Science.gov

Sample records for permeable stretching surface

  1. Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Ranjan De, P.; Layek, G. C.

    2013-05-01

    An unsteady boundary layer flow of a non-Newtonian fluid over a continuously stretching permeable surface in the presence of thermal radiation is investigated. The Maxwell fluid model is used to characterize the non-Newtonian fluid behavior. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are then solved numerically by the shooting method. The flow features and heat transfer characteristics for different values of the governing parameters (unsteadiness parameter, Maxwell parameter, permeability parameter, suction/blowing parameter, thermal radiation parameter, and Prandtl number) are analyzed and discussed in detail.

  2. MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation

    NASA Astrophysics Data System (ADS)

    Swati, Mukhopadhyay; Iswar, Chandra Moindal; Tasawar, Hayat

    2014-10-01

    This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carried out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.

  3. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  4. Numerical solution for the flow and heat transfer due to a permeable stretching surface embedded in a porous medium with a second-order slip and viscous dissipation

    NASA Astrophysics Data System (ADS)

    Khader, M. M.; Megahed, Ahmed M.

    2014-01-01

    This paper is devoted to introduce a numerical simulation using the implicit finite difference method (FDM) with the theoretical study for the effect of viscous dissipation on the steady flow with heat transfer of Newtonian fluid towards a permeable stretching surface embedded in a porous medium with a second-order slip. The governing non-linear partial differential equations are converted into non-linear ordinary differential equations (ODEs) by using similarity variables. Exact solutions corresponding to momentum and energy equations for the case of no slip conditions are obtained. The resulting ODEs are successfully solved numerically with the help of FDM. Graphically results are shown for non-dimensional velocities and temperature. The effects of the porous parameter, the suction (injection) parameter, Eckert number, first- and second-order velocity slip parameter and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin friction and Nusselt numbers are presented. Comparison of numerical results is made with the earlier published results under limiting cases.

  5. EPA Permeable Surface Research - Poster

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  6. MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2016-06-01

    The steady two-dimensional magnetohydrodynamic (MHD) flow past a permeable stretching/shrinking sheet with radiation effects is investigated. The similarity transformation is introduced to transform the governing partial differential equations into a system of ordinary differential equations before being solved numerically using a shooting method. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the concentration profiles for some values of the governing parameters, namely, suction/injection parameter S, stretching/shrinking parameter λ, magnetic parameter M, radiation parameter R, heat source/sink Q and chemical rate parameter K. For the shrinking case, there exist two solutions for a certain range of parameters, but the solution is unique for the stretching case. The stability analysis verified that the upper branch solution is linearly stable and physically reliable while the lower branch solution is not. For the reliable solution, the skin friction coefficient increases in the present of magnetic field. The heat transfer rate at the surface decreases in the present of radiation.

  7. Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch.

    PubMed

    Tian, Yufeng; Gawlak, Grzegorz; O'Donnell, James J; Birukova, Anna A; Birukov, Konstantin G

    2016-05-01

    High tidal volume mechanical ventilation and the resultant excessive mechanical forces experienced by lung vascular endothelium are known to lead to increased vascular endothelial leak, but the underlying molecular mechanisms remain incompletely understood. One reported mechanotransduction pathway of increased endothelial cell (EC) permeability caused by high magnitude cyclic stretch (18% CS) involves CS-induced activation of the focal adhesion associated signalosome, which triggers Rho GTPase signaling. This study identified an alternative pathway of CS-induced EC permeability. We show here that high magnitude cyclic stretch (18% CS) rapidly activates VEGF receptor 2 (VEGFR2) signaling by dissociating VEGFR2 from VE-cadherin at the cell junctions. This results in VEGFR2 activation, Src-dependent VE-cadherin tyrosine phosphorylation, and internalization leading to increased endothelial permeability. This process is also accompanied by CS-induced phosphorylation and internalization of PECAM1. Importantly, CS-induced endothelial barrier disruption was attenuated by VEGFR2 inhibition. 18% CS-induced EC permeability was linked to dissociation of cell junction scaffold afadin from the adherens junctions. Forced expression of recombinant afadin in pulmonary endothelium attenuated CS-induced VEGFR2 and VE-cadherin phosphorylation, preserved adherens junction integrity and VEGFR2·VE-cadherin complex, and suppressed CS-induced EC permeability. This study shows for the first time a mechanism whereby VEGFR2 activation mediates EC permeability induced by pathologically relevant cyclic stretch. In this mechanism, CS induces dissociation of the VE-cadherin·VEGFR2 complex localized at the adherens juctions, causing activation of VEGFR2, VEGFR2-mediated Src-dependent phosphorylation of VE-cadherin, disassembly of adherens junctions, and EC barrier failure. PMID:26884340

  8. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    PubMed

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-01-01

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed. PMID:27509528

  9. A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet

    NASA Astrophysics Data System (ADS)

    Saeed Butt, Adnan; Ali, Asif

    2014-01-01

    The present article aims to investigate the entropy effects in magnetohydrodynamic flow and heat transfer over an unsteady permeable stretching surface. The time-dependent partial differential equations are converted into non-linear ordinary differential equations by suitable similarity transformations. The solutions of these equations are computed analytically by the Homotopy Analysis Method (HAM) then solved numerically by the MATLAB built-in routine. Comparison of the obtained results is made with the existing literature under limiting cases to validate our study. The effects of unsteadiness parameter, magnetic field parameter, suction/injection parameter, Prandtl number, group parameter and Reynolds number on flow and heat transfer characteristics are checked and analysed with the aid of graphs and tables. Moreover, the effects of these parameters on entropy generation number and Bejan number are also shown graphically. It is examined that the unsteadiness and presence of magnetic field augments the entropy production.

  10. Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid

    PubMed Central

    Zaimi, Khairy; Ishak, Anuar; Pop, Ioan

    2014-01-01

    The steady boundary layer flow and heat transfer of a nanofluid past a nonlinearly permeable stretching/shrinking sheet is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation, which are then solved numerically using a shooting method. The local Nusselt number and the local Sherwood number and some samples of velocity, temperature and nanoparticle concentration profiles are graphically presented and discussed. Effects of the suction parameter, thermophoresis parameter, Brownian motion parameter and the stretching/shrinking parameter on the flow, concentration and heat transfer characteristics are thoroughly investigated. Dual solutions are found to exist in a certain range of the stretching/shrinking parameter for both shrinking and stretching cases. Results indicate that suction widens the range of the stretching/shrinking parameter for which the solution exists. PMID:24638147

  11. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno's model.

    PubMed

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet. PMID:26440761

  12. Specific surface area model for foam permeability.

    PubMed

    Pitois, O; Lorenceau, E; Louvet, N; Rouyer, F

    2009-01-01

    Liquid foams were recognized early to be porous materials, as liquid flowed between the gas bubbles. Drainage theories have been established, and foam permeability has been modeled from the microscopic description of the equivalent pores geometry, emphasizing similarities with their solid counterparts. But to what extent can the theoretical work devoted to the permeability of solid porous materials be useful to liquid foams? In this article, the applicability of the Carman-Kozeny model on foam is investigated. We performed measurements of the permeability of foams with nonmobile surfactants, and we show that, in introducing an equivalent specific surface area for the foam, the model accurately describes the experimental data over two orders of magnitude for the foam liquid fraction, without any additional parameters. Finally, it is shown that this model includes the previous permeability models derived for foams in the dry foams limit. PMID:19032030

  13. Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion

    NASA Astrophysics Data System (ADS)

    Misra, J. C.; Sinha, A.

    2013-05-01

    In this paper, a theoretical analysis is presented for magnetohydrodynamic flow of blood in a capillary, its lumen being porous and wall permeable. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. Thermal radiation, velocity slip and thermal slip conditions are taken into account. In order to study the flow field as well as the temperature field, the problem is formulated as a boundary value problem consisting of a system of nonlinear coupled partial differential equations. The problem is analysed by using similarity transformation and boundary layer approximation. Solution of the problem is achieved by developing a suitable numerical method and using high speed computers. Computational results for the variation in velocity, temperature, skin-friction co-efficient and Nusselt number are presented in graphical/tabular form. Effects of different parameters are adequately discussed. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.

  14. Direct measurement of surface stress of stretched soft solids

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Dufresne, Eric

    The wetting profile of liquid droplets on soft solids is determined by the competition between elasticity and solid surface stress. Near the contact point, the bulk elasticity becomes negligible such that Neumann's classic analysis nicely captures the wetting geometry and provides us an effective approach to directly measure the solid surface stress. Here, we report our experiments using confocal microscopy in studying the wetting of liquids on soft PDMS gels. While the droplets are sitting on the top, the substrates are biaxially strained. We observe that the wetting profiles and the three-phase contact angles are changing dramatically as the substrate is stretched. With Neumann's principle, we obtain the quantitative relation between surface stress of the PDMS and the applied strain. These results suggest a significant strain-dependence of surface energy and surface stress for our PDMS.

  15. Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface

    PubMed Central

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737

  16. Unsteady convection flow and heat transfer over a vertical stretching surface.

    PubMed

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737

  17. Boundary layer flow of nanofluid over an exponentially stretching surface

    PubMed Central

    2012-01-01

    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt. PMID:22289390

  18. Flow Past a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Two-Phase Model

    PubMed Central

    Zaimi, Khairy; Ishak, Anuar; Pop, Ioan

    2014-01-01

    The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno’s nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter. PMID:25365118

  19. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model.

    PubMed

    Zaimi, Khairy; Ishak, Anuar; Pop, Ioan

    2014-01-01

    The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter. PMID:25365118

  20. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno’s model

    PubMed Central

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet. PMID:26440761

  1. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno’s model

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-10-01

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.

  2. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

  3. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Durr, H.H.; Manning, A.H.; Van Beek, L. P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ???5 ?? 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Copyright ?? 2011 by the American Geophysical Union.

  4. Image stretching on a curved surface to improve satellite gridding

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1975-01-01

    A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.

  5. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2015-01-01

    The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem. PMID:26110873

  6. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface

    PubMed Central

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2015-01-01

    The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem. PMID:26110873

  7. MEASUREMENT OF THE SURFACE PERMEABILITY OF BASEMENT CONCRETES

    EPA Science Inventory

    The report discusses the development, testing, and use of a portable surface permeameter suitable for field use in measuring the surface permeability of concrete in new houses. he permeameter measures the airflow induced by a pressure difference across a temporary test seal appli...

  8. MEAUSREMENT OF THE SURFACE PERMEABILITY OF BASEMENT CONCRETES

    EPA Science Inventory

    The report discusses the development, testing, and use of a portable surface permeameter suitable for field use in measuring the surface permeability of concrete in new houses. he permeameter measures the airflow induced by a pressure difference across a temporary test seal appli...

  9. g-Jitter Mixed Convective Slip Flow of Nanofluid past a Permeable Stretching Sheet Embedded in a Darcian Porous Media with Variable Viscosity

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Amin, Norsarahaida S.

    2014-01-01

    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results. PMID:24927277

  10. Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Tien, J. S.

    1999-01-01

    Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.

  11. Hydromagnetic Steady Flow of Maxwell Fluid over a Bidirectional Stretching Surface with Prescribed Surface Temperature and Prescribed Surface Heat Flux

    PubMed Central

    Shehzad, Sabir Ali; Alsaedi, Ahmad; Hayat, Tasawar

    2013-01-01

    This paper investigates the steady hydromagnetic three-dimensional boundary layer flow of Maxwell fluid over a bidirectional stretching surface. Both cases of prescribed surface temperature (PST) and prescribed surface heat flux (PHF) are considered. Computations are made for the velocities and temperatures. Results are plotted and analyzed for PST and PHF cases. Convergence analysis is presented for the velocities and temperatures. Comparison of PST and PHF cases is given and examined. PMID:23874523

  12. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.

    PubMed

    Aili, Abulimiti; Li, Hongxia; Alhosani, Mohamed H; Zhang, TieJun

    2016-08-24

    Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging. Also, on such surfaces droplets can grow to larger sizes without restriction if there is no coalescence. In this work, we show that superhydrophobic nanostructured microporous surfaces can manipulate the droplet growth and jumping. Microporous surface morphology effectively enhances the growth of droplets in pores owing to large solid-liquid contact area. At low supersaturations, the upward growth rate (1-1.5 μm/s) of these droplets in pores is observed to be around 15-25 times that of the droplets outside the pores. Meanwhile, their top curvature radius increases relatively slowly (∼0.25 μm/s) due to pore confinement, which results in a highly stretched droplet surface. We also observed forced jumping of stretched droplets in pores either through coalescence with spherical droplets outside pores or through self-pulling without coalescence. Both experimental observation and theoretical modeling reveal that excess surface free energy stored in the stretched droplet surface and micropore confinement are responsible for this pore-scale-forced jumping. These findings reveal the insightful physics of stretched droplet dynamics and offer guidelines for the design and fabrication of novel super-repellent surfaces with microporous morphology. PMID:27486890

  13. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex.

    PubMed

    Gawlak, Grzegorz; Tian, Yufeng; O'Donnell, James J; Tian, Xinyong; Birukova, Anna A; Birukov, Konstantin G

    2014-07-01

    Suboptimal ventilator support or regional ventilation heterogeneity in inflamed lungs causes excessive tissue distension, which triggers stretch-induced pathological signaling and may lead to vascular leak and lung dysfunction. Focal adhesions (FAs) are cell-substrate adhesive complexes participating in cellular mechanotransduction and regulation of the Rho GTPase pathway. Stretch-induced Rho regulation remains poorly understood. We used human lung endothelial cells (ECs) exposed to pathological cyclic stretch (CS) at 18% distension to test the hypothesis that FA protein paxillin participates in CS-induced Rho activation by recruiting the Rho-specific guanine nucleotide exchange factor GEF-H1. CS induced phosphorylation of paxillin and activated p42/44-MAP kinase, Rho GTPase, and paxillin/GEF-H1/p42/44-MAPK association. CS caused nearly 2-fold increase in EC permeability, which was attenuated by paxillin knockdown. Expression of the paxillin-Y31/118F phosphorylation mutant decreased the CS-induced paxillin/GEF-H1 association (16.3 ± 4.1%), GEF-H1 activation (28.9 ± 9.2%), and EC permeability (28.7 ± 8.1%) but not CS-induced p42/44-MAPK activation. Inhibition of p42/44-MAPK suppressed CS-induced paxillin/GEF-H1 interactions (15.9 ± 7.9%), GEF-H1 activation (11.7 ± 4.3%), and disruption of EC monolayer. Expression of GEF-H1T678A lacking p42/44-MAPK phosphorylation site attenuated Rho activation (31.2±11.6%). We conclude that MAPK-dependent targeting of GEF-H1 to paxillin is involved in the regulation of CS-induced Rho signaling and EC permeability. This study proposes a novel concept of paxillin-GEF-H1-p42/44-MAPK module as a regulator of pathological mechanotransduction.-Gawlak, G., Tian, Y., O'Donnell, J. J., III, Tian, X., Birukova, A. A., Birukov, K. G. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex. PMID:24706358

  14. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    SciTech Connect

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  15. On curve and surface stretching in turbulent flow

    NASA Technical Reports Server (NTRS)

    Etemadi, Nassrollah

    1989-01-01

    Cocke (1969) proved that in incompressible, isotropic turbulence the average material line (material surface) elements increase in comparison with their initial values. Good estimates of how much they increase in terms of the eigenvalues of the Green deformation tensor were rigorously obtained.

  16. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium

    PubMed Central

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. PMID:26657931

  17. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    PubMed

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. PMID:26657931

  18. Analytical solutions for a mass moving along a finite stretched string with random surface irregularities

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Zhang, J.

    2016-06-01

    This paper derives the analytical solution for the stochastic analysis of a concentrated mass moving at a constant velocity along a finite stretched string with random surface irregularities. Firstly, the problem of computing the spectral power density (PSD) of the random response is transformed into the problem of computing the transient response of a concentrated mass moving at a constant velocity along a stretched string with harmonic random surface irregularities. Next, the analytical solutions of the contact force between the string and the mass are derived for harmonically varying surface irregularities. Finally, the PSDs of contact force and the displacement of the string are determined in terms of the PSD of the random surface irregularities. The analytical solutions cover all three cases of subsonic, sonic or supersonic velocities. The proposed method was verified based on a comparison with the semi-analytical method.

  19. DNA stretching on the wall surfaces in curved microchannels with different radii

    PubMed Central

    2014-01-01

    DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10−4 ≤ Re ≤ 10−3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm. PMID:25147488

  20. DNA stretching on the wall surfaces in curved microchannels with different radii

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju

    2014-08-01

    DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10-4 ≤ Re ≤ 10-3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.

  1. Two-dimensional oblique stagnation-point flow towards a stretching surface in a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Husain, Iqbal; Labropulu, Fotini; Pop, Ioan

    2011-02-01

    In this paper, the steady two-dimensional stagnation-point flow of a viscoelastic Walters' B' fluid over a stretching surface is examined. It is assumed that the fluid impinges on the wall obliquely. Using similarity variables, the governing partial differential equations are transformed into a set of two non-dimensional ordinary differential equations. These equations are then solved numerically using the shooting method with a finite-difference technique.

  2. Stretching of a polymer chain anchored to a surface: the massive field theory approach

    NASA Astrophysics Data System (ADS)

    Usatenko, Zoryana

    2014-09-01

    Taking into account the well-known correspondence between the field theoretical φ4 O(n)-vector model in the limit n → 0 and the behaviour of long-flexible polymer chains, the investigation of stretching of an ideal and a real polymer chain with excluded volume interactions in a good solvent anchored to repulsive and inert surfaces is performed. The calculations of the average stretching force which arises when the free end of a polymer chain moves away from a repulsive or inert surface are performed up to one-loop order of the massive field theory approach in fixed space dimensions d = 3. The analysis of the obtained results indicates that the average stretching force for a real polymer chain anchored to a repulsive surface demonstrates different behaviour for the cases \\tilde{z}\\ll1 and \\tilde{z}\\gg1 , where \\tilde{z}=z^\\prime/Rz . Besides, the results obtained in the framework of the massive field theory approach are in good agreement with previous theoretical results for an ideal polymer chain and results of a density functional theory approach for the region of small applied forces when deformation of a polymer chain in the direction of the applied force is not bigger than the linear extension of a polymer chain in this direction. The better agreement between these two methods is observed in the case where the number of monomers increases and the polymer chain becomes longer.

  3. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet.

    PubMed

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-01-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. PMID:27091085

  4. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-04-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.

  5. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet

    PubMed Central

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-01-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. PMID:27091085

  6. Permeable Surface Corrections for Ffowcs Williams and Hawkings Integrals

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Casper, Jay H.

    2005-01-01

    The acoustic prediction methodology discussed herein applies an acoustic analogy to calculate the sound generated by sources in an aerodynamic simulation. Sound is propagated from the computed flow field by integrating the Ffowcs Williams and Hawkings equation on a suitable control surface. Previous research suggests that, for some applications, the integration surface must be placed away from the solid surface to incorporate source contributions from within the flow volume. As such, the fluid mechanisms in the input flow field that contribute to the far-field noise are accounted for by their mathematical projection as a distribution of source terms on a permeable surface. The passage of nonacoustic disturbances through such an integration surface can result in significant error in an acoustic calculation. A correction for the error is derived in the frequency domain using a frozen gust assumption. The correction is found to work reasonably well in several test cases where the error is a small fraction of the actual radiated noise. However, satisfactory agreement has not been obtained between noise predictions using the solution from a three-dimensional, detached-eddy simulation of flow over a cylinder.

  7. Group analysis and numerical computation of magneto-convective non-Newtonian nanofluid slip flow from a permeable stretching sheet

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Ferdows, M.; Bég, O. Anwar

    2014-10-01

    Two-dimensional magnetohydrodynamic boundary layer flow of non-Newtonian power-law nanofluids past a linearly stretching sheet with a linear hydrodynamic slip boundary condition is investigated numerically. The non-Newtonian nanofluid model incorporates the effects of Brownian motion and thermophoresis. Similarity transformations and corresponding similarity equations of the transport equations are derived via a linear group of transformations. The transformed equations are solved numerically using Runge-Kutta-Fehlberg fourth-fifth order numerical method available in the Maple 14 software for the influence of power-law (rheological) index, Lewis number, Prandtl number, thermophoresis parameter, Brownian motion parameter, magnetic field parameter and linear momentum slip parameter. Validation is achieved with an optimized Nakamura implicit finite difference algorithm (NANONAK). Representative results for the dimensionless axial velocity, temperature and concentration profiles have been presented graphically. The present results of skin friction factor and reduced heat transfer rate are also compared with the published results for several special cases of the model and found to be in close agreement. The study has applications in electromagnetic nano-materials processing.

  8. Convective heat transfer in a micropolar fluid over an unsteady stretching surface

    NASA Astrophysics Data System (ADS)

    Prasad, K. V.; Vaidya, H.; Vajravelu, K.

    2016-05-01

    An unsteady boundary layer free convective flow and heat transfer of a viscous incompressible, microploar fluid over a vertical stretching sheet is investigated. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin fixed in the micropolar fluid. The transformed highly non-linear boundary layer equations are solved numerically by an implicit finite difference scheme for the transient, state from the initial to the final steady-state. To validate the numerical method, comparisons are made with the available results in the literature for some special cases and the results are found to be in good agreement. The obtained numerical results are analyzed graphically for the velocity, the microrotation, and the temperature distribution; whereas the skin friction, the couple stress coefficient and the Nusselt number are tabulated for different values of the pertinent parameters. Results exhibit a drag reduction and an increase in the surface heat transfer rate in the micropolar fluid flow compared to the Newtonian fluid flow.

  9. In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching.

    PubMed

    Maiti, Raman; Gerhardt, Lutz-Christian; Lee, Zing S; Byers, Robert A; Woods, Daniel; Sanz-Herrera, José A; Franklin, Steve E; Lewis, Roger; Matcher, Stephen J; Carré, Matthew J

    2016-09-01

    Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching. PMID:27310571

  10. Three-dimensional flow with heat transfer of a viscoelastic fluid over a stretching surface with a magnetic field

    NASA Astrophysics Data System (ADS)

    Seshadri, Rajeswari; Sabaskar, J.

    2016-03-01

    The present research study deals with the steady flow and heat transfer of a viscoelastic fluid over a stretching surface in two lateral directions with a magnetic field applied normal to the surface. The fluid far away from the surface is ambient and the motion in the flow field is caused by stretching surface in two directions. This result is a three-dimensional flow instead of two-dimensional as considered by many authors. Self-similar solutions are obtained numerically. For some particular cases, closed form analytical solutions are also obtained. The numerical calculations show that the skin friction coefficients in x- and y-directions and the heat transfer coefficient decrease with the increasing elastic parameter, but they increase with the stretching parameter. The heat transfer coefficient for the constant heat flux case is higher than that of the constant wall temperature case.

