Science.gov

Sample records for perpendicular magnetic films

  1. Magnetization reversal mechanism of Nd-Fe-B films with perpendicular magnetic anisotropy

    SciTech Connect

    Liu Xiaoxi; Ishida, Go; Morisako, Akimitsu

    2011-04-01

    The microstructure and magnetic properties of Nd-Fe-B films with thicknesses from 100 nm to 3 nm have been investigated. All the films show excellent perpendicular magnetic anisotropy with a squareness ratio of 1 in the perpendicular direction and almost zero coercivity in the in-plane direction. Of particular interest is that the initial magnetization curves sensitively depended on the film thickness. Films thicker than 15 nm show steep initial magnetization curve. Although the films have coercivities larger than 21 kOe, the films can be fully magnetized from the thermally demagnetized state with a field as small as 5 kOe. With the decrease of film thickness to 5 nm, the initial magnetization curve becomes flat. The evolution of initial magnetization curves with film thickness can be understood by the microstructure of the films. Films with thickness of 15 nm show close-packed grains without any intergranular phases. Such microstructures lead to steep initial magnetization curves. On the other hand, when the film thickness decreased to 3 nm, the film thickness became nonuniform. Such microstructure leads to flat initial magnetization curves.

  2. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  3. Magnetic Thin Films for Perpendicular Magnetic Recording Systems

    NASA Astrophysics Data System (ADS)

    Sugiyama, Atsushi; Hachisu, Takuma; Osaka, Tetsuya

    In the advanced information society of today, information storage technology, which helps to store a mass of electronic data and offers high-speed random access to the data, is indispensable. Against this background, hard disk drives (HDD), which are magnetic recording devices, have gained in importance because of their advantages in capacity, speed, reliability, and production cost. These days, the uses of HDD extend not only to personal computers and network servers but also to consumer electronics products such as personal video recorders, portable music players, car navigation systems, video games, video cameras, and personal digital assistances.

  4. Perpendicular magnetization reversal mechanism of functional FePt films for magnetic storage medium

    NASA Astrophysics Data System (ADS)

    Wei, Da-Hua; Chi, Po-Wei; Chao, Chung-Hua

    2014-11-01

    Magnetization reversal mechanism and related surface morphology of functional FePt(001) alloy films with large perpendicular magnetic anisotropy have been explored by alternate-atomic-layer deposition onto Pt/MgO(100) substrates via electron beam evaporation, and all evaporated films have been kept at in-situ substrate heating temperature of 400 °C. The FePt alloy film was composed of ultrathin [Fe (0.5 nm)/Pt (0.5 nm)]n Fe/Pt multilayer structures. The corresponding thickness of multilayer films was controlled by the periodic bilayer numbers (n) and varied in the range from 15 nm (n = 15) to 30 nm (n = 30). The surface topography was observed and varied from granular-like island to continuous microstructures with increasing the periodic numbers of Fe/Pt bilayer films. The measurement of angular dependent coercivity showed a tendency of the near rotation of reverse-domain type (n = 15) shift towards the domain-wall motion as a typical peak behavior (n = 30) with increasing the periodic bilayer numbers of Fe/Pt multilayers. On the basis of all magnetic measurements and corresponding magnetization analysis, indicating that the perpendicular magnetization reversal mechanism and related surface morphology of ordered FePt(001) alloy films could be systematically controlled by varying the periodic bilayer numbers accompanied with the thickness dependence.

  5. Magnetoelastically induced perpendicular magnetic anisotropy and perpendicular exchange bias of CoO/CoPt multilayer films

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Wang, Yue; Wang, Jian; Muraishi, Shinji; Sannomiya, Takumi; Nakamura, Yoshio; Shi, Ji

    2015-11-01

    The effects of magnetoelastically induced perpendicular magnetic anisotropy (PMA) on perpendicular exchange bias (PEB) have been studied in [CoO5nm/CoPt5nm]5 multilayer films. After deposition at room temperature, [CoO5nm/CoPt5nm]5 multilayer films were post-annealed at 100 °C, 250 °C, 300 °C and 375 °C for 3 h. In-plane tensile stress of CoPt layer was calculated by sin2 φ method, and we found it increased gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300 °C-annealed). As to the magnetic property, significant enhancement of PMA was achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB was also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increased from 130 Oe (as-deposited) up to 1060 Oe (300 °C-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of CoPt layer PMA, which is favorable for the spins in CoPt layer aligning to a more perpendicular direction. And thus the enhanced PMA with more perpendicular spins alignment in CoPt layer results in the improved PEB in [CoO5nm/CoPt5nm]5 multilayer films through enhanced perpendicular spins coupling at CoO/CoPt interfaces.

  6. Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Chaves-O'Flynn, Gabriel

    The scaling of the energy barrier to magnetization reversal in thin-film nanomagnets with perpendicular magnetization as a function of their lateral size is of great interest and importance for high-density magnetic random access memory devices. Experimental studies of such elements show either a quadratic or linear dependence of the energy barrier on element diameter. I will discuss a theoretical model we developed to determine the micromagnetic configurations that set the energy barrier for thermally activated reversal of a thin disk with perpendicular magnetic anisotropy as a function of disk diameter. We find a critical length in the problem that is set by the exchange and effective perpendicular magnetic anisotropy energies, with the latter including the size dependence of the demagnetization energy. For diameters smaller than this critical length, the reversal occurs by nearly coherent magnetization rotation and the energy barrier scales with the square of the diameter normalized to the critical length (for fixed film thickness), while for larger diameters, the transition state has a domain wall, and the energy barrier depends linearly on the normalized diameter. Simple analytic expressions are derived for these two limiting cases and verified using full micromagnetic simulations with the string method. Further, the effect of an applied field is considered and shown to lead to a plateau in the energy barrier versus diameter dependence at large diameters. Based on these finding I discuss the prospects and material challenges in the scaling of magnetic memory devices based on thin films with strong perpendicular magnetic anisotropy. In collaboration with G. Wolf, J. Z. Sun and A. D. Kent. Supported by NSF-DMR-1309202 and in part by Spin Transfer Technologies Inc. and the Nanoelectronics Research Initiative through the Institute for Nanoelectronics Discovery and Exploration.

  7. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy.

    PubMed

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; DeMann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J S; Porod, Wolfgang; Field, Stuart B; Tang, Jinke; Marconi, Mario C; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-01-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field. PMID:27581060

  8. Evaporated CoPt alloy films with strong perpendicular magnetic anisotropy (abstract)

    NASA Astrophysics Data System (ADS)

    Lin, C.-J.; Gorman, G. L.

    1993-05-01

    Co/Pt multilayers with large Kerr rotations at short wavelengths and the magnetic and material properties desired for magneto-optical (MO) recording have been studied extensively as potential future MO materials. Very good recording performance has been demonstrated.1 However, the typical constituent layers in Co/Pt multilayers are very thin, 0.2-0.4 nm Co layers and about 1 nm/Pt layers. To manufacture Co/Pt multilayers consisting of 10-30 periods of such thin Co and Pt layers is certainly quite a challenge. One would prefer to deal with CoPt alloys if the alloys can be made to have large perpendicular magnetic anisotropy and coercivity. Previously no one was able to directly deposit CoPt alloy films with large perpendicular magnetic anisotropy and saturated remanence. Here we will demonstrate for the first time that CoPt alloy films with large perpendicular magnetic anisotropy and coercivity, and saturated remanence can be directly deposited by e-beam evaporation onto heated substrates, at 200 °C or above. Furthermore, we will demonstrate that the perpendicular magnetic anisotropy of CoPt alloy films can be dramatically enhanced by well (111)-textured Pt underlayers. The key to this success appears to be in controlling the crystallographic orientation of these alloy films such that the CoPt(111) lattice plane is parallel to the film surface. CoPt alloys with wide composition range, e.g., 25-57 at. % Co, have been obtained with saturated perpendicular magnetic remanence, indicating that the perpendicular magnetic anisotropy obtained in these alloy films is not related to the ordered tetragonal Co50Pt50 phase. Further work, however, is needed to clarify the anisotropy mechanism in these CoPt alloy films.

  9. Field orientation dependence of magnetization reversal in thin films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Hovorka, Ondrej; Berger, Andreas

    2016-08-01

    The magnetization reversal process of hexagonal-close-packed (hcp) (0001) oriented Co and C o90R u10 thin films with perpendicular magnetic anisotropy (PMA) has been studied as a function of temperature and applied magnetic field angle. Room temperature pure cobalt exhibits two characteristic reversal mechanisms. For angles near in-plane field orientation, the magnetization reversal proceeds via instability of the uniform magnetic state, whereas in the vicinity of the out-of-plane (OP) orientation, magnetization inversion takes place by means of domain nucleation. Temperature dependent measurements enable the modification of the magnetocrystalline anisotropy and reveal a gradual disappearance of the domain nucleation process during magnetization reversal for elevated temperatures. Ultimately, this suppression of the domain nucleation process leads to the exclusive occurrence of uniform state instability reversal for all field orientations at sufficiently high temperature. Comparative magnetic measurements of C o90R u10 alloy samples allow the identification and confirmation of the high temperature remanent magnetization state of cobalt as an OP stripe domain state despite the reduction of magnetocrystalline anisotropy. Detailed micromagnetic simulations supplement the experimental results and corroborate the physical understanding of the temperature dependent behavior. Moreover, they enable a comprehensive identification of the complex energy balance in magnetic films with PMA, for which three different magnetic phases occur for sufficiently high anisotropy values, whose coexistence point is tricritical in nature.

  10. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films.

    PubMed

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H B; Wang, J; Ma, B; Jin, Q Y

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  11. CoNi Films with Perpendicular Magnetic Anisotropy Prepared by Alternate Monoatomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Fukami, Shunsuke; Sato, Hideo; Yamanouchi, Michihiko; Ikeda, Shoji; Ohno, Hideo

    2013-07-01

    We investigate the magnetic properties of CoNi and CoPt films prepared by an alternate monoatomic layer deposition and discuss the possible existence of a metastable superlattice structure. We find that, as has been reported for the CoPt and CoPd films, the CoNi film also exhibits a perpendicular magnetic anisotropy when the monoatomic Co and Ni layers are stacked alternately, suggesting the possible formation of superlattice structure. Since the CoNi film contains neither noble nor rare-earth metals, it should be an attractive material system for applications.

  12. Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films

    SciTech Connect

    Yanagihara, H. Utsumi, Y.; Niizeki, T. Inoue, J.; Kita, Eiji

    2014-05-07

    We investigated the dependencies of both the magnetization characteristics and the perpendicular magnetic anisotropy of Co{sub x}Fe{sub 3–x}O{sub 4}(001) epitaxial films (x = 0.5 and 0.75) on the growth conditions of the reactive magnetron sputtering process. Both saturation magnetization and the magnetic uniaxial anisotropy constant K{sub u} are strongly dependent on the reactive gas (O{sub 2}) flow rate, although there is little difference in the surface structures for all samples observed by reflection high-energy electron diffraction. In addition, certain dead-layer-like regions were observed in the initial stage of the film growth for all films. Our results suggest that the magnetic properties of Co{sub x}Fe{sub 3–x}O{sub 4} epitaxial films are governed by the oxidation state and the film structure at the vicinity of the interface.

  13. Sputtering of cobalt film with perpendicular magnetic anisotropy on disorder-free graphene

    SciTech Connect

    Jamali, Mahdi; Lv, Yang; Zhao, Zhengyang; Wang, Jian-Ping

    2014-10-15

    Growth of thin cobalt film with perpendicular magnetic anisotropy has been investigated on pristine graphene for spin logic and memory applications. By reduction of the kinetic energy of the sputtered atoms using indirect sputtered deposition, deposition induced defects in the graphene layer have been controlled. Cobalt film on graphene with perpendicular magnetic anisotropy has been developed. Raman spectroscopy of the graphene surface shows very little disorder induced in the graphene by the sputtering process. In addition, upon increasing the cobalt film thickness, the disorder density increases on the graphene and saturates for thicknesses of Co layers above 1 nm. The AFM image indicates a surface roughness of about 0.86 nm. In addition, the deposited film forms a granular structure with a grain size of about 40 nm.

