children. The children performed a static sitting and a forward reaching task while sitting on a height- and inclination-adjustable…

  1. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGESBeta

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  2. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex.

    PubMed

    Van Essen, David C

    2005-11-15

    This report describes a new electronic atlas of human cerebral cortex that provides a substrate for a wide variety of brain-mapping analyses. The Population-Average, Landmark- and Surface-based (PALS) atlas approach involves surface-based and volume-based representations of cortical shape, each available as population averages and as individual subject data. The specific PALS-B12 atlas introduced here is derived from structural MRI volumes of 12 normal young adults. Accurate cortical surface reconstructions were generated for each hemisphere, and the surfaces were inflated, flattened, and mapped to standard spherical configurations using SureFit and Caret software. A target atlas sphere was generated by averaging selected landmark contours from each of the 24 contributing hemispheres. Each individual hemisphere was deformed to this target using landmark-constrained surface registration. The utility of the resultant PALS-B12 atlas was demonstrated using a variety of analyses. (i) Probabilistic maps of sulcal identity were generated using both surface-based registration (SBR) and conventional volume-based registration (VBR). The SBR approach achieved markedly better consistency of sulcal alignment than did VBR. (ii) A method is introduced for 'multi-fiducial mapping' of volume-averaged group data (e.g., fMRI data, probabilistic architectonic maps) onto each individual hemisphere in the atlas, followed by spatial averaging across the individual maps. This yielded a population-average surface representation that circumvents the biases inherent in choosing any single hemisphere as a target. (iii) Surface-based and volume-based morphometry applied to maps of sulcal depth and sulcal identity demonstrated prominent left-right asymmetries in and near the superior temporal sulcus and Sylvian fissure. Moreover, shape variability in the temporal lobe is significantly greater in the left than the right hemisphere. The PALS-B12 atlas has been registered to other surface

  3. A novel control algorithm for interaction between surface waves and a permeable floating structure

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-Wei; Alsaedi, A.; Hayat, T.; Chen, Cheng-Wu

    2016-04-01

    An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.

  4. Plasmodium falciparum parasites causing cerebral malaria share variant surface antigens, but are they specific?

    PubMed Central

    2010-01-01

    Background Variant surface antigens (VSA) expressed on the surface of Plasmodium falciparum-infected red blood cells constitute a key for parasite sequestration and immune evasion. In distinct malaria pathologies, such as placental malaria, specific antibody response against VSA provides protection. This study investigated the antibody response specifically directed against VSA expressed by parasites isolated from individuals presenting a given type of clinical presentation. Methods Plasma and isolates were obtained from four groups of Beninese subjects: healthy adults, patients presenting uncomplicated malaria (UM), cerebral malaria (CM), or pregnancy-associated malaria (PAM). The reactivity of plasma samples from each clinical group was measured by flow cytometry against parasites isolated from individuals from each clinical group. Results Antibody responses against VSAUM were predominant in CM, UM and HA plasmas. When analysed according to age in all plasma groups, anti-VSACM and -VSAUM antibody levels were similar until six years of age. In older groups (6-18 and >19 years of age), VSAUM antibody levels were higher than VSACM antibody levels (P = .01, P = .0008, respectively). Mean MFI values, measured in all plasmas groups except the PAM plasmas, remained low for anti-VSAPAM antibodies and did not vary with age. One month after infection the level of anti-VSA antibodies able to recognize heterologous VSACM variants was increased in CM patients. In UM patients, antibody levels directed against heterologous VSAUM were similar, both during the infection and one month later. Conclusions In conclusion, this study suggests the existence of serologically distinct VSACM and VSAUM. CM isolates were shown to share common epitopes. Specific antibody response to VSAUM was predominant, suggesting a relative low diversity of VSAUM in the study area. PMID:20663188

  5. An in situ study of the role of surface films on granular iron in the permeable iron wall technology

    NASA Astrophysics Data System (ADS)

    Ritter, K.; Odziemkowski, M. S.; Gillham, R. W.

    2002-03-01

    Permeable walls of granular iron are a new technology developed for the treatment of groundwater contaminated with dissolved chlorinated solvents. Degradation of the chlorinated solvents involves a charge transfer process in which they are reductively dechlorinated, and the iron is oxidized. The iron used in the walls is an impure commercial material that is covered with a passive layer of Fe 2O 3, formed as a result of a high-temperature oxidation process used in the production of iron. Understanding the behaviour of this layer upon contact with solution is important, because Fe 2O 3 inhibits mechanisms involved in contaminant reduction, including electron transfer and catalytic hydrogenation. Using a glass column specially designed to allow for in situ Raman spectroscopic and open circuit potential measurements, the passive layer of Fe 2O 3 was observed to be largely removed from the commercial product, Connelly iron, upon contact with Millipore water and with a solution of Millipore water containing 1.5 mg/l trichloroethylene (TCE). It has been previously shown that Fe 2O 3 is removed from iron surfaces upon contact with solution by an autoreduction reaction; however, prior to this work, the reaction has not been shown to occur on the impure commercial iron products used in permeable granular iron walls. The rate of removal was sufficiently rapid such that the initial presence of Fe 2O 3 at the iron surface would have no consequence with respect to the performance of an in situ wall. Subsequent to the removal of Fe 2O 3 layer, magnetite and green rust formed at the iron surface as a result of corrosion in both the Millipore water and the solution containing TCE. The formation of these two species, rather than higher valency iron oxides and oxyhydroxides, is significant for the technology. The former can interfere with contaminant degradation because they inhibit electron transfer and catalytic hydrogenation. Magnetite and green rust, in contrast, will not

  6. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    NASA Astrophysics Data System (ADS)

    Gao, Yunyi; Szymanowski, Jennifer; Burns, Peter; Liu, Tianbo

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of ion transport mechanism through nanosized channels and offer new views for designing nanodevices. Here we reveal that a 2.5-nm-size, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2) (OH)]60-(H2O)n (m ~20 and n ~310) (U60) shows selective permeability to different alkali ions. The sub-nanometer pores on the water-ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allow Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggest that the hydration shells of Na+i/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of surface nanopores and the dynamics of the hydration shells. This material is based upon work supported as part of the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089.

  7. Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Ranjan De, P.; Layek, G. C.

    2013-05-01

    An unsteady boundary layer flow of a non-Newtonian fluid over a continuously stretching permeable surface in the presence of thermal radiation is investigated. The Maxwell fluid model is used to characterize the non-Newtonian fluid behavior. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are then solved numerically by the shooting method. The flow features and heat transfer characteristics for different values of the governing parameters (unsteadiness parameter, Maxwell parameter, permeability parameter, suction/blowing parameter, thermal radiation parameter, and Prandtl number) are analyzed and discussed in detail.

  8. Influence of Crassostrea gigas on the permeability and microstructure of the surface layer of concrete exposed to the tidal zone of the Yellow Sea.

    PubMed

    Lv, JianFu; Mao, JiZe; Ba, HengJing

    2015-01-01

    Concrete exposed to the tidal zone of the Yellow Sea and bearing Crassostrea gigas (CG) with differing areal coverages was investigated for evidence of biologically induced corrosion prevention. The experimental results indicated that both the chloride ion profile and the neutralization depth of the concrete decreased with increasing CG coverage. Moreover, the water absorption rate and the chloride ion permeability of concrete with the original surface intact also declined with increasing degrees of CG coverage. However, the water absorption rates of three concrete samples with 2 mm of the surface layer removed were similar, as was their chloride ion permeability. Mercury intrusion porosimetry tests indicated that CG significantly reduced the pore structure of the concrete surface layer. SEM observation revealed that the CG cementation membrane and left valve were tightly glued to the concrete surface and had a dense structure. Concrete durability indices showed that high CG coverage greatly improved concrete durability. PMID:25584410

  9. Cerebral Palsy

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Cerebral Palsy KidsHealth > For Teens > Cerebral Palsy Print A A ... do just what everyone else does. What Is Cerebral Palsy? Cerebral palsy (CP) is a disorder of the ...

  10. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    ERIC Educational Resources Information Center

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  11. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    NASA Technical Reports Server (NTRS)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  12. Permeability and relative permeability in rocks

    SciTech Connect

    Blair, S.C.; Berryman, J.G.

    1990-10-01

    Important features of the topology of the pore space of rocks can be usefully quantified by analyzing digitized images of rock cross sections. One approach computes statistical correlation functions using modern image processing techniques. These correlation functions contain information about porosity, specific surface area, tortuosity, formation factor, and elastic constants, as well as the fluid permeability and relative permeability. The physical basis of this approach is discussed and examples of the results for various sandstones are presented. The analysis shows that Kozeny-Carman relations and Archie's empirical laws must be modified to account for finite percolation thresholds in order to avoid unphysical behavior in the calculated relative permeabilities. 33 refs., 4 figs., 1 tab.

  13. Crustal Permeability

    NASA Astrophysics Data System (ADS)

    Ingebritsen, S.; Gleeson, T.

    2014-12-01

    Existing data and models support a distinction between the hydrodynamics of the brittle upper crust, where topography, permeability contrasts, and magmatic heat sources dominate patterns of flow and externally derived (meteoric) fluids are common, and the ductile lower crust, dominated by devolatilization reactions and internally derived fluids. The permeability structure of the uppermost (~<1 km) crust is highly heterogeneous, and controls include primary lithology, porosity, rheology, geochemistry, and tectonic and time-temperature histories of the rocks. Systematic permeability differences among original lithologies persist to contact-metamorphic depths of 3-10 km, but are not evident at regional-metamorphic depths of 10-30+ km - presumably because, at such depths, metamorphic textures become largely independent of the original lithology. Permeability can vary in time as well as space, and its temporal evolution may be gradual or abrupt: streamflow responses to moderate to large earthquakes demonstrate that dynamic stresses can instantaneously change permeability by factors of up to 20 on a regional scale, whereas a 10-fold decrease in the permeability of a package of shale in a compacting basin may require 107years. Temporal variation is enhanced by strong chemical and thermal disequilibrium; thus lab experiments involving hydrothermal flow in crystalline rocks under pressure, temperature, and chemistry gradients often result in 10-fold permeability decreases over daily to sub-annual time scales. Recent research on enhanced geothermal reservoirs, ore-forming systems, and the hydrologic effects of earthquakes consistently shows that shear dislocation caused by tectonic forcing or fluid injection can increase near-to intermediate-field permeability by factors of 100 to 1000. Nonetheless, considering permeability as static parameter is often a reasonable assumption for low-temperature hydrogeologic investigations with time scales of days to decades.

  14. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.

    PubMed

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F

    2016-03-15

    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material. PMID:26735865

  15. Plasma infusions into porcine cerebral white matter induce early edema, oxidative stress, pro-inflammatory cytokine gene expression and DNA fragmentation: implications for white matter injury with increased blood-brain-barrier permeability.

    PubMed

    Wagner, Kenneth R; Dean, Christopher; Beiler, Shauna; Bryan, David W; Packard, Benjamin A; Smulian, A George; Linke, Michael J; de Courten-Myers, Gabrielle M

    2005-04-01

    Plasma infused into porcine cerebral white matter induces both acute interstitial and delayed vasogenic edema. Edematous white matter contains extracellular plasma proteins and rapidly induces oxidative stress as evidenced by increased protein carbonyl formation and heme oxygenase-1 induction. We tested the hypothesis that edematous white matter would also upregulate pro-inflammatory cytokine gene expression and develop DNA damage. We infused autologous plasma into the frontal hemispheric white matter of pentobarbital-anesthetized pigs. We monitored and controlled physiological variables and froze brains in situ at 1, 4 or 24 hrs. We determined edema volumes by computer-assisted morphometry. We measured white matter protein carbonyl formation by immunoblotting, cytokine gene expression by standard RT-PCR methods and DNA fragmentation by agarose gel electrophoresis. White matter edema developed acutely (1 hr) after plasma infusion and increased significantly in volume between 4 and 24 hrs. Protein carbonyl formation also occurred rapidly in edematous white matter with significant elevations (3 to 4-fold) already present at 1 hr. This increase remained through 24 hrs. Pro-inflammatory cytokine gene expression was also rapidly increased at 1 hr post-infusion. Evidence for DNA fragmentation began at 2 to 4 hrs, and a pattern indicative of both ongoing necrosis and apoptosis was robust by 24 hrs. Plasma protein accumulation in white matter induces acute edema development and a cascade of patho-chemical events including oxidative stress, pro-inflammatory cytokine gene expression and DNA damage. These results suggest that in diseases with increased blood-brain barrier (BBB) permeability or following intracerebral hemorrhage or traumatic brain injury, interstitial plasma can rapidly damage white matter. PMID:16181107

  16. Diabetes aggravates nanoparticles induced breakdown of the blood-brain barrier permeability, brain edema formation, alterations in cerebral blood flow and neuronal injury. An experimental study using physiological and morphological investigations in the rat.

    PubMed

    Sharma, Hari Shanker; Patnaik, Ranjana; Sharma, Aruna

    2010-12-01

    The possibility that diabetes aggravates nanoparticles induced blood-brain barrier (BBB) breakdown, edema formation and brain pathology was examined in a rat model. Engineered nanoparticles from metals Ag and Cu (50-60 mn) were administered (50 mg/kg, i.p.) once daily for 7 days in normal and streptozotocine induced diabetic rats. On the 8th day, BBB permeability to Evans blue and radioactive iodine (131I-sodium) was examined in 16 brain regions. In these brain regions alterations in regional CBF was also evaluated using radiolabelled (125I) carbonized microspheres (o.d. 15 +/- 6 microm). Regional brain edema and Na+, K+ and Cl- ion analysis were done in 8 selected brain regions. Histopathology was used to detect neuronal damage employing Nissl staining. Nanoparticles treatment in diabetic rats showed much more profound disruption of the BBB to Evans blue albumin (EBA) and radioiodine in almost all the 16 regions examined as compared to the normal animals. In these diabetic animals reduction in regional cerebral blood flow (CBF) was more pronounced than in normal rats. Edema development as seen using water content and increase in Na+ and a decrease in K+ ion were most marked in diabetic rats as compared to normal rats after nanoparticles treatment. Cell changes in the regions of BBB disruptions were also exacerbated in diabetic rats compared to normal group after nanoparticles treatment. Taken together, these observations are the first to show that diabetic rats are more susceptible to nanoparticles induced cerebrovascular reactions in the brain and neuronal damage. The possible mechanisms and significance of the present findings are discussed. PMID:21121280

  17. Amyloid-β peptide on sialyl-Lewis(X)-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface.

    PubMed

    Askarova, Sholpan; Sun, Zhe; Sun, Grace Y; Meininger, Gerald A; Lee, James C-M

    2013-01-01

    Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewis(x) (sLe(x)) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLe(x) and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf ), and produced a bimodal population of Fmtf , suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf . In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB. PMID:23593361

  18. Amyloid-β Peptide on Sialyl-LewisX-Selectin-Mediated Membrane Tether Mechanics at the Cerebral Endothelial Cell Surface

    PubMed Central

    Askarova, Sholpan; Sun, Zhe; Sun, Grace Y.; Meininger, Gerald A.; Lee, James C-M.

    2013-01-01

    Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB. PMID:23593361

  19. Antidepressants Alter Cerebrovascular Permeability and Metabolic Rate in Primates

    NASA Astrophysics Data System (ADS)

    Preskorn, Sheldon H.; Raichle, Marcus E.; Hartman, Boyd K.

    1982-07-01

    External detection of the annihilation radiation produced by water labeled with oxygen-15 was used to measure cerebrovascular permeability and cerebral blood flow in six rhesus monkeys. Use of oxygen-15 also permitted assessment of cerebral metabolic rate in two of the monkeys. Amitriptyline produced a dose-dependent, reversible increase in permeability at plasma drug concentrations which are therapeutic for depressed patients. At the same concentrations the drug also produced a 20 to 30 percent reduction in cerebral metabolic rate. At higher doses normal autoregulation of cerebral blood flow was suspended, but responsivity to arterial carbon dioxide was normal.

  20. The gyrification of mammalian cerebral cortex: quantitative evidence of anisomorphic surface expansion during phylogenetic and ontogenetic development.

    PubMed

    Mayhew, T M; Mwamengele, G L; Dantzer, V; Williams, S

    1996-02-01

    Describing the shapes of 3D objects has proved to be as problematical in biology as in other areas. In an attempt to tackle this problem, established stereological methods (the Cavalieri principle and vertical sectioning) have been used to estimate a 3D shape-dependent quantity which can detect anisomorphic changes and is related to the degree of cortical convolution or gyrification. This isomophy factor is employed to assess phylogenetic and ontogenetic changes in the mammalian cerebral cortex. Gross anatomical differences between cerebral hemispheres of adult domestic mammals (horses, oxen, pigs, goats, dogs, cats and rabbits) were tested by paying attention to species, laterality and sex differences. Human fetal brains were also studied. Mean body weights of domestic mammals varied from 4 kg to 460 kg and brain weights from 10 g to 636 g. Fetuses weighed 39-610 g (crown-rump lengths 85-185 mm) and brain volumes were 4-56 cm3. Isomorphy factors were derived from estimates of hemisphere volumes and cortical surface areas. Hemisphere shape varied between species but no lateral or sex differences were detected. It is concluded that these mammalian brains are, in terms of their gross anatomy, symmetric and not sexually dimorphic. Fetal brains became more convoluted during uterine development. The isomorphy factor offers a convenient measure of gyrification which demonstrates that brains become more convoluted as they enlarge. PMID:8655415

  1. Cerebral Hypoxia

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Hypoxia Information Page Synonym(s): Hypoxia, Anoxia Table of Contents ( ... Trials Organizations Publicaciones en Español What is Cerebral Hypoxia? Cerebral hypoxia refers to a condition in which ...