  11. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: A finite element study

    PubMed Central

    Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur

    2015-01-01

    Background A nonlinear isotropic finite element (FE) model of a 29 year old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. Methods The model simulates dis-accommodation by stretching of the lens and predicts the change in the lens capsule, cortex and nucleus surface profiles at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the FE results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Results Aspects of lens shape change relative to stretch were evaluated including change in diameter (d), central thickness (T) and accommodation (A). Maximum accommodation achieved was 10.29 D. From the MRA, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5×10−3 µm, p<0.001). The results are compared with those from in vitro studies. Conclusions The FE and ray-tracing predictions are consistent with EVAS studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully-accommodated states. PMID:25727940

  12. The Effect of Thermophoresis on Unsteady Oldroyd-B Nanofluid Flow over Stretching Surface

    PubMed Central

    Awad, Faiz G.; Ahamed, Sami M. S.; Sibanda, Precious; Khumalo, Melusi

    2015-01-01

    There are currently only a few theoretical studies on convective heat transfer in polymer nanocomposites. In this paper, the unsteady incompressible flow of a polymer nanocomposite represented by an Oldroyd-B nanofluid along a stretching sheet is investigated. Recent studies have assumed that the nanoparticle fraction can be actively controlled on the boundary, similar to the temperature. However, in practice, such control presents significant challenges and in this study the nanoparticle flux at the boundary surface is assumed to be zero. We have used a relatively novel numerical scheme; the spectral relaxation method to solve the momentum, heat and mass transport equations. The accuracy of the solutions has been determined by benchmarking the results against the quasilinearisation method. We have conducted a parametric study to determine the influence of the fluid parameters on the heat and mass transfer coefficients. PMID:26312754

  13. The Effect of Thermophoresis on Unsteady Oldroyd-B Nanofluid Flow over Stretching Surface.

    PubMed

    Awad, Faiz G; Ahamed, Sami M S; Sibanda, Precious; Khumalo, Melusi

    2015-01-01

    There are currently only a few theoretical studies on convective heat transfer in polymer nanocomposites. In this paper, the unsteady incompressible flow of a polymer nanocomposite represented by an Oldroyd-B nanofluid along a stretching sheet is investigated. Recent studies have assumed that the nanoparticle fraction can be actively controlled on the boundary, similar to the temperature. However, in practice, such control presents significant challenges and in this study the nanoparticle flux at the boundary surface is assumed to be zero. We have used a relatively novel numerical scheme; the spectral relaxation method to solve the momentum, heat and mass transport equations. The accuracy of the solutions has been determined by benchmarking the results against the quasilinearisation method. We have conducted a parametric study to determine the influence of the fluid parameters on the heat and mass transfer coefficients. PMID:26312754

  14. MHD viscous Casson fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet in the presence of internal heat generation/absorption and thermal radiation

    NASA Astrophysics Data System (ADS)

    Megahed, Ahmed M.

    2015-04-01

    This article is devoted to describing the boundary layer flow and heat transfer for an electrically conducting Casson fluid over a permeable stretching surface with second-order slip velocity model and thermal slip conditions in the presence of internal heat generation/absorption and thermal radiation. The basic equations governing the flow and heat transfer are in the form of partial differential equations; the same have been reduced to a set of highly non-linear ordinary differential equations by applying suitable similarity transformations. Exact solution corresponding to momentum equation is obtained, and, in the case of no slip conditions, we get the exact solutions for both momentum and energy equation. The resulting similarity equations are solved numerically by shooting method. Comparisons with previously published work are performed and the results are found to be in excellent agreement. In the present work the effect of magnetic parameter, suction/injection parameter, Casson parameter, slip parameters, radiation parameter, internal heat generation/absorption parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Also, the local skin-friction coefficient and the local Nusselt number at the sheet are computed and discussed. It is found that the temperature rises to a higher value when the Casson parameter increases but the reverse is true for the velocity distribution. Finally, increasing the velocity and thermal slip parameters makes the rate of heat transfer decrease.

  15. The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno's Model: A Revised Model

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2016-01-01

    A numerical study on the stagnation-point boundary layer flow of a viscous and incompressible (Newtonian) fluid past a stretching/shrinking sheet with the fluid suction using Buongiorno's model is considered. The main focus of this article is the effects of the non-alignment of the flow and the surface of the sheet. We have also studied the problem using a new boundary condition that is more physically realistic which assumes that the nanoparticle fraction at the surface is passively controlled. The governing equations of this problem are reduced to the ordinary differential equations using some similarity transformations which are then solved using the bvp4c function in Matlab. From the results obtained, we concluded that the effect of the non-alignment function is the same as in the regular fluid or nanofluid. However, it is found that the fluid suction can reduce the effect of the non-alignment at the surface. Dual solutions have also been discovered in this problem and from the stability analysis it is found that the first solution is stable while the second solution is not stable.

  16. Multiple solutions of two-dimensional and three-dimensional flows induced by a stretching flat surface

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Ishak, Anuar

    2015-08-01

    New solutions of flow induced by a biorthogonally stretching surface are reported. The flexible membrane has linear stretching rate a along the x-axis and b along the y-axis. A similarity reduction of the Navier-Stokes equations yields a coupled pair of ordinary differential equations governed the single parameter α = b / a . Dual solutions are found in the region αt < α ⩽ 1 , where αt = - 0.2514 . One of the two components of the dual solutions exhibits algebraic decay in the far field. It appears that no self-similar solutions exist for α <αt . It is also shown that the exact solution for flow induced by a unilaterally stretching sheet due to Crane has dual solutions with algebraic decay in the far field.

  17. Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface

    NASA Astrophysics Data System (ADS)

    Ul Haq, Rizwan; Khan, Zafar Hayat; Khan, Waqar Ahmed

    2014-09-01

    This article is intended for investigating the effects of magnetohydrodynamics (MHD) and volume fraction of carbon nanotubes (CNTs) on the flow and heat transfer in two lateral directions over a stretching sheet. For this purpose, three types of base fluids specifically water, ethylene glycol and engine oil with single and multi-walled carbon nanotubes are used in the analysis. The convective boundary condition in the presence of CNTs is presented first time and not been explored so far. The transformed nonlinear differential equations are solved by the Runge-Kutta-Fehlberg method with a shooting technique. The dimensionless velocity and shear stress are obtained in both directions. The dimensionless heat transfer is determined on the surface. Three different models of thermal conductivity are comparable for both CNTs and it is found that the Xue [1] model gives the best approach to guess the superb thermal conductivity in comparison with the Maxwell [2] and Hamilton and Crosser [3] models. And finally, another finding suggests the engine oil provides the highest skin friction and heat transfer rates.

  18. Nanofluid flow and forced convection heat transfer over a stretching surface considering heat source

    NASA Astrophysics Data System (ADS)

    Mohammadpour, M.; Valipour, P.; Shambooli, M.; Ayani, M.; Mirparizi, M.

    2015-07-01

    In this paper, magnetic field effects on the forced convection flow of a nanofluid over a stretching surface in the presence of heat generation/absorption are studied. The equations of continuity, momentum and energy are transformed into ordinary differential equations and solved numerically using the fourth-order Runge-Kutta integration scheme featuring the shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titania (TiO2) with water as their base fluid has been considered. The influence of significant parameters, such as magnetic parameter, volume fraction of the nanoparticles, heat generation/absorption parameter, velocity ratio parameter and temperature index parameter on the flow and heat transfer characteristics are discussed. The results show that the values of temperature profiles increase with increasing heat generation/absorption and volume fraction of the nanoparticles but they decrease with increasing velocity ratio parameter and temperature index parameter. Also, it can be found that selecting silver as nanoparticle leads to the highest heat transfer enhancement.

  19. Surface potential and permeability of rock cores under asphaltenic oil flow conditions

    SciTech Connect

    Alkafeef, S.F.; Gochin, R.J.; Smith, A.L.

    1995-12-31

    The surface properties, wetting behaviour and permeability of rock samples are central to understanding recovery behaviour in oil reservoirs. This paper will present a method new to petroleum engineering to show how area/length ratios for porous systems can be obtained by combining streaming potential and streaming current measurements on rock cores. This has allows streaming current measurements (independent of surface conductivity errors) to be made on rock samples using hydrocarbon solvents with increasing concentrations of asphaltene. Negative surface potentials for the rock became steadily more positive as asphaltene coated the pore surfaces, with permeability reduction agreeing well with petrographic analysis.

  20. Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Khan, Zafar Hayat

    2016-07-01

    The combine effects of magnetic field bioconvection, Brownian motion and thermophoresis on a free convection nanofluid flow over a stretching sheet containing gyrotactic microorganisms are investigated. The self-similar Buongiorno model is analyzed first time for stretching sheet numerically. The present results are compared with available data and are found in an excellent agreement. Pertinent results are presented graphically and discussed quantitatively with respect to variation in bioconvection parameters.

  1. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels

    PubMed Central

    Zhang, Lin; Zeng, Min; Fan, Jie; Tarbell, John, M.; Curry, Fitz-Roy E.; Fu, Bingmei M.

    2016-01-01

    Objective Sphingosine-1-phosphate (S1P) was found to protect the endothelial surface glycocalyx (ESG) by inhibiting matrix metalloproteinase (MMP) activity-dependent shedding of ESG in cultured endothelial cell studies. We aimed to further test that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels. Methods We quantified the ESG in post-capillary venules of rat mesentery and measured the vascular permeability to albumin in the presence and absence of 1 μM S1P. We also measured permeability to albumin in the presence of MMP inhibitors and compared the measured permeability with those predicted by a transport model for the inter-endothelial cleft. Results We found that in the absence of S1P, the fluorescence intensity of the FITC-anti-heparan sulfate labeled ESG was ~10% of that in the presence of S1P, while the measured permeability to albumin was ~6.5 fold that in the presence of S1P. Similar results were observed with MMP inhibition. The predictions by the mathematical model further confirmed that S1P maintains microvascular permeability by preserving ESG. Conclusions Our results show that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels, consistent with parallel observation in cultured endothelial monolayers. PMID:27015105

  2. Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface Roughness

    SciTech Connect

    Chih-Ying Chen

    2005-06-30

    Two-phase flow through fractured media is important in petroleum, geothermal, and environmental applications. However, the actual physics and phenomena that occur inside fractures are poorly understood, and oversimplified relative permeability curves are commonly used in fractured reservoir simulations. In this work, an experimental apparatus equipped with a high-speed data acquisition system, real-time visualization, and automated image processing technology was constructed to study three transparent analog fractures with distinct surface roughnesses: smooth, homogeneously rough, and randomly rough. Air-water relative permeability measurements obtained in this study were compared with models suggested by earlier studies and analyzed by examining the flow structures. A method to evaluate the tortuosities induced by the blocking phase, namely the channel tortuosity, was proposed from observations of the flow structure images. The relationship between the coefficients of channel tortuosity and the relative permeabilities was studied with the aid of laboratory experiments and visualizations. Experimental data from these fractures were used to develop a broad approach for modeling two-phase flow behavior based on the flow structures. Finally, a general model deduced from these data was proposed to describe two-phase relative permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting for the molecular transport through liquid-vapor interfaces. For the steam water relative permeabilities, we conducted steam-water flow experiments in the same fractures as used for air-water experiments. We compared the flow behavior and relative permeability differences between two-phase flow with and without phase transformation effects

  3. Numerical Simulation of MHD Hiemenz Flow of a Micropolar Fluid towards a Nonlinear Stretching Surface through a Porous Medium

    NASA Astrophysics Data System (ADS)

    Sharma, Rajesh; Bhargava, Rama

    2015-07-01

    In this article, the two-dimensional boundary layer problem of Hiemenz flow (two-dimensional flow of a fluid near a stagnation point) of an incompressible micropolar fluid towards a nonlinear stretching surface placed in a porous medium in the presence of transverse magnetic field is examined. The resulting nonlinear differential equations governing the problem have been transformed by a similarity transformation into a system of nonlinear ordinary differential equations which are solved numerically by the Element Free Galerkin method. The influence of various parameters on the velocity, microrotation, temperature, and concentration is shown. Some of the results are compared with the Finite Element Method. Finally, validation of the numerical results is demonstrated for local skin friction ? for hydrodynamic micropolar fluid flow on a linearly stretching surface.

  4. a Study on Improvement and its Evaluation for the Surface Layer of Concrete Placed with Permeable Form

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryoichi; Habuchi, Takashi; Amino, Takahiko; Fukute, Tsutomu

    Permeable form can improve the quality of the surface layer of concrete and can enhance the durability of concrete structures. In this study, the improvement and its evaluation for the surface layer of concrete placed with permeable form were investigated. For these purposes, accelerated carbonation test, chloride ion penetration test, air permeability test, rebound hummer test and water permeability test were conducted using the concrete specimen. As a result, it was found that the air permeability correlates the carbonation depth, chloride ion penetration depth, rebound number and water permeable volume of concrete. Moreover, the possibility that the improvement for the surface layer of concrete can be quantitatively evaluated by air permeability test was shown.

  5. Surface tension driven processes densify and retain permeability in magma and lava

    NASA Astrophysics Data System (ADS)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.

    2016-01-01

    We offer new insights into how an explosive eruption can transition into an effusive eruption. Magma containing >0.2 wt% dissolved water has the potential to vesiculate to a porosity in excess of 80 vol.% at atmospheric pressure. Thus all magmas contain volatiles at depth sufficient to form foams and explosively fragment. Yet gas is often lost passively and effusive eruptions ensue. Magmatic foams are permeable and understanding permeability in magma is crucial for models that predict eruptive style. Permeability also governs magma compaction models. Those models generally imply that a reduction in magma porosity and permeability generates an increased propensity for explosivity. Here, our experimental results show that surface tension stresses drive densification without creating an impermeable 'plug', offering an additional explanation of why dense magmas can avoid explosive eruption. In both an open furnace and a closed autoclave, we subject pumice samples with initial porosity of ∼70 vol.% to a range of isostatic pressures (0.1-11 MPa) and temperatures (350-950 °C) relevant to shallow volcanic environments. Our experimental data and models constrain the viscosity, permeability, timescales, and length scales over which densification by pore-scale surface tension stresses competes with density-driven compaction. Where surface tension dominates the dynamics, densification halts at a plateau connected porosity of ∼25 vol.% for our samples. SEM, pycnometry and micro-tomography show that in this process (1) microporous networks are destroyed, (2) the relative pore network surface area decreases, and (3) a remaining crystal framework enhances the longevity of macro-pore connectivity and permeability critical for sustained outgassing. We propose that these observations are a consequence of a surface tension-driven retraction of viscous pore walls at areas of high bubble curvature (micro-vesicular network terminations), and that this process drives bulk

  6. Evaluation of Surface Infiltration Testing Procedures in Permeable Pavement Systems

    EPA Science Inventory

    The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete provides limited guidance on how to select testing locations, so research is needed to evaluate how testing sites should be selected and how results should be interpreted to assess surface ...

  7. The efficacy of surface electromyographic biofeedback assisted stretching for the treatment of chronic low back pain: a case-series.

    PubMed

    Moore, Aimee; Mannion, Jamie; Moran, Robert W

    2015-01-01

    Individuals with low back pain (LBP) commonly present with an impaired flexion-relaxation (FR) response, characterised as continued lumbar muscle activation at maximal voluntary flexion. The aim of the present investigation was to explore the effectiveness of a surface electromyographic assisted stretching (SEMGAS) programme in improving FR. Nine volunteers with chronic LBP and an impaired FR took part in weekly biofeedback SEMGAS sessions and performed a home-based stretching programme, for 5 weeks. FR, Oswestry Disability Index, Numeric Pain Rating Scale and Sit and Reach were recorded pre and post-intervention as well as at a 4-6-week follow-up. Of the nine participants included, three improved FR to statistically significant levels. These three participants also achieved a clinically important change in pain intensity scores. The results suggest that SEMGAS may provide benefits to some individuals with chronic LBP and impaired FR, although larger scale investigation of SEMGAS alone is indicated. PMID:25603739

  8. On the protonation of oxo- and hydroxo- groups of the goethite (α-FeOOH) surface: A FTIR spectroscopic investigation of surface O-H stretching vibrations.

    SciTech Connect

    Boily, Jean F; Felmy, Andrew R

    2008-06-01

    The O–H stretching region of goethite particles evaporated at different levels of acidity was investigated by Attenuated Total Reflectance (ATR)-Fourier Transform InfraRed (FTIR) spectroscopy. Two-dimensional IR Correlation Spectroscopy was used to identify correlations between different sets of discrete surface OH stretches and a Multivariate Curve Resolution analysis was used to resolve the predominant spectral components. Two dominant groups of hydroxyls were identified on the basis of their differences in proton affinity. Group I hydroxyls appear as two 3698/3541 and 3660/3490 cm-1 band pairs. Group II hydroxyls are manifested through the 3648 and 3578 cm-1 bands at greater levels of surface proton loading. There is consequently no correlation between O–H stretching frequencies and proton affinity. Groups I and II were assigned to mostly singly- (–OH) and doubly- (μ-OH) coordinated hydroxyls, respectively. Stretches arising from triply-coordinated (μ3-OH) are proposed to be embedded within the dominant O–H band of bulk goethite. The possibility that these sites contribute to Group I and II hydroxyls should, however, not be entirely dismissed without further investigations. A reexamination of Temperature Programmed Desorption (TPD)-FTIR data of one goethite sample evaporated from alkaline conditions [Boily J.-F., Szanyi J., Felmy A. R. (2006) A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite. Geochim. Cosmochim. Acta70, 3613–3624] provided further constraints to this band assignment by providing clues to the network of surface hydrogen bonds. Important cooperative effects between hydrogen-bonded surface hydroxyls are suggested to play a crucial role on the variations of the position and intensity of discrete O–H stretching bands as a function of protonation level and temperature.

  9. On the protonation of oxo- and hydroxo-groups of the goethite (α-FeOOH) surface: A FTIR spectroscopic investigation of surface O H stretching vibrations

    NASA Astrophysics Data System (ADS)

    Boily, Jean-François; Felmy, Andrew R.

    2008-07-01

    The O-H stretching region of goethite particles evaporated at different levels of acidity was investigated by Attenuated Total Reflectance (ATR)-Fourier Transform InfraRed (FTIR) spectroscopy. Two-dimensional IR Correlation Spectroscopy was used to identify correlations between different sets of discrete surface OH stretches and a Multivariate Curve Resolution analysis was used to resolve the predominant spectral components. Two dominant groups of hydroxyls were identified on the basis of their differences in proton affinity. Group I hydroxyls appear as two 3698/3541 and 3660/3490 cm -1 band pairs. Group II hydroxyls are manifested through the 3648 and 3578 cm -1 bands at greater levels of surface proton loading. There is consequently no correlation between O-H stretching frequencies and proton affinity. Groups I and II were assigned to mostly singly- (-OH) and doubly- (μ-OH) coordinated hydroxyls, respectively. Stretches arising from triply-coordinated (μ 3-OH) are proposed to be embedded within the dominant O-H band of bulk goethite. The possibility that these sites contribute to Group I and II hydroxyls should, however, not be entirely dismissed without further investigations. A reexamination of Temperature Programmed Desorption (TPD)-FTIR data of one goethite sample evaporated from alkaline conditions [Boily J.-F., Szanyi J., Felmy A. R. (2006) A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite. Geochim. Cosmochim. Acta70, 3613-3624] provided further constraints to this band assignment by providing clues to the network of surface hydrogen bonds. Important cooperative effects between hydrogen-bonded surface hydroxyls are suggested to play a crucial role on the variations of the position and intensity of discrete O-H stretching bands as a function of protonation level and temperature.

  10. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  11. Methods to Use Surface Infiltration Tests in Permeable Pavement Systems to Determine Maintenance Frequency

    EPA Science Inventory

    Currently, there is limited guidance on selecting test sites to measure surface infiltration rates in permeable pavement systems to determine maintenance frequency. The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete suggest to either (1) p...

  12. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution.

    PubMed

    Gouze, Philippe; Luquot, Linda

    2011-03-01

    Numerical programs for simulating flow and reactive transport in porous media are essential tools for predicting reservoir properties changes triggered by CO(2) underground injection. At reservoir scale, meshed models in which equations are solved assuming that constant macroscopic properties can be defined in each cells, are widely used. However, the parameterization of the dissolution-precipitation problem and of the feedback effects of these processes on the flow field is still challenging. The problem arises from the mismatch between the scales at which averaged parameters are defined in the meshed model and the scale at which chemical reactions occur and modify the pore network geometry. In this paper we investigate the links between the dissolution mechanisms that control the porosity changes and the related changes of the reactive surface area and of the permeability. First, the reactive surface area is computed from X-ray microtomography data obtained before and after a set of dissolution experiments of pure calcite rock samples using distinctly different brine-CO(2) mixtures characterizing homogeneous to heterogeneous dissolution regimes. The results are used to validate the power law empirical model relating the reactive surface area to porosity proposed by Luquot and Gouze (2009). Second, we investigate the spatial distribution of the effective hydraulic radius and of the tortuosity, two structural parameters that control permeability, in order to explain the different porosity-permeability relationships observed for heterogeneous and homogeneous dissolution regimes. It is shown that the increase of permeability is due to the decrease of the tortuosity for homogeneous dissolution, whereas it is due to the combination of tortuosity decrease and hydraulic radius increase for heterogeneous dissolution. For the intermediate dissolution regime, identified to be the optimal regime for increasing permeability with small changes in porosity, the increase of

  13. Surface porosity and permeability of porous media with a periodic microstructure

    SciTech Connect

    Dmitriev, N.M.

    1995-07-01

    Various ways of determining the surface porosity, the relation between the porosity and the surface porosity and the presentation of the permeability in terms of the characteristics of the microstructure of the porous medium are analyzed with reference to model porous media with a periodic microstructure. It is shown that it is necessary to distinguish between the geometric (scalar) and physical (tensor) surface porosities and that the geometric surface porosity, the physical surface porosity and the porosity are different characteristics of the porous medium.

  14. A Surface-Modified Hydrogen-Permeable Palladium-Silver Plate

    NASA Astrophysics Data System (ADS)

    Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.

    2015-12-01

    A composite target is developed for magnetron sputtering of alloys using silver and palladium with different area ratios. A process is proposed for modification of both surfaces of palladium-silver films formed by PVD and electroplating to improve hydrogen permeability of the amorphous palladium layer electrodeposited from a water solution of its salt at the current density exceeding the diffusion current density for these conditions. The modified palladium-silver membrane becomes hydrogen-permeable at room temperature at the overpressure values up to 0.3 MPa.

