Science.gov

Sample records for perovskite molybdates ba1-xkxmoo3

  1. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil

    PubMed Central

    Tomatsu, Hajime; Takano, Junpei; Takahashi, Hideki; Watanabe-Takahashi, Akiko; Shibagaki, Nakako; Fujiwara, Toru

    2007-01-01

    Molybdenum (Mo) is a trace element essential for living organisms, however no molybdate transporter has been identified in eukaryotes. Here, we report the identification of a molybdate transporter, MOT1, from Arabidopsis thaliana. MOT1 is expressed in both roots and shoots, and the MOT1 protein is localized, in part, to plasma membranes and to vesicles. MOT1 is required for efficient uptake and translocation of molybdate and for normal growth under conditions of limited molybdate supply. Kinetics studies in yeast revealed that the Km value of MOT1 for molybdate is ≈20 nM. Furthermore, Mo uptake by MOT1 in yeast was not affected by coexistent sulfate, and MOT1 did not complement a sulfate transporter-deficient yeast mutant strain. These data confirmed that MOT1 is specific for molybdate and that the high affinity of MOT1 allows plants to obtain scarce Mo from soil. PMID:18003916

  2. Molybdate Coatings for Protecting Aluminum Against Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  3. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    NASA Astrophysics Data System (ADS)

    Wang, Guixiang; Zhang, Milin; Wu, Ruizhi

    2012-01-01

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  4. Vanadate, molybdate and tungstate for orthomolecular medicine.

    PubMed

    Matsumoto, J

    1994-09-01

    Recent studies indicate that oxyanions, such as vanadate (V) or vanadyl (IV), cause insulin-like effects on rats by stimulating the insulin receptor tyrosine kinase. Tungstate (VI) and molybdate (VI) show the same effects on rat adipocytes and hepatocytes. Results of uncontrolled trials on volunteers accumulated in Japan also suggest that tungstate effectively regulates diabetes mellitus without detectable side effects. Since these oxyanions naturally exist in organisms, oxyanion therapy, the oral administration of vanadate, vanadyl, molybdate, or tungstate, can be considered to be orthomolecular medicine. Therefore, these oxyanions may provide a viable alternative to chemotherapy. Many diseases in addition to diabetes mellitus might also be treated since the implication of these results is that tyrosine kinases are involved in a variety of diseases. PMID:7815975

  5. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  6. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  7. Facile chemical synthesis and structure characterization of copper molybdate nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Khalilian-Shalamzari, Morteza

    2015-03-01

    Experimental parameters of a synthesis route were optimized by Taguchi robust design for the facile and controllable synthesis of copper molybdate nanoparticles. CuMoO4 nanoparticles were synthesized by chemical precipitation followed by hydrothermal process. Effects of different parameters of synthesis procedure, i.e. concentrations of both reagents, copper feeding flow rate and temperature of reactor on the particle size of prepared copper molybdate nanoparticles were investigated. The results of statistical optimization revealed that the size of copper molybdate particles is dependent on the procedure variables involving copper concentrations, flow rate and temperature of the reactor; while, molybdate concentration has a no considerable role in determining the size of CuMoO4 particles. Based on the results obtained by statistical optimization process, the nanoparticles of copper molybdate were prepared and then their structure and chemical composition were characterized by various techniques, i.e. SEM, TEM, XRD, EDX, FT-IR, UV-Vis and photoluminescence spectroscopy.

  8. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  9. Adsorption of molybdate on molybdate-imprinted chitosan/triethanolamine gel beads.

    PubMed

    Zhang, Liang; Xue, Juanqin; Zhou, Xingwen; Fei, Xiang; Wang, Yang; Zhou, Yuanzhen; Zhong, Lvling; Han, Xuanli

    2014-12-19

    Mo (VI)-imprinted chitosan (CTS)/triethanolamine (TEA) gel beads (Mo (VI)-ICTGBs) (ICTGBs=imprinted chitosan triethanolamine gel beads) were prepared by using ion-imprinted technology, in which TEA and molybdate solution were used in coagulation bath. The spectrum of FT-IR implies that bonding are formed between TEA and the primary hydroxyl of CTS, and ion gel reaction happen between CTS and molybdate; XRD patterns also prove the change among CTS, TEA and molybdate. SEM images and N2 adsorption show that the surface area increases obviously after eluting Mo (VI) ions. The adsorption isotherm of Mo (VI)-ICTGBs imply that the adsorption process is according with Freundlich model. Adsorption kinetics suggests that the pseudo-second order adsorption mechanism is predominant for this adsorbent system of Mo (VI)-ICTGBs. The Mo (VI)-ICTGBs show high adsorption capacity and good selectivity for Mo (VI) anions in the coexistence system at pH=6.0. The Mo (VI)-ICTGBs have a good application prospect, because it is with a simple and rapid technique and good durance. PMID:25263921

  10. Method for controlling corrosion using molybdate compositions

    SciTech Connect

    Boffardi, B.P.; Rey, S.P.

    1989-01-17

    A method is described for inhibiting corrosion in an aqueous system comprising adding to the system an effective amount of a corrosion inhibiting composition comprising: (a) a molybdate ion source; and (b) a water-soluble component selected from the group consisting of polymaleic anhydride; amine adducts of polymaleic anhydride; polymers prepared by polymerizing maleic anhydride with dimethyl diallyl ammonium chloride or homologs thereof; polymers prepared from 50-70%, by weight, acrylic acid or methacrylic acid, 10-40%, by weight, 2-acrylamido-2-methylpropyl sulfonic acid or 2-methyacrylamido-2-methylpropyl sulfonic acid and 10-30%, by weight, of a polyalkyleneoxide compound; salts of the above described polymers; phosphonates selected from the group consisting of 2-phosnphonobutane-1,2,4 tricarboxylic acid and hydroxyphosphono acetic acid; phosphino carboxylic acids; polyphosphoric acid and polyhydroxy esters of polyphosphoric acid; wherein the weight of (a):(b), on an active basis, ranges from about 10:1 to about 1:10.

  11. Comparative study of the synthesis of layered transition metal molybdates

    SciTech Connect

    Mitchell, S.; Gomez-Aviles, A.; Gardner, C.; Jones, W.

    2010-01-15

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT{sub 2}(OH)(MoO{sub 4}){sub 2}.H{sub 2}O, where A=NH{sub 4}{sup +}, Na{sup +} or K{sup +}. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products. - Graphical abstract: Mixed metal oxides (MMOs) derived from layered double hydroxide precursors differ in their reactivity on exposure to aqueous molybdate containing solutions. We investigate the influence of the molybdate source, the rehydration pH and the ratio of T/Mo on the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates of general formula AT{sub 2}(OH)(MoO{sub 4}){sub 2}.H{sub 2}O (where A{sup +}=NH{sub 4}{sup +}, K{sup +} or Na{sup +}).

  12. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    PubMed Central

    Ahmad, S. A.; Shukor, M. Y.; Shamaan, N. A.; Mac Cormack, W. P.; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  13. Molybdate reduction to molybdenum blue by an Antarctic bacterium.

    PubMed

    Ahmad, S A; Shukor, M Y; Shamaan, N A; Mac Cormack, W P; Syed, M A

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  14. Molybdate adsorption from steel slag eluates by subsoils.

    PubMed

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils. PMID:23973286

  15. Statistical optimization of synthesis procedure and characterization of europium (III) molybdate nano-plates

    NASA Astrophysics Data System (ADS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Fazli, Yousef; Mohammad-Zadeh, Mohammad

    2015-06-01

    Europium (III) molybdate nano-plates were synthesized in this work via chemical precipitation route involving adding of europium (III) ion solution to the aqueous solution of molybdate reagent. Effects of some reaction variables such as concentrations of europium and molybdate ions, flow rate of europium reagent, and reactor temperature on the diameter of the synthesized europium (III) molybdate nano-plates were experimentally investigated by orthogonal array design. The results showed that the size of europium (III) molybdate nano-plates can be optimized by adjusting the concentrations of europium (III) and molybdate ions, as well as the reactional temperature. Europium (III) molybdate nano-plates prepared under the optimum conditions were characterized by X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy.

  16. Comparative study of the synthesis of layered transition metal molybdates

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Gómez-Avilés, A.; Gardner, C.; Jones, W.

    2010-01-01

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs ( T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT2(OH)(MoO 4) 2·H 2O, where A=NH 4+, Na + or K +. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products.

  17. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    PubMed

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices. PMID:27228558

  18. Corrosion study of stainless steel SS304L in molten molybdates

    NASA Astrophysics Data System (ADS)

    Usami, T.; Uruga, K.; Tsukada, T.; Miura, Y.; Komamine, S.; Ochi, E.

    2016-04-01

    Depending on operating conditions of the vitrification process of high-level liquid waste, molten salt mainly composed of sodium and molybdenum can be generated, and poured into stainless steel canisters. In this work, the possible reaction between the molten molybdate and stainless steel was investigated using multi-component molybdate and simple Na2MoO4 - MoO3 molybdate. In the experiments using multi-component molybdates, no significant reaction is observed between the mixed molybdates and the stainless steel specimens at 700 °C in 4 h. The reaction rate of the stainless steel with the multi-component molybdate increases in proportion to exp(-1/T). The depth of the most reacted area is about 300 μm even at 1000 °C, and was much smaller than the 6 mm thickness of the canister. In the simple Na2MoO4 - MoO3 molybdate, the reaction rate was proportional to the MoO3 concentration. The essence of the reaction is oxidation of metals by Mo6+ - > Mo4+. Part of the reaction product mainly composed of Fe is dissolved into the molybdate, while the other part mainly composed of Cr sloughs and forms a banded layer.

  19. Dielectric and conducting behaviour of polycrystalline holmium octa-molybdate

    NASA Astrophysics Data System (ADS)

    Want, Basharat; Zahoor Ahmad, Bhat; Bhat, Bilal Hamid

    2014-09-01

    Polycrystalline holmium octa-molybdate spherulites have been obtained by using gel diffusion technique and characterized by different physio-chemical techniques. The surfaces of these spherulites are composed of nano-rod with an average diameter of about 80 nm. At room temperature the initial crystal structure is triclinic, space group P1. Thermal studies suggested a phase transition occurring in holmium octa-molybdate crystals at about 793 K. The electrical properties of the system have been studied as a function of frequency and temperature in the ranges of 20 Hz-3 MHz and 290-570 K, respectively. A giant dielectric constant and two loss peaks have been observed in the permittivity formalism. The conducting behaviour of the material is also discussed. The conductivity was found to be 1572 μ Ω-1 m-1 at room temperature and 3 MHz frequency. The conductivity of the polycrystalline material was attributed to the fact that it arises due to the migration of defects on the oxygen sub-lattice. Impedance studies were also performed in the frequency domain to infer the bulk and grain boundary contributions to the overall electric response of the material. The electrical responses have been attributed to the grain, grain-boundary, and interfacial effects.

  20. Role of Molybdate and Other Transition Metals in the Accumulation of Protochelin by Azotobacter vinelandii

    PubMed Central

    Cornish, Anthony S.; Page, William J.

    2000-01-01

    Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandii siderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe3+. Thus, competition between Fe3+ and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn2+, and Mn2+. We found that all five of these metal ions partially inhibited uptake of 55Fe-protochelin and 55Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase. PMID:10742245

  1. Ferroelectric ultrathin perovskite films

    DOEpatents

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  2. Changes in metabolic pathways of Desulfovibrio alaskensis G20 cells induced by molybdate excess.

    PubMed

    Nair, Rashmi R; Silveira, Célia M; Diniz, Mário S; Almeida, Maria G; Moura, Jose J G; Rivas, Maria G

    2015-03-01

    The activity of sulfate-reducing bacteria (SRB) intensifies the problems associated to corrosion of metals and the solution entails significant economic costs. Although molybdate can be used to control the negative effects of these organisms, the mechanisms triggered in the cells exposed to Mo-excess are poorly understood. In this work, the effects of molybdate ions on the growth and morphology of the SRB Desulfovibrio alaskensis G20 (DaG20) were investigated. In addition, the cellular localization, ion uptake and regulation of protein expression were studied. We found that molybdate concentrations ranging between 50 and 150 µM produce a twofold increase in the doubling time with this effect being more significant at 200 µM molybdate (five times increase in the doubling time). It was also observed that 500 µM molybdate completely inhibits the cellular growth. On the context of protein regulation, we found that several enzymes involved in energy metabolism, cellular division and metal uptake processes were particularly influenced under the conditions tested. An overall description of some of the mechanisms involved in the DaG20 adaptation to molybdate-stress conditions is discussed. PMID:25488518

  3. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13.

    PubMed

    Shukor, M Y; Rahman, M F; Shamaan, N A; Syed, M A

    2009-09-01

    Extensive use of metals in various industrial applications has caused substantial environmental pollution. Molybdenum-reducing bacteria isolated from soils can be used to remove molybdenum from contaminated environments. In this work we have isolated a local bacterium with the capability to reduce soluble molybdate to the insoluble molybdenum blue. We studied several factors that would optimize molybdate reduction. Electron donor sources such as glucose, sucrose, lactose, maltose and fructose (in decreasing efficiency) supported molybdate reduction after 24 h of incubation with optimum glucose concentration for molybdate reduction at 1.5% (w/v). The optimum pH, phosphate and molybdate concentrations, and temperature for molybdate reduction were pH 6.5, 5.0, 25 to 50 mM and 37 degrees C, respectively. The Mo-blue produced by cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Metal ions such as chromium, cadmium, copper, silver and mercury caused approximately 73, 71, 81, 77 and 78% inhibition of the molybdenum-reducing activity, respectively. All of the respiratory inhibitors tested namely rotenone, azide, cyanide and antimycin A did not show any inhibition to the molybdenum-reducing activity suggesting components of the electron transport system are not responsible for the reducing activity. The isolate was tentatively identified as Enterobacter sp. strain Dr.Y13 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. PMID:19455513

  4. Directed synthesis of noncentrosymmetric molybdates using composition space analysis.

    PubMed

    Veltman, Thomas R; Stover, Adam K; Narducci Sarjeant, Amy; Ok, Kang Min; Halasyamani, P Shiv; Norquist, Alexander J

    2006-07-10

    A systematic investigation of the factors governing the reaction product composition, hydrogen bonding, and symmetry was conducted in the MoO3/3-aminoquinuclidine/H2O system. Composition space analysis was performed through 36 individual reactions under mild hydrothermal conditions using racemic 3-aminoquinuclidine. Single crystals of three new compounds, [C7H16N2][Mo3O10] x H2O, [C7H16N2]2[Mo8O26] x H2O, and [C7H16N2]2[Mo8O26] x 4 H2O, were grown. The relative phase stabilities for these products are dependent upon the reactant mole fractions in the initial reaction gel. This phase stability information was used to direct the synthesis of two new noncentrosymmetric compounds, using either (S)-(-)-3-aminoquinuclidine dihydrochloride or (R)-(+)-3-aminoquinuclidine dihydrochloride. [(R)-C7H16N2]2[Mo8O26] and [(S)-C7H16N2]2[Mo8O26] both crystallize in the noncentrosymmetric space group P2(1) (No. 4), which has the polar crystal class 2 (C2). The second-harmonic generation activities were measured on sieved powders. The structure-directing properties of the molybdate components in each compound were determined using bond valence sums. The structures of all five compounds were determined using single-crystal X-ray diffraction. PMID:16813416

  5. Structural and spectral investigation of terbium molybdate nanophosphor

    NASA Astrophysics Data System (ADS)

    Mani, Kamal P.; Vimal, G.; Biju, P. R.; Joseph, Cyriac; Unnikrishnan, N. V.; Ittyachen, M. A.

    2015-09-01

    Terbium molybdate nanophosphors were synthesized through a facile sol-gel route. The structure of the phosphors was characterized by X-ray diffraction, Raman spectra and Fourier transform infrared spectroscopy analysis. The X-ray diffraction studies revealed that the structure of the nanophosphor gradually changes from monoclinic to orthorhombic phase as heated from 700 to 900 °C. High resolution transmission electron microscopy, SAED and EDS were also employed to characterize the size, crystallinity and composition of the samples. Detailed spectroscopic investigations were carried out by Judd-Ofelt analysis based on UV-Visible-NIR absorption and emission spectra. The luminescence spectra suggest that phosphors with orthorhombic structure have better luminescence properties than the monoclinic structure. The phosphors showed intense green emission under near-UV excitation due to the energy transfer from the host lattice to Tb3+ ions. The CIE coordinates suggest enhanced color purity for green emission and short fluorescence decay values proposes the suitability for LED applications. These phosphors can be applied as promising candidates for blue and near-UV excited WLEDs.

  6. Structural and spectral investigation of terbium molybdate nanophosphor.

    PubMed

    Mani, Kamal P; Vimal, G; Biju, P R; Joseph, Cyriac; Unnikrishnan, N V; Ittyachen, M A

    2015-09-01

    Terbium molybdate nanophosphors were synthesized through a facile sol-gel route. The structure of the phosphors was characterized by X-ray diffraction, Raman spectra and Fourier transform infrared spectroscopy analysis. The X-ray diffraction studies revealed that the structure of the nanophosphor gradually changes from monoclinic to orthorhombic phase as heated from 700 to 900 °C. High resolution transmission electron microscopy, SAED and EDS were also employed to characterize the size, crystallinity and composition of the samples. Detailed spectroscopic investigations were carried out by Judd-Ofelt analysis based on UV-Visible-NIR absorption and emission spectra. The luminescence spectra suggest that phosphors with orthorhombic structure have better luminescence properties than the monoclinic structure. The phosphors showed intense green emission under near-UV excitation due to the energy transfer from the host lattice to Tb(3+) ions. The CIE coordinates suggest enhanced color purity for green emission and short fluorescence decay values proposes the suitability for LED applications. These phosphors can be applied as promising candidates for blue and near-UV excited WLEDs. PMID:25919330

  7. Perovskite photonic sources

    NASA Astrophysics Data System (ADS)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  8. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    SciTech Connect

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W.

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  9. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA.

    PubMed

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C; Pinkett, Heather W

    2011-11-01

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus. PMID:22078568

  10. Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon.

    PubMed

    Namasivayam, C; Sangeetha, D

    2006-07-01

    Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water. PMID:16006123

  11. Sub-1 nm Nickel Molybdate Nanowires as Building Blocks of Flexible Paper and Electrochemical Catalyst for Water Oxidation.

    PubMed

    Liu, Huiling; Li, Haoyi; He, Peilei; Wang, Xun

    2016-02-24

    Sub-1 nm, extremely long nickel molybdate nanowires are synthesized based on a good/poor solvent system. The ultrathin nanowires can be hierarchically assembled into flexible, free-standing films with good mechanical properties. Compared with the large-size counterpart, nickel molybdate ultrathin nanowires display promising oxygen evolution reaction catalytic performance derived from the ultrathin feature. PMID:26724910

  12. Synthesis and investigation of uranyl molybdate UO2MoO4

    NASA Astrophysics Data System (ADS)

    Nagai, Takayuki; Sato, Nobuaki; Kitawaki, Shin-ichi; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu; Myochin, Munetaka

    2013-02-01

    In order to examine easily synthetic conditions of uranyl molybdate, UO2MoO4, used for the reprocessing process study of spent nuclear oxide fuels in alkaline molybdate melts, the uranium molybdate compounds were produced from U3O8 powder and anhydrous MoO3 reagent. The results of having investigated them in solid state by using X-ray diffractometry and Raman spectrometry, it was confirmed that UO2MoO4 could be synthesized by heating mixed powder of U3O8 and MoO3 with stoichiometric mole ratio at 770 °C for 4 h under air atmosphere. Moreover, adding this UO2MoO4 into Li2MoO4sbnd Na2MoO4 eutectic melt, most of the dissolved uranium species in the melt were observed as hexa-valent uranyl ions by absorption spectrophotometry.

  13. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    SciTech Connect

    Yadav, P. J.; Joshi, C. P.; Moharil, S. V.

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  14. Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wu, Tian; Zhang, Lieyu

    2015-12-01

    Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.

  15. Behavior of silver molybdate at high-pressure

    SciTech Connect

    Arora, A.K.; Nithya, R.; Misra, Sunasira; Yagi, Takehiko

    2012-12-15

    Behavior of cubic spinel phase of Ag{sub 2}MoO{sub 4} is investigated at high pressure using X-ray diffraction and Raman spectroscopy. The P-V data are fitted to a third order Birch-Murnaghan equation of state using a value of B{sub 0}=113 GPa and B Prime {sub 0}=4. The compound is also found to exhibit a phase transition around 5 GPa to a tetragonal structure and the two phases are found to coexist over a range of pressures. Raman spectra exhibit dramatic changes across the phase transition. Increase of X-ray background scattering and broadening of the Raman peaks associated with MoO{sub 4} tetrahedral ions in the high pressure phase suggest evolution of positional disorder. However, no evidence of pressure-induced amorphization was found up to 47 GPa. - Graphical abstract: Evolution of the integrated intensity of all the diffraction peaks between 12 and 18 degree 2{theta} as a function of pressure. The rapid decrease of the intensity suggests evolution of positional disorder in the high-pressure tetragonal phase. Highlights: Black-Right-Pointing-Pointer First in-situ X-ray diffraction and Raman study of cubic silver molybdate at high pressure. Black-Right-Pointing-Pointer Commencement of a structural transition to a tetragonal phase is found at 2.3 GPa. Black-Right-Pointing-Pointer The high-pressure phase is found to have positional disorder. Black-Right-Pointing-Pointer A bulk modulus of 113 GPa is obtained from the equation of state.

  16. Mo enrichment in black shale and reduction of molybdate by sulfate-reducing bacteria (SRB) (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, H.; Barton, L. L.

    2010-12-01

    The Lower Cambrian Black shale in Zunyi area of Guizhou Province, Southern China contains significant amount of Mo, As, and sulfide minerals. Additionally, Mo and sulfides are closely associated with organic matter of kerogen. Transmission electron microscopy (TEM) results show pyrite micro-crystals and Mo-As-S-bearing carbon (kerogen). High-resolution TEM image shows that Mo-rich areas are Mo-sulfide (molybdenite) layers that form poorly crystalline structures in organic carbon matrix. X-ray energy-dispersive spectra (EDS) indicate composition from the pyrite and the Mo-rich area. The black shale is very unique because of its high Mo concentration. One possible mechanism for enriching Mo from paleo-seawater is the involvement of SRB. Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. We followed the growth of Desulfovibrio gigas ATCC 19364, D. vulgaris Hildenborough, D. desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467 nm, 395 nm and 314 nm and this color is proposed to be a molybdate-sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater. We suggest that similar SRB mechanism could cause the Mo enrichment in a ~ 2.5 billion years old late Archean McRae Shale, which is related to the great oxidation event of early earth atmosphere.

  17. The Molybdate-Responsive Escherichia coli ModE Transcriptional Regulator Coordinates Periplasmic Nitrate Reductase (napFDAGHBC) Operon Expression with Nitrate and Molybdate Availability

    PubMed Central

    McNicholas, Paul M.; Gunsalus, Robert P.

    2002-01-01

    Expression of the Escherichia coli napFDAGHBC operon (also known as aeg46.5), which encodes the periplasmic molybdoenzyme for nitrate reduction, is increased in response to anaerobiosis and further stimulated by the addition of nitrate or to a lesser extent by nitrite to the cell culture medium. These changes are mediated by the transcription factors Fnr and NarP, respectively. Utilizing a napF-lacZ operon fusion, we demonstrate that napF gene expression is impaired in strain defective for the molybdate-responsive ModE transcription factor. This control abrogates nitrate- or nitrite-dependent induction during anaerobiosis. Gel shift and DNase I footprinting analyses establish that ModE binds to the napF promoter with an apparent Kd of about 35 nM at a position centered at −133.5 relative to the start of napF transcription. Although the ModE binding site sequence is similar to other E. coli ModE binding sites, the location is atypical, because it is not centered near the start of transcription. Introduction of point mutations in the ModE recognition site severely reduced or abolished ModE binding in vitro and conferred a modE phenotype (i.e., loss of molybdate-responsive gene expression) in vivo. In contrast, deletion of the upstream ModE region site rendered napF expression independent of modE. These findings indicate the involvement of an additional transcription factor to help coordinate nitrate- and molybdate-dependent napF expression by the Fnr, NarP, NarL, and ModE proteins. The upstream ModE regulatory site functions to override nitrate control of napF gene expression when the essential enzyme component, molybdate, is limiting in the cell environment. PMID:12029041

  18. Tunable perovskite microdisk lasers

    NASA Astrophysics Data System (ADS)

    Sun, Wenzhao; Wang, Kaiyang; Gu, Zhiyuan; Xiao, Shumin; Song, Qinghai

    2016-04-01

    Perovskite microdisk lasers have been intensively studied recently. But their lasing properties are usually fixed once the devices are synthesized. Here, for the first time, we demonstrated the switchable and tunable perovskite microdisk lasers by surrounding them with 5CB liquid crystals. With the increase of the environmental temperature from 24 °C to 34 °C, the lasing wavelength slightly changed from 552.91 nm to 552.11 nm at the beginning and suddenly shifted to around 552.54 nm at T = 32 °C, where the phase transition of liquid crystals occurs. Our numerical calculation shows that the wavelength shift is caused by the changes of the refractive index of liquid crystals. More than tuning of the wavelength, a more dramatic wavelength transition from ~554 nm to 550 nm has also been observed. This sudden transition is mainly induced by the reduction of scattering rather than the change in the refractive index when the liquid crystals are changed from the nematic phase to the isotropic phase. We believe that our research can shed light on the applications of perovskite optoelectronics.

  19. Tunable perovskite microdisk lasers.

    PubMed

    Sun, Wenzhao; Wang, Kaiyang; Gu, Zhiyuan; Xiao, Shumin; Song, Qinghai

    2016-04-28

    Perovskite microdisk lasers have been intensively studied recently. But their lasing properties are usually fixed once the devices are synthesized. Here, for the first time, we demonstrated the switchable and tunable perovskite microdisk lasers by surrounding them with 5CB liquid crystals. With the increase of the environmental temperature from 24 °C to 34 °C, the lasing wavelength slightly changed from 552.91 nm to 552.11 nm at the beginning and suddenly shifted to around 552.54 nm at T = 32 °C, where the phase transition of liquid crystals occurs. Our numerical calculation shows that the wavelength shift is caused by the changes of the refractive index of liquid crystals. More than tuning of the wavelength, a more dramatic wavelength transition from ∼554 nm to 550 nm has also been observed. This sudden transition is mainly induced by the reduction of scattering rather than the change in the refractive index when the liquid crystals are changed from the nematic phase to the isotropic phase. We believe that our research can shed light on the applications of perovskite optoelectronics. PMID:27064838

  20. Development of an exchange assay for cytosolic glucocorticoid receptors using the synergistic effects of molybdate plus dithiothreitol

    SciTech Connect

    Kalimi, M.; Hubbard, J.R.

    1983-09-01

    A glucocorticoid receptor exchange assay has been developed for the accurate quantification of both free and steroid-bound receptors in rat liver cytosol. Hepatic cytosol from adrenalectomized rats was saturated in vitro with unlabeled corticosterone. Cytosol was subsequently treated with (/sup 3/H)dexamethasone (with and without 1000-fold cold dexamethasone) for 2-28 h at 4 C in the presence of 10 mM molybdate plus 5 mM dithiothreitol (DTT). Complete exchange occurred between 16-28 h in the presence of molybdate plus DTT. In control and 10 mM molybdate (alone) treated samples only about 50% exchange was achieved. In the presence of 5 mM DTT (alone) approximately 60-70% exchange was observed. The exchange assay (utilizing molybdate plus DTT) was also applied to hepatic cytosol of adrenalectomized rats injected with corticosterone in vivo and to samples prebound with unlabeled dexamethasone.

  1. Glory of piezoelectric perovskites

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-08-01

    This article reviews the history of piezoelectric perovskites and forecasts future development trends, including Uchino’s discoveries such as the Pb(Mg1/3Nb2/3)O3-PbTiO3 electrostrictor, Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal, (Pb, La)(Zr, Ti)O3 photostriction, and Pb(Zr, Ti)O3-Terfenol magnetoelectric composites. We discuss five key trends in the development of piezomaterials: performance to reliability, hard to soft, macro to nano, homo to hetero, and single to multi-functional.

  2. Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841.

    PubMed

    Cheng, Guojun; Karunakaran, Ramakrishnan; East, Alison K; Poole, Philip S

    2016-02-01

    Rhizobium leguminosarum Rlv3841 contains at least three sulfate transporters, i.e., SulABCD, SulP1 and SulP2, and a single molybdate transporter, ModABC. SulABCD is a high-affinity transporter whose mutation prevented growth on a limiting sulfate concentration, while SulP1 and SulP2 appear to be low-affinity sulfate transporters. ModABC is the sole high-affinity molybdate transport system and is essential for growth with NO3(-) as a nitrogen source on limiting levels of molybdate (<0.25 μM). However, at 2.5 μM molybdate, a quadruple mutant with all four transporters inactivated, had the longest lag phase on NO3(-), suggesting these systems all make some contribution to molybdate transport. Growth of Rlv3841 on limiting levels of sulfate increased sulB, sulP1, modB, and sulP2 expression 313.3-, 114.7-, 6.2-, and 4.0-fold, respectively, while molybdate starvation increased only modB expression (three- to 7.5-fold). When grown in high-sulfate but not low-sulfate medium, pea plants inoculated with LMB695 (modB) reduced acetylene at only 14% of the wild-type rate, and this was not further reduced in the quadruple mutant. Overall, while modB is crucial to nitrogen fixation at limiting molybdate levels in the presence of sulfate, there is an unidentified molybdate transporter also capable of sulfate transport. PMID:26812045

  3. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  4. The surface of iron molybdate catalysts used for the selective oxidation of methanol

    NASA Astrophysics Data System (ADS)

    Yeo, Benjamin R.; Pudge, Geoffrey J. F.; Bugler, Keith G.; Rushby, Alice V.; Kondrat, Simon; Bartley, Jonathan; Golunski, Stanislaw; Taylor, Stuart H.; Gibson, Emma; Wells, Peter. P.; Brookes, Catherine; Bowker, Michael; Hutchings, Graham J.

    2016-06-01

    The oxidation of methanol to formaldehyde is a major chemical process carried out catalytically and iron molybdate is one of the major catalysts for this process. In this paper we explore the nature of the active and selective surfaces of iron molybdate catalysts and show that the effective catalysts comprise molybdenum rich surfaces. We conclude that it is therefore important to maximise the surface area of these active catalysts and to this end we have studied catalysts made using a new physical grinding method with oxalic acid. For super-stoichiometric materials (Fe:Mo = 1:2.2) the reaction data show that physical mixing produces effective catalysts, possibly offering an improvement over the conventional co-precipitation method.

  5. Effect of chlorate, molybdate, and shikimic acid on Salmonella Typhimurium in aerobic and anaerobic cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two studies were conducted to examine the effects of shikimic acid (60 µg/mL) and(or) molybdate (1 mM) on the sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5 mM) during anaerobic (90% N2:5% CO2:5% H2) or aerobic growth in brain heart infusion broth supplemented with 5 mM...

  6. Effect of solid-phase amorphization on the spectral characteristics of europium-doped gadolinium molybdate

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.

    2010-05-01

    A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.

  7. A Rhodobacter capsulatus Member of a Universal Permease Family Imports Molybdate and Other Oxyanions▿

    PubMed Central

    Gisin, Jonathan; Müller, Alexandra; Pfänder, Yvonne; Leimkühler, Silke; Narberhaus, Franz; Masepohl, Bernd

    2010-01-01

    Molybdenum (Mo) is an important trace element that is toxic at high concentrations. To resolve the mechanisms underlying Mo toxicity, Rhodobacter capsulatus mutants tolerant to high Mo concentrations were isolated by random transposon Tn5 mutagenesis. The insertion sites of six independent isolates mapped within the same gene predicted to code for a permease of unknown function located in the cytoplasmic membrane. During growth under Mo-replete conditions, the wild-type strain accumulated considerably more Mo than the permease mutant. For mutants defective for the permease, the high-affinity molybdate importer ModABC, or both transporters, in vivo Mo-dependent nitrogenase (Mo-nitrogenase) activities at different Mo concentrations suggested that ModABC and the permease import molybdate in nanomolar and micromolar ranges, respectively. Like the permease mutants, a mutant defective for ATP sulfurylase tolerated high Mo concentrations, suggesting that ATP sulfurylase is the main target of Mo inhibition in R. capsulatus. Sulfate-dependent growth of a double mutant defective for the permease and the high-affinity sulfate importer CysTWA was reduced compared to those of the single mutants, implying that the permease plays an important role in sulfate uptake. In addition, permease mutants tolerated higher tungstate and vanadate concentrations than the wild type, suggesting that the permease acts as a general oxyanion importer. We propose to call this permease PerO (for oxyanion permease). It is the first reported bacterial molybdate transporter outside the ABC transporter family. PMID:20851900

  8. Ultrasensitive Visual Sensing of Molybdate Based on Enzymatic-like Etching of Gold Nanorods.

    PubMed

    Zhang, Zhiyang; Chen, Zhaopeng; Chen, Lingxin

    2015-08-25

    Here, we have developed a novel approach to the visual detection of molybdate with high sensitivity and selectivity in aqueous media based on the combination of catalytic formation of iodine and iodine-mediated etching of gold nanorods. In weak acid solution, like peroxidase, molybdate can catalyze the reaction between H2O2 and I(-) to produce I2, a moderate oxidant, which then etches gold nanorods preferentially along the longitudinal direction in the presence of hexadecyltrimethylammonium bromide. The etching results in the longitudinal localized surface plasmon resonance extinction peak shifts to short wavelength, accompanied by a color change from blue to red. Under optimal conditions, this sensor exhibits good sensitivity with a detection limit of 1.0 nM. The approach is highlighted by its high selectivity and tolerance to interference, which enables the sensor to detect molybdate directly in real samples, such as tap water, drinking water, and seawater. In addition, perhaps the proposed sensing strategy can be also used for other targets that can selectively regulate the formation of I2 under given conditions. PMID:26226196

  9. Tungstate, a Molybdate Analog Inactivating Nitrate Reductase, Deregulates the Expression of the Nitrate Reductase Structural Gene

    PubMed Central

    Deng, Mingde; Moureaux, Thérèse; Caboche, Michel

    1989-01-01

    Nitrate reductase (NR, EC 1.6.6.1) from higher plants is a homodimeric enzyme carrying a molybdenum cofactor at the catalytic site. Tungsten can be substituted for molybdenum in the cofactor structure, resulting in an inactive enzyme. When nitratefed Nicotiana tabacum plants were grown on a nutrient solution in which tungstate was substituted for molybdate, NR activity in the leaves decreased to a very low level within 24 hours while NR protein accumulated progressively to a level severalfold higher than the control after 6 days. NR mRNA level in molybdate-grown plants exhibited a considerable day-night fluctuation. However, when plants were treated with tungstate, NR mRNA level remained very high. NR activity and protein increased over a 24-hour period when nitrate was added back to N-starved molybdate-grown plants. NR mRNA level increased markedly during the first 2 hours and then decreased. In the presence of tungstate, however, the induction of NR activity by nitrate was totally abolished while high levels of NR protein and mRNA were both induced, and the high level of NR mRNA was maintained over a 10-hour period. These results suggest that the substitution of tungsten for molybdenum in NR complex leads to an overexpression of the NR structural gene. Possible mechanisms involved in this deregulation are discussed. Images Figure 2 Figure 3 Figure 5 PMID:16667015

  10. Interfaces in Perovskite Heterostructures

    SciTech Connect

    Christen, Hans M; Kim, Dae Ho; Rouleau, Christopher M

    2008-01-01

    Recent advances in film synthesis have made it possible to investigate the properties of well-controlled interfaces in perovskite metal-oxides. A review of published experimental data and computational results indicate that so far most interfaces that have been analyzed in ferroelectric materials - while necessary to impose large lattice strain on the polar material - contribute little to the ferroelectricity and may instead be detrimental to the desired properties. In contrast, a very different situation arises at interfaces that show changes in the electronic configuration as a consequence of a compositional discontinuity. Data is shown for LaMnO3/SrTiO 3 superlattices as an example of electronic effects that produce enhanced properties, further illustrating the richness of interfacial properties that can be obtained at interfaces (as shown in numerous published results for different but related interfaces).

  11. Organometal Trihalide Perovskite Spintronics

    NASA Astrophysics Data System (ADS)

    Sun, Dali

    The family of organometal trihalide perovskite (OTP), CH3NH3PbX3 (where X is halogen) has recently revolutionized the photovoltaics field, and shows promise in applications such as solar energy harnessing, light emitting diodes, field effect transistors and laser action. The OTP spin characteristic properties are influenced by the large spin-orbit-coupling of the Pb atoms, and thus may offer a new class of semiconductors for spin-based applications. In this talk we will summarize the `magnetic field effect' on photocurrent and electroluminescence in OTP optoelectronic devices, and photoluminescence from OTP films; and report more recent studies of pure spin-current and spin-aligned carrier injection in OTP spintronics devices using `spin-pumping' and `spin-injection', respectively. We measured relatively large inverse-spin-Hall effect using pulsed microwave excitation in OTP devices at resonance with a ferromagnetic (FM) layer, and giant magnetoresistance in OTP-based spin-valves. Our studies launch the field of OTP spintronics. Research sponsored by the DOE, Office of Science, Grant DE-SC0014579. Work done in collaboration with Chuang Zhang, Marzieh Kavand, Kipp J. van Schooten, Hans Malissa, Matthew Groesbeck, Ryan Mclaughlin, Christoph Boehme, and Z. Valy Vardeny.

  12. Ferromagnetism in ruthenate perovskites

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Mravlje, Jernej; Millis, Andrew J.

    2014-03-01

    In apparent contrast to the usual rule that stronger correlations favor magnetism and other forms of order, while weaker correlations lead to Fermi liquid metals, it has been experimentally established that CaRuO3, a more correlated material, is a paramagnetic metal with a Fermi liquid ground state while SrRuO3, which is less strongly correlated, is ferromagnetic below a Curie temperature of 160K. We present density functional plus dynamical mean field theory calculations which resolve this conundrum. We show that in these materials ferromagnetism occurs naturally for cubic perovskite systems at moderate correlations but is suppressed both by proximity to the Mott insulating phase and by increasing the amplitude of a GdFeO3 distortion. These factors are strongly related to the differences between Ca and Sr ruthenates and are used as the keys to solve the problem. Placement of the ruthenate materials on the metal-insulator phase diagram and comparison to previous works on the Ruddlesden-Popper materials are also discussed. Supported by the Basic Energy Sciences Program of the US Department of Energy under grant DOE ER046169 and the Columbia-Ecole Polytechnique Alliance program.

  13. The chronic toxicity of molybdate to marine organisms. I. Generating reliable effects data.

    PubMed

    Heijerick, D G; Regoli, L; Stubblefield, W

    2012-07-15

    A scientific research program was initiated by the International Molybdenum Association (IMOA) which addressed identified gaps in the environmental toxicity data for the molybdate ion (MoO(4)(2-)). These gaps were previously identified during the preparation of EU-REACH-dossiers for different molybdenum compounds (European Union regulation on Registration, Evaluation, Authorization and Restriction of Chemical substances; EC, 2006). Evaluation of the open literature identified few reliable marine ecotoxicological data that could be used for deriving a Predicted No-Effect Concentration (PNEC) for the marine environment. Rather than calculating a PNEC(marine) using the assessment factor methodology on a combined freshwater/marine dataset, IMOA decided to generate sufficient reliable marine chronic data to permit derivation of a PNEC by means of the more scientifically robust species sensitivity distribution (SSD) approach (also called the statistical extrapolation approach). Nine test species were chronically exposed to molybdate (added as sodium molybdate dihydrate, Na(2)MoO(4)·2H(2)O) according to published standard testing guidelines that are acceptable for a broad range of regulatory purposes. The selected test organisms were representative for typical marine trophic levels: micro-algae/diatom (Phaeodactylum tricornutum, Dunaliella tertiolecta), macro-alga (Ceramium tenuicorne), mysids (Americamysis bahia), copepod (Acartia tonsa), fish (Cyprinodon variegatus), echinoderms (Dendraster exentricus, Strongylocentrotus purpuratus) and molluscs (Mytilus edulis, Crassostrea gigas). Available NOEC/EC(10) levels ranged between 4.4 mg Mo/L (blue mussel M. edulis) and 1174 mg Mo/L (oyster C. gigas). Using all available reliable marine chronic effects data that are currently available, a HC(5,50%) (median hazardous concentration affecting 5% of the species) of 5.74(mg Mo)/L was derived with the statistical extrapolation approach, a value that can be used for national and

  14. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.

    PubMed

    Hoffmann, Marie-Christine; Ali, Koral; Sonnenschein, Marleen; Robrahn, Laura; Strauss, Daria; Narberhaus, Franz; Masepohl, Bernd

    2016-09-01

    Many enzymes require the molybdenum cofactor, Moco. Under Mo-limiting conditions, the high-affinity ABC transporter ModABC permits molybdate uptake and Moco biosynthesis in bacteria. Under Mo-replete conditions, Escherichia coli represses modABC transcription by the one-component regulator, ModE, consisting of a DNA-binding and a molybdate-sensing domain. Instead of a full-length ModE protein, many bacteria have a shorter ModE protein, ModE(S) , consisting of a DNA-binding domain only. Here, we asked how such proteins sense the intracellular molybdenum status. We show that the Agrobacterium tumefaciens ModE(S) protein Atu2564 is essential for modABC repression. ModE(S) binds two Mo-boxes in the modA promoter as shown by electrophoretic mobility shift assays. Northern analysis revealed cotranscription of modE(S) with the upstream gene, atu2565, which was dispensable for ModE(S) activity. To identify genes controlling ModE(S) function, we performed transposon mutagenesis. Tn5 insertions resulting in derepressed modA transcription mapped to the atu2565-modE(S) operon and several Moco biosynthesis genes. We conclude that A. tumefaciens ModE(S) activity responds to Moco availability rather than to molybdate concentration directly, as is the case for E. coli ModE. Similar results in Sinorhizobium meliloti suggest that Moco dependence is a common feature of ModE(S) regulators. PMID:27196733

  15. Electrical and mechanical properties of ZnO doped silver-molybdate glass-nanocomposite system

    NASA Astrophysics Data System (ADS)

    Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    Zno doped silver-molybdate glass-nanocomposites, 0.3 Ag2O - 0.7 [0.075 ZnO - 0.925 MoO3] have been prepared by melt-quenching method. Ionic conductivity of these glass-nanocomposites has been measured in wide temperature and frequency windows. Vicker's hardness methods have been employed to study micro-hardness of the as-prepared samples. Heat-treated counterparts for this glass-nanocomposites system has been analyzed in different temperature to observe the changes in conductivity as well as micro-hardness for that system.

  16. Spontaneous formation of crystalline lithium molybdate from solid reagents at room temperature.

    PubMed

    Yip, Thomas W S; Cussen, Edmund J; Wilson, Claire

    2010-01-14

    Lithium molybdate has been prepared by grinding LiOH x H(2)O with MoO(3) in air at room temperature. X-Ray powder diffraction data show that the formation of highly crystalline Li(2)MoO(4) is largely complete after 10 min. The phenacite structure of this material is the same as that derived from an X-ray diffraction study of a single crystal obtained from aqueous solution [R3; a = 14.3178(14) A, c = 9.5757(9) A]. Anhydrous lithium hydroxide fails to give the same reaction indicating that the water of crystallisation of LiOH x H(2)O is a vital component in this rapid synthesis. Differential scanning calorimetry measurements show that this reaction can proceed spontaneously between the two stable solid reagents at sub-ambient temperatures and is driven by the liberation of water from the crystalline lattice. Lithium molybdate prepared in this manner has significantly smaller and more regularly shaped particles than samples prepared by other synthetic methods. PMID:20023976

  17. Polymorphism in yttrium molybdate Y{sub 2}Mo{sub 3}O{sub 12}

    SciTech Connect

    Gates, Stacy D.; Lind, Cora

    2007-12-15

    Yttrium molybdate (Y{sub 2}Mo{sub 3}O{sub 12}) has been prepared by non-hydrolytic sol-gel chemistry. The phase evolution upon heating was investigated using in situ and ex situ heat treatments combined with powder X-ray diffraction. This method has led to the isolation of two orthorhombic phases with different atomic connectivity. Yttrium adopts 6- and 7-coordinate sites in the Pbcn and Pba2 structures, respectively. Cocrystallization of both phases was observed in a narrow temperature range, suggesting that crystallization kinetics play a major role in phase formation. It was found that the Pba2 phase is the stable polymorph below 550 deg. C, and converts to Pbcn at higher temperatures. - Graphical abstract: Yttrium molybdate (Y{sub 2}Mo{sub 3}O{sub 12}) prepared by non-hydrolytic sol-gel chemistry crystallizes in a mixture of orthorhombic polymorphs with different atomic connectivities. The Pbcn and Pba2 phases coexist over a narrow temperature range. Crystallization of the Pbcn structure is kinetically favored. The Pba2 polymorph is the thermodynamically stable phase at low temperatures, and converts to Pbcn above 550 deg. C.