  2. Effects of captopril on cerebral blood flow in normotensive and hypertensive rats

    SciTech Connect

    Barry, D.I.; Paulson, O.B.; Jarden, J.O.; Juhler, M.; Graham, D.I.; Strandgaard, S.

    1984-05-31

    Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid /sup 133/xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and lowering blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain.

  3. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  4. A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants

    PubMed Central

    Hill, Jason; Dierker, Donna; Neil, Jeffrey; Inder, Terrie; Knutsen, Andrew; Harwell, John; Coalson, Timothy; Van Essen, David

    2010-01-01

    We have established a population average surface based atlas of human cerebral cortex at term gestation and used it to compare infant and adult cortical shape characteristics. Accurate cortical surface reconstructions for each hemisphere of 12 healthy term gestation infants were generated from structural magnetic resonance imaging data using a novel segmentation algorithm. Each surface was inflated, flattened, mapped to a standard spherical configuration, and registered to a target atlas sphere that reflected shape characteristics of all 24 contributing hemispheres using landmark constrained surface registration. Population average maps of sulcal depth, depth variability, 3-dimensional positional variability, and hemispheric depth asymmetry were generated and compared to previously established maps of adult cortex. We found that cortical structure in term infants is similar to the adult in many respects, including the pattern of individual variability and the presence of statistically significant structural asymmetries in lateral temporal cortex, including the planum temporale and superior temporal sulcus. These results indicate that several features of cortical shape are minimally influenced by the postnatal environment. PMID:20147553

  5. Glutathione permeability of CFTR.

    PubMed

    Linsdell, P; Hanrahan, J W

    1998-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) forms an ion channel that is permeable both to Cl- and to larger organic anions. Here we show, using macroscopic current recording from excised membrane patches, that the anionic antioxidant tripeptide glutathione is permeant in the CFTR channel. This permeability may account for the high concentrations of glutathione that have been measured in the surface fluid that coats airway epithelial cells. Furthermore, loss of this pathway for glutathione transport may contribute to the reduced levels of glutathione observed in airway surface fluid of cystic fibrosis patients, which has been suggested to contribute to the oxidative stress observed in the lung in cystic fibrosis. We suggest that release of glutathione into airway surface fluid may be a novel function of CFTR. PMID:9688865

  6. Update on cerebral uptake of blood ammonia.

    PubMed

    Sørensen, Michael

    2013-06-01

    Ammonia is believed to play a key role in the development of hepatic encephalopathy (HE) with increased formation of glutamine playing a central role. It has been debated whether blood ammonia enters the brain by passive diffusion and/or active transport by ion-transporters and that changes in blood pH could affect the blood-to-brain transfer of ammonia. It has also been proposed that the permeability-surface area product for ammonia across the blood-brain barrier (PSBBB) should be increased in cirrhosis and HE. In the present paper it is argued that changes in blood pH does not alter PSBBB for ammonia and the question of passive diffusion versus active transport of ammonia remains unresolved. Furthermore, recent studies do not find evidence for increased PSBBB for ammonia in cirrhosis. The main determent for cerebral uptake of blood ammonia (i.e. flux) is the arterial blood ammonia concentration. This means that the only way to protect the brain from hyperammonemia is by lowering blood ammonia, inhibit cerebral uptake of ammonia, or by manipulating cerebral ammonia metabolism so that less glutamine is produced. PMID:23479402

  7. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  8. Evaluating the relationships between the postural adaptation of patients with profound cerebral palsy and the configuration of the Seating Buggy's seating support surface.

    PubMed

    Hatta, Tatsuo; Nishimura, Shigeo; Inoue, Kaoru; Yamanaka, Masanori; Maki, Makoto; Kobayashi, Norikazu; Kishigami, Hirotoshi; Sato, Masahiko

    2007-03-01

    We are currently investigating the physiological polymorphism of wheelchair users with profound cerebral palsy and the properties of the Seating Buggy (developed by S. Nishimura, 1998) to clarify important and general elements of wheelchairs for widespread use. Cerebral palsy is a diagnostic term used to describe a group of motor syndromes resulting from disorders in early brain development. Recently, it has been shown that the Seating Buggy produces functional head-neck alignments and active control of sitting balance for people with profound cerebral palsy. The Seating Buggy is a wheelchair for the profoundly disabled and features a wide adjustment range from heights of 120 cm to 175 cm. Its seating support surface is comprised of a sling-seat. To examine the relationships between the postural adaptation of patients with profound cerebral palsy and the configuration of the Seating Buggy's seating, we assessed the postural alignment of the Seating Buggy's user and then measured the configuration of its resulting seating support surface with a three dimensional scanning system. Twenty-one subjects were used for the purposes of this investigation in their everyday environment. Postural adaptation and wheelchair fitting in the Seating Buggy were assessed from the viewpoint of the Active Balanced Seating by a seating expert. The subjects fell into two categories, as follows: 11 for appropriate or nearly appropriate fitting, and 10 for ill-fitting. The depth of thoracic support and the forward distance of lumbar support for those who claimed that it was ill-fitting were significantly reduced compared with that of those who claimed that the Seating Buggy offered an appropriate or nearly appropriate fitting. It was suggested that the properly adjusted depth of thoracic support and distance of the lumbar support were related to the resulting satisfactory head-neck alignment and sitting balance of the patients with profound cerebral palsy. PMID:17435368

  9. A framework to analyze cerebral mean diffusivity using surface guided diffusion mapping in diffusion tensor imaging

    PubMed Central

    Kwon, Oh-Hun; Park, Hyunjin; Seo, Sang-Won; Na, Duk L.; Lee, Jong-Min

    2015-01-01

    The mean diffusivity (MD) value has been used to describe microstructural properties in Diffusion Tensor Imaging (DTI) in cortical gray matter (GM). Recently, researchers have applied a cortical surface generated from the T1-weighted volume. When the DTI data are analyzed using the cortical surface, it is important to assign an accurate MD value from the volume space to the vertex of the cortical surface, considering the anatomical correspondence between the DTI and the T1-weighted image. Previous studies usually sampled the MD value using the nearest-neighbor (NN) method or Linear method, even though there are geometric distortions in diffusion-weighted volumes. Here we introduce a Surface Guided Diffusion Mapping (SGDM) method to compensate for such geometric distortions. We compared our SGDM method with results using NN and Linear methods by investigating differences in the sampled MD value. We also projected the tissue classification results of non-diffusion-weighted volumes to the cortical midsurface. The CSF probability values provided by the SGDM method were lower than those produced by the NN and Linear methods. The MD values provided by the NN and Linear methods were significantly greater than those of the SGDM method in regions suffering from geometric distortion. These results indicate that the NN and Linear methods assigned the MD value in the CSF region to the cortical midsurface (GM region). Our results suggest that the SGDM method is an effective way to correct such mapping errors. PMID:26236180

  10. Cerebral Palsy

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy Print A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  11. Cerebral Palsy

    MedlinePlus

    ... Loss > Birth defects & other health conditions > Cerebral palsy Cerebral palsy E-mail to a friend Please fill in ... movement problems a child has. What is spastic CP? Spastic means tight or stiff muscles, or muscles ...

  12. Cerebral palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that can involve brain and nervous system functions, such as movement, ... and thinking. There are several different types of cerebral palsy, including spastic, dyskinetic, ataxic, hypotonic, and mixed.

  13. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  14. Cerebral Palsy

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Cerebral Palsy Information Page Clinical Trials Trial of Erythropoietin Neuroprotection ... en Español Additional resources from MedlinePlus What is Cerebral Palsy? The term cerebral palsy refers to a group ...

  15. Cerebral Aneurysms

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Aneurysms Information Page Synonym(s): Aneurysm, Brain Aneurysm Condensed from ... Español Additional resources from MedlinePlus What is Cerebral Aneurysms? A cerebral aneurysm is a weak or thin ...

  16. Identifying intrasulcal medial surfaces for anatomically consistent reconstruction of the cerebral cortex

    NASA Astrophysics Data System (ADS)

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-03-01

    A novel approach to identifying poorly resolved boundaries between adjacent sulcal cortical banks in MR images of the human brain is presented. The algorithm calculates an electrostatic potential field in a partial differential equation (PDE) model of an inhomogeneous dielectric layer of gray matter that surrounds conductive white matter. Correspondence trajectories and geodesic distances are computed along the streamlines of the potential field gradient using PDEs in a Eulerian framework. The skeleton of a sulcal medial boundary is identified by a simple procedure that finds irregularities/collisions in the field of correspondences. The skeleton detection procedure is robust to noise, does not produce spurious artifacts and does not require tunable parameters. Results of the algorithm are compared with a closely related technique, called Anatomically Consistent Enhancement (ACE) (Han et al. CRUISE: Cortical reconstruction using implicit surface evolution, 2004). Results demonstrate that the approach proposed here has a number of advantages over ACE and produces skeletons with a more regular structure. This algorithm was developed as a part of a more general PDE-based framework for cortical reconstruction, which integrates the potential field gradient flow and the skeleton barriers into a level set deformable model. This technique is primarily aimed at anatomically consistent and accurate reconstruction of cortical surface models in the presence of imaging noise and partial volume effects, but the identified intrasulcal medial surfaces can serve other purposes as well, e.g. as landmarks in nonrigid registration, or as sulcal ribbons that characterize the cortical folding.

  17. Mathematical Analysis of Hall Effect on Transient Hartman Flow about a Rotating Horizontal Permeable Surface in a Porous Medium under Inclined Magnetic Field

    PubMed Central

    Suresh, M.; Manglik, A.

    2014-01-01

    This paper proposes the exact solution for unsteady flow of a viscous incompressible electrically conducting fluid past a impulsively started infinite horizontal surface which is rotating with an angular velocity embedded in a saturated porous medium under the influence of strong magnetic field with hall effect. Our study focuses on the change of direction of the external magnetic field on the flow system which leads to change in the flow behavior and skin frictional forces at the boundary. Systems of flow equations are solved using Laplace transform technique. The impacts of control parameters Hartman number, rotation of the system, hall effect, inclination of the magnetic field, and Darcy number on primary and secondary velocities are shown graphically, skin friction at horizontal boundary in tabular form. For validating our results, in the absence of permeability of the porous medium and inclination of the magnetic field the results are in good agreement with the published results.

  18. Kinetic modeling in the context of cerebral blood flow quantification by H2(15)O positron emission tomography: the meaning of the permeability coefficient in Renkin-Crone׳s model revisited at capillary scale.

    PubMed

    Lorthois, Sylvie; Duru, Paul; Billanou, Ian; Quintard, Michel; Celsis, Pierre

    2014-07-21

    One the one hand, capillary permeability to water is a well-defined concept in microvascular physiology, and linearly relates the net convective or diffusive mass fluxes (by unit area) to the differences in pressure or concentration, respectively, that drive them through the vessel wall. On the other hand, the permeability coefficient is a central parameter introduced when modeling diffusible tracers transfer from blood vessels to tissue in the framework of compartmental models, in such a way that it is implicitly considered as being identical to the capillary permeability. Despite their simplifying assumptions, such models are at the basis of blood flow quantification by H2(15)O Positron Emission Tomgraphy. In the present paper, we use fluid dynamic modeling to compute the transfers of H2(15)O between the blood and brain parenchyma at capillary scale. The analysis of the so-obtained kinetic data by the Renkin-Crone model, the archetypal compartmental model, demonstrates that, in this framework, the permeability coefficient is highly dependent on both flow rate and capillary radius, contrarily to the central hypothesis of the model which states that it is a physiological constant. Thus, the permeability coefficient in Renkin-Crone׳s model is not conceptually identical to the physiologic permeability as implicitly stated in the model. If a permeability coefficient is nevertheless arbitrarily chosen in the computed range, the flow rate determined by the Renkin-Crone model can take highly inaccurate quantitative values. The reasons for this failure of compartmental approaches in the framework of brain blood flow quantification are discussed, highlighting the need for a novel approach enabling to fully exploit the wealth of information available from PET data. PMID:24637002

  19. MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation

    NASA Astrophysics Data System (ADS)

    Swati, Mukhopadhyay; Iswar, Chandra Moindal; Tasawar, Hayat

    2014-10-01

    This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carried out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.

  20. Permeability changes in the blood-brain barrier: causes and consequences.

    PubMed

    Pardridge, W M; Connor, J D; Crawford, I L

    1975-01-01

    1. Generalized changes in blood-brain barrier (BBB) permeability are accompanied by extravasation of plasma proteins; thus, they are readily studied with protein markers or protein-dye complexes. Selective changes in permeability involve alterations in BBB transport systems; they are best studied with techniques which detect the qualitative hallmarks of carrier-mediated transport, namely saturation, competition, and stereospecificity. 2. Quantitative assessments of the selective permeability of the BBB can be made from the saturation data expressed in terms of Michaelis-Menten kinetics. The advantages of the latter are twofold: (a) alterations elicited by modified barrier affinity (Km) can be distinguished from alterations in carrier capacity (Vmax); (b) the relative rates of flux of a metabolite across the BBB can be placed in the perspective of cerebral metabolism. Kinetic data on transport processes in the BBB are obtained by either constant infusion or single injection techniques. Results obtained with both methodologies have been comparable. 3. Independent transport systems for glucose, neutral amino acids, basic amino acids, and monocarboxylic acids have been identified in the BBB. The description of these transport systems in kinetic terms provides a background of information on intact mechanisms to which altered transport can be compared. 4. Experimental evidence indicates that the availability of key metabolic substrates, such as glucose or essential amino acids, may be rate-limiting in cerebral metabolism. A working hypothesis was developed that the consequences of a selective change in barrier permeability to one or more of these essential substrates are directly related to altered rates of reaction in substrate-limited pathways, e.g., cerebral protein or neuro-transmitter biosynthesis. 5. Toxicological causes of generalized changes in BBB permeability include hypertonic solutions, organic solvents, surface-active agents, enzymes, and heavy metals. Some

  1. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  2. In-situ monitoring of flow-permeable surface area of high explosive powder using small sample masses

    SciTech Connect

    Maiti, Amitesh; Han, Yong; Zaka, Fowzia; Gee, Richard H.

    2015-02-17

    To ensure good performance of high explosive devices over long periods of time, initiating powders need to maintain their specific surface area within allowed margins during the entire duration of deployment. A common diagnostic used in this context is the Fisher sub-sieve surface area (FSSA). Furthermore, commercial permeametry instruments measuring the FSSA requires the utilization of a sample mass equal to the crystal density of the sample material, an amount that is often one or two orders of magnitude larger than the typical masses found in standard detonator applications. Here we develop a customization of the standard device that can utilize just tens of milligram samples, and with simple calibration yield FSSA values at ac curacy levels comparable to the standard apparatus. This necessitated a newly designed sample holder, made from a material of low coefficient of thermal expansion, which is conveniently transferred between an aging chamber and a re-designed permeametry tube. This improves the fidelity of accelerated aging studies by allowing measurement on the same physical sample at various time - instants during the aging process, and by obviating the need for a potentially FSSA-altering powder re-compaction step. We used the customized apparatus to monitor the FSSA evolution of a number of undoped and homolog-doped PETN powder samples that were subjected to artificial aging for several months at elevated temperatures. These results, in conjunction with an Arrhenius-based aging model were used to assess powder-coarsening - rates under long-term storage.

  3. Sensitivity Analysis and Parameter Identifiability of the Land Surface Model JULES at the point scale in permeable catchments

    NASA Astrophysics Data System (ADS)

    Bakopoulou, C.; Bulygina, N.; Butler, A. P.; McIntyre, N. R.

    2012-04-01

    Land surface models (LSMs) are recognised as important components of Global Circulation Models (GCMs). Simulating exchanges of the moisture, carbon and energy between land surface and atmosphere in a consistent manner requires physics-based LSMs of high complexity, fine vertical resolution and a large number of parameters that need to be estimated. The "physics" that is incorporated in such models is generally based on our knowledge of point (or very small) scale hydrological processes. Therefore, while larger GCM grid-scale performance may be the ultimate goal, the ability of the model to simulate the point-scale processes is, intuitively, a pre-requisite for its reliable use at larger scales. Critical evaluation of model performance and parameter uncertainty at point scales is therefore a rational starting point for critical evaluation of LSMs; and identification of optimal parameter sets at the point scale is a significant stage of the model evaluation at larger scales. The Joint UK Land Environment Simulator (JULES) is a complex LSM, which is used to represent surface exchanges in the UK Met Office's forecast and climate change models. This complexity necessitates a large number of model parameters (in total 108) some of which are incapable of being measured directly at large (i.e. kilometer) scales. For this reason, a parameter sensitivity analysis is a vital confidence building process within the framework of every LSM, and as a part of the calibration strategy. The problem of JULES parameter estimation and uncertainty at the point scale with a view to assessing the accuracy and the uncertainty in the default parameter values is addressed. The sensitivity of the JULES output of soil moisture is examined using parameter response surface analysis. The implemented technique is based on the Regional Sensitivity Analysis method (RSA), which evaluates the model response surface over a region of parameter space using Monte Carlo sampling. The modified version of RSA

  4. In-situ monitoring of flow-permeable surface area of high explosive powder using small sample masses

    DOE PAGESBeta

    Maiti, Amitesh; Han, Yong; Zaka, Fowzia; Gee, Richard H.