  15. Model-based analysis of micropolar nanofluid flow over a stretching surface

    NASA Astrophysics Data System (ADS)

    Hussain, S. T.; Nadeem, Sohail; Ul Haq, Rizwan

    2014-08-01

    This article deals with the study of micropolar nanofluids flow over a stretching sheet. This study uses the compatible models to deal with the effects of two different kinds of nanoparticles (copper (Cu) and silver (Ag)) within the base fluids (water and Kerosene oil). Developed governing boundary layer equations and the boundary conditions are transformed into the system of coupled nonlinear ordinary differential equations. Numerical results are constructed for velocity, temperature, skin friction coefficient and local Nusselt number by considering the thermo-physical properties of both base fluids and particles. Fluid flow behavior is analyzed through stream lines and a conclusion has been developed under the observation of fluid flow behavior.

  16. Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Mahanthesh, B.; Gorla, Rama Subba Reddy; Manjunatha, P. T.

    2016-04-01

    Theoretical study on hydromagnetic heat transfer in dusty viscous fluid on continuously stretching non-isothermal surface, with linear variation of surface temperature or heat flux has been carried out. Effects of Hall current, Darcy porous medium, thermal radiation and non-uniform heat source/sink are taken into the account. The sheet is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a linear. Two cases of the temperature boundary conditions were considered at the surface namely, PST and PHF cases. The governing partial differential equations are transferred to a system of non-linear ordinary differential equations by employing suitable similarity transformations and then they are solved numerically. Effects of various pertinent parameters on flow and heat transfer for both phases is analyzed and discussed through graphs in detail. The values of skin friction and Nusselt number for different governing parameters are also tabulated. Comparison of the present results with known numerical results is presented and an excellent agreement is found.

  17. Influence of thickness and permeability of endothelial surface layer on transmission of shear stress in capillaries

    NASA Astrophysics Data System (ADS)

    Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert

    2015-07-01

    The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.

  18. Effect of perfusate hematocrit on urea permeability-surface area in isolated dog lung

    SciTech Connect

    Parker, R.E.; Roselli, R.J.; Haselton, F.R.; Harris, T.R.

    1986-10-01

    Seven dog lower left lung lobes were statically inflated and perfused at a constant rate for each lobe with a perfusate in which the hematocrit was altered over a wide range. The permeability-surface area of urea was calculated from multiple indicator dilution curves using two separate injectates for each hematocrit level. One injectate contained only /sup 125/I-albumin as the vascular reference tracer and the other contained both /sup 51/Cr-erythrocytes and /sup 125/I-albumin as the vascular reference tracers; both contained (/sup 14/C)urea as the permeating tracer. The results strongly indicate that the phenomenon of erythrocyte trapping of urea does not affect the calculation of urea permeability-surface area product provided the appropriate albumin-erythrocyte composite reference tracer is utilized in its calculation.

  19. Muscle afferent potential (`A-wave') in the surface electromyogram of a phasic stretch reflex in normal humans

    PubMed Central

    Clarke, Alex. M.; Michie, Patricia T.; Glue, Leonard C. T.

    1972-01-01

    The experiments reported in this paper tested the hypothesis that the afferent potential elicited by a tendon tap in an isometrically recorded phasic stretch reflex can be detected in the surface EMG of normal humans when appropriate techniques are used. These techniques involved (1) training the subjects to relax mentally and physically so that the EMG was silent before and immediately after the diphasic MAP which reflects a highly synchronous discharge of afferent impulses from low threshold muscle stretch receptors after a tendon tap, and (2) using a data retrieval computer to summate stimulus-locked potentials in the EMG over a series of 16 samples using taps of uniform peak force and duration on the Achilles tendon to elicit the tendon jerk in the calf muscles. A discrete, diphasic potential (`A-wave') was recorded from EMG electrodes placed on the surface of the skin over the medial gastrocnemius muscle. The `A-wave' afferent potential had the opposite polarity to the corresponding efferent MAP. Under control conditions of relaxation the `A-wave' had a latency after the onset of the tap of 2 msec, the peak to peak amplitude was of the order of 5 μV and the duration was in the range of 6 to 10 msec. Further experiments were conducted to show that the `A-wave' (1) was not an artefact of the instrumentation used, (2) had a threshold at low intensities of stimulation, and (3) could be reliably augmented by using a Jendrassik manoeuvre compared with the potential observed during control (relaxation) conditions. The results support the conclusion that the `A-wave' emanates from the pool of muscle spindles which discharges impulses along group Ia nerve fibres in response to the phasic stretch stimulus because the primary ending of the spindles is known to initiate the stretch reflex and the spindles can be sensitized by fusimotor impulses so that their threshold is lowered as a result of a Jendrassik manoeuvre. The finding has important implications for the

  20. High Guanidinium Permeability Reveals Dehydration-Dependent Ion Selectivity in the Plasmodial Surface Anion Channel

    PubMed Central

    Bokhari, Abdullah A. B.; Mita-Mendoza, Neida K.; Fuller, Alexandra; Pillai, Ajay D.; Desai, Sanjay A.

    2014-01-01

    Malaria parasites grow within vertebrate erythrocytes and increase host cell permeability to access nutrients from plasma. This increase is mediated by the plasmodial surface anion channel (PSAC), an unusual ion channel linked to the conserved clag gene family. Although PSAC recognizes and transports a broad range of uncharged and charged solutes, it must efficiently exclude the small Na+ ion to maintain infected cell osmotic stability. Here, we examine possible mechanisms for this remarkable solute selectivity. We identify guanidinium as an organic cation with high permeability into human erythrocytes infected with Plasmodium falciparum, but negligible uptake by uninfected cells. Transport characteristics and pharmacology indicate that this uptake is specifically mediated by PSAC. The rank order of organic and inorganic cation permeabilities suggests cation dehydration as the rate-limiting step in transport through the channel. The high guanidinium permeability of infected cells also allows rapid and stringent synchronization of parasite cultures, as required for molecular and cellular studies of this pathogen. These studies provide important insights into how nutrients and ions are transported via PSAC, an established target for antimalarial drug development. PMID:25243175

  1. Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mostafa A. A.

    2007-03-01

    In this paper, the effects of variable thermal conductivity and radiation on the flow and heat transfer of an electrically conducting micropolar fluid over a continuously stretching surface with varying temperature in the presence of a magnetic field are considered. The surface temperature is assumed to vary as a power-law temperature. The governing conservation equations of mass, momentum, angular momentum and energy are converted into a system of non-linear ordinary differential equations by means of similarity transformation. The resulting system of coupled non-linear ordinary differential equations is solved numerically. The numerical results show that the thermal boundary thickness increases as the thermal conductivity parameter S increases, while it decreases as the radiation parameter F increases. Also, it was found that the Nusselt number increases as F increases and decreases as S increases.

  2. Rho kinase signaling pathways during stretch in primary alveolar epithelia.

    PubMed

    DiPaolo, Brian C; Margulies, Susan S

    2012-05-15

    Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type. PMID:22287611

  3. Rho kinase signaling pathways during stretch in primary alveolar epithelia

    PubMed Central

    DiPaolo, Brian C.

    2012-01-01

    Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type. PMID:22287611

  4. Surface Infiltration Rates of Permeable Surfaces: Six Month Update (November 2009 through April 2010)

    EPA Science Inventory

    At the end of October 2009, EPA opened a parking lot on the Edison Environmental Center that included three parking rows of permeable pavement. The construction was a cooperative effort among EPA’s Office of Administration and Resources Management, National Risk Management Resea...

  5. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions.

    PubMed

    Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed

    2016-01-01

    This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457

  6. Three-Dimensional Flow of an Oldroyd-B Nanofluid towards Stretching Surface with Heat Generation/Absorption

    PubMed Central

    Azeem Khan, Waqar; Khan, Masood; Malik, Rabia

    2014-01-01

    This article addresses the steady three-dimensional flow of an Oldroyd-B nanofluid over a bidirectional stretching surface with heat generation/absorption effects. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are then solved analytically by using the homotpy analysis method (HAM). Graphically results are presented and discussed for various parameters, namely, Deborah numbers and , heat generation/absorption parameter Prandtl parameter , Brownian motion parameters, thermophoresis parameter and Lewis number . We have seen that the increasing values of the Brownian motion parameter and thermophoresis parameter leads to an increase in the temperature field and thermal boundary layer thickness while the opposite behavior is observed for concentration field and concentration boundary layer thickness. To see the validity of the present work, the numerical results are compared with the analytical solutions obtained by Homotopy analysis method and noted an excellent agreement for the limiting cases. PMID:25170945

  7. Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface.

    PubMed

    Ahmad Khan, Junaid; Mustafa, M; Hayat, T; Alsaedi, A

    2015-01-01

    This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. Similarity approach is utilized to normalize the governing boundary layer equations. Local similarity solutions are achieved by shooting approach together with fourth-fifth-order Runge-Kutta integration technique and Newton's method. Our computations reveal that fluid temperature has inverse relationship with the thermal relaxation time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A comparison of Fourier's law and the Cattaneo-Christov's law is also presented. Present attempt even in the case of Newtonian fluid is not yet available in the literature. PMID:26325426

  8. Soret and Dufour Effects in the Flow of Williamson Fluid over an Unsteady Stretching Surface with Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Saeed, Yusra; Asad, Sadia; Alsaedi, Ahmed

    2015-04-01

    This paper looks at the simultaneous effects of heat and mass transfer in the flow of Williamson fluid over an unsteady stretching surface. The effects of thermal radiation and viscous dissipation are considered in an energy equation. Besides, the energy and concentration equations are coupled with the combined effects of Soret and Dufour. The convective conditions for both temperature and mass concentration are employed. The transformation procedure reduces the time-dependent boundary layer equations of momentum, energy, and concentration to the non-linear ordinary differential equations. Through graphs and numerical values, the velocity, temperature, and concentration fields are discussed for different physical parameters. It is found that the thermal and concentration Biot numbers have an increasing impact on both temperature and concentration fields, respectively.

  9. Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface

    PubMed Central

    Ahmad Khan, Junaid; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2015-01-01

    This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. Similarity approach is utilized to normalize the governing boundary layer equations. Local similarity solutions are achieved by shooting approach together with fourth-fifth-order Runge-Kutta integration technique and Newton’s method. Our computations reveal that fluid temperature has inverse relationship with the thermal relaxation time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A comparison of Fourier’s law and the Cattaneo-Christov’s law is also presented. Present attempt even in the case of Newtonian fluid is not yet available in the literature. PMID:26325426

  10. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690

  11. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation

    PubMed Central

    Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4–water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690

  12. Correlations between effective permeability and marrow contact channels surface of vertebral endplates.

    PubMed

    Laffosse, Jean-Michel; Accadbled, Franck; Molinier, François; Bonnevialle, Nicolas; de Gauzy, Jérôme Sales; Swider, Pascal

    2010-09-01

    Homeostasis of the intervertebral disc relies on nutrient supply and waste clearance through the dense capillary network that is in contact with the cartilage endplate (CEP). We developed a micro-computerized tomography (micro-CT) method to quantify the marrow contact channel surface (MCCS) with the CEP and to validate the hypothesis according to which MCCS was correlated to the effective permeability of the vertebral endplate (VEP) and influenced by the mechanical stimuli. The influence of compression loading on local vascularization was investigated. Six 4-week-old skeletally immature pigs were instrumented with left pedicle screws and rod at both T5-T6 and L1-L2 levels to create asymmetrical spine tethers. After 3 months of growth, three cylindrical specimens of the VEP (one central and two lateral right and left) were obtained from both the instrumented and the control levels. We used a previously validated method for measuring permeability. Micro-CT analysis (resolution 12 microm) yielded a gray-scale 2D-image of the discal end of each specimen converted into a binary 2D-image to derive the MCCS. Correlations between MCCS and effective permeability were assessed. Effective permeability and MCCS were significantly decreased compared to the control group especially on the tethered side (-41.5%, p = 0.004 and -52.5%, p = 0.0009, respectively). Correlations were significant and showed maximal value (r(2) = 0.430, p < 0.0001) on the tethered side involving maximal compressive loadings. Mechanical stimuli, due to unbalanced growth, altered the vascularization and the convective properties of the CEP. The cascade of mechanobiological events should offer perspectives for research on disc degeneration and attempted treatment. PMID:20225324

  13. Unveiling the Surface Structure of Amorphous Solid Water via Selective Infrared Irradiation of OH Stretching Modes.

    PubMed

    Noble, J A; Martin, C; Fraser, H J; Roubin, P; Coussan, S

    2014-03-01

    In the quest to understand the formation of the building blocks of life, amorphous solid water (ASW) is one of the most widely studied molecular systems. Indeed, ASW is ubiquitous in the cold interstellar medium (ISM), where ASW-coated dust grains provide a catalytic surface for solid phase chemistry, and is believed to be present in the Earth's atmosphere at high altitudes. It has been shown that the ice surface adsorbs small molecules such as CO, N2, or CH4, most likely at OH groups dangling from the surface. Our study presents completely new insights concerning the behavior of ASW upon selective infrared (IR) irradiation of its dangling modes. When irradiated, these surface H2O molecules reorganize, predominantly forming a stabilized monomer-like water mode on the ice surface. We show that we systematically provoke "hole-burning" effects (or net loss of oscillators) at the wavelength of irradiation and reproduce the same absorbed water monomer on the ASW surface. Our study suggests that all dangling modes share one common channel of vibrational relaxation; the ice remains amorphous but with a reduced range of binding sites, and thus an altered catalytic capacity. PMID:26274073

  14. Coupled-surface investigation of the photodissociation of NH{sub 3}(A-tilde): Effect of exciting the symmetric and antisymmetric stretching modes

    SciTech Connect

    Bonhommeau, David; Valero, Rosendo; Truhlar, Donald G.; Jasper, Ahren W.

    2009-06-21

    Using previously developed potential energy surfaces and their couplings, non-Born-Oppenheimer trajectory methods are used to study the state-selected photodissociation of ammonia, prepared with up to six quanta of vibrational excitation in the symmetric ({nu}{sub 1}) or antisymmetric ({nu}{sub 3}) stretching modes of NH{sub 3}(A-tilde). The predicted dynamics is mainly electronically nonadiabatic (that is, it produces ground electronic state amino radicals). The small probability of forming the excited-state amino radical is found, for low excitations, to increase with total energy and to be independent of whether the symmetric or antisymmetric stretch is excited; however some selectivity with respect to exciting the antisymmetric stretch is found when more than one quantum of excitation is added to the stretches, and more than 50% of the amino radical are found to be electronically excited when six quanta are placed in the antisymmetric stretch. These results are in contrast to the mechanism inferred in recent experimental work, where excitation of the antisymmetric stretch by a single quantum was found to produce significant amounts of excited-state products via adiabatic dissociation at total energies of about 7.0 eV. Both theory and experiment predict a broad range of translational energies for the departing H atoms when the symmetric stretch is excited, but the present simulations do not reproduce the experimental translational energy profiles when the antisymmetric stretch is excited. The sensitivity of the predicted results to several aspects of the calculation is considered in detail, and the analysis leads to insight into the nature of the dynamics that is responsible for mode selectivity.

  15. Lactobacillus fermentum AGR1487 cell surface structures and supernatant increase paracellular permeability through different pathways.

    PubMed

    Sengupta, Ranjita; Anderson, Rachel C; Altermann, Eric; McNabb, Warren C; Ganesh, Siva; Armstrong, Kelly M; Moughan, Paul J; Roy, Nicole C

    2015-08-01

    Lactobacillus fermentum is commonly found in food products, and some strains are known to have beneficial effects on human health. However, our previous research indicated that L. fermentum AGR1487 decreases in vitro intestinal barrier integrity. The hypothesis was that cell surface structures of AGR1487 are responsible for the observed in vitro effect. AGR1487 was compared to another human oral L. fermentum strain, AGR1485, which does not cause the same effect. The examination of phenotypic traits associated with the composition of cell surface structures showed that compared to AGR1485, AGR1487 had a smaller genome, utilized different sugars, and had greater tolerance to acid and bile. The effect of the two strains on intestinal barrier integrity was determined using two independent measures of paracellular permeability of the intestinal epithelial Caco-2 cell line. The transepithelial electrical resistance (TEER) assay specifically measures ion permeability, whereas the mannitol flux assay measures the passage of uncharged molecules. Both live and UV-inactivated AGR1487 decreased TEER across Caco-2 cells implicating the cell surfaces structures in the effect. However, only live AGR1487, and not UV-inactivated AGR1487, increased the rate of passage of mannitol, implying that a secreted component(s) is responsible for this effect. These differences in barrier integrity results are likely due to the TEER and mannitol flux assays measuring different characteristics of the epithelial barrier, and therefore imply that there are multiple mechanisms involved in the effect of AGR1487 on barrier integrity. PMID:25943073

  16. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    Geological underground utilisation inducing pore pressure changes in underground reservoirs is generally accompanied by hydro-mechanical processes. Thereby, pore pressure increase due to fluid injection may trigger ground surface uplift, while a decrease in pore pressure due to reservoir fluid production is known to induce ground subsidence. Different coupled hydro-mechanical simulation studies (e.g. Klimkowski et al., 2015, Kempka et al., 2014, Tillner et al., 2014) indicate that ground surface displacements can achieve a magnitude of several decimetres, if storage or production operations are being carried out at an industrial scale. Consequently, detailed knowledge on the parameters impacting ground surface uplift or subsidence is of major interest for the success of any geological underground utilisation in order to avoid surface infrastructure damage by spatially varying deformations. Furthermore, ground subsidence may result increased groundwater levels as experienced in different underground coal mining districts. In the present study, we carried out coupled hydro-mechanical simulations to account for the impact of caprock permeability on ground surface displacements resulting from geological underground utilisation. Thereto, different simulation scenarios were investigated using a synthetic 3D coupled numerical simulation model with varying caprock permeability and vertical location of the open well section in the target reservoir. Material property ranges were derived from available literature, while a normal faulting stress state was applied in all simulation scenarios. Our simulation results demonstrate that caprock permeability has a significant impact on the pressure development, and thus on vertical displacements at the ground surface as well as at the reservoir top. An increase in caprock permeability from 1 x 10-20 m2 by two orders of magnitude doubles vertical displacements at the ground surface, whereas vertical displacements at the reservoir top

  17. Continuum percolation on nonorientable surfaces: the problem of permeable disks on a Klein bottle

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Grekhov, A. M.; Tronin, V. N.; Tronin, I. V.

    2015-11-01

    The percolation threshold and wrapping probability (R ∞) for the two-dimensional problem of continuum percolation on the surface of a Klein bottle have been calculated by the Monte Carlo method with the Newman-Ziff algorithm for completely permeable disks. It has been shown that the percolation threshold of disks on the Klein bottle coincides with the percolation threshold of disks on the surface of a torus, indicating that this threshold is topologically invariant. The scaling exponents determining corrections to the wrapping probability and critical concentration owing to the finite-size effects are also topologically invariant. At the same time, the quantities R ∞ are different for percolation on the torus and Klein bottle and are apparently determined by the topology of the surface. Furthermore, the difference between the R ∞ values for the torus and Klein bottle means that at least one of the percolation clusters is degenerate.

  18. Drop motion induced by repeated stretching and relaxation on a gradient surface with hysteresis.

    PubMed

    Longley, Jonathan E; Dooley, Erin; Givler, Douglas M; Napier, William J; Chaudhury, Manoj K; Daniel, Susan

    2012-10-01

    The motion of a droplet can be induced by periodically compressing and extending it between two similar gradient surfaces possessing significant wetting hysteresis. The shape fluctuation of the drop during repeated compression-extension cycles leads to its ratchetlike motion toward the region of higher wettability. A simple model requiring the volume preservation of the drop during the compression-extension cycles is sufficient to account for the effect and predict drop velocity across the surface when drop size and cycle frequency are specified. In connection with this study, we also report a variation of the standard vapor phase adsorption method of preparing a chemically graded surface that allows for good control over the steepness and the length of the active zone. The method can be used to produce a linear or a radial gradient, both of which are employed here to drive droplet motion along these patterns. This type of discrete droplet motion can be used to move drops on surfaces to transport materials within miniaturized digital fluidic devices. PMID:22950893

  19. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid

    PubMed Central

    2011-01-01

    The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu. PMID:21711841

  20. Stretch Marks

    MedlinePlus

    ... changes that can go with bodybuilding. People who use steroid-containing skin creams or ointments (such as hydrocortisone) for more than a few weeks may also get stretch marks. So might people who have to ... surgeon. These doctors may use one of many types of treatments — from actual ...

  1. The effect of surface active agents on the relative permeability of brine and gas in porous media

    SciTech Connect

    Conway, M.W.; Schraufnagel, R.A.; Smith, K.; Thomas, T.

    1995-11-01

    All oil and gas producing wells produce hydrocarbon at some residual water saturation. Therefore, the relative permeability to the hydrocarbon at the effective water saturation dictates performance and not the absolute permeability of the formation. Surface active agents are included in most aqueous treating fluids to improve the compatibility of aqueous fluids with the hydrocarbon containing reservoir. A review of the literature indicates very little core flow data to describe the effects to be expected. Traditionally, it is believed that the reduced surface tension will reduce capillary pressure and enhance the recovery of water after the treatment. The reduced water saturation is then believed to result in higher effective gas saturation and higher relative permeability to gas after the treatment. The principal emphasis of this study has been the development of non-damaging stimulation fluids to improve the production of methane from coalbed methane and other low permeability gas reservoirs.

  2. Atomic diffusion on vicinal surfaces: step roughening impact on step permeability

    NASA Astrophysics Data System (ADS)

    Ranguelov, B.; Michailov, M.

    2014-12-01

    The problem of mass transport in material science for systems with reduced dimensionality holds special academic and technological attention since the fine diffusion control of adatoms could initiate exotic nanoscale patterning at epitaxial interfaces. The present study brings out important details of the atomic diffusion mechanisms on vicinal surfaces, accounting for the subtle competition between an external field imposed on the migrating adatoms and the roughening of the steps bordering the atomic terraces. The computational model reveals a temperature gap for breakdown of step permeability in the vicinity of the step roughening transition and sheds light on recently observed experimental results for atomic step dynamics on Si surfaces. The present study also demonstrates the extended capability of atomistic models in computer simulations to unravel simultaneous effects, to distinguish between them, and finally to assess their specific contribution to experimentally observed complex physical phenomena.