  18. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  19. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  20. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests.

    PubMed

    Diamantino, T C; Guilhermino, L; Almeida, E; Soares, A M

    2000-03-01

    As a result of a widespread application in numerous industrial processes, chromium is a contaminant of many environmental systems. Chromium and their compounds are toxic to both invertebrates and vertebrates and, for this reason, there has been a search for suitable and less toxic alternatives. Molybdenum compounds have been studied as alternative to chromium compounds for some industrial applications. The toxicity of chromium is well known but the effects of molybdenum and molybdenum mining on natural populations and communities of freshwater invertebrates have not often been studied. However, chromium, and molybdenum (and their compounds) are included in the same list (List II) of European Union dangerous substances. In this study, the acute and chronic effects of sodium molybdate and sodium dichromate to Daphnia magna Straus were evaluated. Furthermore, in vitro and in vivo effects of these two metals on acetylcholinesterase (AChE) activity of D. magna Straus were investigated. LC(50) values determined at 48 h were 0.29 and 2847.5 mg L(-1) for chromium (as sodium dichromate) and molybdenum (as sodium molybdate), respectively. No significant in vitro effects of both metals on AChE were found. However, both toxicants inhibited AChE in vivo at concentrations under the respective 48-h LC(50) values. Both sodium dichromate and sodium molybdate inhibited the reproduction and growth of D. magna, but the concentrations inducing significant effects were different for the two chemicals. Sodium molybdate had significant lower toxicity to D. magna Straus than sodium dichromate. PMID:10702344

  1. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorate is a bactericide that has potential as a pre-slaughter feed additive to improve food safety of meat products. The aims of the present study were to examine the effects of chlorate (5mM), molybdate (1 mM), and shikimate (0.34 mM) on the growth and chlorate-resistance of Salmonella enterica ...

  2. Crystallization, data collection and phasing of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri

    SciTech Connect

    Santacruz, C. P.; Balan, A.; Ferreira, L. C. S.; Barbosa, J. A. R. G.

    2006-03-01

    The molybdate-binding protein (ModA) from X. axonopodis pv. citri was crystallized with sodium molybdate in the presence of PEG or sulfate. The crystal diffracted to a maximum resolution of 1.7 Å and belongs to the orthorhombic space group C222{sub 1,} with unit-cell parameters a = 68.15, b = 172.14, c = 112.04 Å. Xanthomonas axonopodis pv. citri ModA protein is the ABC periplasmic binding component responsible for the capture of molybdate. The protein was crystallized with sodium molybdate using the hanging-drop vapour-diffusion method in the presence of PEG or sulfate. X-ray diffraction data were collected to a maximum resolution of 1.7 Å using synchrotron radiation. The crystal belongs to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 68.15, b = 172.14, c = 112.04 Å. The crystal structure was solved by molecular-replacement methods and structure refinement is in progress.

  3. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.

    PubMed

    Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila

    2015-09-01

    A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of

  4. Ligand-Stabilized Reduced-Dimensionality Perovskites.

    PubMed

    Quan, Li Na; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Beauregard, Eric M; Hoogland, Sjoerd; Buin, Andrei; Kirmani, Ahmad R; Zhao, Kui; Amassian, Aram; Kim, Dong Ha; Sargent, Edward H

    2016-03-01

    Metal halide perovskites have rapidly advanced thin-film photovoltaic performance; as a result, the materials' observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions. These drive an increased formation energy and should therefore improve material stability. Here we report reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieve the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity. PMID:26841130

  5. Multiferroic crossover in perovskite oxides

    NASA Astrophysics Data System (ADS)

    Weston, L.; Cui, X. Y.; Ringer, S. P.; Stampfl, C.

    2016-04-01

    The coexistence of ferroelectricity and magnetism in A B O3 perovskite oxides is rare, a phenomenon that has become known as the ferroelectric "d0 rule." Recently, the perovskite BiCoO3 has been shown experimentally to be isostructural with PbTiO3, while simultaneously the d6Co3 + ion has a high-spin ground state with C -type antiferromagnetic ordering. It has been suggested that the hybridization of Bi 6 s states with the O 2 p valence band stabilizes the polar phase, however, we have recently demonstrated that Co3 + ions in the perovskite structure can facilitate a ferroelectric distortion via the Co 3 d -O 2 p covalent interaction [L. Weston, et al., Phys. Rev. Lett. 114, 247601 (2015), 10.1103/PhysRevLett.114.247601]. In this paper, using accurate hybrid density functional calculations, we investigate the atomic, electronic, and magnetic structure of BiCoO3 to elucidate the origin of the multiferroic state. To begin with, we perform a more general first-principles investigation of the role of d electrons in affecting the tendency for perovskite materials to exhibit a ferroelectric distortion; this is achieved via a qualitative trend study in artificial cubic and tetragonal La B O3 perovskites. We choose La as the A cation so as to remove the effects of Bi 6 s hybridization. The lattice instability is identified by the softening of phonon modes in the cubic phase, as well as by the energy lowering associated with a ferroelectric distortion. For the La B O3 series, where B is a d0-d8 cation from the 3 d block, the trend study reveals that increasing the d orbital occupation initially removes the tendency for a polar distortion, as expected. However, for high-spin d5-d7 and d8 cations a strong ferroelectric instability is recovered. This effect is explained in terms of increased pseudo-Jahn-Teller (PJT) p -d vibronic coupling. The PJT effect is described by the competition between a stabilizing force (K0) that favors the cubic phase, and a vibronic term that

  6. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  7. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  8. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum.

    PubMed

    Barros, M P; Hollnagel, H C; Glavina, A B; Soares, C O; Ganini, D; Dagenais-Bellefeuille, S; Morse, D; Colepicolo, P

    2013-10-15

    Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO4(2-)), although MoO4(2-) uptake is thought to compete with uptake of the much more abundant sulfate anion (SO4(2-), approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO4(2-) and SO4(2-) concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO4(2-) concentrations (from 0 to 200 μM) and three different SO4(2-) concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of the three major antioxidant enzymes (superoxide dismutase, catalase, and ascorbate peroxidase), indexes of oxidative modifications in proteins (carbonyl content) and lipids (thiobarbituric acid-reactive substances, TBARS), the activities of the molybdenum-dependent enzymes xanthine oxidase and nitrate reductase, expression of key protein components of dinoflagellate photosynthesis (peridinin-chlorophyll a protein and ribulose-1,5-biphosphate carboxylase/oxidase) and growth curves. We find evidence for Mo toxicity at relatively high [MoO4(2-)]:[SO4(2-)] ratios. We also find evidence for extensive redox adaptations at Mo levels well below lethal levels. PMID:24036534

  9. Molybdate reduction by Escherichia coli K-12 and its chl mutants

    SciTech Connect

    Campbell, A.M.; del Camipillo-Campbell, A.; Villaret, D.B.

    1985-01-01

    During anaerobic growth, Escherichia coli can reduce phosphomolybdate. The reduction can also be carried out by washed cells suspended in buffer at pH 5.7. Phosphate, molybdate, glucose, cells, and anaerobic conditions are required. Reduction is inhibited by 200 ..mu..M chromate, 290 ..mu..M nitrite, 10 mM tungstate, or 20 mM cysteine. Wild-type (chl/sup +/) cells are inhibited by addition of 200 ..mu..M nitrate, but chlA, chlB, and chlE mutants are not. The inhibition of chl/sup +/ cells results from reduction of nitrate to nitrite. This nitrate reduction is not catalyzed by nitrate reductase. Wild-type cells are more sensitive than chl mutants to inhibition by nitrite and cysteine but more resistant to chromate. Pregrowth of chlD cells in 1 mM Na/sub 2/-MoO/sub 4/ increases their sensitivity to nitrite and cysteine, and pregrowth of chl/sup +/ cells in 1 mM Na-MoO/sub 4/ increases their resistance to these agents. Assays of biotin sulfoxide reductase show that the tightness of the chlD block depends on growth conditions; chlD cells grown aerobically in tryptone broth make about 50% as much active enzyme as chl/sup +/ cells, whereas chlD cells grown anaerobically with tryptone plus glucose make less than 10%. The effect of anaerobic pregrowth on the inhibition of molybdate reduction by added nitrate indicates that in vivo nitrate reduction responds to growth conditions in the same manner as biotin sulfoxide reductase does.

  10. Molybdate Reduction by Escherichia coli K-12 and Its chl Mutants

    NASA Astrophysics Data System (ADS)

    Campbell, Allan M.; del Campillo-Campbell, Alice; Villaret, Douglas B.

    1985-01-01

    During anaerobic growth, Escherichia coli can reduce phosphomolybdate. The reduction can also be carried out by washed cells suspended in buffer at pH 5.7. Phosphate, molybdate, glucose, cells, and anaerobic conditions are required. Reduction is inhibited by 200 μ M chromate, 290 μ M nitrite, 10 mM tungstate, or 20 mM cysteine. Wild-type (chl+) cells are inhibited by addition of 200 μ M nitrate, but chlA, chlB, and chlE mutants are not. The inhibition of chl+ cells results from reduction of nitrate to nitrite. This nitrate reduction is not catalyzed by nitrate reductase. Wild-type cells are more sensitive than chl mutants to inhibition by nitrite and cysteine but more resistant to chromate. Pregrowth of chlD cells in 1 mM Na2MoO4 increases their sensitivity to nitrite and cysteine, and pregrowth of chl+ cells in 1 mM Na2MoO4 increases their resistance to these agents. Assays of biotin sulfoxide reductase show that the tightness of the chlD block depends on growth conditions; chlD cells grown aerobically in tryptone broth make about 50% as much active enzyme as chl+ cells, whereas chlD cells grown anaerobically with tryptone plus glucose make less than 10%. The effect of anaerobic pregrowth on the inhibition of molybdate reduction by added nitrate indicates that in vivo nitrate reduction responds to growth conditions in the same manner as biotin sulfoxide reductase does.

  11. Lasing properties of new Nd 3+-doped tungstate, molybdate, and fluoride materials under selective optical pumping

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínkova, Helena; Basiev, Tolstoban T.; Doroschenko, Maxim E.; Ivleva, Ludmila I.; Osiko, Vyacheslav V.; Zverev, Peter G.

    2006-02-01

    The purpose of this work was to determine the relative efficiencies of new Nd 3+-doped laser active/Raman - tungstate, molybdate, and fluoride - materials (SrWO 4, PbWO 4, BaWO 4, SrMoO 4, PbMoO 4, SrF II, and LaF 3) under selective longitudinal optical pumping by the alexandrite (~750nm), or diode (~800nm) laser. Crystals with various length, orientations and active ions concentrations were tested. To optimize the output of the tested lasers a set of input dichroic and output dielectric mirrors with different reflectivities were used. For realized lasers operating at pulsed free-running regime, threshold energy, slope efficiency, emission wavelength, and radiation polarization were determined. For each crystal, fluorescence lifetime and absorption coefficient under given pumping were established. The slope efficiency in case of Nd 3+:PbMoO 4 laser at wavelength 1054nm was measured to be 54.3% with total efficiency of 46% which is the best result obtained for all new tested crystals. For Nd 3+ doped SrWO 4, PbWO 4, and BaWO 4 crystals simultaneous laser and self-Raman emission were demonstrated in Q-switched regime. Thus newly proposed laser Raman crystals demonstrate high efficiency for Nd 3+ laser oscillations comparable with well known and widely used Nd:KGW crystal. Further improvement in the quality of tungstate and molybdate type crystals should result in further increase in lasing efficiency at 1.06μm wavelength. Self Raman frequency conversion of Nd 3+-laser oscillations in these crystals should result in high efficient pulse shortening, high peak power and new wavelengths in 1.2-1.5μm wavelength region.

  12. Controllable synthesis and characterization of cadmium molybdate octahedral nanocrystals by coprecipitation method

    SciTech Connect

    Shahri, Zahra; Sobhani, Azam; Salavati-Niasari, Masoud

    2013-10-15

    Graphical abstract: CdMoO{sub 4} nanocrystals have been synthesized via coprecipitation method by using Cd(Sal){sub 2} and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O as starting materials in water. Effects of temperature, reaction time, solvent, surfactant, cadmium and molybdate sources were investigated to reach optimum condition. It was found that particle size, morphology and phase of the final products could be greatly influenced via these parameters. - Highlights: • A facile coprecipitation method was successfully employed to prepare CdMoO{sub 4}. • The effects of some parameters were investigated. • PEG600, PVP, SDS and CTAB were used as surfactant. • Optimum condition for preparation CdMoO{sub 4} nanocrystals was investigated. - Abstract: Cadmium molybdate (CdMoO{sub 4}) nanocrystals have been successfully synthesized via coprecipitation method by using Cd(Sal){sub 2} (Sal = salicylidene) and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O as starting materials in water as solvent. Effects of temperature, reaction time, solvent, surfactant and cadmium source were investigated to reach optimum condition. It was found that particle size, morphology and phase of the final products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, photoluminescence (PL) spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM)

  13. Characterization of Molybdate Conversion Coatings for Aluminum Alloys by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion inhibiting properties of newly developed proprietary molybdate conversion coatings on aluminum alloy 2024-T3 under immersion in aerated 5% (w/w) NaCl. Corrosion potential and EIS measurements were gathered for six formulations of the coating at several immersion times for two weeks. Nyquist as well as Bode plots of the data were obtained. The conversion-coated alloy panels showed an increase in the corrosion potential during the first 24 hours of immersion that later subsided and approached a steady value. Corrosion potential measurements indicated that formulations A, D, and F exhibit a protective effect on aluminum 2024-T3. The EIS spectra of the conversion-coated alloy were characterized by an impedance that is higher than the impedance of the bare alloy at all the immersion times. The low frequency impedance, Z(sub lf) (determined from the value at 0.05 Hz) for the conversion-coated alloy was higher at all the immersion times than that of the bare panel. This indicates improvement of corrosion resistance with addition of the molybdate conversion coating. Scanning electron microscopy (SEM) revealed the presence of cracks in the coating and the presence of cubic crystals believed to be calcium carbonate. Energy dispersive spectroscopy (EDS) of the test panels revealed the presence of high levels of aluminum, oxygen, and calcium but did not detect the presence of molybdenum on the test panels. X-ray photoelectron spectroscopy (XPS) indicated the presence of less than 0.01 atomic percent molybdenum on the surface of the coating.

  14. High-performance perovskite light-emitting diodes via morphological control of perovskite films.

    PubMed

    Yu, Jae Choul; Kim, Da Bin; Jung, Eui Dae; Lee, Bo Ram; Song, Myoung Hoon

    2016-04-01

    Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in a perovskite film with a uniform, continuous morphology because the HBr increases the solubility of the inorganic component in the perovskite precursor and reduces the crystallization rate of the perovskite film upon spin-coating. Moreover, PeLEDs fabricated using perovskite films with a uniform, continuous morphology, which were deposited using 6 vol% HBr in a dimethylformamide (DMF)/hydrobromic acid (HBr) cosolvent, exhibited full coverage of the green EL emission. Finally, the optimized PeLEDs fabricated with perovskite films deposited using the DMF/HBr cosolvent exhibited a maximum luminance of 3490 cd m(-2) (at 4.3 V) and a luminous efficiency of 0.43 cd A(-1) (at 4.3 V). PMID:26607474

  15. Iron partitioning between perovskite and post-perovskite: A transmission electron microscope study

    SciTech Connect

    Hirose, K.; Takafuji, N.; Shieh, S.R.; Duffy, T.S.

    2008-09-30

    The effect of iron on the post-perovskite phase transition has been controversial. We have performed direct chemical analyses of co-existing perovskite and post-perovskite that were synthesized from an (Mg{sub 0.91}Fe{sub 0.09})SiO{sub 3} bulk composition using a laser-heated diamond anvil cell at pressures above 100 GPa and temperatures of 1700-1800 K. Analysis on quenched samples was carried out using the transmission electron microscope (TEM). The results demonstrate that crystalline perovskite grains are enriched in iron compared to adjacent amorphous parts presumably converted from post-perovskite. This indicates that ferrous iron stabilizes perovskite to higher pressures. The ferrous and ferric irons are likely to have competing effects on the post-perovskite phase transition, and therefore the effect of iron may be controlled by aluminum.

  16. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  17. Flexible Hybrid Organic-Inorganic Perovskite Memory.

    PubMed

    Gu, Chungwan; Lee, Jang-Sik

    2016-05-24

    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices. PMID:27093096

  18. Stability of organometal perovskites with organic overlayers

    NASA Astrophysics Data System (ADS)

    Tran, Catherine D. T.; Liu, Yi; Thibau, Emmanuel S.; Llanos, Adrian; Lu, Zheng-Hong

    2015-08-01

    The air-stability of vapour-phase-deposited methylammonium lead triiodide (CH3NH3PbI3) perovskite thin films has been studied using X-ray diffraction. It is found that the perovskite structure without organic coating decomposes completely within a short period of time (˜two days) upon exposure to ambient environment. The degradation of the perovskite structure is drastically reduced when the perovskite films are capped with thin N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) films. We discovered that the amount of lead iodide (PbI2), a product of the degradation, grows as a function of time in a sigmoidal manner. Further mathematical modeling analysis shows that the perovskite degradation follows the Avrami equation, a kinetics theory developed for quantifying phase transformations in solid-state materials.

  19. Efficient Luminescence from Perovskite Quantum Dot Solids.

    PubMed

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F; Sargent, Edward H

    2015-11-18

    Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids. PMID:26529572

  20. Perovskite Superlattices as Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  1. Non-collinear magnetism in multiferroic perovskites.

    PubMed

    Bousquet, Eric; Cano, Andrés

    2016-03-31

    We present an overview of the current interest in non-collinear magnetism in multiferroic perovskite crystals. We first describe the different microscopic mechanisms giving rise to the non-collinearity of spins in this class of materials. We discuss, in particular, the interplay between non-collinear magnetism and ferroelectric and antiferrodistortive distortions of the perovskite structure, and how this can promote magnetoelectric responses. We then provide a literature survey on non-collinear multiferroic perovskites. We discuss numerous examples of spin cantings driving weak ferromagnetism in transition metal perovskites, and of spin-induced ferroelectricity as observed in the rare-earth based perovskites. These examples are chosen to best illustrate the fundamental role of non-collinear magnetism in the design of multiferroicity. PMID:26912212

  2. Organohalide Lead Perovskites for Photovoltaic Applications.

    PubMed

    Yusoff, Abd Rashid Bin Mohd; Nazeeruddin, Mohammad Khaja

    2016-03-01

    Perovskite solar cells have recently exhibited a significant leap in efficiency due to their broad absorption, high optical absorption coefficient, very low exciton binding energy, long carrier diffusion lengths, efficient charge collection, and very high open-circuit potential, similar to that of III-IV semiconductors. Unlike silicon solar cells, perovskite solar cells can be developed from a variety of low-temperature solutions processed from inexpensive raw materials. When the perovskite absorber film formation is optimized using solvent engineering, a power conversion efficiency of over 21% has been demonstrated, highlighting the unique photovoltaic properties of perovskite materials. Here, we review the current progress in perovskite solar cells and charge transport materials. We highlight crucial challenges and provide a summary and prospects. PMID:26885884

  3. Stability of organometal perovskites with organic overlayers

    SciTech Connect

    Tran, Catherine D. T.; Liu, Yi; Thibau, Emmanuel S.; Llanos, Adrian; Lu, Zheng-Hong

    2015-08-15

    The air-stability of vapour-phase-deposited methylammonium lead triiodide (CH{sub 3}NH{sub 3}PbI{sub 3}) perovskite thin films has been studied using X-ray diffraction. It is found that the perovskite structure without organic coating decomposes completely within a short period of time (∼two days) upon exposure to ambient environment. The degradation of the perovskite structure is drastically reduced when the perovskite films are capped with thin N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) films. We discovered that the amount of lead iodide (PbI{sub 2}), a product of the degradation, grows as a function of time in a sigmoidal manner. Further mathematical modeling analysis shows that the perovskite degradation follows the Avrami equation, a kinetics theory developed for quantifying phase transformations in solid-state materials.

  4. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  5. Effect of Vanadate, Molybdate, and Azide on Membrane-Associated ATPase and Soluble Phosphatase Activities of Corn Roots 1

    PubMed Central

    Gallagher, Sean R.; Leonard, Robert T.

    1982-01-01

    The effects of vanadate, molybdate, and azide on ATP phosphohydrolase (ATPase) and acid phosphatase activities of plasma membrane, mitochondrial, and soluble supernatant fractions from corn (Zea mays L. WF9 × MO17) roots were investigated. Azide (0.1-10 millimolar) was a selective inhibitor of pH 9.0-ATPase activity of the mitochondrial fraction, while molybdate (0.01-1.0 millimolar) was a relatively selective inhibitor of acid phosphatase activity in the supernatant fraction. The pH 6.4-ATPase activity of the plasma membrane fraction was inhibited by vanadate (10-500 micromolar), but vanadate, at similar concentrations, also inhibited acid phosphatase activity. This result was confirmed for oat (Avena sativa L.) root and coleoptile tissues. While vanadate does not appear to be a selective inhibitor, it can be used in combination with molybdate and azide to distinguish the plasma membrane ATPase from mitochondrial ATPase or supernatant acid phosphatase. Vanadate appeared to be a noncompetitive inhibitor of the plasma membrane ATPase, and its effectiveness was increased by K+. K+-stimulated ATPase activity was inhibited by 50% at about 21 micromolar vanadate. The rate of K+ transport in excised corn root segments was inhibited by 66% by 500 micromolar vanadate. PMID:16662676

  6. Surface properties of AZ91 magnesium alloy after PEO treatment using molybdate salts and low current densities

    NASA Astrophysics Data System (ADS)

    Pezzato, Luca; Brunelli, Katya; Napolitani, Enrico; Magrini, Maurizio; Dabalà, Manuele

    2015-12-01

    Plasma electrolytic oxidation (PEO) process is a recently developed electrochemical method used to produce on the surface of various metals oxide ceramic coatings that improve corrosion and wear properties of the substrate. In this work, PEO process was applied on AZ91 magnesium alloy using low current densities (0.05 A/cm2) and an alkaline solution of silicates with different concentrations of sodium molybdate (0.3-3 g/l). The effect of the low current densities of process and of molybdate salts on the corrosion resistance of the coatings was studied with potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) in chloride and sulfate environment. The morphology, the phases and the chemical composition of the coatings were examined using a scanning electron microscope equipped with EDS, X-ray diffraction, secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The corrosion properties of the PEO coated samples were remarkably improved if compared with the uncoated samples. The addition of sodium molybdate, in determinate conditions, had a positive effect on the characteristics of the coatings in terms of corrosion resistance.

  7. Large Grained Perovskite Solar Cells Derived from Single-Crystal Perovskite Powders with Enhanced Ambient Stability.

    PubMed

    Yen, Hung-Ju; Liang, Po-Wei; Chueh, Chu-Chen; Yang, Zhibin; Jen, Alex K-Y; Wang, Hsing-Lin

    2016-06-15

    In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. The resultant large grained perovskite thin film possesses a negligible physical (structural) gap between each large grain and is highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different from the thin film prepared from the typical precursor route (MAI + PbI2). PMID:27224963

  8. Use of molybdate as novel complex-forming selector in the analysis of polyhydric phenols by capillary zone electrophoresis.

    PubMed

    Polásek, Miroslav; Petriska, Ivan; Pospísilová, Marie; Jahodár, Ludek

    2006-03-15

    Molybdate was examined as a complex-forming additive to the CE background electrolytes (BGE) to affect the selectivity of separation of polyhydric phenols such as flavonoids (apigenin, hyperoside, luteolin, quercetin and rutin) and hydroxyphenylcarboxylic acids (ferulic, caffeic, p-coumaric and chlorogenic acid). Effects of the buffer concentrations and pH and the influence of molybdate concentration on the migration times of the analytes were investigated. In contrast to borate (which is a buffering and complex-forming agent generally used in CE at pH > or =9) molybdate forms more stable complexes with aromatic o-dihydroxy compounds and hence the complex-formation effect is observed at considerably lower pH. Model mixtures of cinnamic acid, ferulic acid, caffeic acid and 3-hydroxycinnamic acid were separated with 25 mM morpholinoethanesulfonic acid of pH 5.4 (adjusted with Tris) containing 0.15 mM sodium molybdate as the BGE (25 kV, silica capillary effective length 45 cm x 0.1mm I.D., UV-vis detection at 280 nm). With 25 mM 2-hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulphonic acid/Tris of pH* 7.4 containing 2mM sodium molybdate in aqueous 25% (v/v) methanol as the BGE mixtures of all the above mentioned flavonoids, p-coumaric acid and chlorogenic acid could be separated (the same capillary as above, UV-vis detection at 263 nm). The calibration curves (analyte peak area versus concentration) were rectilinear (r>0.998) for approximately 8-35 microg/ml of an analyte (with 1-nitroso-2-naphthol as internal standard). The limit of quantification values ranged between 1.1 mg l(-1) for p-coumaric acid and 2.8 mg l(-1) for quercetin. The CE method was employed for the assay of flavonoids in medicinal plant extracts. The R.S.D. values ranged between 0.9 and 4.7% (n=3) when determining luteolin (0.08%) and apigenin (0.92%) in dry Matricaria recutita flowers and rutin (1.03%) and hyperoside (0.82%) in dry Hypericum perforatum haulm. The recoveries were >96%. PMID

  9. Perovskites: transforming photovoltaics, a mini-review

    SciTech Connect

    Chilvery, Ashwith; Batra, Ashok; Yang, Bin; Xiao, Kai; Guggilla, Padmaja; Aggarwal, Mohan; Surabhi, Raja; Lal, Ravi; Currie, James; Penn, Benjamin

    2015-01-01

    The recent power-packed advent of perovskite solar cells is transforming photovol- taics (PV) with their superior efficiencies, ease of fabrication, and cost. This perovskite solar cell further boasts of many unexplored features that can further enhance its PV properties and lead to it being branded as a successful commercial product. This article provides a detailed insight of the organometal halide based perovskite structure, its unique stoichiometric design, and its underlying principles for PV applications. The compatibility of various PV layers and its fab- rication methods is also discussed.

  10. Perovskites: transforming photovoltaics, a mini-review

    DOE PAGESBeta

    Chilvery, Ashwith Kumar; Batra, Ashok K.; Yang, Bin; Xiao, Kai; Guggilla, Padmaja; Aggarwal, Mohan D.; Surabhi, Raja; Lal, Ravi B.; Currie, James R.; Penn, Benjamin G.

    2015-01-06

    The recent power-packed advent of perovskite solar cells is transforming photovoltaics (PV) with their superior efficiencies, ease of fabrication, and cost. This perovskite solar cell further boasts of many unexplored features that can further enhance its PV properties and lead to it being branded as a successful commercial product. This paper provides a detailed insight of the organometal halide based perovskite structure, its unique stoichiometric design, and its underlying principles for PV applications. Finally, the compatibility of various PV layers and its fabrication methods is also discussed.

  11. Templated Synthesis of Uniform Perovskite Nanowire Arrays.

    PubMed

    Ashley, Michael J; O'Brien, Matthew N; Hedderick, Konrad R; Mason, Jarad A; Ross, Michael B; Mirkin, Chad A

    2016-08-17

    While the chemical composition of semiconducting metal halide perovskites can be precisely controlled in thin films for photovoltaic devices, the synthesis of perovskite nanostructures with tunable dimensions and composition has not been realized. Here, we describe the templated synthesis of uniform perovskite nanowires with controlled diameter (50-200 nm). Importantly, by providing three examples (CH3NH3PbI3, CH3NH3PbBr3, and Cs2SnI6), we show that this process is composition general and results in oriented nanowire arrays on transparent conductive substrates. PMID:27501464

  12. Strongly correlated perovskite fuel cells.

    PubMed

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations. PMID:27279218

  13. Microstructure dynamics in orthorhombic perovskites

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Koppensteiner, Johannes; Schranz, Wilfried; Betts, Jonathan B.; Migliori, Albert; Carpenter, Michael A.

    2010-07-01

    Anelastic loss mechanisms associated with phase transitions in BaCeO3 have been investigated at relatively high frequency ˜1MHz and low stress by resonant ultrasound spectroscopy (RUS), and at relatively low frequency ˜1Hz and high stress by dynamic mechanical analysis (DMA). Changes in the elastic moduli and dissipation behavior clearly indicate phase transitions due to octahedral tilting: Pnma↔Imma↔R3¯c↔Pm3¯m structures at 551 K, 670 K, and 1168 K, and strain analysis shows that they are tricritical, first-order, and second-order phase transitions, respectively. Structures with intermediate tilt states ( R3¯c and Imma structures) show substantial anelastic softening and dissipation associated with the mobility of twin walls under applied stress. The Pnma structure shows elastic stiffening which may be due to the simultaneous operation of two discrete order parameters with different symmetries. In contrast with studies of other perovskites, BaCeO3 shows strong dissipation at both DMA and RUS frequencies in the stability field of the Pnma structure. This is evidence that ferroelastic twin walls might become mobile in Pnma perovskites and suggests that shearing of the octahedra may be a significant factor.

  14. Strongly correlated perovskite fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  15. Kinetics and mechanism of reaction between silver molybdate and mercuric iodide in solid state

    SciTech Connect

    Beg, M.A.; Rafiuddin

    1987-05-01

    The kinetics and the mechanism of the reaction between silver molybdate and mercuric iodide were studied in the solid state by X-ray, chemical analysis, and electrical conductivity measurements. This is a multistep reaction where Ag/sub 2/HgI/sub 4/ is formed as an intermediate. In an equimolar mixture of Ag/sub 2/MoO/sub 4/ and HgI/sub 2/, AgI an HgMoO/sub 4/ are formed, whereas in a 1:2 molar mixture Ag/sub 2/HgI/sub 4/ and HgMoO/sub 4/ are formed. The data for lateral diffusion best fit the equation X/sup n/ = kt, where X is the product thickness, t is time, and k and n are constants. This is a multistep solid state ionic reaction initiated by the diffusion of HgI/sub 2/ molecules as such and not through counterdiffusion of cations.

  16. High field 207Pb spin-lattice relaxation in solid lead nitrate and lead molybdate

    NASA Astrophysics Data System (ADS)

    de Castro, Peter J.; Maher, Christopher A.; Vold, Robert L.; Hoatson, Gina L.

    2008-02-01

    Spin-lattice relaxation rates of lead have been measured at 17.6T (156.9MHz) as a function of temperature in polycrystalline lead nitrate and lead molybdate. Comparing the results with relaxation rates measured at lower fields, it is found that at high fields and low temperature, chemical shift anisotropy (CSA) makes small but observable contributions to lead relaxation in both materials. At 17.6T and 200K, CSA accounts for about 15% of the observed relaxation rate. Above 300K, the dominant relaxation mechanism even at 17.6T is an indirect Raman process involving modulation of the Pb207 spin-rotation tensor, as first proposed by Grutzner et al. [J. Am. Chem. Soc. 123, 7094 (2001)] and later treated theoretically in more detail by Vega et al. [Phys. Rev. B 74, 214420 (2006)]. The improved signal to noise ratio at high fields makes it possible to quantify relaxation time anisotropy by analyzing saturation-recovery functions for individual frequencies on the powder pattern line shape. No orientation dependence is found for the spin-lattice relaxation rate of either material. It is argued from examination of the appropriate theoretical expressions, derived here for the first time, that the lack of observable relaxation time anisotropy is probably a general feature of this indirect Raman mechanism.

  17. New double molybdate Na9Fe(MoO4)6: Synthesis, structure, properties

    NASA Astrophysics Data System (ADS)

    Savina, Aleksandra A.; Solodovnikov, Sergey F.; Basovich, Olga M.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Pokholok, Konstantin V.; Gudkova, Irina A.; Stefanovich, Sergey Yu.; Lazoryak, Bogdan I.; Khaikina, Elena G.

    2013-09-01

    A new double molybdate Na9Fe(MoO4)6 was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, X-ray fluorescence analysis, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na9Fe(MoO4)6 were obtained and its structure was solved (the space group R3¯, a=14.8264(2), c=19.2402(3) Å, V=3662.79(9) Å3, Z=6, R=0.0132). The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)3. The basic structure units are polyhedral clusters composed of central FeО6 octahedron sharing edges with three Na(1)О6 octahedra. The clusters share common vertices with bridging МоО4 tetrahedra to form an open 3D framework where the cavities are occupied by Na(2) and Na(3) atoms. The compound melts incongruently at 904.7±0.2 K. Arrhenius type temperature dependence of electric conductivity σ has been registered in solid state (σ=6.8×10-2 S сm-1 at 800 K), thus allowing considering Na9Fe(MoO4)6 as a new sodium ion conductor.

  18. Catalytic oxidation of propylene--7. Use of temperature programmed reoxidation to characterize. gamma. -bismuth molybdate

    SciTech Connect

    Uda, T.; Lin, T.T.; Keulks, G.W.

    1980-03-01

    Temperature-programed reoxidation of propylene-reduced ..gamma..-Bi/sub 2/MoO/sub 6/ revealed a low-temperature peak (LTP) at 158/sup 0/C and a high-temperature peak (HTP) at 340/sup 0/C. Auger spectroscopy and X-ray diffraction of reduced and partially or completely reoxidized bismuth molybdate showed that at the LTP, molybdenum(IV) is oxidized to molybdenum(VI) and bismuth, from the metallic state to an oxidation state between zero and three, and that the HTP is associated with the complete oxidation of bismuth to bismuth(III). Activity tests for propylene oxidation showed lower acrolein formation on the catalyst, on which only the LTP was reoxidized than on catalysts on which both peaks were reoxidized. The reoxidation kinetics of the catalyst under conditions corresponding to the LTP showed an activation energy of 22.9 kcal/mole below 170/sup 0/C and near zero above 170/sup 0/C; the break in the Arrhenius plot of reoxidation of the catalyst under conditions corresponding to the HTP was at 400/sup 0/C, with activation energies of 46 kcal/mole at lower and near zero at higher temperatures. Propylene oxidation was apparently rate-limited by the HTP reoxidation process below 400/sup 0/C and by allylic hydrogen abstraction above 400/sup 0/C.

  19. 90-Day subchronic toxicity study of sodium molybdate dihydrate in rats.

    PubMed

    Murray, F Jay; Sullivan, Frank M; Tiwary, Asheesh K; Carey, Sandra

    2014-12-01

    This study investigated the subchronic toxicity of molybdenum (Mo) in Sprague-Dawley rats given sodium molybdate dihydrate in the diet for 90days at dose levels of 0, 5, 17 or 60mgMo/kgbw/day. The study complied with OECD Test Guideline (TG) 408, with additional examination of estrus cycles and sperm count, motility, and morphology from OECD TG 416. The overall no-observed-adverse-effect level was 17mgMo/kgbw/day, based on effects on body weight, body weight gain, food conversion efficiency and renal histopathology (females only) at 60mgMo/kgbw/day. No treatment-related adverse effects on reproductive organ weights or histopathology, estrus cycles or sperm parameters were observed at any dose level. No adverse effects were observed in the high dose animals after the 60-day recovery period, with the exception that male rats did not fully recover from reduced body weight. Serum blood, liver and kidney samples were analyzed for molybdenum, copper, zinc, manganese, iron, cobalt and selenium; high levels of molybdenum and copper were found in the serum, blood, liver and kidneys of rats treated with 60mgMo/kgbw/day. In conclusion, the LOAEL and NOAEL for molybdenum were determined to be 60 and 17mgMo/kgbw/day, respectively. PMID:24041747

  20. Two-photon interband absorption coefficients in tungstate and molybdate crystals

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya.

    2015-02-01

    Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.

  1. High-performance perovskite light-emitting diodes via morphological control of perovskite films

    NASA Astrophysics Data System (ADS)

    Yu, Jae Choul; Kim, Da Bin; Jung, Eui Dae; Lee, Bo Ram; Song, Myoung Hoon

    2016-03-01

    Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in a perovskite film with a uniform, continuous morphology because the HBr increases the solubility of the inorganic component in the perovskite precursor and reduces the crystallization rate of the perovskite film upon spin-coating. Moreover, PeLEDs fabricated using perovskite films with a uniform, continuous morphology, which were deposited using 6 vol% HBr in a dimethylformamide (DMF)/hydrobromic acid (HBr) cosolvent, exhibited full coverage of the green EL emission. Finally, the optimized PeLEDs fabricated with perovskite films deposited using the DMF/HBr cosolvent exhibited a maximum luminance of 3490 cd m-2 (at 4.3 V) and a luminous efficiency of 0.43 cd A-1 (at 4.3 V).Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in

  2. Toxicity of organometal halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Babayigit, Aslihan; Ethirajan, Anitha; Muller, Marc; Conings, Bert

    2016-03-01

    In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.

  3. Ambipolar solution-processed hybrid perovskite phototransistors

    PubMed Central

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tom

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications. PMID:26345730

  4. Perovskite Solar Cells: Beyond Methylammonium Lead Iodide.

    PubMed

    Boix, Pablo P; Agarwala, Shweta; Koh, Teck Ming; Mathews, Nripan; Mhaisalkar, Subodh G

    2015-03-01

    Organic-inorganic lead halide based perovskites solar cells are by far the highest efficiency solution-processed solar cells, threatening to challenge thin film and polycrystalline silicon ones. Despite the intense research in this area, concerns surrounding the long-term stability as well as the toxicity of lead in the archetypal perovskite, CH3NH3PbI3, have the potential to derail commercialization. Although the search for Pb-free perovskites have naturally shifted to other transition metal cations and formulations that replace the organic moiety, efficiencies with these substitutions are still substantially lower than those of the Pb-perovskite. The perovskite family offers rich multitudes of crystal structures and substituents with the potential to uncover new and exciting photophysical phenomena that hold the promise of higher solar cell efficiencies. In addressing materials beyond CH3NH3PbI3, this Perspective will discuss a broad palette of elemental substitutions, solid solutions, and multidimensional families that will provide the next fillip toward market viability of the perovskite solar cells. PMID:26262670

  5. Multiferroicity in Perovskite Manganite Superlattice

    NASA Astrophysics Data System (ADS)

    Tao, Yong-Mei; Jiang, Xue-Fan; Liu, Jun-Ming

    2016-08-01

    Multiferroic properties of short period perovskite type manganite superlattice ((R1MnO3)n/(R2MnO3)n (n=1,2,3)) are considered within the framework of classical Heisenberg model using Monte Carlo simulation. Our result revealed the interesting behaviors in Mn spins structure in superlattice. Apart from simple plane spin cycloid structure which is shown in all manganites including bulk, film, and superlattice here in low temperature, a non-coplanar spiral spin structure is exhibited in a certain temperature range when n equals 1, 2 or 3. Specific heat, spin-helicity vector, spin correlation function, spin-helicity correlation function, and spin configuration are calculated to confirm this non-coplanar spiral spin structure. These results are associated with the competition among exchange interaction, magnetic anisotropy, and Dzyaloshinskii-Moriya interaction. Supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11447136

  6. Effect of Perovskite Overlayers on TiO2 Electrodes in Perovskite-Sensitized Solar Cells.

    PubMed

    Kim, Kang-Pil; Kim, Jeong-Hwa; Hwang, Dae-Kue

    2016-05-01

    In this paper, we have studied the effect of the thickness of a CH3NH3PbI3 perovskite overlayer on mesoporous TiO2 electrodes in perovskite solar cells. The overlayers were prepared by spin coating PbI2 films on the electrodes, which were subsequently exposed to a CH3NH3I/2-propanol solution. We controlled the thickness of the perovskite overlayer by changing the PbI2 solution concentration. The thicknesses of the overlayers spin-coated from 0.5, 0.75, 0.9, and 1 M PbI2 solutions were approximately 179, 262, 316, and 341 nm, respectively. Perovskite solar cells with an approximately 316-nm-thick overlayer showed the highest efficiency of 9.11%. We conclude that optimization of the perovskite overlayer thickness in the solar cell structure is necessary to improve the cell efficiency. PMID:27483921

  7. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate.

    PubMed

    Fraqueza, Gil; Ohlin, C André; Casey, William H; Aureliano, Manuel

    2012-02-01

    Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were

  8. From yellow to black: dramatic changes between cerium(IV) and plutonium(IV) molybdates.

    PubMed

    Cross, Justin N; Duncan, Patrick M; Villa, Eric M; Polinski, Matthew J; Babo, Jean-Marie; Alekseev, Evgeny V; Booth, Corwin H; Albrecht-Schmitt, Thomas E

    2013-02-20

    Hydrothermal reactions of CeCl(3) and PuCl(3) with MoO(3) and Cs(2)CO(3) yield surprisingly different results. Ce(3)Mo(6)O(24)(H(2)O)(4) crystallizes as bright yellow plates (space group C2/c, a = 12.7337(7) Å, b = 22.1309(16) Å, c = 7.8392(4) Å, β = 96.591(4)°, V = 2194.6(2) Å(3)), whereas CsPu(3)Mo(6)O(24)(H(2)O) crystallizes as semiconducting black-red plates (space group C2/c, a = 12.633(5) Å, b = 21.770(8) Å, c = 7.743(7) Å, β = 96.218(2)°, V = 2117(2) Å(3)). The topologies of the two compounds are similar, with channel structures built from disordered Mo(VI) square pyramids and (RE)O(8) square antiprisms (RE = Ce(IV), Pu(IV)). However, the Pu(IV) compound contains Cs(+) in its channels, while the channels in Ce(3)Mo(6)O(24)(H(2)O)(4) contain water molecules. Disorder and an ambiguous oxidation state of Mo lead to the formula CsPu(3)Mo(6)O(24)(H(2)O), where one Mo site is Mo(V) and the rest are Mo(VI). X-ray absorption near-edge structure (XANES) experiments were performed to investigate the source of the black color of CsPu(3)Mo(6)O(24)(H(2)O). These experiments revealed Pu to be tetravalent, while the strong pre-edge absorption from the distorted molybdate anions leaves the oxidation state ambiguous between Mo(V) and Mo(VI). PMID:23360299

  9. Catalytic coal liquefaction. Quarterly report, October-December 1981. [Ammonium molybdates

    SciTech Connect

    Weller, S.W.

    1981-01-01

    This research has the following scope and objectives: (1) to characterize supported molybdena catalysts, in the sulfide as well as in the oxide form, with respect to total surface area, specific surface area by oxygen chemisorption, and catalytic activity in a standardized test reaction; (2) to study the effect of preparational variables in the liquefaction of coal with efficient catalysts, with particular emphasis on molybdenum catalysts employed in very small amount. Summary of progress do date - Tubing bomb experiments on the transfer of hydrogen from tetralin to coal have been extended to a series of impregnated metal salts and two acids, all at 1% concentration. Coal conversion, moderately high even with no catalyst, is incrementally higher with all catalysts tested. Apparent hydrogen transfer, based on naphthalene produced, is also increased by all catalysts but especially by ammonium molybdate (AM) and stannous chloride (SnCl/sub 2/). Blank runs with catalyst but no coal show a finite amount of naphthalene production; except for AM and SnCl/sub 2/, the apparent catalysis of hydrogen transfer may be an artifact associated with a catalytic effect on tetralin dissociation. This question is being examined in autoclave runs, where the gas volume: liquid volume is greater. Runs at 400/sup 0/C indicate a surprising effect: both coal and AM separately catalyze tetralin dissociation, but their combined effect is greater than the sum of the individual ones (synergy). The possibility that catalytic generation of radicals from coal in turn catalyzes tetralin dissociation is being studied at 450/sup 0/C with bibenzyl as a radical generator. 3 tables.

  10. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  11. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  12. X-ray imaging: Perovskites target X-ray detection

    NASA Astrophysics Data System (ADS)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  13. Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells.