  14. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    PubMed Central

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  15. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    NASA Astrophysics Data System (ADS)

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-07-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices.

  16. Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films with Perpendicular Magnetic Anisotropy

    NASA Technical Reports Server (NTRS)

    Skuza, J. R.; Clavero, C.; Yang, K.; Wincheski, B.; Lukaszew, R. A.

    2009-01-01

    L1(sub 0)-ordered FePd epitaxial thin films were prepared using dc magnetron sputter deposition on MgO (001) substrates. The films were grown with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.

  17. Enhancement of perpendicular magnetic anisotropy by compressive strain in alternately layered FeNi thin films.

    PubMed

    Sakamaki, M; Amemiya, K

    2014-04-23

    The effect of the lattice strain on magnetic anisotropy of alternately layered FeNi ultrathin films grown on a substrate, Cu(tCu = 0-70 ML)/Ni(48)Cu(52)(124 ML)/Cu(0 0 1) single crystal, is systematically studied by means of in situ x-ray magnetic circular dichroism (XMCD) and reflection high-energy electron diffraction (RHEED) analyses. To investigate the magnetic anisotropy of the FeNi layer itself, a non-magnetic substrate is adopted. From the RHEED analysis, the in-plane lattice constant, ain, of the substrate is found to shrink by 0.8% and 0.5% at tCu = 0 and 10 ML as compared to that of bulk Cu, respectively. Fe L-edge XMCD analysis is performed for n ML FeNi films grown on various ain, and perpendicular magnetic anisotropy (PMA) is observed at n = 3 and 5, whereas the film with n = 7 shows in-plane magnetic anisotropy. Moreover, it is found that PMA is enhanced with decreasing ain, in the case where a Cu spacer layer is inserted. We suppose that magnetic anisotropy in the FeNi films is mainly carried by Fe, and the delocalization of the in-plane orbitals near the Fermi level increases the perpendicular orbital magnetic moment, which leads to the enhancement of PMA. PMID:24695244

  18. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  19. Fabrication and properties of Nd(Tb,Dy)Co/Cr films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Cheng, Weiming; Miao, Xiangshui; Yan, Junbing; Cheng, Xiaomin

    2009-08-01

    Light rare earth-heavy rare earth-transition metal films (LRE-HRE-TM)have large saturation magnetization (Ms) and are the promising media for hybrid recording. In this paper, Nd(Tb,Dy)Co/Cr films with perpendicular magnetic anisotropy were successfully fabricated onto glass substrate by RF magnetron sputtering and the effects of sputtering technology parameters and Nd substitution for HRE atoms on the magnetic properties were investigated. It was found that when the sputtering power and sputtering time are 250W and 4min, respectively, the magnetic properties of Nd(Tb,Dy)Co/Cr films obtain optimization, perpendicular coercivity, Ms and remanence square ratio(S) of NdTbCo/Cr film reach 3.8kOe, 247emu/cm3 and 0.801, respectively. With the increasing of Nd concentration, Ms increases, while the coercivity (Hc)and the temperature stability of magnetic properties decrease distinctly. These results can be explained by the ferri-magnetic structure of the RE-TM alloy.

  20. Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Lu, Jiwei; Wolf, Stuart A.

    2013-04-01

    B2-ordered Co2FeAl films were synthesized using an ion beam deposition tool. A high degree of chemical ordering ˜81.2% with a low damping parameter (α) less than 0.004 was obtained in a 50 nm thick film via rapid thermal annealing at 600 °C. The perpendicular magnetic anisotropy (PMA) was optimized in ultra thin Co2FeAl films annealed at 350 °C without an external magnetic field. The reduced thickness and annealing temperature to achieve PMA introduced extrinsic factors thus increasing α significantly. However, the observed damping of Co2FeAl films was still lower than that of Co60Fe20B20 films prepared at the same thickness and annealing temperature.

  1. Confined stripe structure in periodically grooved NdCo Films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Martin, Jose I.; Hierro-Rodriguez, Aurelio; Cid, Rosalia; Rodriguez-Rodriguez, Gabriel; Velez, Maria; Alvarez-Prado, Luis M.; Alameda, Jose M.

    2012-02-01

    Magnetic multilayers are broad research field with many interesting phenomena depending on interlayer coupling. Also, since the development of nanolithography techniques, magnetic nanowires and dots have been intensively investigated [1]. Recently, as a combination of these two fields, the concept of magnetic lateral superlattice has emerged: continuous magnetic films with a lateral modulation of their magnetic properties at submicrometric length scale [2]. In this work, we have fabricated amorphous Nd-Co films with perpendicular magnetic anisotropy and a periodic thickness modulation by e-beam lithography and ion milling. Lateral periods range from 2 μm - 500 nm and groove depths from 10 to 30 nm. MFM and Kerr magnetometry have been used for characterization. Lateral patterning modifies the interplay between magnetostatic energy, perpendicular and in plane anisotropy and exchange interaction resulting in confined magnetic stripe structures. The different regimes that appear depending on the size of the periodic thickness modulation relative to the magnetic stripe period will be discussed. [1] J.I Martin et al, JMMM, 256 (2003) 449 [2] S. P. Li et al, PRL 88 (2002) 087202; N. Martin et al, PRB 83 (2010) 174423

  2. Perpendicular magnetic anisotropy in thin ferromagnetic films adjacent to high-k oxides

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Bi, Chong; Rosales, Marcus; Newhouse-Illige, Ty; Almasi, Hamid; Wang, Weigang

    2015-03-01

    Perpendicular magnetic anisotropy (PMA) in thin ferromagnetic films has attracted a great deal of attention due to interesting physics and promising application in spintronic devices. The strength of PMA is often found to be strongly influenced by the adjacent heavy metal layer and oxide layer. A strong interest has emerged recently to control the PMA of these ultra-thin films by electric fields. Here we report the fabrication and characterization of perpendicularly magnetized 3d transitional metal films next to high-k oxides such as HfO2 and ZrO2. We have investigated structural, magnetic and transport properties of these films. The PMA strongly depends on the thickness of the ferromagnetic layers and the interfacial oxidation level of the bilayers. We will also discuss electric field controlled magnetic properties in these systems. This work was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  3. Perpendicular magnetization of Co2FeAl full-Heusler alloy films induced by MgO interface

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Mitani, Seiji; Inomata, Koichiro

    2011-06-01

    The perpendicular magnetization of Co2FeAl (CFA) full-Heusler alloy films was achieved in the structures of CFA/MgO and MgO/CFA with the perpendicular magnetic anisotropy energy density (KU) of 2-3×106 erg/cm3, which can be used as the perpendicular ferromagnetic electrodes of MgO-based magnetic tunnel junctions (MTJs) with high thermal stability at sub-50-nm dimension. The CFA thickness dependence of KU was investigated at different annealing temperatures, indicating that the perpendicular anisotropy of CFA is contributed by the interfacial anisotropy between CFA and MgO. This letter will open up a way for obtaining perpendicular magnetization of Co-based full-Heusler alloys, which is promising for further reduction in the critical current of current induced magnetization switching in MgO-based MTJ nanopillars with perpendicular full-Heusler alloy electrodes.

  4. Co2FeAl films with perpendicular magnetic anisotropy in multilayer structure

    NASA Astrophysics Data System (ADS)

    Li, X. Q.; Xu, X. G.; Yin, S. Q.; Zhang, D. L.; Miao, J.; Jiang, Y.

    2011-01-01

    We have fabricated Co2FeAl (CFA) films with perpendicular magnetic anisotropy (PMA) in a (Co2FeAl/Ni)6 multilayer structure. The effects of underlayer Cu thickness (tCu), Co2FeAl thickness (tCFA) and Ni thickness (tNi) on the magnetic properties have been studied. The PMA is realized with a large anisotropy energy density K = 3.7×106 ergs/cm3, a high squareness Mr/Ms = 1 and a small perpendicular coercivity Hc = 60 Oe, while tCu, tCFA and tNi are 9 nm, 0.2 nm and 0.6 nm respectively. The PMA remains after 300 °C annealing, which demonstrates better thermal stability of the (Co2FeAl/Ni)6 multilayer than that of (Co/Ni)n.

  5. Electron theory of perpendicular magnetic anisotropy of Co-ferrite thin films

    SciTech Connect

    Inoue, Jun-ichiro; Yanagihara, Hideto; Kita, Eiji; Niizeki, Tomohiko; AIMR, Tohoku University, Sendai 980-8577 ; Itoh, Hiroyoshi

    2014-02-15

    We develop an electron theory for the t{sub 2g} electrons of Co{sup 2+} ions to clarify the perpendicular magnetic anisotropy (PMA) mechanism of Co-ferrite thin films by considering the spin-orbit interaction (SOI) and crystal-field (CF) potentials induced by the local symmetry around the Co ions and the global tetragonal symmetry of the film. Uniaxial and in-plane MA constants K{sub u} and K{sub 1} at 0 K, respectively, are calculated for various values of SOI and CF. We show that reasonable parameter values explain the observed PMA and that the orbital moment for the in-plane magnetization reduces to nearly half of that of the out-of-plane magnetization.

  6. Gilbert damping parameter characterization in perpendicular magnetized Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Lu, Jiwei; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Wolf, Stuart

    2013-03-01

    Materials with perpendicular magnetic anisotropy(PMA) have gotten extensive recent attention because of their potential application in spintronic devices such as spin transfer torque random access memory (STT-RAM). It was shown that a much lower switching current density(JC) is required to write STT-RAM tunnel junctions with perpendicular magnetic anisotropy ferromagnetic electrodes (p-MTJ). Additionally Heusler alloy Co2FeAl is expected to further reduce JC due to its ultra low Gilbert damping parameter. In our study, Heusler alloy Co2FeAl films were prepared using a Biased Target Ion Beam Deposition (BTIBD) technique. We demonstrated a low Gilbert damping parameter achieved in thick B2-Co2FeAl films. Besides, we achieved an interfacial PMA in ultra thin Co2FeAl films by rapid thermal annealing (RTA) with no external field presented. Annealing conditions were carefully adjusted to maximize the interfacial PMA. However it was noticed that a higher annealing temperature was required for a low damping parameter which to some extent sacrificed the interfacial PMA. We also deposited ultra thin CoFeB films and characterized their damping parameters for comparison. We acknowledge the financial support from DARPA.

  7. Ferromagnetic MnGaN thin films with perpendicular magnetic anisotropy for spintronics applications

    SciTech Connect

    Lee, Hwachol; Sukegawa, Hiroaki Ohkubo, Tadakatsu; Kasai, Shinya; Liu, Jun; Mitani, Seiji; Hono, Kazuhiro

    2015-07-20

    Perpendicularly magnetized flat thin films of antiperovskite Mn{sub 67}Ga{sub 24}N{sub 9} were grown on an MgO(001) substrate by reactive sputtering using an argon/1% nitrogen gas mixture and a Mn{sub 70}Ga{sub 30} target. The films showed a saturation magnetization of 80 –100 kA/m, an effective perpendicular magnetic anisotropy (PMA) energy of 0.1–0.2 MJ/m{sup 3}, and a Curie temperature of 660–740 K. Upon increasing the N composition, the films transformed from ferromagnetic to antiferromagnetic as expected in the stoichiometric Mn{sub 3}GaN phase. Point contact Andreev reflection spectroscopy revealed that the ferromagnetic MnGaN has a current spin polarization of 57%, which is comparable to D0{sub 22}-MnGa. These findings suggest that MnGaN is a promising PMA layer for future spintronics devices.