  3. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm. PMID:26429141

  4. Boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid

    NASA Astrophysics Data System (ADS)

    Othman, Noor Adila; Yacob, Nor Azizah; Bachok, Norfifah; Ramli, Nazirah; Ishak, Anuar

    2015-10-01

    A steady mixed convection boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid is investigated. The velocity of the external flow is assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically using the Keller box method with the help of MATLAB software. The effects of physical parameters such as the suction/injection parameter, Brownian motion parameter, thermophoresis parameter and Lewis number on the heat and mass transfer rate at the surface as well as the temperature and concentration profiles are analyzed and discussed. Both assisting and opposing flows are considered. It is found that, increasing the thermophoresis parameter, Brownian motion parameter and Lewis number are to decrease the heat transfer rate at the surface, but on the other hand increase the mass transfer rate at the surface for both assisting and opposing flows. In addition, increasing suction parameter tends to increase the heat transfer rate at the surface. However, the opposite behavior occurs for the effect of mass transfer rate at the surface.

  5. Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Rashid, Mehmood; Noreen Sher, Akbar

    2015-01-01

    The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip.Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized. It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.

  6. Acoustic Effects on Colloid/Surface Interactions and Porous-Media Permeability

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; Abdel-Fattah, A. I.; Duran, J.

    2004-12-01

    Acoustic and seismic waves have been observed to influence porous fluid-flow behavior in the Earth and geomaterials over a wide range of scale lengths (microns to kilometers). Examples include oil reservoir production increases induced by seismic (1 to 500 Hz) waves, and mobilizing colloidal clays in sandstone cores by ultrasonic (10 to 50 kHz) energy. The effects of stress-wave propagation on both colloid electrokinetics and fluid-flow dynamics in porous media are not understood. In particular, the coupling of acoustic and seismic waves with colloid behavior is an important mechanism to understand because the distribution of colloids in a porous medium will directly affect its permeability. Recent experimental observations indicate that very-high-frequency (0.5 to 5 MHz) acoustic energy can induce attachment and detachment of micron-size colloids at solid surfaces. Using a microscopic, video image-processing system focused on a glass flow-visualization cell, the behavior of 0.5- to 3-micron diameter polystyrene spheres suspended in 0 to 0.1 M aqueous solution was observed. Initial image-processing-based analysis of acoustically-induced colloid/surface detachment events indicates that very-high-frequency acoustics not only increases particle detachment, but may also permanently "deactivate" colloid attachment (or "active") sites on the glass cell surface. The ability of acoustics to attach or detach colloids also appears to depend on the colloid size and ionic strength of the suspending solution. Other experiments show that seismic-band (1 to 1000 Hz) mechanical stress oscillations can change the permeability of centimeter-size sandstone cores due to mobilization of micron-size colloids contained in the pore space. A unique core-holder apparatus that mechanically strains 2.54-cm-diameter porous rock samples during constant-rate fluid flow was used for these experiments. During single-phase brine flow through sandstone, axial stress oscillations at 50 Hz mobilized

  7. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ul Haq, Rizwan; Nadeem, Sohail; Khan, Z. H.; Noor, N. F. M.

    2015-01-01

    In the present study, thermal conductivity and viscosity of both single-wall and multiple-wall Carbon Nanotubes (CNT) within the base fluids (water, engine oil and ethylene glycol) of similar volume have been investigated when the fluid is flowing over a stretching surface. The magnetohydrodynamic (MHD) and viscous dissipation effects are also incorporated in the present phenomena. Experimental data consists of thermo-physical properties of each base fluid and CNT have been considered. The mathematical model has been constructed and by employing similarity transformation, system of partial differential equations is rehabilitated into the system of non-linear ordinary differential equations. The results of local skin friction and local Nusselt number are plotted for each base fluid by considering both Single Wall Carbon Nanotube (SWCNT) and Multiple-Wall Carbon Nanotubes (MWCNT). The behavior of fluid flow for water based-SWCNT and MWCNT are analyzed through streamlines. Concluding remarks have been developed on behalf of the whole analysis and it is found that engine oil-based CNT have higher skin friction and heat transfer rate as compared to water and ethylene glycol-based CNT.

  8. Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption.

    PubMed

    Khan, Waqar Azeem; Khan, Masood; Malik, Rabia

    2014-01-01

    This article addresses the steady three-dimensional flow of an Oldroyd-B nanofluid over a bidirectional stretching surface with heat generation/absorption effects. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are then solved analytically by using the homotpy analysis method (HAM). Graphically results are presented and discussed for various parameters, namely, Deborah numbers β1 and β2, heat generation/absorption parameter λ, Prandtl parameter Pr, Brownian motion parameters Nb, thermophoresis parameter Nt and Lewis number Le. We have seen that the increasing values of the Brownian motion parameter Nt and thermophoresis parameter Nt leads to an increase in the temperature field and thermal boundary layer thickness while the opposite behavior is observed for concentration field and concentration boundary layer thickness. To see the validity of the present work, the numerical results are compared with the analytical solutions obtained by Homotopy analysis method and noted an excellent agreement for the limiting cases. PMID:25170945

  9. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    PubMed Central

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  10. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus.

    PubMed

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  11. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, R.R.; Schroeder, J.L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

  12. Method for the preparation of high surface area high permeability carbons

    DOEpatents

    Lagasse, Robert R.; Schroeder, John L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

  13. Consequences of Anisotropic Permeability and Surface Tension for Magmatic Segregation in Deforming Mantle Rock

    NASA Astrophysics Data System (ADS)

    Taylor-West, J.; Katz, R. F.

    2014-12-01

    The mechanics of partially molten regions of the mantle are not well understood--in part due to the inaccessibility of these regions to observation. However it is widely agreed that experiments performed on synthetic mantle rocks [e.g KZK10] act as a reasonable test of theoretical models of magma dynamics. One robust feature of experiments on partially molten mantle rocks deformed under strain is the emergence of high-porosity bands at an angle of between 15° and 20° to the shear plane. A number of theoretical approaches have been made to reproduce the formation of these low angle bands in models. The most recent approaches, for example by Takei and Katz [TK13], have involved the inclusion of anisotropic viscosity in diffusion creep arising from the grain-scale redistribution of melt as formulated in a theoretical model by Takei and Holtzman [TH09]. It is reasonable to assume that this melt-preferred orientation (MPO) that leads to anisotropy in viscosity may also lead to anisotropy in permeability. However, the effect of anisotropic permeability remains unexplored. We investigate its impact on the dynamics of partially molten rock, and specifically on its role in low-angle band formation in deformation under simple shear. We work with the continuum model of two-phase-flow as formulated by McKenzie [M84] with the addition of anisotropic permeability. There are some apparent inconsistencies in this model. Firstly, the model predicts continued segregation of melt into bands of 100% porosity, while experiments report maximum porosities in the region of 30%. Secondly, linear stability analyses find maximal growth-rates for porosity perturbations that vary on arbitrarily small length-scales. We study how the inclusion of surface forces into the model could regulate these effects. REFERENCES: KZK10 = King, Zimmerman, & Kohlstedt (2010), J Pet, 10.1093/petrology/egp062. TK13 = Takei & Katz (2013), JFM, 10.1017/jfm.2013.482. TH09 = Takei & Holtzman (2009a), JGR, 10

  14. Bactericidal/permeability-increasing protein promotes complement activation for neutrophil-mediated phagocytosis on bacterial surface

    PubMed Central

    Nishimura, H; Gogami, A; Miyagawa, Y; Nanbo, A; Murakami, Y; Baba, T; Nagasawa, S

    2001-01-01

    The neutrophil bactericidal/permeability-increasing protein (BPI) has both bactericidal and lipopolysaccharide-neutralizing activities. The present study suggests that BPI also plays an important role in phagocytosis of Escherichia coli by neutrophils through promotion of complement activation on the bacterial surface. Flow cytometric analysis indicated that fluorescein-labelled E. coli treated with BPI were phagocytosed in the presence of serum at two- to five-fold higher levels than phagocytosis of the bacteria without the treatment. In contrast, phagocytosis of the fluoresceined bacteria with or without treatment by BPI did not occur at all in the absence of serum. The phagocytosis stimulated by BPI and serum was dose-dependent. The effect of BPI on phagocytosis in the presence of serum was not observed on Gram-positive bacteria (Staphylococcus aureus). Interestingly, the complement C3b/iC3b fragments were deposited onto the bacterial surface also as a function of the BPI concentration under conditions similar to those for phagocytosis. Furthermore, the BPI-promoted phagocytosis was blocked completely by anti-C3 F(ab′)2 and partially by anti-complement receptor (CR) type 1 and/or anti-CR type 3. These findings suggest that BPI accelerates complement activation to opsonize bacteria with complement-derived fragments, leading to stimulation of phagocytosis by neutrophils via CR(s). PMID:11529944

  15. Surface altered zeolites as permeable barriers for in situ treatment of contaminated groundwater

    SciTech Connect

    1996-11-01

    The authors characterized surfactant-modified zeolite (SMZ) for its ability to sorb organic and inorganic contaminants from water. The ultimate objective is to use SMZ as a permeable barrier to prevent migration of contaminants in groundwater. This report summarizes results under Phase 1 of a three-phase project leading to a full-scale field demonstration of SMZ permeable- barrier technology.

  16. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  17. Changes in the permeability and morphology of dentine surfaces after brushing with a Thai herbal toothpaste: A preliminary study

    PubMed Central

    Vajrabhaya, La-ongthong; Korsuwannawong, Suwanna; Harnirattisai, Choltacha; Teinchai, Chayada

    2016-01-01

    Objectives: The aim of this study was to evaluate dentine permeability after brushing with Twin Lotus®, Thai herbal toothpaste by comparing with Sensodyne Rapid Relief®, a commercial desensitizing toothpaste, and also after artificial saliva (AS) immersion or citric acid challenge. Materials and Methods: Dentine discs from human mandibular third molars were divided into three groups (n = 20) and brushed with either experimental toothpaste or water (control) for 2 min with an automated toothbrush. Then, 10 discs were immersed in AS, and the other 10 discs were immersed in 6% citric acid to simulate the conditions of the oral environment. The dentine permeability of each specimen was measured before brushing and after each treatment using a fluid filtration system. Morphological changes in the dentine were observed using scanning electron microscopy (SEM). Results: Both toothpastes significantly reduced dentine permeability, and a crystalline precipitate was observed on the dentine surface under SEM observation. No significant difference was found between the two toothpaste groups with regard to dentine permeability after brushing and AS or acid immersion. Conclusions: The dentine permeability reduction caused by the two toothpastes did not differ after brushing or after AS or citric acid immersion. PMID:27095904

  18. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.

    PubMed Central

    Xiang, T X; Anderson, B D

    1997-01-01

    Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine

  19. Optimized water vapor permeability of sodium alginate films using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Xu, Jiachao; Gao, Xin; Fu, Xiaoting

    2013-11-01

    The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaCl2 solution immersion time. The coefficient of determination ( R 2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g·mm/(m2·h·kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.

  20. Reaction-Induced Permeability Change in Thermally Cracked and Deformed Aplite: Importance of Reactive Surface Area and Mineralogy

    NASA Astrophysics Data System (ADS)

    Tenthorey, E.

    2004-12-01

    This experimental study investigates hydrothermal reactions in a granitic system and attempts to quantify how such reactions affect hydrologic properties, namely specimen permeability. Of specific interest is the evolution of permeability under variable differential stress conditions, from the compactional and dilatancy regimes to that of shear failure. Under these different stress conditions, reactive surface area will vary, possibly affecting the rate and absolute magnitude of permeability change. Experiments were conducted using a Paterson gas apparatus capable of independently controlling confining pressure (Pc), pore pressure (Pp) and axial load. Most experiments were conducted at Pc=100 MPa and Pp=50 MPa with temperatures of 200-600° C. Under isostatic conditions, permeability was observed to increase with temperature due to increased thermal cracking at grain boundaries. As differential stress was increased in each experiment, permeability was first observed to decrease, presumably due to crack closure. Upon continued loading to higher stresses, dilatancy resulted in significant permeability enhancement. In later experiments, permeability was allowed to evolve at each stress level and was observed to decay by an exponential function of the form k α 1-μ (1-exp(-rt))2, suggesting a precipitation type mechanism for the observed permeability change. The rate constant AƒAøAøâ_sA¬A.â_orAƒAøAøâ_sA¬? progressively increased up to 500° C, but was much smaller in the 600° C experiment, indicating a possible change in the precipitating mineral assemblage as suggested by experimental studies in the KNASH system. Overall, reaction rates were enhanced during dilatancy and after rupture, an observation suggesting a negative feedback effect, in which enhanced mineral precipitation moderates permeability generation during episodes of deformation. The nature of fluid flow in such systems is crucial to the formation of porphyry metal deposits and also plays a

  1. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration.

    PubMed

    Beyer, Marco; Lau, Steffen; Knoche, Moritz

    2005-01-01

    Water uptake and transpiration were studied through the surface of intact sweet cherry (Prunus avium L.) fruit, exocarp segments (ES) and cuticular membranes (CM) excised from the cheek of sweet cherry fruit and astomatous CM isolated from Schefflera arboricola (Hayata) Hayata, Citrus aurantium L., and Stephanotis floribunda Brongn. leaves or from Lycopersicon esculentum Mill. and Capsicum annuum L. var. annuum Fasciculatum Group fruit. ES and CM were mounted in diffusion cells. Water (deionized) uptake into intact sweet cherry fruit, through ES or CM interfacing water as a donor and a polyethyleneglycol (PEG 6000, osmotic pressure 2.83 MPa)-containing receiver was determined gravimetrically. Transpiration was quantified by monitoring weight loss of a PEG 6000-containing donor (2.83 MPa) against dry silica as a receiver. The permeability coefficients for osmotic water uptake and transpiration were calculated from the amount of water taken up or transpired per unit surface area and time, and the driving force for transport. Permeability during osmotic water uptake was markedly higher than during transpiration in intact sweet cherry fruit (40.2-fold), excised ES of sweet cherry fruit (12.5- to 53.7-fold) and isolated astomatous fruit and leaf CM of a range of species (on average 23.0-fold). Partitioning water transport into stomatal and cuticular components revealed that permeability of the sweet cherry fruit cuticle for water uptake was 11.9-fold higher and that of stomata 56.8-fold higher than the respective permeability during transpiration. Increasing water vapor activity in the receiver from 0 to 1 increased permeability during transpiration across isolated sweet cherry fruit CM about 2.1-fold. Permeability for vapor uptake from saturated water vapor into a PEG 6000 receiver solution was markedly lower than from liquid water, but of similar magnitude to the permeability during self-diffusion of (3)H(2)O in the absence of osmotica. The energy of activation for

  2. Characterization of Adsorbed Molecular Water on the Surface of a Stretched Polytetrafluoroethylene Tape Analyzed by (1)H NMR.

    PubMed

    Wakai, Chihiro; Shimoaka, Takafumi; Hasegawa, Takeshi

    2016-03-10

    A single molecule often exhibits a largely different material character from a bulk matter. Although a perfluoroalkyl (Rf) compound is a representative one, many interests have mostly been devoted to the bulk character only thus far, leaving the single molecular character unclear. Recently, a new theoretical framework, stratified dipole-arrays (SDA) theory, has appeared for comprehensive understanding of Rf compounds in terms of both single and bulk systems. On this theory, a mechanically stretched polytetrafluoroethylene (PTFE) is expected to exhibit a single-molecular character having dipole-driven properties, which should attract molecular water. In the present study, a stretched PTFE tape is revealed to attract molecular water (not water droplet) in fact, and the adsorbed water molecules are highly restricted in motion by the dipole-dipole interaction studied by using (1)H NMR, which agrees with the prediction by the SDA theory. PMID:26848611

  3. The Influence of Selected Liquid and Soil Properties on the Propagation of Spills over Flat Permeable Surfaces

    SciTech Connect

    Keller, Jason M.; Simmons, Carver S.

    2005-02-15

    In an effort to determine spill characteristics, information about a spill's spatial distribution with time is being studied. For permeable surfaces, spill phenomenology is controlled by liquid and soil properties, the most relevant of which are presented in this report. The pertinent liquid and soil properties were tabulated for ten liquids and four soils. The liquids represented an array of organic compounds, some of which are or are soon to be documented in the liquid spectra library by the Environmental Molecular Science Laboratory at Pacific Northwest National Laboratory. The soils were chosen based on ongoing surface spectra work and to represent a range of relevant soil properties. The effect of the liquid and soil properties on spill phenomenology were explored using a spill model that couples overland flow described by gravity currents with the Green-Ampt infiltration model. From the simulations, liquid viscosity was found to be a controlling liquid property in determining the amount of time a spill remains on the surface, with the surface vanish time decreasing as viscosity decreased. This was attributed to decreasing viscosity increasing both the hydraulic conductivity of the soil and allowing for the spill to more quickly spread out onto an unsaturated soil surface. Soil permeability also controlled vanish times with the vanish times increasing as permeability decreased, corresponding to finer textured materials. Maximum spill area was found to be largely controlled by liquid viscosity on coarse, highly permeable soils. On the less permeable soils maximum spill area began to be controlled by the steady-area spill height due to the restricting of infiltration to the extent that the spill is then able to reach its steady-area spill height. Simulations performed with and without the inclusion of capillarity in the Green-Ampt infiltration model displayed the importance of capillarity in describing infiltration rate in fine textured soils. In coarse textured

  4. Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices.

    PubMed

    Song, Min Jae; Davidovich, Nurit; Lawrence, Gladys G; Margulies, Susan S

    2016-05-24

    We found that stretching Type I rat alveolar epithelial cell (RAEC) monolayers at magnitudes that correspond to high tidal-volume mechanical ventilation results in the production of reactive oxygen species, including nitric oxide and superoxide. Scavenging superoxide with Tiron eliminated the stretch-induced increase in cell monolayer permeability, and similar results were reported for rats ventilated at large tidal volumes, suggesting that oxidative stress plays an important role in barrier impairment in ventilator-induced lung injury associated with large stretch and tidal volumes. In this communication we show that mechanisms that involve oxidative injury are also present in a novel precision cut lung slices (PCLS) model under identical mechanical loads. PCLSs from healthy rats were stretched cyclically to 37% change in surface area for 1 hour. Superoxide was visualized using MitoSOX. To evaluate functional relationships, in separate stretch studies superoxide was scavenged using Tiron or mito-Tempo. PCLS and RAEC permeability was assessed as tight junction (TJ) protein (occludin, claudin-4 and claudin-7) dissociation from zona occludins-1 (ZO-1) via co-immunoprecipitation and Western blot, after 1h (PCLS) or 10min (RAEC) of stretch. Superoxide was increased significantly in PCLS, and Tiron and mito-Tempo dramatically attenuated the response, preventing claudin-4 and claudin-7 dissociation from ZO-1. Using a novel PCLS model for ventilator-induced lung injury studies, we have shown that uniform, biaxial, cyclic stretch generates ROS in the slices, and that superoxide scavenging that can protect the lung tissue under stretch conditions. We conclude that PCLS offer a valuable platform for investigating antioxidant treatments to prevent ventilation-induced lung injury. PMID:26592435

  5. Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface

    SciTech Connect

    Shen, Bingyu; Zheng, Liancun Chen, Shengting

    2015-10-15

    This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.

  6. Effect of stretch on passive transport in toad urinary bladder.

    PubMed

    Lief, P D; Mutz, B F; Bank, N

    1976-06-01

    In order to gain further information about the effect of stretch on the urinary bladder of the toad, transepithelial movement of radioactive sucrose, chloride, and urea was measured across bladder sacs during acute changes in the internal volume. Short-circuit current (SCC) and total tissue conductance (Kt) were also measured in each experiment. It was found that sudden large increases or smaller graded increases in volume resulted in a consistent fall in the tracer permeability (P*) of all three isotopes. However, this fall was due entirely to the larger area term in the calculation of P* rather than any real change in isotope movement. When total diffusion (TD) of each isotope was calculated by a method that eliminated the changes in surface area, it was apparent that stretch produced no significant effects on the transepithelial movement of any of these three molecules. Large stretch also resulted in parallel increases in SCC and Kt in most bladders. We conclude from these observations that the intercellular pathway for sucrose and chloride and the transcellular pathway for urea are unaltered by degrees of stretch that enhance SCC and sodium transport. By inference, the observed increases in Kt appear to represent changes in specific active pathway conductance (Ka), and may relate importantly to the changes in sodium transport. PMID:820207

  7. Water Quality Performance of Three Side-by-Side Permeable Pavement Surface Materials: Three Year Update

    EPA Science Inventory

    Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...

  8. Get up and Stretch

    ERIC Educational Resources Information Center

    Crupi, Jeffrey

    2004-01-01

    Daily stretching has many benefits for one's body. It can relieve stress and tension, it increases flexibility and it can help prevent injuries. There are many stretching exercises that a teacher can do with his or her students to help promote daily stretching routines. In this article, the author presents several stretching exercises and some…

  9. Martian Post-Impact Hydrothermal Systems: Effects of Permeability and Freezing on Surface Discharge and Water:Rock Ratios

    NASA Astrophysics Data System (ADS)

    Barnhart, C. J.; Nimmo, F.; Travis, B. J.

    2008-12-01

    A km-scale bolide delivers enough energy to heat subsurface water, and drive hydrothermal circulation (Abramov and Kring, 2005). This post-impact hydrothermal (PIH) circulation can lead to surface discharge of water, and chemical alteration - both are potentially detectable. We present the effects that permeability and freezing have on discharge and water:rock (W/R) ratios. We simulate the evolution of PIH systems using MAGHNUM (detailed in Travis et al., 2003). MAGHNUM solves the time-dependent transport of water and heat through a porous medium, incorporating phase transitions between ice (applicable to Mars), vapor and water. PIH evolution depends on heat sources and permeability (k); these, in turn, control discharge and chemical alteration which depends on both the peak temperatures and the W/R ratio (Schwenzer and Kring, 2008). Recently, CRISM detected phyllosilicate-rich material within ~45 km craters (Mustard et al., 2008) and the HiRISE camera imaged gullies, some emanating from central peaks, within many high latitude craters. We model a 45 km crater created by a 3.9 km dia., 7 km/s impactor. Simulations run for 100,000 yrs in a 2D axisymmetric domain with a heat flux of 32.5 mW m-2. Thus far we have tested systems with a range of surface k's (10-4 to 1 darcys) that decay exponentially with depth and are exposed to two surface temperatures (5°C and -53°C). In general W/R ratios increase with increased k. Focusing in on the upper 200 m at the center of the crater, fluid temperatures remain > 100°C for 9000 yrs and flow yields W/R ratios of 10 when exposed to a surface temperature of 5°C. Dropping the surface temperature below freezing to a Mars-like - 53°C maintains upper 200 m temperatures > 100°C for only 600 yrs and W/R ratios are reduced to 1. Higher permeabilities yield higher W/R ratios but reduced time exposure to high temperatures. When surface temperatures are below freezing total system discharge is roughly independent of k for modest

  10. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Pengfei Zhang; Xian Tao

    2002-03-01

    This report summarizes experiments to develop and test surfactant-modified zeolite/zero-valent iron (SMZ/ZVI) pellets for permeable reactive barriers to treat groundwater contamination. Coating a glass foam core with a mixture of hexadecyltrimethylammonium surfactant, zeolite, and ZVI produced a high hydraulic conductivity, mechanically stable pellet. Laboratory experiments showed that the pellets completely removed soluble chromate from aqueous solution, and reduced perchloroethylene (PCE) concentrations more than pellets that lacked surfactant. Based upon the laboratory results, they predicted a 1-m-wide SMZ/ZVI barrier that would reduce PCE concentrations by four orders of magnitude. Thirteen cubic meters (470 cubic feet) of SMZ/ZVI pellets were manufactured and emplaced in a permeable barrier test facility. A controlled plume of chromate and PCE was allowed to contact the barrier for four weeks. The entire plume was captured by the barrier. No chromate was detected downgradient of the barrier. The PCE broke through the barrier after four weeks, and downgradient concentrations ultimately exceeded 10% of the influent PCE. The less-than-expected PCE reduction was attributed to insufficient surfactant content, the large size, and pH-altering characteristics of the bulk-produced pellets. The pellets developed here can be improved to yield a performance- and cost-competitive permeable barrier material.