    PubMed

    Zhang, Yong; Tan, Licheng; Fu, Qingxia; Chen, Lie; Ji, Ting; Hu, Xiaotian; Chen, Yiwang

    2016-04-14

    The grain size of perovskites was enhanced and the grain boundary was filled with sulfonate carbon nanotubes (s-CNTs) during the CH3NH3PbI3 perovskite precursor solution spin-coating process with the incorporation of s-CNTs. The performance of s-CNT incorporated perovskite solar cells remarkably increased from 10.3% to 15.1% (best) compared with pristine CNT incorporated perovskite solar cells. PMID:26940646

  14. Rational Strategies for Efficient Perovskite Solar Cells.

    PubMed

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  15. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics. PMID:26178963

  16. Quantum-dot-in-perovskite solids

    NASA Astrophysics Data System (ADS)

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-07-01

    Heteroepitaxy--atomically aligned growth of a crystalline film atop a different crystalline substrate--is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned `dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  17. Simulation of the inhibition of microbial sulfate reduction in a two-compartment upflow bioreactor subjected to molybdate injection.

    PubMed

    de Jesus, E B; de Andrade Lima, L R P

    2016-08-01

    Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity. PMID:27126499

  18. Autothermal reforming catalyst having perovskite structure

    DOEpatents

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  19. Metal halide perovskites for energy applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  20. Machine learning bandgaps of double perovskites

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Mannodi-Kanakkithodi, Arun; Uberuaga, Blas; Ramprasad, Rampi; Gubernatis, James; Lookman, Turab

    The ability to make rapid and accurate predictions of bandgaps for double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps for double perovskites. After evaluating a set of nearly 1.2 million features, we identify several elemental features of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science (on a dataset of more than 1300 double perovskite bandgaps) and further analyzed to rationalize their prediction performance. Los Alamos National Laboratory LDRD program and the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  1. Nanophotonic front electrodes for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Paetzold, Ulrich Wilhelm; Qiu, Weiming; Finger, Friedhelm; Poortmans, Jef; Cheyns, David

    2015-04-01

    In less than 3 years' time, a vast progress in power conversion efficiencies of organometal halide perovskite solar cells has been achieved by optimization of the device architecture, charge transport layers, and interfaces. A further increase in these efficiencies is expected from an improvement in the optical properties via anti-reflection coatings and nanophotonic light management concepts. In this contribution, we report on the development and implementation of a nanophotonic front electrode for perovskite solar cells. The nanostructures were replicated via the versatile and large-area compatible UV-nanoimprint lithography. The shallow design of the used transparent and conductive nanostructures enabled easy integration into our solution-based baseline process. Prototype methylammonium lead iodide perovskite solar cells show an improvement of 5% in short-circuit current density and an improvement from 9.6% to 9.9% in power conversion efficiency compared to the flat reference device.

  2. A Heteroepitaxial Perovskite Metal-Base Transistor

    SciTech Connect

    Yajima, T.; Hikita, Y.; Hwang, H.Y.; /Tokyo U. /JST, PRESTO /SLAC

    2011-08-11

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  3. Nanoimprinted Perovskite Solar Cells With Enhanced Photocurrent

    NASA Astrophysics Data System (ADS)

    Haroldson, Ross; Balachandran, Balasubramaniam?; Ren, Yixin; Zakhidov, Anvar; Hu, Wenchuang; UTD Nanoimprint Team

    We have developed a new method of Nanoimprint Lithography (NIL) to shape the morphology of organolead trihalide perovskite. With this hot stamping process we created ordered gratings or other micro or nanostructures of perovskite resembling 2D photonic crytals on the scale of 200 to 600 nm from a starting small grain spin-coated film of the same scale. With this new method of nanoimprinting, we demonstrate that perovskite PV device performance can be improved and controlled. Initial results comparing flat vs. NIL-PV structure devices show dramatic increase in photocurrent as well as better crystallinity. The origin of Isc enhancement is explained in terms of better morphology and larger grains, resulting in longer diffusion length of carriers, while better light absorption by photonic crystal nanopatterns cannot be excluded.

  4. Mechanism of Selective Ammoxidation of Propene to Acrylonitrile on Bismuth Molybdates from Quantum Mechanical Calculations

    SciTech Connect

    Pudar, Sanja; Oxgaard, Jonas; Goddard, William A

    2010-08-25

    In order to understand the mechanism for selective ammoxidation of propene to acrylonitrile by bismuth molybdates, we report quantum mechanical studies (using the B3LYP flavor of density functional theory) for the various steps involved in converting the allyl-activated intermediate to acrylonitrile over molybdenum oxide (using a Mo3O9 cluster model) under conditions adjusted to describe both high and low partial pressures of NH3 in the feed. We find that the rate-determining step in converting of allyl to acrylonitrile at all feed partial pressures is the second hydrogen abstraction from the nitrogen-bound allyl intermediate (Mo-NH-CH2-CH=CH2) to form Mo-NH=CH-CH=CH2). We find that imido groups (Mo=NH) have two roles: (1) a direct effect on H abstraction barriers, H abstraction by an imido moiety is (~8 kcal/mol) more favorable than abstraction by an oxo moiety (Mo=O), and (2) an indirect effect, the presence of spectator imido groups decreases the H abstraction barriers by an additional ~15 kcal/mol. Therefore, at higher NH3 pressures (which increases the number of Mo=NH groups), the second H abstraction barrier decreases significantly, in agreement with experimental observations that propene conversion is higher at higher partial pressures of NH3. At high NH3 pressures we find that the final hydrogen abstraction has a high barrier [ΔHfourth-ab = 31.6 kcal/mol compared to ΔHsecond-ab = 16.4 kcal/mol] due to formation of low Mo oxidation states in the final state. However, we find that reoxidizing the surface prior to the last hydrogen abstraction leads to a significant reduction of this barrier to ΔHfourth-ab = 15.9 kcal/mol, so that this step is no longer rate determining. Therefore, we conclude that reoxidation during the reaction is necessary for facile conversion of allyl to

  5. A review on visible light active perovskite-based photocatalysts.

    PubMed

    Kanhere, Pushkar; Chen, Zhong

    2014-01-01

    Perovskite-based photocatalysts are of significant interest in the field of photocatalysis. To date, several perovskite material systems have been developed and their applications in visible light photocatalysis studied. This article provides a review of the visible light (λ > 400 nm) active perovskite-based photocatalyst systems. The materials systems are classified by the B site cations and their crystal structure, optical properties, electronic structure, and photocatalytic performance are reviewed in detail. Titanates, tantalates, niobates, vanadates, and ferrites form important photocatalysts which show promise in visible light-driven photoreactions. Along with simple perovskite (ABO3) structures, development of double/complex perovskites that are active under visible light is also reviewed. Various strategies employed for enhancing the photocatalytic performance have been discussed, emphasizing the specific advantages and challenges offered by perovskite-based photocatalysts. This review provides a broad overview of the perovskite photocatalysts, summarizing the current state of the work and offering useful insights for their future development. PMID:25532834

  6. Functionalization of perovskite thin films with moisture-tolerant molecules

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Wang, Yun; Liu, Porun; Cheng, Yi-Bing; Zhao, Hui Jun; Yang, Hua Gui

    2016-02-01

    Organic-inorganic hybrid perovskites are particularly suited as light-harvesting materials in photovoltaic devices. The power conversion efficiency of perovskite solar cells has reached certified values of over 20% in just a few years. However, one of the major hindrances for application of these materials in real-world devices is the performance degradation in humid conditions, leading to a rapid loss of photovoltaic response. Here, we demonstrate that hydrophobic tertiary and quaternary alkyl ammonium cations can be successfully assembled on the perovskite surface as efficient water-resisting layers via a facile surface functionalization technique. Such layers can protect the perovskite film under high relative humidity (90 ± 5%) over 30 days. More importantly, devices based on such films can retain the photovoltaic capacities of bulk perovskites, with power conversion efficiencies over 15%. Improving the humidity tolerance of perovskite materials is a necessary step towards large-scale production of high-performance perovskite-based devices under ambient humidity.

  7. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    PubMed

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency. PMID:27315525

  8. Bismuth-based perovskites as multiferroics

    NASA Astrophysics Data System (ADS)

    Guennou, Mael; Viret, Michel; Kreisel, Jens

    2015-03-01

    This review devoted to multiferroic properties of bismuth-based perovskites is divided into two parts. The first one focuses on BiFeO3 and summarizes the recent progress made in the studies of its pressure-temperature phase diagram and magnetoelectric coupling phenomena. The second part discusses in a more general way the issue of polar-and multiferroic-phases in Bi BO3 perovskites and the competition between ferroelectricity and other structural instabilities, from an inventory of recently synthesized compounds.

  9. Stability of tetravalent actinides in perovskites

    SciTech Connect

    Williams, C.W.; Morss, L.R.; Choi, I.K.

    1983-01-01

    This paper reports the first determination of the enthalpy of formation of a complex actinide(IV) oxide: ..delta..H/sup 0//sub f/ (BaUO/sub 3/, s, 298 K) = -1690 +- 10 kJ mol/sup -1/. The preparation and properties of this and other actinide(IV) complex oxides are described and are compared with other perovskites BaMO/sub 3/. The relative stabilities of tetravalent and hexavalent uranium in various environments are compared in terms of the oxidation-reduction behavior of uranium in geological nuclear waste storage media; in perovskite, uranium(IV) is very unstable in comparison with uranium(VI).

  10. - and Perovskite-Sensitised Mesoscopic Solar Cells

    NASA Astrophysics Data System (ADS)

    Grätzel, Michael; Durrant, James R.

    2015-10-01

    The following sections are included: * Introduction * Historical background * Mode of function of dye-sensitised solar cells * DSSC research and development * Solid-state mesoscopic cells based on molecular dyes or perovskite pigments as sensitisers * Pilot production of modules, field tests and commercial DSSC development * Outlook * Acknowledgements * References

  11. Perovskite solar cells: Different facets of performance

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Ginger, David S.

    2016-08-01

    The electronic properties of halide perovskites vary significantly between crystalline grains, but the impact of this heterogeneity on solar cell performance is unclear. Now, this variability is shown to limit the photovoltaic properties of solar cells, and its origins are linked to differing properties between crystal facets.

  12. Crystalline-amorphous transition in silicate perovskites

    SciTech Connect

    Hemmati, M.; Chizmeshya, A.; Wolf, G.H.; Poole, P.H.; Shao, J.; Angell, C.A.

    1995-06-01

    CaSiO{sub 3} and MgSiO{sub 3} perovskites are known to undergo solid-state crystal to amorphous transitions near ambient pressure when decompressed from their high-pressure stability fields. In order to elucidate the mechanistic aspects of this transition we have performed detailed molecular-dynamics simulations and lattice-dynamical calculations on model silicate perovskite systems using empirical rigid-ion pair potentials. In the simulations at low temperatures, the model perovskite systems transform under tension to a low-density glass composed of corner shared chains of tetrahedral silicon. The amorphization is initiated by a thermally activated step involving a soft polar optic mode in the perovskite phase at the Brillouin zone center. Progression of the system along this reaction coordinate triggers, in succession, multiple barrierless modes of instability ultimately producing a catastrophic decohesion of the lattice. An important intermediary along the reaction path is a crystalline phase where silicon is in a five-coordinate site and the alkaline-earth metal atom is in eightfold coordination. At the onset pressure, this transitory phase is itself dynamically unstable to a number of additional vibrational modes, the most relevant being those which result in transformation to a variety of tetrahedral chain silicate motifs. These results support the conjecture that stress-induced amorphization arises from the near simultaneous accessibility of multiple modes of instability in the highly metastable parent crystalline phase.

  13. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein.

    PubMed

    Schuh, K; Kleist, W; Høj, M; Trouillet, V; Jensen, A D; Grunwaldt, J-D

    2014-12-18

    Flame spray pyrolysis (FSP) of Bi(III)- and Mo(VI)-2-ethylhexanoate dissolved in xylene resulted in various nanocrystalline bismuth molybdate phases depending on the Bi/Mo ratio. Besides α-Bi2Mo3O12 and γ-Bi2MoO6, FSP gave direct access to the metastable β-Bi2Mo2O9 phase with high surface area (19 m(2) g(-1)). This phase is normally only obtained at high calcination temperatures (>560 °C) resulting in lower surface areas. The β-phase was stable up to 400 °C and showed superior catalytic performance compared to α- and γ-phases in selective oxidation of propylene to acrolein at temperatures relevant for industrial applications (360 °C). PMID:25350295

  14. High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF{sub 3}

    SciTech Connect

    Shirako, Y.; Shi, Y.G.; Aimi, A.; Mori, D.; Kojitani, H.; Yamaura, K.; Inaguma, Y.; Akaogi, M.

    2012-07-15

    NaNiF{sub 3} perovskite was found to transform to post-perovskite at 16-18 GPa and 1273-1473 K. The equilibrium transition boundary is expressed as P (GPa)=-2.0+0.014 Multiplication-Sign T (K). Structure refinements indicated that NaNiF{sub 3} perovskite and post-perovskite have almost regular NiF{sub 6} octahedra consistent with absence of the first-order Jahn-Teller active ions. Both NaNiF{sub 3} perovskite and post-perovskite are insulators. The perovskite underwent a canted antiferromagnetic transition at 156 K, and the post-perovskite antiferromagnetic transition at 22 K. Magnetic exchange interaction of NaNiF{sub 3} post-perovskite is smaller than that of perovskite, reflecting larger distortion of Ni-F-Ni network and lower dimension of octahedral arrangement in post-perovskite than those in perovskite. - Graphical abstract: Perovskite-post-perovskite transition in NaNiF{sub 3} at high pressure Highlights: Black-Right-Pointing-Pointer NaNiF{sub 3} perovskite (Pv) transforms to post-perovskite (pPv) at 16 GPa and 1300 K. Black-Right-Pointing-Pointer The equilibrium transition boundary is expressed as P (GPa)=-2.0+0.014 T (K). Black-Right-Pointing-Pointer Antiferromagnetic transition occurs at 156 K in Pv and 22 K in pPv.

  15. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-01

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. PMID:26376773

  16. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    PubMed

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-01-01

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells. PMID:27077835

  17. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  18. Graphene petals as potential electrode for perovskite based solar cells

    NASA Astrophysics Data System (ADS)

    Singh, Shivi

    The recent discovery of perovskites absorbers for high efficiency solar cells has sparked interest of the solar cell community. In the present study formation and growth of perovskite (both single and mixed halide) is analyzed and a procedure is developed to increase reproducibility of these layers. Graphene nano-petals are also studied as a potential electrode for perovskite solar cells, to assist in growth of better quality perovskite layers. X-ray diffraction, scanning electron microscopy and UV-vis spectroscopy are used to study the effect of different parameters on morphological features of perovskite. Different solar cell geometries are also tested, and a working geometry for single stack perovskite solar cell is proposed which uses graphene nano-petals as an electrode.

  19. Predominant Intermediate-Spin Ferrous Iron in Lowermost Mantle Post-Perovskite and Perovskite

    NASA Astrophysics Data System (ADS)

    Lin, J.; Watson, H. C.; Vanko, G.; Alp, E. E.; Prakapenka, V.; Dera, P.; Struzhkin, V. V.; Kubo, A.; Zhao, J.; McCammon, C.; Evans, W. J.

    2008-12-01

    Silicate post-perovskite and perovskite are believed to be the dominant minerals of the lowermost mantle and the lower mantle, respectively, and their properties, which can be strongly influenced by the electronic state of iron in these phases, affect our understanding of the nature of the deep Earth. To date, in these minerals the electronic spin state of iron remains unknown under lowermost-mantle pressure-temperature conditions, although recent studies have showed an electronic spin crossover from high-spin to low-spin in ferropericlase over an extended pressure-temperature range of the lower mantle (i.e., Lin et al., Science, 2007) and from high-spin to intermediate-spin in silicate perovskite near the top of the lower mantle (McCammon et al., Nature Geoscience, 2008). Here we report the spin and valence states of iron in post-perovskite and perovskite at pressure-temperature conditions relevant to the lowermost mantle using in situ X-ray emission, X-ray diffraction, and synchrotron Mossbauer spectroscopies in a laser-heated diamond cell. Perovskite and post-perovskite display extremely high quadrupole splitting (QS) of approximately 4 mm/s and relatively high center shift in the synchrotron Mossbauer spectra at 110 GPa and 134 GPa, respectively. Our results show that Fe2+ exists predominantly in the intermediate-spin state with a total spin number of one in both phases (Lin et al., Nature Geoscience, 2008). Together with recent results on the effects of the spin transition in the lower-mantle ferropericlase (see a recent review by Lin and Tsuchiya, PEPI, 2008), here we will address how the electronic spin states in lower-mantle phases and their associated effects affect our understanding on the composition, geophysics, and dynamics of the lower mantle.. References: 1. Lin, J. F., H. C. Watson, G. Vanko, E. E. Alp, V. B. Prakapenka, P. Dera, V. V. Struzhkin, A. Kubo, J. Zhao, C. McCammon, W. J. Evans, Intermediate-spin ferrous iron in lowermost mantle post-perovskite

  20. Organohalide Perovskites for Solar Energy Conversion.

    PubMed

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  1. Elastic anisotropy of experimental analogues of perovskite and post-perovskite help to interpret D'' diversity.

    PubMed

    Yoneda, Akira; Fukui, Hiroshi; Xu, Fang; Nakatsuka, Akihiko; Yoshiasa, Akira; Seto, Yusuke; Ono, Kenya; Tsutsui, Satoshi; Uchiyama, Hiroshi; Baron, Alfred Q R

    2014-01-01

    Recent studies show that the D'' layer, just above the Earth's core-mantle boundary, is composed of MgSiO3 post-perovskite and has significant lateral inhomogeneity. Here we consider the D'' diversity as related to the single-crystal elasticity of the post-perovskite phase. We measure the single-crystal elasticity of the perovskite Pbnm-CaIrO3 and post-perovskite Cmcm-CaIrO3 using inelastic X-ray scattering. These materials are structural analogues to same phases of MgSiO3. Our results show that Cmcm-CaIrO3 is much more elastically anisotropic than Pbnm-CaIrO3, which offers an explanation for the enigmatic seismic wave velocity jump at the D'' discontinuity. Considering the relation between lattice preferred orientation and seismic anisotropy in the D'' layer, we suggest that the c axis of post-perovskite MgSiO3 aligns vertically beneath the Circum-Pacific rim, and the b axis vertically beneath the Central Pacific. PMID:24670790

  2. Machine learning bandgaps of double perovskites

    PubMed Central

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-01

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance. PMID:26783247

  3. Machine learning bandgaps of double perovskites

    NASA Astrophysics Data System (ADS)

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-01

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.

  4. Excited State Properties of Hybrid Perovskites.

    PubMed

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  5. Machine learning bandgaps of double perovskites

    DOE PAGESBeta

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-19

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the mostmore » crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.« less

  6. Hydrogen Solubility in Al-bearing Perovskite

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Krawczynski, M. J.; Fei, Y.

    2005-12-01

    It is generally accepted that silicate perovskite is the dominant mineral in the Earth's lower mantle. Previous studies have been completed to determine the physical and chemical characteristics of the pure end-member MgSiO3. Recent studies have shown that the addition of Al to MgSiO3 can have a significant effect on the material properties of the mineral, such as compressibility, and defect structure, as well as a great potential to dissolve water. We have synthesized Al-bearing perovskite samples under hydrous conditions in a multi-anvil apparatus at pressures ranging from 23-26 GPa and 1800oC. The starting materials consisted of brucite and silica powders mixed together and finely ground in a 1:1 molar ratio, with subsequent addition of Al2O3 powder at 2wt% intervals from 0%-6%. The mixed powders were tightly packed in Au capsules, housed in BN sleeves, and loaded into standard 8/3 multi-anvil assemblies. The experiments were brought to the appropriate pressure conditions for solubility of the different Al2O3 contents. The resulting perovskite crystals range in size from <20 microns to >100 microns in size. Their major element chemistry has been characterized by EPMA, and the H content of some samples has been measured by secondary ion mass spectrometry using a 6f Cameca ion microprobe and is substantial (>1200ppm in some samples). In this study, we correlate H content in the perovskites with Al concentration, and discussion follows on what effects this may have on potential substitution mechanisms, and correlated formation of oxygen vacancies, as well as water storage in the mantle, oxygen diffusion, and the potential of an oxygen ionic diffusion contribution to electrical conductivity in the mantle.

  7. The photophysics of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Sum, Tze Chien

    2014-09-01

    Solution-processed hybrid organic-inorganic perovskite solar cells, a newcomer to the photovoltaic arena, have taken the field by storm with their extraordinary power conversion efficiencies exceeding 17%. In this paper, the photophysics and the latest findings on the carrier dynamics and charge transfer mechanisms in this new class of photovoltaic material will be examined and distilled. Some open photophysics questions will also be discussed.

  8. Resistance switching memory in perovskite oxides

    SciTech Connect

    Yan, Z.B. Liu, J.-M.

    2015-07-15

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given.

  9. A-site ordered quadruple perovskite oxides

    NASA Astrophysics Data System (ADS)

    Youwen, Long

    2016-07-01

    The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu–Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).

  10. Lattice effects on ferromagnetism in perovskite ruthenates

    PubMed Central

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  11. Light-trapping in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Du, Qing Guo; Shen, Guansheng; John, Sajeev

    2016-06-01

    We numerically demonstrate enhanced light harvesting efficiency in both CH3NH3PbI3 and CH(NH2)2PbI3-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH3NH3PbI3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH2)2PbI3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm2, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH2)2PbI3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  12. High Efficiency Pb-In Binary Metal Perovskite Solar Cells.

    PubMed

    Wang, Zhao-Kui; Li, Meng; Yang, Ying-Guo; Hu, Yun; Ma, Heng; Gao, Xing-Yu; Liao, Liang-Sheng

    2016-08-01

    Mixed Pb-In perovskite solar cells are fabricated by using lead(II) chloride and indium(III) chloride with methylammonium iodide. A maximum power conversion efficiency as high as 17.55% is achieved owing to the high quality of perovskites with multiple ordered crystal orientations. PMID:27184107

  13. Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells.

    PubMed

    Lee, Yong Hui; Luo, Jingshan; Son, Min-Kyu; Gao, Peng; Cho, Kyung Taek; Seo, Jiyoun; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-05-01

    The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing. PMID:26928481

  14. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed. PMID:26278951

  15. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors. PMID:27089497

  16. The structures and properties of the new two-dimensional inorganic–organic hybrid materials based on the molybdate chains

    SciTech Connect

    Li, Na; Mu, Bao; Cao, Xinyu; Huang, Rudan

    2014-09-15

    A series of inorganic organic hybrid materials based on polyoxometalates(POMs), namely, [M{sup II}(HL){sub 2}(H{sub 2}O){sub 2}][Mo{sup VI}{sub 6}O{sub 20}] [M=Co (1), Ni (2), Cu (3), Zn (4)], [Mn{sup IV}L{sub 2}(H{sub 2}O){sub 2}][Mo{sup VI}{sub 6}O{sub 20}] (5), and (HL){sub 3}PMO{sub 12}O{sub 40} (6) [L=3-(4-pyridyl)pyrazole], have been synthesized. The compounds have been characterized by elemental analysis, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. The results from single-crystal X-ray diffraction indicate that 1–5 are isostructural. It is worth noting that the polyanions are bridged by Mo–O–Mo to form 1D inorganic chains, which are further connected via M ions to form 2D nets. In compound 6, the ligands are used as the positive ions to balance the charge of the compound. Moreover, the magnetic properties of compound 5 have also been investigated in detail. - Graphical abstract: In complex 1, The Co ion is six coordinated by four oxygen atoms from two Mo{sub 6}O{sub 20} and two water molecules, and two N atoms from two different ligand. It is noticeable that there is an one-dimensional chain molybdate, which is combined by O–Mo–O, then the chain parallel with each other, the Mo{sub 6} anion acts as a bidentate ligand providing O7 atoms to bridge CoII ions to form a 2D inorganic layer. Finally every nets become 3D structure by hydrogen bond. - Highlights: • Novel inorganic–organic hybrid materials have been prepared. • Compounds 1–5 contain the 1D molybdate chains composed of (MoO{sub 6}) octahedra. • The 1D chains parallel with each other to form a 2D inorganic layer.

  17. Theory of hydrogen migration in organic-inorganic halide perovskites.

    PubMed

    Egger, David A; Kronik, Leeor; Rappe, Andrew M

    2015-10-12

    Solar cells based on organic-inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current-voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theory, we study the properties of an important defect in hybrid perovskites-interstitial hydrogen. We show that differently charged defects occupy different crystal sites, which may allow for ionization-enhanced defect migration following the Bourgoin-Corbett mechanism. Our analysis highlights the structural flexibility of organic-inorganic perovskites: successive iodide displacements, combined with hydrogen bonding, enable proton diffusion with low migration barriers. These findings indicate that hydrogen defects can be mobile and thus highly relevant for the performance of perovskite solar cells. PMID:26073061

  18. Nano-structured electron transporting materials for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  19. Nano-structured electron transporting materials for perovskite solar cells.

    PubMed

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-17

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells. PMID:26457406

  20. Planar-integrated single-crystalline perovskite photodetectors

    PubMed Central

    Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman M.

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors. PMID:26548941

  1. Integrating perovskite solar cells into a flexible fiber.

    PubMed

    Qiu, Longbin; Deng, Jue; Lu, Xin; Yang, Zhibin; Peng, Huisheng

    2014-09-22

    Perovskite solar cells have triggered a rapid development of new photovoltaic devices because of high energy conversion efficiencies and their all-solid-state structures. To this end, they are particularly useful for various wearable and portable electronic devices. Perovskite solar cells with a flexible fiber structure were now prepared for the first time by continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fiber electrode; photoactive perovskite materials were incorporated in between them through a solution process. The fiber-shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3%, which remained stable on bending. The perovskite solar cell fibers may be woven into electronic textiles for large-scale application by well-developed textile technologies. PMID:25047870

  2. Recent progress and challenges of organometal halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Liyan; Barrows, Alexander T.; Lidzey, David G.; Wang, Tao

    2016-02-01

    We review recent progress in the development of organometal halide perovskite solar cells. We discuss different compounds used to construct perovskite photoactive layers, as well as the optoelectronic properties of this system. The factors that affect the morphology of the perovskite active layer are explored, e.g. material composition, film deposition methods, casting solvent and various post-treatments. Different strategies are reviewed that have recently emerged to prepare high performing perovskite films, creating polycrystalline films having either large or small grain size. Devices that are constructed using meso-superstructured and planar architectures are summarized and the impact of the fabrication process on operational efficiency is discussed. Finally, important research challenges (hysteresis, thermal and moisture instability, mechanical flexibility, as well as the development of lead-free materials) in the development of perovskite solar cells are outlined and their potential solutions are discussed.

  3. Two-Dimensional Perovskite Activation with an Organic Luminophore.

    PubMed

    Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2015-10-01

    A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers. PMID:26340054

  4. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  5. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    NASA Astrophysics Data System (ADS)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  6. Highly efficient light management for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  7. Weakening of Calcium Iridate During its Transformation from Perovskite to Post-Perovskite

    SciTech Connect

    Hunt, S.; Weidner, D; Li, L; Wang, L; Walte, N; Brodholt, J; Dobson, D

    2009-01-01

    The lowermost part of the Earth's mantle - the {approx}200-km-thick D{double_prime} layer - shows anomalous seismic properties, and is rheologically distinct from the rest of the lower mantle. The difference is thought to result from a phase transition from silicate perovskite to silicate post-perovskite. However, the rheology of the latter phase remains to be documented owing to experimental difficulties in reproducing pressures equivalent to those in the lowermost mantle. Here we address this problem by conducting laboratory experiments that use calcium iridate, which has been shown to be an appropriate low-pressure analogue. We find that the post-perovskite phase of this analogue is approximately five times weaker than its perovskite phase, and that it further weakens by a factor of two during the phase transformation; these are minimum estimates. If, as is likely, a similar weakening occurs in lower-mantle magnesium - silicate compositions, this could provide an explanation for the behaviour of the lowermost mantle as inferred from geophysical data.

  8. Generalized trends in the formation energies of perovskite oxides.

    PubMed

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds. PMID:23579382

  9. Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-based solid solution phosphors

    NASA Astrophysics Data System (ADS)

    Xiang-Hong, He; Zhao-Lian, Ye; Ming-Yun, Guan; Ning, Lian; Jian-Hua, Sun

    2016-02-01

    Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs). Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103).

  10. High-temperature behavior of dicesium molybdate Cs2MoO4: Implications for fast neutron reactors

    NASA Astrophysics Data System (ADS)

    Wallez, Gilles; Raison, Philippe E.; Smith, Anna L.; Clavier, Nicolas; Dacheux, Nicolas

    2014-07-01

    Dicesium molybdate (Cs2MoO4)'s thermal expansion and crystal structure have been investigated herein by high temperature X ray diffraction in conjunction with Raman spectroscopy. This first crystal-chemical insight at high temperature is aimed at predicting the thermostructural and thermomechanical behavior of this oxide formed by the accumulation of Cs and Mo fission products at the periphery of nuclear fuel rods in sodium-cooled fast reactors. Within the temperature range of the fuel's rim, Cs2MoO4 becomes hexagonal P63/mmc, with disordered MoO4 tetrahedra and 2D distribution of Cs-O bonds that makes thermal axial expansion both large (50≤αl≤70 10-6 °C-1, 500-800 °C) and highly anisotropic (αc-αa=67×10-6 °C-1, hexagonal form). The difference with the fuel's expansion coefficient is of potential concern with respect to the cohesion of the Cs2MoO4 surface film and the possible release of cesium radionuclides in accidental situations.

  11. Characterisation of heterogeneous molybdate and chromate phase assemblages in model nuclear waste glasses by multinuclear magnetic resonance spectroscopy.

    PubMed

    Greer, Brandon J; Kroeker, Scott

    2012-05-28

    A series of sodium borosilicate glasses containing cesium, molybdenum, and chromium was prepared to investigate the partitioning of chromium amongst the glass and phase-separated crystalline molybdates. The precipitates were examined by (133)Cs, (23)Na, and (95)Mo MAS NMR, revealing a phase assemblage consisting of Na(2)MoO(4), Na(2)MoO(4)·2H(2)O, Cs(2)MoO(4), Cs(2)CrO(4), CsNaMoO(4)·2H(2)O, and Cs(3)Na(MoO(4))(2). (133)Cs MAS NMR indicates random substitution of Cr into the Mo sites of Cs(3)Na(MoO(4))(2) and provides a quantitative assessment of Cr incorporation. The sample compositions were verified by various analytical techniques and highlight the centrality of NMR in the identification and quantification of heterogeneous crystalline composites, including sensitivity to cationic substitution. The observation and facile interconversion of hydrated phases invites careful consideration of these materials for nuclear waste disposal. PMID:22532058

  12. Combination of Pichia membranifaciens and ammonium molybdate for controlling blue mould caused by Penicillium expansum in peach fruit.

    PubMed

    Cao, Shifeng; Yuan, Yongjun; Hu, Zhichao; Zheng, Yonghua

    2010-07-15

    The potential enhancement of Pichia membranifaciens by ammonium molybdate (NH(4)Mo) to control blue mould caused by Penicillium expansum on peach fruit was investigated. Combining P. membranifaciens at 1x10(8) cell/ml with 1 mM NH(4)Mo provided a more effective control of blue mould rot than applying the yeast or NH(4)Mo alone. Addition of 1 mM NH(4)Mo significantly increased the growth of P. membranifaciens in peach wounds, but did not affect the population in nutrient yeast dextrose broth medium. The in vitro experiment showed that the combined treatment inhibited spore germination and germ tube elongation of P. expansum in comparison with the treatment of P. membranifaciens or NH(4)Mo alone. Moreover, P. membranifaciens, NH(4)Mo, and the combination of them did not impair the quality parameters including fruit firmness and content of total soluble solids, titratable acidity and vitamin C of peach fruit after 6 days of storage at 20 degrees C. These results suggested that the use of NH(4)Mo is a useful approach to improve the efficacy of P. membranifaciens for postharvest disease control in peach fruit. PMID:20605650

  13. Lasing properties of selectively pumped Raman-active Nd{sup 3+}-doped molybdate and tungstate crystals

    SciTech Connect

    Basiev, Tasoltan T; Doroshenko, Maxim E; Ivleva, Lyudmila I; Osiko, Vyacheslav V; Kosmyna, M B; Komar', V K; Sulc, J; Jelinkova, H

    2006-08-31

    The lasing efficiency of Nd{sup 3+} ions is studied in laser materials capable of self-Raman frequency conversion. The lasing properties of tungstate and molybdate crystals with the scheelite structure (SrWO{sub 4}, BaWO{sub 4}, PbWO{sub 4}, SrMoO{sub 4}, PbMoO{sub 4}) activated with neodymium ions are investigated upon longitudinal pumping by a 750-nm alexandrite laser or a 800-nm diode laser. The slope lasing efficiency obtained for a Nd{sup 3+}:PbMoO{sub 4} laser emitting at 1054 nm is 54.3% for the total lasing efficiency of 46%, which is the best result for all the crystals with the scheelite structure studied so far. The simultaneous Q-switched lasing and self-Raman frequency conversion were demonstrated in neodymium-doped SrWO{sub 4}, PbWO{sub 4}, and BaWO{sub 4} crystals. (papers devoted to the 90th anniversary of a.m.prokhorov)

  14. Characterizing the performances of an advanced acousto-optical filter exploiting the collinear calcium molybdate crystalline cell

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Maximov, Je.; Sanchez Lucero, Daniel; Sanchez Perez, Karla J.

    2011-03-01

    In 1970 - 80s, novel optical spectral devices, electronically tunable acousto-optical filters (AOFs) had been proposed and developed. During the years gone AOFs have been remarkably progressed, and now they are widely exploited, for instance, in astrophysical observations. Schematically, AOFs can be separated on collinear and non-collinear filters, depending on the relative directions of passing the waves through crystalline cell, as well as on sequential and parallel ones, depending on the algorithm of spectrum analysis. Their features are characterized by the amplitude and spectral parameters. Here, we consider a few estimations of an advanced collinear AOF based on calcium molybdate single-crystal. In principle, this new AOF with a 15-microsecond time-aperture operates over all the visible range exhibiting 60%-efficiency at the electric power 1.0 W. Direct square-law dependence for crystal's length and inverse square-law dependence for its bandwidth on this minimal size make possible optimizing this advanced collinear AOF.

  15. Ferroelectricity in d0 double perovskite fluoroscandates

    NASA Astrophysics Data System (ADS)

    Charles, Nenian; Rondinelli, James M.

    2015-08-01

    Ferroelectricity in strain-free and strained double perovskite fluorides, Na3ScF6 and K2NaScF6 , is investigated using first-principles density functional theory. Although the experimental room temperature crystal structures of these fluoroscandates are centrosymmetric, i.e., Na3ScF6 (P 21/n ) and K2NaScF6 (F m 3 ¯m ), lattice dynamical calculations reveal that soft polar instabilities exist in each prototypical cubic phase and that the modes harden as the tolerance factor approaches unity. Thus the double fluoroperovskites bear some similarities to A B O3 perovskite oxides; however, in contrast, these fluorides exhibit large acentric displacements of alkali metal cations (Na, K) rather than polar displacements of the transition metal cations. Biaxial strain investigations of the centrosymmetric and polar Na3ScF6 and K2NaScF6 phases reveal that the paraelectric structures are favored under compressive strain, whereas polar structures with in-plane electric polarizations (˜5 -18 μ C cm-2 ) are realized at sufficiently large tensile strains. The electric polarization and stability of the polar structures for both chemistries are found to be further enhanced and stabilized by a coexisting single octahedral tilt system. Our results suggest that polar double perovskite fluorides may be realized by suppression of octahedral rotations about more than one Cartesian axis; structures exhibiting in- or out-of-phase octahedral rotations about the c axis are more susceptible to polar symmetries.

  16. Interface Effects in Perovskite Thin Films

    NASA Astrophysics Data System (ADS)

    Lepetit, Marie-Bernadette; Mercey, Bernard; Simon, Charles

    2012-02-01

    The control of matter properties (transport, magnetic, dielectric,…) using synthesis as thin films is strongly hindered by the lack of reliable theories, able to guide the design of new systems, through the understanding of the interface effects and of the way the substrate constraints are imposed on the material. The present Letter analyzes the energetic contributions at the interfaces, and proposes a model describing the microscopic mechanisms governing the interactions at an epitaxial interface between a manganite and another transition metal oxide in perovskite structure (as for instance SrTiO3). The model is checked against experimental results and literature analysis.

  17. Electronic doping of transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  18. Piezoelectric activity in Perovskite ferroelectric crystals.

    PubMed

    Li, Fei; Wang, Linghang; Jin, Li; Lin, Dabin; Li, Jinglei; Li, Zhenrong; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    Perovskite ferroelectrics (PFs) have been the dominant piezoelectric materials for various electromechanical applications, such as ultrasonic transducers, sensors, and actuators, to name a few. In this review article, the development of PF crystals is introduced, focusing on the crystal growth and piezoelectric activity. The critical factors responsible for the high piezoelectric activity of PFs (i.e., phase transition, monoclinic phase, domain size, relaxor component, dopants, and piezoelectric anisotropy) are surveyed and discussed. A general picture of the present understanding on the high piezoelectricity of PFs is described. At the end of this review, potential approaches to further improve the piezoelectricity of PFs are proposed. PMID:25585387

  19. The Photophysics of Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Sum, Tze-Chien

    2015-03-01

    Solution processed organic-inorganic lead halide perovskite solar cells, with power conversion efficiencies approaching 20%, are presently the forerunner amongst the next generation photovoltaic technologies. These remarkable performances can be attributed to their large absorption coefficients, long charge carrier diffusion lengths and low non-radiative recombination rates. In addition, these materials also possess excellent light emission and optical gain properties. In this talk, I will review the developmental milestones in this field and distil the recent findings on the photophysical mechanisms of this remarkable material. I will also highlight some of our latest charge dynamics studies and other investigations on the novel properties of this amazing material system.

  20. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGESBeta

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  1. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    PubMed

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  2. Modeling of optical losses in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Taghavi, M. Javad; Houshmand, Mohammad; Zandi, M. Hossein; Gorji, Nima E.

    2016-09-01

    The optical losses within the structure of hybrid perovskite solar cells are investigated using only the optical properties of each layer e.g. refractive index and extinction coefficient. This model allows calculating the transmission/reflection rates at the interfaces and absorption loss within any layer. Then, the short circuit current density and loss percentage are calculated versus the perovskite and TiO2 thicknesses from 50 nm to 150 nm. To make our calculations closer to reality, we extracted the optical properties of each device component from the literature reports on glass/TCO/TiO2/perovskite/metal. The simulations were fitted with the experimental results of some relevant references. Our simulations show that ITO transmits the light better than SnO2 as the TCO front electrode, and the light reflection at both sides of the perovskite layer, e.g. at TiO2/perovskite and perovskite/Spiro-OMeTAD, is lower than 25%. The light interference and multiple reflections have been accounted in our calculations and finally we showed that a thicker TiO2 and perovskite cause more optical loss in current density due to stronger absorption.

  3. Random lasing actions in self-assembled perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  4. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. PMID:27214091

  5. NREL Studies Carrier Separation and Transport in Perovskite Solar Cells

    SciTech Connect

    2016-01-01

    NREL scientists studied charge separation and transport in perovskite solar cells by determining the junction structure across the solar device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates a p-n junction structure at the interface between titanium dioxide and perovskite. In addition, minority-carrier transport within the devices operates under diffusion/drift. Clarifying the fundamental junction structure provides significant guidance for future research and development. This NREL study points to the fact that improving carrier mobility is a critical factor for continued efficiency gains in perovskite solar cells.

  6. Finding new perovskite halides via machine learning

    DOE PAGESBeta

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.« less

  7. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  8. Finding New Perovskite Halides via Machine learning

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  9. Neutral color semitransparent microstructured perovskite solar cells.

    PubMed

    Eperon, Giles E; Burlakov, Victor M; Goriely, Alain; Snaith, Henry J

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium. PMID:24467381

  10. Pressure induced iron spin state changes in MgGeO3 Perovskite and Post-perovskite

    NASA Astrophysics Data System (ADS)

    Sarkar, Kanchan; Shukla, Gaurav; Topsakal, Mehmet; Wentzcovitch, Renata

    2015-03-01

    MgGeO3-perovskite is a low pressure analog of MgSiO3-perovskite, the main Earth forming phase, and is used to shed light on several phenomena that occur in MgSiO3, particularly the post-perovskite transition. As such, experimental investigations of spin state changes in Fe-bearing MgGeO3 might help to clarify some aspects of this phenomenon in MgSiO3. Using DFT+U calculations, we have investigated pressure induced spin state changes in Fe2+ and Fe3+ in MgGeO3 perovskite and post-perovskite and their effect on the post-perovskite transition. We uncover a direct relationship between average Fe-O bond-lengths and spin transition pressures in all cases. The effect of iron on the post-perovskite transitions in these phases can also be related to the average Fe-O bond lengths. Research supported by NSF/EAR and NSF/CAREER.

  11. Perovskite Solar Cells: High Efficiency Pb-In Binary Metal Perovskite Solar Cells (Adv. Mater. 31/2016).

    PubMed

    Wang, Zhao-Kui; Li, Meng; Yang, Ying-Guo; Hu, Yun; Ma, Heng; Gao, Xing-Yu; Liao, Liang-Sheng

    2016-08-01

    On page 6695, X. Y. Gao, L.-S. Liao, and co-workers describe the fabrication of mixed Pb-In perovskite solar cells, using indium (III) chloride and lead (II) chloride with methylammonium iodide. A maximum power conversion efficiency as high as 17.55% is achieved owing to the high quality of the perovskites with multiple ordered crystal orientations. This work demonstrates the possibility of substituting the Pb (II) by using In (III), which opens a broad route to fabricating alloy perovskite solar cells with mitigated ecological impact. PMID:27511533

  12. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction.

    PubMed

    Fortes, A Dominic

    2015-07-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å(-1). The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter-atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter-leaved with planes of XO4 (X = Mo, W) tetra-hedra that are linked by chains of water mol-ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856-2860] but shows that the purported three-centred inter-action involving one of the water mol-ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred 'linear' hydrogen bond. PMID:26279871

  13. Origin of “memory glass” effect in pressure-amorphized rare-earth molybdate single crystals

    SciTech Connect

    Willinger, Elena; Sinitsyn, Vitaly; Khasanov, Salavat; Redkin, Boris; Shmurak, Semeon; Ponyatovsky, Eugeny

    2015-02-15

    The memory glass effect (MGE) describes the ability of some materials to recover the initial structure and crystallographic orientation after pressure-induced amorphization (PIA). In spite of numerous studies the nature and underlying mechanisms of this phenomenon are still not clear. Here we report investigations of MGE in β′-Eu{sub 2}(MoO{sub 4}){sub 3} single crystal samples subjected to high pressure amorphization. Using the XRD and TEM techniques we carried out detailed analysis of the structural state of high pressure treated single crystal samples as well as structural transformations due to subsequent annealing at atmospheric pressure. The structure of the sample has been found to be complex, mainly amorphous, however, the amorphous medium contains evenly distributed nanosize inclusions of a paracrystalline phase. The inclusions are highly correlated in orientation and act as “memory units” in the MGE. - Graphical abstract: Schematic representation of pressure-induced amorphization and “memory glass” effect in rare-earth molybdate single crystals. The XRD and TEM measurements have revealed the presence of the residual identically oriented paracrystalline nanodomains in the pressure-amorphized state. These domains preserve the information about initial structure and orientation of the sample. They act as memory units and crystalline seeds during transformation of the amorphous phase back to the starting single crystalline one. - Highlights: • Pressure-amorphized Eu{sub 2}(MoO4){sub 3} single crystals were studied ex-situ by XRD and TEM. • Tiny residual crystalline inclusions were found in amorphous matrix of sample. • The inclusions keep in memory the parent crystal structure and orientation. • The inclusions account for “memory glass” effect in rare-earth molibdates.

  14. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction

    PubMed Central

    Fortes, A. Dominic

    2015-01-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å−1. The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter­atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter­leaved with planes of XO4 (X = Mo, W) tetra­hedra that are linked by chains of water mol­ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856–2860] but shows that the purported three-centred inter­action involving one of the water mol­ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred ‘linear’ hydrogen bond. PMID:26279871

  15. Perovskite as light harvester: a game changer in photovoltaics.

    PubMed

    Kazim, Samrana; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Ahmad, Shahzada

    2014-03-10

    It is not often that the scientific community is blessed with a material, which brings enormous hopes and receives special attention. When it does, it expands at a rapid pace and its every dimension creates curiosity. One such material is perovskite, which has triggered the development of new device architectures in energy conversion. Perovskites are of great interest in photovoltaic devices due to their panchromatic light absorption and ambipolar behavior. Power conversion efficiencies have been doubled in less than a year and over 15% is being now measured in labs. Every digit increment in efficiency is being celebrated widely in the scientific community and is being discussed in industry. Here we provide a summary on the use of perovskite for inexpensive solar cells fabrication. It will not be unrealistic to speculate that one day perovskite-based solar cells can match the capability and capacity of existing technologies. PMID:24519832

  16. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  17. Highly Efficient Perovskite Solar Cells with Tunable Structural Color

    PubMed Central

    2015-01-01

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  18. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGESBeta

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  19. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    SciTech Connect

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian; Maksymovych, Petro; Sargent, Edward H.