  8. Anomalous Nernst Effect of Perpendicularly Magnetic Anisotropy TbFeCo Thin Films

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Komine, Takashi; Hasegawa, Yasuhiro

    2016-07-01

    In this study, we investigated anomalous Nernst effect (ANE) of perpendicularly magnetized TbFeCo thin films with various Tb content, and especially studied the relation between ANE and anomalous Hall effect. As a result, the hysteresis of anomalous Nernst coefficient showed the same behavior as that of anomalous Hall resistivity, and the sign of anomalous Nernst coefficient was consistent with that of anomalous Hall voltage in any Tb content, whereas the Seebeck coefficient and the resistivity were almost constant even if the applied magnetic field was varied. Taking into account of thermoelectric coefficient tensor, it was revealed that the off-diagonal thermopower corresponding to the ANE in TbFeCo thin films is the product of Hall angle and Seebeck coefficient.

  9. L10 FePt-based thin films for future perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Varvaro, G.; Laureti, S.; Fiorani, D.

    2014-11-01

    Current magnetic recording media using perpendicular CoCrPt-Oxide granular films are reaching their physical limit (approx 750 Gbit/in2 density) due to thermal fluctuations that hinder a further reduction of grain size (<6-7 nm) needed to scale down the bit size. L10-FePt alloy is currently considered the most promising candidate for future recording media with areal densities above 1 Tbit/in2 thanks to its high magneto-crystalline anisotropy (K=6-10 MJ/m3), which enables it to be thermally stable even at grain sizes down to 3 nm. However, its huge anisotropy implies an increase of the switching field, which cannot be afforded by current available write heads. To simultaneously address the writability and thermal stability requirements, exchange coupled composite media, combining two or multiphase hard and soft materials, where the hard phase provides thermal stability and the soft phase reduces the switching field, have been recently proposed. This paper briefly reviews the fundamental aspects as well as both experimental approaches and magnetic properties of L10 FePt-based single phase films and exchange coupled systems for future perpendicular magnetic recording media.

  10. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films

    NASA Astrophysics Data System (ADS)

    Hrabec, A.; Porter, N. A.; Wells, A.; Benitez, M. J.; Burnell, G.; McVitie, S.; McGrouther, D.; Moore, T. A.; Marrows, C. H.

    2014-07-01

    We investigate the Dzyaloshinskii-Moriya interactions (DMIs) in perpendicularly magnetized thin films of Pt/Co/Pt and Pt/Co/Ir/Pt. To study the effective DMI, arising at either side of the ferromagnet, we use a field-driven domain wall creep-based method. The use of only magnetic field removes the possibility of mixing with current-related effects such as spin Hall effect or Rashba field, as well as the complexity arising from lithographic patterning. Inserting an ultrathin layer of Ir at the top Co/Pt interface allows us to access the DMI contribution from the top Co/Pt interface. We show that the insertion of a thin Ir layer leads to reversal of the sign of the effective DMI acting on the sandwiched Co layer, and therefore continuously changes the domain wall structure from the right- to the left-handed Néel wall. The use of two DMI-active layers offers an efficient way of DMI tuning and enhancement in thin magnetic films. The comparison with an epitaxial Pt/Co/Pt multilayer sheds more light on the origin of DMI in polycrystalline Pt/Co/Pt films and demonstrates an exquisite sensitivity to the exact details of the atomic structure at the film interfaces.

  11. Field-dependent perpendicular magnetic anisotropy in CoFeB thin films

    SciTech Connect

    Barsukov, I. Krivorotov, I. N.; Fu, Yu; Gonçalves, A. M.; Sampaio, L. C.; Spasova, M.; Farle, M.; Arias, R. E.

    2014-10-13

    We report ferromagnetic resonance measurements of perpendicular magnetic anisotropy in thin films of Ta/Co{sub 20}Fe{sub 60}B{sub 20}/MgO as a function of the Co{sub 20}Fe{sub 60}B{sub 20} layer thickness. The first and second order anisotropy terms show unexpectedly strong dependence on the external magnetic field applied to the system during the measurements. We propose strong interfacial spin pinning as a possible origin of the field-dependent anisotropy. Our results imply that high-field anisotropy measurements cannot be directly used for quantitative evaluation of zero-field performance parameters of CoFeB-based devices such as spin torque memory.

  12. Effects of soft layer softness on the magnetic properties of perpendicular exchange-coupled nanocomposite films

    NASA Astrophysics Data System (ADS)

    Tang, Rujun; Chua, Sherlyn; Zhang, Wanli; Li, Yanrong

    2011-11-01

    The anisotropy of the soft layer in the Co 100- xPt x/Co 71Pt 29 ( x=0, 7 and 17) perpendicular exchange-coupled composite (ECC) films was varied by changing the Pt content. The effects of soft layer softness (thickness and anisotropy) on the coercivity and magnetization reversal mechanisms of ECC were studied. Results showed that both remanence ratio ( Mr/ Ms) and coercivity of the ECC films reduced with an increase in soft layer thickness. However, the rate of coercivity reduction reduced when soft layer anisotropy was increased simultaneously. This was confirmed by the following facts. For the ECC with Co soft layer, the magnetization reversal mechanism within the ECC grains changed from coherent rotation to domain wall motion when soft layer thickness was changed from 2 to 15 nm. The impact of soft layer thickness on the magnetization reversals of the ECC grains reduced with an increase in soft layer anisotropy. On the other hand, the change of soft layer easy axis direction could possibly change the reversal mechanism of the ECC grains. The above experimental results showed that the coercivity of ECC film was controlled by the reversal mechanism inside the ECC grains.

  13. Influence of Pt Doping on Gilbert Damping in Permalloy Films and Comparison with the Perpendicularly Magnetized Alloy Films

    NASA Astrophysics Data System (ADS)

    Mizukami, Shigemi; Kubota, Takahide; Zhang, Xianmin; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Miyazaki, Terunobu

    2011-10-01

    Effects of Pt doping on magnetic properties and Gilbert damping are investigated for Ni80Fe20 permalloy films to compare with damping in alloy films containing Pt with a large perpendicular anisotropy. Gilbert damping constant α and g-factor g for (Ni80Fe20)100-xPtx (x = 0-34 at. %) are evaluated from out-of-plane angular variations of ferromagnetic resonance (FMR) linewidth and resonance field with an analysis based on the Landau-Lifshitz-Gilbert equation. Data of angular dependence of the FMR linewidth are fitted reasonably well by a theoretical model without having to take into account any extrinsic influences on linewidth, thereby allowing us to determine precise values of α. The α values show variation with increasing Pt concentration rising by ˜0.06 at a Pt concentration of 34 at. %, which is very close to those in perpendicularly magnetized CoCrPt and FePt film reported recently. Nevertheless, Gilbert damping rate G for the Pt doped permalloy films is smaller than those in CoCrPt and FePt films. These experimental results are discussed with a spin-orbit torque theory.

  14. Preparation of Perpendicular GdFeCo Magnetic Thin Films with Pulse Electrodeposition Technique Utilizing Molten Salt as Electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chen; Shu, Min-Fong

    2007-12-01

    We have utilized ZnCl2-dimethylsulfone (DMSO2) as the electrolyte with added GdCl3, FeCl2, and CoCl2, for electrodepositing a perpendicular GdFeCo magnetic thin film. The reaction at the electrode surface and the electrical conductivity of the ionic substance at different ionic concentrations were studied by cyclic voltammetry and a computerized direct current method. Moreover, the electrodeposition of the GdFeCo thin film was determined by a pulse potential method. Relation between the composition of the deposited thin film and control parameters including applied potentials was determined by EDS analysis. An amorphous structure and the thickness of the thin film were obtained by TEM analysis. Its roughness and uniformity were determined by AFM analysis. Meanwhile, a perpendicular magnetic property and pinning magnetic domain of the thin film were analyzed from results of AGM and MFM.

  15. Perpendicular magnetic recording: Playback

    NASA Astrophysics Data System (ADS)

    Litvinov, Dmitri; Khizroev, Sakhrat

    2005-04-01

    For the past several years, perpendicular magnetic recording has been under intense scrutiny as the primary alternative to magnetic data storage technologies in place today. Major system components, write heads and media in particular, have been the subject of extensive studies. Less attention, however, has been devoted to the playback processes in perpendicular recording systems. The playback heads used in technology demonstrations remain largely unchanged from their longitudinal recording counterparts. It is an open question whether the longitudinal playback-head design is optimal for perpendicular recording. For example, application of longitudinal playback heads in perpendicular recording leads to undesirable phenomena associated with modified playback response, increased flying height sensitivity, adjacent track interference, and calls for major modifications of the existing read channels. The subject of this work is a detailed discussion of the playback physics, in perpendicular recording systems; the focus being to establish the design guidelines for optimized perpendicular playback heads, which are equivalent or superior in their performance characteristics to conventional shielded readers used in longitudinal recording. Conformal mapping is applied to demonstrate the playback wave form equivalency between a shielded and dual-pole readers when applied in longitudinal and perpendicular recording, respectively. Utilizing extensive three-dimensional modeling and reciprocity principle to evaluate the performance of various playback-head configurations, it is demonstrated that differential reader configurations possess advantageous playback characteristics, such as higher playback amplitude, improved spatial resolution, and reduced dependence on flight-height variations as compared to conventional shielded readers. Modified design of differential readers with a single magnetoresistive sensor is proposed to overcome the manufacturability issues associated with a

  16. Correlation between static and dynamic magnetic properties of highly perpendicular magnetized C o49P t51 thin films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Chérif, Salim Mourad; Roussigné, Yves; Belmeguenai, Mohamed; Stashkevich, Andrey; Vernier, Nicolas; Singh, Akhilesh Kr.; Chang, Ching-Ray

    2015-10-01

    The static and dynamic magnetic behavior of 5-nm-thick C o49P t51 films with strong perpendicular magnetic anisotropy (PMA) grown at different deposition temperatures (Td ,CoPt) was investigated using complementary techniques such as vibrating sample magnetometry (VSM), magneto-optical Kerr effect (MOKE) imaging, and Brillouin light scattering (BLS). Our previous study on these films demonstrated the evolution of phase transformation from an A 3 -disordered (hexagonal) to an L 11 -ordered (rhombohedral) structure against increasing Td ,CoPt from room temperature (RT) to 350°C. Along these lines, the changes in the domain configuration, magnetization reversal, and spin wave behavior of the 5-nm-thick CoPt films due to varying Td ,CoPt are emphasized in this study. The VSM out-of-plane hysteresis loops confirmed the existence of strong PMA for all the CoPt films, irrespective of Td ,CoPt. MOKE studies revealed that the films deposited at RT and at 150 ∘C containing hard and soft magnetic areas, while the films grown at higher Td ,CoPt, 250 and 350 ∘C , are more uniform and homogeneous. The MOKE findings are validated by the BLS spectra in terms of high and low frequency lines corresponding to the hard and soft magnetic areas, respectively. A suitable model is hypothesized to interpret the frequency variation of BLS modes corresponding to the easy saturated regions of the CoPt films. By this means, a good correlation between both static and dynamic behavior of the 5-nm-thick CoPt films has been established in this study.

  17. Magnetic Pinning in Nb and YBCO Thin Films by Co/Pt Multilayers with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Cheng, X. M.; Zhu, L. Y.; Chien, C. L.; Cieplak, Marta Z.; Adamus, Z.; Abal'Oshev, A.; Berkowski, M.