    2015-02-17

    To ensure good performance of high explosive devices over long periods of time, initiating powders need to maintain their specific surface area within allowed margins during the entire duration of deployment. A common diagnostic used in this context is the Fisher sub-sieve surface area (FSSA). Furthermore, commercial permeametry instruments measuring the FSSA requires the utilization of a sample mass equal to the crystal density of the sample material, an amount that is often one or two orders of magnitude larger than the typical masses found in standard detonator applications. Here we develop a customization of the standard device that canmore » utilize just tens of milligram samples, and with simple calibration yield FSSA values at ac curacy levels comparable to the standard apparatus. This necessitated a newly designed sample holder, made from a material of low coefficient of thermal expansion, which is conveniently transferred between an aging chamber and a re-designed permeametry tube. This improves the fidelity of accelerated aging studies by allowing measurement on the same physical sample at various time - instants during the aging process, and by obviating the need for a potentially FSSA-altering powder re-compaction step. We used the customized apparatus to monitor the FSSA evolution of a number of undoped and homolog-doped PETN powder samples that were subjected to artificial aging for several months at elevated temperatures. These results, in conjunction with an Arrhenius-based aging model were used to assess powder-coarsening - rates under long-term storage.« less

  5. Cerebral palsy.

    PubMed

    Wimalasundera, Neil; Stevenson, Valerie L

    2016-06-01

    Cerebral palsy has always been known as a disorder of movement and posture resulting from a non-progressive injury to the developing brain; however, more recent definitions allow clinicians to appreciate more than just the movement disorder. Accurate classification of cerebral palsy into distribution, motor type and functional level has advanced research. It also facilitates appropriate targeting of interventions to functional level and more accurate prognosis prediction. The prevalence of cerebral palsy remains fairly static at 2-3 per 1000 live births but there have been some changes in trends for specific causal groups. Interventions for cerebral palsy have historically been medical and physically focused, often with limited evidence to support their efficacy. The use of more appropriate outcome measures encompassing quality of life and participation is helping to deliver treatments which are more meaningful for people with cerebral palsy and their carers. PMID:26837375

  6. Numerical solution for the flow and heat transfer due to a permeable stretching surface embedded in a porous medium with a second-order slip and viscous dissipation

    NASA Astrophysics Data System (ADS)

    Khader, M. M.; Megahed, Ahmed M.

    2014-01-01

    This paper is devoted to introduce a numerical simulation using the implicit finite difference method (FDM) with the theoretical study for the effect of viscous dissipation on the steady flow with heat transfer of Newtonian fluid towards a permeable stretching surface embedded in a porous medium with a second-order slip. The governing non-linear partial differential equations are converted into non-linear ordinary differential equations (ODEs) by using similarity variables. Exact solutions corresponding to momentum and energy equations for the case of no slip conditions are obtained. The resulting ODEs are successfully solved numerically with the help of FDM. Graphically results are shown for non-dimensional velocities and temperature. The effects of the porous parameter, the suction (injection) parameter, Eckert number, first- and second-order velocity slip parameter and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin friction and Nusselt numbers are presented. Comparison of numerical results is made with the earlier published results under limiting cases.

  7. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  8. Incorporating surface indicators of reservoir permeability into reservoir volume calculations: Application to the Colli Albani caldera and the Central Italy Geothermal Province

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; De Benedetti, Arnaldo Angelo; Bonamico, Andrea; Ramazzotti, Paolo; Mattei, Massimo

    2014-01-01

    The Quaternary Roman Volcanic Province extends for over 200 km along the Tyrrhenian margin of the Italian peninsula and is composed of several caldera complexes with significant associated geothermal potential. In spite of the massive programs of explorations conducted by the then state-owned ENEL and AGIP companies between the 1970s and 1990s, and the identification of several high enthalpy fields, this resource remains so far unexploited, although it occurs right below the densely populated metropolitan area of Roma capital city. The main reason for this failure is that deep geothermal reservoirs are associated with fractured rocks, the secondary permeability of which has been difficult to predict making the identification of the most productive volumes of the reservoirs and the localisation of productive wells uncertain. As a consequence, almost half of the many exploration deep bore-holes drilled in the area reached a dry target. This work reviews available data and re-assesses the geothermal potential of caldera-related systems in Central Italy, by analysing in detail the case of the Colli Albani caldera system, the closest to Roma capital city. A GIS based approach identifies the most promising reservoir volumes for geothermal exploitation and uses an improved volume method approach for the evaluation of geothermal potential. The approach is based on a three dimensional matrix of georeferenced spatial data; the A axis accounts for the modelling of the depth of the top of the reservoirs based on geophysical and direct data; the B axis accounts for the thermal modelling of the crust (i.e. T with depth) based on measured thermal gradients. Both A and B data are necessary but not sufficient to identify rock volumes actually permeated by geothermal fluids in fractured reservoirs. We discuss the implementation of a C axis that evaluates all surface data indicating permeability in the reservoir and actual geothermal fluid circulation. We consider datasets on: i

  9. Adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx

    PubMed Central

    Cai, Bin; Fan, Jie; Zeng, Min; Zhang, Lin

    2012-01-01

    To investigate the effect of tumor cell adhesion on microvascular permeability (P) in intact microvessels, we measured the adhesion rate of human mammary carcinoma MDA-MB-231, the hydraulic conductivity (Lp), the P, and reflection coefficient (σ) to albumin of the microvessels at the initial tumor cell adhesion and after ∼45 min cell perfusion in the postcapillary venules of rat mesentery in vivo. Rats (Sprague-Dawley, 250–300 g) were anesthetized with pentobarbital sodium given subcutaneously. A midline incision was made in the abdominal wall, and the mesentery was gently taken out and arranged on the surface of a glass coverslip for the measurement. An individual postcapillary venule was perfused with cells at a rate of ∼1 mm/s, which is the mean blood flow velocity in this type of microvessels. At the initial tumor cell adhesion, which was defined as one adherent cell in ∼100- to 145-μm vessel segment, Lp was 1.5-fold and P was 2.3-fold of their controls, and σ decreased from 0.92 to 0.64; after ∼45-min perfusion, the adhesion increased to ∼5 adherent cells in ∼100- to 145-μm vessel segment, while Lp increased to 2.8-fold, P to 5.7-fold of their controls, and σ decreased from 0.92 to 0.42. Combining these measured data with the predictions from a mathematical model for the interendothelial transport suggests that tumor cell adhesion to the microvessel wall degrades the endothelial surface glycocalyx (ESG) layer. This suggestion was confirmed by immunostaining of heparan sulfate of the ESG on the microvessel wall. Preserving of the ESG by a plasma glycoprotein orosomucoid decreased the P to albumin and reduced the tumor cell adhesion. PMID:22858626

  10. Cerebral palsy.

    PubMed

    Graham, H Kerr; Rosenbaum, Peter; Paneth, Nigel; Dan, Bernard; Lin, Jean-Pierre; Damiano, Diane L; Becher, Jules G; Gaebler-Spira, Deborah; Colver, Allan; Reddihough, Dinah S; Crompton, Kylie E; Lieber, Richard L

    2016-01-01

    Cerebral palsy is the most common cause of childhood-onset, lifelong physical disability in most countries, affecting about 1 in 500 neonates with an estimated prevalence of 17 million people worldwide. Cerebral palsy is not a disease entity in the traditional sense but a clinical description of children who share features of a non-progressive brain injury or lesion acquired during the antenatal, perinatal or early postnatal period. The clinical manifestations of cerebral palsy vary greatly in the type of movement disorder, the degree of functional ability and limitation and the affected parts of the body. There is currently no cure, but progress is being made in both the prevention and the amelioration of the brain injury. For example, administration of magnesium sulfate during premature labour and cooling of high-risk infants can reduce the rate and severity of cerebral palsy. Although the disorder affects individuals throughout their lifetime, most cerebral palsy research efforts and management strategies currently focus on the needs of children. Clinical management of children with cerebral palsy is directed towards maximizing function and participation in activities and minimizing the effects of the factors that can make the condition worse, such as epilepsy, feeding challenges, hip dislocation and scoliosis. These management strategies include enhancing neurological function during early development; managing medical co-morbidities, weakness and hypertonia; using rehabilitation technologies to enhance motor function; and preventing secondary musculoskeletal problems. Meeting the needs of people with cerebral palsy in resource-poor settings is particularly challenging. PMID:27188686

  11. The skin migratory stage of the schistosomulum of Schistosoma mansoni has a surface showing greater permeability and activity in membrane internalisation than other forms of skin or mechanical schistosomula.

    PubMed

    DE Jesus Jeremias, Wander; DA Cunha Melo, Jose Renan; Baba, Elio Hideo; Coelho, Paulo Marcos Zech; Kusel, John Robert

    2015-08-01

    Skin schistosomula can be prepared by collecting them after isolated mouse skin have been penetrated by cercariae in vitro. The schistosomula can also migrate out of isolated mouse skin penetrated by cercariae in vitro and from mouse skin penetrated by cercariae in vivo. Schistosomula can also be produced from cercariae applied through a syringe or in a vortex. When certain surface properties of the different forms of schistosomula were compared, those migrating from mouse skin penetrated by cercariae in vivo or in vitro had greatly increased permeability to membrane impermeant molecules such as Lucifer yellow and high molecular weight dextrans. These migrating forms also possessed surfaces which showed greatly enhanced uptake into internal membrane vesicles of the dye FM 143, a marker for endocytosis. This greatly enhanced activity and permeability of the surfaces of tissue migrating schistosomula is likely to be of great importance in the adaptation to the new host. PMID:26028506

  12. Cerebral angiography

    MedlinePlus

    ... Cerebral angiography is done in the hospital or radiology center. You lie on an x-ray table. ... be done in preparation for medical treatment (interventional radiology procedures) by way of certain blood vessels. What ...

  13. Cerebral Palsy

    MedlinePlus

    ... Español (Spanish) Recommend on Facebook Tweet Share Compartir Cerebral palsy (CP) is a group of disorders that affect a ... ability to move and maintain balance and posture. CP is the most common motor disability in childhood. ...

  14. Cerebral Arteriosclerosis

    MedlinePlus

    ... Cerebral arteriosclerosis is the result of thickening and hardening of the walls of the arteries in the ... cause an ischemic stroke. When the thickening and hardening is uneven, arterial walls can develop bulges (called ...

  15. Studying the Variation in Gas Permeability of Porous Building Substrates

    NASA Astrophysics Data System (ADS)

    Townsend, L.; Savidge, C. R.; Hu, L.; Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.

    2009-12-01

    Understanding permeability of building materials is important for problems involving studies of contaminant transport. Examples include contamination from fire, acid rain, and chemical and biological weapons. Our research investigates the gas permeability of porous building substrates such as concretes, limestones, sandstones, and bricks. Each sample was cored to produce 70 mm (2.75”) diameter cores approximately 75-130 mm (3-5”) tall. The surface gas permeability was measured on the top surface of these specimens using the AutoScan II device manufactured by New England Research, Inc. The measurements were taken along a 3 mm grid producing a map of surface gas permeability. An example map is shown in Figure 1. The macroscopic measurements were performed along the entire cored specimen. A second set of measurements were made on a 5 mm thick slice cut from the top of each specimen to examine whether these measurements compare better with the surface measurements. The macroscopic gas permeability was measured for all specimens using ASTM D 4525. The results are summarized in Table 1. In general, the surface and macroscopic gas permeability measurements (Table 1) compare reasonably well (within one order of magnitude). The permeability of the 5 mm slices is not significantly different from the entire core for the specimens tested. Figure 1. Results of surface permeability mappingof Ohio Sandstone using the AutoScan II device. a) Map of gas permeability b) Range of gas permeability c) Density function of permeability. Table 1. Gas permeability values (mD)

  16. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  17. Enhanced In Vitro Biocompatibility of Chemically Modified Poly(dimethylsiloxane) Surfaces for Stable Adhesion and Long-term Investigation of Brain Cerebral Cortex Cells.

    PubMed

    Kuddannaya, Shreyas; Bao, Jingnan; Zhang, Yilei

    2015-11-18

    Studies on the mammalian brain cerebral cortex have gained increasing importance due to the relevance of the region in controlling critical higher brain functions. Interactions between the cortical cells and surface extracellular matrix (ECM) proteins play a pivotal role in promoting stable cell adhesion, growth, and function. Poly(dimethylsiloxane) (PDMS) based platforms have been increasingly used for on-chip in vitro cellular system analysis. However, the inherent hydrophobicity of the PDMS surface has been unfavorable for any long-term cell system investigations due to transitory physical adsorption of ECM proteins on PDMS surfaces followed by eventual cell dislodgement due to poor anchorage and viability. To address this critical issue, we employed the (3-aminopropyl)triethoxysilane (APTES) based cross-linking strategy to stabilize ECM protein immobilization on PDMS. The efficiency of surface modification in supporting adhesion and long-term viability of neuronal and glial cells was analyzed. The chemically modified surfaces showed a relatively higher cell survival with an increased neurite length and neurite branching. These changes were understood in terms of an increase in surface hydrophilicity, protein stability, and cell-ECM protein interactions. The modification strategy could be successfully applied for stable cortical cell culture on the PDMS microchip for up to 3 weeks in vitro. PMID:26506436

  18. Systematization, description, and territory of the caudal cerebral artery in surface of the brain of the ostrich (Struthio camelus).

    PubMed

    Nazer, Manoel; Campos, Rui

    2014-08-01

    Brain specimens from 30 ostriches were injected with red-dyed latex via the internal carotid arteries, and the caudal cerebral arteries and their branches were systematically described. On the right side, the caudal cerebral artery was double-, triple-, quadruple-, and single-branched in 73.5%, 23.3%, 3.3%, and 3.3% of cases, respectively; on the left side, it was double-, triple-, quadruple-, and single-branched in 76.7%, 20%, 3.3%, and 3.3% of cases, respectively. The dorsal tectal mesencephalic artery appeared as a single vessel in 96.7% of cases, emerging as a collateral branch of the caudal cerebral artery. The dorsal mesencephalic tectal artery originated from the right dorsal cerebellar artery in 40% of cases and from the left side in 63.3% of cases. On the right side, there were four and three medial occipital hemispheric branches in 46.7% and 20% of cases, respectively; on the left side, there were four and three branches in 30% and 26.7% of cases. On the right side, the pineal artery was double-, single-, triple-, and quadruple-branched in 50%, 23.3%, 20%, and 6.7% of cases, respectively; on the left side, this artery was double-, single-, triple-, and quadruple-branched in 50%, 23.3%, 16.7%, and 10% of cases, respectively. The diencephalic artery was on the right side in 43.3% of cases and on the left side in 56.7% of cases. The interhemispheric artery was on the right side in 56.7% of cases and on the left side in 43.3% of cases; four, three, two, five, and one dorsal hemispheric trunks branched off of the interhemispheric artery in 40%, 40%, 10%, 6.7%, and 26.7% of cases, respectively. The caudal cerebral artery was classified as Type I in 56.7% of cases (subtype IA in 33.3% of cases and IB in 23.3% of cases), Type II in 40% of cases (subtype IIA in 20% of cases and IIB in 20% of cases), and Type III in 3.3% of cases. PMID:24890607

  19. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  20. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy Print A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  1. Stress does not increase blood-brain barrier permeability in mice.

    PubMed

    Roszkowski, Martin; Bohacek, Johannes

    2016-07-01

    Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood-brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood-brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood-brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood-brain barrier permeability. To additionally assess if stress could change blood-brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood-brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood-brain barrier permeability. PMID:27146513

  2. Permeability across lipid membranes.

    PubMed

    Shinoda, Wataru

    2016-10-01

    Molecular permeation through lipid membranes is a fundamental biological process that is important for small neutral molecules and drug molecules. Precise characterization of free energy surface and diffusion coefficients along the permeation pathway is required in order to predict molecular permeability and elucidate the molecular mechanisms of permeation. Several recent technical developments, including improved molecular models and efficient sampling schemes, are illustrated in this review. For larger penetrants, explicit consideration of multiple collective variables, including orientational, conformational degrees of freedom, are required to be considered in addition to the distance from the membrane center along the membrane normal. Although computationally demanding, this method can provide significant insights into the molecular mechanisms of permeation for molecules of medical and pharmaceutical importance. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:27085977

  3. Method for determining permeability in hydrocarbon wells

    SciTech Connect

    Boone, D.E.

    1990-10-09

    This patent describes a method of determining at the earth's surface the permeability of a subsurface earth formation having a known nominal hydrocarbon pore saturation value. The formation is tranversed by a borehole resulting from drilling with a drill bit.

  4. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. PMID:23434738

  5. Permeable membrane experiment

    NASA Technical Reports Server (NTRS)

    Slavin, Thomas J.; Cao, Tuan Q.; Kliss, Mark H.

    1993-01-01

    The purpose of the Permeable Membrane Experiment is to gather flight data on three areas of membrane performance that are influenced by the presence of gravity. These areas are: (1) Liquid/gas phase separation, (2) gas bubble interference with diffusion through porous membranes and (3) wetting characteristics of hydrophilic membrane surfaces. These data are important in understaning the behavior of membrane/liquid/gas interfaces where surface tension forces predominate. The data will be compared with 1-g data already obtained and with predicted micrograviity behavior. The data will be used to develop designs for phase separation and plant nutrient delivery systems and will be available to the life support community for use in developing technologies which employ membranes. A conceptual design has been developed to conduct three membrane experiments, in sequence, aboard a single Complex Autonomous Payload (CAP) carrier to be carried in the Shuttle Orbiter payload bay. One experiment is conducted for each of the three membrane performance areas under study. These experiments are discussed in this paper.

  6. Permeability of Dentine

    PubMed Central

    Ghazali, Farid Bin Che

    2003-01-01

    This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it. PMID:23365497

  7. Relationship between in vitro transendothelial permeability and in vivo single-pass brain extraction

    SciTech Connect

    Pirro, J.P.; Di Rocco, R.J.; Narra, R.K.