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  20. Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters.

    PubMed

    Hu, Fengrui; Zhang, Huichao; Sun, Chun; Yin, Chunyang; Lv, Bihu; Zhang, Chunfeng; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2015-12-22

    The power conversion efficiency of photovoltaic devices based on semiconductor perovskites has reached ∼20% after just several years of research efforts. With concomitant discoveries of other promising applications in lasers, light-emitting diodes, and photodetectors, it is natural to anticipate what further excitement these exotic perovskites could bring about. Here we report on the observation of single photon emission from single CsPbBr3 perovskite nanocrystals (NCs) synthesized from a facile colloidal approach. Compared with traditional metal-chalcogenide NCs, these CsPbBr3 NCs exhibit nearly 2 orders of magnitude increase in their absorption cross sections at similar emission colors. Moreover, the radiative lifetime of CsPbBr3 NCs is greatly shortened at both room and cryogenic temperatures to favor an extremely fast output of single photons. The above superior optical properties have paved the way toward quantum-light applications of perovskite NCs in various quantum information processing schemes. PMID:26522082

  1. Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films.

    PubMed

    Meng, Ke; Gao, Shanshan; Wu, Longlong; Wang, Geng; Liu, Xin; Chen, Gang; Liu, Zhou; Chen, Gang

    2016-07-13

    Organic-inorganic hybrid perovskites have created enormous expectations for low-cost and high-performance optoelectronic devices. In prospect, future advancements may derive from reaping novel electrical and optical properties beyond pristine perovskites through microscopic structure design and engineering. Herein, we report the successful preparation of two-dimensional inverse-opal perovskite (IOP) photonic films, featuring unique nanostructures and vivid colors. Further compositional and structural managements promise optical property and energy level tunability of the IOP films. They are further functionalized in solar cells, resulting in colorful devices with respectable power conversion efficiency. Such concept has not been previously applied for perovskite-based solar cells, which could open a route for more versatile optoelectronic devices. PMID:27267266

  2. Highly efficient perovskite solar cells with tunable structural color.

    PubMed

    Zhang, Wei; Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Johnston, Michael B; Míguez, Hernán; Snaith, Henry J

    2015-03-11

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  3. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  4. Optical properties of trigonal single crystals (Yb,Tm)Al{sub 3}(BO{sub 3}){sub 4} grown from fluxes based on the bismuth and lithium molybdates

    SciTech Connect

    Temerov, V. L. Sokolov, A. E.; Sukhachev, A. L.; Bovina, A. F.; Edel'man, I. S.; Malakhovskii, A. V.

    2008-12-15

    The conditions for synthesis of Yb{sub x}Tm{sub 1-x}Al{sub 3}(BO{sub 3}){sub 4} (x = 0, 0.1, 0.2, 1.0) single crystals from fluxes based on bismuth trimolybdate Bi{sub 2}Mo{sub 3}O{sub 12} and lithium molybdate Li{sub 2}MoO{sub 4} are investigated. It is proposed to grow them by the group method on seeds. The polarized optical absorption spectra are measured for two mutually orthogonal linear polarizations at temperatures of 100 and 300 K.

  5. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition.

    PubMed

    Fraqueza, Gil; Batista de Carvalho, Luís A E; Marques, M Paula M; Maia, Luisa; Ohlin, C André; Casey, William H; Aureliano, Manuel

    2012-11-01

    Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These

  6. Perovskite-type catalytic materials for environmental applications

    NASA Astrophysics Data System (ADS)

    Labhasetwar, Nitin; Saravanan, Govindachetty; Megarajan, Suresh Kumar; Manwar, Nilesh; Khobragade, Rohini; Doggali, Pradeep; Grasset, Fabien

    2015-06-01

    Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

  7. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles.

    PubMed

    Cheng, Yuanhang; Yang, Qing-Dan; Xiao, Jingyang; Xue, Qifan; Li, Ho-Wa; Guan, Zhiqiang; Yip, Hin-Lap; Tsang, Sai-Wing

    2015-09-16

    Solution processed zinc oxide (ZnO) nanoparticles (NPs) with excellent electron transport properties and a low-temperature process is a viable candidate to replace titanium dioxide (TiO2) as electron transport layer to develop high-efficiency perovskite solar cells on flexible substrates. However, the number of reported high-performance perovskite solar cells using ZnO-NPs is still limited. Here we report a detailed investigation on the chemistry and crystal growth of CH3NH3PbI3 perovskite on ZnO-NP thin films. We find that the perovskite films would severely decompose into PbI2 upon thermal annealing on the bare ZnO-NP surface. X-ray photoelectron spectroscopy (XPS) results show that the hydroxide groups on the ZnO-NP surface accelerate the decomposition of the perovskite films. To reduce the decomposition, we introduce a buffer layer in between the ZnO-NPs and perovskite layers. We find that a commonly used buffer layer with small molecule [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) can slow down but cannot completely avoid the decomposition. On the other hand, a polymeric buffer layer using poly(ethylenimine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal formation with thermal annealing. The power conversion efficiencies of perovskite photovoltaic cells are significantly increased from 6.4% to 10.2% by replacing PC61BM with PEI as the buffer layer. PMID:26280249

  8. Structured Organic-Inorganic Perovskite toward a Distributed Feedback Laser.

    PubMed

    Saliba, Michael; Wood, Simon M; Patel, Jay B; Nayak, Pabitra K; Huang, Jian; Alexander-Webber, Jack A; Wenger, Bernard; Stranks, Samuel D; Hörantner, Maximilian T; Wang, Jacob Tse-Wei; Nicholas, Robin J; Herz, Laura M; Johnston, Michael B; Morris, Stephen M; Snaith, Henry J; Riede, Moritz K

    2016-02-01

    A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step toward all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells, and also toward applications as optical devices. PMID:26630410

  9. 4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells.

    PubMed

    Cai, Boyuan; Peng, Yong; Cheng, Yi-Bing; Gu, Min

    2015-11-30

    Although perovskite materials have been widely investigated for thin-film photovoltaic devices due to the potential for high efficiency, their high toxicity has pressed the development of a solar cell structure of an ultra-thin absorber layer. But insufficient light absorption could be a result of ultra-thin perovskite films. In this paper, we propose a new nanoplasmonic solar cell that integrates metal nanoparticles at its rear/front surfaces of the perovskite layer. Plasmon-enhanced light scattering and near-field enhancement effects from lumpy sliver nanoparticles result in the photocurrent enhancement for a 50 nm thick absorber, which is higher than that for a 300 nm thick flat perovskite solar cell. We also predict the 4-fold photocurrent enhancement in an ultrathin perovskite solar cell with the absorber thickness of 10 nm. Our results pave a new way for ultrathin high-efficiency solar cells with either a lead-based or a lead-free perovskite absorption layer. PMID:26698816

  10. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets.

    PubMed

    Sichert, Jasmina A; Tong, Yu; Mutz, Niklas; Vollmer, Mathias; Fischer, Stefan; Milowska, Karolina Z; García Cortadella, Ramon; Nickel, Bert; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Urban, Alexander S; Feldmann, Jochen

    2015-10-14

    Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites. PMID:26327242

  11. Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells.

    PubMed

    Jeon, Taewoo; Jin, Hyeong Min; Lee, Seung Hyun; Lee, Ju Min; Park, Hyung Il; Kim, Mi Kyung; Lee, Keon Jae; Shin, Byungha; Kim, Sang Ouk

    2016-08-23

    Organic-inorganic hybrid perovskites attract enormous research interest for next generation solar energy harvest. Synergistic crystalline structures comprising organic and inorganic components enable solution processing of perovskite films. A reliable crystallization method for perovskites, compatible with fast continuous process over large-area flexible substrates, is crucial for high performance solar cell production. Here, we present laser crystallization of hybrid perovskite solar cells using near-infrared (NIR) laser (λ = 1064 nm). Crystalline morphology of CH3NH3PbI3 (MAPbI3) perovskite films are widely controllable with laser irradiation condition while maintaining film uniformity. Photothermal heating effectively assisted by interfacial photoconversion layers is critical for phase transformation without beam damage of multilayered device structures. Notably, laser crystallization attains higher device performances than conventional thermal annealing. Fast laser crystallization with manufacture level scan rate (1 m min(-1)) demonstrates inverted-type perovskite solar cells with 11.3 and 8.0% efficiencies on typical glass and flexible polymer substrates, respectively, without rigorous device optimization. PMID:27377145

  12. Iodomethane-Mediated Organometal Halide Perovskite with Record Photoluminescence Lifetime.

    PubMed

    Xu, Weidong; McLeod, John A; Yang, Yingguo; Wang, Yimeng; Wu, Zhongwei; Bai, Sai; Yuan, Zhongcheng; Song, Tao; Wang, Yusheng; Si, Junjie; Wang, Rongbin; Gao, Xingyu; Zhang, Xinping; Liu, Lijia; Sun, Baoquan

    2016-09-01

    Organometallic lead halide perovskites are excellent light harvesters for high-efficiency photovoltaic devices. However, as the key component in these devices, a perovskite thin film with good morphology and minimal trap states is still difficult to obtain. Herein we show that by incorporating a low boiling point alkyl halide such as iodomethane (CH3I) into the precursor solution, a perovskite (CH3NH3PbI3-xClx) film with improved grain size and orientation can be easily achieved. More importantly, these films exhibit a significantly reduced amount of trap states. Record photoluminescence lifetimes of more than 4 μs are achieved; these lifetimes are significantly longer than that of pristine CH3NH3PbI3-xClx films. Planar heterojunction solar cells incorporating these CH3I-mediated perovskites have demonstrated a dramatically increased power conversion efficiency compared to the ones using pristine CH3NH3PbI3-xClx. Photoluminescence, transient absorption, and microwave detected photoconductivity measurements all provide consistent evidence that CH3I addition increases the number of excitons generated and their diffusion length, both of which assist efficient carrier transport in the photovoltaic device. The simple incorporation of alkyl halide to enhance perovskite surface passivation introduces an important direction for future progress on high efficiency perovskite optoelectronic devices. PMID:27529636

  13. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics. PMID:26196162

  14. Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices

    NASA Astrophysics Data System (ADS)

    Almansouri, Ibraheem; Ho-Baillie, Anita; Green, Martin A.

    2015-08-01

    Theoretical calculation based on detailed balance and incorporating different realistic optical and electrical losses predicts conversion efficiency beyond 22% for single-junction perovskite devices. In dual-junction perovskite/silicon devices, theoretical conversion efficiency around 40% is been determined. However, dramatic drop in the conversion efficiency is shown to be due to the glass reflection and FTO parasitic absorption losses. Additionally, practical conversion efficiency limits of dual-junction two-terminal perovskite/silicon tandem solar cell of 30% are achievable as reported in this work using state-of-the-art demonstrated devices. Additionally, various crystalline silicon (industry and laboratory demonstrated) technologies are used as the bottom cell for the current matched tandem cell stacks with higher relative improvements when using commercial c-Si solar cells. Moreover, the effect of eliminating the parasitic resistances and enhancing the external radiative efficiency (ERE) in the perovskite junction on tandem performance are also investigated enhancing the stack efficiencies.

  15. Superconductivity and magnetism in rapidly solidified perovskites

    SciTech Connect

    O'Handley, R.C.; Kalonji, G.

    1991-01-01

    The report is divided into six parts, reflecting major thrusts of our work since 1987. The six areas are: molecular orbital theory of high {Tc} superconductivity; rapid solidification processing of oxide superconductors; time dependent magnetic and superconducting properties of these inhomogeneous materials; excess Gd in Gd{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7-{delta}} perovskites; rapid solidification and directional annealing to achieve high Jc; and Mossbauer studies of T = Fe, Co and Ni site selection in YBa{sub 2}(CuT){sub 3}O{sub 7-{delta}} and GdBa{sub 2}(CuT){sub 3}O{sub 7-{delta}}.

  16. Perovskites for use as sulfur tolerant anodes

    NASA Astrophysics Data System (ADS)

    Howell, Thomas G.

    One of the major obstacles encountered when using solid oxide fuel cells with hydrocarbon fuels is sulfur poisoning. The current anode material used is Ni/YSZ and Ni is not sulfur tolerant; therefore, the performance of the cell will degrade over time due to the formation of NiS. Perovskites have demonstrated superior sulfur tolerance but lack the high conductivity and catalytic activity of Ni/YSZ cermets. One of the objectives of this effort is to explore the substitution of the A-site in an A2MgMoO 6 perovskite with Sr and Ba, to create Sr2MgMoO6 (SMMO) and Ba2MgMoO6 (BMMO), respectively, to improve the sulfur tolerance of solid oxide fuel cells (SOFCs). Sr2MgMoO 6, a double perovskite, has been previously studied and is suggested as a material of interest because of its relatively high conductivity and catalytic potential. Barium has not been previously studied and was selected as the dopant because the ionic radii (1.61 A) resulted in a calculated tolerance factor of 1.036 for BMMO when compared to SMMO, which has an ionic radii of 1.44 A and a calculated tolerance factor of 0.978. The tolerance factor for BaSrMgMoO6, a bi-substituted material synthesized for comparison as an intermediate formulation, was calculated to be 1.00. Another objective is to synthesize and characterize a series of lanthanum (La) doped Sr2MgMoO6 (SMMO) or La doped Sr2MgNbO 6 (SMNO) anode materials, which can be used in combination with electrolytes containing lanthanum to mitigate the effects of lanthanum poisoning in SOFCs. Currently, a La0.4Ce0.6O1.8 (LDC) transition layer is used with many perovskite-based anode materials to prevent La diffusion into the anode from the La0.8Sr0.2Ga0.8Mg 0.2O2.8 (LSGM) electrolyte, which can create a resistive La species that impedes electrochemical performance. To accomplish this, a new class of anode materials was synthesized with the goal of balancing La chemical potential between these neighboring materials. It was hypothesized that by

  17. Terahertz Spectroscopy of Osmate Double Perovskites

    NASA Astrophysics Data System (ADS)

    Warren, Matthew T.; Morrow, R.; Mai, T. T.; Xiong, J.; Woodward, P. M.; Valdés Aguilar, R.

    Double perovskites containing 5d transition metal elements allow study of the interplay of spin-orbit coupling and electronic correlations due to the heavy nuclei and large electronic wavefunctions. Here we have studied polycrystalline Sr2MOsO6 (M = Mg, Fe, Co; with Os electronic configuration of d2, d3, d2, respectively) with time-domain terahertz spectroscopy. Terahertz electrodynamics seem to be decoupled from observed magnetic and structural phase transitions in M =Mg, Co. A strong absorption is measured in M =Mg, Co around 1.5 THz, which softens with temperature, as expected for an optical phonon. The effectiveness of the variable-range hopping model and the origin of higher temperature conductivity are examined. Work at OSU supported by the NSF MRSEC Center for Emergent Materials under Grant DMR-1420451. Work supported by the Center for Emergent Materials: an NSF MRSEC under Award DMR-1420451.

  18. The interaction between hybrid organic-inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study.

    PubMed

    Idígoras, J; Todinova, A; Sánchez-Valencia, J R; Barranco, A; Borrás, A; Anta, J A

    2016-05-11

    The interaction of hybrid organic-inorganic halide perovskite and selective contacts is crucial to get efficient, stable and hysteresis-free perovskite-based solar cells. In this report, we analyze the vibrational properties of methylammonium lead halide perovskites deposited on different substrates by infrared absorption (IR) measurements (4000-500 cm(-1)). The materials employed as substrates are not only characterized by different chemical natures (TiO2, ZnO and Al2O3), but also by different morphologies. For all of them, we have investigated the influence of these substrate properties on perovskite formation and its degradation by humidity. The effect of selective-hole contact (Spiro-OmeTad and P3HT) layers on the degradation rate by moisture has also been studied. Our IR results reveal the existence of a strong interaction between perovskite and all ZnO materials considered, evidenced by a shift of the peaks related to the N-H vibrational modes. The interaction even induces a morphological change in ZnO nanoparticles after perovskite deposition, pointing to an acid-base reaction that takes place through the NH3(+) groups of the methylammonium cation. Our IR and X-ray diffraction results also indicate that this specific interaction favors perovskite decomposition and PbI2 formation for ZnO/perovskite films subjected to humid conditions. Although no interaction is observed for TiO2, Al2O3, and the hole selective contact, the morphology and chemical nature of both contacts appear to play an important role in the rate of degradation upon exposure to moisture. PMID:27138224

  19. Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Meng, Fanli; Zhao, Erfei; Zheng, Yan-Zhen; Zhou, Yali; Tao, Xia

    2016-04-01

    The ability to prepare high coverage and compact perovskite films via solution-based crystallization manipulation processes still represents a vital issue towards improving the ultimate photoelectric conversion efficiency of devices. In this work, we prepare the active perovskite layer by means of sequential deposition crystallization process i.e. dipping PbI2-infiltrated TiO2 film within CH3NH3I solution from 20s to 60s. The morphology and thickness of the as-prepared perovskite layer, and its overall performance superiority are investigated. X-ray diffraction (XRD) reveals that a maximum conversion of PbI2 to perovskite is completed upon applying a sequential deposition crystallization process of 40s. Field emission scanning electron microscope (FESEM) demonstrates that the coverage of the perovskite capping layer exhibits a trend from rise to decline in the whole dipping time from 20s to 60s. By fine control of the dipping time, a 620 nm-thickness compact perovskite active layer is obtained at the optimized dipping time of 40s and is verified to possess strong light absorption and high electron extraction efficiency, leading to a higher photocurrent. By further optimizing the mesoporous TiO2 film thickness, a high photocurrent of 23.98 mA cm-2 and an efficiency of 13.47% are achieved.

  20. Selective dissolution of halide perovskites as a step towards recycling solar cells

    PubMed Central

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-01-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells. PMID:27211006

  1. Selective dissolution of halide perovskites as a step towards recycling solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  2. Selective dissolution of halide perovskites as a step towards recycling solar cells.

    PubMed

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-01-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells. PMID:27211006

  3. Changes in concentrations of trace minerals in lambs fed sericea lespedeza leaf meal pellets with or without dietary sodium molybdate.

    PubMed

    Acharya, M; Burke, J M; Coffey, K P; Kegley, E B; Miller, J E; Smyth, E; Welborn, M G; Terrill, T H; Mosjidis, J A; Rosenkrans, C

    2016-04-01

    Prolonged feeding of sericea lespedeza (SL) previously led to reduced serum concentrations of Mo, a cofactor in an enzyme complex that may be involved in weight gain. The current objective was to determine the effect of Mo supplementation on changes in serum, fecal, urine, and liver concentrations of trace minerals in lambs fed SL leaf meal pellets. Thirty ram lambs weaned in May (84 ± 1.5 d of age and 27 ± 1.1 kg; D 0) were blocked by BW, breed type (full or three-fourths Katahdin), and EBV of parasite resistance and randomly assigned to be fed 900 g/d of an alfalfa-based supplement (CON; = 10) or a SL-based supplement ( = 20) for 103 d. Supplements were formulated to be isonitrogenous and isocaloric and to meet trace mineral requirements. Within the SL group, individual lambs were administered either 5 mL water or 5 mL of water with 163.3 mg of sodium molybdate (SLMO). Serum was collected on d 28, 56, and 104; a liver sample was collected by biopsy on d 104 to determine concentrations of trace minerals. Data were analyzed using a mixed model and orthogonal contrasts. Serum concentrations of Mo increased in response to the drench and were greatest in SLMO lambs and then CON lambs and lowest in SL lambs ( < 0.001). Concentrations of Mo in the liver ( < 0.001) were similar between CON and SLMO lambs and were lower in SL lambs than other groups. Serum ( < 0.001) and liver ( = 0.013) concentrations of zinc (Zn) were reduced in both SL and SLMO lambs compared with CON lambs. Serum concentrations of cobalt (Co) increased in CON lambs compared with SL and SLMO lambs between d 0 and 56 but were similar on d 104 (diet × day, < 0.005) as with concentrations in the liver. Serum and liver concentrations of copper (Cu) were greatest ( < 0.001 and < 0.001, respectively) in CON lambs followed by SL lambs and then SLMO lambs. Serum concentrations of selenium (Se) tended ( = 0.10) to be reduced in SL lambs compared with CON and SLMO lambs, but concentrations in the liver were

  4. Controlling the Cavity Structures of Two-Photon-Pumped Perovskite Microlasers.

    PubMed

    Zhang, Wei; Peng, Lan; Liu, Jie; Tang, Aiwei; Hu, Jin-Song; Yao, Jiannian; Zhao, Yong Sheng

    2016-06-01

    Low-threshold two-photon-pumped (TPP) perovskite microcavity lasers are achieved in crystal perovskite 1D or 2D microstructures fabricated through a liquid-phase self-assembly method assisted by two distinct surfactant soft templates. The lasing actions from the perovskite materials exhibit a shape-dependent microcavity effect, which is subsequently utilized for the modulation of the lasing modes and for the achievement of two-photon-pumped single-mode perovskite microlasers. PMID:27007487

  5. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells

    SciTech Connect

    Bi, Cheng; Yuan, Yongbo; Fang, Yanjun; Huang, Jinsong

    2014-11-25

    A mixed halide perovskite solar cell with a 1.72 eV bandgap is developed by incorporating Br into perovskite through a low-temperature solution process. A high efficiency of 13.1% is achieved by carefully tuning the thickness, morphology, and surface passivation of the perovskite layers. Furthermore, the fabrication techniques and conditions are compatible with future perovskite/Si tandem cell studies.

  6. Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Fu, Kunwu; Nelson, Christopher T.; Scott, Mary Cooper; Minor, Andrew; Mathews, Nripan; Wong, Lydia Helena

    2016-02-01

    The stunning rise of methylammonium lead iodide perovskite material as a light harvesting material in recent years has drawn much attention in the photovoltaic community. Here, we investigated in detail the uniform and void-free perovskite capping layer in the mesoscopic perovskite devices and found it to play a critical role in determining device performance and charge recombination process. Compared to the rough surface with voids of the perovskite layer, surface of the perovskite capping layer obtained from sequential deposition process is much more uniform with less void formation and distribution within the TiO2 mesoscopic scaffold is more homogeneous, leading to much improved photovoltaic parameters of the devices. The impact of void free perovskite capping layer surface on the charge recombination processes within the mesoscopic perovskite solar cells is further scrutinized via charge extraction measurement. Modulation of precursor solution concentrations in order to further improve the perovskite layer surface morphology leads to higher efficiency and lower charge recombination rates. Inhibited charge recombination in these solar cells also matches with the higher charge density and slower photovoltage decay profiles measured.The stunning rise of methylammonium lead iodide perovskite material as a light harvesting material in recent years has drawn much attention in the photovoltaic community. Here, we investigated in detail the uniform and void-free perovskite capping layer in the mesoscopic perovskite devices and found it to play a critical role in determining device performance and charge recombination process. Compared to the rough surface with voids of the perovskite layer, surface of the perovskite capping layer obtained from sequential deposition process is much more uniform with less void formation and distribution within the TiO2 mesoscopic scaffold is more homogeneous, leading to much improved photovoltaic parameters of the devices. The impact of

  7. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Yin, Wei; Pan, Lijia; Yang, Tingbin; Liang, Yongye

    2016-01-01

    Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ) perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed. PMID:27347923

  8. Hydrothermal epitaxy of perovskite thin films

    NASA Astrophysics Data System (ADS)

    Chien, Allen T.

    1998-12-01

    This work details the discovery and study of a new process for the growth of epitaxial single crystal thin films which we call hydrothermal epitaxy. Hydrothermal epitaxy is a low temperature solution route for producing heteroepitaxial thin films through the use of solution chemistry and structurally similar substrates. The application of this synthesis route has led to the growth of a variety of epitaxial perovskite (BaTiOsb3, SrTiOsb3, and Pb(Zr,Ti)Osb3 (PZT)) thin films which provides a simple processing pathway for the formation of other materials of technological interest. BaTiOsb3 and PZT heteroepitaxial thin films and powders were produced by the hydrothermal method at 90-200sp°C using various alkali bases. XRD and TEM analysis shows that, in each case, the films and powders form epitaxially with a composition nearly identical to that of the starting precursors. Sequential growth experiments show that film formation initiates by the nucleation of submicron faceted islands at the step edges of the SrTiOsb3 substrates followed by coalescence after longer growth periods. A Ba-rich interfacial layer between the BaTiOsb3 islands and the SrTiOsb3 surface is seen by cross-section TEM during early growth periods. Electrophoretic and Basp{2+} adsorption data provide a chemical basis for the existence of the interfacial layer. Homoepitaxial growth of SrTiOsb3 on SrTiOsb3 also occurs by island growth, suggesting that the growth mode may be a consequence of the aqueous surface chemistry inherent in the process. Film formation is shown to be affected by any number of factors including type of base, pH, temperature, and substrate pretreatments. Different cation bases (Na-, K-, Rb-, Cs-, TMA-OH) demonstrated pronounced changes in powder and film morphology. For example, smaller cation bases (e.g., NaOH, KOH and RbOH) resulted the formation of 1.5 mum \\{100\\} faceted perovskite PbTiOsb3 blocks while larger cation bases (e.g., CsOH and TMA-OH) produced 500 nm sized

  9. A Long-Term View on Perovskite Optoelectronics.

    PubMed

    Docampo, Pablo; Bein, Thomas

    2016-02-16

    Recently, metal halide perovskite materials have become an exciting topic of research for scientists of a wide variety of backgrounds. Perovskites have found application in many fields, starting from photovoltaics and now also making an impact in light-emitting applications. This new class of materials has proven so interesting since it can be easily solution processed while exhibiting materials properties approaching the best inorganic optoelectronic materials such as GaAs and Si. In photovoltaics, in only 3 years, efficiencies have rapidly increased from an initial value of 3.8% to over 20% in recent reports for the commonly employed methylammonium lead iodide (MAPI) perovskite. The first light emitting diodes and light-emitting electrochemical cells have been developed already exhibiting internal quantum efficiencies exceeding 15% for the former and tunable light emission spectra. Despite their processing advantages, perovskite optoelectronic materials suffer from several drawbacks that need to be overcome before the technology becomes industrially relevant and hence achieve long-term application. Chief among these are the sensitivity of the structure toward moisture and crystal phase transitions in the device operation regime, unreliable device performance dictated by the operation history of the device, that is, hysteresis, the inherent toxicity of the structure, and the high cost of the employed charge selective contacts. In this Account, we highlight recent advances toward the long-term viability of perovskite photovoltaics. We identify material decomposition routes and suggest strategies to prevent damage to the structure. In particular, we focus on the effect of moisture upon the structure and stabilization of the material to avoid phase transitions in the solar cell operating range. Furthermore, we show strategies to achieve low-cost chemistries for the development of hole transporters for perovskite solar cells, necessary to be able to compete with other

  10. Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells.

    PubMed

    Colella, Silvia; Mosconi, Edoardo; Pellegrino, Giovanna; Alberti, Alessandra; Guerra, Valentino L P; Masi, Sofia; Listorti, Andrea; Rizzo, Aurora; Condorelli, Guglielmo Guido; De Angelis, Filippo; Gigli, Giuseppe

    2014-10-16

    The role of chloride in the MAPbI3-xClx perovskite is still limitedly understood, albeit subjected of much debate. Here, we present a combined angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and first-principles DFT modeling to investigate the MAPbI3-xClx/TiO2 interface. AR-XPS analyses carried out on ad hoc designed bilayers of MAPbI3-xClx perovskite deposited onto a flat TiO2 substrate reveal that the chloride is preferentially located in close proximity to the perovskite/TiO2 interface. DFT calculations indicate the preferential location of chloride at the TiO2 interface compared to the bulk perovskite due to an increased chloride-TiO2 surface affinity. Furthermore, our calculations clearly demonstrate an interfacial chloride-induced band bending, creating a directional "electron funnel" that may improve the charge collection efficiency of the device and possibly affecting also recombination pathways. Our findings represent a step forward to the rationalization of the peculiar properties of mixed halide perovskite, allowing one to further address material and device design issues. PMID:26278605

  11. Ion-exchangeable, electronically conducting layered perovskite oxyfluorides.

    PubMed

    Kobayashi, Yoji; Tian, Mingliang; Eguchi, Miharu; Mallouk, Thomas E

    2009-07-22

    Cation-exchangeable d(0) layered perovskites are amenable to intercalation, exfoliation, and a variety of topochemical reactions, but they lack the interesting electronic and magnetic functionalities of mixed-valent perovskites. Conversely, electronically and magnetically interesting layered perovskites lack scope in terms of interlayer chemistry. To bridge this gap, the insulating, cation-exchangeable layered perovskites RbLaNb(2)O(7), KCa(2)Nb(3)O(10), and NaYTiO(4) were reacted with poly(tetrafluoroethylene) under inert atmosphere conditions to yield layer perovskites in which some of the oxygen is substituted by fluorine. In the fluorinated materials, the B-site cations are reduced to a mixed-valent state without introducing oxygen vacancies into the anion sublattice. The resulting electronically conducting solids can be exposed to air and water and even ion-exchanged in acid without oxidation of the B-site cations. Electronic transport measurements on the air-stable RbLaNb(2)O(6)F reveal room-temperature conductivity (2-7 x 10(2) ohms x cm) via a variable-range hopping mechanism, which is not substantially changed after aqueous proton exchange to H(1-x)Rb(x)LaNb(2)O(6)F (x approximately = 0.2). PMID:19548670

  12. Novel materials for stable perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Abate, Antonio

    2015-09-01

    Organic-inorganic perovskites are quickly overrunning research activities in new materials for cost-effective and high-efficiency photovoltaic technologies. Since the first demonstration from Kojima and co-workers in 2009, several perovskite-based solar cells have been reported and certified with rapidly improving power conversion efficiency. Recent reports demonstrate that perovskites can compete with the most efficient inorganic materials, while they still allow processing from solution as potential advantage to deliver a cost-effective solar technology. Compare to the impressive progress in power conversion efficiency, stability studies are rather poor and often controversial. An intrinsic complication comes from the fact that the stability of perovskite solar cells is strongly affected by any small difference in the device architecture, preparation procedure, materials composition and testing procedure. In the present talk we will focus on the stability of perovskite solar cells in working condition. We will discuss a measuring protocol to extract reliable and reproducible ageing data. We will present new materials and preparation procedures which improve the device lifetime without giving up on high power conversion efficiency.

  13. Integrated perovskite/bulk-heterojunction toward efficient solar cells.

    PubMed

    Liu, Yongsheng; Hong, Ziruo; Chen, Qi; Chang, Weihsuan; Zhou, Huanping; Song, Tze-Bin; Young, Eric; Yang, Yang Michael; You, Jingbi; Li, Gang; Yang, Yang

    2015-01-14

    We successfully demonstrated an integrated perovskite/bulk-heterojunction (BHJ) photovoltaic device for efficient light harvesting and energy conversion. Our device efficiently integrated two photovoltaic layers, namely a perovskite film and organic BHJ film, into the device. The device structure is ITO/TiO2/perovskite/BHJ/MoO3/Ag. A wide bandgap small molecule DOR3T-TBDT was used as donor in the BHJ film, and a power conversion efficiency (PCE) of 14.3% was achieved in the integrated device with a high short circuit current density (JSC) of 21.2 mA cm(-2). The higher JSC as compared to that of the traditional perovskite/HTL (hole transporting layer) device (19.3 mA cm(-2)) indicates that the BHJ film absorbs light and contributes to the current density of the device. Our result further suggests that the HTL in traditional perovskite solar cell, even with good light absorption capability, cannot contribute to the overall device photocurrent, unless this HTL becomes a BHJ layer (by adding electron transporting material like PC71BM). PMID:25513830

  14. Planar-integrated single-crystalline perovskite photodetectors.

    PubMed

    Saidaminov, Makhsud I; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H; Bakr, Osman M

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 10(4) electrons per photon) and high gain-bandwidth product (above 10(8) Hz) relative to other perovskite-based optical sensors. PMID:26548941

  15. Interface and Composition Analysis on Perovskite Solar Cells.

    PubMed

    Matteocci, Fabio; Busby, Yan; Pireaux, Jean-Jacques; Divitini, Giorgio; Cacovich, Stefania; Ducati, Caterina; Di Carlo, Aldo

    2015-12-01

    Organometal halide (hybrid) perovskite solar cells have been fabricated following four different deposition procedures and investigated in order to find correlations between the solar cell characteristics/performance and their structure and composition as determined by combining depth-resolved imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and analytical scanning transmission electron microscopy (STEM). The interface quality is found to be strongly affected by the perovskite deposition procedure, and in particular from the environment where the conversion of the starting precursors into the final perovskite is performed (air, nitrogen, or vacuum). The conversion efficiency of the precursors into the hybrid perovskite layer is compared between the different solar cells by looking at the ToF-SIMS intensities of the characteristic molecular fragments from the perovskite and the precursor materials. Energy dispersive X-ray spectroscopy in the STEM confirms the macroscopic ToF-SIMS findings and allows elemental mapping with nanometer resolution. Clear evidence for iodine diffusion has been observed and related to the fabrication procedure. PMID:26523427

  16. Electron-phonon coupling in hybrid lead halide perovskites.

    PubMed

    Wright, Adam D; Verdi, Carla; Milot, Rebecca L; Eperon, Giles E; Pérez-Osorio, Miguel A; Snaith, Henry J; Giustino, Feliciano; Johnston, Michael B; Herz, Laura M

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  17. Degradation of organometallic perovskite solar cells induced by trap states

    NASA Astrophysics Data System (ADS)

    Song, Dandan; Ji, Jun; Li, Yaoyao; Li, Guanying; Li, Meicheng; Wang, Tianyue; Wei, Dong; Cui, Peng; He, Yue; Mbengue, Joseph Michel

    2016-02-01

    The degradation of organometallic perovskite solar cells (PSCs) is the key bottleneck hampering their development, which is typically ascribed to the decomposition of perovskite (CH3NH3PbI3). In this work, the degradation of PSCs is observed to be significant, with the decrease in efficiency from 18.2% to 11.5% in ambient air for 7 days. However, no obvious decomposition or structural evolution of the perovskite was observed, except the notable degradation phenomenon of the device. The degradation of PSCs derives from deteriorated photocurrent and fill factor, which are proven to be induced by increased trap states for enlarged carrier recombination in degraded PSCs. The increased trap states in PSCs over storage time are probably induced by the increased defects at the surface of perovskite. The trap states induced degradation provides a physical insight into the degradation mechanisms of PSCs. Moreover, as the investigations were performed on real PSCs instead of individual perovskite films, the findings here present one of their actual degradation mechanisms.

  18. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature. PMID:27174223

  19. Electron–phonon coupling in hybrid lead halide perovskites

    PubMed Central

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  20. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells.

    PubMed

    Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei; Saparov, Bayrammurad; Duan, Hsin-Sheng; Zhao, Dewei; Xiao, Zewen; Schulz, Philip; Harvey, Steven P; Liao, Weiqiang; Meng, Weiwei; Yu, Yue; Cimaroli, Alexander J; Jiang, Chun-Sheng; Zhu, Kai; Al-Jassim, Mowafak; Fang, Guojia; Mitzi, David B; Yan, Yanfa

    2016-07-01

    Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%. PMID:27145346

  1. CH3 NH3 PbBr3 -CH3 NH3 PbI3 Perovskite-Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage.

    PubMed

    Heo, Jin Hyuck; Im, Sang Hyuk

    2016-07-01

    Perovskite-perovskite tandem solar cells with open-circuit voltages of over 2.2 V are reported. These cost-effective, solution-processible perovskite hybrid tandem solar cells with high open-circuit voltages are fabricated by the simple lamination of a front planar MAPbBr3 perovskite cell and a back MAPbI3 planar perovskite solar cell. PMID:26505740

  2. Topological Oxide Insulator in Cubic Perovskite Structure

    PubMed Central

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  3. Topological Oxide Insulator in Cubic Perovskite Structure

    NASA Astrophysics Data System (ADS)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-04-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases.

  4. Charge carrier mobility in hybrid halide perovskites

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-01-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5–10 cm2V−1s−1 and that for holes within 1–5 cm2V−1s−1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials. PMID:26235910

  5. Magnetic Profiles at Engineered Perovskite LSMO Heterointerfaces

    NASA Astrophysics Data System (ADS)

    Kavich, J. J.; Kodama, R. H.; Warusawithana, M. P.

    2005-03-01

    One of the current challenges presented by manganites is the poor spin polarization of tunnel currents in spintronic devices due to degradation of the magnetic order at interfaces. The systems investigated are perovskite La1-xSrxMnO3(300å) with a thin cap layer of STO(8å) and a similar structure with a modified LaMnO3(8å) /STO(8å) cap grown by ozone-assisted ALL-MBE. Detailed fitting of x-ray resonant magnetic scattering (XRMS) spectra allows direct characterization and comparison of the interface magnetic profiles. The XRMS indicates a smoothly varying profile of ˜40 å depth with dramatically reduced surface magnetization and a reversible evolution as a function of temperature. Comparison of the magnetic profiles shows that changing the capping layer (equivalent to reducing the interface hole doping) has a negligible effect on the reduced magnetic order. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, under Contract No. W-31-109-Eng-38.

  6. Elastic anisotropy of experimental analogues of perovskite and post-perovskite help to interpret D′′ diversity

    PubMed Central

    Yoneda, Akira; Fukui, Hiroshi; Xu, Fang; Nakatsuka, Akihiko; Yoshiasa, Akira; Seto, Yusuke; Ono, Kenya; Tsutsui, Satoshi; Uchiyama, Hiroshi; Baron, Alfred Q. R.

    2014-01-01

    Recent studies show that the D′′ layer, just above the Earth's core–mantle boundary, is composed of MgSiO3 post-perovskite and has significant lateral inhomogeneity. Here we consider the D′′ diversity as related to the single-crystal elasticity of the post-perovskite phase. We measure the single-crystal elasticity of the perovskite Pbnm-CaIrO3 and post-perovskite Cmcm-CaIrO3 using inelastic X-ray scattering. These materials are structural analogues to same phases of MgSiO3. Our results show that Cmcm-CaIrO3 is much more elastically anisotropic than Pbnm-CaIrO3, which offers an explanation for the enigmatic seismic wave velocity jump at the D′′ discontinuity. Considering the relation between lattice preferred orientation and seismic anisotropy in the D′′ layer, we suggest that the c axis of post-perovskite MgSiO3 aligns vertically beneath the Circum-Pacific rim, and the b axis vertically beneath the Central Pacific. PMID:24670790

  7. Size-Dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix

    PubMed Central

    2015-01-01

    In recent years, organometal halide perovskite materials have attracted significant research interest in the field of optoelectronics. Here, we introduce a simple and low-temperature route for the formation of self-assembled perovskite nanocrystals in a solid organic matrix. We demonstrate that the size and photoluminescence peak of the perovskite nanocrystals can be tuned by varying the concentration of perovskite in the matrix material. The physical origin of the blue shift of the perovskite nanocrystals’ emission compared to its bulk phase is also discussed. PMID:25949773

  8. Review on palladium-containing perovskites: synthesis, physico-chemical properties and applications in catalysis.

    PubMed

    Essoumhi, Abdellatif; El Kazzouli, Saïd; Bousmina, Mosto

    2014-02-01

    This review reports on the recent advances in the synthesis and physico-chemical properties of palladium-containing perovskites. Initially, the perovskite structure is briefly reviewed, then palladium-containing perovskites synthesis and physico-chemical properties are detailed. The applications of palladium-containing perovskites in catalysis; namely, NO reduction, methane combustion, methanol as well as ethanol oxidation, are briefly highlighted. The involvement and the important contribution of palladium-containing perovskites in cross-coupling reactions, especially Suzuki-Miyaura, Sonogashira, Ulmann and Grignard, are discussed. PMID:24749470

  9. Spatially resolved optoelectronic characterization of perovskite lead iodide nanostructures

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Peng, Xingyu; Hou, Yasen; Yu, Dong

    The high power conversion efficiency of organo-lead halide perovskite-based solar cells has attracted world-wide attention over the past few years. The high efficiency was believed to originate from the unusual properties including long carrier lifetimes and consequent long carrier diffusion lengths in these materials. Ion drift, ferroelectricity, and charge traps have been proposed to account for the efficient charge separation and photocurrent hysteresis. However, it remains unclear which mechanism is dominating. We fabricate field effect transistors (FETs) incorporating single nanoplates/nanowires of organic perovskite and perform scanning photocurrent microscopic (SPCM) measurements to extract carrier diffusion lengths as a function of gate voltage, source-drain bias. Spatially resolved optoelectronic investigations of single crystalline perovskite nanostructures provide valuable information and key evidence on distinguishing the dominating charge transport/separation mechanism.

  10. Photon recycling in lead iodide perovskite solar cells.

    PubMed

    Pazos-Outón, Luis M; Szumilo, Monika; Lamboll, Robin; Richter, Johannes M; Crespo-Quesada, Micaela; Abdi-Jalebi, Mojtaba; Beeson, Harry J; Vrućinić, Milan; Alsari, Mejd; Snaith, Henry J; Ehrler, Bruno; Friend, Richard H; Deschler, Felix

    2016-03-25

    Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages. PMID:27013728

  11. Photon recycling in lead iodide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Pazos-Outón, Luis M.; Szumilo, Monika; Lamboll, Robin; Richter, Johannes M.; Crespo-Quesada, Micaela; Abdi-Jalebi, Mojtaba; Beeson, Harry J.; Vrućinić, Milan; Alsari, Mejd; Snaith, Henry J.; Ehrler, Bruno; Friend, Richard H.; Deschler, Felix

    2016-03-01

    Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.

  12. Exciton localization in solution-processed organolead trihalide perovskites

    NASA Astrophysics Data System (ADS)

    He, Haiping; Yu, Qianqian; Li, Hui; Li, Jing; Si, Junjie; Jin, Yizheng; Wang, Nana; Wang, Jianpu; He, Jingwen; Wang, Xinke; Zhang, Yan; Ye, Zhizhen

    2016-03-01

    Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombination of photogenerated carriers in solution-processed methylammonium-lead-halide films is dominated by excitons weakly localized in band tail states. This scenario is evidenced by experiments of spectral-dependent luminescence decay, excitation density-dependent luminescence and frequency-dependent terahertz photoconductivity. The exciton localization effect is found to be general for several solution-processed hybrid perovskite films prepared by different methods. Our results provide insights into the charge transport and recombination mechanism in perovskite films and help to unravel their potential for high-performance optoelectronic devices.

  13. Atomistic mechanism leading to complex antiferroelectric and incommensurate perovskites

    NASA Astrophysics Data System (ADS)

    Patel, Kinnary; Prosandeev, Sergey; Yang, Yurong; Xu, Bin; Íñiguez, Jorge; Bellaiche, L.

    2016-08-01

    An atomic interaction is identified in all perovskite compounds, such as A B O3 oxides, that can potentially result in unconventional structures. The term is harmonic in nature and couples the motions of the A cations with the rotations of the oxygen octahedra in the perovskite lattice. When strong enough, this coupling leads to hybrid normal modes that present both (anti)polar and rotational characters, which are keys to understand a variety of exotic phases. For example, we show that not only does this new coupling explain the long-period soft phonons characterizing prototype antiferroelectric PbZrO3, but it also provides us with an unified description of the complex antipolar structures of a variety of perovskites, including the possible occurrence of incommensurate phases. This coupling is further demonstrated to result, in the continuum limit, in an energy invariant adopting an analytical form that has been previously overlooked, to the best of our knowledge.

  14. Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Even, Jacky; Sapori, Daniel; Pedesseau, Laurent; Rolland, Alain; Kepenekian, Mikael; Robles, Roberto; Wang, Shijian; Huang, Yong; Beck, Alexandre; Durand, Olivier; Katan, C.

    2015-09-01

    This paper reviews some of the recent theoretical investigations on the Rashba Dresselhaus spin effects and dielectric properties of CH3NH3PbI3 hybrid perovskites and CsPbI3 all-inorganic perovskites using Density functional theory. The spin vectors rotate in the non-centrosymmetric P4mm tetragonal phase, respectively clockwise and counterclockwise, in a manner that is characteristic of a pure Rashba effect. The high frequency dielectric constants ɛ∞ of MAPbI3 and CsPbI3 are similar as anticipated, since large differences are only expected at very low frequency where additional contributions from molecular reorientations show off for the hybrid compounds. A first simulation of a perovskite on silicon tandem cell, including a tunnel junction, is also investigated. Effect of halogen substitution (I/Br) is inspected, revealing limitations for short-circuit current and open-circuit voltage electrical characteristics.