    2006-03-01

    Magnetic pinning of vortices has the advantage over intrinsic pinning in that the superconducting critical current can be reversibly tuned by the magnetic field (H). Magnetic pinning by Co/Pt multilayers with perpendicular magnetic anisotropy has been studied in two ferromagnetic/superconducting bilayers of Nb and YBCO with different superconducting properties (e.g. penetration depth λ). Magnetic force microscopy reveals similar magnetization (M) reversal process in the two cases, both exhibiting a large density of narrow residual domains but with different domain width w at the final reversal stage. However, the magnetic pinning, revealed by the M-H loop shape in the superconducting state, is different. The Nb film exhibits an enhancement of M with the strongest effect during the final reversal stage, while the YBCO film shows a suppression of M in the vicinity of central M peak and an enhancement of M in large magnetic fields. These different behaviors are related to the different λ/w ratio in the two cases.

  18. Surface-termination-dependent magnetism and strong perpendicular magnetocrystalline anisotropy of an FeRh(001) thin film

    NASA Astrophysics Data System (ADS)

    Jekal, Soyoung; Rhim, S. H.; Hong, S. C.; Son, Won-joon; Shick, A. B.

    2015-08-01

    The magnetism of FeRh (001) films strongly depends on film thickness and surface terminations. While the magnetic ground state of bulk FeRh is G -type antiferromagnetism, the Rh-terminated films exhibit ferromagnetism with strong perpendicular magnetocrystalline anisotropy whose energy +2.1 meV/□ is two orders of magnitude greater than bulk 3 d conventional magnetic metals (□ is the area of a two-dimensional unit cell). While the Goodenough-Kanamori-Anderson rule on the superexchange interaction is crucial in determining the magnetic ground phases of FeRh bulk and thin films, the magnetic phases are the results of interplay and competition between three mechanisms—the superexchange interaction, the Zener-type direct interaction, and energy gain by Rh magnetization.

  19. Perpendicular Magnetic Anisotropy of Full-Heusler Films in Pt/Co2FeAl/MgO Trilayers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqi; Yin, Shaoqian; Liu, Yupeng; Zhang, Delin; Xu, Xiaoguang; Miao, Jun; Jiang, Yong

    2011-04-01

    We report on perpendicular magnetic anisotropy (PMA) in a Pt/Co2FeAl/MgO sandwiched structure with a thick Co2FeAl layer of 2-2.5 nm. The PMA is thermally stable and the anisotropy energy density Ku is 1.3×106 erg/cm3 for the structure with 2 nm Co2FeAl after annealing at 350 °C. The annealing temperature and Co2FeAl thickness greatly affect the PMA. Our results provide an effective way to realize relatively thick perpendicularly magnetized Heusler alloy films.

  20. Effect of aging and annealing on perpendicular magnetic anisotropy of ultra-thin CoPt films

    NASA Astrophysics Data System (ADS)

    Hara, R.; Hayakawa, K.; Ebata, K.; Sugita, R.

    2016-05-01

    The effect of aging and annealing on the magnetic properties of ultra-thin CoPt films with a Ru underlayer was investigated. For the 3 nm thick CoPt film aged in the air, the decrease of the saturation magnetic moment ms, the drastic increase of the perpendicular coercivity Hc⊥ and the perpendicular anisotropy were observed. This is because the surface layer of the CoPt film was oxidized and the bottom layer with high perpendicular anisotropy due to lattice distortion remained. For the annealed 3 nm thick CoPt film with a Pt protective layer, rising the annealing temperature Ta led to the decrease of ms, the decrease after increase of Hc⊥, and the decrease of the perpendicular squareness ratio S⊥ at Ta of 400 ∘C. The origins of effect of annealing were considered to be the grain boundary diffusion and the bulk diffusion of Ru and Pt into the CoPt film, and relaxation of the lattice distortion.

  1. Effect of the Acceleration Energy of Hydrogen Ion Irradiation on Perpendicular Magnetic Anisotropy in CoOx/Pd Multilayer Films

    NASA Astrophysics Data System (ADS)

    Shin, Sang Chul; Kim, Sanghoon; Han, Jungjin; Hong, Jongill; Kang, Shinill

    2011-11-01

    Magnetic stripes were achieved from hydrogen-ion-irradiated areas separated by the nonirradiated areas masked by UV-imprinted polymeric patterns. A perpendicular magnetic anistropy with a squareness of 0.96 and a coercivity of 2 kOe in (CoOx/Pd)10 multilayer films was induced via deoxidization, which heavily depended on the acceleration energy of hydrogen ion irradiation in the range of 400 eV. These phenomena were demonstrated via deoxidization of cobalt oxide to pure cobalt as observed by X-ray diffraction, accompanying the formation of a CoPd(111) phase indicating perpendicular magnetic anisotropy due to the preferential removal or reduction of oxygen atoms in multilayer films.

  2. Influence of boron diffusion on the perpendicular magnetic anisotropy in Ta|CoFeB|MgO ultrathin films

    SciTech Connect

    Sinha, Jaivardhan; Gruber, Maria; Kodzuka, Masaya; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro; Hayashi, Masamitsu

    2015-01-28

    We have studied structural and magnetic properties of Ta|CoFeB|MgO heterostructures using cross-section transmission electron microscopy (TEM), electron energy loss spectrum (EELS) imaging, and vibrating sample magnetometry. From the TEM studies, the CoFeB layer is found to be predominantly amorphous for as deposited films, whereas small crystallites, diameter of ∼5 nm, are observed in films annealed at 300 °C. We find that the presence of such nanocrystallites is not sufficient for the occurrence of perpendicular magnetic anisotropy. Using EELS, we find that boron diffuses into the Ta underlayer upon annealing. The Ta underlayer thickness dependence of the magnetic anisotropy indicates that ∼0.2 nm of Ta underlayer is enough to absorb the boron from the CoFeB layer and induce perpendicular magnetic anisotropy. Boron diffusion upon annealing becomes limited when the CoFeB layer thickness is larger than ∼2 nm, which coincides with the thickness at which the saturation magnetization M{sub S} and the interface magnetic anisotropy K{sub I} drop by ∼20%. These results show the direct role which boron plays in determining the perpendicular magnetic anisotropy in CoFeB|MgO heterostructures.

  3. Effect of annealing on exchange stiffness of ultrathin CoFeB film with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Sato, Noriyuki; White, Robert M.; Wang, Shan X.

    2016-04-01

    The effect of annealing on the exchange stiffness of ultrathin CoFeB films with perpendicular magnetic anisotropy was investigated through the observation of magnetic domain structures by magneto-optic Kerr-effect microscopy. A significant reduction of the exchange stiffness after an annealing process was observed, which is in striking contrast to a previous report that studied thick CoFeB films with in-plane magnetic anisotropy. Our results suggest that interdiffusion of non-magnetic atoms from the adjacent layer into CoFeB layer reduces the exchange stiffness, which explains the difference between the annealing effect on ultrathin and the thick CoFeB films. Thus, it is critical to prevent annealing-induced interdiffusion in order to suppress undesired sub-volume switching that degrades thermal stability of a free-layer in spin-transfer torque magnetic random access memory.

  4. Room-temperature perpendicular magnetic anisotropy of MgO/Fe/MgO ultrathin films

    SciTech Connect

    Kozioł-Rachwał, A.; Ślęzak, T.; Przewoźnik, J.; Skowroński, W.; Stobiecki, T.; Wilgocka-Ślęzak, D.; Qin, Q. H.; Dijken, S. van; Korecki, J.

    2013-12-14

    We used the anomalous Hall effect to study the magnetic properties of MgO/Fe(t)/MgO(001) structures in which the Fe thickness t ranged from 4 Å to 14 Å. For the iron deposited at 140 K, we obtained perpendicular magnetization at room temperature below the critical thickness of t{sub c} = (9 ± 1) Å. In the vicinity of t{sub c}, the easy magnetization axis switched from an out-of-plane orientation to an in-plane orientation, and the observed spin-reorientation transition was considered in terms of the competition among different anisotropies. The perpendicular magnetization direction was attributed to magnetoelastic anisotropy. Finally, the temperature-dependent spin-reorientation transition was analyzed for Fe thicknesses close to t{sub c}.

  5. Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co{sub 2}FeAl films

    SciTech Connect

    Cui, Yishen; Khodadadi, Behrouz; Schaefer, Sebastian; Mewes, Tim; Lu, Jiwei; Wolf, Stuart A.

    2013-04-22

    B2-ordered Co{sub 2}FeAl films were synthesized using an ion beam deposition tool. A high degree of chemical ordering {approx}81.2% with a low damping parameter ({alpha}) less than 0.004 was obtained in a 50 nm thick film via rapid thermal annealing at 600 Degree-Sign C. The perpendicular magnetic anisotropy (PMA) was optimized in ultra thin Co{sub 2}FeAl films annealed at 350 Degree-Sign C without an external magnetic field. The reduced thickness and annealing temperature to achieve PMA introduced extrinsic factors thus increasing {alpha} significantly. However, the observed damping of Co{sub 2}FeAl films was still lower than that of Co{sub 60}Fe{sub 20}B{sub 20} films prepared at the same thickness and annealing temperature.

  6. In-plane current-driven spin-orbit torque switching in perpendicularly magnetized films with enhanced thermal tolerance

    NASA Astrophysics Data System (ADS)

    Wu, Di; Yu, Guoqiang; Shao, Qiming; Li, Xiang; Wu, Hao; Wong, Kin L.; Zhang, Zongzhi; Han, Xiufeng; Khalili Amiri, Pedram; Wang, Kang L.

    2016-05-01

    We study spin-orbit-torque (SOT)-driven magnetization switching in perpendicularly magnetized Ta/Mo/Co40Fe40B20 (CoFeB)/MgO films. The thermal tolerance of the perpendicular magnetic anisotropy (PMA) is enhanced, and the films sustain the PMA at annealing temperatures of up to 430 °C, due to the ultra-thin Mo layer inserted between the Ta and CoFeB layers. More importantly, the Mo insertion layer also allows for the transmission of the spin current generated in the Ta layer due to spin Hall effect, which generates a damping-like SOT and is able to switch the perpendicular magnetization. When the Ta layer is replaced by a Pt layer, i.e., in a Pt/Mo/CoFeB/MgO multilayer, the direction of the SOT-induced damping-like effective field becomes opposite because of the opposite sign of spin Hall angle in Pt, which indicates that the SOT-driven switching is dominated by the spin current generated in the Ta or Pt layer rather than the Mo layer. Quantitative characterization through harmonic measurements reveals that the large SOT effective field is preserved for high annealing temperatures. This work provides a route to applying SOT in devices requiring high temperature processing steps during the back-end-of-line processes.

  7. The effects of tungsten concentration on crystalline structure and perpendicular magnetic anisotropy of Co-W films

    SciTech Connect

    Yin, S. Q.; Wu, Y.; Xu, X. G. Jiang, Y.; Wang, H.; Wang, J.P.

    2014-12-15

    In this study, Co-W thin films deposited by DC magnetron sputtering were demonstrated to be perpendicular magnetic anisotropic with large magnetocrystalline anisotropy energy (MAE). Thermodynamic calculations based on Miedema’s semi-empirical model have been used to estimate the phase in this binary alloy system. Based on the thermodynamic calculations results, a series of Co-W thin films were deposited on amorphous Ta underlayer with different tungsten concentrations. According to the X-ray diffraction results, the crystal structure of Co-W thin films is consistent well with that of thermodynamic calculations. Large MAE of Co-W thin films can be obtained with K{sub u} over 2.1 × 10{sup 5} J/m{sup 3} after vacuum annealing. The perpendicular coercivity (H{sub c}) of Co-W thin film reaches 9.1 × 10{sup 4} A/m. Therefore, the Co-W thin film is considered as a potential choice of high-density magnetic recording media materials.