    1994-09-01

    In vitro transendothelial permeability was compared to in vivo rat single-pass cerebral extractions to evaluate which method would best estimate the blood-brain barrier (BBB) permeability of several SPECT imaging agents. Six {sup 99m}Tc complexes and seven non-Tc complexes were tested in vitro using monolayers of primary bovine brain microvessel endothelial cells and in vivo using the rat single-pass cerebral extraction model. In vitro transendothelial permeability indices (PI) were determined by measuring the average percent of radioactivity traversing the monolayers as a function of time. In vivo single-pass cerebral extractions were determined using an indicator fractionation method. A positive correlation between extraction and PI was found for the non-TC complexes (r{sup 2} = 0.96). The CBF imaging agents {sup 99m}Tc-ECD and {sup 99m}Tc-PnAO have high values for E and PI, demonstrating that these agents penetrate the BBB and have a high membrane permeability, while the heart imaging agent {sup 99m}Tc-sestamibi had low values for both E and PI. The low PI and E values for {sup 99m}Tc-sestamibi are consistent with a low brain uptake for this agent, except in cases of disruption of the BBB. In contrast to {sup 99m}Tc-ECD, {sup 99m}Tc-PnAO and {sup 99m}Tc-sestamibi, which had concordant values for E and PI, two highly lipophilic boronic acid adducts of technetium dioxime (BATOs), {sup 99m}Tc-teboroxime and {sup 99m}Tc-ECD, {sup 99m}Tc-Cl(DMG){sub 3}2MP, had low negative values for PI, but high values for E. In addition, after 3 hr of incubation, the monolayer-to-medium concentration ratio of the BATOs was 642:1 and 744:1, respectively. This compares with values of 89:1 ({sup 99m}Tc-PnAO), 25:1 ({sup 99m}Tc-ECD) and 34:1 ({sup 99m}Tc-sestamibi). These data suggest that the high in vivo single-pass extraction of the BATOs may be explained by a hydrophobic interaction with the luminal surface of the capillary endothelial cell plasma membrane.

  8. Employees with Cerebral Palsy

    MedlinePlus

    ... Resources Home | Accommodation and Compliance Series: Employees with Cerebral Palsy (CP) By Eddie Whidden, MA Preface Introduction Information About ... SOAR) at http://AskJAN.org/soar. Information about Cerebral Palsy (CP) What is CP? Cerebral palsy is a ...

  9. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS Cerebral Aneurysms Fact Sheet See a list of all NINDS ... I get more information? What is a cerebral aneurysm? A cerebral aneurysm (also known as an intracranial ...

  10. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  11. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy

    PubMed Central

    Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011

  12. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy.

    PubMed

    Reid, Lee B; Cunnington, Ross; Boyd, Roslyn N; Rose, Stephen E

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43-0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011

  13. Ethanol reduces GABAA alpha1 subunit receptor surface expression by a protein kinase Cgamma-dependent mechanism in cultured cerebral cortical neurons.

    PubMed

    Kumar, Sandeep; Suryanarayanan, Asha; Boyd, Kevin N; Comerford, Chris E; Lai, Marvin A; Ren, Qinglu; Morrow, A Leslie

    2010-05-01

    Prolonged ethanol exposure causes central nervous system hyperexcitability that involves a loss of GABAergic inhibition. We previously demonstrated that long-term ethanol exposure enhances the internalization of synaptic GABA(A) receptors composed of alpha1beta2/3gamma2 subunits. However, the mechanisms of ethanol-mediated internalization are unknown. This study explored the effect of ethanol on surface expression of GABA(A) alpha1 subunit-containing receptors in cultured cerebral cortical neurons and the role of protein kinase C (PKC) beta, gamma, and epsilon isoforms in their trafficking. Cultured neurons were prepared from rat pups on postnatal day 1 and maintained for 18 days. Cells were exposed to ethanol, and surface receptors were isolated by biotinylation and P2 fractionation, whereas functional analysis was conducted by whole-cell patch-clamp recording of GABA- and zolpidem-evoked responses. Ethanol exposure for 4 h decreased biotinylated surface expression of GABA(A) receptor alpha1 subunits and reduced zolpidem (100 nM) enhancement of GABA-evoked currents. The PKC activator phorbol-12,13-dibutyrate mimicked the effect of ethanol, and the selective PKC inhibitor calphostin C prevented ethanol-induced internalization of these receptors. Ethanol exposure for 4 h also increased the colocalization and coimmunoprecipitation of PKCgamma with alpha1 subunits, whereas PKCbeta/alpha1 association and PKCepsilon/alpha1 colocalization were not altered by ethanol exposure. Selective PKCgamma inhibition by transfection of selective PKCgamma small interfering RNAs blocked ethanol-induced internalization of GABA(A) receptor alpha1 subunits, whereas PKCbeta inhibition using pseudo-PKCbeta had no effect. These findings suggest that ethanol exposure selectively alters PKCgamma translocation to GABA(A) receptors and PKCgamma regulates GABA(A) alpha1 receptor trafficking after ethanol exposure. PMID:20159950

  14. Cerebral malaria.

    PubMed

    Postels, Douglas G; Birbeck, Gretchen L

    2013-01-01

    Malaria, the most significant parasitic disease of man, kills approximately one million people per year. Half of these deaths occur in those with cerebral malaria (CM). The World Health Organization (WHO) defines CM as an otherwise unexplained coma in a patient with malarial parasitemia. Worldwide, CM occurs primarily in African children and Asian adults, with the vast majority (greater than 90%) of cases occurring in children 5 years old or younger in sub-Saharan Africa. The pathophysiology of the disease is complex and involves infected erythrocyte sequestration, cerebral inflammation, and breakdown of the blood-brain barrier. A recently characterized malarial retinopathy is visual evidence of Plasmodium falciparum's pathophysiological processes occurring in the affected patient. Treatment consists of supportive care and antimalarial administration. Thus far, adjuvant therapies have not been shown to improve mortality rates or neurological outcomes in children with CM. For those who survive CM, residual neurological abnormalities are common. Epilepsy, cognitive impairment, behavioral disorders, and gross neurological deficits which include motor, sensory, and language impairments are frequent sequelae. Primary prevention strategies, including bed nets, vaccine development, and chemoprophylaxis, are in varied states of development and implementation. Continuing efforts to find successful primary prevention options and strategies to decrease neurological sequelae are needed. PMID:23829902

  15. Brine network structural metamorphosis and sea ice bottom layer permeability change induced by sea water penetration under a surface pressure field

    NASA Astrophysics Data System (ADS)

    Hudier, E. J.

    2013-12-01

    Sea ice presents two roughness scales: one in the millimetre range and the other up to several meters due to ridging. The larger roughness elements are the result of compression and sheer, causing ice blocks to pile up and down at the line of contact between converging ice floes. In terms of boundary limit dynamic, they create obstacles that induce, in their wake, a pressure gradient at the ice water interface. Sea ice is a porous medium and as such, is permeable when subject to pressure gradients. Models have shown that, at spring, when ice permeability increases, sea water can be forced through the ice water interface into the bottom ice layer while brine is pumped out of it under obstacle induced pressure gradients. These results suggest that ice ocean heat budgets have to include a porous flow component and its associated latent heat import/export caused by through volume melting/thawing inside the bottom ice layer subject to sea water infiltration. With the initiation of a melt/thaw dynamic within the porous bottom ice layer, the porous network restructures. Our research show an enlargement of the larger brine channels while smaller ones close due ice growth. Similarly, ice volume of smaller cross size tend to disappear while larger ones evolve slowly. As heat fluxes due to latent heat exchanges become several orders of magnitude larger than any other exterior forcing, such as radiation, heat budgets within ice individual volumes balance fluxes in and out caused by melting/thaw on channel walls. Our simulations were run from an early spring C shape temperature profile to an isothermal state showing that structural change becomes significant only after the temperature profile becomes positive upward.

  16. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults. PMID:16810253

  17. Nanochannel flow past permeable walls via molecular dynamics

    NASA Astrophysics Data System (ADS)

    Xie, Jian-Fei; Cao, Bing-Yang

    2016-07-01

    The nanochannel flow past permeable walls with nanopores is investigated by molecular dynamics (MD) simulations, including the density distribution, velocity field, molecular penetration mechanism and surface friction coefficient. A low density distribution has been found at the gas-wall interface demonstrating the low pressure region. In addition, there exists a jump of the gas density on the permeable surface, which indicates the discontinuity of the density distribution across the permeable surface. On the other hand, the nanoscale vortices are observed in nanopores of the permeable wall, and the reduced mass flux of the flow in nanopores results in a shifted hydrodynamic boundary above the permeable surface. Particularly the slip length of the gas flow on the permeable surface is pronounced a non-linear function of the molecular mean free path, which produces a large value of the tangential momentum accommodation coefficient (TMAC) and a big portion of the diffusive refection. Moreover, the gas-gas interaction and multi-collision among gas molecules may take place in nanopores, which contribute to large values of TMAC. Consequently the boundary friction coefficient on the permeable surface is increased because of the energy dissipation consumed by the nanoscale vortices in nanopores. The molecular boundary condition provides us with a new picture of the nanochannel flow past the permeable wall with nanopores.

  18. Inflammatory response and neuronal necrosis in rats with cerebral ischemia

    PubMed Central

    Wu, Lingfeng; Zhang, Kunnan; Hu, Guozhu; Yan, Haiyu; Xie, Chen; Wu, Xiaomu

    2014-01-01

    In the middle cerebral artery occlusion model of ischemic injury, inflammation primarily occurs in the infarct and peripheral zones. In the ischemic zone, neurons undergo necrosis and apoptosis, and a large number of reactive microglia are present. In the present study, we investigated the pathological changes in a rat model of middle cerebral artery occlusion. Neuronal necrosis appeared 12 hours after middle cerebral artery occlusion, and the peak of neuronal apoptosis appeared 4 to 6 days after middle cerebral artery occlusion. Inflammatory cytokines and microglia play a role in damage and repair after middle cerebral artery occlusion. Serum intercellular cell adhesion molecule-1 levels were positively correlated with the permeability of the blood-brain barrier. These findings indicate that intercellular cell adhesion molecule-1 may be involved in blood-brain barrier injury, microglial activation, and neuronal apoptosis. Inhibiting blood-brain barrier leakage may alleviate neuronal injury following ischemia. PMID:25422636

  19. Studies on water transport through the sweet cherry fruit surface. 11. FeCl3 decreases water permeability of polar pathways.

    PubMed

    Weichert, Holger; Knoche, Moritz

    2006-08-23

    The effect of FeCl3 (10 mM) on osmotic water uptake into detached sweet cherry fruit (Prunus avium L.) and on the (3)H2O permeability (P(d)) of excised exocarp segments (ES) or enzymatically isolated cuticular membranes (CM) was investigated. ES or CM were mounted in an infinite dose diffusion system, where diffusion is monitored from a dilute donor solution through an interfacing ES or CM into a receiver solution under quasi steady-state conditions. In the absence of FeCl3, (3)H2O diffusion through stomatous ES was linear over time, indicating that P(d) was constant. Adding FeCl3 to the donor decreased P(d) by about 60%. P(d) remained at a decreased level when replacing the FeCl3 donor again by deionized water. The decrease in P(d) was positively and linearly related to the stomatal density of the ES. There was no effect of FeCl3 on the P(d) of astomatous sweet cherry fruit ES or CM regardless of the presence of wax (epicuticular or cuticular). FeCl3 decreased P(d) when added to the donor (-63%) or receiver (-16%), but there was no effect when it was added to donor and receiver solutions simultaneously. The decrease in P(d) depended on the pH of the receiver and the presence of citrate buffer. There was no effect of FeCl3 with citrate buffer as a receiver regardless of pH (range 2.0-6.0). When using nonbuffered receiver solutions with pH adjusted to pH 2.0, 3.0, 4.5, or 6.0, FeCl3 markedly decreased (3)H2O diffusion at pH > or = 3 but had no effect at pH 2.0. FeCl3 increased the energy of activation (E(a)) for (3)H2O diffusion (range 15-45 degrees C) through stomatous ES but had no significant effect in astomatous CM. The increase in E(a) by FeCl3 was positively related to stomatal density. FeCl3 decreased the P(d) for 2-(1-naphthyl)[1-(14)C]acetic acid (NAA) and 2,4-dichloro[U-(14)C]phenoxyacetic acid (2,4-D) in stomatous ES. The magnitude of the effect depended on the degree of dissociation and was larger for the dissociated acids (pH 6.2) than for the

  20. [Cerebral palsy].

    PubMed

    Malagón Valdez, Jorge

    2007-01-01

    The term cerebral palsy (CP), is used for a great number of clinical neurological syndromes. The syndromes are characterized by having a common cause, motor defects. It is important, because they can cause a brain damage by presenting motor defects and some associated deficiencies, such as mental deficiency, epilepsy, language and visual defects and pseudobulbar paralysis, with the non-evolving fact. Some authors prefer using terms such as "non-evolving encephalopathies". In the treatment the utility of prevention programs of early stimulation and special rehabilitation methods, and treatment of associated deficiencies such as epilepsy, mental deficiency, language, audition and visual problems, and the attention deficit improve the prognosis in an important way. The prognosis depends on the severity of the disease and the associated manifestations. PMID:18422084

  1. Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles.

    PubMed

    Pires, Paulo W; Sullivan, Michelle N; Pritchard, Harry A T; Robinson, Jennifer J; Earley, Scott

    2015-12-15

    Cerebral parenchymal arterioles (PA) regulate blood flow between pial arteries on the surface of the brain and the deeper microcirculation. Regulation of PA contractility differs from that of pial arteries and is not completely understood. Here, we investigated the hypothesis that the Ca(2+) permeable vanilloid transient receptor potential (TRPV) channel TRPV3 can mediate endothelium-dependent dilation of cerebral PA. Using total internal reflection fluorescence microscopy (TIRFM), we found that carvacrol, a monoterpenoid compound derived from oregano, increased the frequency of unitary Ca(2+) influx events through TRPV3 channels (TRPV3 sparklets) in endothelial cells from pial arteries and PAs. Carvacrol-induced TRPV3 sparklets were inhibited by the selective TRPV3 blocker isopentenyl pyrophosphate (IPP). TRPV3 sparklets have a greater unitary amplitude (ΔF/F0 = 0.20) than previously characterized TRPV4 (ΔF/F0 = 0.06) or TRPA1 (ΔF/F0 = 0.13) sparklets, suggesting that TRPV3-mediated Ca(2+) influx could have a robust influence on cerebrovascular tone. In pressure myography experiments, carvacrol caused dilation of cerebral PA that was blocked by IPP. Carvacrol-induced dilation was nearly abolished by removal of the endothelium and block of intermediate (IK) and small-conductance Ca(2+)-activated K(+) (SK) channels. Together, these data suggest that TRPV3 sparklets cause dilation of cerebral parenchymal arterioles by activating IK and SK channels in the endothelium. PMID:26453324

  2. The Permeable Classroom.

    ERIC Educational Resources Information Center

    Sandy, Leo R.

    1998-01-01

    Discusses the concept of permeability as knowledge flow into and out of the classroom and applies it to three college courses taught by the author at Plymouth State College (New Hampshire). Experiential knowledge comes into the classroom through interviews, guest speakers, and panel presentations, and flows out through service-learning students…

  3. Reduced hydrogen permeability at high temperatures

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Klopp, W. D.; Misencik, J. A.

    1981-01-01

    CO and CO2 reduce hydrogen loss through iron, nickel, and cobalt based alloy tubes. Method is based on concept that oxide film on metal surface reduces hydrogen permeability through metal; adding CO or CO2 forms oxide films continuously during operation, and hydrogen containment is improved. Innovation enhances prospects for Stirling engine system utilization.

  4. Scales of rock permeability

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Gavrilenko, P.; Le Ravalec, M.

    1996-05-01

    Permeability is a transport property which is currently measured in Darcy units. Although this unit is very convenient for most purposes, its use prevents from recognizing that permeability has units of length squared. Physically, the square root of permeability can thus be seen as a characteristic length or a characteristic pore size. At the laboratory scale, the identification of this characteristic length is a good example of how experimental measurements and theoretical modelling can be integrated. Three distinct identifications are of current use, relying on three different techniques: image analysis of thin sections, mercury porosimetry and nitrogen adsorption. In each case, one or several theoretical models allow us to derive permeability from the experimental data (equivalent channel models, statistical models, effective media models, percolation and network models). Permeability varies with pressure and temperature and this is a decisive point for any extrapolation to crustal conditions. As far as pressure is concerned, most of the effect is due to cracks and a model which does not incorporate this fact will miss its goal. Temperature induced modifications can be the result of several processes: thermal cracking (due to thermal expansion mismatch and anisotropy, or to fluid pressure build up), and pressure solution are the two main ones. Experimental data on pressure and temperature effects are difficult to obtain but they are urgently needed. Finally, an important issue is: up to which point are these small scale data and models relevant when considering formations at the oil reservoir scale, or at the crust scale? At larger scales the identification of the characteristic scale is also a major goal which is examined.

  5. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration.

    PubMed

    Lochhead, Jeffrey J; Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G

    2015-03-01

    The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain. PMID:25492117

  6. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration

    PubMed Central

    Lochhead, Jeffrey J; Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G

    2015-01-01

    The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood–brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain. PMID:25492117

  7. The Noncompetitive AMPAR Antagonist Perampanel Abrogates Brain Endothelial Cell Permeability in Response to Ischemia: Involvement of Claudin-5.