  15. Exciton localization in solution-processed organolead trihalide perovskites

    PubMed Central

    He, Haiping; Yu, Qianqian; Li, Hui; Li, Jing; Si, Junjie; Jin, Yizheng; Wang, Nana; Wang, Jianpu; He, Jingwen; Wang, Xinke; Zhang, Yan; Ye, Zhizhen

    2016-01-01

    Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombination of photogenerated carriers in solution-processed methylammonium–lead–halide films is dominated by excitons weakly localized in band tail states. This scenario is evidenced by experiments of spectral-dependent luminescence decay, excitation density-dependent luminescence and frequency-dependent terahertz photoconductivity. The exciton localization effect is found to be general for several solution-processed hybrid perovskite films prepared by different methods. Our results provide insights into the charge transport and recombination mechanism in perovskite films and help to unravel their potential for high-performance optoelectronic devices. PMID:26996605

  16. A polymer scaffold for self-healing perovskite solar cells

    PubMed Central

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479

  17. Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals

    SciTech Connect

    Mohite, Aditya; Nie, Wanyi

    2015-01-29

    State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.

  18. Specific features of nonvalent interactions in orthorhombic perovskites

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B.

    2014-07-01

    It is established that isostructural orthorhombic perovskites ABO3 (sp. gr. Pnma in different systems, no. 62, Z = 4), depending on the specificity of nonvalent interactions (which determine the combinatorial-topological type of the Voronoi-Dirichlet polyhedra (VDPs) of four basis atoms), are divided into ten different stereotypes. It is shown by the example of 259 perovskites belonging to the DyCrO3 stereotype that VDP characteristics can be used to quantitatively estimate the distortion of BO6 octahedra, including that caused by the Jahn-Teller effect. It is found that one of the causes of the distortion of the coordination polyhedra of atoms in the structure of orthorhombic perovskites is heteroatomic metal-metal interactions, for which the interatomic distances are much shorter than the sum of the Slater radii of A and B atoms.

  19. A polymer scaffold for self-healing perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  20. Transparent conducting oxide free backside illuminated perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yao, Jiexiong; Xia, Huarong; Sun, Wentao; Liu, Jian; Peng, Lianmao

    2015-07-01

    Recently, hybrid perovskites have attracted great attention because of their promising applications in solar cells. However, perovskite solar devices reported till now are mostly based on transparent conducting oxide (TCO) substrates which account for a large proportion in the total cost. Herein, TCO-free perovskite solar cells are fabricated. A photo-electricity conversion efficiency of 5.27% is obtained with short circuit current density (Jsc) of 10.7 mA/cm2, open circuit voltage (Voc) of 0.837 V, and fill factor of 0.588. This study points a feasible way of replacing TCO substrate by low cost substrates, indicating promising potentials in solar energy conversion applications.

  1. A polymer scaffold for self-healing perovskite solar cells.

    PubMed

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼ 16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479

  2. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.

    PubMed

    Li, Yaowen; Zhao, Yue; Chen, Qi; Yang, Yang Michael; Liu, Yongsheng; Hong, Ziruo; Liu, Zonghao; Hsieh, Yao-Tsung; Meng, Lei; Li, Yongfang; Yang, Yang

    2015-12-16

    In perovskite based planar heterojunction solar cells, the interface between the TiO2 compact layer and the perovskite film is critical for high photovoltaic performance. The deep trap states on the TiO2 surface induce several challenging issues, such as charge recombination loss and poor stability etc. To solve the problems, we synthesized a triblock fullerene derivative (PCBB-2CN-2C8) via rational molecular design for interface engineering in the perovskite solar cells. Modifying the TiO2 surface with the compound significantly improves charge extraction from the perovskite layer. Together with its uplifted surface work function, open circuit voltage and fill factor are dramatically increased from 0.99 to 1.06 V, and from 72.2% to 79.1%, respectively, resulting in 20.7% improvement in power conversion efficiency for the best performing devices. Scrutinizing the electrical properties of this modified interfacial layer strongly suggests that PCBB-2CN-2C8 passivates the TiO2 surface and thus reduces charge recombination loss caused by the deep trap states of TiO2. The passivation effect is further proven by stability testing of the perovskite solar cells with shelf lifetime under ambient conditions improved by a factor of more than 4, from ∼40 h to ∼200 h, using PCBB-2CN-2C8 as the TiO2 modification layer. This work offers not only a promising material for cathode interface engineering, but also provides a viable approach to address the challenges of deep trap states on TiO2 surface in planar perovskite solar cells. PMID:26592525

  3. Bright light-emitting diodes based on organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M.; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J.; Friend, Richard H.

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI3-xClx perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9‧-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr-1 m-2 at a current density of 363 mA cm-2, with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m-2 at a current density of 123 mA cm-2, giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  4. Tracking the formation of methylammonium lead triiodide perovskite

    SciTech Connect

    Liu, Lijia E-mail: jmcleod@suda.edu.cn; McLeod, John A. E-mail: jmcleod@suda.edu.cn; Wang, Rongbin; Shen, Pengfei; Duhm, Steffen

    2015-08-10

    The formation mechanism of perovskite methylammonium lead triiodide (CH{sub 3}NH{sub 3}PbI{sub 3}) was studied with in situ X-ray photoelectron spectroscopy (XPS) on successive depositions of thermally evaporated methylammonium iodide (CH{sub 3}NH{sub 3}I) on a lead iodide (PbI{sub 2}) film. This deposition method mimics the “two-step” synthesis method commonly used in device fabrication. We find that several competing processes occur during the formation of perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Our most important finding is that during vapour deposition of CH{sub 3}NH{sub 3}I onto PbI{sub 2}, at least two carbon species are present in the resulting material, while only one nitrogen species is present. This suggests that CH{sub 3}NH{sub 3}I can dissociate during the transition to a perovskite phase, and some of the resulting molecules can be incorporated into the perovskite. The effect of partial CH{sub 3}NH{sub 3} substitution with CH{sub 3} was evaluated, and electronic structure calculations show that CH{sub 3} defects would impact the photovoltaic performance in perovskite solar cells. The possibility that not all A sites in the APbI{sub 3} perovskite are occupied by CH{sub 3}NH{sub 3} is therefore an important consideration when evaluating the performance of organometallic trihalide solar cells synthesized using typical approaches.

  5. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    NASA Astrophysics Data System (ADS)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  6. Plasmonic-enhanced perovskite-graphene hybrid photodetectors

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhua; Aigouy, Lionel; Chen, Zhuoying

    2016-03-01

    The surface plasmonic effect of metal nanostructures is a promising method to boost the performance of optoelectronic devices such as solar cells and photodetectors. In this report, gold nanoparticles with surface plasmon resonance localized at about 530 nm were synthesized and integrated into graphene/methylammonium lead iodide perovskite (CH3NH3PbI3) hybrid photodetectors. Compared with pristine graphene-CH3NH3PbI3 devices, a device with gold nanoparticles embedded has a doubly higher photo-responsivity as well as a faster photoresponse speed. The present devices adopt a unique configuration with gold nanoparticles physically separated from the light harvesting component, i.e., the perovskite layer by graphene. Advantages are revealed through a series of characterization techniques and analyses. First, thanks to the tiny thickness of graphene, the plasmonic effect of gold nanoparticles can effectively enhance the near-field of perovskite and thus facilitate light-harvesting. Second, the enhanced light-harvesting in perovskite happens very close to this interface where photo-induced carriers have relatively short paths to diffuse toward graphene, favoring a fast photo-response. This work demonstrates a feasible and inspiring strategy to improve the performance of photodetectors through the surface plasmonic effect of metallic nanostructures.The surface plasmonic effect of metal nanostructures is a promising method to boost the performance of optoelectronic devices such as solar cells and photodetectors. In this report, gold nanoparticles with surface plasmon resonance localized at about 530 nm were synthesized and integrated into graphene/methylammonium lead iodide perovskite (CH3NH3PbI3) hybrid photodetectors. Compared with pristine graphene-CH3NH3PbI3 devices, a device with gold nanoparticles embedded has a doubly higher photo-responsivity as well as a faster photoresponse speed. The present devices adopt a unique configuration with gold nanoparticles physically

  7. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Song, Zhaoning; Watthage, Suneth C.; Phillips, Adam B.; Heben, Michael J.

    2016-04-01

    Organo-metal halide perovskite-based solar cells have been the focus of intense research over the past five years, and power conversion efficiencies have rapidly been improved from 3.8 to >21%. This article reviews major advances in perovskite solar cells that have contributed to the recent efficiency enhancements, including the evolution of device architecture, the development of material deposition processes, and the advanced device engineering techniques aiming to improve control over morphology, crystallinity, composition, and the interface properties of the perovskite thin films. The challenges and future directions for perovskite solar cell research and development are also discussed.

  8. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO 4· nH 2O

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley

    2010-06-01

    The synthesis and crystal structure of NiMoO 4· nH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO 4·1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.

  9. Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic condition.

    PubMed

    Tai, Chao; Jiang, Guibin

    2005-04-01

    The dechlorination and destruction of 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) under basic condition using hydrogen peroxide as the oxidant catalyzed by molybdate ions have been studied. Under ambient conditions of temperature and pressure, more than 95% of millimolar solutions of TCP and PCP can be converted to CO2 and CO, chlorinated and nonchlorinated carboxylic acid in 40 min. Up to 2.4 chloride ions per TCP and 3.5 chloride ions per PCP were released. TOC measurements indicated that 18% and 11% of the carbon was mineralized for TCP and PCP respectively after an hour of reaction. The results of ESR measurements suggested that the reaction possibly proceeded via the pathway with singlet oxygen. PMID:15763084

  10. Characterization of arsenic (V) and arsenic (III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy.

    PubMed

    Sounderajan, Suvarna; Udas, A C; Venkataramani, B

    2007-10-01

    Arsenic (V) is known to form heteropolyacid with ammonium molybdate in acidic aqueous solutions, which can be quantitatively extracted into certain organic solvents. In the present work, 12-molybdoarsenic acid extracted in butan-1-ol is used for quantification of As (V). Total arsenic is estimated by converting arsenic (III) to arsenic (V) by digesting samples with concentrated nitric acid before extraction. Concentration of As (III) in the sample solutions could be calculated by the difference in total arsenic and arsenic (V). The characterization of arsenic was carried out by GFAAS using Pd as modifier. Optimization of the experimental conditions and instrumental parameters was investigated in detail. Recoveries of (90-110%) were obtained in the spiked samples. The detection limit was 0.2 microg l(-1). The proposed method was successfully applied for the determination of trace amount of arsenic (III) and arsenic (V) in process water samples. PMID:17761387

  11. PAPERS DEVOTED TO THE 90TH ANNIVERSARY OF A.M.PROKHOROV: Lasing properties of selectively pumped Raman-active Nd3+-doped molybdate and tungstate crystals

    NASA Astrophysics Data System (ADS)

    Basiev, Tasoltan T.; Doroshenko, Maxim E.; Ivleva, Lyudmila I.; Osiko, Vyacheslav V.; Kosmyna, M. B.; Komar', V. K.; Sulc, J.; Jelinkova, H.

    2006-08-01

    The lasing efficiency of Nd3+ ions is studied in laser materials capable of self-Raman frequency conversion. The lasing properties of tungstate and molybdate crystals with the scheelite structure (SrWO4, BaWO4, PbWO4, SrMoO4, PbMoO4) activated with neodymium ions are investigated upon longitudinal pumping by a 750-nm alexandrite laser or a 800-nm diode laser. The slope lasing efficiency obtained for a Nd3+:PbMoO4 laser emitting at 1054 nm is 54.3% for the total lasing efficiency of 46%, which is the best result for all the crystals with the scheelite structure studied so far. The simultaneous Q-switched lasing and self-Raman frequency conversion were demonstrated in neodymium-doped SrWO4, PbWO4, and BaWO4 crystals.

  12. A Raman spectroscopic study of a hydrated molybdate mineral ferrimolybdite, Fe2(MoO4)3·7-8H2O.

    PubMed

    Sejkora, Jiří; Cejka, Jiří; Malíková, Radana; López, Andrés; Xi, Yunfei; Frost, Ray L

    2014-09-15

    Raman spectra of two well-defined ferrimolybdite samples, Fe2(3+)(Mo6+O4)3·7-8H2O, from the Krupka deposit (northern Bohemia, Czech Republic) and Hůrky near Rakovník occurrence (central Bohemia, Czech Republic) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of molybdate anions, Fe-O units and water molecules. Number of Raman and infrared bands assigned to (MoO4)(2-) units and water molecules proved that symmetrically (structurally) nonequivalent (MoO4)(2-) and H2O are present in the crystal structure of ferrimolybdite. Approximate O-H⋯O hydrogen bond lengths (2.80-2.73 Å) were inferred from the published infrared spectra. PMID:24769361

  13. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE PAGESBeta

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highlymore » active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).« less

  14. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    SciTech Connect

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).

  15. EPR Spectroscopy of MolB2C2-A Reveals Mechanism of Transport for a Bacterial Type II Molybdate Importer*♦

    PubMed Central

    Rice, Austin J.; Alvarez, Frances J. D.; Schultz, Kathryn M.; Klug, Candice S.; Davidson, Amy L.; Pinkett, Heather W.

    2013-01-01

    In bacteria, ATP-binding cassette (ABC) transporters are vital for the uptake of nutrients and cofactors. Based on differences in structure and activity, ABC importers are divided into two types. Type I transporters have been well studied and employ a tightly regulated alternating access mechanism. Less is known about Type II importers, but much of what we do know has been observed in studies of the vitamin B12 importer BtuC2D2. MolB2C2 (formally known as HI1470/71) is also a Type II importer, but its substrate, molybdate, is ∼10-fold smaller than vitamin B12. To understand mechanistic differences among Type II importers, we focused our studies on MolBC, for which alternative conformations may be required to transport its relatively small substrate. To investigate the mechanism of MolBC, we employed disulfide cross-linking and EPR spectroscopy. From these studies, we found that nucleotide binding is coupled to a conformational shift at the periplasmic gate. Unlike the larger conformational changes in BtuCD-F, this shift in MolBC-A is akin to unlocking a swinging door: allowing just enough space for molybdate to slip into the cell. The lower cytoplasmic gate, identified in BtuCD-F as “gate I,” remains open throughout the MolBC-A mechanism, and cytoplasmic gate II closes in the presence of nucleotide. Combining our results, we propose a peristaltic mechanism for MolBC-A, which gives new insight in the transport of small substrates by a Type II importer. PMID:23709218

  16. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3}

    SciTech Connect

    Savina, A.A.; Atuchin, V.V.; Solodovnikov, S.F.; Solodovnikova, Z.A.; Krylov, A.S.; Maximovskiy, E.A.; Molokeev, M.S.; Oreshonkov, A.S; Pugachev, A.M.; and others

    2015-05-15

    New ternary molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is synthesized in the system Na{sub 2}MoO{sub 4}–Cs{sub 2}MoO{sub 4}–Bi{sub 2}(MoO{sub 4}){sub 3}. The structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å{sup 3}, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs{sub 2}NaBi(MoO{sub 4}){sub 3} up to the melting point at 826 K. The compound shows an SHG signal, I{sub 2w}/I{sub 2w}(SiO{sub 2})=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured. - Graphical abstract: - Highlights: • The crystal structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is defined. • The molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is stable up to melting point at 826 K. • Vibrational properties of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} are evaluated by Raman spectroscopy.

  17. Electrical conductivity of (Mg,Fe)SiO3 Perovskite and a Perovskite-dominated assemblage at lower mantle conditions

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1987-01-01

    Electrical conductivity measurements of Perovskite and a Perovskite-dominated assemblage synthesized from pyroxene and olivine demonstrate that these high-pressure phases are insulating to pressures of 82 GPa and temperatures of 4500 K. Assuming an anhydrous upper mantle composition, the result provides an upper bound of 0.01 S/m for the electrical conductivity of the lower mantle between depths of 700 and 1900 km. This is 2 to 4 orders of magnitude lower than previous estimates of lower-mantle conductivity derived from studies of geomagnetic secular variations.

  18. Plasmonic-enhanced perovskite-graphene hybrid photodetectors.

    PubMed

    Sun, Zhenhua; Aigouy, Lionel; Chen, Zhuoying

    2016-04-14

    The surface plasmonic effect of metal nanostructures is a promising method to boost the performance of optoelectronic devices such as solar cells and photodetectors. In this report, gold nanoparticles with surface plasmon resonance localized at about 530 nm were synthesized and integrated into graphene/methylammonium lead iodide perovskite (CH3NH3PbI3) hybrid photodetectors. Compared with pristine graphene-CH3NH3PbI3 devices, a device with gold nanoparticles embedded has a doubly higher photo-responsivity as well as a faster photoresponse speed. The present devices adopt a unique configuration with gold nanoparticles physically separated from the light harvesting component, i.e., the perovskite layer by graphene. Advantages are revealed through a series of characterization techniques and analyses. First, thanks to the tiny thickness of graphene, the plasmonic effect of gold nanoparticles can effectively enhance the near-field of perovskite and thus facilitate light-harvesting. Second, the enhanced light-harvesting in perovskite happens very close to this interface where photo-induced carriers have relatively short paths to diffuse toward graphene, favoring a fast photo-response. This work demonstrates a feasible and inspiring strategy to improve the performance of photodetectors through the surface plasmonic effect of metallic nanostructures. PMID:26882839

  19. Controlling Octahedral Rotations in a Perovskite via Strain Doping.

    PubMed

    Herklotz, A; Wong, A T; Meyer, T; Biegalski, M D; Lee, H N; Ward, T Z

    2016-01-01

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film can be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. These results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials. PMID:27215804

  20. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    PubMed

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them. PMID:27100910

  1. Krypton irradiation damage in Nd-doped zirconolite and perovskite

    NASA Astrophysics Data System (ADS)

    Davoisne, C.; Stennett, M. C.; Hyatt, N. C.; Peng, N.; Jeynes, C.; Lee, W. E.

    2011-08-01

    Understanding the effect of radiation damage and noble gas accommodation in potential ceramic hosts for plutonium disposition is necessary to evaluate their long-term behaviour during geological disposal. Polycrystalline samples of Nd-doped zirconolite and Nd-doped perovskite were irradiated ex situ with 2 MeV Kr + at a dose of 5 × 10 15 ions cm -2 to simulate recoil of Pu nuclei during alpha decay. The feasibility of thin section preparation of both pristine and irradiated samples by Focused Ion Beam sectioning was demonstrated. After irradiation, the Nd-doped zirconolite revealed a well defined amorphous region separated from the pristine material by a thin (40-60 nm) damaged interface. The zirconolite lattice was lost in the damaged interface, but the fluorite sublattice was retained. The Nd-doped perovskite contained a defined irradiated layer composed of an amorphous region surrounded by damaged but still crystalline layers. The structural evolution of the damaged regions is consistent with a change from orthorhombic to cubic symmetry. In addition in Nd-doped perovskite, the amorphisation dose depended on crystallographic orientation and possibly sample configuration (thin section or bulk). Electron Energy Loss Spectroscopy revealed Ti remained in the 4+ oxidation state but there was a change in Ti coordination in both Nd-doped perovskite and Nd-doped zirconolite associated with the crystalline to amorphous transition.

  2. Controlling Octahedral Rotations in a Perovskite via Strain Doping

    PubMed Central

    Herklotz, A.; Wong, A. T.; Meyer, T.; Biegalski, M. D.; Lee, H. N.; Ward, T. Z.

    2016-01-01

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film can be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. These results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials. PMID:27215804

  3. Ab Initio Calculations on Spin Transitions in Perovskite

    NASA Astrophysics Data System (ADS)

    Brodholt, J. P.; Stackhouse, S.; Alfredsson, M.; Price, G. D.

    2006-05-01

    Spin transitions in perovskite and magnesiowustite have become the subject of considerable interest since they have been experimentally observed to occur under mantle conditions. Experimental results, however, are not always mutually consitent and a variety of transition pressures have been observed. We have, therefore, performed GGA, LDA, and hybrid-functional calculations on MgSiO3 perovskite containing 6%, 12% and 100% ferric and/or ferrous iron. Although the GGA and LDA calculations suffer from the well-know problem of predicting transition metal oxide insulators to be metallic, the hybrid-functionals do not do this. By using both methods we hope to increase confidence in the results. In agreement with previous work on Al3+ and Fe3+ bearing perovskites (Li et al, 2004) we find a wide range of transition pressures, which are related to the mechanism of iron incorporation. Compositions with just Fe2+ generally have the highest transition pressures, while compositions with just Fe3+ have the lowest. Using these results we are able to explain the spin transitions observed by different experimental groups. The spin state of iron has a small effect on the density, bulk and shear modulus of perovskite, but at the low concentrations expected in the mantle this is unlikely to be seismically visible.

  4. Perovskite solar cells: High voltage from ordered fullerenes

    NASA Astrophysics Data System (ADS)

    Yan, Yanfa

    2016-01-01

    The open-circuit voltage is one of the parameters determining the efficiency of solar cells in converting solar radiation to electricity. Reducing the structural disorder in fullerene electron-transport layers is now shown to significantly improve the open-circuit voltage of perovskite solar cells.

  5. Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics.

    PubMed

    Miyano, Kenjiro; Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2016-06-16

    Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application. PMID:27227427

  6. Luminescence of perovskite-like niobates and tantalates

    SciTech Connect

    Blasse, G. . Fysisch Lab.); Brixner, L.H. and Co., Wilmington, DE . Central Research and Development Dept.)

    1989-03-01

    The luminescence of perovskite-like niobates and tantalates is compared and discussed in connection with that of titanates. The luminescence properties are strongly related to each other. Electronic delocalization in corner-sharing octahedra is shown to play an important role.

  7. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    DOE PAGESBeta

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey; et al

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solarmore » cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.« less

  8. Controlling octahedral rotations in a perovskite via strain doping

    DOE PAGESBeta

    Herklotz, Andreas; Biegalski, Michael D.; Lee, Ho Nyung; Ward, Thomas Zac; Wong, A. T.; Meyer, T.

    2016-05-24

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film canmore » be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. Lastly, these results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.« less

  9. Controlling Octahedral Rotations in a Perovskite via Strain Doping

    NASA Astrophysics Data System (ADS)

    Herklotz, A.; Wong, A. T.; Meyer, T.; Biegalski, M. D.; Lee, H. N.; Ward, T. Z.

    2016-05-01

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film can be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO3 films coherently grown on SrTiO3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. These results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.

  10. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Xiao, Hai; Goddard, William A., III

    2016-05-01

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nano-electronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g. transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation, one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies, and the harmful defects are difficult to form at a low halide chemical potential. Thus we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.

  11. Multifunctional MgO Layer in Perovskite Solar Cells.

    PubMed

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-01

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. PMID:25851999

  12. Degradation mechanism for planar heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kouhei; Furumoto, Yoshikazu; Shahiduzzaman, M.; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya

    2016-04-01

    Organic-inorganic hybrid perovskite materials have recently emerged as a promising cost- and energy-efficient light absorber material for photovoltaic applications. Unfortunately, perovskite solar cells have a problem with decreasing power conversion efficiency owing to their degradation in air. To clarify the cause of the degradation of perovskite solar cells, we exposed deposited CH3NH3PbI3 and HC(NH2)2PbI3 films to an O2 or (H2O+N2) atmosphere condition. Analysis of these films revealed that a large energy band gap was observed as a result of the influence of the H2O molecule in CH3NH3PbI3 and HC(NH2)2PbI3. Under the (H2O+N2) atmosphere condition, the existence of CH3NH3I and HC(NH2)2I molecules was found to affect the morphology and as well as the crystalline diffraction peak. The resultant perovskite crystalline structure was degraded by H2O molecules under the air exposure condition.

  13. Comprehensive design of omnidirectional high-performance perovskite solar cells.

    PubMed

    Zhang, Yutao; Xuan, Yimin

    2016-01-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419

  14. Comprehensive design of omnidirectional high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yutao; Xuan, Yimin

    2016-07-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.

  15. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films.

    PubMed

    Li, Cheng; Zhong, Yu; Luna, Carlos Andres Melo; Unger, Thomas; Deichsel, Konstantin; Gräser, Anna; Köhler, Jürgen; Köhler, Anna; Hildner, Richard; Huettner, Sven

    2016-01-01

    Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL) characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH₃NH₃PbI3-xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM) layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices. PMID:27548128

  16. Comprehensive design of omnidirectional high-performance perovskite solar cells

    PubMed Central

    Zhang, Yutao; Xuan, Yimin

    2016-01-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419

  17. Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges.

    PubMed

    Berry, Joseph; Buonassisi, Tonio; Egger, David A; Hodes, Gary; Kronik, Leeor; Loo, Yueh-Lin; Lubomirsky, Igor; Marder, Seth R; Mastai, Yitzhak; Miller, Joel S; Mitzi, David B; Paz, Yaron; Rappe, Andrew M; Riess, Ilan; Rybtchinski, Boris; Stafsudd, Oscar; Stevanovic, Vladan; Toney, Michael F; Zitoun, David; Kahn, Antoine; Ginley, David; Cahen, David

    2015-09-16

    The conclusions reached by a diverse group of scientists who attended an intense 2-day workshop on hybrid organic-inorganic perovskites are presented, including their thoughts on the most burning fundamental and practical questions regarding this unique class of materials, and their suggestions on various approaches to resolve these issues. PMID:26223962

  18. Oxide perovskite crystals for HTSC film substrates microwave applications

    NASA Technical Reports Server (NTRS)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  19. Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.

    PubMed

    Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka

    2016-04-01

    Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature. PMID:27451628

  20. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Cao, Jing; Yin, Jun; Yuan, Shangfu; Zhao, Yun; Li, Jing; Zheng, Nanfeng

    2015-05-01

    Modifying the interfaces of CH3NH3PbI3 with TiO2 and hole transport layers using two different types of thiols leads to enhanced performance and stability of perovskite solar cells. The incorporation of HOOC-Ph-SH at the TiO2/perovskite interface facilitates electron transfer from perovskite to TiO2 and also alters the morphology of perovskite crystal growth to increase the power conversion efficiency. The modification of pentafluorobenzenethiol at the perovskite/hole transport layer interface improves the stability.Modifying the interfaces of CH3NH3PbI3 with TiO2 and hole transport layers using two different types of thiols leads to enhanced performance and stability of perovskite solar cells. The incorporation of HOOC-Ph-SH at the TiO2/perovskite interface facilitates electron transfer from perovskite to TiO2 and also alters the morphology of perovskite crystal growth to increase the power conversion efficiency. The modification of pentafluorobenzenethiol at the perovskite/hole transport layer interface improves the stability. Electronic supplementary information (ESI) available: Details of the XRD, UV-vis spectra, cross-sectional SEM images and the EQE spectra of the cells. See DOI: 10.1039/c5nr01820j

  1. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells.

    PubMed

    Guerrero, Antonio; You, Jingbi; Aranda, Clara; Kang, Yong Soo; Garcia-Belmonte, Germà; Zhou, Huanping; Bisquert, Juan; Yang, Yang

    2016-01-26

    The stability of perovskite solar cells is one of the major challenges for this technology to reach commercialization, with water believed to be the major degradation source. In this work, a range of devices containing different cathode metal contacts in the configuration ITO/PEDOT:PSS/MAPbI3/PCBM/Metal are fully electrically characterized before and after degradation caused by steady illumination during 4 h that induces a dramatic reduction in power conversion efficiency from values of 12 to 1.8%. We show that a decrease in performance and generation of the S-shape is associated with chemical degradation of the metal contact. Alternatively, use of Cr2O3/Cr as the contact enhances the stability, but modification of the energetic profile during steady illumination takes place, significantly reducing the performance. Several techniques including capacitance-voltage, X-ray diffraction, and optical absorption results suggest that the properties of the bulk perovskite layer are little affected in the device degradation process. Capacitance-voltage and impedance spectroscopy results show that the electrical properties of the cathode contact are being modified by generation of a dipole at the cathode that causes a large shift of the flat-band potential that modifies the interfacial energy barrier and impedes efficient extraction of electrons. Ionic movement in the perovskite layer changes the energy profile close to the contacts, modifying the energy level stabilization at the cathode. These results provide insights into the degradation mechanisms of perovskite solar cells and highlight the importance to further study the use of protecting layers to avoid the chemical reactivity of the perovskite with the external contacts. PMID:26679510

  2. Predicting the Elastic Moduli of Perovskites in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Angel, R. J.; Ross, N. L.; Zhao, J.; Vanpeteghem, C.

    2006-05-01

    Understanding the relationship between the elasticity of a mineral and its composition and structure is essential for building predictive models of mantle flow. Recent advances in laboratory-based single-crystal X- ray diffraction techniques for measuring the intensities of diffraction from crystals held in situ at high pressures in the diamond-anvil cell have been used to determine the role of polyhedral compression in the response of oxide perovskites to high pressure [1]. These new data clearly demonstrate that, contrary to previous belief that perovskites octahedra are essentially incompressible, the compression of the octahedral sites is significant and that the evolution of the perovskite structure with pressure is controlled by a new principle; that of equipartition of bond-valence strain between the A and B cation sites within the structure [2]. The structural response to pressure is thus determined by the compressibility ratio of the A and B cation sites within the structure which can be predicted as inverse of the ratio of the site parameters MA/MB [2] which are completely determined by the room-pressure structure. Further, we find that the bulk elastic properties of perovskites are strongly linearly correlated with this site parameter ratio, thus providing a way to predict the elastic moduli of lower-mantle perovskites from the composition alone. References [1] e.g. Zhao, Ross & Angel (2004) Phys Chem Miner. 31: 299; Ross, Zhao,. & Angel (2004). J. Solid State Chemistry 177:1276, Vanpeteghem CB, Zhao J, Angel RJ, Ross NL, Bolfan-Casanova N (2006) Geophysical Research Letters 33: L03306. [2] Zhao, Ross, & Angel (2004). Acta Cryst. B60:263

  3. Temperature-independent sensors based on perovskite-type oxides

    SciTech Connect

    Zaza, F.; Frangini, S.; Masci, A.; Leoncini, J.; Pasquali, M.; Luisetto, I.; Tuti, S.

    2014-06-19

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La{sub 0.7}Sr{sub 0.3}FeO{sub 3}, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe{sup 4+} and Fe{sup 3+}, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} perovskites have temperature-independence conductivity from 900 K.

  4. Temperature-independent sensors based on perovskite-type oxides

    NASA Astrophysics Data System (ADS)

    Zaza, F.; Frangini, S.; Leoncini, J.; Luisetto, I.; Masci, A.; Pasquali, M.; Tuti, S.

    2014-06-01

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La0.7Sr0.3FeO3, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La0.7Sr0.3)(AlxFe1-x)O3 was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe4+ and Fe3+, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La0.7Sr0.3)(AlxFe1-x)O3 perovskites have temperature-independence conductivity from 900 K.

  5. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    NASA Astrophysics Data System (ADS)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  6. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Haitao; Sun, Weihai; Li, Yunlong; Yan, Weibo; Yu, Pingrong; Zhou, Huanping; Bian, Zuqiang; Huang, Chunhui

    2016-04-01

    Planar heterojunction perovskite solar cell is one of the most competitive photovoltaic technologies, while charge transport materials play a crucial role. We successfully demonstrated an effective electron transport material, namely chemical bath deposited cadmium sulphide (CdS) film under low temperature, in perovskite-based solar cells. Power conversion efficiency of 16.1% has been achieved, which is comparable to that of devices based on TiO2 film prepared via low-temperature processes. Electronic impedance spectra reveal that the CdS-based device presents a higher recombination resistance than TiO2-based devices, which reduces carrier recombination and increases the open circuit voltage. The interface between CdS and perovskite was characterized with improved characteristics when compared to TiO2, e.g., efficient carrier extraction and reduced surface defect-associated degradation in the devices, which help to alleviate anomalous hysteresis and long-term instability. Furthermore, the entire device was fabricated via solution process with a processing temperature below 100°C, suggesting a promising method of further development of perovskite solar cells and commercial manufacturing.

  7. Crystal structure of an organic-inorganic supra-molecular salt based on a 4,4'-methyl-enebis(3,5-dimethyl-1H-pyrazol-2-ium) cation and a β-octa-molybdate anion.

    PubMed

    Amarante, Tatiana R; Gonçalves, Isabel S; Almeida Paz, Filipe A

    2016-02-01

    The asymmetric unit of the title compound, bis-[4,4'-methyl-enebis(3,5-dimethyl-1H-pyrazol-2-ium)] β-octa-molybdate, (C11H18N4)2[Mo8O26] or (H4mbdpz)2[Mo8O26], is composed of an H4mbdpz(2+) cation and half of the β-octa-molybdate anion which is completed by inversion symmetry. The organic mol-ecular units are engaged in a series of N-H⋯O hydrogen bonds with neighbouring anions, with N⋯O distances and N-H⋯O angles in the ranges 2.730 (2)-2.941 (2) Å and 122-166°, respectively. These inter-actions lead to the formation of a supra-molecular two-dimensional network parallel to the (010) plane. PMID:26958369

  8. A two-step route to planar perovskite cells exhibiting reduced hysteresis

    SciTech Connect

    Ip, Alexander H.; Adachi, Michael M.; McDowell, Jeffrey J.; Xu, Jixian; Sargent, Edward H.; Quan, Li Na; Kim, Dong Ha

    2015-04-06

    A simple two-step method was used to produce efficient planar organolead halide perovskite solar cells. Films produced using solely iodine containing precursors resulted in poor morphology and failed devices, whereas addition of chlorine to the process greatly improved morphology and resulted in dense, uniform perovskite films. This process was used to produce perovskite solar cells with a fullerene-based passivation layer. The hysteresis effect, to which planar perovskite devices are otherwise prone, was greatly suppressed through the use of this interface modifier. The combined techniques resulted in perovskite solar cells having a stable efficiency exceeding 11%. This straightforward fabrication procedure holds promise in development of various optoelectronic applications of planar perovskite films.

  9. Localized surface plasmon for enhanced lasing performance in solution-processed perovskites.

    PubMed

    Kao, Tsung Sheng; Hong, Kuo-Bin; Chou, Yu-Hsun; Huang, Jiong-Fu; Chen, Fang-Chung; Lu, Tien-Chang

    2016-09-01

    A promising method to promote the lasing performance of solution-processed organic-inorganic lead-halide perovskites has been demonstrated. With the adding Ag and PMMA thin films, the threshold excitation power for low-temperature lasing action in perovskites can be greatly reduced by over two orders of magnitude than that acquired in bare perovskite layers, ascribing to the strong exciton-plasmon coupling between the Ag and perovskite films. Also, the PMMA layer can be exploited to prevent the perovskite degradation from the hydrolysis in ambient environment, achieving long-lasting light-emitting performance. The advantages exhibited by the hybrid perovskite configuration would be very promising in making practical laser devices. PMID:27607673

  10. A two-step route to planar perovskite cells exhibiting reduced hysteresis

    NASA Astrophysics Data System (ADS)

    Ip, Alexander H.; Quan, Li Na; Adachi, Michael M.; McDowell, Jeffrey J.; Xu, Jixian; Kim, Dong Ha; Sargent, Edward H.

    2015-04-01

    A simple two-step method was used to produce efficient planar organolead halide perovskite solar cells. Films produced using solely iodine containing precursors resulted in poor morphology and failed devices, whereas addition of chlorine to the process greatly improved morphology and resulted in dense, uniform perovskite films. This process was used to produce perovskite solar cells with a fullerene-based passivation layer. The hysteresis effect, to which planar perovskite devices are otherwise prone, was greatly suppressed through the use of this interface modifier. The combined techniques resulted in perovskite solar cells having a stable efficiency exceeding 11%. This straightforward fabrication procedure holds promise in development of various optoelectronic applications of planar perovskite films.

  11. Mesoporous BaSnO3 layer based perovskite solar cells.

    PubMed

    Zhu, Liangzheng; Shao, Zhipeng; Ye, Jiajiu; Zhang, Xuhui; Pan, Xu; Dai, Songyuan

    2016-01-18

    One of the limitations of TiO2 based perovskite solar cells is the poor electron mobility of TiO2. Here, perovskite oxide BaSnO3 is used as a replacement. It has a higher electron mobility and the same perovskite structure as the light harvesting materials. After optimization, devices based on BaSnO3 showed the best performance of 12.3% vs. 11.1% for TiO2. PMID:26587570

  12. Humidity versus photo-stability of metal halide perovskite films in a polymer matrix.

    PubMed

    Manshor, Nurul Ain; Wali, Qamar; Wong, Ka Kan; Muzakir, Saifful Kamaluddin; Fakharuddin, Azhar; Schmidt-Mende, Lukas; Jose, Rajan

    2016-08-21

    Despite the high efficiency of over 21% reported for emerging thin film perovskite solar cells, one of the key issues prior to their commercial deployment is to attain their long term stability under ambient and outdoor conditions. The instability in perovskite is widely conceived to be humidity induced due to the water solubility of its initial precursors, which leads to decomposition of the perovskite crystal structure; however, we note that humidity alone is not the major degradation factor and it is rather the photon dose in combination with humidity exposure that triggers the instability. In our experiment, which is designed to decouple the effect of humidity and light on perovskite degradation, we investigate the shelf-lifetime of CH3NH3PbI3 films in the dark and under illumination under high humidity conditions (Rel. H. > 70%). We note minor degradation in perovskite films stored in a humid dark environment whereas upon exposure to light, the films undergo drastic degradation, primarily owing to the reactive TiO2/perovskite interface and also the surface defects of TiO2. To enhance its air-stability, we incorporate CH3NH3PbI3 perovskite in a polymer (poly-vinylpyrrolidone, PVP) matrix which retained its optical and structural characteristics in the dark for ∼2000 h and ∼800 h in room light soaking, significantly higher than a pristine perovskite film, which degraded completely in 600 h in the dark and in less than 100 h when exposed to light. We attribute the superior stability of PVP incorporated perovskite films to the improved structural stability of CH3NH3PbI3 and also to the improved TiO2/perovskite interface upon incorporating a polymer matrix. Charge injection from the polymer embedded perovskite films has also been confirmed by fabricating solar cells using them, thereby providing a promising future research pathway for stable and efficient perovskite solar cells. PMID:27432518

  13. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.

    PubMed

    Smart, Jonathan P; Cliff, Matthew J; Kelly, David J

    2009-11-01

    The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium. PMID:19818021

  14. Structure and local structure of perovskite based materials

    NASA Astrophysics Data System (ADS)

    Rossell Abrodos, Marta Dacil

    Perovskites, with general formula ABX3, where A and B are cations and X is an anion, form a very important class of inorganic crystals whose physical properties are extensively used in many technological applications. The basic, so-called aristotype structure, consists of an infinite array of corner-linked anion octahedra, with the A cations in the spaces between the octahedra and a B cation at the center of each octahedron. Interesting physical properties are often related to the flexibility of the perovskite structure to deform or to form non-stoichiometric compositions. In this thesis, four perovskite-related systems are studied. Transmission electron microscopy (TEM) is of prime interest to analyze the influence of the structure and microstructure on the physical properties of these systems. (1) The anion-deficient Sr4Fe6O12+delta (delta < 1) derivatives. These materials are mixed conducting oxides with high oxygen and electronic conductivity. A complete characterization of the structure of these anion-deficient compounds is deduced from electron diffraction and high-resolution TEM. The presence of anion vacancies in the Sr4Fe6O12+delta (delta < 1) structure is suggested to have an influence on the transport properties. (2) The CaRMnSnO6 (R = La, Pr, Nd, Sm-Dy) double perovskites. A random distribution of the Ca and R cations over the A positions and Mn and Sn cations over the B positions is found. Due to a random distribution of the Mn 3+ and Sn4+ cations, a spin glass behavior was found for CaLaMnSnO6. (3) The K3AlF6 elpasolite-type (or ordered double perovskite) structure. This compound is of high technological importance since it is a basic component of the melts for low temperature electrolysis in aluminum smelting. A sequence of phase transitions at different temperatures in K3AlF6 along with the data on unit cell dimensions and space symmetry of three major polymorphs is reported. (4) Ca 2Fe2O5 brownmillerite-type thin films deposited on three different

  15. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    SciTech Connect

    Ong, Alison J.

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  16. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    PubMed

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. PMID:26489525

  17. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    PubMed

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. PMID:26669326

  18. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    PubMed

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites. PMID:27386731

  19. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    SciTech Connect

    Ong, Alison

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  20. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  1. Nonlocal quartic interactions and universality classes in perovskite manganites.

    PubMed

    Singh, Rohit; Dutta, Kishore; Nandy, Malay K

    2015-07-01

    A modified Ginzburg-Landau model with a screened nonlocal interaction in the quartic term is treated via Wilson's renormalization-group scheme at one-loop order to explore the critical behavior of the paramagnetic-to-ferromagnetic phase transition in perovskite manganites. We find the Fisher exponent η to be O(ε) and the correlation exponent to be ν=1/2+O(ε) through epsilon expansion in the parameter ε=d(c)-d, where d is the space dimension, d(c)=4+2σ is the upper critical dimension, and σ is a parameter coming from the nonlocal interaction in the model Hamiltonian. The ensuing critical exponents in three dimensions for different values of σ compare well with various existing experimental estimates for perovskite manganites with various doping levels. This suggests that the nonlocal model Hamiltonian contains a wide variety of such universality classes. PMID:26274140

  2. Random lasing in organo-lead halide perovskite microcrystal networks

    SciTech Connect

    Dhanker, R.; Brigeman, A. N.; Giebink, N. C.; Larsen, A. V.; Stewart, R. J.; Asbury, J. B.

    2014-10-13

    We report optically pumped random lasing in planar methylammonium lead iodide perovskite microcrystal networks that form spontaneously from spin coating. Low thresholds (<200 μJ/cm{sup 2}) and narrow linewidths (Δλ < 0.5 nm) reflect lasing from closed quasi-modes that result from ballistic waveguiding in linear network segments linked by scattering at the junctions. Spatio-spectral imaging indicates that these quasi-modes extend over lateral length scales >100 μm and spatially overlap with one another, resulting in chaotic pulse-to-pulse intensity fluctuations due to gain competition. These results demonstrate this class of hybrid organic-inorganic perovskite as a platform to study random lasing with well-defined, low-level disorder, and support the potential of these materials for use in semiconductor laser applications.

  3. Growing perovskite into polymers for easy-processable optoelectronic devices.

    PubMed

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH₃NH₃PbI₃ (MAPbI₃) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition. PMID:25579988

  4. Magnetic relaxation behavior in Tb-doped perovskite manganite

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtang

    2011-01-01

    Tb-doped LaMnO 3 perovskite manganite has been synthesized by a conventional solid-state reaction method. The XRD patterns of the sample revealed that it has a single perovskite-type phase with orthorhombic symmetry at room temperature. The magnetic properties of the sample were investigated. The results of the static and dynamic magnetization measurements show that there is the magnetic relaxation behavior of the cluster (spin) glass in the Tb-doped LaMnO 3 sample. The outcomes of the ac nonlinear magnetization indicate that the magnetic relaxation behavior of the cluster (spin) glass was attributed to the coexistence and competition of a ferromagnetic double exchange between Mn 3+ and Mn 4+ and an antiferromagnetic superexchange coupling among Tb 3+ and Tb 3+ as well as Mn 3+ and Mn 3+.

  5. Degradation of co-evaporated perovskite thin film in air

    NASA Astrophysics Data System (ADS)

    Wang, Congcong; Li, Youzhen; Xu, Xuemei; Wang, Chenggong; Xie, Fangyan; Gao, Yongli

    2016-04-01

    Methylammonium lead halide perovskites as highly promising photovoltaic materials have been found unstable in air. We investigated the degradation of CH3NH3PbI3 by air exposure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The stoichiometric sample was grown with co-evaporation of PbI2 and CH3NH3I on an Au coated Si wafer. It was found that the perovskite thin film gradually turned to PbI2 in air, accompanied with complete removal of N and substantial reduction of I. It was also observed that PbI2 crystallization roughened the film and resulted in a partial exposure of the Au substrate.

  6. Bandgap calculations and trends of organometal halide perovskites

    SciTech Connect

    Castelli, Ivano E. Thygesen, Kristian S.; Jacobsen, Karsten W.; García-Lastra, Juan María

    2014-08-01

    Energy production from the Sun requires a stable efficient light absorber. Promising candidates in this respect are organometal perovskites (ABX{sub 3}), which have been intensely investigated during the last years. Here, we have performed electronic structure calculations of 240 perovskites composed of Cs, CH{sub 3}NH{sub 3}, and HC(NH{sub 2}){sub 2} as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities of the constituent species, while it reduces with an increase of the lattice constants of the system.