  8. Domain-wall structure in thin films with perpendicular anisotropy: Magnetic force microscopy and polarized neutron reflectometry study

    NASA Astrophysics Data System (ADS)

    Navas, David; Redondo, Carolina; Badini Confalonieri, Giovanni A.; Batallan, Francisco; Devishvili, Anton; Iglesias-Freire, Óscar; Asenjo, Agustina; Ross, Caroline A.; Toperverg, Boris P.

    2014-08-01

    Ferromagnetic domain patterns and three-dimensional domain-wall configurations in thin CoCrPt films with perpendicular magnetic anisotropy were studied in detail by combining magnetic force microscopy and polarized neutron reflectometry with micromagnetic simulations. With the first method, lateral dimension of domains with alternative magnetization directions normal to the surface and separated by domain walls in 20-nm-thick CoCrPt films were determined in good agreement with micromagnetic simulations. Quantitative analysis of data on reflectometry shows that domain walls consist of a Bloch wall in the center of the thin film, which is gradually transformed into a pair of Néel caps at the surfaces. The width and in-depth thickness of the Bloch wall element, transition region, and Néel caps are found consistent with micromagnetic calculations. A complex structure of domain walls serves to compromise a competition between exchange interactions, keeping spins parallel, magnetic anisotropy orienting magnetization normal to the surface, and demagnetizing fields, promoting in-plane magnetization. It is shown that the result of such competition strongly depends on the film thickness, and in the thinner CoCrPt film (10 nm thick), simple Bloch walls separate domains. Their lateral dimensions estimated from neutron scattering experiments agree with micromagnetic simulations.

  9. Annealing effects on the properties of amorphous CoSiB/Pt multilayer films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Jung, Sol; Park, Jisun; Yim, Haein; Kim, Taewan

    2014-01-01

    The perpendicular magnetic anisotropy (PMA) of amorphous CoSiB/Pt multilayer systems was studied as a function of the thickness of the CoSiB/Pt bilayer and the number of repeated CoSiB/Pt bilayers. In this letter, we investigate the thermal property of a CoSiB single layer film annealed at 150 ˜ 350 °C for 3 hours and the perpendicular magnetic anisotropic property of amorphous ferromagnetic Ta(50 °A)/Pt(30 °A)/[CoSiB(2, 3, 4, 5, 6 Å)/Pt(14 Å)]5/Ta(50 Å) multilayer films annealed at 200 ˜ 400 °C for 3 hours. The thermal properties were measured by using a differential scanning calorimeter and an X-ray diffractometer, and the magnetic properties were measured by using a vibrating sample magnetometer. The PMA of the CoSiB/Pt multilayer film disappeared and the multilayer film show isotropy after annealing at a temperature of 350 °C or above.

  10. Creep and Flow Regimes of Magnetic Domain-Wall Motion in Ultrathin Pt/Co/Pt Films with Perpendicular Anisotropy

    NASA Astrophysics Data System (ADS)

    Metaxas, P. J.; Jamet, J. P.; Mougin, A.; Cormier, M.; Ferré, J.; Baltz, V.; Rodmacq, B.; Dieny, B.; Stamps, R. L.

    2007-11-01

    We report on magnetic domain-wall velocity measurements in ultrathin Pt/Co(0.5 0.8nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain-wall motion, analysis of which yields values for the damping parameter, α.

  11. FePtCu alloy thin films: Morphology, L1{sub 0} chemical ordering, and perpendicular magnetic anisotropy

    SciTech Connect

    Brombacher, C.; Schletter, H.; Daniel, M.; Matthes, P.; Joehrmann, N.; Makarov, D.; Hietschold, M.; Albrecht, M.; Maret, M.

    2012-10-01

    Rapid thermal annealing was applied to transform sputter-deposited Fe{sub 51}Pt{sub 49}/Cu bilayers into L1{sub 0} chemically ordered ternary (Fe{sub 51}Pt{sub 49}){sub 100-x}Cu{sub x} alloys with (001) texture on amorphous SiO{sub 2}/Si substrates. It was found that for thin film samples, which were processed at 600 Degree-Sign C for 30 s, the addition of Cu strongly favors the L1{sub 0} ordering and (001) texture formation. Furthermore, it could be revealed by transmission electron microscopy and electron backscatter diffraction that the observed reduction of the ordering temperature with Cu content is accompanied by an increased amount of nucleation sites forming L1{sub 0} ordered grains. The change of the structural properties with Cu content and annealing temperature is closely related to the magnetic properties. While an annealing temperature of 800 Degree-Sign C induces strong perpendicular magnetic anisotropy (PMA) in binary Fe{sub 51}Pt{sub 49} films, the addition of Cu systematically reduces the PMA. However, due to the enhancement of both the A1-L1{sub 0} phase transformation and the development of the (001) texture with increasing Cu content, lowering of the annealing temperature leads to a shift of the maximum perpendicular magnetic anisotropy towards alloys with higher Cu content. Thus, for an annealing temperature of 600 Degree-Sign C, the highest perpendicular magnetic anisotropy energy is found for the (Fe{sub 51}Pt{sub 49}){sub 91}Cu{sub 9} alloy. The smooth surface morphology, adjustable PMA, and high degree of intergranular exchange coupling make these films suitable for post-processing required for specific applications such as for sensorics or magnetic data storage.

  12. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  13. Laser heating and oxygen partial pressure effects on the dynamic magnetic properties of perpendicular CoFeAlO films

    NASA Astrophysics Data System (ADS)

    Wu, Di; Li, Wei; Tang, Minghong; Zhang, Zongzhi; Lou, Shitao; Jin, Q. Y.

    2016-07-01

    The impact of oxidation and laser heating on the dynamic magnetic properties of perpendicularly magnetized Co50Fe25Al25O films has been studied by time-resolved magneto-optical Kerr effect in a fs-laser pump-probe setup. We find that pump laser fluence Fp can affect the effective magnetic anisotropy field and thus the precession frequency f seriously, leading to an increased dependence of effective magnetic damping factor αeff on the external field at higher fluences. Moreover, the αeff increases with increasing the oxygen partial pressure PO2 while the uniaxial anisotropy energy Ku and Landau factor g decrease, owing to the increased proportion of superparamagnetic CoFe oxides formed by over-oxidation. By optimizing both the Fp and PO2, the intrinsic damping factor is determined to be lower than 0.028 for the perpendicular film showing a uniaxial anisotropy energy as high as 4.3×106 erg/cm3. The results in this study provide a promising approach to manipulate the magnetic parameters for possible applications in spintronic devices.

  14. Strain-induced perpendicular magnetic anisotropy in L a2CoMn O6 -ɛ thin films and its dependence on film thickness

    NASA Astrophysics Data System (ADS)

    Galceran, Regina; López-Mir, Laura; Bozzo, Bernat; Cisneros-Fernández, José; Santiso, José; Balcells, Lluís; Frontera, Carlos; Martínez, Benjamín

    2016-04-01

    Ferromagnetic insulating L a2CoMn O6 -ɛ (LCMO) epitaxial thin films grown on top of SrTi O3 (001) substrates present a strong magnetic anisotropy favoring the out-of-plane (OP) orientation of the magnetization with a large anisotropy field (˜70 kOe for film thickness of about 15 nm). Diminishing oxygen off-stoichiometry of the film enhances the anisotropy. We attribute this to the concomitant shrinkage of the OP cell parameter and to the increasing of the tensile strain of the films. Consistently, LCMO films grown on (LaAlO3)0.3(Sr2AlTaO6) 0.7 and LaAl O3 substrates (with a larger OP lattice parameter and compressive stress) display in-plane (IP) magnetic anisotropy. Thus, we link the strong magnetic anisotropy observed in LCMO to the film stress: tensile strain favors perpendicular anisotropy, and compressive stress favors IP anisotropy. We also report on the thickness dependence of the magnetic properties. Perpendicular anisotropy, saturation magnetization, and Curie temperature are maintained over a large range of film thickness.

  15. Tunable magnetic anisotropy in perpendicular exchange-coupled CoFeB/(Co/Pt) films

    NASA Astrophysics Data System (ADS)

    You, Long; Lee, Oukjae; Glenn, Terrell; Abdel-Raziq, Haron; Salahuddin, Sayeef

    2015-03-01

    Spintronic materials with strong perpendicular magnetic anisotropy (PMA), such as Co/Pd, Co/Pt and Co/Ni multilayers, have been introduced to improve the functional performance of STT devices (e.g. enhanced thermal stability, scalability and switching speeds of spin memory/logic). Furthermore, by coupling magnetic layers with PMA and longitudinal magnetic anisotropy (LMA), added benefits such as a variable magnetization tilt angle and tunable damping have been shown. In our study, we discuss how to precise control the anisotropy tilt angle by coupling the PMA hard layer (Co/Pt) with an in-plane soft layer (IMA, CoFeB). Due to the competition between the PMA and IMA, the tilted angle can be tuned by varying thickness of IMA. The stack of Pt(5nm)/Co (1nm)/CoFeB(Xnm)/MgO (2nm) (x varied from 0 to 1nm) was deposited by magneto-sputtering system. The magnetic properties were investigated by vibrating sample magnetometer and anomalous Hall effect . The electric transport of microscale devices comprised of that stack were also studied by our probe station with electromagnet. The experiments show the magnetic anisotropy can be tuned well by changing thickness of in plane layer and open a promising new avenue to next generation spintronics devices.

  16. Perpendicular magnetic anisotropy of amorphous [CoSiB/Pt]N thin films

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Choi, Y. H.; Lee, K. J.; Yoon, J. B.; Cho, J. H.; You, C.-Y.; Jung, M. H.

    2015-05-01

    Materials with perpendicular magnetic anisotropy (PMA) have been intensively studied for high-density nonvolatile memory such as spin-transfer-torque magnetic random access memory with low switching current density and high thermal stability. Compared with crystalline PMA multilayers, considerable works have been done on amorphous PMA multilayers because the amorphous materials are expected to have lower pinning site density as well as smaller domain wall width. This study is an overview of the PMA properties of amorphous [CoSiB/Pt]N multilayers with varying N, where the energy contribution is changed from domain wall energy to magnetostatic energy around N = 6. By measuring the field-induced domain wall motion, we obtain the creep exponent of μ = 1/4. These results in the amorphous PMA multilayers of [CoSiB/Pt]N demonstrate possible potential as a free layer for PMA-based memory devices.

  17. Perpendicular magnetic anisotropy of amorphous [CoSiB/Pt]{sub N} thin films

    SciTech Connect

    Kim, T. W.; Choi, Y. H.; Lee, K. J.; Jung, M. H.; Yoon, J. B.; Cho, J. H.; You, C.-Y.

    2015-05-07

    Materials with perpendicular magnetic anisotropy (PMA) have been intensively studied for high-density nonvolatile memory such as spin-transfer-torque magnetic random access memory with low switching current density and high thermal stability. Compared with crystalline PMA multilayers, considerable works have been done on amorphous PMA multilayers because the amorphous materials are expected to have lower pinning site density as well as smaller domain wall width. This study is an overview of the PMA properties of amorphous [CoSiB/Pt]{sub N} multilayers with varying N, where the energy contribution is changed from domain wall energy to magnetostatic energy around N = 6. By measuring the field-induced domain wall motion, we obtain the creep exponent of μ = 1/4. These results in the amorphous PMA multilayers of [CoSiB/Pt]{sub N} demonstrate possible potential as a free layer for PMA-based memory devices.

  18. Laser-Induced Fast Magnetization Precession and Gilbert Damping for CoCrPt Alloy Thin Films with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Mizukami, Shigemi; Watanabe, Daisuke; Kubota, Takahide; Zhang, Xianmin; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Miyazaki, Terunobu

    2010-12-01

    We have investigated magnetic field strength (up to 10 kOe) and angle dependences of spin dynamics in 4-nm-thick films of CoCrPt alloys with perpendicular magnetic anisotropy using the all-optical time-resolved magneto-optical Kerr effect (TRMOKE). The comprehensive TRMOKE measurements have indicated the Gilbert damping constant α of 0.05 for the alloy film with low coercivity. The experiments also indicated that α values for the alloy films deposited at higher temperatures with higher coercivities were also no greater than 0.06.