    PubMed

    Lv, Jian-Meng; Guo, Xiao-Min; Chen, Bo; Lei, Qi; Pan, Ya-Juan; Yang, Qian

    2016-07-01

    The blood-brain barrier (BBB) is formed by brain endothelial cells, and decreased BBB integrity contributes to vasogenic cerebral edema and increased mortality after stroke. In the present study, we investigated the protective effect of perampanel, an orally active noncompetitive AMPA receptor antagonist, on BBB permeability in an in vitro ischemia model in murine brain endothelial cells (mBECs). The results showed that perampanel significantly attenuated oxygen glucose deprivation (OGD)-induced loss of cell viability, release of lactate dehydrogenase, and apoptotic cell death in a dose-dependent manner. Perampanel treatment did not alter the expression and surface distribution of various glutamate receptors. Furthermore, the results of calcium imaging showed that perampanel had no effect on OGD-induced increase in intracellular Ca(2+) concentrations. Treatment with perampanel markedly reduced the paracellular permeability of mBECs after OGD in different time points, as measured by transepithelial electrical resistance assay. In addition, the expression of claudin-5 at protein level, but not at mRNA level, was increased by perampanel treatment after OGD. Knockdown of claudin-5 partially prevented perampanel-induced protection in cell viability and BBB integrity in OGD-injured mBECs. These data show that the noncompetitive AMPA receptor antagonist perampanel affords protection against ischemic stroke through caludin-5 mediated regulation of BBB permeability. PMID:26306919

  8. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  9. Cerebral Contusions and Lacerations

    MedlinePlus

    ... Stretch Additional Content Medical News Cerebral Contusions and Lacerations By James E. Wilberger, MD, Derrick A. Dupre, ... a direct, strong blow to the head. Cerebral lacerations are tears in brain tissue, caused by a ...

  10. United Cerebral Palsy

    MedlinePlus

    ... of UCP blog for the latest updates. United Cerebral Palsy UCP educates, advocates and provides support services to ... Partners Merz Logo Sprint Relay Copyright © 2015 United Cerebral Palsy 1825 K Street NW Suite 600 Washington, DC ...

  11. Cerebral amyloid angiopathy

    MedlinePlus

    Cerebral amyloid angiopathy is a neurological condition in which proteins called amyloid build up on the walls of the arteries ... The cause of cerebral amyloid angiopathy is unknown. Sometimes, it ... Persons with this condition have deposits of amyloid protein ...

  12. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  13. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  14. Cutaneous thermal injury alters macromolecular permeability of rat small intestine.

    PubMed

    Carter, E A; Tompkins, R G; Schiffrin, E; Burke, J F

    1990-03-01

    The intestinal epithelium normally provides a barrier function that prevents absorption of potentially harmful materials from the intestinal lumen. It has been postulated but never demonstrated that a cutaneous thermal injury will result in increased small-intestinal permeability. In a standardized 20% body surface area full-thickness scald injury, with polyethylene glycol 3350 and horseradish peroxidase used as permeability probes, small-intestinal permeability was examined regionally in an everted intestinal sac model. In the normal animals, the upper (proximal) and lower (distal) small intestine were less permeable to these probes than the middle segment. Within 6 hours after the injury, an increase in the mucosal uptake and transmural permeability was seen in all three small-intestinal segments; the most dramatic increase in permeability occurred in the ileum, p less than 0.01. The maximum increase in permeability was seen at 18 hours, and permeability was normal by 72 hours after the injury. This increase in intestinal permeability may represent a transient failure of the intestinal barrier function and may allow absorption of potentially toxic macromolecules from the intestinal lumen into the portal circulation early after thermal injury. Absorption of these macromolecules, such as endotoxin, may be potentially harmful by direct toxic actions or potentially helpful by activation of the immune system. PMID:2309150

  15. Prognostic Impact of Cerebral Small Vessel Disease on Stroke Outcome

    PubMed Central

    Kim, Beom Joon

    2015-01-01

    Cerebral small vessel disease (SVD), which includes white matter hyperintensities (WMHs), silent brain infarction (SBI), and cerebral microbleeds (CMBs), develops in a conjunction of cumulated injuries to cerebral microvascular beds, increased permeability of blood-brain barriers, and chronic oligemia. SVD is easily detected by routine neuroimaging modalities such as brain computed tomography or magnetic resonance imaging. Research has revealed that the presence of SVD markers may increase the risk of future vascular events as well as deteriorate functional recovery and neurocognitive trajectories after stroke, and such an association could also be applied to hemorrhagic stroke survivors. Currently, the specific mechanistic processes leading to the development and manifestation of SVD risk factors are unknown, and further studies with novel methodological tools are warranted. In this review, recent studies regarding the prognostic impact of WMHs, SBI, and CMBs on stroke survivors and briefly summarize the pathophysiological concepts underlying the manifestation of cerebral SVD. PMID:26060797

  16. Relative permeability through fractures

    SciTech Connect

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  17. Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex123

    PubMed Central

    Maeta, Kazuhiro; Edamatsu, Hironori; Nishihara, Kaori; Ikutomo, Junji; Bilasy, Shymaa E.

    2016-01-01

    Abstract Cerebral neocortex development in mammals requires highly orchestrated events involving proliferation, differentiation, and migration of neural progenitors and neurons. Rapgef2 and Rapgef6 constitute a unique family of guanine nucleotide exchange factors for Rap1 small GTPase, which is known to play crucial roles in migration of postmitotic neurons. We previously reported that conditional knockout of Rapgef2 in dorsal telencephalon (Rapgef2-cKO) resulted in the formation of an ectopic cortical mass (ECM) resembling that of subcortical band heterotopia. Here we show that double knockout of Rapgef6 in Rapgef2-cKO mice (Rapgef2/6-dKO) results in marked enlargement of the ECM. While Rapgef2-cKO affects late-born neurons only, Rapgef2/6-dKO affects both early-born and late-born neurons. The Rapgef2-cKO cortex at embryonic day (E) 15.5, and the Rapgef2/6-dKO cortex at E13.5 and E15.5 show disruption of the adherens junctions (AJs) on the apical surface, detachment of radial glial cells (RGCs) from the apical surface and disorganization of the radial glial fiber system, which are accompanied by aberrant distribution of RGCs and intermediate progenitors, normally located in the ventricular zone and the subventricular zone, respectively, over the entire cerebral cortex. Moreover, intrauterine transduction of Cre recombinase into the Rapgef2flox/flox brains also results in the apical surface AJ disruption and the RGC detachment from the apical surface, both of which are effectively suppressed by cotransduction of the constitutively active Rap1 mutant Rap1G12V. These results demonstrate a cell-autonomous role of the Rapgef2/6-Rap1 pathway in maintaining the apical surface AJ structures, which is necessary for the proper development of neural progenitor cells. PMID:27390776

  18. Permeability-porosity relationships in sedimentary rocks

    USGS Publications Warehouse

    Nelson, Philip H.

    1994-01-01

    In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models

  19. [Etiology of cerebral palsy].

    PubMed

    Jaisle, F

    1996-01-01

    The "perinatal asphyxia" is regarded to be one of the causes of cerebral palsy, though in the very most of the children with cerebral palsy there is found no hypoxia during labour. It should be mentioned, that the definition of "perinatal" and "asphyxia" neither are unic nor concret. And also there is no correlation between nonreassuring fetal heart rate patterns and acidosis in fetal blood with the incidence of cerebral palsy. Numerous studies in pregnant animals failed in proving an acute intrapartal hypoxia to be the origin of the cerebral palsy. Myers (1975) describes four patterns of anatomic brain damage after different injuries. Only his so called oligo-acidotic hypoxia, which is protracted and lasts over a longer time is leading to brain injury, which can be regarded in analogy to the injury of children with cerebral palsy. Summarising the update publications about the causes of cerebral palsy and the studies in pregnant animals there is no evidence that hypoxia during labour may be the cause of cerebral palsy. There is a great probability of a pre(and post-)natal origin of brain injury (for instance a periventricular leucomalacia found after birth) which leads to cerebral palsy. Short after labour signs of a so called "asphyxia" may occur in addition to this preexisting injury and misrepresent the cause of cerebral palsy. Finally the prepartal injury may cause both: Cerebral palsy and hypoxia. PMID:9035826

  20. Does computed tomography permeability predict hemorrhagic transformation after ischemic stroke?

    PubMed Central

    Yen, Peggy; Cobb, Allison; Shankar, Jai Jai Shiva

    2016-01-01

    AIM: To use perfusion-derived permeability-surface area product maps to predict hemorrhagic transformation following thrombolytic treatment for acute ischemic stroke. METHODS: We retrospectively analyzed our prospectively kept acute stroke database over five consecutive months for patients with symptoms of acute ischemic stroke (AIS) who had computed tomography (CT) perfusion (CTP) done at arrival. Patients included in the analyses also had to have a follow-up CT. The permeability-surface area product maps (PS) was calculated for the side of the ischemia and/or infarction and for the contralateral unaffected side at the same level. The cerebral blood flow map was used to delineate the ischemic territory. Next, a region of interest was drawn at the centre of this territory on the PS parametric map. Finally, a mirror region of interest was created on the contralateral side at the same level. The relative permeability-surface area product maps (rPS) provided an internal control and was calculated as the ratio of the PS on the side of the AIS to the PS on the contralateral side. A student t-test was performed after log conversion of rPS between patients with and without hemorrhagic transformation. Log conversion was used to convert the data into normal distribution to use t-test. For the group of patients who experienced intracranial bleed, a student t-test was performed between those with only petechial hemorrhage and those with more severe parenchymal hematoma with subarachnoid haemorrhage. RESULTS: Of 84 patients with AIS and CTP at admission, only 42 patients had a follow-up CT. The rPS derived using the normal side as the internal control was significantly higher (P = 0.003) for the 15 cases of hemorrhagic transformation (1.71 + 1.64) compared to 27 cases that did not have any (1.07 + 1.30). Patients with values above the overall mean rPS of 1.3 had an increased likelihood of subsequent hemorrhagic transformation. The sensitivity of using this score to predict

  1. Hemiparesis post cerebral malaria

    PubMed Central

    Taiaa, Oumkaltoum; Amil, Touriya; Darbi, Abdelatif

    2015-01-01

    Cerebral malaria is one of the most serious complications in the Plasmodium falciparum infection. In endemic areas, the cerebral malaria interested mainly children. The occurrence in adults is very rare and most interested adult traveling in tropical zones. This case report describes a motor deficit post cerebral malaria in a young adult traveling in malaria endemic area. This complication has been reported especially in children and seems very rare in adults. PMID:25995798

  2. Patterns of effective permeability of leaf cuticles to acids

    SciTech Connect

    Hauser, H.D.; Walters, K.D.; Berg, V.S. )

    1993-01-01

    Plants in the field are frequently exposed to anthropogenic acid precipitation with pH values of 4 and below. For the acid to directly affect leaf tissues, it must pass through the leaf cuticle, but little is known about the permeability of cuticles to protons, of about the effect of different anions on this permeability. We investigated the movement of protons through isolated astomatous leaf cuticles of grapefruit (Citrus x paradisi Macfady.), rough lemon (Citrus limon [L.] Burm. fils cv Ponderosa), and pear (Pyrus communis L.) using hydrochloric, sulfuric, and nitric acids. Cuticles were enzymically isolated from leaves and placed in a diffusion apparatus with pH 4 acid on the morphological outer surface of the cuticle and degassed distilled water on the inner surface. Changes in pH of the solution on the inner surface were used to determine rates of effective permeability of the cuticles to the protons of these acids. Most cuticles exhibited an initial low permeability, lasting hours to days, then after a short transition displayed a significant higher permeability, which persisted until equilibrium was approached. The change in effective permeability appears to be reversible. Effective permeabilities were higher for sulfuric acid than for the others. A model of the movement of protons through the cuticle is presented, proposing that dissociated acid groups in channels within the cutin are first protonated by the acid, accounting for the low initial effective permeability; then protons pass freely through the channels, resulting in a higher effective permeability. 26 refs., 6 figs., 2 tabs.

  3. Absolute quantitation of phosphorus metabolites in the cerebral cortex of the newborn human infant and in the forearm muscles of young adults using a double-tuned surface coil

    NASA Astrophysics Data System (ADS)

    Cady, Ernest B.

    The application of a double-tuned surface coil with strong coupling for both 31P and 1H to the in vivo measurement of metabolite concentrations by NMR spectroscopy is demonstrated. It is shown that sample loading, although important for a coil tuned to a single frequency, does not necessarily have a significant effect on absolute quantitation results if the coil is strongly coupled to the sample for both nuclei. For the coil used in the present study, the spectrometer calibration coefficient is almost independent of loading and the 1H and 31P flip angles at the coil center produced by fixed length pulses could be arranged to be nearly equal over a range of loading conditions. In seven normal infants, of gestational plus postnatal age 35 to 37 weeks, the cerebral cortex nucleotide triphosphate concentration was 3.7 ± 0.6 m M/liter wet (mean ± SD). Metabolite concentrations were low in the cerebral cortex of a severely birth asphyxiated infant. The adenosine triphosphate concentration in the resting, fresh forearm muscles of six young adults was 6.3 ± 0.8 m M/liter wet.

  4. Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties.

    PubMed

    Izzo, Valentina; Bravo-San Pedro, José Manuel; Sica, Valentina; Kroemer, Guido; Galluzzi, Lorenzo

    2016-09-01

    Several insults cause the inner mitochondrial membrane to abruptly lose osmotic homeostasis, hence initiating a regulated variant of cell death known as 'mitochondrial permeability transition' (MPT)-driven necrosis. MPT provides an etiological contribution to several human disorders characterized by the acute loss of post-mitotic cells, including cardiac and cerebral ischemia. Nevertheless, the precise molecular determinants of MPT remain elusive, which considerably hampers the development of clinically implementable cardio- or neuroprotective strategies targeting this process. We summarize recent findings shedding new light on the supramolecular entity that mediates MPT, the so-called 'permeability transition pore complex' (PTPC). Moreover, we discuss hitherto unresolved controversies on MPT and analyze the major obstacles that still preclude the complete understanding and therapeutic targeting of this process. PMID:27161573

  5. Cerebral Asymmetries and Reading Acquisition

    ERIC Educational Resources Information Center

    Pirozzolo, Francis J.

    1978-01-01

    Reviewed are historical developments regarding the concepts of cerebral localization, and analyzed are implications of current research on the role of the cerebral hemispheres in reading disorders. (CL)

  6. Electrokinetic effects and fluid permeability

    NASA Astrophysics Data System (ADS)

    G. Berryman, James

    2003-10-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery.

  7. Cerebral Palsy (CP) Quiz

    MedlinePlus

    ... Submit Button Past Emails CDC Features Pop Quiz: Cerebral Palsy Language: English Español (Spanish) Recommend on Facebook Tweet ... Sandy is the parent of a child with cerebral palsy and the Board President of Gio’s Garden , a ...

  8. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  9. Hybrid green permeable pave with hexagonal modular pavement systems

    NASA Astrophysics Data System (ADS)

    Rashid, M. A.; Abustan, I.; Hamzah, M. O.

    2013-06-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  10. Water permeability of elastomers.

    PubMed

    Held, H R; Landi, S

    1977-01-01

    In a previous study it has been shown that the free moisture content in freeze-dried BCG vaccine dispensed in vials sealed with rubber stoppers increased during storage. The search for the source of this increase led us to explore the possibility that this additional moisture could originate from the rubber stoppers themselves. Therefore, the water permeability of various rubber stoppers has been studied, and the water content of grey butyl stoppers during some operations (autoclaving, oven-drying, freeze-drying, storage) used in the manufacturing of BCG vaccine has been determined. Our experiments showed: rapid water uptake during steam-autoclaving and rapid water release during subsequent oven-drying of the stoppers; a slow water uptake of the stoppers during freeze-drying and a slow water permeation through the stoppers when vials containing Indicating Drierite were stored in a water-saturated atmosphere. Among 12 types of rubber stoppers tested, the grey butyl stoppers and the silicone stoppers showed the lowest water uptake. Moisture-resistant wrappings decreased significantly the moisture uptake of Drierite. To delay moisture from reaching the vaccine it is recommended that the stoppers employed be as dry as possible. PMID:881425

  11. Permeability alteration induced by drying of brines in porous media

    NASA Astrophysics Data System (ADS)

    Peysson, Y.

    2012-11-01

    Permeability of reservoir rocks can be strongly altered by salt precipitation induced by drying. Indeed, gas injection in deep saline aquifers leads first to the brine displacement. The liquid saturation decreases near the injection point and reaches a residual water saturation. But at longer time, the water mass transfer to the gas phase by evaporation can become significant and the dissolved salt can precipitate in the porous structure. The solid salts fill the pores and the permeability decreases. Permeability alteration by salting out is a risk of injectivity decline in the context of CO2 geological storage in saline aquifers where high level of gas injection has to be maintained over decades. However, this problem has been poorly investigated. It implies physical processes that are strongly coupled: drying, water and gas flows in the porous structure and precipitation. This work is an experimental investigation aiming at measuring on natural rock samples the permeability alteration induced by convective drying where dry gas is injected through the sample. We show that alteration of permeability is strong and total blockage of the flow is even possible. We also show that the change in porosity due to the solid salt is heterogeneous along the rock samples. A local permeability-porosity relationship has been estimated from the measurements and we could deduce the permeability alteration function of time by modeling the drying dynamic. We show that it starts very early because capillary backflows are extremely efficient in this process to accumulate solid salt near the injection surfaces.