  7. Extraction of exchange parameters in transition-metal perovskites

    NASA Astrophysics Data System (ADS)

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.

    2015-09-01

    The extraction of exchange parameters from measured spin-wave dispersion relations has severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. This is exemplified for manganese trimers in the mixed three- and two-dimensional perovskite compounds KM nxZ n1 -xF3 and K2M nxZ n1 -xF4 , respectively. It is shown that the small exchange couplings between the second-nearest-neighbor and the third-nearest-neighbor spins can be determined unambiguously and with equal precision as the dominating nearest-neighbor exchange coupling.

  8. Theoretical insights into hybrid perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Even, Jacky; Boyer-Richard, Soline; Carignano, Marcelo; Pedesseau, Laurent; Jancu, Jean-Marc; Katan, Claudine

    2016-03-01

    In this paper, we examine recent theoretical investigations on 3D hybrid perovskites (HOP) that combine concepts developed for classical bulk solid-state physics and empirical simulations of their optoelectronic properties. In fact, the complexity of HOP calls for a coherent global view that combines usually disconnected concepts. For the pseudocubic high temperature reference perovskite structure that plays a central role for 3D HOP, we introduce a new tight-binding Hamiltonian, which specifically includes spin-orbit coupling. The resultant electronic band structure is compared to that obtained using state of the art density functional theory (DFT). Next, recent experimental investigations of excitonic properties in HOP will be revisited within the scope of theoretical concepts already well implemented in the field of conventional semiconductors. Last, possible plastic crystal and orientational glass behaviors of HOP will be discussed, building on Car-Parrinello molecular dynamics simulations.

  9. Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces

    PubMed Central

    Yajima, Takeaki; Hikita, Yasuyuki; Minohara, Makoto; Bell, Christopher; Mundy, Julia A.; Kourkoutis, Lena F.; Muller, David A.; Kumigashira, Hiroshi; Oshima, Masaharu; Hwang, Harold Y.

    2015-01-01

    The concept ‘the interface is the device' is embodied in a wide variety of interfacial electronic phenomena and associated applications in oxide materials, ranging from catalysts and clean energy systems to emerging multifunctional devices. Many device properties are defined by the band alignment, which is often influenced by interface dipoles. On the other hand, the ability to purposefully create and control interface dipoles is a relatively unexplored degree of freedom for perovskite oxides, which should be particularly effective for such ionic materials. Here we demonstrate tuning the band alignment in perovskite metal-semiconductor heterojunctions over a broad range of 1.7 eV. This is achieved by the insertion of positive or negative charges at the interface, and the resultant dipole formed by the induced screening charge. This approach can be broadly used in applications where decoupling the band alignment from the constituent work functions and electron affinities can enhance device functionality. PMID:25849738

  10. Origin of superstructures in (double) perovskite thin films

    SciTech Connect

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  11. Correlated electron-hole plasma in organometal perovskites.

    PubMed

    Saba, Michele; Cadelano, Michele; Marongiu, Daniela; Chen, Feipeng; Sarritzu, Valerio; Sestu, Nicola; Figus, Cristiana; Aresti, Mauro; Piras, Roberto; Lehmann, Alessandra Geddo; Cannas, Carla; Musinu, Anna; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2014-01-01

    Organic-inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron-hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance. PMID:25266869

  12. Molecular Dynamics Simulation of MgSiO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Lin-xiang, Zhou; L, Zhou X.; J, Hardy R.; Xin, Xu; X, Xu

    1998-06-01

    Using molecular dynamics to simulate MgSiO3 perovskite is performed to investigate its phase transitions and superionicity. These simulations has used parameter-free Gordon-Kim potentials and a novel technique to monitor the motion of ions which clearly demonstrates the sublattice melting of ions O2- and the rotations of SiO6 octahedra. MgSiO3 has to undergo a few of phase transitions, then enter into the cubic phase. In particular, there is a transitional phase between orthorhombic phase and cubic phase. There are a superionic phase and the cubic phase in magnesium-rich silicate perovskite. This superionic phase occurs after the onset of cubic phase before the melting point. The onset temparature Tc for superionicity is about 200-700 K below the melting point Tm, Tc / Tm similar 0.92.

  13. Fast Photoconductive Responses in Organometal Halide Perovskite Photodetectors.

    PubMed

    Wang, Fei; Mei, Jingjing; Wang, Yunpeng; Zhang, Ligong; Zhao, Haifeng; Zhao, Dongxu

    2016-02-01

    Inorganic semiconductor-based photodetectors have been suffering from slow response speeds, which are caused by the persistent photoconductivity of semiconductor materials. For realizing high speed optoelectronic devices, the organometal halide perovskite thin films were applied onto the interdigitated (IDT) patterned Au electrodes, and symmetrical structured photoconductive detectors were achieved. The detectors were sensitive to the incident light signals, and the photocurrents of the devices were 2-3 orders of magnitude higher than dark currents. The responsivities of the devices could reach up to 55 mA W(1-). Most importantly, the detectors have a fast response time of less than 20 μs. The light and bias induced dipole rearrangement in organometal perovskite thin films has resulted in the instability of photocurrents, and Ag nanowires could quicken the process of dipole alignment and stabilize the photocurrents of the devices. PMID:26796674

  14. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    NASA Astrophysics Data System (ADS)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  15. Photoinduced surface voltage mapping study for large perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  16. Method for fabricating high aspect ratio structures in perovskite material

    DOEpatents

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria

    2003-10-28

    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  17. Extraction of exchange parameters in transition-metal perovskites

    DOE PAGESBeta

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.

    2015-09-15

    When extracting exchange parameters from measured spin-wave dispersion relations there are severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. Moreover, this is exemplified for manganese trimers in the mixed three-and two-dimensional perovskite compounds KMnxZn1-xF3 and K2MnxZn1-xF4, respectively. We show that the small exchange couplings between the second-nearest-neighbor and the third-nearest-neighbor spins can be determined unambiguously and withmore » equal precision as the dominating nearest-neighbor exchange coupling.« less

  18. Origin of J-V Hysteresis in Perovskite Solar Cells.

    PubMed

    Chen, Bo; Yang, Mengjin; Priya, Shashank; Zhu, Kai

    2016-03-01

    High-performance perovskite solar cells (PSCs) based on organometal halide perovskite have emerged in the past five years as excellent devices for harvesting solar energy. Some remaining challenges should be resolved to continue the momentum in their development. The photocurrent density-voltage (J-V) responses of the PSCs demonstrate anomalous dependence on the voltage scan direction/rate/range, voltage conditioning history, and device configuration. The hysteretic J-V behavior presents a challenge for determining the accurate power conversion efficiency of the PSCs. Here, we review the recent progress on the investigation of the origin(s) of J-V hysteresis behavior in PSCs. We discuss the impact of slow transient capacitive current, trapping and detrapping process, ion migrations, and ferroelectric polarization on the hysteresis behavior. The remaining issues and future research required toward the understanding of J-V hysteresis in PSCs will also be discussed. PMID:26886052

  19. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE PAGESBeta

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  20. Perovskite electrodes and method of making the same

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.

    2009-09-22

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  1. Wearable double-twisted fibrous perovskite solar cell.

    PubMed

    Li, Ru; Xiang, Xi; Tong, Xiao; Zou, Jingyun; Li, Qingwen

    2015-07-01

    Wearable double-twisted fibrous perovskite solar cells are developed based on flexible carbon nanotube fiber electrodes, which exhibit a maximum power conversion efficiency of 3.03% and bending stability larger than 1000 cycles, and maintain 89% efficiency after 96 h in ambient conditions if sealed by a transparent polymer layer. The obtained superior performance can shed light on future self-powering e-textiles. PMID:25989248

  2. Perovskite electrodes and method of making the same

    SciTech Connect

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  3. Super-ion inspired colorful hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Jena, Puru

    Organic-inorganic hybrid perovskites, with the general formula AMX3 (A =cation; M =metal; X =halogen), have emerged as a new generation of efficient yet inexpensive photovoltaic cells. These materials show record high conversion efficiency as solar cells and have excellent light-emission properties that can also be used in other optoelectronic devices. They can be processed easily from solution with optic band gaps, tunable from visible to infrared regions and are considered to be ``the next big thing in photovoltaics''. However, several important issues such as the relationship between their photoexcitation properties and the chemical structures, their stability under ambient conditions, as well as the possibility to invent their environment-friendly analogues remain unsolved. In this work, our aim is not only to gain a fundamental understanding of the structure-property relationship of organic-inorganic hybrid perovskites, but also to rationally design a new class of hybrid perovskites that have desired electronic band gaps for solar cell applications. This is accomplished by using super-ions that can mimic the properties of elementary alkali and halogen ions as building blocks. These super-ions include superalkalis - CH3NH3+,HC(NH2) 2 + , and Li3O+ as cations and hyperhalogens - Ge(BH4) 3 - and Sn(BH4) 3 - as anions. The results are compared with perovskites composed of GeCl3-,GeBr3-,GeI3-,SnCl3-,SnBr3-,and SnI3-superhalogen anions. We develop a strategy to assemble these super-ions to form environment-friendly solar cells with adjustable band gaps (covering the visible range and beyond) and with improved resistance to moisture.

  4. Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching.

    PubMed

    Choi, Jaeho; Park, Sunghak; Lee, Joohee; Hong, Kootak; Kim, Do-Hong; Moon, Cheon Woo; Park, Gyeong Do; Suh, Junmin; Hwang, Jinyeon; Kim, Soo Young; Jung, Hyun Suk; Park, Nam-Gyu; Han, Seungwu; Nam, Ki Tae; Jang, Ho Won

    2016-08-01

    Organolead halide perovskites are used for low-operating-voltage multilevel resistive switching. Ag/CH3 NH3 PbI3 /Pt cells exhibit electroforming-free resistive switching at an electric field of 3.25 × 10(3) V cm(-1) for four distinguishable ON-state resistance levels. The migration of iodine interstitials and vacancies with low activation energies is responsible for the low-electric-field resistive switching via filament formation and annihilation. PMID:27192161

  5. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    SciTech Connect

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  6. Simple characterization of electronic processes in perovskite photovoltaic cells

    SciTech Connect

    Miyano, Kenjiro Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2015-03-02

    Electronic properties of perovskite lead-halide photovoltaic cells have been studied. The dc current/voltage characteristics were found to be well fitted by a standard diode equation under optical excitation and in the dark, while the impedance spectroscopy revealed a pronounced slow process under light illumination, which is absent in the dark. A simple model is proposed, which can explain all aspects of the observed behavior quantitatively and consistently.

  7. Polymer/Perovskite Amplifying Waveguides for Active Hybrid Silicon Photonics.

    PubMed

    Suárez, Isaac; Juárez-Pérez, Emilio J; Bisquert, Juan; Mora-Seró, Iván; Martínez-Pastor, Juan P

    2015-10-28

    The emission properties of hybrid halide perovskites are exploited to implement a stable and very low power operation waveguide optical amplifier integrated in a silicon platform. By optimizing its design with a poly(methyl methacrylate) (PMMA) encapsulation, this novel photonic device presents a net gain of around 10 dB cm(-1) and 3-4 nm linewidth with an energy threshold as low as 2 nJ pulse(-1) and exhibiting no degradation after one year. PMID:26331838

  8. Degradation mechanism of planar perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Qin, Chuanjiang; Matsushima, Toshinori; Adachi, Chihaya

    2015-10-01

    Organic-inorganic hybrid halide perovskites are an interesting class of materials that have excellent semiconductor properties, and demonstrated promising applications on many fields, such as solar cells, water photolysis, light emitting diodes, and amplified spontaneous emission. So far, the device lifetime is still short, and this is an important key issue faced for all researchers in this field.[1] The deep understanding of their durability and degradation mechanism is critical and necessary toward future applications. Towards development of efficient and long-term stable perovskite solar cells (PSCs), we firstly studied the relationship between crystallization, morphology, device architecture, efficiency and durability of encapsulated PSCs. Furthermore, the degradation mechanism of the devices was elucidated by different experimental methods. The well crystallized and fully covered perovskite layer improves not only power conversion efficiency but also long-time durability. Compared to a widely used silver counter electrode, lithium fluoride/aluminum and gold electrode-based PSCs demonstrated better durability owing to less chemical degradation and interface changing. We also confirmed that the amount of accumulated charge carriers induces the degradation of the PSCs, which was proved by a thermally stimulated current technique. Finally, we realized a planar PSC with excellent durability by improving device encapsulation and optimizing device structures. Reference: 1. M. Grätzel, Nature Materials 2014, 13, 838-842.

  9. Perovskite to postperovskite transition in NaFeF3.

    PubMed

    Bernal, Fabian L; Yusenko, Kirill V; Sottmann, Jonas; Drathen, Christina; Guignard, Jérémy; Løvvik, Ole Martin; Crichton, Wilson A; Margadonna, Serena

    2014-11-17

    The GdFeO3-type perovskite NaFeF3 transforms to CaIrO3-type postperovskite at pressures as low as 9 GPa at room temperature. The details of such a transition were investigated by in situ synchrotron powder diffraction in a multianvil press. Fit of the p-V data showed that the perovskite phase is more compressible than related chemistries with a strongly anisotropic response of the lattice metrics to increasing pressure. The reduction in volume is accommodated by a rapid increase of the octahedral tilting angle, which reaches a critical value of 26° at the transition boundary. The postperovskite form, which is fully recoverable at ambient conditions, shows a regular geometry of the edge-sharing octahedra and its structural properties are comparable to those found in CaIrO3-type MgSiO3 at high pressure and temperature. Theoretical studies using density functional theory at the GGA + U level were also performed and describe a scenario where both perovskite and postperovskite phases can be considered Mott-Hubbard insulators with collinear magnetic G- and C-type antiferromagnetic structures, respectively. Magnetic measurements are in line with the theoretical predictions with both forms showing the typical behavior of canted antiferromagnets. PMID:25351883

  10. Garden-like perovskite superstructures with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ye, Meidan; Wang, Mengye; Zheng, Dajiang; Zhang, Nan; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation.By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3

  11. Coloring Semitransparent Perovskite Solar Cells via Dielectric Mirrors.

    PubMed

    Ramírez Quiroz, César Omar; Bronnbauer, Carina; Levchuk, Ievgen; Hou, Yi; Brabec, Christoph J; Forberich, Karen

    2016-05-24

    While perovskite-based semitransparent solar cells for window applications show competitive levels of transparency and efficiency compared to organic photovoltaics, the color perception of the perovskite films is highly restricted because band gap engineering results in losses in power conversion efficiencies. To overcome the limitation in visual aesthetics, we combined semitransparent perovskite solar cells with dielectric mirrors. This approach enables one to tailor the device appearance to almost any desired color and simultaneously offers additional light harvesting for the solar cell. In the present work, opto-electrical effects are investigated through quantum efficiency and UV-to-visible spectroscopic measurements. Likewise, a detailed chromaticity analysis, featuring the transmissive and reflective color perception of the device including the mirror, from both sides and in different illumination conditions, is presented and analyzed. Photocurrent density enhancement of up to 21% along with overall device transparency values of up to 31% (4.2% efficiency) is demonstrated for cells showing a colored aesthetic appeal. Finally, a series of simulations emulating the device chromaticity, transparency, and increased photocurrent density as a function of the photoactive layer thickness and the design wavelength of the dielectric mirror are presented. Our simulations and their experimental validation enabled us to establish the design rules that consider the color efficiency/transparency interplay for real applications. PMID:27070738

  12. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    PubMed

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications. PMID:27336412

  13. Orbital Delocalization and Enhancement of Magnetic Interactions in Perovskite Oxyhydrides

    PubMed Central

    Liu, Kai; Hou, Yusheng; Gong, Xingao; Xiang, Hongjun

    2016-01-01

    Recent experiments showed that some perovskite oxyhydrides have surprisingly high magnetic-transition temperature. In order to unveil the origin of this interesting phenomenon, we investigate the magnetism in SrCrO2H and SrVO2H on the basis of first-principles calculations and Monte Carlo simulations. Our work indicates that the Cr-O-Cr superexchange interaction in SrCrO2H is unexpectedly strong. Different from the previous explanation in terms of the H− ion substitution induced increase of the Cr-O-Cr bond angle, we reveal instead that this is mainly because the 3d orbitals in perovskite oxyhydrides becomes more delocalized since H− ions have weaker electronegativity and less electrons than O2− ions. The delocalized 3d orbitals result in stronger Cr-O interactions and enhance the magnetic-transition temperature. This novel mechanism is also applicable to the case of SrVO2H. Furthermore, we predict that SrFeO2H will have unprecedented high Neel temperature because of the extraordinarily strong Fe-H-Fe σ-type interactions. Our work suggests the anion substitution can be used to effectively manipulate the magnetic properties of perovskite compounds. PMID:26804825

  14. Control of Perovskite Crystal Growth by Methylammonium Lead Chloride Templating.

    PubMed

    Binek, Andreas; Grill, Irene; Huber, Niklas; Peters, Kristina; Hufnagel, Alexander G; Handloser, Matthias; Docampo, Pablo; Hartschuh, Achim; Bein, Thomas

    2016-04-20

    State-of-the-art solar cells based on methylammonium lead iodide (MAPbI3 ) now reach efficiencies over 20 %. This fast improvement was possible with intensive research in perovskite processing. In particular, chloride-based precursors are known to have a positive influence on the crystallization of the perovskite. Here, we used a combination of in-situ X-ray diffraction and charge-transport measurements to understand the influence of chloride during perovskite crystallization in planar heterojunction solar cells. We show that MAPbCl3 crystallizes directly after the deposition of the starting solution and acts as a template for the formation of MAPbI3 . Additionally, we show that the charge-carrier mobility doubles by extending the time for the template formation. Our results give a deeper understanding of the influence of chloride in the synthesis of MAPbI3 and illustrate the importance of carefully controlling crystallization for reproducible, high-efficiency solar cells. PMID:26928877

  15. Layered structures of organic/inorganic hybrid halide perovskites

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Minh, Nguyen Viet

    2016-03-01

    Organic-inorganic hybrid halide perovskites, in which the A cations of an ABX3 perovskite are replaced by organic cations, may be used for photovoltaic and solar thermoelectric applications. In this contribution, we systematically study three lead-free hybrid perovskites, i.e., methylammonium tin iodide CH3NH3SnI3 , ammonium tin iodide NH4SnI3 , and formamidnium tin iodide HC (NH2)2SnI3 by first-principles calculations. We find that in addition to the commonly known motif in which the corner-shared SnI6 octahedra form a three-dimensional network, these materials may also favor a two-dimensional (layered) motif formed by alternating layers of the SnI6 octahedra and the organic cations. These two motifs are nearly equal in free energy and are separated by low barriers. These layered structures features many flat electronic bands near the band edges, making their electronic structures significantly different from those of the structural phases composed of three-dimension networks of SnI6 octahedra. Furthermore, because the electronic structures of HC (NH2)2SnI3 are found to be rather similar to those of CH3NH3SnI3 , formamidnium tin iodide may also be promising for the applications of methylammonium tin iodide.

  16. Carbon Nanotube Charge Collectors in Doped Hybrid Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Olds, Zane; Haroldson, Ross; Mielczarek, Kamil; Zakhidov, Anvar

    2015-03-01

    Hybrid organo-metallic solar cells based on perovskite crystals have had steadily improved power conversion efficiencies over the past two years, and within this period have achieved efficiencies over 19%. We show that additions of Metal-Halide dopants, such as Cobalt (II) Iodide or Indium and Bismuth materials, can cause substitutional doping at the Lead atom. This may result in structural distortions (as in isovalent Co-doping) within the lattice causing change in the spatial distribution of charge carriers. We show that Co-doping results in an increased open circuit voltage upon light soaking due to possible higher charge accumulation. We also have investigated effects of p-doping the hole transport layer. We also incorporate composite sheets of MW carbon nanotubes and silver nanowires as charge collectors. These sheets provide a transparent and flexible electrode with lower sheet resistance due to integration of Ag nanowires. This has an effect on the work function of the sheet, making it more versatile as an electrode for use in a variety of device structures. This allows us a semi-transparent perovskite device, where incident light can be absorbed from either side of the device. This is beneficial towards achieving multi-junction perovskite solar cells. Undergraduate Research Assistant

  17. Ionic transport in hybrid lead iodide perovskite solar cells

    PubMed Central

    Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current–voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic–electronic conductors, a finding that has major implications for solar cell device architectures. PMID:26105623

  18. Laser cooling of organic-inorganic lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Ha, Son-Tung; Shen, Chao; Zhang, Jun; Xiong, Qihua

    2016-02-01

    Optical irradiation with suitable energy can cool solids, a phenomenon known as optical refrigeration, first proposed in 1929 and experimentally achieved in ytterbium-doped glasses in 1995. Since then, considerable progress has been made in various rare earth element-doped materials, with a recent record of cooling to 91 K directly from ambient temperatures. For practical use and to suit future applications of optical refrigeration, the discovery of materials with facile and scalable synthesis and high cooling power density will be required. Herein we present the realization of a net cooling of 23.0 K in micrometre-thick 3D CH3NH3PbI3 (MAPbI3) and 58.7 K in exfoliated 2D (C6H5C2H4NH3)2PbI4 (PhEPbI4) perovskite crystals directly from room temperature. We found that the perovskite crystals exhibit strong photoluminescence upconversion and near unity external quantum efficiency, properties that are responsible for the realization of net laser cooling. Our findings indicate that solution-processed perovskite thin films may be a highly suitable candidate for constructing integrated optical cooler devices.

  19. Magnetic domain wall induced ferroelectricity in double perovskites

    SciTech Connect

    Zhou, Hai Yang; Zhao, Hong Jian E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming E-mail: xmchen59@zju.edu.cn; Zhang, Wen Qing

    2015-04-13

    Recently, a magnetically induced ferroelectricity occurring at magnetic domain wall of double perovskite Lu{sub 2}CoMnO{sub 6} has been reported experimentally. However, there exists a conflict whether the electric polarization is along b or c direction. Here, by first-principles calculations, we show that the magnetic domain wall (with ↑↑↓↓ spin configuration) can lead to the ferroelectric displacements of R{sup 3+}, Ni{sup 2+}, Mn{sup 4+}, and O{sup 2−} ions in double perovskites R{sub 2}NiMnO{sub 6} (R = rare earth ion) via exchange striction. The resulted electric polarization is along b direction with the P2{sub 1} symmetry. We further reveal the origin of the ferroelectric displacements as that: (1) on a structural point of view, such displacements make the two out-of-plane Ni-O-Mn bond angles as well as Ni-Mn distance unequal, and (2) on an energy point of view, such displacements weaken the out-of-plane Ni-Mn super-exchange interaction obviously. Finally, our calculations show that such a kind of ferroelectric order is general in ferromagnetic double perovskites.

  20. Orbital Delocalization and Enhancement of Magnetic Interactions in Perovskite Oxyhydrides

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Hou, Yusheng; Gong, Xingao; Xiang, Hongjun

    2016-01-01

    Recent experiments showed that some perovskite oxyhydrides have surprisingly high magnetic-transition temperature. In order to unveil the origin of this interesting phenomenon, we investigate the magnetism in SrCrO2H and SrVO2H on the basis of first-principles calculations and Monte Carlo simulations. Our work indicates that the Cr-O-Cr superexchange interaction in SrCrO2H is unexpectedly strong. Different from the previous explanation in terms of the H- ion substitution induced increase of the Cr-O-Cr bond angle, we reveal instead that this is mainly because the 3d orbitals in perovskite oxyhydrides becomes more delocalized since H- ions have weaker electronegativity and less electrons than O2- ions. The delocalized 3d orbitals result in stronger Cr-O interactions and enhance the magnetic-transition temperature. This novel mechanism is also applicable to the case of SrVO2H. Furthermore, we predict that SrFeO2H will have unprecedented high Neel temperature because of the extraordinarily strong Fe-H-Fe σ-type interactions. Our work suggests the anion substitution can be used to effectively manipulate the magnetic properties of perovskite compounds.

  1. Local Time-Dependent Charging in a Perovskite Solar Cell.

    PubMed

    Bergmann, Victor W; Guo, Yunlong; Tanaka, Hideyuki; Hermes, Ilka M; Li, Dan; Klasen, Alexander; Bretschneider, Simon A; Nakamura, Eiichi; Berger, Rüdiger; Weber, Stefan A L

    2016-08-01

    Efficient charge extraction within solar cells explicitly depends on the optimization of the internal interfaces. Potential barriers, unbalanced charge extraction, and interfacial trap states can prevent cells from reaching high power conversion efficiencies. In the case of perovskite solar cells, slow processes happening on time scales of seconds cause hysteresis in the current-voltage characteristics. In this work, we localized and investigated these slow processes using frequency-modulation Kelvin probe force microscopy (FM-KPFM) on cross sections of planar methylammonium lead iodide (MAPI) perovskite solar cells. FM-KPFM can map the charge density distribution and its dynamics at internal interfaces. Upon illumination, space charge layers formed at the interfaces of the selective contacts with the MAPI layer within several seconds. We observed distinct differences in the charging dynamics at the interfaces of MAPI with adjacent layers. Our results indicate that more than one process is involved in hysteresis. This finding is in agreement with recent simulation studies claiming that a combination of ion migration and interfacial trap states causes the hysteresis in perovskite solar cells. Such differences in the charging rates at different interfaces cannot be separated by conventional device measurements. PMID:27377472

  2. Perovskite phase thin films and method of making

    DOEpatents

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  3. Output Coupling of Perovskite Lasers from Embedded Nanoscale Plasmonic Waveguides.

    PubMed

    Li, Yong Jun; Lv, Yuanchao; Zou, Chang-Ling; Zhang, Wei; Yao, Jiannian; Zhao, Yong Sheng

    2016-02-24

    Nanoscale lasers are ideal light-signal sources for integrated photonic devices. Most of the present lasers made of dielectric materials are restricted to being larger than half the wavelength of the optical field. Plasmon lasers made from metallic nanostructures can help to break the diffraction limit, yet they suffer from low optical pump efficiencies and low quality factors. Integrating dielectric lasers with plasmonic waveguides to construct hybrid material systems may circumvent these problems and combine the advantages of the two components. Here we demonstrate the nanoscale output of dielectric lasers via photon-plasmon coupling in rationally designed perovskite/silver heterostructures. The perovskite crystals offer the gain and high-Q cavity for low-threshold laser generation, while the embedded silver nanowires (AgNWs) help to output the lasing modes efficiently in the form of surface plasmons. The output coupling can be modulated by controlling the resonant modes of the two-dimensional perovskite microcavities. The results would pave an alternative avenue to ultrasmall light sources as well as fundamental studies of light-matter interactions. PMID:26849536

  4. Iron-based perovskite cathodes for solid oxide fuel cells

    DOEpatents

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  5. Recycling Perovskite Solar Cells To Avoid Lead Waste.

    PubMed

    Binek, Andreas; Petrus, Michiel L; Huber, Niklas; Bristow, Helen; Hu, Yinghong; Bein, Thomas; Docampo, Pablo

    2016-05-25

    Methylammonium lead iodide (MAPbI3) perovskite based solar cells have recently emerged as a serious competitor for large scale and low-cost photovoltaic technologies. However, since these solar cells contain toxic lead, a sustainable procedure for handling the cells after their operational lifetime is required to prevent exposure of the environment to lead and to comply with international electronic waste disposal regulations. Herein, we report a procedure to remove every layer of the solar cells separately, which gives the possibility to selectively isolate the different materials. Besides isolating the toxic lead iodide in high yield, we show that the PbI2 can be reused for the preparation of new solar cells with comparable performance and in this way avoid lead waste. Furthermore, we show that the most expensive part of the solar cell, the conductive glass (FTO), can be reused several times without any reduction in the performance of the devices. With our simple recycling procedure, we address both the risk of contamination and the waste disposal of perovskite based solar cells while further reducing the cost of the system. This brings perovskite solar cells one step closer to their introduction into commercial systems. PMID:27149009

  6. A novel dimethylformamide (DMF) free bar-cast method to deposit organolead perovskite thin films with improved stability.

    PubMed

    Jones, Eurig W; Holliman, Peter J; Connell, Arthur; Davies, Matthew L; Baker, Jennifer; Hobbs, Robert J; Ghosh, Sanjay; Furnell, Leo; Anthony, Rosie; Pleydell-Pearce, Cameron

    2016-03-10

    We report a solvent-free approach to synthesizing organolead perovskites by using solid state reactions to coat perovskite crystals onto Al2O3 or TiO2 nanoparticles followed by addition of terpineol affording perovskite inks. We have bar cast these inks to produce photoactive perovskite thin films which are significantly more stable to humidity than solution-processed films. This new method also avoids the use of toxic DMF solvent. PMID:26962574

  7. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-06-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  8. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  9. Synthesis, crystal structure and properties of alluaudite-like triple molybdate Na25Cs8Fe5(MoO4)24

    NASA Astrophysics Data System (ADS)

    Savina, Aleksandra A.; Solodovnikov, Sergey F.; Belov, Dmitry A.; Basovich, Olga M.; Solodovnikova, Zoya A.; Pokholok, Konstantin V.; Stefanovich, Sergey Yu.; Lazoryak, Bogdan I.; Khaikina, Elena G.

    2014-12-01

    A new triple molybdate Na25Cs8Fe5(MoO4)24 was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na25Cs8Fe5(MoO4)24 were obtained and its structure was solved (the space group P1bar, a=12.5814(5), b=13.8989(5), c=28.4386(9) Å, α=90.108(2), β=90.064(2), γ=90.020(2)°, V=4973.0(3) Å3, Z=2, R=0.0440). Characteristic features of the structure are polyhedral layers composed of pairs of edge-shared FeO6 and (Fe, Na)O6 octahedra, which are connected by bridging МоО4 tetrahedra. The layers share common vertices with bridging МоО4 tetrahedra to form an open 3D framework with the cavities occupied by the Cs+ and Na+ cations. The compound undergoes first-order phase transformation at 642 K and above this phase transition, electrical conductivity reaches 10-3-10-2 S cm-1. Thus, Na25Cs8Fe5(MoO4)24 may be considered as a promising compound for developing new materials with high ionic conductivity.

  10. Tunable quasi-cw two-micron lasing in diode-pumped crystals of mixed Tm{sup 3+}-doped sodium - lanthanum - gadolinium molybdates and tungstates

    SciTech Connect

    Bol'shchikov, F A; Ryabochkina, P A; Zharikov, Evgeny V; Lis, Denis A; Subbotin, Kirill A; Zakharov, N G; Antipov, Oleg L

    2010-12-09

    Two-micron lasing is obtained for the first time on the {sup 3}F{sub 4} {yields} {sup 3}H{sub 6} transition of Tm{sup 3+} ions in diode-pumped crystals of mixed sodium - lanthanum - gadolinium tungstate Tm:NaLa{sub 1/2}Gd{sub 1/2}(WO{sub 4}){sub 2} (C{sub Tm} = 3.6 at %) (3.6Tm : NLGW) and molybdate Tm:NaLa{sub 1/3}Gd{sub 2/3}(MoO{sub 4}){sub 2} (C{sub Tm} = 4.8 at %) (4.8Tm : NLGM). For the 3.6Tm : NLGW crystal, the quasi-cw laser output power exceeded 200 mW and the slope efficiency (with respect to absorbed pump power) for the {pi}- and {sigma}-polarisations at wavelengths of 1908 and 1918 nm was 34% and 30%, respectively. The laser wavelength of this crystal was continuously tuned within the spectral range of 1860 - 1935 nm. For the 4.8Tm : NLGM crystal, the slope efficiency for the {pi}- and {sigma}-polarisations at wavelengths of 1910 and 1918 nm was 27% and 23%, respectively, and the laser wavelength was tunable within the spectral range of 1870 - 1950 nm. (lasers)

  11. Structural direction of hybrid organic-inorganic materials: Synthesis of vanadium oxyfluoride, copper vanadate, and copper molybdate solid state materials through solvuthermal and solution methods

    NASA Astrophysics Data System (ADS)

    Deburgomaster, Paul

    The vast structural complexity of inorganic oxides with structure directing organocations, nitrogen containing ligands and organophosphonate ligands was explored. The hydrothermal reaction conditions utilized herein include the variables of temperature, pH, fill volume and stoichiometry. The systems studied included: (1) the complex materials rendered from reactions of organoamine cations on the structure of vanadium oxides, oxyfluorides and fluorides. As with other systems, the influence of the mineralizer HF was not limited to pH as fluorine incorporation was not uncommon. In specific cases this coincided with reduction of vanadium sites. (2) The copper-organonitrogen ligand/vanadium oxide/aromatic phosphonate system has been studied. The rigid aromatic di- and tri-phosphonate tethers have provided a series of materials which are structurally distinct from the previously investigated aliphatic series. The inclusion of copper-coordinated nitrogen bi- and tri-dentate ligands also provided structural diversity. Product composition was highly influenced by the HF/V ratio. A similar study was conducted with the ligand 1,4-carboxy-phenylphosphonic acid. (3) The preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class was further evidence of the utility of thermodynamically driven hydrothermal synthesis. (4) While decomposition of the spherical Keplerate molybdenum clusters is encountered under hydrothermal conditions, this highly soluble form of molybdate was investigated for the development of hybrid organic-inorganic room temperature solution synthesis.

  12. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells

    PubMed Central

    Dymshits, Alex; Henning, Alex; Segev, Gideon; Rosenwaks, Yossi; Etgar, Lioz

    2015-01-01

    Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realized with the CH3NH3PbI3 that functions both as light harvester and hole conductor in combination with a metal oxide. The band diagrams were estimated from the measured potential profile at the interfaces, and are critical findings for a better understanding and further improvement of perovskite based solar cells. PMID:25731963

  13. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    PubMed

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local

  14. Modelling dislocation cores in MgSiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Carrez, P.; Gouriet, K.; Kraych, A.

    2012-12-01

    MgSiO3 perovskite is the most abundant mineral of the Earth's lower mantle (i.e. between 700 and 2900 km depth) and accounts for half of Earth's mass. At lower mantle pressures (25-135 GPa) MgSiO3 crystallises in a distorted (orthorhombic) perovskite structure (described in the following using the Pbnm space group). In this structure, SiO6 octahedra are tilted with tilt angles increasing with increasing pressure. Since it is very difficult to perform deformation experiments under the extreme P, T conditions of the lower mantle, little is known about plastic deformation of MgSiO3 perovskite and its slip systems are still a matter of debate. To overcome this difficulty, we model dislocation core structures in this mineral taking into account the influence of pressure. In this study, we focus on dislocation core structures of dislocations with [100] and [010] Burgers vectors (which derive from <110> Burgers vectors of the underlying pseudo-cubic structure). Atomistic calculations are performed using pair-wise potentials as implemented in the LAMMPS code. The choice of potentials was initially validated by comparing generalized stacking fault (GSF) energies to similar calculations performed with the density functional theory (DFT). The core structures of screw dislocations are calculated using two independent methods. The first one is based on Peierls-Nabarro-Galerkin simulations involving GSF as an input. Direct calculations have also bee performed using cluster approach. It turns out that screw dislocations with [100] Burgers vector are characterised by a core mostly spread in the (010) plane. The core exhibits two edge-sharing octahedra in a configuration very similar to that modelled in SrTiO3 cubic perovskite. The structure of [010] screw dislocations is more complex with dissociation into two, non-collinear partial dislocations with a significant non-screw component. Both dislocations exhibit high Peierls stresses. This illustrates the effect of orthorhombic

  15. Impact of a Mesoporous Titania-Perovskite Interface on the Performance of Hybrid Organic-Inorganic Perovskite Solar Cells.

    PubMed

    Abdi-Jalebi, Mojtaba; Dar, M Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Friend, Richard H

    2016-08-18

    We report on the optimization of the interfacial properties of titania in mesoscopic CH3NH3PbI3 solar cells. Modification of the mesoporous TiO2 film by TiCl4 treatment substantially reduced the surface traps, as is evident from the sharpness of the absorption edge with a significant reduction in Urbach energy (from 320 to 140 meV) determined from photothermal deflection spectroscopy, and led to an order of magnitude enhancement in the bulk electron mobility and corresponding decrease in the transport activation energy (from 170 to 90 meV) within a device. After optimization of the photoanode-perovskite interface using various sizes of TiO2 nanoparticles, the best photovoltaic efficiency of 16.3% was achieved with the mesoporous TiO2 composed of 36 nm sized nanoparticles. The improvement in device performance can be attributed to the enhanced charge collection efficiency that is driven by improved charge transport in the mesoporous TiO2 layer. Also, the decreased recombination at the TiO2-perovskite interface and better perovskite coverage play important roles. PMID:27472458

  16. NaIrO{sub 3}-A pentavalent post-perovskite

    SciTech Connect

    Bremholm, M.; Dutton, S.E.; Stephens, P.W.; Cava, R.J.

    2011-03-15

    Sodium iridium (V) oxide, NaIrO{sub 3,} was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO{sub 3}, the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO{sub 3}. Among the oxide post-perovskites, NaIrO{sub 3} is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO{sub 6} octahedra separated by layers of NaO{sub 8} bicapped trigonal prisms. NaIrO{sub 3} shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides. -- Graphical abstract: Sodium iridium(V) oxide, NaIrO{sub 3}, synthesized by a high pressure solid state method and recovered to ambient conditions is found to crystallize as the post-perovskite structure and is the first example of a pentavalent ABO{sub 3} post-perovskite. Research highlights: {yields} NaIrO{sub 3} post-perovskite stabilized by pressure. {yields} First example of a pentavalent oxide post-perovskite. {yields} Non-metallic and non-magnetic behavior of NaIrO{sub 3}.

  17. Artificial Synapses: Organometal Halide Perovskite Artificial Synapses (Adv. Mater. 28/2016).

    PubMed

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    A synapse-emulating electronic device based on organometal halide perovskite thin films is described by T.-W. Lee and co-workers on page 5916. The device successfully emulates important characteristics of a biological synapse. This work extends the application of organometal halide perovskites to bioinspired electronic devices, and contributes to the development of neuromorphic electronics. PMID:27442971

  18. The Synthesis and Characterization of Some Fluoride Perovskites: An Undergraduate Experiment in Solid State Chemistry.

    ERIC Educational Resources Information Center

    Langley, Richard H.; And Others

    1984-01-01

    Describes a senior-level experiment dealing with the synthesis and characterization of a perovskite. Since most perovskites are cubic, their characterization by x-ray diffraction is simplified. In addition, magnetic ordering may be observed and the effects of a Jahn-Teller distortion seen. (JN)

  19. Structural transformations in cubic structure of Mn/Co perovskites in reducing and oxidizing atmospheres

    NASA Astrophysics Data System (ADS)

    Koponen, Markus J.; Suvanto, Mika; Kallinen, Kauko; Kinnunen, Toni-J. J.; Härkönen, Matti; Pakkanen, Tapani A.

    2006-05-01

    ABO ( A=La, Pr; B=Mn, Co), ABBx'O ( A=La, Pr; B=Mn, Co; B=Co, Pd), and ABCoPdO ( A=La, Pr; B=Fe, Mn) ( x=0.05, 0.37; y=0.38) perovskites were synthesized via malic acid complexation. O 2-TPD, O 2-TPO, and H 2-TPR treatments were carried out to study the oxidation and reduction behavior of the synthesized perovskites. LaCo 0.95Pd 0.05O 3, PrCo 0.95Pd 0.05O 3, and PrCoO 3 perovskites had the highest desorption, oxidation, and reduction activity within the studied perovskite series. Powder XRD studies revealed structural transformation of the cubic structure of all synthesized perovskites except LaFe 0.57Co 0.38Pd 0.05O 3 in H 2/Ar atmosphere when the temperature was over 400 °C. The decomposed structure reverted to the original perovskite structure under oxidizing atmosphere. This reversion was accompanied by increased oxygen desorption activity. It was noticed that the Co and Mn combinations in the B-site of the perovskites structure decreased the thermal stability of the synthesized perovskites.

  20. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    PubMed

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. PMID:26773727

  1. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    PubMed

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances. PMID:26717046

  2. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites.

    PubMed

    Li, Chonghea; Lu, Xionggang; Ding, Weizhong; Feng, Liming; Gao, Yonghui; Guo, Ziming

    2008-12-01

    In this study a total of 186 complex halide systems were collected; the formabilities of ABX3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF2) without perovskite structure and six systems (RbF-PbF2, CsF-BeF2, KCl-FeCl2, TlI-MnI2, RbI-SnI2, TlI-PbI2) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. PMID:19029699

  3. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging.

    PubMed

    Lin, Qianqian; Armin, Ardalan; Lyons, Dani M; Burn, Paul L; Meredith, Paul

    2015-03-25

    Solution-processed organohalide perov-skite photodiodes that have performance metrics matching silicon, but are infrared-blind are reported. The perovskite photodiodes operate in the visible band, have low dark current and noise, high specific detectivity, large linear dynamic range, and fast temporal response. Their properties make them promising candidates for imaging applications. PMID:25677496

  4. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    PubMed Central

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  5. "Liquid Knife" to Fabricate Patterning Single-Crystalline Perovskite Microplates toward High-Performance Laser Arrays.

    PubMed

    Feng, Jiangang; Yan, Xiaoxu; Zhang, Yifan; Wang, Xuedong; Wu, Yuchen; Su, Bin; Fu, Hongbin; Jiang, Lei

    2016-05-01

    A facile and effective "liquid knife" is created by controlling the dewetting process of the liquid precursor, yielding patterning single-crystalline perovskite microplates with uniform size, precise positioning, high quality, and low lasing thresholds. The sizes and location of single-crystalline perovskite are controllable, leading to mode-tunable lasing emission and patterned lasers. PMID:27000628

  6. Efficient All-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum.

    PubMed

    Hsiao, Sheng-Yi; Lin, Hong-Lin; Lee, Wei-Hung; Tsai, Wei-Lun; Chiang, Kai-Ming; Liao, Wei-Yu; Ren-Wu, Chen-Zheng; Chen, Chien-Yu; Lin, Hao-Wu

    2016-08-01

    All-vacuum-deposited perovskite solar cells produced by controlling reagent partial pressure in high vacuum with newly developed multi-layer electron and hole transporting structures show outstanding power conversion efficiency of 17.6% and smooth, pinhole-free, micrometer-sized perovskite crystal grains. PMID:27226143

  7. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.

    PubMed

    Zhao, Xingyue; Shen, Heping; Zhang, Ye; Li, Xin; Zhao, Xiaochong; Tai, Meiqian; Li, Jingfeng; Li, Jianbao; Li, Xin; Lin, Hong

    2016-03-01

    Although low-temperature, solution-processed zinc oxide (ZnO) has been widely adopted as the electron collection layer (ECL) in perovskite solar cells (PSCs) because of its simple synthesis and excellent electrical properties such as high charge mobility, the thermal stability of the perovskite films deposited atop ZnO layer remains as a major issue. Herein, we addressed this problem by employing aluminum-doped zinc oxide (AZO) as the ECL and obtained extraordinarily thermally stable perovskite layers. The improvement of the thermal stability was ascribed to diminish of the Lewis acid-base chemical reaction between perovskite and ECL. Notably, the outstanding transmittance and conductivity also render AZO layer as an ideal candidate for transparent conductive electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au. Optimization of the perovskite layer leads to an excellent and repeatable photovoltaic performance, with the champion cell exhibiting an open-circuit voltage (Voc) of 0.94 V, a short-circuit current (Jsc) of 20.2 mA cm(-2), a fill factor (FF) of 0.67, and an overall power conversion efficiency (PCE) of 12.6% under standard 1 sun illumination. It was also revealed by steady-state and time-resolved photoluminescence that the AZO/perovskite interface resulted in less quenching than that between perovskite and hole transport material. PMID:26960451

  8. Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in a same device

    DOE PAGESBeta

    Hu, Miao; Bi, Cheng; Yuan, Yongbo; Xiao, Zhengguo; Dong, Qingfeng; Shao, Yuchuan; Huang, Jinsong

    2015-01-15

    The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. Moreover, it is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.

  9. Polarized emission from CsPbX3 perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wu, Dan; Dong, Di; Chen, Wei; Hao, Junjie; Qin, Jing; Xu, Bing; Wang, Kai; Sun, Xiaowei

    2016-06-01

    Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption.Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01915c

  10. Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency.

    PubMed

    Qiu, Longbin; He, Sisi; Yang, Jiahua; Deng, Jue; Peng, Huisheng

    2016-05-01

    A perovskite solar cell fiber is created with a high power conversion efficiency of 7.1% through a controllable deposition method. A combination of aligned TiO2 nanotubes, a uniform perovskite layer, and transparent aligned carbon nanotube sheet contributes to the high photovoltaic performance. It is flexible and stable, and can be woven into smart clothes for wearable applications. PMID:27002590

  11. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration.