  11. Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in porous medium

    NASA Astrophysics Data System (ADS)

    Sulochana, C.; Sandeep, N.; Sugunamma, V.; Rushi Kumar, B.

    2016-06-01

    In this paper, we investigated the effects of aligned magnetic field, thermal radiation, heat generation/absorption, cross-diffusion, viscous dissipation, heat source and chemical reaction on the flow of a nanofluid past an exponentially stretching sheet in porous medium. The governing partial differential equations are transformed to set of ordinary differential equations using self-similarity transformation, which are then solved numerically using bvp4c Matlab package. Finally the effects of various non-dimensional parameters on velocity, temperature, concentration, skin friction, local Nusselt and Sherwood numbers are thoroughly investigated and presented through graphs and tables. We observed that an increase in the aligned angle strengthens the applied magnetic field and decreases the velocity profiles of the flow. Soret and Dufour numbers are helpful to enhance the heat transfer rate. An increase in the heat source parameter, radiation parameter and Eckert number increases the mass transfer rate. Mixed convection parameter has tendency to enhance the friction factor along with the heat and mass transfer rate.

  12. Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in porous medium

    NASA Astrophysics Data System (ADS)

    Sulochana, C.; Sandeep, N.; Sugunamma, V.; Rushi Kumar, B.

    2015-07-01

    In this paper, we investigated the effects of aligned magnetic field, thermal radiation, heat generation/absorption, cross-diffusion, viscous dissipation, heat source and chemical reaction on the flow of a nanofluid past an exponentially stretching sheet in porous medium. The governing partial differential equations are transformed to set of ordinary differential equations using self-similarity transformation, which are then solved numerically using bvp4c Matlab package. Finally the effects of various non-dimensional parameters on velocity, temperature, concentration, skin friction, local Nusselt and Sherwood numbers are thoroughly investigated and presented through graphs and tables. We observed that an increase in the aligned angle strengthens the applied magnetic field and decreases the velocity profiles of the flow. Soret and Dufour numbers are helpful to enhance the heat transfer rate. An increase in the heat source parameter, radiation parameter and Eckert number increases the mass transfer rate. Mixed convection parameter has tendency to enhance the friction factor along with the heat and mass transfer rate.

  13. Stretching Cells with Light

    NASA Astrophysics Data System (ADS)

    Guck, Jochen

    2003-03-01

    Trapped in a two-beam laser trap, any dielectric object experiences surface stresses induced by the laser light that lead to a "stretching" of the object. This can be explained with simple ray optics as well as with a modified Mie theory approach. Based on this phenomenon we have developed an optical tool to probe the viscoelastic properties of individual cells - an optical stretcher. The cell's deformation at a known induced stress reveals the mechanical properties of the cell and the underlying cytoskeleton. Thus, the optical stretcher can be used for contact-free microrheology on individual cells. Step-stress experiments on mouse fibroblasts reveal two main time regimes. At stress duration times shorter than a minute cells behave like a passive viscoelastic fluid. The frequency dependence of the complex shear modulus and the terminal relaxation time are consistent with a weakly entangled, transiently crosslinked actin gel, while contributions from other cytoskeletal filaments can be largely ruled out. At stretching times longer than a minute cells show an active response evidenced by a continued elongation after stretch. Malignantly transformed fibroblasts are less elastic and less viscous. Experiments on various other cell types with the optical stretcher confirm very generally that the viscoelastic response of cells changes during the progression of cancer and other diseases, which are accompanied by cytoskeletal changes, and the normal differentiation of cells. This suggests using optical deformability as a novel inherent cell marker. Instead of having to "look" for changes, light can now directly be used to "feel" for altered cells. Incorporated into a microfluidic device this can be done at rates that could eventually rival flow cytometers rendering the optical stretcher an ideal device for cytological diagnosis of disease and the screening and sorting of heterogeneous cell populations.

  14. Influence of Magnetic Field in Three-Dimensional Flow of Couple Stress Nanofluid over a Nonlinearly Stretching Surface with Convective Condition

    PubMed Central

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2015-01-01

    This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number. PMID:26714259

  15. Influence of Magnetic Field in Three-Dimensional Flow of Couple Stress Nanofluid over a Nonlinearly Stretching Surface with Convective Condition.

    PubMed

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2015-01-01

    This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number. PMID:26714259

  16. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGESBeta

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  17. Human stretch reflex pathways reexamined

    PubMed Central

    Yavuz, Ş. Utku; Mrachacz-Kersting, Natalie; Sebik, Oğuz; Berna Ünver, M.; Farina, Dario

    2013-01-01

    Reflex responses of tibialis anterior motor units to stretch stimuli were investigated in human subjects. Three types of stretch stimuli were applied (tap-like, ramp-and-hold, and half-sine stretch). Stimulus-induced responses in single motor units were analyzed using the classical technique, which involved building average surface electromyogram (SEMG) and peristimulus time histograms (PSTH) from the discharge times of motor units and peristimulus frequencygrams (PSF) from the instantaneous discharge rates of single motor units. With the use of SEMG and PSTH, the tap-like stretch stimulus induced five separate reflex responses, on average. With the same single motor unit data, the PSF technique indicated that the tap stimulus induced only three reflex responses. Similar to the finding using the tap-like stretch stimuli, ramp-and-hold stimuli induced several peaks and troughs in the SEMG and PSTH. The PSF analyses displayed genuine increases in discharge rates underlying the peaks but not underlying the troughs. Half-sine stretch stimuli induced a long-lasting excitation followed by a long-lasting silent period in SEMG and PSTH. The increase in the discharge rate, however, lasted for the entire duration of the stimulus and continued during the silent period. The results are discussed in the light of the fact that the discharge rate of a motoneuron has a strong positive linear association with the effective synaptic current it receives and hence represents changes in the membrane potential more directly and accurately than the other indirect measures. This study suggests that the neuronal pathway of the human stretch reflex does not include inhibitory pathways. PMID:24225537

  18. Cyclic stretch induces alveolar epithelial barrier dysfunction via calpain-mediated degradation of p120-catenin.

    PubMed

    Wang, Yuelan; Minshall, Richard D; Schwartz, David E; Hu, Guochang

    2011-08-01

    Lung hyperinflation is known to be an important contributing factor in the pathogenesis of ventilator-induced lung injury. Mechanical stretch causes epithelial barrier dysfunction and an increase in alveolar permeability, although the precise mechanisms have not been completely elucidated. p120-catenin is an adherens junction-associated protein that regulates cell-cell adhesion. In this study, we determined the role of p120-catenin in cyclic stretch-induced alveolar epithelial barrier dysfunction. Cultured alveolar epithelial cells (MLE-12) were subjected to uniform cyclic (0.5 Hz) biaxial stretch from 0 to 8 or 20% change in surface area for 0, 1, 2, or 4 h. At the end of the experiments, cells were lysed to determine p120-catenin expression by Western blot analysis. Immunofluorescence staining of p120-catenin and F-actin was performed to assess the integrity of monolayers and interepithelial gap formation. Compared with unstretched control cells, 20% stretch caused a significant loss in p120-catenin expression, which was coupled to interepithelial gap formation. p120-Catenin knockdown with small interfering RNA (siRNA) dose dependently increased stretch-induced gap formation, whereas overexpression of p120-catenin abolished stretch-induced gap formation. Furthermore, pharmacological calpain inhibition or depletion of calpain-1 with a specific siRNA prevented p120-catenin loss and subsequent stretch-induced gap formation. Our findings demonstrate that p120-catenin plays a critical protective role in cyclic stretch-induced alveolar barrier dysfunction, and, thus, maintenance of p120-catenin expression may be a novel therapeutic strategy for the prevention and treatment of ventilator-induced lung injury. PMID:21571907

  19. Role of stretch on tight junction structure in alveolar epithelial cells.

    PubMed

    Cavanaugh, K J; Oswari, J; Margulies, S S

    2001-11-01

    Previous studies have demonstrated that high tidal volumes can cause interstitial and alveolar edema, with degradation of pulmonary epithelial barrier integrity. Separate studies have shown that F-actin disruption and decreased intracellular ATP (ATP(i)) levels in the nonpulmonary epithelium can increase tight junction (TJ) permeability. We hypothesized that large epithelial stretch perturbs ATP(i) and actin architecture, each of which adversely affects TJ structure, and thus increases TJ permeability. Primary alveolar epithelial cells were subjected to a uniform 25% or 37% change in surface area (DeltaSA), cyclic biaxial stretch (15 cycles/min) for 1 h, or treated with either glycolytic metabolic inhibitors or cytoskeletal disrupting agents. Unstretched, untreated cells served as controls. Changes in the TJ proteins occludin and ZO-1 were determined by immunocytochemical evaluation. A stretch amplitude of 25% DeltaSA did not produce any significant cytologic changes compared with controls, but an amplitude of 37% DeltaSA stretch resulted in significant decreases in the intensity of the peripheral occludin band, the degree of cell-cell attachment (CCA), and total cellular occludin content. ATP depletion significantly diminished the occludin band intensity and decreased CCA. Actin disruption did not affect TJ protein band intensities (although the occludin distribution became punctate) but altered CCA. Untreated cells stretched cyclically at 25% or 50% DeltaSA for 1 h had significantly decreased ATP(i) compared with unstretched controls. These results suggest that stretch-induced ATP(i) reduction and actin perturbation disrupt TJ structure and CCA, which may lead to the alveolar flooding associated with high tidal volumes. PMID:11713100

  20. A novel control algorithm for interaction between surface waves and a permeable floating structure

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-Wei; Alsaedi, A.; Hayat, T.; Chen, Cheng-Wu

    2016-04-01

    An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.

  1. Stretched Wire Mechanics

    SciTech Connect

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  2. Springback prediction and optimization of variable stretch force trajectory in three-dimensional stretch bending process

    NASA Astrophysics Data System (ADS)

    Teng, Fei; Zhang, Wanxi; Liang, Jicai; Gao, Song

    2015-11-01

    Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback prediction in stretch bending forming mainly focuses on artificial neural networks combined with the finite element simulation. There is a lack of springback prediction by support vector regression (SVR). In this paper, SVR is applied to predict springback in the three-dimensional stretch bending forming process, and variable stretch force trajectory is optimized. Six parameters of variable stretch force trajectory are chosen as the input parameters of the SVR model. Sixty experiments generated by design of experiments (DOE) are carried out to train and test the SVR model. The experimental results confirm that the accuracy of the SVR model is higher than that of artificial neural networks. Based on this model, an optimization algorithm of variable stretch force trajectory using particle swarm optimization (PSO) is proposed. The springback amount is used as the objective function. Changes of local thickness are applied as the criterion of forming constraints. The objection and constraints are formulated by response surface models. The precision of response surface models is examined. Six different stretch force trajectories are employed to certify springback reduction in the optimum stretch force trajectory, which can efficiently reduce springback. This research proposes a new method of springback prediction using SVR and optimizes variable stretch force trajectory to reduce springback.

  3. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink

    SciTech Connect

    Hayat, T.; Muhammad, Taseer; Shehzad, S. A.; Alsaedi, A.

    2015-01-15

    Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.

  4. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  5. Stretching: Does It Help?

    ERIC Educational Resources Information Center

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  6. An in situ study of the role of surface films on granular iron in the permeable iron wall technology

    NASA Astrophysics Data System (ADS)

    Ritter, K.; Odziemkowski, M. S.; Gillham, R. W.

    2002-03-01

    Permeable walls of granular iron are a new technology developed for the treatment of groundwater contaminated with dissolved chlorinated solvents. Degradation of the chlorinated solvents involves a charge transfer process in which they are reductively dechlorinated, and the iron is oxidized. The iron used in the walls is an impure commercial material that is covered with a passive layer of Fe 2O 3, formed as a result of a high-temperature oxidation process used in the production of iron. Understanding the behaviour of this layer upon contact with solution is important, because Fe 2O 3 inhibits mechanisms involved in contaminant reduction, including electron transfer and catalytic hydrogenation. Using a glass column specially designed to allow for in situ Raman spectroscopic and open circuit potential measurements, the passive layer of Fe 2O 3 was observed to be largely removed from the commercial product, Connelly iron, upon contact with Millipore water and with a solution of Millipore water containing 1.5 mg/l trichloroethylene (TCE). It has been previously shown that Fe 2O 3 is removed from iron surfaces upon contact with solution by an autoreduction reaction; however, prior to this work, the reaction has not been shown to occur on the impure commercial iron products used in permeable granular iron walls. The rate of removal was sufficiently rapid such that the initial presence of Fe 2O 3 at the iron surface would have no consequence with respect to the performance of an in situ wall. Subsequent to the removal of Fe 2O 3 layer, magnetite and green rust formed at the iron surface as a result of corrosion in both the Millipore water and the solution containing TCE. The formation of these two species, rather than higher valency iron oxides and oxyhydroxides, is significant for the technology. The former can interfere with contaminant degradation because they inhibit electron transfer and catalytic hydrogenation. Magnetite and green rust, in contrast, will not

  7. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    NASA Astrophysics Data System (ADS)

    Gao, Yunyi; Szymanowski, Jennifer; Burns, Peter; Liu, Tianbo

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of ion transport mechanism through nanosized channels and offer new views for designing nanodevices. Here we reveal that a 2.5-nm-size, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2) (OH)]60-(H2O)n (m ~20 and n ~310) (U60) shows selective permeability to different alkali ions. The sub-nanometer pores on the water-ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allow Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggest that the hydration shells of Na+i/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of surface nanopores and the dynamics of the hydration shells. This material is based upon work supported as part of the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089.

  8. Influence of Crassostrea gigas on the permeability and microstructure of the surface layer of concrete exposed to the tidal zone of the Yellow Sea.

    PubMed

    Lv, JianFu; Mao, JiZe; Ba, HengJing

    2015-01-01

    Concrete exposed to the tidal zone of the Yellow Sea and bearing Crassostrea gigas (CG) with differing areal coverages was investigated for evidence of biologically induced corrosion prevention. The experimental results indicated that both the chloride ion profile and the neutralization depth of the concrete decreased with increasing CG coverage. Moreover, the water absorption rate and the chloride ion permeability of concrete with the original surface intact also declined with increasing degrees of CG coverage. However, the water absorption rates of three concrete samples with 2 mm of the surface layer removed were similar, as was their chloride ion permeability. Mercury intrusion porosimetry tests indicated that CG significantly reduced the pore structure of the concrete surface layer. SEM observation revealed that the CG cementation membrane and left valve were tightly glued to the concrete surface and had a dense structure. Concrete durability indices showed that high CG coverage greatly improved concrete durability. PMID:25584410

  9. Probing the role of P dbnd O stretching mode enhancement in nerve-agent sensors: Simulation of the adsorption of diisopropylfluorophosphate on the model MgO and CaO surfaces

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Wojciech; Majumdar, D.; Roszak, Szczepan; Leszczynski, Jerzy

    2007-12-01

    The interactions of diisopropylfluorophosphate (DFP) with model MgO and CaO surfaces have been investigated using density functional (DFT) and Møller-Plesset second order perturbation techniques. The geometries were fully optimized at the DFT level. The calculated interaction energies and the corresponding thermodynamic properties show that DFP is physisorbed on these two model oxide surfaces and adsorption on the MgO surface is stronger. Analyses of the calculated IR and Raman spectra point to the enhancement of the P dbnd O stretching mode with respect to the isolated DFP and this property could be used to detect nerve-agents using surface-enhanced Raman spectroscopy.

  10. The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction

    PubMed Central

    Mansur, Syahira; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface. PMID:25760733

  11. The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction.

    PubMed

    Mansur, Syahira; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface. PMID:25760733

  12. Simulation of single DNA molecule stretching and immobilization in a de-wetting two-phase flow over micropillar-patterned surface

    PubMed Central

    Liao, Wei-Ching; Hu, Xin; Wang, Weixiong; James Lee, L.

    2013-01-01

    We investigate single DNA stretching dynamics in a de-wetting flow over micropillars using Brownian dynamics simulation. The Brownian dynamics simulation is coupled with transient flow field computation through a numerical particle tracking algorithm. The droplet formation on the top of the micropillar during the de-wetting process creates a flow pattern that allows DNA to stretch across the micropillars. It is found that DNA nanowire forms if DNA molecules could extend across the stagnation point inside the connecting water filament before its breakup. It also shows that DNA locates closer to the top wall of the micropillar has higher chance to enter the flow pattern of droplet formation and thus has higher chance to be stretched across the micropillars. Our simulation tool has the potential to become a design tool for DNA manipulation in complex biomicrofluidic devices. PMID:24404023

  13. Permeability and relative permeability in rocks

    SciTech Connect

    Blair, S.C.; Berryman, J.G.

    1990-10-01

    Important features of the topology of the pore space of rocks can be usefully quantified by analyzing digitized images of rock cross sections. One approach computes statistical correlation functions using modern image processing techniques. These correlation functions contain information about porosity, specific surface area, tortuosity, formation factor, and elastic constants, as well as the fluid permeability and relative permeability. The physical basis of this approach is discussed and examples of the results for various sandstones are presented. The analysis shows that Kozeny-Carman relations and Archie's empirical laws must be modified to account for finite percolation thresholds in order to avoid unphysical behavior in the calculated relative permeabilities. 33 refs., 4 figs., 1 tab.

  14. Crustal Permeability

    NASA Astrophysics Data System (ADS)

    Ingebritsen, S.; Gleeson, T.

    2014-12-01

    Existing data and models support a distinction between the hydrodynamics of the brittle upper crust, where topography, permeability contrasts, and magmatic heat sources dominate patterns of flow and externally derived (meteoric) fluids are common, and the ductile lower crust, dominated by devolatilization reactions and internally derived fluids. The permeability structure of the uppermost (~<1 km) crust is highly heterogeneous, and controls include primary lithology, porosity, rheology, geochemistry, and tectonic and time-temperature histories of the rocks. Systematic permeability differences among original lithologies persist to contact-metamorphic depths of 3-10 km, but are not evident at regional-metamorphic depths of 10-30+ km - presumably because, at such depths, metamorphic textures become largely independent of the original lithology. Permeability can vary in time as well as space, and its temporal evolution may be gradual or abrupt: streamflow responses to moderate to large earthquakes demonstrate that dynamic stresses can instantaneously change permeability by factors of up to 20 on a regional scale, whereas a 10-fold decrease in the permeability of a package of shale in a compacting basin may require 107years. Temporal variation is enhanced by strong chemical and thermal disequilibrium; thus lab experiments involving hydrothermal flow in crystalline rocks under pressure, temperature, and chemistry gradients often result in 10-fold permeability decreases over daily to sub-annual time scales. Recent research on enhanced geothermal reservoirs, ore-forming systems, and the hydrologic effects of earthquakes consistently shows that shear dislocation caused by tectonic forcing or fluid injection can increase near-to intermediate-field permeability by factors of 100 to 1000. Nonetheless, considering permeability as static parameter is often a reasonable assumption for low-temperature hydrogeologic investigations with time scales of days to decades.

  15. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.

    PubMed

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F

    2016-03-15

    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material. PMID:26735865

  16. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  17. Stretched homoporous composite membranes with elliptic nanopores for external-energy-free ultrafiltration.

    PubMed

    Guo, Leiming; Wang, Lei; Wang, Yong

    2016-05-25

    Extremely permeable ultrafiltration membranes with elongated elliptical pores are fabricated by stretching composite membranes with homoporous selective layers and macroporous supports. With simultaneously increased porosities both for the selective layers and supports and the thinned selective layers, the stretched membranes exhibit multifold-enhanced permeability with little sacrifice in selectivities. Thus the produced membranes enable, for the first time, gravity-driven ultrafiltration and discrimination of similarly sized nanoparticles with diameters down to 30 nm. PMID:27141976

  18. Stretch That Budget!

    ERIC Educational Resources Information Center

    Walker, John R.

    1976-01-01

    Discusses ways in which industrial education teachers can stretch their budgets, which include reducing waste to a minimum, keeping an accurate and up-to-date inventory, trading surplus or excess materials with neighboring schools, and planning programs more carefully. Money-saving tips concerned with metals, plastics, woods, and printing are also…

  19. Groin stretch (image)

    MedlinePlus

    Stand with your legs wide apart. Shift your weight to one side, bending your knee somewhat. Do not let your knee bend beyond your ankle; in other words, you should be able to look down and still see your toes. You should feel the stretch in your opposite ...

  20. Stretching to Understand Proteins

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2007-03-01

    Mechanical stretching of single proteins has been studied experimentally for about 50 proteins yielding a variety of force patterns and values of the peak forces. We have performed a theoretical survey of 7749 proteins of known native structure and map out the landscape of possible dynamical behaviors unders stretching at constant speed. The model used is constructed based on the native geometry. It is solved by methods of molecular dynamics and validated by comparing the theoretical predictions to experimental results. We characterize the distribution of peak forces and on correlations with the system size and with the structure classification as characterized by the CATH scheme. We identify proteins with the biggest forces and show that they belong to few topology classes. We determine which protein segments act as mechanical clamps and show that, in most cases, they correspond to long stretches of parallel beta-strands, but other mechanisms are also possible. We then consider stretching by fluid flows. We show that unfolding induced by a uniform flow shows a richer behavior than that in the force clamp. The dynamics of unfolding is found to depend strongly on the selection of the amino acid, usually one of the termini, which is anchored. These features offer potentially wider diagnostic tools to investigate structure of proteins compared to experiments based on the atomic force microscopy.