  19. Study of intergranular exchange coupling in longitudinal CoCrPt and perpendicular CoNi/Pt thin films for magnetic recording

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Lee, Hwan-Soo; Peng, Jie-Gang; Zhong, Zhi-Yong; Zu, Xiao-Tao

    2008-10-01

    We investigated magnetic intergranular coupling in both longitudinal and perpendicular media, suitable for high-density recording. The longitudinal media were two kinds of CoCrPt thin films with one strongly and the other weakly coupled. The perpendicular media were two kinds of CoNi/Pt multilayered thin films with one strongly and the other weakly coupled. The dc saturated and demagnetized magnetic states of thin films were studied by magnetic force microscopy. The demagnetized state of strongly coupled media shows greater contrast than that of granular ones for both CoNi/Pt and CoCrPt. In the dc saturated states, CoNi/Pt shows uniform distribution of the magnetization, while CoCrPt shows distinct remanent magnetization, which is smaller than saturation magnetization. A recording demonstration shows that the perpendicular medium is advantageous over the longitudinal one, and the weakly coupled medium outweighs the strongly coupled one for high-density recording.

  20. Magnetization reversal of giant perpendicular magnetic anisotropy at the magnetic-phase transition in FeRh films on MgO

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj

    2016-02-01

    Based on first-principles calculations, we demonstrate that substitutions of transition metals Ru and Ir, neighboring and same group elements in the periodic table, for the Rh site in the vicinity of surface can induce a substantially large perpendicular magnetic anisotropy (PMA), up to an order of magnitude of 20 erg /cm2 , in FeRh films on MgO. The main driving mechanism for this huge PMA is the interplay between the dx y and dx2-y2 orbital states of the substitutional 4 d and 5 d transition metal atoms with large spin-orbit coupling. Further investigations demonstrate that magnetization direction of PMA undergoes a transition into an in-plane magnetization at the antiferromagnet → ferromagnet phase transition, which provides a viable route for achieving large and switchable PMA associated with the magnetic-phase transition in antiferromagnet spintronics.

  1. Structure and magnetism in Ga-rich MnGa/GaN thin films and unexpected giant perpendicular anisotropy in the ultra-thin film limit

    NASA Astrophysics Data System (ADS)

    Mandru, Andrada-Oana; Corbett, Joseph P.; Lucy, Jeremy M.; Richard, Andrea L.; Yang, Fengyuan; Ingram, David C.; Smith, Arthur R.

    2016-03-01

    We report structural, surface, and magnetic investigations of ferromagnetic Ga-rich MnGa thin and ultra-thin films grown on semiconducting GaN(0001) using molecular beam epitaxy. The Mn:Ga composition ratio is varied from ≈1 (stoichiometric) to ≈0.42 (very Ga-rich) for different samples. We find that the L10 MnGa phase is preserved down to a Mn:Ga ratio of ≈0.81. As the Ga concentration increases, we observe the coexistence of more Ga-rich phases, namely Mn3Ga5 and Mn2Ga5. Room temperature scanning tunneling microscopy imaging reveals highly epitaxial films, with atomically smooth and highly reconstructed surfaces. Magnetic characterizations show how the magnetic properties evolve with changing composition and that giant perpendicular magnetic anisotropy is induced by reducing the size of our films.

  2. Polarized neutron reflectivity study of perpendicular magnetic anisotropy in MgO/CoFeB/W thin films

    NASA Astrophysics Data System (ADS)

    Ambaye, Haile; Zhan, Xiao; Li, Shufa; Lauter, Valeria; Zhu, Tao

    In this work we study the origin of PMA in MgO/CoFeB/W trilayer systems using polarized neutron reflectivity. Recently, the spin Hall effect in the heavy metals, such as Pt and Ta, has been of significant interest for highly efficient magnetization switching of the ultrathin ferromagnets sandwiched by such a heavy metal and an oxide, which can be used for spintronic based memory and logic devices. Most work has focused on heavy-metal/ferromagnet/oxide trilayer (HM/FM/MO) structures with perpendicular magnetic anisotropy (PMA), where the oxide layer plays the role of breaking inversion symmetry .No PMA was found in W/CoFeB/MgO films. An insertion of Hf layer in between the W and CoFeB layers, however, has been found to create a strong PMA. Roughness and formation of interface alloys by interdiffusion influences the extent of PMA. We intend to identify these influences using the depth sensitive technique of PNR. In our previous study, we have successfully performed polarized neutron reflectometry (PNR) measurements on the Ta/CoFeB/MgO/CoFeB/Ta thin film with MgO thickness of 1 nm. The PNR measurements were carried out using the BL-4A Magnetic Reflectometer at SNS. This work has been supported by National Basic Research Program of China (2012CB933102). Research at SNS was supported by the Office of BES, DOE.

  3. Perpendicular magnetic anisotropy in ultrathin Co|Ni multilayer films studied with ferromagnetic resonance and magnetic x-ray microspectroscopy

    NASA Astrophysics Data System (ADS)

    Macià, F.; Warnicke, P.; Bedau, D.; Im, M.-Y.; Fischer, P.; Arena, D. A.; Kent, A. D.

    2012-11-01

    Ferromagnetic resonance (FMR) spectroscopy, x-ray magnetic circular dichroism (XMCD) spectroscopy and magnetic transmission soft x-ray microscopy (MTXM) experiments have been performed to gain insight into the magnetic anisotropy and domain structure of ultrathin Co|Ni multilayer films with a thin permalloy layer underneath. MTXM images with a spatial resolution better than 25 nm were obtained at the Co L3 edge down to an equivalent thickness of Co of only 1 nm, which establishes a new lower boundary on the sensitivity limit of MTXM. Domain sizes are shown to be strong functions of the anisotropy and thickness of the film.

  4. Ru Catalyst-Induced Perpendicular Magnetic Anisotropy in MgO/CoFeB/Ta/MgO Multilayered Films.

    PubMed

    Liu, Yiwei; Zhang, Jingyan; Wang, Shouguo; Jiang, Shaolong; Liu, Qianqian; Li, Xujing; Wu, Zhenglong; Yu, Guanghua

    2015-12-01

    The high oxygen storage/release capability of the catalyst Ru is used to manipulate the interfacial electronic structure in spintronic materials to obtain perpendicular magnetic anisotropy (PMA). Insertion of an ultrathin Ru layer between the CoFeB and Ta layers in MgO/CoFeB/Ta/MgO films effectively induces PMA without annealing. Ru plays a catalytic role in Fe-O-Ta bonding and isolation at the metal-oxide interface to achieve moderate interface oxidation. In contrast, PMA cannot be obtained in the sample with a Mg insertion layer or without an insertion layer because of the lack of a catalyst. Our work would provide a new approach toward catalyst-induced PMA for future CoFeB-based spintronic device applications. PMID:26565747

  5. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film

    PubMed Central

    Shirsath, Sagar E.; Liu, Xiaoxi; Yasukawa, Yukiko; Li, Sean; Morisako, Akimitsu

    2016-01-01

    Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate. PMID:27435010

  6. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film.

    PubMed

    Shirsath, Sagar E; Liu, Xiaoxi; Yasukawa, Yukiko; Li, Sean; Morisako, Akimitsu

    2016-01-01

    Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate. PMID:27435010

  7. Interfacial contributions to perpendicular magnetic anisotropy in Pd/Co2MnSi/MgO trilayer films

    NASA Astrophysics Data System (ADS)

    Fu, Huarui; You, Caiyin; Li, Yunlong; Wang, Ke; Tian, Na

    2016-05-01

    Heusler alloy Co2MnSi is widely selected as the ferromagnetic layer to achieve a giant tunneling magnetic resistance (TMR). It is also one of the most promising materials for potential spintronic applications of magnetic random access memory (MRAM) due to the high spin polarization, in which the configuration of perpendicular magnetic anisotropy (PMA) possesses great advantages over the in-plane ones. Therefore, it is highly desirable to investigate the PMA effects of the Co2MnSi layer with a suitable stack structure. In this work, a strong PMA (1.61  ×  106 erg cm‑3) is demonstrated in the system of Pd/Co2MnSi/MgO trilayer films. The contributions of the interfaces beside the ferromagnetic Co2MnSi layer were quantitatively clarified. The interfacial anisotropy K s,MgO of 0.79 erg cm‑2 at the Co2MnSi/MgO interface is larger than the K s,Pd value of 0.26 erg cm‑2 at the Pd/Co2MnSi interface. Due to the dual interfacial effects, the strong PMA can be sustained at the high annealing temperature with a thick Co2MnSi layer of about 4.9 nm, which is favorable to the potential spintronic application. The Mn–O bonding was also found to be enriched at the Co2MnSi/MgO interface for the annealed Pd/Co2MnSi (3.4 nm)/MgO film with the large PMA, showing an experimental evidence for the theoretical results of the Mn–O bonding contribution to PMA.

  8. Perpendicular magnetic anisotropy in CoxMn4-xN (x = 0 and 0.2) epitaxial films and possibility of tetragonal Mn4N phase

    NASA Astrophysics Data System (ADS)

    Ito, Keita; Yasutomi, Yoko; Kabara, Kazuki; Gushi, Toshiki; Higashikozono, Soma; Toko, Kaoru; Tsunoda, Masakiyo; Suemasu, Takashi

    2016-05-01

    We grow 25-nm-thick Mn4N and Co0.2Mn3.8N epitaxial films on SrTiO3(001) by molecular beam epitaxy. These films show the tetragonal structure with a tetragonal axial ratio c/a of approximately 0.99. Their magnetic properties are measured at 300 K, and perpendicular magnetic anisotropy is confirmed in both films. There is a tendency that as the Co composition increases, an anisotropy field increases, whereas saturation magnetization and uniaxial magnetic anisotropy energy decrease. First-principles calculation predicts the existence of tetragonal Mn4N phase. This explains the c/a ˜ 0.99 in the Mn4N films regardless of their film thickness and lattice mismatch with substrates used.

  9. Neutrons to probe nanoscale magnetism in perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Venkataramana, Vikash

    A perpendicular magnetic medium is a multi-layered magnetic thin film structure with the topmost layer comprising nanoscale magnetic grains of high perpendicular anisotropy. The reported work investigates the structural and magnetic properties of the magnetic grains and multi-layers in the perpendicular magnetic medium using polarised neutron scattering and reflectivity techniques. The work investigates the structural and magnetic properties of the CoCrPt grains, apart from understanding the CoCrPt magnetic grain switching. The work also investigates the magnetisation in the layers of the thin film perpendicular media structure using polarised neutron reflectivity (PNR). Using polarised small angle neutron scattering (PolSANS) shows that ferromagnetic ordered core region of the CoCrPt grain in the recording layer is smaller than the physical CoCrPt granular structure. The magnetic switching behaviour of the CoCrPt grain at different magnetic fields is also analysed and the experimental PolSANS data is fitted with non-interacting size-dependent analytical grain switching models. This result provides significant evidence that the magnetic anisotropy increases with grain size, with larger magnetic grains having larger magnetic anisotropy. Polarised neutron scattering experiments are carried out with the magnetically softer exchange coupled composite (ECC) layer included in the thin film magnetic structure.. The first experiments investigate if the ECC layer contributes to the nuclear and magnetic interference scattering term in the experimenting scattering data. The experiments clearly show that there is no contribution from the ECC layer in the nuclear and magnetic scattering interference term. The role of the ECC layer in the magnetic switching process is then investigated at different magnetic fields. Polarised neutron reflectivity (PNR) experiments have also been carried out with the ECC layer on the perpendicular magnetic media samples. These experiments

  10. Consequences of an interface-concentrated perpendicular magnetic anisotropy in ultrathin CoFeB films used in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.