    PubMed

    Yuan, Haifeng; Debroye, Elke; Janssen, Kris; Naiki, Hiroyuki; Steuwe, Christian; Lu, Gang; Moris, Michèle; Orgiu, Emanuele; Uji-I, Hiroshi; De Schryver, Frans; Samorì, Paolo; Hofkens, Johan; Roeffaers, Maarten

    2016-02-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  12. Ionic Charge Transfer Complex Induced Visible Light Harvesting and Photocharge Generation in Perovskite.

    PubMed

    Ng, Tsz-Wai; Thachoth Chandran, Hrisheekesh; Chan, Chiu-Yee; Lo, Ming-Fai; Lee, Chun-Sing

    2015-09-16

    Organometal trihalide perovskite has recently emerged as a new class of promising material for high efficiency solar cells applications. While excess ions in perovskites are recently getting a great deal of attention, there is so far no clear understanding on both their formation and relating ions interaction to the photocharge generation in perovskite. Herein, we showed that tremendous ions indeed form during the initial stage of perovskite formation when the organic methylammonium halide (MAXa, Xa=Br and I) meets the inorganic PbXb2 (Xb=Cl, Br, I). The strong charge exchanges between the Pb2+ cations and Xa- anions result in formation of ionic charge transfer complexes (iCTC). MAXa parties induce empty valence electronic states within the forbidden bandgap of PbXb2. The strong surface dipole provide sufficient driving force for sub-bandgap electron transition with energy identical to the optical bandgap of forming perovskites. Evidences from XPS/UPS and photoluminescence studies showed that the light absorption, exciton dissociation, and photocharge generation of the perovskites are closely related to the strong ionic charge transfer interactions between Pb2+ and Xa- ions in the perovskite lattices. Our results shed light on mechanisms of light harvesting and subsequent free carrier generation in perovskites. PMID:26305717

  13. Selective dissolution of halide perovskites as a step towards recycling solar cells

    DOE PAGESBeta

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Here, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposedmore » in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.« less

  14. Chemical Pathways Connecting Lead(II) Iodide and Perovskite via Polymeric Plumbate(II) Fiber.

    PubMed

    Guo, Yunlong; Shoyama, Kazutaka; Sato, Wataru; Matsuo, Yutaka; Inoue, Kento; Harano, Koji; Liu, Chao; Tanaka, Hideyuki; Nakamura, Eiichi

    2015-12-23

    Despite tremendous progress in optoelectronic devices using lead perovskite (CH3NH3(+)PbI3(-)), there has been a paucity of mechanistic information on how photoactive micron-sized crystals of lead perovskite grow from a mixture of a layered crystal of lead(II) iodide and methylammonium iodide mediated by a polar solvent, DMSO or DMF. We report here that the whole process of the lead perovskite synthesis consists of a series of equilibria driven by reversible solvent participation involving a polymeric strip of plumbate(II) oligomer as a key intermediate. A significant finding includes quick decomposition of perovskite crystal upon exposure to DMSO or DMF at room temperature, where the solvent molecules act as a base to remove acidic ammonium iodide from the perovskite crystal. This observation accounts for the difficulty in controlling perovskite solar cell fabrication. Overall, the polar solvent is indispensible first to degrade a 2-D sheet of crystals of lead(II) iodide into 1-D fibrous intermediates and then to promote Oswald ripening of perovskite crystals. The detailed chemical information provided here will help to rationalize the photovoltaic device studies that have so far remained empirical and to open a new venue to a developing field of microscale lead perovskite devices, as illustrated by fabrication of photovoltaic devices and photodetectors. PMID:26617161

  15. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires.

    PubMed

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-28

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits. PMID:26508593

  16. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires

    NASA Astrophysics Data System (ADS)

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-01

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  17. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation.

    PubMed

    Stewart, Robert J; Grieco, Christopher; Larsen, Alec V; Maier, Joshua J; Asbury, John B

    2016-04-01

    The electronic properties of organo-halide perovskite absorbers described in the literature have been closely associated with their morphologies and processing conditions. However, the underlying origins of this dependence remain unclear. A combination of inorganic synthesis, surface chemistry, and time-resolved photoluminescence spectroscopy was used to show that charge recombination centers in organo-halide perovskites are almost exclusively localized on the surfaces of the crystals rather than in the bulk. Passivation of these surface defects causes average charge carrier lifetimes in nanocrystalline thin films to approach the bulk limit reported for single-crystal organo-halide perovskites. These findings indicate that the charge carrier lifetimes of perovskites are correlated with their thin-film processing conditions and morphologies through the influence these have on the surface chemistry of the nanocrystals. Therefore, surface passivation may provide a means to decouple the electronic properties of organo-halide perovskites from their thin-film processing conditions and corresponding morphologies. PMID:26966792

  18. Integrated Photoelectrolysis of Water Implemented On Organic Metal Halide Perovskite Photoelectrode.

    PubMed

    Hoang, Minh Tam; Pham, Ngoc Duy; Han, Ji Hun; Gardner, James M; Oh, Ilwhan

    2016-05-18

    Herein we report on integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. Generic OMH perovskite material and device architecture are highly susceptible to degradation by moisture and water. We found that decomposition of perovskite devices proceeds by water ingress through pinholes in upper layers and is strongly affected by applied bias/light and electrolyte pH. It was also found that a pinhole-free hole transport layer (HTL) could significantly enhance the stability of the perovskite photoelectrode, thereby extending the photoelectrode lifetime to several tens of minutes, which is an unprecedented record-long operation. Furthermore, a carbon nanotube (CNT)/polymer composite layer was developed that can effectively protect the underlying perovskite layer from electrolyte molecules. PMID:27120406

  19. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    PubMed

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV). PMID:26266857

  20. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    DOE PAGESBeta

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  1. Metal-halide perovskites for photovoltaic and light-emitting devices.

    PubMed

    Stranks, Samuel D; Snaith, Henry J

    2015-05-01

    Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization. PMID:25947963

  2. Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping

    NASA Astrophysics Data System (ADS)

    Song, Zhaoning; Watthage, Suneth C.; Phillips, Adam B.; Liyanage, Geethika K.; Khanal, Rajendra R.; Tompkins, Brandon L.; Ellingson, Randy J.; Heben, Michael J.

    2015-09-01

    Solution processed thin film photovoltaic devices incorporating organohalide perovskites have progressed rapidly in recent years and achieved energy conversion efficiencies greater than 20%. However, an important issue limiting their commercialization is that device efficiencies often drop within the first few hundred hours of operation. To explore the origin of the device degradation and failure in perovskite solar cells, we investigated the spatial uniformity of current collection at different stages of aging using two-dimensional laser beam induced current (LBIC) mapping. We validated that the local decomposition of the perovskite material is likely due to interactions with moisture in the air by comparing photocurrent collection in perovskite devices that were maintained in different controlled environments. We show that the addition of a poly(methyl methacrylate)/single-wall carbon nanotube (PMMA/SWCNT) encapsulation layer prevents degradation of the device in moist air. This suggests a route toward perovskite solar cells with improved operational stability and moisture resistance.

  3. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Yangang; Yao, Yangyi; Zhang, Xiaohang; Hsu, Wei-Lun; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Dagenais, Mario; Takeuchi, Ichiro

    2016-01-01

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  4. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    SciTech Connect

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  5. Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells.

    PubMed

    Bae, Soohyun; Kim, Seongtak; Lee, Sang-Won; Cho, Kyung Jin; Park, Sungeun; Lee, Seunghun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-08-18

    Perovskite solar cells have great potential for high efficiency generation but are subject to the impact of external environmental conditions such as humidity, UV and sun light, temperature, and electric fields. The long-term stability of perovskite solar cells is an important issue for their commercialization. Various studies on the stability of perovskite solar cells are currently being performed; however, the stability related to electric fields is rarely discussed. Here the electrical stability of perovskite solar cells is studied. Ion migration is confirmed using the temperature-dependent dark current decay. Changes in the power conversion efficiency according to the amount of the external bias are measured in the dark, and a significant drop is observed only at an applied voltage greater than 0.8 V. We demonstrate that perovskite solar cells are stable under an electric field up to the operating voltage. PMID:27462013

  6. A numerical model for charge transport and energy conversion of perovskite solar cells.

    PubMed

    Zhou, Yecheng; Gray-Weale, Angus

    2016-02-01

    Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising. PMID:26791327

  7. Toward Revealing the Critical Role of Perovskite Coverage in Highly Efficient Electron-Transport Layer-Free Perovskite Solar Cells: An Energy Band and Equivalent Circuit Model Perspective.

    PubMed

    Huang, Like; Xu, Jie; Sun, Xiaoxiang; Du, Yangyang; Cai, Hongkun; Ni, Jian; Li, Juan; Hu, Ziyang; Zhang, Jianjun

    2016-04-20

    Currently, most efficient perovskite solar cells (PVKSCs) with a p-i-n structure require simultaneously electron transport layers (ETLs) and hole transport layers (HTLs) to help collecting photogenerated electrons and holes for obtaining high performance. ETL free planar PVKSC is a relatively new and simple structured solar cell that gets rid of the complex and high temperature required ETL (such as compact and mesoporous TiO2). Here, we demonstrate the critical role of high coverage of perovskite in efficient ETL free PVKSCs from an energy band and equivalent circuit model perspective. From an electrical point of view, we confirmed that the low coverage of perovskite does cause localized short circuit of the device. With coverage optimization, a planar p-i-n(++) device with a power conversion efficiency of over 11% was achieved, implying that the ETL layer may not be necessary for an efficient device as long as the perovskite coverage is approaching 100%. PMID:27020395

  8. Antiferroelectric Nature of CH3NH3PbI3‑xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3‑xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3‑xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  9. Antiferroelectric Nature of CH3NH3PbI3−xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    PubMed Central

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-01-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3−xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3−xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation. PMID:27468802

  10. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells.

    PubMed

    Sewvandi, Galhenage A; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-01-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation. PMID:27468802

  11. First-principles investigation of hydrous post-perovskite

    NASA Astrophysics Data System (ADS)

    Townsend, Joshua P.; Tsuchiya, Jun; Bina, Craig R.; Jacobsen, Steven D.

    2015-07-01

    A stable, hydrogen-defect structure of post-perovskite (hy-ppv, Mg1-xSiH2xO3) has been determined by first-principles calculations of the vibrational and elastic properties up to 150 GPa. Among three potential hy-ppv structures analyzed, one was found to be stable at pressures relevant to the lower-mantle D″ region. Hydrogen has a pronounced effect on the elastic properties of post-perovskite due to magnesium defects associated with hydration, including a reduction of the zero-pressure bulk (K0) and shear (G0) moduli by 5% and 8%, respectively, for a structure containing ∼1 wt.% H2O. However, with increasing pressure the moduli of hy-ppv increase significantly relative to ppv, resulting in a structure that is only 1% slower in bulk compressional velocity and 2.5% slower in shear-wave velocity than ppv at 120 GPa. In contrast, the reduction of certain anisotropic elastic constants (Cij) in hy-ppv increases with pressure (notably, C55, C66, and C23), indicating that hydration generally increases elastic anisotropy in hy-ppv at D″ pressures. Calculated infrared absorption spectra show two O-H stretching bands at ∼3500 cm-1 that shift with pressure to lower wavenumber by about 2 cm-1/GPa. At 120 GPa the hydrogen bonds in hy-ppv are still asymmetric. The stability of a hy-ppv structure containing 1-2 wt.% H2O at D″ pressures implies that post-perovskite may be a host for recycled or primordial hydrogen near the Earth's core-mantle boundary.

  12. Lattice constant prediction of defective rare earth titanate perovskites

    SciTech Connect

    Letourneau, Steven; Zhen, Zhen; Owens, Josh; Tolman, Kevin; Ubic, Rick; Kriven, Waltraud M.

    2014-11-15

    Engineering defective structures in an attempt to modify properties is an established technique in materials chemistry, yet, no models exist which can predict the structure of perovskite compounds containing extrinsic point defects such as vacancies. An empirically derived predictive model, based solely on chemical composition and published ionic radii has been developed. Effective vacancy sizes were derived both empirically from an existing model for pseudocubic lattice-constants, as well as experimentally, from average bond lengths calculated from neutron diffraction data. Compounds of lanthanum-doped barium titanate and strontium-doped magnesium titanate were synthesized with vacancies engineered on the A and B sites. Effective vacancy sizes were then used in empirical models to predict changes in lattice constants. Experimentally refined bond lengths used in the derivation of an effective vacancy size seemed to overestimate the effect of the point defects. Conversely, using calculated vacancy sizes, derived from a previously reported predictive model, showed significant improvements in the prediction of the pseudocubic perovskite lattice. - Graphical abstract: Atomistic model of Sr{sub 0.3}Nd{sub 0.7}Mg{sub 0.35}Ti{sub 0.65}O{sub 3} and Rietveld refinement of neutron diffraction data. - Highlights: • Defective perovskites were synthesized using the organic steric entrapment method. • Oxygen tilt systems were solved through X-ray, electron, and neutron diffraction. • An effective vacancy size for the cations was calculated from experimental bond lengths. • Discrepancies between Shannon radii and experimental measurements are explored. • An empirical model for predicting a{sub pc}, with an absolute error of 0.20%, was developed.

  13. Spectrophotometric determination of trace arsenic in water samples using a nanoparticle of ethyl violet with a molybdate-iodine tetrachloride complex as a probe for molybdoarsenate.

    PubMed

    Morita, Keisuke; Kaneko, Emiko

    2006-11-15

    A new spectrophotometric method was developed for the determination of low ppb levels of arsenic in water. We found that Ethyl Violet with molybdate-iodine tetrachloride complex forms nanoparticles under acidic conditions, which provide a sensitive probe for molybdoarsenate. The nanoparticles form stable particles with a diameter micrometers in size in the presence of heteropolyacid, and the resulting particles give a purple color to the apparently homogeneous solution, the intensity of which depends on the arsenic concentration. The nanoparticle itself is unstable due to conversion of the dye to a colorless carbinol species under acidic conditions without heteropolyacid. Although triphenylmethane dyes have been the subject of a number of investigations, there do not appear to be any reports on the dye particles for trace determination. The calibration curve is linear up to 20 microg L-1 arsenic, and the detection limit is 0.5 microg L-1 (6.6 x 10(-9) mol L-1). The coefficient of variation for spectrophotometry at 10 microg L-1 is 5.8% (n = 8). Furthermore, it is possible to detect concentrations as low as 1 microg L-1 arsenic visually using this method. The interferences from phosphorus and silica were eliminated using an anion exchange column and sodium fluoride as a masking agent, respectively. The proposed method has been successfully applied to water samples in abandoned mine water, groundwater, and river water. There was good agreement between the results obtained by the proposed method and those by hydride generation atomic absorption spectrometry. Since this method is specific for As(V), it is applicable to the speciation of arsenic oxidation states. Our method has enormous practical potential for simple and field detection of arsenic, requiring no complex apparatus or skilled laboratory support. PMID:17105159

  14. High-temperature behavior of dicesium molybdate Cs{sub 2}MoO{sub 4}: Implications for fast neutron reactors

    SciTech Connect

    Wallez, Gilles; Raison, Philippe E.; Smith, Anna L.; Clavier, Nicolas

    2014-07-01

    Dicesium molybdate (Cs{sub 2}MoO{sub 4})'s thermal expansion and crystal structure have been investigated herein by high temperature X ray diffraction in conjunction with Raman spectroscopy. This first crystal-chemical insight at high temperature is aimed at predicting the thermostructural and thermomechanical behavior of this oxide formed by the accumulation of Cs and Mo fission products at the periphery of nuclear fuel rods in sodium-cooled fast reactors. Within the temperature range of the fuel's rim, Cs{sub 2}MoO{sub 4} becomes hexagonal P6{sub 3}/mmc, with disordered MoO{sub 4} tetrahedra and 2D distribution of Cs–O bonds that makes thermal axial expansion both large (50≤α{sub l}≤70 10{sup −6} °C{sup −1}, 500–800 °C) and highly anisotropic (α{sub c}−α{sub a}=67×10{sup −6} °C{sup −1}, hexagonal form). The difference with the fuel's expansion coefficient is of potential concern with respect to the cohesion of the Cs{sub 2}MoO{sub 4} surface film and the possible release of cesium radionuclides in accidental situations. - Graphical abstract: The weakness of the Cs–O bonds and the disordering of the MoO{sub 4} tetrahedra array in the high-temperature form are responsible for the huge thermal expansion of Cs{sub 2}MoO{sub 4} along the c-axis. - Highlights: • Thermomechanical behavior of Cs{sub 2}MoO{sub 4} fission products compound is studied. • High-temperature form of Cs{sub 2}MoO{sub 4} is characterized by XRD and Raman. • Thermal expansion appears very high and anisotropic. • Cohesion between Cs{sub 2}MoO{sub 4} and nuclear fuel seems questionable, and Cs release is expected.

  15. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-01

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes. PMID:26560862

  16. Luminescence studies of perovskite structured titanates: A review

    NASA Astrophysics Data System (ADS)

    Nag Bhargavi, G.; Khare, Ayush

    2015-06-01

    Apart from widely known dielectric and ferroelectric properties, the perovskite type materials also constitute a class of materials, which are recently investigated for their optical properties. These materials are being used for fabrication of various microelectronics and optoelectronic devices. Photoluminescence (PL), mechanoluminescence (ML) and thermoluminescence (TL) are such phenomena offering numerous applications in different fields like electro-optics, flat panel displays, LED technology, sensors, dynamic visualization etc. This paper briefly reviews the status and new progress in luminescence studies of ferroelectric materials like barium titanate (BT), barium zirconate titanate (BZT), calcium titanate (CT), calcium zirconate titanate (CZT), lead titanate (PT), lead zirconate titanate (PZT), etc., prepared through various methods.

  17. First Principles Studies of ABO3 Perovskite Surfaces and Nanostructures

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam

    Perovskite-type complex oxides, with general formula ABO 3, constitute one of the most prominent classes of metal oxides which finds key applications in diverse technological fields. In recent years, properties of perovskites at reduced dimensions have aroused considerable interest. However, a complete atomic-level understanding of various phenomena is yet to emerge. To fully exploit the materials opportunities provided by nano-structured perovskites, it is important to characterize and understand their bulk and near-surface electronic structure along with the electric, magnetic, elastic and chemical properties of these materials in the nano-regime, where surface and interface effects naturally play a dominant role. In this thesis, state-of-the-art first principles computations are employed to systematically study properties of one- and two-dimensional perovskite systems which are of direct technological significance. Specifically, our bifocal study targets (1) polarization behavior and dielectric response of ABO3 ferroelectric nanowires, and (2) oxygen chemistry relevant for catalytic properties of ABO3 surfaces. In the first strand, we identify presence of novel closure or vortex-like polarization domains in PbTIO3 and BaTiO3 ferroelectric nanowires and explore ways to control the polarization configurations by means of strain and surface chemistry in these prototypical model systems. The intrinsic tendency towards vortex polarization at reduced dimensions and the underlying driving forces are discussed and previously unknown strain induced phase transitions are identified. Furthermore, to compute the dielectric permittivity of nanostructures, a new multiscale model is developed and applied to the PbTiO3 nanowires with conventional and vortex-like polarization configurations. The second part of the work undertaken in this thesis is comprised of a number of ab initio surface studies, targeted to investigate the effects of surface terminations, prevailing chemical

  18. Spin-Orbital Superstructure in Strained Ferrimagnetic Perovskite Cobalt Oxide

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Yamasaki, Y.; Nakao, H.; Kumai, R.; Murakami, Y.; Nakamura, M.; Kawasaki, M.; Tokura, Y.

    2013-07-01

    We have investigated the Co-3d spin-orbital state in a thin film of perovskite LaCoO3 to clarify the origin of strain induced spontaneous magnetization (TC=94K) by means of x-ray diffraction, optical spectroscopy, and magnetization measurements. A lattice distortion with the propagation vector (1/4 -​​1/4 1/4) and an anomalous activation of optical phonons coupled to Co-3d orbital are observed below 126 K. Combined with the azimuthal angle analysis of superlattice reflection, we propose that the ordering of Co-3d orbital promoted by an epitaxial strain produces a unique ferrimagnetic structure.

  19. What Is Moving in Hybrid Halide Perovskite Solar Cells?

    PubMed Central

    2016-01-01

    Conspectus Organic–inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron–hole recombination rates, and current–voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery

  20. What Is Moving in Hybrid Halide Perovskite Solar Cells?

    PubMed

    Frost, Jarvist M; Walsh, Aron

    2016-03-15

    Organic-inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron-hole recombination rates, and current-voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery and fuel cell

  1. Large positive entropy change in several charge-ordering perovskites

    NASA Astrophysics Data System (ADS)

    Chau, N.; Cuong, D. H.; Tho, N. D.; Nhat, H. N.; Luong, N. H.; Cong, B. T.

    2004-05-01

    The Nd 0.5Sr 0.5Mn 1- xCu xO 3 ( x=0.00; 0.02; 0.10) and Nd 0.25Pr 0.25Sr 0.5MnO 3 perovskites have been prepared by solid reaction technology. The manganites are of single phase with orthorhombic structure. The FC and ZFC measurements show an evident existence of charge-ordering effect at low temperatures. At the charge-ordering temperature the magnetic entropy change, Δ S, is positive and the |Δ Smax| is larger than that determined at ferromagnetic-paramagnetic phase transition temperature.

  2. Magnetic coupling at perovskite and rock-salt structured interfaces

    SciTech Connect

    Matvejeff, M.; Ahvenniemi, E.; Takahashi, R.; Lippmaa, M.

    2015-10-05

    We study magnetic coupling between hole-doped manganite layers separated by either a perovskite or a rock-salt barrier of variable thickness. Both the type and the quality of the interface have a strong impact on the minimum critical barrier thickness where the manganite layers become magnetically decoupled. A rock-salt barrier layer only 1 unit cell (0.5 nm) thick remains insulating and is able to magnetically de-couple the electrode layers. The technique can therefore be used for developing high-performance planar oxide electronic devices such as magnetic tunnel junctions and quantum well structures that depend on magnetically and electronically sharp heterointerfaces.

  3. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices

    SciTech Connect

    Takamura, Y.; Biegalski, M.B.; Christen, H.M.

    2009-10-22

    Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.

  4. The Post-Perovskite Transition and Mineralogical Changes in the Chemically Heterogeneous Lower Mantle

    NASA Astrophysics Data System (ADS)

    Shim, S. H. D.; Ye, Y.; Grocholski, B.; Xu, S.; Morgan, D.; Zhao, J.; Alp, E. E.

    2014-12-01

    The discovery of the post-perovskite transition in 2004 has made huge impact on our understanding on the structures and dynamics of the lowermost mantle. For the last 10 years, the post-perovskite transition has been related to major seismic structures in the region, including the D'' discontinuity, the D'' anisotropy, and the anti-correlation between the bulk sound speed and shear wave velocity. Whereas the post-perovskite phase appeared to provide a coherent framework to explain many of the major structures, more recent mineral physics studies have revealed that the compositional effects can be significant. High-resolution seismic imaging studies have reported complex structures which cannot be explained by the post-perovskite transition in chemically simple systems. Furthermore, recently proposed mineralogical changes in the lower mantle will affect the properties of post-perovskite and may provide alternative explanations for some seismic structures. In this talk, we will discuss the post-perovskite phase transition and other phase transitions in chemical heterogeneities in the lowermost mantle and their importance in understanding seismic structures. We will also report new data on the spin and oxidation state of iron in mantle silicate which can affect the post-perovskite transition.

  5. van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials.

    PubMed

    Cheng, Hung-Chieh; Wang, Gongming; Li, Dehui; He, Qiyuan; Yin, Anxiang; Liu, Yuan; Wu, Hao; Ding, Mengning; Huang, Yu; Duan, Xiangfeng

    2016-01-13

    The recently emerged organohalide perovskites (e.g., CH3NH3PbI3) have drawn intense attention for high efficiency solar cells. However, with a considerable solubility in many solvents, these perovskites are not typically compatible with conventional lithography processes for more complicated device fabrications that are important for both fundamental studies and technological applications. Here, we report the creation of novel heterojunction devices based on perovskites and two-dimensional (2D) crystals by taking advantage of the layered characteristic of lead iodide (PbI2) and vapor-phase intercalation. We show that a graphene/perovskite/graphene vertical stack can deliver a highest photoresponsivity of ∼950 A/W and photoconductive gain of ∼2200, and a graphene/WSe2/perovskite/graphene heterojunction can display a high on/off ratio (∼10(6)) transistor behavior with distinct gate-tunable diode characteristics and open-circuit voltages. Such unique perovskite-2D heterostructures have significant potential for future optoelectronic research and can enable broad possibilities with compositional tunability of organohalide perovskites and the versatility offered by diverse 2D materials. PMID:26666974

  6. Potential existence of post-perovskite nitrides; DFT studies of ThTaN{sub 3}

    SciTech Connect

    Matar, Samir F.; Demazeau, Gerard

    2010-05-15

    Within density functional theory, the equations of state for cubic perovskite (c-PV) and hypothetic orthorhombic perovskite (o-PV GdFeO{sub 3}-type) and post-perovskite (PPV) forms of ThTaN{sub 3} are obtained. The decreasing volume and stabilizing energy indicate pressure enabled transitions: c-PV ->o-PV ->PPV. From electronic structure analysis the chemical system is found insulating in the c-PV ground state form with {approx}1eV band gap and semi-conducting for the PPV due to increased covalence. The chemical bonding properties show that Th and Ta bondings with the 2 N sites are selectively differentiated and reinforced for Ta-N bond within PPV form. This is the consequence of the corner as well as edge sharing octahedra characterizing PPV while PV structures have only corner sharing octahedra. It is the first case of potential post-perovskite nitride. - ThTaN{sub 3}: Projected charge density (for 4 fu) onto basal plane: (a) cubic perovskite, (b) orthorhombic perovskite and (c) post-perovskite. Red, green and blue areas are relevant to strong, medium and low localization of density.

  7. High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer.

    PubMed

    Liu, Yao; Renna, Lawrence A; Bag, Monojit; Page, Zachariah A; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D; Russell, Thomas P

    2016-03-23

    Perovskite-containing tandem solar cells are attracting attention for their potential to achieve high efficiencies. We demonstrate a series connection of a ∼90 nm thick perovskite front subcell and a ∼100 nm thick polymer:fullerene blend back subcell that benefits from an efficient graded recombination layer containing a zwitterionic fullerene, silver (Ag), and molybdenum trioxide (MoO3). This methodology eliminates the adverse effects of thermal annealing or chemical treatment that occurs during perovskite fabrication on polymer-based front subcells. The record tandem perovskite/polymer solar cell efficiency of 16.0%, with low hysteresis, is 75% greater than that of the corresponding ∼90 nm thick perovskite single-junction device and 65% greater than that of the polymer single-junction device. The high efficiency of this hybrid tandem device, achieved using only a ∼90 nm thick perovskite layer, provides an opportunity to substantially reduce the lead content in the device, while maintaining the high performance derived from perovskites. PMID:26918708

  8. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2016-02-01

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities. PMID:26645733

  9. Solution-Based Fabrication of Perovskite Multilayers and Superlattices Using Nanosheet Process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Wen; Osada, Minoru; Akatsuka, Kosho; Ebina, Yasuo; Ozawa, Tadashi C.; Sasaki, Takayoshi

    2011-09-01

    We report a solution-based fabrication of perovskite multilayers and superlattices using perovskite nanosheets. Perovskite nanosheets (LaNb2O7, Ca2Nb3O10, and Sr2Nb3O10) were prepared by delaminating layered perovskites. A layer-by-layer approach using Langmuir-Blodgett deposition was effective for fabricating high-quality nanofilms of perovskite nanosheets on various substrates, such as quartz glass, Si, and SrRuO3. Structural characterizations by X-ray diffraction, transmission electron microscopy, and hard X-ray photoelectron spectroscopy revealed that these perovskite nanofilms are composed of a well-ordered lamellar structure with an atomically sharp interface. The multilayer films exhibited a stable dielectric response inherent to the perovskite nanosheet. We also found that the superlattices of (LaNb2O7/Ca2Nb3O10)5 and (Sr2Nb3O10/Ca2Nb3O10)5 possess strong interface coupling, which gives rise to enhanced dielectric constant.

  10. Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Nakajima, Yoichi; Frost, Daniel J.; Rubie, David C.

    2012-08-01

    We have investigated the exchange of Fe and Mg between magnesium silicate perovskite (Mg-Pv) and ferropericlase (Fp) at 25 GPa and 2400 to 2600 K using a Kawai-type multianvil apparatus. Each experiment was performed with coexisting metallic Fe, which buffered the oxygen fugacity at the lowest possible level. As the system was Al-free the presence of metallic Fe ensures low ferric iron (Fe3+) contents in all phases. The results are used to extract thermodynamic data to describe Fe2+-Mg partitioning. A thermodynamic assessment and modeling of the available high-pressure partitioning data indicates that the influence of a Fe-spin transition in Fp on Fe-Mg partitioning may be more subtle than previously proposed. Furthermore, we demonstrate that a comparison between perovskite Fe2+ contents predicted by the thermodynamic model and previously reported perovskite analyses can be used to estimate Mg-Pv Fe3+ concentrations of both Al-bearing and Al-free phases in the previous studies. These estimates show that the Fe3+ content of Al-free Mg-Pv depends strongly on oxygen fugacity, and varies accordingly with the capsule materials used in experiments. The relationship between Fe3+ and Al concentrations in Al-bearing Mg-Pv indicates that the substitution mechanism of Fe3+ and Al changes with Al content. Chemical heterogeneities in the lower mantle will result in the formation of Mg-Pv with quite different Al and bulk Fe concentrations, which will cause important differences in Fe3+ and oxygen vacancy concentrations in Mg-Pv.

  11. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells

    SciTech Connect

    Song, Xin; Sun, Po; Chen, Zhi-Kuan E-mail: iamzkchen@njtech.edu.cn; Wang, Weiwei; Ma, Wanli E-mail: iamzkchen@njtech.edu.cn

    2015-01-19

    We reported a planar heterojunction perovskite solar cell fabricated from MAPbI{sub 3−x}Cl{sub x} perovskite precursor solution containing 1-chloronaphthalene (CN) additive. The MAPbI{sub 3−x}Cl{sub x} perovskite films have been characterized by UV-vis, SEM, XRD, and steady-state photoluminescence (PL). UV-vis absorption spectra measurement shows that the absorbance of the film with CN additive is significantly higher than the pristine film and the absorption peak is red shift by 30 nm, indicating the perovskite film with additive possessing better crystal structures. In-situ XRD study of the perovskite films with additive demonstrated intense diffraction peaks from MAPbI{sub 3−x}Cl{sub x} perovskite crystal planes of (110), (220), and (330). SEM images of the films with additive indicated the films were more smooth and homogenous with fewer pin-holes and voids and better surface coverage than the pristine films. These results implied that the additive CN is beneficial to regulate the crystallization transformation kinetics of perovskite to form high quality crystal films. The steady-state PL measurement suggested that the films with additive contained less charge traps and defects. The planar heterojunction perovskite solar cells fabricated from perovskite precursor solution containing CN additive demonstrated 30% enhancement in performance compared to the devices with pristine films. The improvement in device efficiency is mainly attributed to the good crystal structures, more homogenous film morphology, and also fewer trap centers and defects in the films with the additive.

  12. Molecular Origin of Properties of Organic-Inorganic Hybrid Perovskites: The Big Picture from Small Clusters.

    PubMed

    Fang, Hong; Jena, Puru

    2016-04-21

    We show that the electronic properties, including the band gap, the gap deformation potential, and the exciton binding energy as well as the chemical stability of organic-inorganic hybrid perovskites can be traced back to their corresponding molecular motifs. This understanding allows one to quickly estimate the properties of the bulk semiconductors from their corresponding molecular building blocks. New hybrid perovskite admixtures are proposed by replacing halogens with superhalogens having compatible ionic radii. The mechanism of the boron-hydride based hybrid perovskite reacting with water is investigated by using a cluster model. PMID:27064550

  13. Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures.

    PubMed

    Merkel, Sébastien; Kubo, Atsushi; Miyagi, Lowell; Speziale, Sergio; Duffy, Thomas S; Mao, Ho-Kwang; Wenk, Hans-Rudolf

    2006-02-01

    Polycrystalline MgGeO3 post-perovskite was plastically deformed in the diamond anvil cell between 104 and 130 gigapascals confining pressure and ambient temperature. In contrast with phenomenological considerations suggesting (010) as a slip plane, lattice planes near (100) became aligned perpendicular to the compression direction, suggesting that slip on (100) or (110) dominated plastic deformation. With the assumption that silicate post-perovskite behaves similarly at lower mantle conditions, a numerical model of seismic anisotropy in the D'' region implies a maximum contribution of post-perovskite to shear wave splitting of 3.7% with an oblique polarization. PMID:16456075

  14. Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation.

    PubMed

    Wang, Kaiyang; Gu, Zhiyuan; Liu, Shuai; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2016-02-01

    The synthesized perovskites are randomly distributed and their optical properties are fixed after synthesis. Here we demonstrate the tailoring of lasing properties of perovskite microwire via micromanipulation. One microwire has been lifted by a tungsten probe and repositioned on a nearby perovskite microplate with one end suspended in air. Consequently, the conventional Fabry-Perot lasers are completely suppressed and a single laser peak has been observed. The numerical calculations reveal that the single-mode laser is formed by the whispering-gallery mode in the transverse plane of microwire. Our research provides a simple way to tailor the properties of microwire postsynthesis. PMID:26907422

  15. A simple approach for the fabrication of perovskite solar cells in air

    NASA Astrophysics Data System (ADS)

    Casaluci, Simone; Cinà, Lucio; Pockett, Adam; Kubiak, Peter S.; Niemann, Ralf G.; Reale, Andrea; Di Carlo, Aldo; Cameron, P. J.

    2015-11-01

    Vacuum-vapor assisted solution processing has been investigated as a simple and low cost method for preparing perovskite solar cells without a glove box. The devices were prepared in ambient air without using a high vacuum or an inert atmosphere. A maximum efficiency of 12.7% for planar perovskite (CH3NH3PbI3) devices was obtained. The perovskite films could be stored in air (20 °C, ∼50% humidity) for up to 14 days without discoloration or the appearance of crystalline lead iodide in the films.

  16. Perovskites: transforming photovoltaics, a mini-review

    NASA Astrophysics Data System (ADS)

    Chilvery, Ashwith Kumar; Batra, Ashok K.; Yang, Bin; Xiao, Kai; Guggilla, Padmaja; Aggarwal, Mohan D.; Surabhi, Raja; Lal, Ravi B.; Currie, James R.; Penn, Benjamin G.

    2015-01-01

    The recent power-packed advent of perovskite solar cells is transforming photovoltaics (PV) with their superior efficiencies, ease of fabrication, and cost. This perovskite solar cell further boasts of many unexplored features that can further enhance its PV properties and lead to it being branded as a successful commercial product. This article provides a detailed insight of the organometal halide based perovskite structure, its unique stoichiometric design, and its underlying principles for PV applications. The compatibility of various PV layers and its fabrication methods is also discussed.

  17. Perovskite-type oxides - Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.

    1988-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  18. Ferroelastic switching in a layered-perovskite thin film

    NASA Astrophysics Data System (ADS)

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; Liang, Renrong; Luo, Zhenlin; Tian, Yu; Yi, Di; Zhang, Qintong; Wang, Jing; Han, Xiu-Feng; van Tendeloo, Gustaaf; Chen, Long-Qing; Nan, Ce-Wen; Ramesh, Ramamoorthy; Zhang, Jinxing

    2016-02-01

    A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.

  19. Lasing in robust cesium lead halide perovskite nanowires

    PubMed Central

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  20. Ferroelastic switching in a layered-perovskite thin film.

    PubMed

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; Liang, Renrong; Luo, Zhenlin; Tian, Yu; Yi, Di; Zhang, Qintong; Wang, Jing; Han, Xiu-Feng; Van Tendeloo, Gustaaf; Chen, Long-Qing; Nan, Ce-Wen; Ramesh, Ramamoorthy; Zhang, Jinxing

    2016-01-01

    A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications. PMID:26838483

  1. Lasing in robust cesium lead halide perovskite nanowires.

    PubMed

    Eaton, Samuel W; Lai, Minliang; Gibson, Natalie A; Wong, Andrew B; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R; Yang, Peidong

    2016-02-23

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm(-2) with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10(9) excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  2. Growing perovskite into polymers for easy-processable optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH3NH3PbI3 (MAPbI3) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition.

  3. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.

    PubMed

    Xu, Yanqing; Chen, Qi; Zhang, Chunfeng; Wang, Rui; Wu, Hua; Zhang, Xiaoyu; Xing, Guichuan; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-03-23

    Two-photon-pumped lasers have been regarded as a promising strategy to achieve frequency up-conversion for situations where the condition of phase matching required by conventional approaches cannot be fulfilled. However, their practical applications have been hindered by the lack of materials holding both efficient two-photon absorption and ease of achieving population inversion. Here, we show that this challenge can be tackled by employing colloidal nanocrystals of perovskite semiconductors. We observe highly efficient two-photon absorption (with a cross section of 2.7 × 10(6) GM) in toluene solutions of CsPbBr3 nanocrystals that can excite large optical gain (>500 cm(-1)) in thin films. We have succeeded in demonstrating stable two-photon-pumped lasing at a remarkable low threshold by coupling CsPbBr3 nanocrystals with microtubule resonators. Our findings suggest perovskite nanocrystals can be used as excellent gain medium for high-performance frequency-up-conversion lasers toward practical applications. PMID:26938656

  4. Structural phase transitions in EuNbO3 perovskite

    NASA Astrophysics Data System (ADS)

    Kususe, Yoshiro; Yoshida, Suguru; Fujita, Koji; Akamatsu, Hirofumi; Fukuzumi, Masafumi; Murai, Shunsuke; Tanaka, Katsuhisa

    2016-07-01

    The crystal structures of europium niobate, EuNbO3, have been examined over a wide temperature range between 20 and 500 K using synchrotron X-ray diffraction. We have observed two successive structural phase transitions at 360 and 460 K. Below 350 K, EuNbO3 adopts an orthorhombic perovskite structure (space group Imma), which is characterized by NbO6 octahedral tilting about the pseudocubic two-fold axis. The result differs from previous reports in which EuNbO3 was assigned to a cubic aristotype (space group Pm 3 barm) of perovskite at room temperature. At around 360 K, EuNbO3 undergoes a first-order phase transition to a tetragonal symmetry (space group I4/mcm) with the NbO6 octahedral tilting about the pseudocubic four-fold axis. As the temperature is further increased, the I4/mcm tetragonal phase changes into the Pm 3 barm cubic aristotype at 460 K. The tetragonal-to-cubic transformation is characterized as a continuous phase transition.

  5. Extraction of exchange parameters in transition-metal perovskites

    SciTech Connect

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.

    2015-09-15

    When extracting exchange parameters from measured spin-wave dispersion relations there are severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. Moreover, this is exemplified for manganese trimers in the mixed three-and two-dimensional perovskite compounds KMnxZn1-xF3 and K2MnxZn1-xF4, respectively. We show that the small exchange couplings between the second-nearest-neighbor and the third-nearest-neighbor spins can be determined unambiguously and with equal precision as the dominating nearest-neighbor exchange coupling.

  6. A lead-halide perovskite molecular ferroelectric semiconductor.

    PubMed

    Liao, Wei-Qiang; Zhang, Yi; Hu, Chun-Li; Mao, Jiang-Gao; Ye, Heng-Yun; Li, Peng-Fei; Huang, Songping D; Xiong, Ren-Gen

    2015-01-01

    Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for exploration of ferroelectricity. Therefore, the design of molecular ferroelectric semiconductors based on these hybrids provides a possibility to obtain new or high-performance semiconductor ferroelectrics. Here we investigated Pb-layered perovskites, and found the layer perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours. It has a larger ferroelectric spontaneous polarization Ps=13 μC cm(-2) and a higher Curie temperature Tc=438 K with a band gap of 3.65 eV. This finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics. PMID:26021758

  7. Ferroelastic switching in a layered-perovskite thin film

    PubMed Central

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; Liang, Renrong; Luo, Zhenlin; Tian, Yu; Yi, Di; Zhang, Qintong; Wang, Jing; Han, Xiu-Feng; Van Tendeloo, Gustaaf; Chen, Long-Qing; Nan, Ce-Wen; Ramesh, Ramamoorthy; Zhang, Jinxing

    2016-01-01

    A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications. PMID:26838483

  8. Thin-film perovskites-ferroelectric materials for integrated optics

    SciTech Connect

    Walker, F.J. |; McKee, R.A.

    1995-12-31

    Optical guided wave (OGW) devices, based on LiNbO{sub 3} or GaAs. are commercially available products with established markets and applications. While LiNbO{sub 3} presently dominates the commercial applications, there are several drivers for the development of improved electro-optic (EO) materials. If the appropriate crystal quality could be obtained for thin-film BaTiO{sub 3} supported on MgO for example, or for an integrated BaTiO{sub 3}/Mg0 structure on silicon or GaAs, then the optimum OGW device structure might be realized. We report on our results for the growth of optical quality, epitaxial BaTiO{sub 3} and SrTiO{sub 3} on single-crystal MgO substrates using source shuttering molecular beam epitaxy (MBE) techniques. We also discuss how these materials can be integrated onto silicon. Our MBE studies show that, for this important class of perovskite oxides, heteroepitaxy between the perovskites and alkaline earth oxides is dominated by interfacial electrostatics at the first atomic layers. We have been able to demonstrate that a layer-by-layer energy minimization associated with interfacial electrostatics leads to the growth of high quality thin films of these materials. We have fabricated waveguides from these materials, and the optical clarity and loss coefficients have been characterized and found to be comparable to in-diffused waveguide structures typically represented by Ti drifted LiNbO{sub 3}.

  9. First-principles studies of low tolerance factor perovskites

    NASA Astrophysics Data System (ADS)

    Kang, Sung Gu; Fennie, Craig J.

    2014-03-01

    Most perovskites form in the non-polar Pnma structure, however, materials found in the polar subgroup of this structure, e.g., space group Pna21, are rare. Here we study from first principles the structural and vibrational properties of twelve materials that span a wide range of tolerance factors (MgSnO3, ZnSnO3, MgTiO3, ZnTiO3, MgGeO3, ZnGeO3, CdSnO3, CaSnO3, CdTiO3, CaTiO3, CdGeO3, and CaGeO3) . We illustrate how low tolerance factor materials that have been artificially constrained to the Pnma structure do in fact display ferroelectric instabilities. Insight is gained by further studying the energetics for each material in the ilmenite, lithium niobate, and perovskite structures over a wide pressure range. Our first-principles results are shown to correlate with physical descriptors, such as tolerance factor, ionic radii, and electronegativity. The rationalized rules from our data analysis will guide to design the new ferroelectric/functional materials.

  10. Structural stability and catalytic activity of lanthanum-based perovskites

    SciTech Connect

    Sergey N. Rashkeev; Lucia M. Petkovic

    2011-05-01

    Perovskite-type oxide materials with a general formula La(1-x)A(x)Fe(1-y)Co(y)O(3-delta), where A is an alkaline earth metal Sr or Ba have been studied as cathode materials for catalytic reduction of oxygen in solid oxide fuel cells (SOFC), as well as combustion catalysts. In this study, we use a combination of temperature programmed reduction measurements, X-ray diffraction, carbon black catalytic oxidation measurements, and first-principles, density-functional-theory (DFT) calculations to elucidate the main processes that contribute into the structural stability and catalytic activity for soot oxidation of these materials. In particular, we investigate the dynamics of the structure reconstruction with oxygen loss during the regulated increase of the temperature. The calculations are in good qualitative agreement with catalytic experiments and allow identify special combinations of the perovskite chemical composition and local surface structures for which one could expect the highest catalytic activity for the soot oxidation process.