  12. Mitigating methane emissions and air intrusion in heterogeneous landfills with a high permeability layer.

    PubMed

    Jung, Yoojin; Imhoff, Paul T; Augenstein, Don; Yazdani, Ramin

    2011-05-01

    Spatially variable refuse gas permeability and landfill gas (LFG) generation rate, cracking of the soil cover, and reduced refuse gas permeability because of liquid addition can all affect CH(4) collection efficiency when intermediate landfill covers are installed. A new gas collection system that includes a near-surface high permeability layer beneath the landfill cover was evaluated for enhancing capture of LFG and mitigating CH(4) emissions. Simulations of gas transport in two-dimensional domains demonstrated that the permeable layer reduces CH(4) emissions up to a factor of 2 for particular spatially variable gas permeability fields. When individual macrocracks formed in the cover soil and the permeable layer was absent, CH(4) emissions increased to as much as 24% of the total CH(4) generated, double the emissions when the permeable layer was installed. CH(4) oxidation in the cover soil was also much more uniform when the permeable layer was present: local percentages of CH(4) oxidized varied between 94% and 100% across the soil cover with the permeable layer, but ranged from 10% to 100% without this layer for some test cases. However, the permeable layer had a minor effect on CH(4) emissions and CH(4) oxidation in the cover soil when the ratio of the gas permeability of the cover soil to the mean refuse gas permeability ≤ 0.05. The modeling approach employed in this study may be used to assess the utility of other LFG collection systems and management practices. PMID:20880688

  13. Monitoring Strategies in Permeable Pavement Systems to Optimize Maintenance Scheduling

    EPA Science Inventory

    As the surface in a permeable pavement system clogs and performance decreases, maintenance is required to preserve the design function. Currently, guidance is limited for scheduling maintenance on an as needed basis. Previous research has shown that surface clogging in a permea...

  14. Measuring Clogging with Pressure Transducers in Permeable Pavement Strips

    EPA Science Inventory

    Two issues that have a negative affect on the long term hydrologic performance of permeable pavement systems are surface clogging and clogging at the interface with the underlying soil. Surface clogging limits infiltration capacity and results in bypass if runoff rate exceeds in...

  15. Respiratory mucosal permeability in asthma

    SciTech Connect

    Elwood, R.K.; Kennedy, S.; Belzberg, A.; Hogg, J.C.; Pare, P.D.

    1983-09-01

    The permeability of respiratory mucosa to technetium-labeled diethylenetriamine pentacetic acid (/sup 99m/Tc-DTPA) was measured in 10 clinically stable chronic asthmatics and the results were compared with those in 9 nonasthmatic control subjects. Nonspecific bronchial reactivity was measured using methacholine, and the PC20 was calculated. The intrapulmonary distribution and dose of the inhaled /sup 99m/Tc-DTPA was determined by a gamma camera and the half-life of the aerosolized label in the lung was calculated. The accumulation of radioactivity in the blood was monitored and a permeability index was calculated at 10, 25, and 60 min after aerosolization. Despite marked differences in airway reactivity, no differences in either parameter of permeability could be detected between the asthmatics and the control group. It is concluded that clinically stable asthmatics do not demonstrate increase mucosal permeability to small solutes when compared with normal subjects.

  16. Geothermal Permeability Enhancement - Final Report

    SciTech Connect

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  17. Blood brain barrier is impermeable to solutes and permeable to water after experimental pediatric cardiac arrest.

    PubMed

    Tress, Erika E; Clark, Robert S B; Foley, Lesley M; Alexander, Henry; Hickey, Robert W; Drabek, Tomas; Kochanek, Patrick M; Manole, Mioara D

    2014-08-22

    Pediatric asphyxial cardiac arrest (CA) results in unfavorable neurological outcome in most survivors. Development of neuroprotective therapies is contingent upon understanding the permeability of intravenously delivered medications through the blood brain barrier (BBB). In a model of pediatric CA we sought to characterize BBB permeability to small and large molecular weight substances. Additionally, we measured the percent brain water after CA. Asphyxia of 9 min was induced in 16-18 day-old rats. The rats were resuscitated and the BBB permeability to small (sodium fluorescein and gadoteridol) and large (immunoglobulin G, IgG) molecules was assessed at 1, 4, and 24 h after asphyxial CA or sham surgery. Percent brain water was measured post-CA and in shams using wet-to-dry brain weight. Fluorescence, gadoteridol uptake, or IgG staining at 1, 4h and over the entire 24 h post-CA did not differ from shams, suggesting absence of BBB permeability to these solutes. Cerebral water content was increased at 3h post-CA vs. sham. In conclusion, after 9 min of asphyxial CA there is no BBB permeability over 24h to conventional small or large molecule tracers despite the fact that cerebral water content is increased early post-CA indicating the development of brain edema. Evaluation of novel therapies targeting neuronal death after pediatric CA should include their capacity to cross the BBB. PMID:24937271

  18. Permeability of soils in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  19. Permeability within basaltic oceanic crust

    NASA Astrophysics Data System (ADS)

    Fisher, Andrew T.

    1998-05-01

    Water-rock interactions within the seafloor are responsible for significant energy and solute fluxes between basaltic oceanic crust and the overlying ocean. Permeability is the primary hydrologic property controlling the form, intensity, and duration of seafloor fluid circulation, but after several decades of characterizing shallow oceanic basement, we are still learning how permeability is created and distributed and how it changes as the crust ages. Core-scale measurements of basaltic oceanic crust yield permeabilities that are quite low (generally 10-22 to 10-17 m²), while in situ measurements in boreholes suggest an overlapping range of values extending several orders of magnitude higher (10-18 to 10-13 m²). Additional indirect estimates include calculations made from borehole temperature and flow meter logs (10-16 to 10-11 m²), numerical models of coupled heat and fluid flow at the ridge crest and within ridge flanks (10-16 to 10-9 m²), and several other methods. Qualitative indications of permeability within the basaltic oceanic crust come from an improved understanding of crustal stratigraphy and patterns of alteration and tectonic modification seen in ophiolites, seafloor samples and boreholes. Difficulties in reconciling the wide range of estimated permeabilities arise from differences in experimental scale and critical assumptions regarding the nature and distribution of fluid flow. Many observations and experimental and modeling results are consistent with permeability varying with depth into basement and with primary basement lithology. Permeability also seems to be highly heterogeneous and anisotropic throughout much of the basaltic crust, as within crystalline rocks in general. A series of focused experiments is required to resolve permeability in shallow oceanic basement and to directly couple upper crustal hydrogeology to magmatic, tectonic, and geochemical crustal evolution.

  20. Modulation of Blood–Brain Barrier Permeability in Mice Using Synthetic E-Cadherin Peptide

    PubMed Central

    2015-01-01

    The present work characterizes the effects of synthetic E-cadherin peptide (HAV) on blood–brain barrier (BBB) integrity using various techniques including magnetic resonance imaging (MRI) and near-infrared fluorescent imaging (NIRF). The permeability of small molecular weight permeability marker gadolinium diethylenetriaminepentaacetate (Gd-DTPA) contrast agent, the large molecular weight permeability marker, IRDye 800CW PEG, and the P-glycoprotein (P-gp) efflux transporter contrast agent, rhodamine 800 (R800), were examined in the presence and absence of HAV peptide. The results consistently demonstrated that systemic iv administration of HAV peptide resulted in a reversible disruption of BBB integrity and enhanced the accumulation of all the dyes examined. The magnitude of increase ranged from 2-fold to 5-fold depending on the size and the properties of the permeability markers. The time frame for BBB disruption with HAV peptide was rapid, occurring within 3–6 min following injection of the peptide. Furthermore, modulation of BBB permeability was reversible with the barrier integrity being restored within 60 min of the injection. The increased BBB permeability observed following HAV peptide administration was not attributable to changes in cerebral blood flow. These studies support the potential use of cadherin peptides to rapidly and reversibly modulate BBB permeability of a variety of therapeutic agents. PMID:24495091

  1. Cerebral amyloid angiopathy

    MedlinePlus

    ... Fenichel GM, Jankovic J, Mazziotta JC, eds. Bradley's Neurology in Clinical Practice . 6th ed. Philadelphia, PA: Elsevier ... al. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68:1411-1416. PMID: 17452586 www.ncbi. ...

  2. The geometric mean concept for interpreting the permeability of heterogeneous geomaterials

    NASA Astrophysics Data System (ADS)

    Selvadurai, Patrick; Selvadurai, Paul

    2015-04-01

    Naturally occurring geomaterials are heterogeneous and the estimation of the effective permeability characteristics of such geomaterials presents a challenge not only in terms of the experimental procedures that should be used to ensure flow through the porous medium but also in the correct use of the theoretical concepts needed to accurately interpret the data. The general consensus is that the flow path in a test needs to be drastically reduced if steady state tests are considered as a suitable experimental technique. The disadvantage of flow path reduction is that the tested volume may not be altogether representative of the rock, particularly if it displays heterogeneity in the scale of the sample being tested. Also, if the sample is not correctly restrained, the differential pressures needed to initiate steady flow can introduce damage in the sample leading to erroneous estimates of permeability. The alternative approach is to use large enough samples that can capture the spatial heterogeneity but develop testing procedures that can test examine the steady state flow process as a problem in three-dimensional fluid flow that can capture the spatial distribution of permeability. The paper discusses theoretical and computational approaches that have been developed for the estimation of the spatial distribution of permeability in a cuboidal Indiana Limestone sample measuring 450 mm. The "Patch Permeability Test" developed in connection with the research allows the measurements of the surface permeability of the block and through kriging techniques estimate the permeability within the block sample. The research promotes the use of the "Geometric Mean" concept for the description of the effective permeability of the heterogeneous porous medium where the spatial distribution conforms to a lognormal pattern. The effectiveness of the approach is that the techniques can be applied to examine the effective permeability of heterogeneous low permeability materials such as

  3. Rehabilitation in cerebral palsy.

    PubMed Central

    Molnar, G. E.

    1991-01-01

    Cerebral palsy is the most frequent physical disability of childhood onset. Over the past four decades, prevalence has remained remarkably constant at 2 to 3 per 1,000 live births in industrialized countries. In this article I concentrate on the rehabilitation and outcome of patients with cerebral palsy. The epidemiologic, pathogenetic, and diagnostic aspects are highlighted briefly as they pertain to the planning and implementation of the rehabilitation process. PMID:1866952

  4. Shear-induced permeability anisotropy of simulated serpentinite gouge

    NASA Astrophysics Data System (ADS)

    Okazaki, K.; Katayama, I.; Noda, H.; Takahashi, M.

    2012-12-01

    Fluids in fault zone play an important role on mechanical weakening of fault strength due to elevated pore fluid pressures and absorbed on the crystal surface. The heterogeneous occurrence of earthquake in subduction zone are probably linked to the heterogeneous distribution of fluids that have significant influence on the fault instability. Permeability in fault zone control fluid flow in In this study, permeability in three orthogonal directions of antigorite serpentinite gouge was measured during pre-cut frictional experiments using triaxial gas apparatus in Hiroshima University. kx, ky, and kz denote permeabilities in the slip direction, normal to the slip direction in the fault, and normal to the fault. All experiments were conducted at a room temperature, a confining pressure of 150 MPa, a pore pressure of 100 MPa, and a constant slip rate of 0.575 μm/s while the initial gouge thickness is about 1.2 mm. Permeabilities in different directrions are measured for different but similar samples continuously during shear deformation by the pore pressure oscillation method [e.g., Fischer and Paterson, 1992]. The friction coefficient reached its maximum value at a slip displacement of about 0.8 mm. Permeabilities in all directions decreases by one order of magnitude until this point without showing significant anisotropy. After the shear stress reaches steady-state, anisotropy of permeability becomes remarkable. At the steady state in terms of shear stress, permeability anisotropies kx/kz and ky/kz stayed at their steady state value as high as nearly one order magnitude. Microstructures of recovered samples suggest that the permeability anisotropy is caused by developments of R- and P-shear band structures that may act as fluid conduits and encourage fluid flow parallel to the fault in serpentinite gouge. These permeability anisotropies may enhance fluid flow along subduction plate interface and active fault zones. In addition, this anisotropic permeability structure

  5. Timescales for permeability reduction and strength recovery in densifying magma

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Farquharson, J. I.; Wadsworth, F. B.; Kolzenburg, S.; Russell, J. K.

    2015-11-01

    likely persistently re-fracture and keep the conduit margin permeable. The modelling therefore supports the notion that repeated fracture-healing cycles are responsible for the successive low-magnitude earthquakes associated with silicic dome extrusion. Taken together, our results indicate that the transition from effusive to explosive behaviour may rest on the competition between permeability reduction within the conduit and outgassing through fractures at the conduit margin. If the conditions for explosive behaviour are satisfied, the magma densification clock will be reset and the process will start again. The timescales of permeability reduction and strength recovery presented in this study may aid our understanding of the permeability evolution of conduit margin fractures, magma fracture-healing cycles, surface outgassing cycles, and the timescales required for pore pressure augmentation and the initiation of explosive eruptions.

  6. Techniques to Determine Maintenace Frequency of Permeable Pavement Systems with Time Domain Reflectometers (TDRs

    EPA Science Inventory

    As the surface clogs in permeable pavement systems, they lose effectiveness and require maintenance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being conducted using multiple time domain reflectomete...

  7. Use of Time Domain Reflectometers (TDRs) in Permeable Pavement Systems to Predict Maintenance Needs and Effectiveness

    EPA Science Inventory

    As the surface in permeable pavement systems clogs, infiltration capacity decreases, so maintenance is required to maintain hydrologic performance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being co...

  8. Nanomedicine in cerebral palsy

    PubMed Central

    Balakrishnan, Bindu; Nance, Elizabeth; Johnston, Michael V; Kannan, Rangaramanujam; Kannan, Sujatha

    2013-01-01

    Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed. PMID:24204146

  9. Fractured-rock permeability-versus-stress relationships from in situ experiments

    NASA Astrophysics Data System (ADS)

    Rutqvist, Jonny

    2016-04-01

    The purpose of this presentation is (1) to review field data on stress-induced permeability changes in fractured rock, (2) to describe back-analysis of fractured rock stress-versus-permeability relationships through model calibration against such field data, and (3) to discuss observations of chemically mediated fracture surface compaction and its effect on fractured rock permeability. Reviewed field data on stress-induced permeability changes, some of which are used for model calibration, includes in situ block experiments, borehole injection experiments, observations of depth dependent permeability, studies of excavation-induced changes in permeability around tunnels, and permeability changes associated with a large-scale rock mass heating experiment. It is suggested that model calibration of stress-versus-permeability relationships against field experiments involving simultaneously elevated stress and temperature may be strongly affected by additional temperature dependent fracture closure and fracture surface interlocking. This is a phenomenon that has been observed both in the lab and the field and has been described as thermal over-closure related to better fit of opposing fracture surfaces at high temperatures. The same phenomenon has also been described as chemically mediated fracture closure related to pressure solution of fracture surface asperities. The back-calculated stress-versus-permeability relationship may implicitly account for such effects, but the relative contribution of purely mechanical versus chemically mediated mechanical changes is difficult to isolate.

  10. Permeability extraction: A sonic log inversion

    SciTech Connect

    Akbar, N.; Kim, J.J.

    1994-12-31

    In this paper the authors provide the missing important link between permeability and acoustic velocities by generating a permeability-dependent synthetic sonic log in a carbonate reservoir. The computations are based on Akbar`s theory that relates wave velocity to frequency, rock properties (e.g., lithology, permeability, and porosity), and fluid saturation and properties (viscosity, density, and compressibility). An inverted analytical expression of the theory is used to extract permeability from sonic velocity. The synthetic sonic and the computed permeability are compared with the observed sonic log and with plug permeability, respectively. The results demonstrate, as predicted by theory, that permeability can be related directly to acoustic velocities.

  11. Permeability parameter as a function of population density in classical infiltration equation

    NASA Astrophysics Data System (ADS)

    Abidin, Nor Hafizah; Ahmad, Rohanin; Nordin, Syarifah Zyurina

    2014-12-01

    Rapid development of urban areas has caused many problems especially related to water issues. The increase in urban development also means the increase in impervious surfaces due to expansion of buildings, roads, parking lots to name a few. Impervious surfaces have low water permeability compared to pervious surfaces. Also, infiltration capacity is dependent on the permeability of the area and subsequently permeability is dependent on the surface conditions. In this paper, we study the infiltration capacity with the assumption that permeability parameter can be described in the term of the population density of the area. The modified model is based on the original form of Green-Ampt equation. The new model with population density is able to describe permeability, hence the infiltration capacity of an area.

  12. Fibrinogen induces endothelial cell permeability

    PubMed Central

    Tyagi, Neetu; Roberts, Andrew M.; Dean, William L.; Tyagi, Suresh C.