  1. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    ERIC Educational Resources Information Center

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  2. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  3. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  4. Stretch-Oriented Polyimide Films

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Klinedinst, D.; Feuz, L.

    2000-01-01

    Two thermoplastic polyimides - one amorphous, the other crystallizable -- were subjected to isothermal stretching just above their glass transition temperatures. Room-temperature strengths in the stretch direction were greatly improved and, moduli increased up to 3.6-fold. Optimum stretching conditions were determined.

  5. System performance analysis of stretched membrane heliostats

    SciTech Connect

    Anderson, J V; Murphy, L M; Short, W; Wendelin, T

    1985-12-01

    The optical performance of both focused and unfocused stretched membrane heliostats was examined in the context of the overall cost and performance of central receiver systems. The sensitivity of optical performance to variations in design parameters such as the system size (capacity), delivery temperature, heliostat size, and heliostat surface quality was also examined. The results support the conclusion that focused stretched membrane systems provide an economically attractive alternative to current glass/metal heliostats over essentially the entire range of design parameters studied. In addition, unfocused stretched membrane heliostats may be attractive for a somewhat more limited range of applications, which would include the larger plant sizes (e.g., 450 MW) and lower delivery temperatures (e.g., 450/sup 0/C), or situations in which the heliostat size could economically be reduced.

  6. Anisotropic dewetting on stretched elastomeric substrates.

    PubMed

    Qiao, L; He, L H

    2008-08-01

    We study the instability of a very thin liquid film resting on a uniformly stretched soft elastomeric substrate driven by van der Waals forces. A linear stability analysis shows that the critical fluctuation wavelength in the tensile direction is larger than those in the other directions. The magnitudes of the critical wavelengths are adjustable in the sense that they depend on the principal stretch of the substrate. For example, when the principal stretch of the substrate varies from 1.0 (unstretched) to 3.0, the range of the critical wavelength in the tensile direction increases by 7.0% while that normal to the tensile direction decreases by 8.7%. Therefore, the phenomenon may find potential applications in creating tunable topographically patterned surfaces with nano- to microscale features. PMID:19230211

  7. Glutathione permeability of CFTR.

    PubMed

    Linsdell, P; Hanrahan, J W

    1998-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) forms an ion channel that is permeable both to Cl- and to larger organic anions. Here we show, using macroscopic current recording from excised membrane patches, that the anionic antioxidant tripeptide glutathione is permeant in the CFTR channel. This permeability may account for the high concentrations of glutathione that have been measured in the surface fluid that coats airway epithelial cells. Furthermore, loss of this pathway for glutathione transport may contribute to the reduced levels of glutathione observed in airway surface fluid of cystic fibrosis patients, which has been suggested to contribute to the oxidative stress observed in the lung in cystic fibrosis. We suggest that release of glutathione into airway surface fluid may be a novel function of CFTR. PMID:9688865

  8. Stretching cells with DEAs

    NASA Astrophysics Data System (ADS)

    Akbari, S.; Rosset, S.; Shea, H. R.

    2012-04-01

    Biological cells regulate their biochemical behavior in response to mechanical stress present in their organism. Most of the available cell cultures designed to study the effect of mechanical stimuli on cells are cm2 area, far too large to monitor single cell response or have a very low throughput. We have developed two sets of high throughput single cell stretcher devices based on dielectric elastomer microactuators to stretch groups of individual cells with various strain levels in a single experiment. The first device consists of an array of 100 μm x 200 μm actuators on a non-stretched PDMS membrane bonded to a Pyrex chip, showing up to 4.7% strain at the electric field of 96 V/μm. The second device contains an array of 100 μm x 100 μm actuators on a 160% uniaxially prestretched PDMS membrane suspended over a frame. 37% strain is recorded at the nominal electric field of 114 V/μm. The performance of these devices as a cell stretcher is assessed by comparing their static and dynamic behavior.

  9. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  10. Mathematical Analysis of Hall Effect on Transient Hartman Flow about a Rotating Horizontal Permeable Surface in a Porous Medium under Inclined Magnetic Field

    PubMed Central

    Suresh, M.; Manglik, A.

    2014-01-01

    This paper proposes the exact solution for unsteady flow of a viscous incompressible electrically conducting fluid past a impulsively started infinite horizontal surface which is rotating with an angular velocity embedded in a saturated porous medium under the influence of strong magnetic field with hall effect. Our study focuses on the change of direction of the external magnetic field on the flow system which leads to change in the flow behavior and skin frictional forces at the boundary. Systems of flow equations are solved using Laplace transform technique. The impacts of control parameters Hartman number, rotation of the system, hall effect, inclination of the magnetic field, and Darcy number on primary and secondary velocities are shown graphically, skin friction at horizontal boundary in tabular form. For validating our results, in the absence of permeability of the porous medium and inclination of the magnetic field the results are in good agreement with the published results.

  11. BSDB: the biomolecule stretching database

    PubMed Central

    Sikora, Mateusz; Sułkowska, Joanna I.; Witkowski, Bartłomiej S.; Cieplak, Marek

    2011-01-01

    We describe the Biomolecule Stretching Data Base that has been recently set up at http://www.ifpan.edu.pl/BSDB/. It provides information about mechanostability of proteins. Its core is based on simulations of stretching of 17 134 proteins within a structure-based model. The primary information is about the heights of the maximal force peaks, the force–displacement patterns, and the sequencing of the contact-rupturing events. We also summarize the possible types of the mechanical clamps, i.e. the motifs which are responsible for a protein's resistance to stretching. PMID:20929872

  12. BSDB: the biomolecule stretching database.

    PubMed

    Sikora, Mateusz; Sulkowska, Joanna I; Witkowski, Bartlomiej S; Cieplak, Marek

    2011-01-01

    We describe the Biomolecule Stretching Data Base that has been recently set up at http://www.ifpan.edu.pl/BSDB/. It provides information about mechanostability of proteins. Its core is based on simulations of stretching of 17 134 proteins within a structure-based model. The primary information is about the heights of the maximal force peaks, the force-displacement patterns, and the sequencing of the contact-rupturing events. We also summarize the possible types of the mechanical clamps, i.e. the motifs which are responsible for a protein's resistance to stretching. PMID:20929872

  13. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  14. Optimization of dielectrophoretic DNA stretching in microfabricated devices

    PubMed Central

    Sung, Kyung Eun; Burns, Mark A.

    2008-01-01

    We have found that the surface and bulk solution properties in a microfabricated device affect the degree and probability of electrostretching of DNA molecules. Using lambda phage DNA, we found that significantly hydrophilic surfaces between the electrodes decreases the efficiency of stretching. Surfaces treated with higher silane (trimethyl chlorosilane) concentrations performed better presumably due to the decreased non-specific adsorption of DNA on these surfaces compared to their more hydrophilic counterparts. The shape and dimensions of the electrodes also affected the efficiency of stretching. Both lift-off and metal etching methods produced electrodes with random microscopic peaks along the electrode’s edge and were poorly suited for stretching. Annealing the electrodes (450°C for 10 min) removed most of these peaks and allowed for more controlled stretching to be obtained. We also found that thin electrodes (65nm) gave close to a 90% success rate of DNA stretching but stretching with thick electrodes (350nm) produced only a 20% success rate. PMID:16642979

  15. Hydraulic fracture during epithelial stretching

    NASA Astrophysics Data System (ADS)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  16. Hydraulic fracture during epithelial stretching.

    PubMed

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  17. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  18. In-situ monitoring of flow-permeable surface area of high explosive powder using small sample masses

    SciTech Connect

    Maiti, Amitesh; Han, Yong; Zaka, Fowzia; Gee, Richard H.

    2015-02-17

    To ensure good performance of high explosive devices over long periods of time, initiating powders need to maintain their specific surface area within allowed margins during the entire duration of deployment. A common diagnostic used in this context is the Fisher sub-sieve surface area (FSSA). Furthermore, commercial permeametry instruments measuring the FSSA requires the utilization of a sample mass equal to the crystal density of the sample material, an amount that is often one or two orders of magnitude larger than the typical masses found in standard detonator applications. Here we develop a customization of the standard device that can utilize just tens of milligram samples, and with simple calibration yield FSSA values at ac curacy levels comparable to the standard apparatus. This necessitated a newly designed sample holder, made from a material of low coefficient of thermal expansion, which is conveniently transferred between an aging chamber and a re-designed permeametry tube. This improves the fidelity of accelerated aging studies by allowing measurement on the same physical sample at various time - instants during the aging process, and by obviating the need for a potentially FSSA-altering powder re-compaction step. We used the customized apparatus to monitor the FSSA evolution of a number of undoped and homolog-doped PETN powder samples that were subjected to artificial aging for several months at elevated temperatures. These results, in conjunction with an Arrhenius-based aging model were used to assess powder-coarsening - rates under long-term storage.

  19. Sensitivity Analysis and Parameter Identifiability of the Land Surface Model JULES at the point scale in permeable catchments

    NASA Astrophysics Data System (ADS)

    Bakopoulou, C.; Bulygina, N.; Butler, A. P.; McIntyre, N. R.

    2012-04-01

    Land surface models (LSMs) are recognised as important components of Global Circulation Models (GCMs). Simulating exchanges of the moisture, carbon and energy between land surface and atmosphere in a consistent manner requires physics-based LSMs of high complexity, fine vertical resolution and a large number of parameters that need to be estimated. The "physics" that is incorporated in such models is generally based on our knowledge of point (or very small) scale hydrological processes. Therefore, while larger GCM grid-scale performance may be the ultimate goal, the ability of the model to simulate the point-scale processes is, intuitively, a pre-requisite for its reliable use at larger scales. Critical evaluation of model performance and parameter uncertainty at point scales is therefore a rational starting point for critical evaluation of LSMs; and identification of optimal parameter sets at the point scale is a significant stage of the model evaluation at larger scales. The Joint UK Land Environment Simulator (JULES) is a complex LSM, which is used to represent surface exchanges in the UK Met Office's forecast and climate change models. This complexity necessitates a large number of model parameters (in total 108) some of which are incapable of being measured directly at large (i.e. kilometer) scales. For this reason, a parameter sensitivity analysis is a vital confidence building process within the framework of every LSM, and as a part of the calibration strategy. The problem of JULES parameter estimation and uncertainty at the point scale with a view to assessing the accuracy and the uncertainty in the default parameter values is addressed. The sensitivity of the JULES output of soil moisture is examined using parameter response surface analysis. The implemented technique is based on the Regional Sensitivity Analysis method (RSA), which evaluates the model response surface over a region of parameter space using Monte Carlo sampling. The modified version of RSA

  20. In-situ monitoring of flow-permeable surface area of high explosive powder using small sample masses

    DOE PAGESBeta

    Maiti, Amitesh; Han, Yong; Zaka, Fowzia; Gee, Richard H.

    2015-02-17

    To ensure good performance of high explosive devices over long periods of time, initiating powders need to maintain their specific surface area within allowed margins during the entire duration of deployment. A common diagnostic used in this context is the Fisher sub-sieve surface area (FSSA). Furthermore, commercial permeametry instruments measuring the FSSA requires the utilization of a sample mass equal to the crystal density of the sample material, an amount that is often one or two orders of magnitude larger than the typical masses found in standard detonator applications. Here we develop a customization of the standard device that canmore » utilize just tens of milligram samples, and with simple calibration yield FSSA values at ac curacy levels comparable to the standard apparatus. This necessitated a newly designed sample holder, made from a material of low coefficient of thermal expansion, which is conveniently transferred between an aging chamber and a re-designed permeametry tube. This improves the fidelity of accelerated aging studies by allowing measurement on the same physical sample at various time - instants during the aging process, and by obviating the need for a potentially FSSA-altering powder re-compaction step. We used the customized apparatus to monitor the FSSA evolution of a number of undoped and homolog-doped PETN powder samples that were subjected to artificial aging for several months at elevated temperatures. These results, in conjunction with an Arrhenius-based aging model were used to assess powder-coarsening - rates under long-term storage.« less

  1. Mechanical stretch induces lung α-epithelial Na(+) channel expression.

    PubMed

    Mustafa, Shamimunisa B; Isaac, John; Seidner, Steven R; Dixon, Patricia S; Henson, Barbara M; DiGeronimo, Robert J

    2014-10-01

    ABSTRACT During fetal development physiological stretching helps drive lung growth and maturation. At birth, the α-subunit of the alveolar epithelial sodium channel (α-ENaC) is a critical factor in helping to facilitate clearance of lung fluid during the perinatal period. The effects of stretch, however, on α-ENaC expression in the fetal lung have yet to be elucidated. In an effort to explore this question, we used both an in vitro cell culture model that exposes cells to repetitive cyclic stretch (CS) as well as an in vivo preterm animal model of mechanical ventilation (MV). We found that murine lung epithelial (MLE-12) cells exposed to repetitive CS showed a significant rise in α-ENaC mRNA expression. Total and cell-surface protein abundance of α-ENaC were also elevated after 24 h of CS. Stretch-induced increases in α-ENaC expression were suppressed in the presence of either actinomycin D or cycloheximide. Pharmacological inhibition of the extracellular signal-regulated protein kinase (ERK1/2) did not attenuate stretch-induced increases in α-ENaC protein, whereas inhibition of p38 MAPK or c-Jun NH2-terminal kinase (JNK) did. In 29-day preterm rabbits, alveolar stretching secondary to postnatal MV markedly elevated fetal lung α-ENaC expression compared to spontaneously breathing counterparts. In summary, our findings indicate that mechanical stretch promotes α-ENaC expression. PMID:25058750

  2. Low Stretch Diffusion Flames Over a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Foutch and T'ien used the radiative loss as well as a densimetric Froude number to characterize the blowoff (small Da) and quenching extinction (large Da) boundaries in stagnation-point diffusion flames under various convective conditions. An important conclusion of this study was that the shape and location of the extinction boundary, as well as a number of important flame characteristics, were almost identical for the buoyant, forced, and mixed convective environments they modeled. This theory indicates it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (induced by fans and crew movements) by understanding its burning characteristics in an equivalent Earth-based stretch environment (induced by normal gravity buoyancy). Similarly, the material's burning characteristics in Lunar or Martian stretch environments (induced by partial gravity buoyancy) can be assessed. Equivalent stretch rates can be determined as a function of gravity, imposed flow, and geometry. A generalized expression for stretch rate which captures mixed convection includes both buoyant and forced stretch is defined as a = a(sub f) ((1 + (a(sub b))exp 2/(a(sub b))exp 2))exp 1/2. For purely buoyant flow, the equivalent stretch rate is a(sub b) = [(rho(exp e)-rho(exp *)/rho(sub e)][g/R](exp 1/2). For purely forced flow, the equivalent stretch rate is characterized by either a(sub f)= 2U(sub infinity)/R for a cylinder, or a(sub f)=U(sub jet)/d(sub jet) for a jet impinging on a planar surface. In these experiments, the buoyant stretch is varied through R, the radius of curvature, but the buoyant stretch could also be varied through g, the gravity level. In

  3. Lassen's equation is a good approximation of permeability-surface model: new α values for 99mTc-HMPAO and 99mTc-ECD

    PubMed Central

    Kameyama, Masashi

    2014-01-01

    Brain perfusion tracers like [99mTc] d,l-hexamethyl-propyeneamine oxime (99mTc-HMPAO) and [99mTc] ethyl-cysteinate dimer (99mTc-ECD) underestimate regional cerebral blood flow (rCBF) at high flow values. To improve linearity between tracer accumulation and rCBF, two different models have been proposed. One is Lassen's correction algorithm for back-diffusion of tracer, and the other is based on the permeability-surface (PS) model for correction of low first-pass extraction. Although both these models have the same goal, they have completely different forms of equation. It was demonstrated that mathematical approximation of the PS model equation leads to Lassen's equation. In this process, the relationship between PS, CBF values and Lassen's parameter was acquired, and how to correct both the back-diffusion and low first-pass extraction was also demonstrated. A computer simulation confirmed that the two models provided similar consequences when the parameter value is chosen according to the relationship found. Lassen's equation can be used to correct not only back-diffusion but also low first-pass extraction. To perform overall correction, the parameter value we have been using for decades may be too weak. I estimated that the parameter value for overall correction of HMPAO would be around 0.5, and that of ECD would be around 0.65. PMID:24736892

  4. Soleus stretch reflex during cycling.

    PubMed

    Grey, M J; Pierce, C W; Milner, T E; Sinkjaer, T

    2001-01-01

    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions during the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle and background soleus EMG as recorded during the power phase of active pedaling. The magnitude of the stretch reflex was not statistically different from that during the static condition throughout the power phase of the movement. The results of this study indicate that the stretch reflex is not depressed during active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms. PMID:11232549

  5. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  6. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using (/sup 15/O)water and (/sup 11/C)butanol

    SciTech Connect

    Herscovitch, P.; Raichle, M.E.; Kilbourn, M.R.; Welch, M.J.

    1987-10-01

    We have previously adapted Kety's tissue autoradiographic method for measuring regional CBF in laboratory animals to the measurement of CBF in humans with positron emission tomography (PET) and H/sub 2/(/sup 15/)O. Because this model assumes diffusion equilibrium between tissue and venous blood, the use of a diffusion-limited tracer, such as H/sub 2/(/sup 15/)O, may lead to an underestimation of CBF. We therefore validated the use of (/sup 11/C)butanol as an alternative freely diffusible tracer for PET. We then used it in humans to determine the underestimation of CBF that occurs with H/sub 2/(/sup 15/)O, and thereby were able to calculate the extraction Ew and permeability-surface area product PSw of H/sub 2/(/sup 15/)O. Measurements of the permeability of rhesus monkey brain to (/sup 11/C)butanol, obtained by means of an intracarotid injection, external detection technique, demonstrated that this tracer is freely diffusible up to a CBF of at least 170 ml/min-100 g. CBF measured in baboons with the PET autoradiographic method and (/sup 11/C)butanol was then compared with CBF measured in the same animals with a standard residue detection method. An excellent correspondence was obtained between both of these measurements. Finally, paired PET measurements of CBF were made with both H/sub 2/(/sup 15/)O and (/sup 11/C)butanol in 17 normal human subjects. Average global CBF was significantly greater when measured with (/sup 11/C)butanol (53.1 ml/min-100 g) than with H/sub 2/(/sup 15/)O (44.4 ml/min-100 g). Average global Ew was 0.84 and global PSw was 104 ml/min-100 g. Regional measurements showed a linear relationship between local PSw and CBF, while Ew was relatively uniform throughout the brain. Simulations were used to determine the potential error associated with the use of an incorrect value for the brain-blood partition coefficient for (/sup 11/C)butanol and to calculate the effect of tissue heterogeneity and errors in flow measurement on the calculation of PSw.

  7. Incorporating surface indicators of reservoir permeability into reservoir volume calculations: Application to the Colli Albani caldera and the Central Italy Geothermal Province

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; De Benedetti, Arnaldo Angelo; Bonamico, Andrea; Ramazzotti, Paolo; Mattei, Massimo

    2014-01-01

    The Quaternary Roman Volcanic Province extends for over 200 km along the Tyrrhenian margin of the Italian peninsula and is composed of several caldera complexes with significant associated geothermal potential. In spite of the massive programs of explorations conducted by the then state-owned ENEL and AGIP companies between the 1970s and 1990s, and the identification of several high enthalpy fields, this resource remains so far unexploited, although it occurs right below the densely populated metropolitan area of Roma capital city. The main reason for this failure is that deep geothermal reservoirs are associated with fractured rocks, the secondary permeability of which has been difficult to predict making the identification of the most productive volumes of the reservoirs and the localisation of productive wells uncertain. As a consequence, almost half of the many exploration deep bore-holes drilled in the area reached a dry target. This work reviews available data and re-assesses the geothermal potential of caldera-related systems in Central Italy, by analysing in detail the case of the Colli Albani caldera system, the closest to Roma capital city. A GIS based approach identifies the most promising reservoir volumes for geothermal exploitation and uses an improved volume method approach for the evaluation of geothermal potential. The approach is based on a three dimensional matrix of georeferenced spatial data; the A axis accounts for the modelling of the depth of the top of the reservoirs based on geophysical and direct data; the B axis accounts for the thermal modelling of the crust (i.e. T with depth) based on measured thermal gradients. Both A and B data are necessary but not sufficient to identify rock volumes actually permeated by geothermal fluids in fractured reservoirs. We discuss the implementation of a C axis that evaluates all surface data indicating permeability in the reservoir and actual geothermal fluid circulation. We consider datasets on: i

  8. Adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx

    PubMed Central

    Cai, Bin; Fan, Jie; Zeng, Min; Zhang, Lin

    2012-01-01

    To investigate the effect of tumor cell adhesion on microvascular permeability (P) in intact microvessels, we measured the adhesion rate of human mammary carcinoma MDA-MB-231, the hydraulic conductivity (Lp), the P, and reflection coefficient (σ) to albumin of the microvessels at the initial tumor cell adhesion and after ∼45 min cell perfusion in the postcapillary venules of rat mesentery in vivo. Rats (Sprague-Dawley, 250–300 g) were anesthetized with pentobarbital sodium given subcutaneously. A midline incision was made in the abdominal wall, and the mesentery was gently taken out and arranged on the surface of a glass coverslip for the measurement. An individual postcapillary venule was perfused with cells at a rate of ∼1 mm/s, which is the mean blood flow velocity in this type of microvessels. At the initial tumor cell adhesion, which was defined as one adherent cell in ∼100- to 145-μm vessel segment, Lp was 1.5-fold and P was 2.3-fold of their controls, and σ decreased from 0.92 to 0.64; after ∼45-min perfusion, the adhesion increased to ∼5 adherent cells in ∼100- to 145-μm vessel segment, while Lp increased to 2.8-fold, P to 5.7-fold of their controls, and σ decreased from 0.92 to 0.42. Combining these measured data with the predictions from a mathematical model for the interendothelial transport suggests that tumor cell adhesion to the microvessel wall degrades the endothelial surface glycocalyx (ESG) layer. This suggestion was confirmed by immunostaining of heparan sulfate of the ESG on the microvessel wall. Preserving of the ESG by a plasma glycoprotein orosomucoid decreased the P to albumin and reduced the tumor cell adhesion. PMID:22858626

  9. The skin migratory stage of the schistosomulum of Schistosoma mansoni has a surface showing greater permeability and activity in membrane internalisation than other forms of skin or mechanical schistosomula.