  11. Identification of Trap States in Perovskite Solar Cells.

    PubMed

    Baumann, Andreas; Väth, Stefan; Rieder, Philipp; Heiber, Michael C; Tvingstedt, Kristofer; Dyakonov, Vladimir

    2015-06-18

    Thermally stimulated current (TSC) measurements are used to characterize electronic trap states in methylammonium lead iodide perovsite solar cells. Several TSC peaks were observed over the temperature range from 20 K to room temperature. To elucidate the origins of these peaks, devices with various organic charge transport layers and devices without transport layers were tested. Two peaks appear at very low temperatures, indicating shallow trap states that are mainly attributed to the PCBM/C60 electron transport bilayer. However, two additional peaks appear at higher temperatures, that is, they are deeper in energy, and are assigned to the perovskite layer. At around T = 163 K, a sharp peak, also present in the dark TSC measurements, is assigned to the orthorhombic-tetragonal phase transition in the perovskite. However, a peak at around T = 191 K is assigned to trap states with activation energies of around 500 meV but with a rather low concentration of 1 × 10(21) m(-3). PMID:26266616

  12. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    SciTech Connect

    Smolin, S. Y.; Guglietta, G. W.; Baxter, J. B. E-mail: smay@coe.drexel.edu; Scafetta, M. D.; May, S. J. E-mail: smay@coe.drexel.edu

    2014-07-14

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO{sub 3} (LFO) with a thickness of 40 unit cells (16 nm) grown by molecular beam epitaxy on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ∼2.5 eV and ∼3.5 eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (5–40 ps), medium (∼200 ps), and slow (∼ 3 ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ∼10% of photoexcited carriers exist for at least 3 ns. This work illustrates that TR spectroscopy can be performed on thin (<20 nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  13. Planar heterojunction perovskite solar cells with superior reproducibility

    NASA Astrophysics Data System (ADS)

    Jeon, Ye-Jin; Lee, Sehyun; Kang, Rira; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Seung-Hoon; Kim, Seok-Soon; Yun, Jin-Mun; Kim, Dong-Yu

    2014-11-01

    Perovskite solar cells (PeSCs) have been considered one of the competitive next generation power sources. To date, light-to-electric conversion efficiencies have rapidly increased to over 10%, and further improvements are expected. However, the poor device reproducibility of PeSCs ascribed to their inhomogeneously covered film morphology has hindered their practical application. Here, we demonstrate high-performance PeSCs with superior reproducibility by introducing small amounts of N-cyclohexyl-2-pyrrolidone (CHP) as a morphology controller into N,N-dimethylformamide (DMF). As a result, highly homogeneous film morphology, similar to that achieved by vacuum-deposition methods, as well as a high PCE of 10% and an extremely small performance deviation within 0.14% were achieved. This study represents a method for realizing efficient and reproducible planar heterojunction (PHJ) PeSCs through morphology control, taking a major step forward in the low-cost and rapid production of PeSCs by solving one of the biggest problems of PHJ perovskite photovoltaic technology through a facile method.

  14. Phase transformations in superconducting and non-superconducting perovskites

    SciTech Connect

    Mitchell, T.E.

    1992-01-01

    Most of the high {Tc} superconductors and other perovskite-related cuprates exhibit some kind of structural instability. For example, tetragonal-to-orthorhombic phase transformations occur in the Y-Ba-Cu-O and La-Sr-Cu-O systems while crystal structures in the Bi-Ca-Sr-Cu-O and Tl-Ba-Ca-Cu-O systems have incommensurate periodicities associated with displacements of the heavy cations. In YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, the transformation is due to the ordering of oxygen vacancies while in La{sub 2-x}Sr{sub x}CuO{sub 4} the transformation is accompanied by tilting of the (CuO{sub 6}) octahedra. Such tilting and distortion of the co-ordination octahedra commonly occur in perovskite-related compounds and transformations between the structures are frequently martensitic. Phase transformations in the superconducting cuprates have been investigated by transmission electron microscopy but none of them appear to be martensitic. The phase transformations are accompanied by twinning and the resulting configurations are used to calculate twin boundary energies.

  15. Phase transformations in superconducting and non-superconducting perovskites

    SciTech Connect

    Mitchell, T.E.

    1992-07-01

    Most of the high {Tc} superconductors and other perovskite-related cuprates exhibit some kind of structural instability. For example, tetragonal-to-orthorhombic phase transformations occur in the Y-Ba-Cu-O and La-Sr-Cu-O systems while crystal structures in the Bi-Ca-Sr-Cu-O and Tl-Ba-Ca-Cu-O systems have incommensurate periodicities associated with displacements of the heavy cations. In YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, the transformation is due to the ordering of oxygen vacancies while in La{sub 2-x}Sr{sub x}CuO{sub 4} the transformation is accompanied by tilting of the [CuO{sub 6}] octahedra. Such tilting and distortion of the co-ordination octahedra commonly occur in perovskite-related compounds and transformations between the structures are frequently martensitic. Phase transformations in the superconducting cuprates have been investigated by transmission electron microscopy but none of them appear to be martensitic. The phase transformations are accompanied by twinning and the resulting configurations are used to calculate twin boundary energies.

  16. Lead iodide perovskite light-emitting field-effect transistor

    PubMed Central

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature. PMID:26108967

  17. A lead-halide perovskite molecular ferroelectric semiconductor

    PubMed Central

    Liao, Wei-Qiang; Zhang, Yi; Hu, Chun-Li; Mao, Jiang-Gao; Ye, Heng-Yun; Li, Peng-Fei; Huang, Songping D.; Xiong, Ren-Gen

    2015-01-01

    Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for exploration of ferroelectricity. Therefore, the design of molecular ferroelectric semiconductors based on these hybrids provides a possibility to obtain new or high-performance semiconductor ferroelectrics. Here we investigated Pb-layered perovskites, and found the layer perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours. It has a larger ferroelectric spontaneous polarization Ps=13 μC cm−2 and a higher Curie temperature Tc=438 K with a band gap of 3.65 eV. This finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics. PMID:26021758

  18. Lead iodide perovskite light-emitting field-effect transistor.

    PubMed

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic-inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature. PMID:26108967

  19. Electrostatic engineering of strained ferroelectric perovskites from first principles

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Stengel, Massimiliano

    2015-12-01

    Design of novel artificial materials based on ferroelectric perovskites relies on the basic principles of electrostatic coupling and in-plane lattice matching. These rules state that the out-of-plane component of the electric displacement field and the in-plane components of the strain are preserved across a layered superlattice, provided that certain growth conditions are respected. Intense research is currently directed at optimizing materials functionalities based on these guidelines, often with remarkable success. Such principles, however, are of limited practical use unless one disposes of reliable data on how a given material behaves under arbitrary electrical and mechanical boundary conditions. Here we demonstrate, by focusing on the prototypical ferroelectrics PbTiO3 and BiFeO3 as test cases, how such information can be calculated from first principles in a systematic and efficient way. In particular, we construct a series of two-dimensional maps that describe the behavior of either compound (e.g., concerning the ferroelectric polarization and antiferrodistortive instabilities) at any conceivable choice of the in-plane lattice parameter, a , and out-of-plane electric displacement, D . In addition to being of immediate practical applicability to superlattice design, our results bring new insight into the complex interplay of competing degrees of freedom in perovskite materials and reveal some notable instances where the behavior of these materials depart from what naively is expected.

  20. Perovskite enhanced solid state ZnO solar cells

    NASA Astrophysics Data System (ADS)

    Loh, L.; Briscoe, J.; Dunn, S.

    2013-12-01

    This paper will report on the design, fabrication and testing of a solid-state perovskite enhanced ZnO solar cell. The p-type perovskite material used is bismuth ferrite (BFO) which has an absorption range within the blue range of the visible light spectrum. The solid state solar cell, was sensitized with N719 dye and used a CuSCN hole conductor. A disadvantage of ZnO is its poor chemical stability in acidic and corrosive environments. As chemical solution techniques were used in depositing BFO, a buffer method using an aminosilane ((3-aminopropyltrimethoxysilane or H2N(CH2)3Si(OCH3)3)) coating was used to provide a protective coating on the ZnO nanorods before the BFO film was spin coated onto the ZnO nanorods. The photovoltaic performance of the solar cells were tested using a Keithley 2400 source meter under 100mW/cm2, AM 1.5G simulated sunlight, where improvements in Jsc and efficiency were observed. The BFO was able to harness more electrons and also acted as a buffer from electron recombination.

  1. Electronic properties of perovskite absorbers for solar cell applications

    NASA Astrophysics Data System (ADS)

    Filip, Marina; Giustino, Feliciano

    2015-03-01

    Metal halide perovskite absorbers have captured the attention of the photovoltaics research community in the past 3 years, reaching efficiencies over 19%. Despite this unprecedented progress, the remarkable physical properties of these materials are not yet fully understood. In this work we show an exhaustive computational study of CH3NH3PbI3 within density functional theory and the GW approximation. We show the effect of semicore states and spin-orbit coupling on the quasiparticle band gap of CH3NH3PbI3 and describe a straightforward ``self-consistent scissor'' method to correct the underestimated dielectric screening in the G0W0 approach. Finally, we model the interplay between the structural and electronic properties of lead-iodide perovskites and propose novel lead-iodide peroskite absorbers with different cations at the center of the cuboctahedral cavity facilitating the tunning of the fundamental band gap. This work was supported by the ERC (EU FP7 / ERC 239578), UK EPSRC (EP/J009857/1) and the Leverhulme Trust (RL-2012-001).

  2. Lead iodide perovskite light-emitting field-effect transistor

    NASA Astrophysics Data System (ADS)

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-06-01

    Despite the widespread use of solution-processable hybrid organic-inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature.

  3. Light induced polaron formation in perovskite solar cell devices

    NASA Astrophysics Data System (ADS)

    Neukirch, Amanda; Nie, Wanyi; Blancon, Jean-Christophe; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad; Sfeir, Matthew; Katan, Claudine; Even, Jacky; Crochet, Jared; Gupta, Gautum; Mohite, Aditya; Tretiak, Sergei

    The need for a low-cost, clean, and abundant source of energy has generated large amounts of research in solution processed solar cell materials. The lead halide perovskite has rapidly developed as a serious candidate for the active layer of photovoltaic devices. The efficiencies of devices made with this material have increased from 3.5% to over 20% in around 5 years. Despite the remarkable progress associated with perovskite materials, there are still fundamental questions regarding their lack of photo-stability over prolonged solar irradiation that need to be addressed. Recent experiments on photo-degradation under constant illumination have found fast self-healing by resting the device in the dark for less than 1 minute. Density functional theory and symmetry analysis show that localized charge states couple to local structural lattice distortions and methyl ammonium quasistatic configurations. Once translational symmetry is lost, additional bonding configurations become symmetry allowed, triggering localized charges in the vicinity over time under constant illumination, thus seeding the formation of macroscopic charged domains and preventing efficient charge extraction. Here we present an in-depth study of polaron formation and binding energy at the atomistic level.

  4. Design Principles of Perovskites for Thermochemical Oxygen Separation

    PubMed Central

    Ezbiri, Miriam; Allen, Kyle M.; Gàlvez, Maria E.; Steinfeld, Aldo

    2015-01-01

    Abstract Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar‐driven synthesis of liquid hydrocarbon fuels from CO2, H2O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through “thermochemical pumping” of O2 against a pO2 gradient with low‐grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high‐temperature X‐ray diffraction for SrCoO3−δ, BaCoO3−δ and BaMnO3−δ perovskites and Ag2O and Cu2O references confirm the predicted performance of SrCoO3−δ, which surpasses the performance of state‐of‐the‐art Cu2O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3−δ −1 exchanged at 12.1 μmol O 2 min−1 g−1 at 600–900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. PMID:25925955

  5. Planar heterojunction perovskite solar cells with superior reproducibility

    PubMed Central

    Jeon, Ye-Jin; Lee, Sehyun; Kang, Rira; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Seung-Hoon; Kim, Seok-Soon; Yun, Jin-Mun; Kim, Dong-Yu

    2014-01-01

    Perovskite solar cells (PeSCs) have been considered one of the competitive next generation power sources. To date, light-to-electric conversion efficiencies have rapidly increased to over 10%, and further improvements are expected. However, the poor device reproducibility of PeSCs ascribed to their inhomogeneously covered film morphology has hindered their practical application. Here, we demonstrate high-performance PeSCs with superior reproducibility by introducing small amounts of N-cyclohexyl-2-pyrrolidone (CHP) as a morphology controller into N,N-dimethylformamide (DMF). As a result, highly homogeneous film morphology, similar to that achieved by vacuum-deposition methods, as well as a high PCE of 10% and an extremely small performance deviation within 0.14% were achieved. This study represents a method for realizing efficient and reproducible planar heterojunction (PHJ) PeSCs through morphology control, taking a major step forward in the low-cost and rapid production of PeSCs by solving one of the biggest problems of PHJ perovskite photovoltaic technology through a facile method. PMID:25377945

  6. Lead-free ternary perovskite compounds with large electromechanical strains

    NASA Astrophysics Data System (ADS)

    Jarupoom, Parkpoom; Patterson, Eric; Gibbons, Brady; Rujijanagul, Gobwute; Yimnirun, Rattikorn; Cann, David

    2011-10-01

    Lead-free compounds based on perovskite solid solutions in the ternary system (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-Bi(X1/2Ti1/2)O3, where X = Ni and Mg have been shown to exhibit large electromechanical strains. While the perovskite end members Bi(Mg1/2Ti1/2)O3 and Bi(Ni1/2Ti1/2)O3 display limited stability in their pure state, both compounds were found to have solid solubilities of at least 50 mol. % with (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3. Most importantly, under relatively large applied fields, these materials exhibited large hysteretic electromechanical strains characterized by a parabolic shape. With effective piezoelectric coefficients (d33*) greater than 500 pm/V, these systems have excellent potential as a Pb-free piezoelectric materials.

  7. Linear magnetoelectricity at room temperature in perovskite superlattices by design

    NASA Astrophysics Data System (ADS)

    Ghosh, Saurabh; Das, Hena; Fennie, Craig J.

    2015-11-01

    Discovering materials that display a linear magnetoelectric (ME) effect at room temperature is a challenge. Such materials could facilitate devices based on the electric field control of magnetism. Here we present simple, chemically intuitive design rules to identify a class of bulk magnetoelectric materials based on the "bicolor" layering of P b n m ferrite perovskites, e.g., LaFeO3/LnFeO3 superlattices, Ln = lanthanide cation. We use first-principles density functional theory calculations to confirm these ideas. We elucidate the origin of this effect and show it is a general consequence of the layering of any bicolor P b n m perovskite superlattice in which the number of constituent layers are odd (leading to a form of hybrid improper ferroelectricity). Our calculations suggest that the ME effect in these superlattices is larger than that observed in the prototypical magnetoelectric materials Cr2O3 and BiFeO3. Furthermore, in these proposed materials, the strength of the linear ME coupling increases with the magnitude of the induced spontaneous polarization which is controlled by the La/Ln cation radius mismatch. We use a simple mean field model to show that the proposed materials order magnetically above room temperature.

  8. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    NASA Astrophysics Data System (ADS)

    Smolin, S. Y.; Scafetta, M. D.; Guglietta, G. W.; Baxter, J. B.; May, S. J.

    2014-07-01

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO3 (LFO) with a thickness of 40 unit cells (16 nm) grown by molecular beam epitaxy on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ˜2.5 eV and ˜3.5 eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (5-40 ps), medium (˜200 ps), and slow (˜ 3 ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ˜10% of photoexcited carriers exist for at least 3 ns. This work illustrates that TR spectroscopy can be performed on thin (<20 nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  9. Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes.

    PubMed

    Zhou, Feichi; Ren, Zhiwei; Zhao, Yuda; Shen, Xinpeng; Wang, Aiwu; Li, Yang Yang; Surya, Charles; Chai, Yang

    2016-06-28

    Photovoltachromic cells (PVCCs) are of great interest for the self-powered smart windows of architectures and vehicles, which require widely tunable transmittance and automatic color change under photostimuli. Organolead halide perovskite possesses high light absorption coefficient and enables thin and semitransparent photovoltaic device. In this work, we demonstrate co-anode and co-cathode photovoltachromic supercapacitors (PVCSs) by vertically integrating a perovskite solar cell (PSC) with MoO3/Au/MoO3 transparent electrode and electrochromic supercapacitor. The PVCSs provide a seamless integration of energy harvesting/storage device, automatic and wide color tunability, and enhanced photostability of PSCs. Compared with conventional PVCC, the counter electrodes of our PVCSs provide sufficient balancing charge, eliminate the necessity of reverse bias voltage for bleaching the device, and realize reasonable in situ energy storage. The color states of PVCSs not only indicate the amount of energy stored and energy consumed in real time, but also enhance the photostability of photovoltaic component by preventing its long-time photoexposure under fully charged state of PVCSs. This work designs PVCS devices for multifunctional smart window applications commonly made of glass. PMID:27159013

  10. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    SciTech Connect

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm–1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm–2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  11. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    DOE PAGESBeta

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm–1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm–2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by themore » formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.« less

  12. Interface Engineering in Metal Halides Perovskites: From molecules to devices

    NASA Astrophysics Data System (ADS)

    Petrozza, Annamaria

    In this talk we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at molecular level by using Raman Spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and emission properties of the semiconductor looking both at polycrystalline thin films and single crystals. We address the controversy surrounding electron - hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local microstructure of the hybrid crystals and not only on its chemical composition. This leads to the possibility of band gap engineering and the consequent control of the elementary photo-excitation dynamics that determine the perovskites' performances in different optoelectronic devices. Finally, the role of interface engineering, the effect of ion migration, and interface doping on charge extraction will be elucidated to provide a guideline for the design of hysteresis free solar cells. 1)G. Grancini & AR Srimath Kandada et al., Nature Photonics, 9 (10), 695-701, 2015 2) C. Tao et al,'' Energy Environ. Sci.,8, 2365-2370, 2015

  13. Accessing hidden isosymmetric phase transitions in perovskite thin films

    NASA Astrophysics Data System (ADS)

    Rondinelli, James; Coh, Sinisa

    2011-03-01

    Isosymmetric phase transitions (IPT), which show no change in occupied Wyckoff positions or crystallographic space group, are exceedingly rare in crystalline matter because most condensed systems respond to external stimuli by undergoing ``conventional'' symmetry-lowering displacive, martensitic or reconstructive transitions. In this work, we use first-principles density functional calculations to identify an elusive IPT in orthorhombic AB O3 perovskite oxides with tendency towards rhombohedral symmetry. Using perovskite LaGa O3 as our prototypical system, we show that the latent isosymmetric phase transition, which manifests as an abrupt change in the octahedral rotation axis, is accessible only with an external elastic constraint---bi-axial strain. We show the transition originates from a soft phonon that describes the geometric connectivity and relative phase of the Ga O6 polyhedra. By connecting the origin of IPT to a chemical and structural incompatibility between the lattice and the elastic constraints, we describe how subtle changes in bulk orthorhombic and monoclinic symmetries are critical to the complete engineering of structure-correlated electronic properties in thin films. Because bi-axial strain is the critical parameter controlling the IPT, we suggest heteroepitaxial synthesis of IPT materials is a plausible route to realize high- κ dielectric actuators with variable band gaps and dielectric anisotropies.

  14. Growing perovskite into polymers for easy-processable optoelectronic devices

    PubMed Central

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH3NH3PbI3 (MAPbI3) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition. PMID:25579988

  15. Manganese perovskites for room temperature magnetic refrigeration applications

    NASA Astrophysics Data System (ADS)

    Phan, Manh-Huong; Peng, Hua-Xin; Yu, Seong-Cho; Tho, Nguyen Duc; Nhat, Hoang Nam; Chau, Nguyen

    2007-09-01

    We found the large magnetocaloric effect (MCE) in La 0.6Ca 0.3Pb 0.1MnO 3 (sample No. 1), La 0.7Ca 0.2Pb 0.1MnO 3 (sample No. 2), and La 0.7Ca 0.1Pb 0.2MnO 3 (sample No. 3) perovskites, which were prepared by a conventional ceramic method. For a magnetic field change of 13.5 kOe, the magnetic entropy change (Δ SM) reached values of 2.55, 2.53 and 3.72 J/kg K for samples Nos. 1, 2 and 3, respectively. Interestingly, the large Δ SM was found to occur around 300 K for all samples investigated, which allows magnetic refrigeration at room temperature. These perovskites have the large magnetic entropy changes induced by low magnetic field change, which is beneficial for the household application of active magnetic refrigerant (AMR) materials.

  16. Clinopyroxene and perovskite partition coefficients in kamafugitic rocks

    NASA Astrophysics Data System (ADS)

    D Amelio, F.; Ruberti, E.; Gomes, C. B.; Lustrino, M.; Melluso, L.; Morbidelli, L.; Morra, V.

    2003-04-01

    A LAM-ICP-MS study has been carried out on clinopyroxene and perovskite in kamafugitic rocks of the Alto Paranaíba Igneous Province (Brazil) in order to determine partition coefficients of 22 trace elements. Clinopyroxene ranges from diopside to salite; few Na-richer samples plot between diopside and augite fields. The phenocrysts are zoned with cores richer in Fe2+ (> 0.1 a.p.f.u.) and poorer in Ti (< 0.02 a.p.f.u.), compared to rims richer in Ca (> 0.9 a.p.f.u.), Mg (> 0.8 a.p.f.u.) and Ti (0.025-0.8 a.p.f.u.). Groundmass clinopyroxene is chemically similar to phenocrysts rims. Trace elements contents allow to distinguish two types of clinopyroxene: the first type (Mg#=0.44-0.74) is rich in Y (av. Y=83 ppm), HREE (av. La/Yb=4) and poor in Sr (av. Sr=280 ppm) and Ti (av. Ti=4000 ppm) showing Eu negative anomaly. The second type (Mg#=0.83-0.88) is rich in Sr (av. Sr=740 ppm) and in LREE (av. La/Yb=28). Due to the absence of glass in groundmass, mass-balance calculations have been performed in order to determine the trace elements composition of melts in equilibrium with the phases. Average calculated clinopyroxene/melt partition coefficients (DZr=0.167; DHf=0.222; DSr=0.169; DNb=0.009; DTa=0.005; DTi=0.200; DY=0.690; DLa=0.060; DCe=0.120; DNd=0.205; DSm=0.358; DYb=0.994) agree well with results from previous studies on similar rocks. Perovskite shows an ideal molecular formula CaTiO3 (93-96 wt%), with variable Ce2O3 (0.21-2.74 wt%), Nb2O5 (0.17-0.40 wt%), Na2O (0.40-0.95 wt%) and SrO (0.25-0.95 wt%). Perovskites are zoned, with cores richer in REE and poorer in CaO and SrO than the rims (average contents for cores: La=0.86 wt%, Ce=2.34 wt%, CaO=36 wt%, SrO=0.30 wt%; rims: La=0.37 wt%, Ce=0.82 wt%, CaO=40 wt%, SrO=0.50 wt%). Perovskite/melt partition coefficients have been determined on potassic ultramafic rocks for the first time. Zr, Hf, and Sr are incompatible or slightly compatible (DZr=0.31-1.16; DHf=0.39-2.10; DSr=1.12-1.94); Nb, Ta, Ti, Y and REE are highly

  17. Multiscale morphology design of hybrid halide perovskites through a polymeric template

    NASA Astrophysics Data System (ADS)

    Masi, Sofia; Rizzo, Aurora; Aiello, Federica; Balzano, Federica; Uccello-Barretta, Gloria; Listorti, Andrea; Gigli, Giuseppe; Colella, Silvia

    2015-11-01

    Hybrid halide perovskites have emerged as promising active constituents of next generation solution processable optoelectronic devices. During their assembling process, perovskite components undergo very complex dynamic equilibria starting in solution and progressing throughout film formation. Finding a methodology to control and affect these equilibria, responsible for the unique morphological diversity observed in perovskite films, constitutes a fundamental step towards a reproducible material processability. Here we propose the exploitation of polymer matrices as cooperative assembling components of novel perovskite CH3NH3PbI3 : polymer composites, in which the control of the chemical interactions in solution allows a predictable tuning of the final film morphology. We reveal that the nature of the interactions between perovskite precursors and polymer functional groups, probed by Nuclear Magnetic Resonance (NMR) spectroscopy and Dynamic Light Scattering (DLS) techniques, allows the control of aggregates in solution whose characteristics are strictly maintained in the solid film, and permits the formation of nanostructures that are inaccessible to conventional perovskite depositions. These results demonstrate how the fundamental chemistry of perovskite precursors in solution has a paramount influence on controlling and monitoring the final morphology of CH3NH3PbI3 (MAPbI3) thin films, foreseeing the possibility of designing perovskite : polymer composites targeting diverse optoelectronic applications.Hybrid halide perovskites have emerged as promising active constituents of next generation solution processable optoelectronic devices. During their assembling process, perovskite components undergo very complex dynamic equilibria starting in solution and progressing throughout film formation. Finding a methodology to control and affect these equilibria, responsible for the unique morphological diversity observed in perovskite films, constitutes a fundamental step

  18. New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells.

    PubMed

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Shahverdi, Hamid Reza

    2015-10-01

    In this work we reported sputter deposited NiOx/Ni double layer as an HTM/contact couple in normal architecture of perovskite solar cell. A perovskite solar cell that is durable for more than 60 days was achieved, with increasing efficiency from 1.3% to 7.28% within 6 days. Moreover, low temperature direct deposition of NiOx layer on perovskite layer was introduced as a potential hole transport material for an efficient cost-effective solar cell applicable for various morphologies of perovskite layers, even for perovskite layers containing pinholes, which is a notable challenge in perovskite solar cells. The angular deposition of NiOx layers by dc reactive magnetron sputtering showed uniform and crack-free coverage of the perovskite layer with no negative impact on perovskite structure that is suitable for nickel back contact layer, surface shielding against moisture, and mechanical damages. Replacing the expensive complex materials in previous perovskite solar cells with low cost available materials introduces cost-effective scalable perovskite solar cells. PMID:26402149

  19. Perovskite at high P-T conditions: An in situ synchrotron X ray diffraction study of NaMgF3 perovskite

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Weidner, Donald J.; Ko, Jiadong; Leinenweber, Kurt; Liu, Xing; Li, Baosheng; Meng, Yue; Pacalo, Rosemary E. G.; Vaughan, Michael T.; Wang, Yanbin

    1994-02-01

    The lattice distortion and structural phase transition of NaMgF3 perovskite (Neighborite) have been studied using synchrotron X ray powder diffraction at high pressure and temperature. Changes in the unit cell dimensions of the perovskite are determined by conventional peak indexing and least squares routines. The stress field within the high-pressure cell assembly is analyzed, and the yield strength of the NaMgF3 perovskite is determined at high P and T. The pressure- and temperature-induced dimensional changes of the NaMgF3 perovskite structure are expressed empirically as a combination of compression/expansion of the (Mg-F) bond length and tilting of the MgF6 octahedral framework. The linear thermal expansions of the NaMgF3 perovskite observed at different pressures show significant anisotropy with alpha(sub a) is greater than alpha(sub c) is greater than alpha(sub b), which reflects the decrease of structural distortion and the development of a phase transition in the perovskite with increasing temperature. The tilting angle of the MgF6 octahedral framework is observed to decrease rapidly toward zero, in a manner expected for a ferroelastic phase transition, as the temperature approaches the transition point T(sub c). The apparent (Mg-F) bond lengths of the MgF6 octahedra experience drastic shrinkage with increasing temperature just prior to the transition. Despite a 12% change in volume due to compression, the experimental results on NaMgF3 perovskite show that the thermal expansivity is independent of pressure, i.e., d(alpha)/dP is approximately equal to 0, and, compatibly, that the compressibility is independent of temperature, i.e., d(beta)/dT is approximately equal to 0. However, the dominant compression mechanism is the compression of the octahedral bond length, whereas the dominant mechanism for thermal expansion is the diminishing of octahedral tilting. The Earth's mantle may be isochemical if the thermal expansion of MgSiO3 perovskite at high pressure

  20. Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?

    PubMed

    Etienne, Thibaud; Mosconi, Edoardo; De Angelis, Filippo

    2016-05-01

    The presence of a Rashba band-splitting mechanism mediated by spin-orbit coupling and breaking of inversion symmetry has been suggested as a possible cause for the reduced recombination rates observed in organohalide perovskites. Here, we investigate the interplay of electronic and nuclear degrees of freedom in defining the Rashba splitting in realistic MAPbI3 models. Our simulations disclose a "dynamical Rashba effect", allowing for a quantification of its magnitude under thermal conditions. We find that even in globally centrosymmetric structures the dynamics of the coupled inorganic-organic degrees of freedom give rise to a spatially local Rashba effect which fluctuates on the subpicosecond time scale typical of the methylammonium cation dynamics. This effect is progressively quenched in globally centrosymmetric structures, likely representing the MAPbI3 perovskite at room temperature, on increasing the probed spatial scale up to 32 MAPbI3 units (∼3 nm size) because of the incoherent nuclear thermal motion mediated by the disorder of the organic cations. PMID:27062910

  1. Phase Boundary between MgSiO3 Perovskite and Post-perovskite from Quantum Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Lin, Yangzheng; Cohen, R. E.; Stackhouse, Stephen; Driver, Kevin P.; Militzer, Burkhard; Shulenburger, Luke; Kim, Jeongnim

    2015-03-01

    Accurate prediction of the phase boundary between perovskite (pv) and post-perovskite (ppv) phases of MgSiO3 is important to explain many unusual properties of the Earth's D'' layer, such as lateral variations in the depth of the observed seismic discontinuity and seismic anisotropy. We have performed quantum Monte Carlo (QMC) simulations with the QMCPACK code on GPU clusters to obtain the ground state equation of state. Density functional perturbation theory (DFPT) computations were performed to obtain the thermal pressure within quasiharmonic lattice dynamics. The equations of state for both phases of MgSiO3 and their phase boundary from our QMC simulations agree well with experiment results and better than previous DFT calculations. Double-crossing of the pv-ppv boundary along Earth's geotherm depends on the effects of iron on the transition. Computations were performed on XSEDE machine Stampede, and on the Oak Ridge Leadership Computing Facility (OLCF) machine Titan from INCITE program. This work is supported by NSF.

  2. Simultaneous spectrophotometric determination of orthophosphate and silicate ions in river water using ion-exclusion chromatography with an ascorbate solution as both eluent and reducing agent, followed by postcolumn derivatization with molybdate.

    PubMed

    Nakatani, Nobutake; Masuda, Wakako; Kozaki, Daisuke; Goto, Ryozo; Nakagoshi, Nobukazu; Mori, Masanobu; Hasebe, Kiyoshi; Tanaka, Kazuhiko

    2009-03-01

    Ion-exclusion chromatography was examined for the simultaneous spectrophotometric determinations of orthophosphate and silicate ions in river water using an ascorbate solution as both an eluent and a reducing agent, followed by postcolumn derivatization using molybdate. The detector responses for both ions increased with increased ascorbic acid concentration in the eluent, but peak tailing was observed for the orthophosphate ion. This suggests that the amounts of undissociated orthophosphate ions increased with decreased eluent pH, resulting in the penetration of the phosphate to the Donnan's membrane formed on the resin surface. Using a neutral sodium ascorbate solution as an eluent, the peak shape was improved. With optimized separation and derivatization conditions (eluent, 20 mM sodium ascorbate; color-forming reagent, 10 mM sodium molybdate-60 mM sulfuric acid; flow rates of eluent and color-forming reagent, 0.4 and 0.2 mL min(-1); coil length, 6 m), the detection limits of orthophosphate and silicate ions were 0.9 and 1.0 microg L(-1), respectively. This method was successfully applied to the determination of orthophosphate and silicate ions in Kurose River water and the quantitative evaluations of the effects of water intake to a reservoir and discharge from a biological sewage treatment plant on the fluxes of these ions in the river. PMID:19276594

  3. Reducibility of Co 3+ in perovskite-type LaCoO 3 and promotion of copper on the reduction of Co 3+ in perovskite-type oxides

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Bassir, Mahbod; Kaliaguine, Serge

    2005-04-01

    The reducibility of Co 3+ in LaCoO 3 and the promotion of copper on the reduction of Co 3+ in perovskite-type oxides have been studied by temperature programmed reduction (TPR), temperature programmed oxidation (TPO), X-ray diffraction (XRD) and infrared spectroscopy (IR). Quantitative TPR and TPO analyses propose that the reduction of Co 3+ in LaCoO 3 to Co 0 belongs to a one-step process and that every TPR peak represents the reduction of every Co 3+ species to Co 0 in the crystallite structure. Accordingly, the produced Co 0 is assumed to be atomically located in the perovskite lattice provided the perovskite structure is retained after reduction. Quantitative TPR analyses also indicates that copper located in LaCo 0.85Cu 0.15O 3 promotes regularly the reduction of various Co 3+ species whereas copper doped on LaCoO 3 does irregularly. The action of the latter leads to more efficient reduction of Co 3+ to atomically dispersed Co 0 over a useful temperature range for catalytic purposes. TPR, XRD and IR studies show that the perovskite structure of LaCo 0.85Cu 0.15O 3 is somewhat less stable than that of LaCoO 3 and that the perovskite structural stability of LaCoO 3 is not weakened by the doping of copper.

  4. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site.

    PubMed

    Evans, Christopher D; Kondrat, Simon A; Smith, Paul J; Manning, Troy D; Miedziak, Peter J; Brett, Gemma L; Armstrong, Robert D; Bartley, Jonathan K; Taylor, Stuart H; Rosseinsky, Matthew J; Hutchings, Graham J

    2016-07-01

    Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology. PMID:27074316

  5. Sodium molybdate - an additive of choice for enhancing the performance of AC/AC electrochemical capacitors in a salt aqueous electrolyte.

    PubMed

    Abbas, Q; Ratajczak, P; Béguin, F

    2014-01-01

    Sodium molybdate (Na2MoO4) has been used as an additive to 1 mol L(-1) lithium sulfate electrolyte for electrochemical capacitors based on activated carbon (AC) electrodes, in order to reduce the corrosion of stainless steel current collectors. We demonstrate that the MoO4(2-) anions improve the overall capacitance owing to pseudofaradaic processes. In a two-electrode cell, capacitance values of 121 F g(-1) have been achieved up to 1.6 V using 1 mol L(-1) Li2SO4 + 0.1 mol L(-1) Na2MoO4, as compared to 103 F g(-1) when 1 mol L(-1) Li2SO4 is used. Further, by using a two-electrode setup equipped with a reference electrode, we could demonstrate that, at 1.6 V, the positive electrode potential reaches a value of 0.96 V vs. NHE in 1 mol L(-1) Li2SO4, crossing the thermodynamic potential limit of oxygen evolution (Eox = 0.846 V vs. NHE), and the pitting potential, Epit = 0.95 V vs. NHE. By contrast, in 1 mol L(-1) Li2SO4 + 0.1 mol L(-1) Na2MoO4, the pseudofaradaic contribution occurring at -0.05 V vs. NHE due to MoO4(2-) anions drives the positive electrode to reach only 0.798 V vs. NHE. Hence, the oxidation of the AC and corrosion of the stainless steel current collector at the positive electrode are unlikely in Li2SO4 + Na2MoO4 when the capacitor operates at 1.6 V. During potentiostatic floating of the capacitor at 1.6 V for 120 hours in Li2SO4 + Na2MoO4, the capacitance and resistance remain constant at 125 F g(-1) and ~1.0 Ω, respectively, while the resistance increases from 1.4 Ω to 3.1 Ω in Li2SO4. Overall, the addition of MoO4(2-) anions to Li2SO4 aqueous electrolyte allows the capacitance to be enhanced, corrosion of the positive stainless steel current collector to be inhibited and the AC/AC electrochemical capacitor to demonstrate stable performance up to 1.6 V. PMID:25427248

  6. NaIrO3—A Pentavalent Post-perovskite

    SciTech Connect

    M Bremholm; S Dutton; P Stephens; R Cava

    2011-12-31

    Sodium iridium (V) oxide, NaIrO{sub 3}, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO{sub 3}, the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO{sub 3}. Among the oxide post-perovskites, NaIrO{sub 3} is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO{sub 6} octahedra separated by layers of NaO{sub 8} bicapped trigonal prisms. NaIrO{sub 3} shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides.

  7. High-Q planar organic-inorganic Perovskite-based microcavity.

    PubMed

    Han, Zheng; Nguyen, Hai-Son; Boitier, Fabien; Wei, Yi; Abdel-Baki, Katia; Lauret, Jean-Sébastien; Bloch, Jacqueline; Bouchoule, Sophie; Deleporte, Emmanuelle

    2012-12-15

    We report on the fabrication of a perovskite-based ((C6H5C2H4 - NH3)2 PbI4) planar microcavity with a technique of a top dielectric mirror's migration in liquid, avoiding the degradation of the perovskite material. This approach allows for increasing the cavity Q-factor, without degrading the fragile molecular material. Strong coupling of the perovskite exciton to both the cavity mode and the first Bragg mode is evidenced from angle-resolved reflectivity and microphotoluminescence measurements at room temperature; an efficient relaxation toward the minimum of the main polariton branch is observed. The measured quality factor is significantly increased compared to previous reports where a top metallic mirror was used, showing the decisive advantage of the present fabrication technique toward the achievement of stimulated effects and polariton lasing with perovskite materials. PMID:23258005

  8. Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters.

    PubMed

    Sum, Tze Chien; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-08-28

    The rapid transcendence of organic-inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley-Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic-inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted. PMID:26234397

  9. High-Density and Uniform Lead Halide Perovskite Nanolaser Array on Silicon.

    PubMed

    Wang, Kaiyang; Gu, Zhiyuan; Liu, Shuai; Sun, Wenzhao; Zhang, Nan; Xiao, Shumin; Song, Qinghai

    2016-07-01

    The realization of high density and highly uniform nanolaser arrays in lead halide perovskite is quite challenging, especially on silicon. Herein, we demonstrate a simple way to form lead halide nanolaser array on silicon chip with high density and uniform lasing wavelengths. By positioning a perovskite microwire onto a silicon grating, only the suspended parts can hold high quality (Q) resonances and generate laser emissions. As the perovskite microwire is periodically segmented by the silicon grating, the transverse lasers are divided into a periodic nanolaser array and the lasing wavelengths from different subunits are almost the same. The transverse laser has been observed in an air gap as narrow as 420 nm, increasing the density of nanolasers to about 1250 per millimeter (800 nm period in experiment). We believe this research shall shed light on the development of perovskite microlaser and nanolaser arrays on silicon and their applications. PMID:27320490

  10. Polarized emission from CsPbX3 perovskite quantum dots.

    PubMed

    Wang, Dan; Wu, Dan; Dong, Di; Chen, Wei; Hao, Junjie; Qin, Jing; Xu, Bing; Wang, Kai; Sun, Xiaowei

    2016-06-01

    Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption. PMID:27211018

  11. Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Dong, Juan; Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2015-08-01

    The mechanism of charge recombination at the interface of n-type electron transport layer (n-ETL) and perovskite absorber on the carrier properties in the perovskite solar cell is theoretically studied. By solving the one dimensional diffusion equation with different boundary conditions, it reveals that the interface charge recombination in the perovskite solar cell can be suppressed by adjusting the conduction band offset (ΔEC) at ZnO ETL/perovskite absorber interface, thus leading to improvements in cell performance. Furthermore, Mg doped ZnO nanorods ETL has been designed to control the energy band levels. By optimizing the doping amount of Mg, the conduction band minimum of the Mg doped ZnO ETL has been raised up by 0.29 eV and a positive ΔEC of about 0.1 eV is obtained. The photovoltage of the cell is thus significantly increased due to the relatively low charge recombination.

  12. Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts.

    PubMed

    Yin, Xingtian; Chen, Peng; Que, Meidan; Xing, Yonglei; Que, Wenxiu; Niu, Chunming; Shao, Jinyou

    2016-03-22

    A solution-derived NiOx film was employed as the hole contact of a flexible organic-inorganic hybrid perovskite solar cell. The NiOx film, which was spin coated from presynthesized NiOx nanoparticles solution, can extract holes and block electrons efficiently, without any other post-treatments. An optimal power conversion efficiency (PCE) of 16.47% was demonstrated in the NiOx-based perovskite solar cell on an ITO-glass substrate, which is much higher than that of the perovskite solar cells using high temperature-derived NiOx film contacts. The low-temperature deposition process made the NiOx films suitable for flexible devices. NiOx-based flexible perovskite solar cells were fabricated on ITO-PEN substrates, and a preliminary PCE of 13.43% was achieved. PMID:26958704

  13. Efficiency-Enhanced Planar Perovskite Solar Cells via an Isopropanol/Ethanol Mixed Solvent Process.

    PubMed

    Mao, Peng; Zhou, Qing; Jin, Zhiwen; Li, Hui; Wang, Jizheng

    2016-09-14

    Solution processable perovskite solar cells traditionally employed isopropanol as the solvent of CH3NH3I in a two-step method. One of the largest issues of this technique is the uncontrollable morphology of the perovskite film. In this study, a homogeneous and dense PbI2 film was prepared by introducing DMSO as an additive into DMF and then reacting the mixture with CH3NH3I dissolved in an isopropanol/ethanol solvent to fabricate high-quality perovskite films. Results revealed that ethanol played a crucial role on morphology and components of perovskite films. When the ratio of isopropanol to ethanol was optimized, a power conversion efficiency of 15.76% was achieved, which was on average ∼50% higher than that of PSCs without DMSO and ethanol processing. PMID:27549444

  14. Electric Field Control of Jahn-Teller Distortions in Bulk Perovskites

    NASA Astrophysics Data System (ADS)

    Varignon, Julien; Bristowe, Nicholas C.; Ghosez, Philippe

    2016-02-01

    The Jahn-Teller distortion, by its very nature, is often at the heart of the various electronic properties displayed by perovskites and related materials. Despite the Jahn-Teller mode being nonpolar, we devise and demonstrate, in the present Letter, an electric field control of Jahn-Teller distortions in bulk perovskites. The electric field control is enabled through an anharmonic lattice mode coupling between the Jahn-Teller distortion and a polar mode. We confirm this coupling and quantify it through first-principles calculations. The coupling will always exist within the P b 21m space group, which is found to be the favored ground state for various perovskites under sufficient tensile epitaxial strain. Intriguingly, the calculations reveal that this mechanism is not only restricted to Jahn-Teller active systems, promising a general route to tune or induce novel electronic functionality in perovskites as a whole.

  15. Fast and Controllable Crystallization of Perovskite Films by Microwave Irradiation Process.

    PubMed

    Cao, Qipeng; Yang, Songwang; Gao, Qianqian; Lei, Lei; Yu, Yu; Shao, Jun; Liu, Yan

    2016-03-30

    The crystal growth process significantly influences the properties of organic-inorganic halide perovskite films along with the performance of solar cell devices. In this paper, we adopted the microwave irradiation to treat perovskite films through a one-step deposition method for several minutes at a fixed output power. It is found that the specific microwave irradiation process can evaporate the solvent directly and heat perovskite film quickly. In comparison with the conventional thermal annealing process, a microwave irradiation process assisted fast and controllable crystallization of perovskite films with less energy-loss and time-consumption and therefore resulted in the enhancement in the photovoltaic performance of the corresponding solar cells. PMID:26963524

  16. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    PubMed

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-01

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance. PMID:26859777

  17. Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters

    NASA Astrophysics Data System (ADS)

    Chien Sum, Tze; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-08-01

    The rapid transcendence of organic-inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley-Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic-inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted.

  18. Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?

    PubMed

    Tian, Yuxi; Scheblykin, Ivan G

    2015-09-01

    Organometal halide (OMH) perovskites have attracted lots of attention over the last several years due to their very promising performance as the materials for solar cells and light-emitting devices. Photophysical processes in these hybrid organic-inorganic semiconductors are still heavily debated. To know precise absorption spectra is absolutely necessary for quantitative understanding of the fundamental properties of OMH perovskites. We show that to measure the absorption of perovskite materials correctly is a difficult task which could be easily overlooked by the community. Many of the published absorption spectra exhibit a characteristic step-like featureless shape due to light scattering, high optical density of individual perovskite crystals and poor coverage of the substrate. We show how to recognize these artifacts, to avoid them, and to use absorption spectra of films for estimation of the surface coverage ratio. PMID:27120683

  19. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Cheng, Lu; Si, Junjie; Liang, Xiaoyong; Jin, Yizheng; Wang, Jianpu; Huang, Wei

    2016-04-01

    Amino acid self-assembled monolayers are used in the fabrication of light-emitting diodes based on organic-inorganic halide perovskites. The monolayers of amino acids provide modified interfaces by anchoring to the surfaces of ZnO charge-transporting layers using carboxyl groups, leaving the amino groups to facilitate the nucleation of MAPbBr3 perovskite films. This surface-modification strategy, together with chlorobenzene-assisted fast crystallization method, results in good surface coverage and reduced defect density of the perovskite films. These efforts lead to green perovskite light emitting diodes with a low turn-on voltage of 2 V and an external quantum efficiency of 0.43% at a brightness of ˜5000 cd m-2.

  20. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    PubMed Central

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494