    2015-05-01

    We examine the consequences of a strongly interface-concentrated perpendicular magnetic anisotropy (PMA) energy in CoFeB thin films currently in wide use in magnetic tunnel junctions (MTJs) for spin-torque-related memory applications. The direct consequence of such an anisotropy energy distribution, in combination with a moderate exchange coupling of the interface moment to the rest of the film, is a phenomenological appearance of a fourth-order anisotropy term as the film is viewed by ferromagnetic resonance. The presence of a fourth-order anisotropy also affects the apparent thermal activation energy of a patterned nanomagnet with such thin films, and it could lead to an apparent increase in the spin-torque switching efficiency as represented by the ratio of the thermal activation energy and the threshold switching current. However, for interface-sensitive quantities such as tunnel magnetoresistance's hard-axis behavior, as well as for spin-torque excitation processes, the specifics of such separation of interface versus film-interior moment rotation could become important.

  11. Perpendicular magnetic anisotropy of Mn{sub 4}N films on MgO(001) and SrTiO{sub 3}(001) substrates

    SciTech Connect

    Yasutomi, Yoko; Ito, Keita; Sanai, Tatsunori; Toko, Kaoru; Suemasu, Takashi

    2014-05-07

    We grew Mn{sub 4}N epitaxial thin films capped with Au layers on MgO(001) and SrTiO{sub 3}(001) substrates by molecular beam epitaxy. Perpendicular magnetic anisotropy (PMA) was confirmed in all the samples at room temperature from the magnetization versus magnetic field curves using superconducting quantum interference device magnetometer. From the ω-2θ x-ray diffraction (XRD) and ϕ-2θ{sub χ} XRD patterns, the ratios of perpendicular lattice constant c to in-plane lattice constant a, c/a, were found to be about 0.99 for all the samples. These results imply that PMA is attributed to the in-plane tensile strain in the Mn{sub 4}N films.

  12. Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO{sub 3}:CoFe{sub 2}O{sub 4} vertically aligned nanocomposite thin films

    SciTech Connect

    Zhang, Wenrui; Jiao, Liang; Li, Leigang; Jian, Jie; Khatkhatay, Fauzia; Chu, Frank; Chen, Aiping; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2014-02-10

    Self-assembled BiFeO{sub 3}:CoFe{sub 2}O{sub 4} (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO{sub 3} (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy.

  13. Local modifications of magnetism and structure in FePt (001) epitaxial thin films by focused ion beam: Two-dimensional perpendicular patterns

    SciTech Connect

    Albertini, F.; Nasi, L.; Casoli, F.; Fabbrici, S.; Valeri, S.; Contri, S. F.

    2008-09-01

    Focused ion beam was utilized to locally modify magnetism and structure of L1{sub 0} FePt perpendicular thin films. As a first step, we have performed a magnetic, morphological, and structural study of completely irradiated FePt films with different Ga{sup +} doses (1x10{sup 13} -4x10{sup 16} ions/cm{sup 2}) and ion beam energy of 30 keV. For doses of 1x10{sup 14} ions/cm{sup 2} and above a complete transition from the ordered L1{sub 0} to the disordered A1 phase was found to occur, resulting in a drop of magnetic anisotropy and in the consequent moment reorientation from out-of-plane to in-plane. The lowest effective dose in disordering the structure (1x10{sup 14} ions/cm{sup 2}) was found not to affect the film morphology. Taking advantage of these results, continuous two-dimensional (2D) patterns of perpendicular magnetic structures (250 nm dots, 1 {mu}m dots, 1 {mu}m-large stripes) were produced by focused ion beam without affecting the morphology. The 2D patterns were revealed by means of magnetic force microscopy, that evidenced peculiar domain structures in the case of 1 {mu}m dots.

  14. Interactions controlled evolution of complex magnetoresistance in as-deposited Ag100-xCox nanogranular films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2015-11-01

    Evolution of a complex magnetoresistance and dc-magnetization behavior of as-deposited co-sputtered Ag100-xCox films with the variation of cobalt concentration 'x' from 25.2 to 45.1 at% is presented. At 20 K, a transition from normal to complex magnetoresistance behavior, in conjunction with magnetic force microscopy evidence of the existence of a magnetic microstructure resulting in perpendicular magnetic anisotropy (PMA) is observed for x=32.6 cobalt concentration film. The dc-magnetization studies provide additional support to the presence of PMA in film that gets reduced with the increase of cobalt concentration. The complex magnetoresistance (MR) behavior also decreases with the increase of 'x'. The room temperature MR, coercivity behavior and remanence to saturation magnetization ratio indicate the presence of direct ferromagnetic interactions due to the presence of ferromagnetic particles for x≥32.6 films. The observed complex MR behavior and presence of PMA are interpreted in terms of manifestation of the transition of interparticle magnetic interaction nature from dipolar to direct ferromagnetic.

  15. Effect of perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction on the enhancement of domain wall creep velocity in Pt/Co thin films by piezoelectric strain

    NASA Astrophysics Data System (ADS)

    Shepley, Philippa M.; Burnell, Gavin; Moore, Thomas A.

    We investigate piezoelectric strain control of domain wall creep motion in perpendicularly magnetized Pt/Co thin films. Domain wall (DW) motion has potential applications in data storage and spintronics, where the use of voltages rather than magnetic fields to control magnetization reversal could reduce power consumption. Materials with perpendicular magnetic anisotropy (PMA) are of particular interest due to their narrow domain walls and potential for efficient current-induced DW motion. Sputtered Ta/Pt/Co(t)/X films (t=0.78-1.0nm, X= Pt, Ir/Pt or Ir) on thin glass substrates were bonded to biaxial piezoelectric transducers, to which 150V was applied to produce a tensile out-of-plane strain of 9x10-4. This reduced the PMA by 10kJ/m3 and increased the DW creep velocity by up to 90%. DW energy can be calculated from the PMA and the Dzyaloshinskii-Moriya interaction (DMI) field. DW creep measurements of DMI field found no change with strain. The change in DW velocity with strain is linear with the change in DW energy for Pt/Co DWs with a mixed Bloch-Neel structure. Pt/Co/Pt films with higher DW velocity changes were found to have purely Bloch DWs. We conclude that the velocity of Bloch DWs is more sensitive to strain-induced changes than that of Bloch-Neel DWs. funded by EPSRC.

  16. Enhancement of order degree and perpendicular magnetic anisotropy of L10 ordered Fe(Pt,Pd) alloy film by introducing a thin MgO cap-layer

    NASA Astrophysics Data System (ADS)

    Noguchi, Youhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2016-07-01

    Fe50PtxPd50-x (at%, x=0-50) alloy films of 10 nm thickness with and without 2-nm-thick MgO cap-layers are prepared on MgO(001) single-crystal substrates by employing a two-step method consisting of low-temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. The influences of MgO cap-layer on the structure and the magnetic properties are investigated. Fe50PtxPd50-x films epitaxially grow on the substrates at 200 °C. The Fe50Pd50 and the Fe50Pt12.5Pd37.5 films are respectively composed of (001) single-crystals with disordered fcc-based (A1) and bcc-based (A2) structures. The films with x>25 consist of mixtures of A1 and A2 crystals. The volume ratio of A2 to A1 crystal decreases with increasing the x value from 25 to 50. The in-plane and out-of-plane lattices are respectively expanded and shrunk due to accommodation of lattice mismatch between film and substrate. When the films are annealed at 600 °C, phase transformation to L10 ordered phase takes place. L10 phase transformation of Fe50PtxPd50-x film is promoted for a sample with MgO cap-layer and the order degree is higher than that without cap-layer. Furthermore, L10 ordering with the c-axis perpendicular to the substrate surface is enhanced for the film with cap-layer. The cap-layer is considered to be giving a tension stress to the magnetic film in lateral direction which promotes L10 ordering with the c-axis perpendicular to the substrate. Deposition of cap-layer is shown effective in achieving higher order degree and in enhancing perpendicular magnetic anisotropy with Fe(Pt,Pd) films.

  17. Periodic magnetic domain wall pinning in an ultrathin film with perpendicular anisotropy generated by the stray magnetic field of a ferromagnetic nanodot array

    NASA Astrophysics Data System (ADS)

    Metaxas, P. J.; Zermatten, P.-J.; Jamet, J.-P.; Ferré, J.; Gaudin, G.; Rodmacq, B.; Schuhl, A.; Stamps, R. L.

    2009-03-01

    The stray magnetic field of an array of hard ferromagnetic perpendicularly magnetized [Co/Pt]4 nanodots is used to nondestructively generate a periodic pinning potential for domain walls in an underlying [Pt/Co]2/Pt layer with perpendicular anisotropy. Pinning is evidenced using magneto-optical microscopy. The magnetic field (H) dependence of the average wall velocity in the presence of the periodic pinning potential is consistent with thermally activated creep, modified only by the addition of a uniform retarding field Hret, whose magnitude depends on the relative alignment of H and the dots' magnetizations.

  18. Underlayer Effect on Perpendicular Magnetic Anisotropy in Co20Fe60B20\\MgO Films

    PubMed Central

    Chen, P.J.; Iunin, Y.L.; Cheng, S.F.; Shull, R.D.

    2016-01-01

    Perpendicular Magnetic Tunneling Junctions (pMTJs) with Ta\\CoFeB\\MgO have been extensively studied in recent years. However, the effects of the underlayer on the formation of the CoFeB perpendicular magnetic anisotropy (PMA) are still not well understood. Here we report the results of our systematic use of a wide range of elements (Ti, V, Cr, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt and Au) encompassed by columns IVA, VA, VIA, VIIA and VIIIA of the periodic table as the underlayer in a underlayer\\Co20Fe60B20\\MgO stack. Our goals were to survey more elements which could conceivably create a PMA in CoFeB and thereby to explore the mechanisms enabling these underlayers to enhance or create the PMA. We found underlayer elements having both an outer shell of 4d electrons (Zr, Nb Mo, and Pd) and 5d electrons (Hf, Ta, W, Re, Ir, and Pt) resulted in the development of a PMA in the MgO-capped Co20Fe60B20. Hybridization between the 3d electrons of the Fe or Co (in the Co20Fe60B20) at the interface with the 4d or 5d electrons of the underlayer is thought to be the cause of the PMA development. PMID:27499549

  19. Perpendicular reading of single confined magnetic skyrmions

    PubMed Central

    Crum, Dax M.; Bouhassoune, Mohammed; Bouaziz, Juba; Schweflinghaus, Benedikt; Blügel, Stefan; Lounis, Samir

    2015-01-01

    Thin-film sub-5 nm magnetic skyrmions constitute an ultimate scaling alternative for future digital data storage. Skyrmions are robust noncollinear spin textures that can be moved and manipulated by small electrical currents. Here we show here a technique to detect isolated nanoskyrmions with a current perpendicular-to-plane geometry, which has immediate implications for device concepts. We explore the physics behind such a mechanism by studying the atomistic electronic structure of the magnetic quasiparticles. We investigate from first principles how the isolated skyrmion local-density-of-states which tunnels into the vacuum, when compared with the ferromagnetic background, is modified by the site-dependent spin mixing of electronic states with different relative canting angles. Local transport properties are sensitive to this effect, as we report an atomistic conductance anisotropy of up to ∼20% for magnetic skyrmions in Pd/Fe/Ir(111) thin films. In single skyrmions, engineering this spin-mixing magnetoresistance could possibly be incorporated in future magnetic storage technologies. PMID:26471957

  20. Perpendicular reading of single confined magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Crum, Dax M.; Bouhassoune, Mohammed; Bouaziz, Juba; Schweflinghaus, Benedikt; Blügel, Stefan; Lounis, Samir

    2015-10-01

    Thin-film sub-5 nm magnetic skyrmions constitute an ultimate scaling alternative for future digital data storage. Skyrmions are robust noncollinear spin textures that can be moved and manipulated by small electrical currents. Here we show here a technique to detect isolated nanoskyrmions with a current perpendicular-to-plane geometry, which has immediate implications for device concepts. We explore the physics behind such a mechanism by studying the atomistic electronic structure of the magnetic quasiparticles. We investigate from first principles how the isolated skyrmion local-density-of-states which tunnels into the vacuum, when compared with the ferromagnetic background, is modified by the site-dependent spin mixing of electronic states with different relative canting angles. Local transport properties are sensitive to this effect, as we report an atomistic conductance anisotropy of up to ~20% for magnetic skyrmions in Pd/Fe/Ir(111) thin films. In single skyrmions, engineering this spin-mixing magnetoresistance could possibly be incorporated in future magnetic storage technologies.