    PubMed

    DE Jesus Jeremias, Wander; DA Cunha Melo, Jose Renan; Baba, Elio Hideo; Coelho, Paulo Marcos Zech; Kusel, John Robert

    2015-08-01

    Skin schistosomula can be prepared by collecting them after isolated mouse skin have been penetrated by cercariae in vitro. The schistosomula can also migrate out of isolated mouse skin penetrated by cercariae in vitro and from mouse skin penetrated by cercariae in vivo. Schistosomula can also be produced from cercariae applied through a syringe or in a vortex. When certain surface properties of the different forms of schistosomula were compared, those migrating from mouse skin penetrated by cercariae in vivo or in vitro had greatly increased permeability to membrane impermeant molecules such as Lucifer yellow and high molecular weight dextrans. These migrating forms also possessed surfaces which showed greatly enhanced uptake into internal membrane vesicles of the dye FM 143, a marker for endocytosis. This greatly enhanced activity and permeability of the surfaces of tissue migrating schistosomula is likely to be of great importance in the adaptation to the new host. PMID:26028506

  10. Studying the Variation in Gas Permeability of Porous Building Substrates

    NASA Astrophysics Data System (ADS)

    Townsend, L.; Savidge, C. R.; Hu, L.; Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.

    2009-12-01

    Understanding permeability of building materials is important for problems involving studies of contaminant transport. Examples include contamination from fire, acid rain, and chemical and biological weapons. Our research investigates the gas permeability of porous building substrates such as concretes, limestones, sandstones, and bricks. Each sample was cored to produce 70 mm (2.75”) diameter cores approximately 75-130 mm (3-5”) tall. The surface gas permeability was measured on the top surface of these specimens using the AutoScan II device manufactured by New England Research, Inc. The measurements were taken along a 3 mm grid producing a map of surface gas permeability. An example map is shown in Figure 1. The macroscopic measurements were performed along the entire cored specimen. A second set of measurements were made on a 5 mm thick slice cut from the top of each specimen to examine whether these measurements compare better with the surface measurements. The macroscopic gas permeability was measured for all specimens using ASTM D 4525. The results are summarized in Table 1. In general, the surface and macroscopic gas permeability measurements (Table 1) compare reasonably well (within one order of magnitude). The permeability of the 5 mm slices is not significantly different from the entire core for the specimens tested. Figure 1. Results of surface permeability mappingof Ohio Sandstone using the AutoScan II device. a) Map of gas permeability b) Range of gas permeability c) Density function of permeability. Table 1. Gas permeability values (mD)

  11. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  12. Design of Warped Stretch Transform

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-11-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals.

  13. Design of Warped Stretch Transform.

    PubMed

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal's envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  14. A Purposeful Dynamic Stretching Routine

    ERIC Educational Resources Information Center

    Leon, Craig; Oh, Hyun-Ju; Rana, Sharon

    2012-01-01

    Dynamic stretching, which involves moving parts of the body and gradually increases range of motion, speed of movement, or both through controlled, sport-specific movements, has become the popular choice of pre-exercise warm-up. This type of warm-up has evolved to encompass several variations, but at its core is the principle theme that preparing…

  15. Three Fresh Exposures, Stretched Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from NASA's Mars Exploration Rover Opportunity has been processed using a technique known as a decorrelation stretch to exaggerate the colors. The area in the image includes three holes created inside 'Endurance Crater' by Opportunity's rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004). Because color variations are so subtle in the pictured area, stretched images are useful for discriminating color differences that can alert scientists to compositional and textural variations. For example, without the exaggeration, no color difference would be discernable among the tailings left behind after the grinding of these holes, but in this stretched image, the tailings around 'London' (top) appear more red than those of the other holes ('Virginia,' middle, and 'Cobble Hill,' bottom). Scientists believe that is because the rock abrasion tool sliced through two 'blueberries,' or spherules (visible on the upper left and upper right sides of the circle). When the blades break up these spherules, composed of mostly gray hematite, the result is a bright red powder. In this image, you can see the rock layers that made the team want to grind holes in each identified layer. The top layer is yellowish red, the middle is yellowish green and the lower layer is green. Another advantage to viewing this stretched image is the clear detail of the distribution of the rock abrasion tool tailings (heading down-slope) and the differences in rock texture. This image was created using the 753-, 535- and 432-nanometer filters.

  16. Design of Warped Stretch Transform

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  17. Permeability of gloves used in nuclear medicine departments to [(99m)Tc]-pertechnetate and [(18)F]-fluorodeoxyglucose: radiation protection considerations.

    PubMed

    Ridone, S; Matheoud, R; Valzano, S; Di Martino, R; Vigna, L; Brambilla, M

    2013-09-01

    In order to evaluate the safety of the individual protection devices, the permeability of four different types of disposable gloves, commonly used in hospitals, was tested in relation to [(99m)Tc]-pertechnetate and to [(18)F]-fluorodeoxyglucose ([(18)F]-FDG). From these radiopharmaceutical solutions, a drop was deposited on the external surface of the glove which was opened and stretched with the external surface placed upward. The smear test technique permitted to evaluate the activity onto the inner surface of the glove at different times. The smear tests were measured in a well sodium iodide detector calibrated in efficiency for (99m)Tc and (18)F. The permeability was tested on ten samples of each type of gloves and was expressed as the ratio of the activity onto the inner surface at each time interval to the activity deposited on the external surface of the glove. For each type of gloves and for each sampling time, mean value, standard deviation and percentage coefficient of variation of permeability were evaluated. One type of gloves showed a low resistance to permeation of both radiopharmaceuticals, while another one only to pertechnetate. The other gloves were good performers. The results of this study suggest to test permeability for gloves used for handling radiopharmaceuticals, before their adoption in the clinical routine. This practice will provide a more careful service of radiation protection for nuclear medicine department staff. PMID:23419926

  18. Stretching-induced nanostructures on shape memory polyurethane films and their regulation to osteoblasts morphology.

    PubMed

    Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng

    2016-10-01

    Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications. PMID:27395036

  19. Permeability across lipid membranes.

    PubMed

    Shinoda, Wataru

    2016-10-01

    Molecular permeation through lipid membranes is a fundamental biological process that is important for small neutral molecules and drug molecules. Precise characterization of free energy surface and diffusion coefficients along the permeation pathway is required in order to predict molecular permeability and elucidate the molecular mechanisms of permeation. Several recent technical developments, including improved molecular models and efficient sampling schemes, are illustrated in this review. For larger penetrants, explicit consideration of multiple collective variables, including orientational, conformational degrees of freedom, are required to be considered in addition to the distance from the membrane center along the membrane normal. Although computationally demanding, this method can provide significant insights into the molecular mechanisms of permeation for molecules of medical and pharmaceutical importance. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:27085977

  20. Method for determining permeability in hydrocarbon wells

    SciTech Connect

    Boone, D.E.

    1990-10-09

    This patent describes a method of determining at the earth's surface the permeability of a subsurface earth formation having a known nominal hydrocarbon pore saturation value. The formation is tranversed by a borehole resulting from drilling with a drill bit.

  1. Stretching dynamics of semiflexible polymers

    NASA Astrophysics Data System (ADS)

    Obermayer, B.; Hallatschek, O.; Frey, E.; Kroy, K.

    2007-08-01

    We analyze the nonequilibrium dynamics of single inextensible semiflexible biopolymers as stretching forces are applied at the ends. Based on different (contradicting) heuristic arguments, various scaling laws have been proposed for the propagation speed of the backbone tension which is induced in response to stretching. Here, we employ a newly developed unified theory to systematically substantiate, restrict, and extend these approaches. Introducing the practically relevant scenario of a chain equilibrated under some prestretching force fpre that is suddenly exposed to a different external force fext at the ends, we give a concise physical explanation of the underlying relaxation processes by means of an intuitive blob picture. We discuss the corresponding intermediate asymptotics, derive results for experimentally relevant observables, and support our conclusions by numerical solutions of the coarse-grained equations of motion for the tension.

  2. Stretching short DNAs in electrolytes.

    PubMed

    Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2006-03-01

    This paper is aimed at a combined theoretical and numerical study of the force-extension relation of a short DNA molecule stretched in an electrolyte. A theoretical formula based on a recent discrete wormlike chain (WLC) model of Kierfeld et al. (Eur Phys. J. E, Vol. 14, pp.17-34, 2004) and the classical OSF mean-field theory on electrostatic stiffening of a charged polymer is numerically verified by a set of Brownian dynamics simulations based on a generalized bead-rod (GBR) model incorporating long-ranged electrostatic interactions via the Debye-Hueckel potential (DH). The analysis indicates that the stretching of a short DNA can be well described as a WLC with a constant effective persistent length. This contrasts the behavior of long DNA chains that are known to exhibit variable persistent lengths depending on the ion concentration levels and force magnitudes. PMID:16711068

  3. Stretching

    MedlinePlus

    ... Fitness Diseases & Conditions Infections Q&A School & Jobs Drugs & Alcohol Staying Safe Recipes En Español Making a Change – Your Personal Plan Hot Topics Meningitis Choosing Your Mood Prescription Drug Abuse Healthy School Lunch Planner How Can I ...

  4. Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.

  5. BSDB: the Biomolecule Stretching Database

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  6. Biaxially Stretched Polycarbonate Film For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shaio-Ping S.; Lowry, Lynn E.; Bankston, Clyde P.

    1992-01-01

    Report describes experiments on effects of biaxial stretching on crystal structures, dielectric properties, and sellected thermal and mechanical properties of biaxially stretched polycarbonate films. Highest stretch ratios produce highest degree of crystallinity, with single crystalline phase and distribution of crystallites more nearly isotropic than uniaxially oriented film. Electrical properties at high temperatures improved.

  7. Laser-induced structure formation on stretched polymer foils

    SciTech Connect

    Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter; Arenholz, Enno

    2007-04-15

    Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.

  8. MHD Flow Of Walters' Liquid B Over A Nonlinearly Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Siddheshwar, P. G.; Mahabaleshwar, U. S.; Chan, A.

    2015-08-01

    The paper discusses the boundary layer flow of a weak electrically conducting viscoelastic Walters' liquid B over a nonlinearly stretching sheet subjected to an applied transverse magnetic field, when the liquid far away from the surface is at rest. The stretching is assumed to be a quadratic function of the coordinate along the direction of stretching. An analytical expression is obtained for the stream function and velocity components as a function of the viscoelastic parameter, the Chandrasekhar number and stretching related parameters. The results have possible technological applications in liquid based systems involving stretchable materials.

  9. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. PMID:23434738

  10. Vibrational transitions of coupled stretching and bending overtones in chloroform

    NASA Astrophysics Data System (ADS)

    Beckmann, Kai; Gerhards, Markus; Kleist, Einhard; Bettermann, Hans

    1995-08-01

    The intensities and frequencies of Fermi-coupled stretching and bending overtone transitions in CHCl3 were calculated by means of a variational method. Symmetrized two-dimensional ab initio potential and dipole moment surfaces were determined at the MP2 level using the 6-31G** basis set. The Hamiltonian for the CH- stretching motion and the simultaneously excited twofold degenerate CH- bending vibration is expressed most easily in cylindrical coordinates. Absorption intensities up to the Δv=7 CH-stretching overtone above 16 300 cm-1 are calculated and are compared to former experimental values and theoretical results. New quantitative intracavity measurements for the N=6 polyad are presented. Relative errors between absolute experimental intensities and the calculated values are less than 30%.

  11. Permeable membrane experiment

    NASA Technical Reports Server (NTRS)

    Slavin, Thomas J.; Cao, Tuan Q.; Kliss, Mark H.

    1993-01-01

    The purpose of the Permeable Membrane Experiment is to gather flight data on three areas of membrane performance that are influenced by the presence of gravity. These areas are: (1) Liquid/gas phase separation, (2) gas bubble interference with diffusion through porous membranes and (3) wetting characteristics of hydrophilic membrane surfaces. These data are important in understaning the behavior of membrane/liquid/gas interfaces where surface tension forces predominate. The data will be compared with 1-g data already obtained and with predicted micrograviity behavior. The data will be used to develop designs for phase separation and plant nutrient delivery systems and will be available to the life support community for use in developing technologies which employ membranes. A conceptual design has been developed to conduct three membrane experiments, in sequence, aboard a single Complex Autonomous Payload (CAP) carrier to be carried in the Shuttle Orbiter payload bay. One experiment is conducted for each of the three membrane performance areas under study. These experiments are discussed in this paper.

  12. Structure of low-stretch methane nonpremixed flames

    SciTech Connect

    Han, Bai; Ibarreta, Alfonso F.; Sung, Chih-Jen; T'ien, James S.

    2007-04-15

    The present study experimentally and numerically investigates the structure associated with extremely low-stretch ({proportional_to}2 s{sup -1}) gaseous nonpremixed flames. The study of low-stretch flames aims to improve our fundamental understanding of the flame radiation effects on flame response and extinction limits. Low-stretch flames are also relevant to fire safety in reduced-gravity environments and to large buoyant fires, where localized areas of low stretch are attainable. In this work, ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. The large thickness of the resulting nonpremixed flame allows detailed mapping of the flame structure. Several advanced nonintrusive optical diagnostics are used to study the flame structure. Gas phase temperatures are measured by Raman scattering, while the burner surface temperatures are obtained by IR imaging. In addition, OH-PLIF and chemiluminescence imaging techniques are used to help characterize the extent of the flame reaction zone. These experimental results allow direct comparison with a quasi-one-dimensional numerical model including detailed chemistry, thermodynamic/transport properties, and radiation treatment. In addition, the radiative interactions between the flame and porous burner (modeled as a gray surface) are accounted for in the present model. The numerical modeling is demonstrated to be able to simulate the low-stretch flame structure. Using the current model, the extinction limits under different conditions are also examined. The computational results are consistent with experimental observations. (author)

  13. Aerothermodynamic properties of stretched flames in enclosures

    NASA Astrophysics Data System (ADS)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  14. Constraint effects observed in crack initiation stretch

    SciTech Connect

    Lambert, D.M.; Ernst, H.A.

    1995-12-31

    The current paper characterizes constraint in fracture: J-modified resistance (Jr) curves were developed for two tough structural materials, 6061-T651 (aluminum) and IN718-STA1 (nickel-base superalloy). A wide variety of configurations was tested to consider load configurations from bending to tension including three specimen types (compact tension, center-crack tension, and single-edge notched tension), and a range of ligament lengths and thicknesses, as well as side-grooved and smooth-sided ligaments. The Jr curves exhibited an inflection point after some crack extension, and the data were excluded beyond the inflection. Qualified Jr curves for the two materials showed similar behavior, but R-curves were identical for equal ligament length-to-thickness ratio (RL), for the aluminum alloy, with increasing slope for increasing RL, while for the nickel, the resistance curves aligned for equal ligament thickness, B, and the slope increased for decreasing B. Displacements at the original crack tip (CToD) were recorded throughout the test for several specimens. CToD-versus-crack extension curves were developed, and data were excluded beyond the inflection point (as with the Jr curves). The data collapsed into two distinct curves, thought to represent the surface, plane stress effect and the central, plane strain effect. This was observed for both materials. A technique called profiling is presented for the aluminum alloy only, where the crack face displacements are recorded at the final point of the test as a function of the position throughout the crack cavity, along with an effort to extract the observations in a usable form. Displacements were consistent throughout the cross-section at and behind the original crack tip. In the region where the crack grew, this displacement was developed by a combination of stretch and crack growth. The stretch required to initiate crack extension was a function of the depth beneath the surface into the cross-section.

  15. Detachment of stretched viscoelastic fibrils

    NASA Astrophysics Data System (ADS)

    Glassmaker, N. J.; Hui, C. Y.; Yamaguchi, T.; Creton, C.

    2008-03-01

    New experimental results are presented about the final stage of failure of soft viscoelastic adhesives. A microscopic view of the detachment of the adhesive shows that after cavity growth and expansion, well adhered soft adhesives form a network of fibrils connected to expanded contacting feet which fail via a sliding mechanism, sensitive to interfacial shear stresses rather than by a fracture mechanism as sometimes suggested in earlier work. A mechanical model of this stretching and sliding failure phenomenon is presented which treats the fibril as a nonlinear elastic or viscoelastic rod and the foot as an elastic layer subject to a friction force proportional to the local displacement rate. The force on the stretched rod drives the sliding of the foot against the substrate. The main experimental parameter controlling the failure strain and stress during the sliding process is identified by the model as the normalized probe pull speed, which also depends on the magnitude of the friction and PSA modulus. In addition, the material properties, viscoelasticity and finite extensibility of the polymer chains, are shown to have an important effect on both the details of the sliding process and the ultimate failure strain and stress. Appendix B is only available in electronic form at 10.1140/epje/i2007-10287-y and are accessible for authorised users.

  16. Permeability of Dentine

    PubMed Central

    Ghazali, Farid Bin Che

    2003-01-01

    This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it. PMID:23365497

  17. Single, stretched membrane, structural module experiments

    SciTech Connect

    Wood, R.L.

    1986-02-01

    This report describes tests done on stretched-membrane heliostats used to reflect solar radiation onto a central receiver. The tests were used to validate prior analysis and mathematical models developed to describe module performance. The modules tested were three meters in diameter and had reflective polymer film laminated to the membrane. The frames were supported at three points equally spaced around the ring. Three modules were pneumatically attached with their weight suspended at the bottom support, two were pneumatically attached with their weight suspended from the upper mounts, and one was rigidly attached with its weight suspended at the bottom mount. By varying the membrane tension we could simulate a uniform wind loading normal to the mirror's surface. A video camera 15+ meters away from the mirror recorded the virtual image of a target grid as reflected by the mirrors' surface. The image was digitized and stored on a microcomputer. Using the law of reflection and analytic geometry, we computed the surface slopes of a sampling of points on the surface. The dominant module response was consistent with prior SERI analyses. The simple analytical model is quite adequate for designing and sizing single-membrane modules if the initial imperfections and their amplification are appropriately controlled. To avoid potential problems resulting from the fundamentally n = 2 deformation phenomena, we advise using either relatively stiffer ring frames or more than three support points.

  18. Decorrelation Stretch Near Cerberus Fossae

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 25, 2004 On this image you can see two infrared frames of the same area on Mars. One of the images (in black and white) represents a single wavelength or band of the THEMIS IR instrument, while the other image (in false color) represents 3 different bands. The image with the various colors was created with a technique called Decorrelation Stretch (DCS). In this technique individual bands of the THEMIS IR instrument are stretched to better show compositional variations throughout the whole range. After the bands are stretched they are overlayed on one another and colors are assigned to each band. This makes up the colors in the image.

    As you can see, there is a difference in what is noticable in the single band IR image versus the false-colored one. On the color image the pink/magenta colors usually represent basaltic content, cyan often indicates the presence of water ice clouds, while green can represent dust.

    The bright purple and pink colors associated with the valley are due to basalt. There may be a thin veneer of dust present in the region (it was a dark colored region during the Viking mission in the 1970's) through which the basaltic material pokes out along the edges of the valley and the nearby knobby terrain.

    Image information: IR instrument. Latitude 10.7, Longitude 163 East (197 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  19. Cell reorientation under cyclic stretching.

    PubMed

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-01-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations--cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell's passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity. PMID:24875391

  20. Cell reorientation under cyclic stretching

    NASA Astrophysics Data System (ADS)

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-05-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations—cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.

  1. Study on stretching effect of multiple die forming technology

    NASA Astrophysics Data System (ADS)

    Park, Ji-woo; Kim, Jeong; Kang, Beom-soo

    2013-12-01

    The multiple die forming (MDF) technology is suitable for flexible manufacturing, and it affords several advantages including its applicability to various forming processes such as single-curved surface forming, and double-curved surface forming. In sheet metal forming process, the elastic recovery has become a problem. Therefore, the stretch forming process is applied MDF technology to reduce elastic recovery effect. Numerical simulation is carried out for a saddle-type surface forming using ABAQUS. Every simulation case performs spring-back analysis to find elastic recovery effect after forming simulation. In this simulation, urethane pads are defined based on a hyperelastic material model as a cushion for the smoothness of forming surface. The elastic recovery deformation behavior is also investigated to consider the exact result after the last forming process, and then, the actual experiments are performed to confirm the formability of this forming process. By comparing the simulation and the experimental results, the tendency of the decreased amount of elastic recovery from the application of stretch process is verified. Consequently, it is confirmed that the multiple die stretch forming process has the capability and feasibility of being used to manufacture the curved surfaces of sheet metal.

  2. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  3. Polymer nanocomposites: permeability, chain dynamics, mechanical properties

    NASA Astrophysics Data System (ADS)

    Sahu, Laxmi

    2005-03-01

    Polymer nanocomposites based on dispersion of surfactant treated expandable smectite clays such as montmorillonite layered silicates (MLS) have shown promise as organic-inorganic hybrids with the potential to improve barrier properties. Separately, flexible displays based on plastic substrates have reduced lifetimes tied to the low barrier properties. While there has been a general attribution of improved barrier properties to the tortuous path, this does not consider the influence the introduction of a secondary filler has on the morphology of the host polymer. Here we examine the influence of MLS nanoplatelets on the barrier properties and chain dynamics of polymers. We investigate the potential for host polymer modification by comparing two crystallizable polymers nylon and PET and resulting well dispersed nanocomposites. We study mechanical, cyclic fatigue and permeability of films. Permeability of the biaxially stretched film and when the film undergoes fatigue of 50 and 10000 cycles are also measured. Chain dynamics were modeled based on the Burger model fit to creep-recovery data. A systematic approach to predict the permeability considering amorphous, crystalline and MLS content and comparison with experimental values were done. We also conducted water absorption measurements to highlight the water absorption differences in the two polymers. Dimensional stability of PET was studied by measuring coefficient of thermal expansion of thin film on Si substrate by ellipsometry method.

  4. Quasiclassical trajectory study of the effect of antisymmetric stretch mode excitation on the O({sup 3}P) + CH{sub 4}(ν{sub 3} = 1) → OH + CH{sub 3} reaction on an analytical potential energy surface. Comparison with experiment

    SciTech Connect

    Monge-Palacios, M.; González-Lavado, E.; Espinosa-Garcia, J.

    2014-09-07

    Motivated by a recent crossed-beam experiment on the title reaction reported by Pan and Liu [J. Chem. Phys. 140, 191101 (2014)], a detailed dynamics study was performed at three collision energies using quasiclassical trajectory (QCT) calculations based on a full-dimensional potential energy surface recently developed by our group (PES-2014). Although theory/experiment agreement is not yet quantitative, in general the theoretical results reproduce the experimental evidence: the vibrational branching ratio of OH(v = 1)/OH(v = 0) is ∼0.8/0.2, excitation of the antisymmetric CH stretching mode in methane increases reactivity by factor 2.28–1.50, although an equivalent amount as translational energy is more efficient in promoting the reaction and, finally, product angular distribution shifts from backward in the CH{sub 4}(ν = 0) ground-state to sideways when the antisymmetric CH stretching mode is excited. These results give confidence to the PES-2014 surface, depend on the quantization procedure used, are comparable with recent QCT calculations or improve previous theoretical studies using a different surface, and demonstrate the utility of the theory/experiment collaboration.