    2010-01-01

    Many cardiovascular and cerebrovascular disorders are accompanied by an increased blood content of fibrinogen (Fg), a high molecular weight plasma adhesion protein. Fg is a biomarker of inflammation and its degradation products have been associated with microvascular leakage. We tested the hypothesis that at pathologically high levels, Fg increases endothelial cell (EC) permeability through extracellular signal regulated kinase (ERK) signaling and by inducing F-actin formation. In cultured ECs, Fg binding to intercellular adhesion molecule-1 and to α5β1 integrin, caused phosphorylation of ERK. Subsequently, F-actin formation increased and coincided with formation of gaps between ECs, which corresponded with increased permeability of ECs to albumin. Our data suggest that formation of F-actin and gaps may be the mechanism for increased albumin leakage through the EC monolayer. The present study indicates that elevated un-degraded Fg may be a factor causing microvascular permeability that typically accompanies cardiovascular and cerebrovascular disorders. PMID:17849175

  13. Measuring Vascular Permeability In Vivo.

    PubMed

    Meijer, Eelco F J; Baish, James W; Padera, Timothy P; Fukumura, Dai

    2016-01-01

    Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288-305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269-289, 1993; Cancer Res 54:352-3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864-868, 2001). PMID:27581015

  14. PERMEABILITY OF BACTERIAL SPORES I.

    PubMed Central

    Black, S. H.; Gerhardt, Philipp

    1961-01-01

    Black, S. H. (The University of Michigan, Ann Arbor) and Philipp Gerhardt. Permeability of bacterial spores. I. Characterization of glucose uptake. J. Bacteriol. 82:743–749. 1961.—The total uptake of glucose by masses of clean, dormant spores was measured to assess their permeability. After correction for intercellular space, packed spores of Bacillus cereus strain terminalis were found in 87 determinations to be permeated by glucose to 40% of their weight. The glucose uptake was relatively independent of environmental variables, and thus was concluded to occur principally through a process of passive diffusion. PMID:13869665

  15. Vasospasm in Cerebral Inflammation

    PubMed Central

    Eisenhut, Michael

    2014-01-01

    All forms of cerebral inflammation as found in bacterial meningitis, cerebral malaria, brain injury, and subarachnoid haemorrhage have been associated with vasospasm of cerebral arteries and arterioles. Vasospasm has been associated with permanent neurological deficits and death in subarachnoid haemorrhage and bacterial meningitis. Increased levels of interleukin-1 may be involved in vasospasm through calcium dependent and independent activation of the myosin light chain kinase and release of the vasoconstrictor endothelin-1. Another key factor in the pathogenesis of cerebral arterial vasospasm may be the reduced bioavailability of the vasodilator nitric oxide. Therapeutic trials in vasospasm related to inflammation in subarachnoid haemorrhage in humans showed a reduction of vasospasm through calcium antagonists, endothelin receptor antagonists, statins, and plasminogen activators. Combination of therapeutic modalities addressing calcium dependent and independent vasospasm, the underlying inflammation, and depletion of nitric oxide simultaneously merit further study in all conditions with cerebral inflammation in double blind randomised placebo controlled trials. Auxiliary treatment with these agents may be able to reduce ischemic brain injury associated with neurological deficits and increased mortality. PMID:25610703

  16. Cerebral venous sinus thrombosis

    PubMed Central

    Allroggen, H.; Abbott, R.

    2000-01-01

    Cerebral venous sinus thrombosis is a challenging condition because of its variability of clinical symptoms and signs. It is very often unrecognised at initial presentation. All age groups can be affected. Large sinuses such as the superior sagittal sinus are most frequently involved. Extensive collateral circulation within the cerebral venous system allows for a significant degree of compensation in the early stages of thrombus formation. Systemic inflammatory diseases and inherited as well as acquired coagulation disorders are frequent causes, although in up to 30% of cases no underlying cause can be identified. The oral contraceptive pill appears to be an important additional risk factor. The spectrum of clinical presentations ranges from headache with papilloedema to focal deficit, seizures and coma. Magnetic resonance imaging with venography is the investigation of choice; computed tomography alone will miss a significant number of cases. It has now been conclusively shown that intravenous heparin is the first-line treatment for cerebral venous sinus thrombosis because of its efficacy, safety and feasability. Local thrombolysis may be indicated in cases of deterioration, despite adequate heparinisation. This should be followed by oral anticoagulation for 3-6 months. The prognosis of cerebral venous sinus thrombosis is generally favourable. A high index of clinical suspicion is needed to diagnose this uncommon condition so that appropriate treatment can be initiated.


Keywords: cerebral venous sinus thrombosis PMID:10622773

  17. Neuroprotection after cerebral ischemia

    PubMed Central

    Namura, Shobu; Ooboshi, Hiroaki; Liu, Jialing; Yenari, Midori A.

    2013-01-01

    Cerebral ischemia, a focal or global insufficiency of blood flow to the brain, can arise through multiple mechanisms, including thrombosis and arterial hemorrhage. Ischemia is a major driver of stroke, one of the leading causes of morbidity and mortality worldwide. While the general etiology of cerebral ischemia and stroke has been known for some time, the conditions have only recently been considered treatable. This report describes current research in this field seeking to fully understand the pathomechanisms underlying stroke; to characterize the brain’s intrinsic injury, survival, and repair mechanisms; to identify putative drug targets as well as cell-based therapies; and to optimize the delivery of therapeutic agents to the damaged cerebral tissue. PMID:23488559

  18. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    PubMed

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds. PMID:26133302

  19. Permeability of compacting porous lavas

    NASA Astrophysics Data System (ADS)

    Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.

    2015-03-01

    The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.

  20. High membrane permeability for melatonin

    PubMed Central

    Yu, Haijie; Dickson, Eamonn J.; Jung, Seung-Ryoung; Koh, Duk-Su

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be “secreted” from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  1. High membrane permeability for melatonin.

    PubMed

    Yu, Haijie; Dickson, Eamonn J; Jung, Seung-Ryoung; Koh, Duk-Su; Hille, Bertil

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be "secreted" from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  2. Calu-3 model under AIC and LCC conditions and application for protein permeability studies.

    PubMed

    Marušić, Maja; Djurdjevič, Ida; Drašlar, Kazimir; Caserman, Simon

    2014-01-01

    Broad area of respiratory epithelium with mild surface conditions is an attractive possibility when trans-mucosal delivery of protein drugs is considered. A mucus and cellular barrier of respiratory epithelium can be modelled in vitro by Calu-3 cell line. We have monitored morphology and barrier properties of Calu-3 culture on permeable supports while developing into liquid covered or air interfaced and mucus lined cellular barrier. Besides morphological differences, cultures differed in electrical resistance and permeability to proteins as well. The accelerated permeability to proteins in these models, due to permeability modulator MP C16, was examined. The effect on electrical resistance of cellular layer was rapid in both cultures suggesting easy access of MP C16 to cells even though its overall impact on cell permeability was strongly reduced in mucus covered culture. Differences in properties of the two models enable better understanding of protein transmucosal permeability, suggesting route of transport and MP C16 modulator action. PMID:24664333

  3. On the effective permeability of a heterogeneous porous medium: the role of the geometric mean

    NASA Astrophysics Data System (ADS)

    Selvadurai, P. A.; Selvadurai, A. P. S.

    2014-07-01

    This paper uses experimental data derived from surface permeability tests conducted on a bench-scale 508 mm cuboidal sample of Indiana Limestone. These results are used in combination with computational modelling to test the hypothesis that the geometric mean is a good proxy to represent permeability when the spatial distribution of the permeability for the heterogeneous rock, with no evidence of hydraulic anisotropy or fractures, is log-normal. The predictive capabilities of the geometric mean as a measure of the effective permeability are further assessed by examining specific examples where three-dimensional flows are initiated in the heterogeneous domain and where the equivalent homogeneous problem gives rise to purely circular flows that have exact solutions. The approach is also applied to examine a hypothetical hydraulic pulse test that is conducted on a cuboidal region with sealed lateral boundaries, consisting of the experimentally measured heterogeneous distribution of permeability and an equivalent homogeneous region where the permeability corresponds to the geometric mean.

  4. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    SciTech Connect

    Garbesi, K.; Sextro, R.G.; Robinson, Arthur L.; Wooley, J.D.; Owens, J.A.; Nazaroff, W.W.

    1995-11-01

    This work investigates the dependence soil air-permeability on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas-phase contaminants through soils.

  5. Some Recent Laboratory Measurements of Fault Zone Permeability

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Lockner, D. A.

    2005-12-01

    The permeability of fault zone material is key to understanding fluid circulation and the role of pore fluids in earthquake generation and rupture dynamics. Permeability results of core samples from several scientific drillholes are presented, including new results from the SAFOD drillsite in California and the Chelungpu Fault in Taiwan. Permeability values at simulated in situ pressures range from 10-18 to 10-23 m2, a broad range reflecting differences in rock type, proximity to the fault (i.e., fault core, damage zone or country rock), and degree of interseismic healing and sealing. In addition to these natural characteristics, stress-relief and thermal cracking damage resulting from core retrieval will tend to increase the permeability of some of the deepest crystalline rock samples, although testing under in situ conditions can reduce these errors. Recently active fault rocks, with an interconnected network of fractures, tend toward the higher end of the permeability range, whereas fault rocks that have had time to heal through hydrothermal processes tend to have lower permeabilities. In addition, the permeability of borehole-derived core samples was found to be more sensitive to applied pressure than equivalent rocks obtained from surface outcrops because of weathering and other processes. Thus, permeability values of surface samples can not be adequately extrapolated to depth, highlighting the importance of deep drilling studies in determining in situ transport properties. Permeability studies also reveal the storage capacity of the fault rocks, an important parameter in the determination of excess fluid pressure potential. Storage capacity was found to be 10-10 to 10-11/Pa in the Chelungpu Fault cores. Typical down-hole permeability measurements are generally 1-2 orders of magnitude higher than laboratory-derived values because they sample joints and fractures in the damage zone that are larger in scale than the core samples. Consequently, most fluid flow at

  6. Permeability and structure of resorcinol-formaldehyde gels

    SciTech Connect

    Scherer, G.W.; Alviso, C.; Pekala, R.; Gross, J.

    1996-12-31

    The permeability (D) of resorcinol-formaldehyde (RF) gels was measured using a beam-bending technique. For gels made at various solids contents and with different catalyst contents, the permeabilities ranged over a factor of {approximately} 50; the pore radii inferred from D varied from {approximately}3 to 30 nm. Pore radii obtained on RF aerogels using nitrogen desorption were severely affected by compression of the aerogel by capillary forces (resulting from the surface tension of liquid nitrogen). After correction for that effect, the desorption data were found to be in very good agreement with the pore sizes calculated from D.

  7. Urban land use: Remote sensing of ground-basin permeability

    NASA Technical Reports Server (NTRS)

    Tinney, L. R.; Jensen, J. R.; Estes, J. E.

    1975-01-01

    A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.

  8. Cerebral blood volume changes during brain activation

    PubMed Central

    Krieger, Steffen Norbert; Streicher, Markus Nikolar; Trampel, Robert; Turner, Robert

    2012-01-01

    Cerebral blood volume (CBV) changes significantly with brain activation, whether measured using positron emission tomography, functional magnetic resonance imaging (fMRI), or optical microscopy. If cerebral vessels are considered to be impermeable, the contents of the skull incompressible, and the skull itself inextensible, task- and hypercapnia-related changes of CBV could produce intolerable changes of intracranial pressure. Because it is becoming clear that CBV may be useful as a well-localized marker of neural activity changes, a resolution of this apparent paradox is needed. We have explored the idea that much of the change in CBV is facilitated by exchange of water between capillaries and surrounding tissue. To this end, we developed a novel hemodynamic boundary-value model and found approximate solutions using a numerical algorithm. We also constructed a macroscopic experimental model of a single capillary to provide biophysical insight. Both experiment and theory model capillary membranes as elastic and permeable. For a realistic change of input pressure, a relative pipe volume change of 21±5% was observed when using the experimental setup, compared with the value of approximately 17±1% when this quantity was calculated from the mathematical model. Volume, axial flow, and pressure changes are in the expected range. PMID:22569192

  9. Influence of wall permeability on turbulent boundary-layer properties

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.

    1983-01-01

    Experimental boundary-layer studies of a series of low pressure drop, permeable surfaces have been conducted to characterize their surface interaction with a turbulent boundary layer. The models were flat and tested at nominally zero pressure gradient in low speed air. The surfaces were thin metal sheets with discrete perforations. Direct drag balance measurements of skin friction indicate that the general effect of surface permeability is to increase drag above that of a smooth plate reference level. Heuristic arguments are presented to show that this type of behavior is to be expected. Other boundary-layer data are also presented including mean velocity profiles and conditionally sampled streamwise velocity fluctuations (hot wire) for selected models.

  10. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  11. A Large Block Experiment for Measurement of the Effective Permeability of Indiana Limestone

    NASA Astrophysics Data System (ADS)

    Selvadurai, P. A.; Selvadurai, A. P.

    2009-12-01

    The measurement of permeability of large specimens of a rock specimen is bound to provide a clearer picture of the distribution of permeability of predominantly sedimentary rocks. Such distributions can be the basis for evaluating the effective permeability of the rock specimen in the presence of permeability inhomogeneity. This paper discusses the development of a patch permeability test that can be used to measure the near surface permeability characteristics of a large cuboidal block of Indiana Limestone measuring 508 mm. The test is used to generate the near surface permeability of six faces of the cuboid and these estimates are used to generate, via a kriging procedure, the interior permeability distributions of permeability. These permeability distributions are used to examine the validity of theoretical estimates that have been developed in the literature to determine the effective permeability of the material. The classical Wiener (1912) bounds, the estimates provided by Matheron (1967) and Journel et al. (1993) are developed using the experimentally derived data. The procedure is also validated by conducting computational experiments involving one-dimensional flow along three orthogonal directions. References: Wiener, O. (1912) Die Theorie des Mischkörpers für das Feld des stationaären Strömung. Erste Abhandlung die Mittelswertesätsze für Kraft, Polarisation und Energie. Abh. Math.-Physischen Klasse Königl. Säcsh Gesell. Wissen, 32: 509-604. Matheron, G. (1967) Eléments pour une Théorie des Milieux Poroeux, Masson, Paris. Journel, A.G, Deutsch, C.V. and Desbrats, A.J. (1986) Power averaging for block effective permeability, SPE 15128, Society of Petroleum Engineers.

  12. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  13. Cerebral Palsy Litigation

    PubMed Central

    Sartwelle, Thomas P.

    2015-01-01

    The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothers and babies alike. This article explains why electronic fetal monitoring remains endorsed as efficacious in the worlds’ labor rooms and courtrooms despite being such a feeble medical modality. It also reviews the reasons professional organizations have failed to condemn the use of electronic fetal monitoring in courtrooms. The failures of tort reform, special cerebral palsy courts, and damage limits to stem the escalating litigation are discussed. Finally, the authors propose using a currently available evidence rule—the Daubert doctrine that excludes “junk science” from the courtroom—as the beginning of the end to cerebral palsy litigation and electronic fetal monitoring’s 40-year masquerade as science. PMID:25183322

  14. Turbulent Hyporheic Exchange in Permeable Sediments

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Aubeneau, A. F.; Li, A.; Packman, A. I.

    2015-12-01

    Solute delivery from the water column into a streambed strongly influences metabolism in rivers. Current hydrological models simplify surface-subsurface (hyporheic) exchange by treating each domain separately, constraining turbulent flows to the water column. Studies have shown, however, that turbulence penetrates into permeable sediments. Evidence is lacking for how this highly coupled flow regime influences hyporheic exchange. We characterized the dynamics of turbulent exchange between surface and porewaters in a 2.5 m recirculating flume. The channel was packed with 3.8 cm PVC spheres to form a coarse gravel bed, with a total depth of 21 cm. We implanted microsensors onto an array of spheres to measure in situsalt concentrations within the streambed. Water was recirculated in the channel, and concentrated salt solution was continuously injected upstream of the sensor array. We observed solute exchange increased with free-stream Reynolds number and decreased with depth in the sediment bed. Mass of injected solute remaining in the bed decreased rapidly in all cases, with only 10-30% of mass recovered 50 cm downstream of the injection point at Re = 25,000. We observed high-frequency (1-10 Hz) concentration fluctuations at bed depths of at least 4.75 cm, and sporadic low-frequency fluctuations at depths of 12.5 cm. Spectral analysis revealed increased filtering of high frequencies with depth. We used particle-tracking simulations to fit depth-dependent turbulent diffusion profiles to experimental results. These results demonstrate that free-stream turbulence impacts hyporheic mixing deep into permeable streambeds, and mixing is strongly influenced by the coupled surface-subsurface flow field.

  15. Cerebral White Matter

    PubMed Central

    Schmahmann, Jeremy D.; Smith, Eric E.; Eichler, Florian S.; Filley, Christopher M.

    2013-01-01

    Lesions of the cerebral white matter (WM) result in focal neurobehavioral syndromes, neuropsychiatric phenomena, and dementia. The cerebral WM contains fiber pathways that convey axons linking cerebral cortical areas with each other and with subcortical structures, facilitating the distributed neural circuits that subserve sensorimotor function, intellect, and emotion. Recent neuroanatomical investigations reveal that these neural circuits are topographically linked by five groupings of fiber tracts emanating from every neocortical area: (1) cortico-cortical association fibers; (2) corticostriatal fibers; (3) commissural fibers; and cortico-subcortical pathways to (4) thalamus and (5) pontocerebellar system, brain stem, and/or spinal cord. Lesions of association fibers prevent communication between cortical areas engaged in different domains of behavior. Lesions of subcortical structures or projection/striatal fibers disrupt the contribution of subcortical nodes to behavior. Disconnection syndromes thus result from lesions of the cerebral cortex, subcortical structures, and WM tracts that link the nodes that make up the distributed circuits. The nature and the severity of the clinical manifestations of WM lesions are determined, in large part, by the location of the pathology: discrete neurological and neuropsychiatric symptoms result from focal WM lesions, whereas cognitive impairment across multiple domains—WM dementia—occurs in the setting of diffuse WM disease. We present a detailed review of the conditions affecting WM that produce these neurobehavioral syndromes, and consider the pathophysiology, clinical effects, and broad significance of the effects of aging and vascular compromise on cerebral WM, in an attempt to help further the understanding, diagnosis, and treatment of these disorders. PMID:18990132

  16. Hydrodynamic Forcing Mobilizes Cu in Low-Permeability Estuarine Sediments.

    PubMed

    Xie, Minwei; Wang, Ning; Gaillard, Jean-François; Packman, Aaron I

    2016-05-01

    Overlying hydrodynamics play critical roles in controlling surface-porewater exchanges in permeable sediments, but these effects have rarely been characterized in low-permeability sediments. We conducted a series of laboratory experiments to evaluate the effects of varied hydrodynamic conditions on the efflux of metals from low-permeability estuarine sediments. Two Cu-contaminated sediments obtained from the Piscataqua River were subject to controlled levels of hydrodynamic shear in Gust mesocosms, including episodic sediment resuspension. Overlying water and porewater samples were collected over the course of experiments and analyzed for metal concentrations. The two sediments had similar permeability (∼10(-15) m(2)), but different particle size distributions. Hydrodynamic forcing enhanced the mobilization and efflux of Cu from the coarser-grained sediments, but not the finer-grained sediments. Sediment resuspension caused additional transitory perturbations in Cu concentrations in the water column. Particulate metal concentrations increased significantly during resuspension, but then rapidly decreased to preresuspension levels following cessation of sediment transport. Overall, these results show that the mobility and efflux of metals are likely to be influenced by overlying hydrodynamics even in low-permeability sediments, and these effects are mediated by sediment heterogeneity and resuspension. PMID:27054802

  17. Simulating bioclogging effects on dynamic riverbed permeability and infiltration

    NASA Astrophysics Data System (ADS)

    Newcomer, Michelle E.; Hubbard, Susan S.; Fleckenstein, Jan H.; Maier, Ulrich; Schmidt, Christian; Thullner, Martin; Ulrich, Craig; Flipo, Nicolas; Rubin, Yoram

    2016-04-01

    Bioclogging in rivers can detrimentally impact aquifer recharge. This is particularly so in dry regions, where losing rivers are common, and where disconnection between surface water and groundwater (leading to the development of an unsaturated zone) can occur. Reduction in riverbed permeability due to biomass growth is a time-variable parameter that is often neglected, yet permeability reduction from bioclogging can introduce order of magnitude changes in seepage fluxes from rivers over short (i.e., monthly) timescales. To address the combined effects of bioclogging and disconnection on infiltration, we developed numerical representations of bioclogging processes within a one-dimensional, variably saturated flow model representing losing-connected and losing-disconnected rivers. We tested these formulations using a synthetic case study informed with biological data obtained from the Russian River, California, USA. Our findings show that modeled biomass growth reduced seepage for losing-connected and losing-disconnected rivers. However, for rivers undergoing disconnection, infiltration declines occurred only after the system was fully disconnected. Before full disconnection, biologically induced permeability declines were not significant enough to offset the infiltration gains introduced by disconnection. The two effects combine to lead to a characteristic infiltration curve where peak infiltration magnitude and timing is controlled by permeability declines relative to hydraulic gradient gains. Biomass growth was found to hasten the onset of full disconnection; a condition we term `effective disconnection'. Our results show that river infiltration can respond dynamically to bioclogging and subsequent permeability declines that are highly dependent on river connection status.

  18. Acetazolamide inhibits osmotic water permeability by interaction with aquaporin-1.

    PubMed

    Gao, Junwei; Wang, Xiaohua; Chang, Yongjie; Zhang, Jianzhao; Song, Qianliu; Yu, Heming; Li, Xuejun

    2006-03-15

    Water channel proteins, known as aquaporins, are transmembrane proteins that mediate osmotic water permeability. In a previous study, we found that acetazolamide could inhibit osmotic water transportation across Xenopus oocytes by blocking the function of aquaporin-1 (AQP1). The purpose of the current study was to confirm the effect of acetazolamide on water osmotic permeability using the human embryonic kidney 293 (HEK293) cells transfected with pEGFP/AQP1 and to investigate the interaction between acetazolamide and AQP1. The fluorescence intensity of HEK293 cells transfected with pEGFP/AQP1, which corresponds to the cell volume when the cells swell in a hyposmotic solution, was recorded under confocal laser fluorescence microscopy. The osmotic water permeability was assessed by the change in the ratio of cell fluorescence to certain cell area. Acetazolamide, at concentrations of 1 and 10muM, inhibited the osmotic water permeability in HEK293 cells transfected with pEGFP/AQP1. The direct binding between acetazolamide and AQP1 was detected by surface plasmon resonance. AQP1 was prepared from rat red blood cells and immobilized on a CM5 chip. The binding assay showed that acetazolamide could directly interact with AQP1. This study demonstrated that acetazolamide inhibited osmotic water permeability through interaction with AQP1. PMID:16480680

  19. Determination of hydrogen permeability in commercial and modified superalloys

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1983-01-01

    The results of hydrogen permeability measurements on several iron- and cobalt-base alloys as well as on two long-ranged ordered alloys over the range of 705 to 870 C (1300 to 1600 F) are summarized. The test alloys included wrought alloys N-155, IN 800, A-286, 19-9DL, and 19-9DL modifications with aluminum, niobium, and misch metal. In addition, XF-818, CRM-6D, SA-F11, and HS-31 were evaluated. Two wrought long-range ordered alloys, Ni3Al and (Fe,Ni)3(V,Al) were also evaluated. All tests were conducted at 20.7 MPa pressure in either pure and/or 1% CO2-doped H2 for test periods as long as 133 h. Detailed analyses were conducted to determine the relative permeability rankings of these alloys and the effect of doping, exit surface oxidation, specimen design variations, and test duration on permeability coefficient, and permeation activation energies were determined. The two long-range ordered alloys had the lowest permeability coefficients in pure H2 when compared with the eight commercial alloys and their modifications. With CO2 doping, significant decrease in permeability was observed in commercial alloys--no doped tests were conducted with the long-range ordered alloys.

  20. Review of hydrogen isotope permeability through materials

    SciTech Connect

    Steward, S.A.

    1983-08-15

    This report is the first part of a comprehensive summary of the literature on hydrogen isotope permeability through materials that do not readily form hydrides. While we mainly focus on pure metals with low permeabilities because of their importance to tritium containment, we also give data on higher-permeability materials such as iron, nickel, steels, and glasses.

  1. Novel additives to retard permeable flow

    SciTech Connect

    Golombok, Michael; Crane, Carel; Ineke, Erik; Welling, Marco; Harris, Jon

    2008-09-15

    Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

  2. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  3. Structure/Permeability Relationships Of Polyimide Membranes

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; Yamamoto, H.; Mi, Y.; Stern, S. A.

    1995-01-01

    Report describes experimental study of permeabilities, by each of five gases, of membranes made of four different polyimides. Conducted to gain understanding of effects of molecular structures of membranes on permeabilities and to assess potential for exploitation of selective permeability in gas-separation processes. Gases used: H2, O2, N2, CO2, and CH4.

  4. Permeability enhancement using explosive techniques

    SciTech Connect

    Adams, T.F.; Schmidt, S.C.; Carter, W.J.

    1980-01-01

    In situ recovery methods for many of our hydrocarbon and mineral resources depend on the ability to create or enhance permeability in the resource bed to allow uniform and predictable flow. To meet this need, a new branch of geomechanics devoted to computer prediction of explosive rock breakage and permeability enhancement has developed. The computer is used to solve the nonlinear equations of compressible flow, with the explosive behavior and constitutive properties of the medium providing the initial/boundary conditions and material response. Once the resulting computational tool has been verified and calibrated with appropriate large-scale field tests, it can be used to develop and optimize commercially useful explosive techniques for in situ resource recovery.

  5. Permeability effects on the seismic response of gas reservoirs

    NASA Astrophysics Data System (ADS)

    Rubino, J. Germán.; Velis, Danilo R.; Holliger, Klaus

    2012-04-01

    In this work, we analyse the role of permeability on the seismic response of sandstone reservoirs characterized by patchy gas-water saturation. We do this in the framework of Johnson's model, which is a generalization of White's seminal model allowing for patches of arbitrary geometry. We first assess the seismic attenuation and velocity dispersion characteristics in response to wave-induced fluid flow. To this end, we perform an exhaustive analysis of the sensitivity of attenuation and velocity dispersion of compressional body waves to permeability and explore the roles played by the Johnson parameters T and S/V, which characterize the shape and size of the gas-water patches. Our results indicate that, within the typical frequency range of exploration seismic data, this sensitivity may indeed be particularly strong for a variety of realistic and relevant scenarios. Next, we extend our analysis to the corresponding effects on surface-based reflection seismic data for two pertinent models of typical sandstone reservoirs. In the case of softer and more porous formations and in the presence of relatively low levels of gas saturation we observe that the effects of permeability on seismic reflection data are indeed significant. These prominent permeability effects prevail for normal-incidence and non-normal-incidence seismic data and for a very wide range of sizes and shapes of the gas-water patches. For harder and less porous reservoirs, the normal-incidence seismic responses exhibit little or no sensitivity to permeability, but the corresponding non-normal-incidence responses show a clear dependence on this parameter, again especially so for low gas saturations. The results of this study therefore suggest that, for a range of fairly common and realistic conditions, surface-based seismic reflection data are indeed remarkably sensitive to the permeability of gas reservoirs and thus have the potential of providing corresponding first-order constraints.

  6. Scale-dependent permeability of fractured andesite

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Kennedy, Ben

    2016-04-01

    Extension fractures in volcanic systems exist on all scales, from microscopic fractures to large fissures. They play a fundamental role in the movement of fluids and distribution of pore pressure, and therefore exert considerable influence over volcanic eruption recurrence. We present here laboratory permeability measurements for porous (porosity = 0.03-0.6) andesites before (i.e. intact) and after failure in tension (i.e., the samples host a throughgoing tensile fracture). The permeability of the intact andesites increases with increasing porosity, from 2 × 10-17 to 5 × 10-11 m2. Following fracture formation, the permeability of the samples (the effective permeability) falls within a narrow range regardless of their initial porosity: 2-6 × 10-11 m2. However, laboratory measurements of fractured samples likely overestimate the effective permeability due to the inherent scale-dependence of permeability. To better understand this scale-dependence, we first determined the permeability of the tensile fractures using a two-dimensional model that considers flow in parallel layers. Our calculations highlight that tensile fractures in low-porosity samples are more permeable (as high as 2.3 × 10-9 m2) than those in high-porosity samples (as low as 3.0 × 10-10 m2), a difference that can be explained by an increase in fracture tortuosity with porosity. We then use our fracture permeability data to model the effective permeability of rock with different host rock permeabilities (10-17 to 10-11 m2) populated by tensile fractures over a wide range of lengthscale. We find that the effective permeability of fractured andesite depends heavily on the initial host rock permeability and the scale of interest. At a given lengthscale, the effective permeability of high-permeability rock (10-12 to 10-11 m2) is essentially unaffected by the presence of numerous tensile fractures. By contrast, a single tensile fracture increases the effective permeability of low-permeability rock

  7. Quantification of transient increase of the blood–brain barrier permeability to macromolecules by optimized focused ultrasound combined with microbubbles

    PubMed Central

    Shi, Lingyan; Palacio-Mancheno, Paolo; Badami, Joseph; Shin, Da Wi; Zeng, Min; Cardoso, Luis; Tu, Raymond; Fu, Bingmei M

    2014-01-01

    Radioimmunotherapy using a radiolabeled monoclonal antibody that targets tumor cells has been shown to be efficient for the treatment of many malignant cancers, with reduced side effects. However, the blood–brain barrier (BBB) inhibits the transport of intravenous antibodies to tumors in the brain. Recent studies have demonstrated that focused ultrasound (FUS) combined with microbubbles (MBs) is a promising method to transiently disrupt the BBB for the drug delivery to the central nervous system. To find the optimal FUS and MBs that can induce reversible increase in the BBB permeability, we employed minimally invasive multiphoton microscopy to quantify the BBB permeability to dextran-155 kDa with similar molecular weight to an antibody by applying different doses of FUS in the presence of MBs with an optimal size and concentration. The cerebral microcirculation was observed through a section of frontoparietal bone thinned with a micro-grinder. About 5 minutes after applying the FUS on the thinned skull in the presence of MBs for 1 minute, TRITC (tetramethylrhodamine isothiocyanate)-dextran-155 kDa in 1% bovine serum albumin in mammalian Ringer’s solution was injected into the cerebral circulation via the ipsilateral carotid artery by a syringe pump. Simultaneously, the temporal images were collected from the brain parenchyma ~100–200 μm below the pia mater. Permeability was determined from the rate of tissue solute accumulation around individual microvessels. After several trials, we found the optimal dose of FUS. At the optimal dose, permeability increased by ~14-fold after 5 minutes post-FUS, and permeability returned to the control level after 25 minutes. FUS without MBs or MBs injected without FUS did not change the permeability. Our method provides an accurate in vivo assessment for the transient BBB permeability change under the treatment of FUS. The optimal FUS dose found for the reversible BBB permeability increase without BBB disruption is reliable

  8. Escin attenuates cerebral edema induced by acute omethoate poisoning.

    PubMed

    Wang, Tian; Jiang, Na; Han, Bing; Liu, Wenbo; Liu, Tongshen; Fu, Fenghua; Zhao, Delu

    2011-06-01

    Organophosphorus exposure affects different organs such as skeletal muscles, the gastrointestinal tract, liver, lung, and brain. The present experiment aimed to evaluate the effect of escin on cerebral edema induced by acute omethoate poisoning. Sprague-Dawley rats were administered subcutaneously with omethoate at a single dose of 60 mg/kg followed by escin treatment. The results showed that escin reduced the brain water content and the amount of Evans blue in omethoate-poisoned animals. Treatment with escin decreased the levels of tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), cyclooxygenase-2 (COX-2), and prostaglandin E₂ (PGE₂) in the brain. Escin also alleviated the histopathological change induced by acute omethoate poisoning. The findings demonstrated that escin can attenuate cerebral edema induced by acute omethoate poisoning, and the underlying mechanism was associated with ameliorating the permeability of the blood-brain barrier. PMID:21417632

  9. Pharmacokinetics of 21 active components in focal cerebral ischemic rats after oral administration of the active fraction of Xiao-Xu-Ming decoction.

    PubMed

    Wang, Caihong; Jia, Zhixin; Wang, Zhe; Hu, Ting; Qin, Hailin; Du, Guanhua; Wu, Caisheng; Zhang, Jinlan

    2016-04-15

    The Xiao-Xu-Ming decoction (XXMD) is a traditional Chinese medicine prescription that is clinically used for the treatment of stroke. The active fraction of XXMD (AF-XXMD) exhibits pharmacological effects that are similar to those of XXMD. In this study, 21 primary compounds of AF-XXMD with potential anti-ischemic-stroke activities were selected as effective candidates to perform comparisons of their pharmacokinetic differences between control and cerebral ischemic rats and to characterize their pharmacokinetic behaviors in cerebral ischemic rats. After oral administration of AF-XXMD to control and cerebral ischemic rats, plasma and brain were harvested and analyzed using liquid chromatography coupled with tandem mass spectrometry. Reverse molecular docking results indicate that 21 AF-XXMD-derived compounds exert potential neuroprotection, anti- inflammation, and vascular dilation effects via interaction with multiple targets in stroke-related pathways. The blood-brain permeability, cerebral exposure and brain region distribution of these compounds were found to change in cerebral ischemic models. Flavonoids were identified as the predominant form in plasma, whereas chromones were found to be the major form in the brain, and alkaloids possessed moderate blood-brain permeability. Collectively, the cerebral pharmacokinetic behaviors of chromones, flavonoids and alkaloids were found to change under pathological conditions. The efficacy of AF-XXMD against cerebral ischemia is relevant to the synergistic effects of these compounds in targeting different receptors and pathways. Chromones exhibit relatively high brain permeability, and their activity and mechanism warrant further investigation. PMID:26852160

  10. Age-dependent effects of severe traumatic brain injury on cerebral dopaminergic activity in newborn and juvenile pigs.

    PubMed

    Walter, Bernd; Brust, Peter; Füchtner, Frank; Müller, Marco; Hinz, Rainer; Kuwabara, Hiroto; Fritz, Harald; Zwiener, Ulrich; Bauer, Reinhard

    2004-08-01

    There is evidence that the dopaminergic system is sensitive to traumatic brain injury (TBI). However, the age-dependency of this sensitivity has not been studied together with brain oxidative metabolism. We postulate that the acute effects of severe TBI on brain dopamine turnover are age-dependent. Therefore 18F-labelled 6-fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) together with Positron-Emission-Tomography (PET) was used to estimate the activity of the aromatic amino acid decarboxylase (AADC) in the brain of 11 newborn piglets (7-10 days old) and nine juvenile pigs (6-7 weeks old). Six newborn and five juvenile animals were subjected to a severe fluid-percussion (FP) induced TBI. The remaining animals were used as sham operated untreated control groups. Simultaneously, the regional cerebral blood flow (CBF) was measured with colored microspheres and the cerebral metabolic rates of oxygen and glucose were determined. At 1 h after FP-TBI, [18F]FDOPA was infused and PET scanning was performed for 2 h. At 2 h after FP-TBI administration, a second series of measurements of physiological values including CBF and brain oxidative metabolism data had been obtained. Severe FP-TBI elicited a marked increase in the rate constant for fluorodopamine production (k3FDOPA) in all brain regions of newborn piglets studied by between 97% (mesencephalon) and 143% (frontal cortex) (p < 0.05). In contrast, brain hemodynamics and cerebral oxidative metabolism remained unaltered after TBI. Furthermore, the permeability-surface area product of FDOPA (PSFDOPA) was unchanged. In addition, regional blood flow differences between corresponding ipsi- and contralateral brain regions did not occur after TBI. Thus, it is suggested that severe FP-TBI induces an upregulation of AADC activity of newborn piglets that is not related to alterations in brain oxidative metabolism. PMID:15319007