  5. Reinforcement for Stretch Formed Sheet Metal

    NASA Technical Reports Server (NTRS)

    Lea, J. B.; Baxter, C. R.

    1983-01-01

    Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.

  6. Stretching Impacts Inflammation Resolution in Connective Tissue.

    PubMed

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J; Colas, Romain A; Spite, Matthew; Serhan, Charles N; Langevin, Helene M

    2016-07-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 min twice daily reduced inflammation and improved pain, 2 weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch versus no stretch for 48 h, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184

  7. Mass Spectrometry Imaging Using the Stretched Sample Approach

    PubMed Central

    Zimmerman, Tyler A.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) can determine tissue localization for a variety of analytes with high sensitivity, chemical specificity, and spatial resolution. MS image quality typically depends on the MALDI matrix application method used, particularly when the matrix solution or powder is applied directly to the tissue surface. Improper matrix application results in spatial redistribution of analytes and reduced MS signal quality. Here we present a stretched sample imaging protocol that removes the dependence of MS image quality on the matrix application process and improves analyte extraction and sample desalting. First, the tissue sample is placed on a monolayer of solid support beads that are embedded in a hydrophobic membrane. Stretching the membrane fragments the tissue into thousands of nearly single-cell sized islands, with the pieces physically isolated from each other by the membrane. This spatial isolation prevents analyte transfer between beads, allowing for longer exposure of the tissue fragments to the MALDI matrix, thereby improving detectability of small analyte quantities without sacrificing spatial resolution. When using this method to reconstruct chemical images, complications result from non-uniform stretching of the supporting membrane. Addressing this concern, several computational tools enable automated data acquisition at individual bead locations and allow reconstruction of ion images corresponding to the original spatial conformation of the tissue section. Using mouse pituitary, we demonstrate the utility of this stretched imaging technique for characterizing peptide distributions in heterogeneous tissues at nearly single-cell resolution. PMID:20680608

  8. Brine network structural metamorphosis and sea ice bottom layer permeability change induced by sea water penetration under a surface pressure field

    NASA Astrophysics Data System (ADS)

    Hudier, E. J.

    2013-12-01

    Sea ice presents two roughness scales: one in the millimetre range and the other up to several meters due to ridging. The larger roughness elements are the result of compression and sheer, causing ice blocks to pile up and down at the line of contact between converging ice floes. In terms of boundary limit dynamic, they create obstacles that induce, in their wake, a pressure gradient at the ice water interface. Sea ice is a porous medium and as such, is permeable when subject to pressure gradients. Models have shown that, at spring, when ice permeability increases, sea water can be forced through the ice water interface into the bottom ice layer while brine is pumped out of it under obstacle induced pressure gradients. These results suggest that ice ocean heat budgets have to include a porous flow component and its associated latent heat import/export caused by through volume melting/thawing inside the bottom ice layer subject to sea water infiltration. With the initiation of a melt/thaw dynamic within the porous bottom ice layer, the porous network restructures. Our research show an enlargement of the larger brine channels while smaller ones close due ice growth. Similarly, ice volume of smaller cross size tend to disappear while larger ones evolve slowly. As heat fluxes due to latent heat exchanges become several orders of magnitude larger than any other exterior forcing, such as radiation, heat budgets within ice individual volumes balance fluxes in and out caused by melting/thaw on channel walls. Our simulations were run from an early spring C shape temperature profile to an isothermal state showing that structural change becomes significant only after the temperature profile becomes positive upward.

  9. Strategy as stretch and leverage.

    PubMed

    Hamel, G; Prahalad, C K

    1993-01-01

    Global competition is not just product versus product or company versus company. It is mind-set versus mind-set. Driven to understand the dynamics of competition, we have learned a lot about what makes one company more successful than another. But to find the root of competitiveness--to understand why some companies create new forms of competitive advantage while others watch and follow--we must look at strategic mind-sets. For many managers, "being strategic" means pursuing opportunities that fit the company's resources. This approach is not wrong, Gary Hamel and C.K. Prahalad contend, but it obscures an approach in which "stretch" supplements fit and being strategic means creating a chasm between ambition and resources. Toyota, CNN, British Airways, Sony, and others all displaced competitors with stronger reputations and deeper pockets. Their secret? In each case, the winner had greater ambition than its well-endowed rivals. Winners also find less resource-intensive ways of achieving their ambitious goals. This is where leverage complements the strategic allocation of resources. Managers at competitive companies can get a bigger bang for their buck in five basic ways: by concentrating resources around strategic goals; by accumulating resources more efficiently; by complementing one kind of resource with another; by conserving resources whenever they can; and by recovering resources from the market-place as quickly as possible. As recent competitive battles have demonstrated, abundant resources can't guarantee continued industry leadership.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10124635

  10. Mars Under the Microscope (stretched)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured on the 10th day, or sol, of the rover's mission by its microscopic imager, located on the instrument deployment device, or 'arm.' Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'

    The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

    This stretched color composite was obtained by merging images acquired with the orange-tinted dust cover open and closed. The varying hints of orange suggest differences in mineral composition. The blue tint at the lower right corner is a tag used by scientists to indicate that the dust cover is closed.

  11. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    PubMed

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  12. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults. PMID:16810253

  13. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture.

    PubMed

    Arold, Stephen P; Bartolák-Suki, Erzsébet; Suki, Béla

    2009-04-01

    Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hypothesis that variable stretch patterns imparted on the AEII cells results in enhanced surfactant secretion. AEII cells isolated from rat lungs were exposed to equibiaxial strains of 12.5, 25, or 50% change in surface area (DeltaSA) at 3 cycles/min for 15, 30, or 60 min. (3)H-labeled phosphatidylcholine release and cell viability were measured 60 min following the onset of stretch. Whereas secretion increased following 15-min stretch at 50% DeltaSA and 30-min stretch at 12.5% DeltaSA, 60 min of cyclic stretch diminished surfactant secretion regardless of strain. When cells were stretched using a variable strain profile in which the amplitude of each stretch was randomly pulled from a uniform distribution, surfactant secretion was enhanced both at 25 and 50% mean DeltaSA with no additional cell injury. Furthermore, at 50% mean DeltaSA, there was an optimum level of variability that maximized secretion implying that mechanotransduction in these cells exhibits a phenomenon similar to stochastic resonance. These results suggest that application of variable stretch may enhance surfactant secretion, possibly reducing the risk of ventilator-induced lung injury. Variable stretch-induced mechanotransduction may also have implications for other areas of mechanobiology. PMID:19136581

  14. Unilateral Plantar Flexors Static-Stretching Effects on Ipsilateral and Contralateral Jump Measures

    PubMed Central

    da Silva, Josinaldo Jarbas; Behm, David George; Gomes, Willy Andrade; Silva, Fernando Henrique Domingues de Oliveira; Soares, Enrico Gori; Serpa, Érica Paes; Vilela Junior, Guanis de Barros; Lopes, Charles Ricardo; Marchetti, Paulo Henrique

    2015-01-01

    The aim of this study was to evaluate the acute effects of unilateral ankle plantar flexors static-stretching (SS) on the passive range of movement (ROM) of the stretched limb, surface electromyography (sEMG) and single-leg bounce drop jump (SBDJ) performance measures of the ipsilateral stretched and contralateral non-stretched lower limbs. Seventeen young men (24 ± 5 years) performed SBDJ before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) unilateral ankle plantar flexor SS (6 sets of 45s/15s, 70-90% point of discomfort). SBDJ performance measures included jump height, impulse, time to reach peak force, contact time as well as the sEMG integral (IEMG) and pre-activation (IEMGpre-activation) of the gastrocnemius lateralis. Ankle dorsiflexion passive ROM increased in the stretched limb after the SS (pre-test: 21 ± 4° and post-test: 26.5 ± 5°, p < 0.001). Post-stretching decreases were observed with peak force (p = 0.029), IEMG (P<0.001), and IEMGpre-activation (p = 0.015) in the stretched limb; as well as impulse (p = 0.03), and jump height (p = 0.032) in the non-stretched limb. In conclusion, SS effectively increased passive ankle ROM of the stretched limb, and transiently (less than 10 minutes) decreased muscle peak force and pre-activation. The decrease of jump height and impulse for the non-stretched limb suggests a SS-induced central nervous system inhibitory effect. Key points When considering whether or not to SS prior to athletic activities, one must consider the potential positive effects of increased ankle dorsiflexion motion with the potential deleterious effects of power and muscle activity during a simple jumping task or as part of the rehabilitation process. Since decreased jump performance measures can persist for 10 minutes in the stretched leg, the timing of SS prior to performance must be taken into consideration. Athletes, fitness enthusiasts and therapists should

  15. Nanochannel flow past permeable walls via molecular dynamics

    NASA Astrophysics Data System (ADS)

    Xie, Jian-Fei; Cao, Bing-Yang

    2016-07-01

    The nanochannel flow past permeable walls with nanopores is investigated by molecular dynamics (MD) simulations, including the density distribution, velocity field, molecular penetration mechanism and surface friction coefficient. A low density distribution has been found at the gas-wall interface demonstrating the low pressure region. In addition, there exists a jump of the gas density on the permeable surface, which indicates the discontinuity of the density distribution across the permeable surface. On the other hand, the nanoscale vortices are observed in nanopores of the permeable wall, and the reduced mass flux of the flow in nanopores results in a shifted hydrodynamic boundary above the permeable surface. Particularly the slip length of the gas flow on the permeable surface is pronounced a non-linear function of the molecular mean free path, which produces a large value of the tangential momentum accommodation coefficient (TMAC) and a big portion of the diffusive refection. Moreover, the gas-gas interaction and multi-collision among gas molecules may take place in nanopores, which contribute to large values of TMAC. Consequently the boundary friction coefficient on the permeable surface is increased because of the energy dissipation consumed by the nanoscale vortices in nanopores. The molecular boundary condition provides us with a new picture of the nanochannel flow past the permeable wall with nanopores.

  16. Studies on water transport through the sweet cherry fruit surface. 11. FeCl3 decreases water permeability of polar pathways.

    PubMed

    Weichert, Holger; Knoche, Moritz

    2006-08-23

    The effect of FeCl3 (10 mM) on osmotic water uptake into detached sweet cherry fruit (Prunus avium L.) and on the (3)H2O permeability (P(d)) of excised exocarp segments (ES) or enzymatically isolated cuticular membranes (CM) was investigated. ES or CM were mounted in an infinite dose diffusion system, where diffusion is monitored from a dilute donor solution through an interfacing ES or CM into a receiver solution under quasi steady-state conditions. In the absence of FeCl3, (3)H2O diffusion through stomatous ES was linear over time, indicating that P(d) was constant. Adding FeCl3 to the donor decreased P(d) by about 60%. P(d) remained at a decreased level when replacing the FeCl3 donor again by deionized water. The decrease in P(d) was positively and linearly related to the stomatal density of the ES. There was no effect of FeCl3 on the P(d) of astomatous sweet cherry fruit ES or CM regardless of the presence of wax (epicuticular or cuticular). FeCl3 decreased P(d) when added to the donor (-63%) or receiver (-16%), but there was no effect when it was added to donor and receiver solutions simultaneously. The decrease in P(d) depended on the pH of the receiver and the presence of citrate buffer. There was no effect of FeCl3 with citrate buffer as a receiver regardless of pH (range 2.0-6.0). When using nonbuffered receiver solutions with pH adjusted to pH 2.0, 3.0, 4.5, or 6.0, FeCl3 markedly decreased (3)H2O diffusion at pH > or = 3 but had no effect at pH 2.0. FeCl3 increased the energy of activation (E(a)) for (3)H2O diffusion (range 15-45 degrees C) through stomatous ES but had no significant effect in astomatous CM. The increase in E(a) by FeCl3 was positively related to stomatal density. FeCl3 decreased the P(d) for 2-(1-naphthyl)[1-(14)C]acetic acid (NAA) and 2,4-dichloro[U-(14)C]phenoxyacetic acid (2,4-D) in stomatous ES. The magnitude of the effect depended on the degree of dissociation and was larger for the dissociated acids (pH 6.2) than for the

  17. Stretch induced hyperexcitability of mice callosal pathway

    PubMed Central

    Fan, Anthony; Stebbings, Kevin A.; Llano, Daniel A.; Saif, Taher

    2015-01-01

    Memory and learning are thought to result from changes in synaptic strength. Previous studies on synaptic physiology in brain slices have traditionally been focused on biochemical processes. Here, we demonstrate with experiments on mouse brain slices that central nervous system plasticity is also sensitive to mechanical stretch. This is important, given the host of clinical conditions involving changes in mechanical tension on the brain, and the normal role that mechanical tension plays in brain development. A novel platform is developed to investigate neural responses to mechanical stretching. Flavoprotein autofluoresence (FA) imaging was employed for measuring neural activity. We observed that synaptic excitability substantially increases after a small (2.5%) stretch was held for 10 min and released. The increase is accumulative, i.e., multiple stretch cycles further increase the excitability. We also developed analytical tools to quantify the spatial spread and response strength. Results show that the spatial spread is less stable in slices undergoing the stretch-unstretch cycle. FA amplitude and activation rate decrease as excitability increases in stretch cases but not in electrically enhanced cases. These results collectively demonstrate that a small stretch in physiological range can modulate neural activities significantly, suggesting that mechanical events can be employed as a novel tool for the modulation of neural plasticity. PMID:26300729

  18. Stretch due to Penile Prosthesis Reservoir Migration

    PubMed Central

    Baten, E.; Vandewalle, T.; van Renterghem, K.

    2016-01-01

    A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch. PMID:26793592

  19. Reflectors Made from Membranes Stretched Between Beams

    NASA Technical Reports Server (NTRS)

    Dooley, Jennifer; Dragovan, Mark; Tolomeo, Jason

    2009-01-01

    Lightweight cylindrical reflectors of a proposed type would be made from reflective membranes stretched between pairs of identically curved and identically oriented end rails. In each such reflector, the curvature of the two beams would define the reflector shape required for the intended application. For example, the beams could be curved to define a reflector of parabolic cross section, so that light incident along the axis of symmetry perpendicular to the cylindrical axis would be focused to a line. In addition, by applying suitable forces to the ends of the beams, one could bend the beams to adjust the reflector surface figure to within a precision of the order of the wavelength of the radiation to be reflected. The figure depicts an example of beams shaped so that in the absence of applied forces, each would be flat on one side and would have a radius of curvature R on the opposite side. Alternatively, the curvature of the reflector-membrane side could be other than circular. In general, the initial curvature would be chosen to optimize the final reflector shape. Then by applying forces F between the beam ends in the positions and orientations shown in the figure, one could bend beams to adjust their shape to a closer approximation of the desired precise circular or noncircular curvature.

  20. Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility

    PubMed Central

    Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad

    2015-01-01

    [Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups. PMID:25729210

  1. Stretch reflex oscillations and essential tremor.

    PubMed Central

    Elble, R J; Higgins, C; Moody, C J

    1987-01-01

    Using a computer-controlled torque motor and manipulandum, 50 ms torque pulses and 70 second trains of binary pseudorandom torque disturbances were applied to the wrists of 10 adult controls and 22 patients with essential tremor in order to study the interaction between mechanically-induced stretch-reflex oscillations and essential tremor. These two oscillations were separated by applying inertial and spring loads to the wrist. There was no evidence of increased or unstable stretch-reflex activity in the essential tremor patients, and stretch-reflex latencies did not correlate with the frequency of essential tremor. Essential tremor and mechanically-induced stretch-reflex oscillations are separate phenomena capable of complex interaction. PMID:3612149

  2. Investing in a Large Stretch Press

    NASA Technical Reports Server (NTRS)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  3. Crack opening stretch in a plate of finite width

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1974-01-01

    The problem of a uniaxially stressed plate of finite width containing a centrally located damage zone is considered. It is assumed that the flaw may be represented by a part-through crack perpendicular to the plate surface, the net ligaments in the plane of the crack and through-the-thickness narrow strips ahead of the crack ends are fully yielded, and in the yielded sections the material may carry only a constant normal traction with magnitude equal to the yield strength. The problem is solved by neglecting the bending effects and the crack opening stretches at the center and the ends of the crack are obtained. Some applications of the results are indicated by using the concepts of critical crack opening stretch and constant slope plastic instability.

  4. Crack opening stretch in a plate of finite width

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1975-01-01

    The problem of a uniaxially stressed plate of finite width containing a centrally located damage zone is considered. It is assumed that the flaw may be represented by a part-through crack perpendicular to the plate surface, the net ligaments in the plane of the crack and through-the-thickness narrow strips ahead of the crack ends are fully yielded, and in the yielded sections the material may carry only a constant normal traction with magnitude equal to the yield strength. The problem is solved by neglecting the bending effects and the crack opening stretches at the center and the ends of the crack are obtained. Some applications of the results are indicated by using the concepts of critical crack opening stretch and constant slope plastic instability.

  5. The Permeable Classroom.

    ERIC Educational Resources Information Center

    Sandy, Leo R.

    1998-01-01

    Discusses the concept of permeability as knowledge flow into and out of the classroom and applies it to three college courses taught by the author at Plymouth State College (New Hampshire). Experiential knowledge comes into the classroom through interviews, guest speakers, and panel presentations, and flows out through service-learning students…

  6. Reduced hydrogen permeability at high temperatures

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Klopp, W. D.; Misencik, J. A.

    1981-01-01

    CO and CO2 reduce hydrogen loss through iron, nickel, and cobalt based alloy tubes. Method is based on concept that oxide film on metal surface reduces hydrogen permeability through metal; adding CO or CO2 forms oxide films continuously during operation, and hydrogen containment is improved. Innovation enhances prospects for Stirling engine system utilization.

  7. Growth on demand: Reviewing the mechanobiology of stretched skin

    PubMed Central

    Zöllner, Alexander M.; Holland, Maria A.; Honda, Kord S.; Gosain, Arun K.; Kuhl, Ellen

    2013-01-01

    Skin is a highly dynamic, autoregulated, living system that responds to mechanical stretch through a net gain in skin surface area. Tissue expansion uses the concept of controlled overstretch to grow extra skin for defect repair in situ. While the short-term mechanics of stretched skin have been studied intensely by testing explanted tissue samples ex vivo, we know very little about the long-term biomechanics and mechanobiology of living skin in vivo. redHere we explore the long-term effects of mechanical stretch on the characteristics of living skin using a mathematical model for skin growth. We review the molecular mechanisms by which skin responds to mechanical loading and model their effects collectively in a single scalar-valued internal variable, the surface area growth. redThis allows us to adopt a continuum model for growing skin based on the multiplicative decomposition of the deformation gradient into a reversible elastic and an irreversible growth part.redTo demonstrate the inherent modularity of this approach, we implement growth as a user-defined constitutive subroutine into the general purpose implicit finite element program Abaqus/Standard. To illustrate the features of the model, we simulate the controlled area growth of skin in response to tissue expansion with multiple filling points in time. Our results demonstrate that the field theories of continuum mechanics can reliably predict the manipulation of thin biological membranes through mechanical overstretch. Our model could serve as a valuable tool to rationalize clinical process parameters such as expander geometry, expander size, filling volume, filling pressure, and inflation timing to minimize tissue necrosis and maximize patient comfort in plastic and reconstructive surgery. While initially developed for growing skin, our model can easily be generalized to arbitrary biological structures to explore the physiology and pathology of stretch-induced growth of other living systems such as hearts

  8. Scales of rock permeability

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Gavrilenko, P.; Le Ravalec, M.

    1996-05-01

    Permeability is a transport property which is currently measured in Darcy units. Although this unit is very convenient for most purposes, its use prevents from recognizing that permeability has units of length squared. Physically, the square root of permeability can thus be seen as a characteristic length or a characteristic pore size. At the laboratory scale, the identification of this characteristic length is a good example of how experimental measurements and theoretical modelling can be integrated. Three distinct identifications are of current use, relying on three different techniques: image analysis of thin sections, mercury porosimetry and nitrogen adsorption. In each case, one or several theoretical models allow us to derive permeability from the experimental data (equivalent channel models, statistical models, effective media models, percolation and network models). Permeability varies with pressure and temperature and this is a decisive point for any extrapolation to crustal conditions. As far as pressure is concerned, most of the effect is due to cracks and a model which does not incorporate this fact will miss its goal. Temperature induced modifications can be the result of several processes: thermal cracking (due to thermal expansion mismatch and anisotropy, or to fluid pressure build up), and pressure solution are the two main ones. Experimental data on pressure and temperature effects are difficult to obtain but they are urgently needed. Finally, an important issue is: up to which point are these small scale data and models relevant when considering formations at the oil reservoir scale, or at the crust scale? At larger scales the identification of the characteristic scale is also a major goal which is examined.

  9. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  10. Cyclic stretch disrupts apical junctional complexes in Caco-2 cell monolayers by a JNK-2-, c-Src-, and MLCK-dependent mechanism

    PubMed Central

    Samak, Geetha; Gangwar, Ruchika; Crosby, Lynn M.; Desai, Leena P.; Wilhelm, Kristina; Waters, Christopher M.

    2014-01-01

    The intestinal epithelium is subjected to various types of mechanical stress. In this study, we investigated the impact of cyclic stretch on tight junction and adherens junction integrity in Caco-2 cell monolayers. Stretch for 2 h resulted in a dramatic modulation of tight junction protein distribution from a linear organization into wavy structure. Continuation of cyclic stretch for 6 h led to redistribution of tight junction proteins from the intercellular junctions into the intracellular compartment. Disruption of tight junctions was associated with redistribution of adherens junction proteins, E-cadherin and β-catenin, and dissociation of the actin cytoskeleton at the actomyosin belt. Stretch activates JNK2, c-Src, and myosin light-chain kinase (MLCK). Inhibition of JNK, Src kinase or MLCK activity and knockdown of JNK2 or c-Src attenuated stretch-induced disruption of tight junctions, adherens junctions, and actin cytoskeleton. Paracellular permeability measured by a novel method demonstrated that cyclic stretch increases paracellular permeability by a JNK, Src kinase, and MLCK-dependent mechanism. Stretch increased tyrosine phosphorylation of occludin, ZO-1, E-cadherin, and β-catenin. Inhibition of JNK or Src kinase attenuated stretch-induced occludin phosphorylation. Immunofluorescence localization indicated that phospho-MLC colocalizes with the vesicle-like actin structure at the actomyosin belt in stretched cells. On the other hand, phospho-c-Src colocalizes with the actin at the apical region of cells. This study demonstrates that cyclic stretch disrupts tight junctions and adherens junctions by a JNK2, c-Src, and MLCK-dependent mechanism. PMID:24722904