  1. Evaluation of intergranular exchange coupling and magnetic domain size in CoCrPt-SiOX thin films with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Papusoi, C.; Desai, M.; Acharya, R.

    2015-06-01

    A method to evaluate the intergranular exchange coupling constant JEX in thin films with perpendicular anisotropy, based on first order reversal curve (FORC) diagrams, is proposed. For a 7.5 nm thick CoCrPt-SiOx magnetic (MAG) layer, JEX can be decreased from 1.1 to 0.26 erg cm-2 by using an adjacent CoCr-TiOx layer (isolation enhancement layer or IEL), enabling its application for high-density magnetic recording. The minimum value of JEX is attained for an IEL thickness of ~1.5 nm, which is low enough to preserve the HCP crystallographic structure of the MAG layer, with the c-axis perpendicular to film plane. The extracted values of JEX are used to evaluate the magnetic domain size of MAG layer using the checkerboard and the stripe domain models. Magnetic force microscopy observations indicate that domain size approaches the value predicted by the checkerboard model when JEX ≈ 0.8 erg cm-2, while for JEX > 0.8 erg cm-2 the actual domain size lies between the values indicated by the two models.

  2. Influence of inserted Mo layer on the thermal stability of perpendicularly magnetized Ta/Mo/Co20Fe60B20/MgO/Ta films

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Lu, Jinhui; Yu, Guoqiang; Li, Xiang; Han, Gang; Chen, Xi; Shi, Hui; Yu, Guanghua; Amiri, Pedram Khalili; Wang, Kang L.

    2016-04-01

    We studied the thermal stability of perpendicular magnetic anisotropy (PMA) in Ta/Mo/CoFeB/MgO/Ta films with and without inserted Mo layers. In the absence of a Mo layer, the films show PMA at annealing temperatures below 300 °C. On the other hand, the insertion of a Mo layer preserves PMA at annealing temperatures of up to 500 °C; however, a higher annealing temperature leads to the collapse of PMA. X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) were used to study the microstructure of the films to understand the deterioration of PMA. The XPS results show that the segregation of Ta is partly suppressed by inserting a Mo layer. Once inserted, Mo does not remain at the interface of Ta and CoFeB but migrates to the surface of the films. The HRTEM results show that the crystallization of the MgO (001) texture is improved owing to the higher annealing temperature of the Mo inserted sample. A smooth and clear CoFeB/MgO interface is evident. The inserted Mo layer not only helps to obtain sharper and smoother interfaces but also contributes to the crystallization after the higher annealing temperature of films.

  3. Controlling magnetic domain wall motion in the creep regime in He{sup +}-irradiated CoFeB/MgO films with perpendicular anisotropy

    SciTech Connect

    Herrera Diez, L. García-Sánchez, F.; Adam, J.-P.; Devolder, T.; Eimer, S.; El Hadri, M. S.; Ravelosona, D.; Lamperti, A.; Mantovan, R.; Ocker, B.

    2015-07-20

    This study presents the effective tuning of perpendicular magnetic anisotropy in CoFeB/MgO thin films by He{sup +} ion irradiation and its effect on domain wall motion in a low field regime. Magnetic anisotropy and saturation magnetisation are found to decrease as a function of the irradiation dose which can be related to the observed irradiation-induced changes in stoichiometry at the CoFeB/MgO interface. These changes in the magnetic intrinsic properties of the film are reflected in the domain wall dynamics at low magnetic fields (H) where irradiation is found to induce a significant decrease in domain wall velocity (v). For all irradiation doses, domain wall velocities at low fields are well described by a creep law, where Ln(v) vs. H{sup −1∕4} behaves linearly, up to a maximum field H*, which has been considered as an approximation to the value of the depinning field H{sub dep}. In turn, H* ≈ H{sub dep} is seen to increase as a function of the irradiation dose, indicating an irradiation-induced extension of the creep regime of domain wall motion.

  4. Controlling magnetic domain wall motion in the creep regime in He+-irradiated CoFeB/MgO films with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Herrera Diez, L.; García-Sánchez, F.; Adam, J.-P.; Devolder, T.; Eimer, S.; El Hadri, M. S.; Lamperti, A.; Mantovan, R.; Ocker, B.; Ravelosona, D.

    2015-07-01

    This study presents the effective tuning of perpendicular magnetic anisotropy in CoFeB/MgO thin films by He+ ion irradiation and its effect on domain wall motion in a low field regime. Magnetic anisotropy and saturation magnetisation are found to decrease as a function of the irradiation dose which can be related to the observed irradiation-induced changes in stoichiometry at the CoFeB/MgO interface. These changes in the magnetic intrinsic properties of the film are reflected in the domain wall dynamics at low magnetic fields (H) where irradiation is found to induce a significant decrease in domain wall velocity (v). For all irradiation doses, domain wall velocities at low fields are well described by a creep law, where Ln(v) vs. H-1/4 behaves linearly, up to a maximum field H*, which has been considered as an approximation to the value of the depinning field Hdep. In turn, H* ≈ Hdep is seen to increase as a function of the irradiation dose, indicating an irradiation-induced extension of the creep regime of domain wall motion.

  5. Highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy

    SciTech Connect

    An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji; Xie, Qian; Zhang, Zhengjun; Wang, Jian

    2015-03-15

    To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glass substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.

  6. Magnetic reversal phenomena of perpendicular magnetic islands fabricated by block copolymer lithography

    NASA Astrophysics Data System (ADS)

    Ilievski, Filip; Ross, C. A.; Vancso, G. J.

    2008-04-01

    Templated block copolymer lithography has been proposed as a method of fabricating patterned magnetic media. This paper discusses the magnetic properties of perpendicular CoCrPt magnetic uniaxial islands in a range of sizes (5-15nm thick, 20-35nm diameter) fabricated by this method. Sputter-deposited films of perpendicular CoCrPt films were patterned in a series of reactive and ion beam etches. The magnetic islands maintain the perpendicular magnetization from the film, but show increased coercivity (800-1650Oe) as compared to the film (150Oe). Time-scale-dependent magnetic measurements show switching volumes (V*) on the order of the physical volume of the dots (˜5000nm3), suggesting that the dots switch their magnetization coherently and independently of each other. Last, we demonstrate selectively removable topographic templates for imposing long-range order to the system.

  7. Random Field effects in perpendicular-anisotropy multilayer films

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Silevitch, Daniel; Rosenbaum, Thomas

    With the application of a magnetic field transverse to the magnetic easy axis, randomly-distributed 3D collections of dipole-coupled Ising spins form a realization of the Random-Field Ising Model. Tuning the strength of the site-specific random field, and hence the disorder, via the applied transverse field regulates the domain reversal energetics and hence the macroscopic hysteresis loop. We extend this approach to two dimensions, using sputtered Perpendicular Magnetic Anisotropy (PMA) Co/Pt multilayer thin films. We characterize the coercive fields and hysteresis loops at a series of temperatures and transverse fields.

  8. Surface pinning in ferromagnetic films with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Burgos, E.; Sallica Leva, E.; Gómez, J.; Martínez Tabares, F.; Vásquez Mansilla, M.; Butera, A.

    2011-05-01

    We have studied the ferromagnetic resonance response in a series of atomically disordered FePt thin films as a function of film thickness (9-200 nm) and excitation frequency (9.5 and 24 GHz). These films are characterized by a perpendicular anisotropy that promotes a stripelike magnetic domain structure above a critical thickness dcr~30 nm. All films display a resonant absorption due to the uniform precession of the magnetization vector. The analysis of the linewidth as a function of film thickness shows that the line broadens considerably above dcr. In the thinner films (d<28 nm) we have only observed the absorption related to the uniform precession mode, but thicker films, in which a stripe domain pattern is observed at zero field in static magnetic measurements, show an additional resonance line when the magnetic field is applied at, or very close to, the film plane normal. This line appears at fields below the main resonance and is observed at both X and K bands with approximately the same field separation from the uniform mode. We have also found that the line separation between the two resonances varies with the film thickness, indicating that the appearance of an additional resonance is related to confinement effects, but does not follow the quadratic law expected for infinite surface pinning. The ferromagnetic resonance results have been interpreted within a model of standing spin waves with finite surface pinning. From the angular variation of the pinning parameter close to the film normal we have found that the surface anisotropy is perpendicular to the film plane and increases with film thickness. The origin of the surface anisotropy seems to be related to a substrate-induced strain produced in the fabrication process and to a surface layer with a reduced magnetization. Annealing the samples at relatively low temperatures produces important changes in the resonance spectra. The overall observed behavior suggests that even though the resonance experiments

  9. Stoichiometry dependent phase transition in Mn-Co-Ga-based thin films: From cubic in-plane, soft magnetized to tetragonal perpendicular, hard magnetized

    SciTech Connect

    Ouardi, Siham; Fecher, Gerhard H.; Stinshoff, Rolf; Felser, Claudia; Kubota, Takahide; Mizukami, Shigemi; Miyazaki, Terunobu; Ikenaga, Eiji

    2012-12-10

    Epitaxial thin films of Mn{sub 3-x}Co{sub x}Ga were grown on MgO by magnetron co-sputtering with different Co content. Dependent on the Co content tetragonal or cubic structures are obtained. The composition dependence of saturation magnetization M{sub S} and uniaxial magnetic anisotropy K{sub u} in the epitaxial films were investigated. A high magnetic anisotropy K{sub u} of 1.2 MJ m{sup -3} was achieved for the Mn{sub 2.6}Co{sub 0.3}Ga{sub 1.1} film with low magnetic moment of 0.84 {mu}{sub B}. The valence band spectra of the films were investigated mainly by hard x-ray photoelectron spectroscopy. The evidence of sharp states in the cubic case, which are smeared out in the tetragonal case, proof the existence of a van Hove singularity that causes a band Jahn-Teller effect accompanied by a tetragonal distortion. These differences are in well agreement to the ab-initio calculations of the electronic structure.

  10. Micromagnetic Study of Perpendicular Magnetic Recording Media

    NASA Astrophysics Data System (ADS)

    Dong, Yan

    With increasing areal density in magnetic recording systems, perpendicular recording has successfully replaced longitudinal recording to mitigate the superparamagnetic limit. The extensive theoretical and experimental research associated with perpendicular magnetic recording media has contributed significantly to improving magnetic recording performance. Micromagnetic studies on perpendicular recording media, including aspects of the design of hybrid soft underlayers, media noise properties, inter-grain exchange characterization and ultra-high density bit patterned media recording, are presented in this dissertation. To improve the writability of recording media, one needs to reduce the head-to-keeper spacing while maintaining a good texture growth for the recording layer. A hybrid soft underlayer, consisting of a thin crystalline soft underlayer stacked above a non-magnetic seed layer and a conventional amorphous soft underlayer, provides an alternative approach for reducing the effective head-to-keeper spacing in perpendicular recording. Micromagnetic simulations indicate that the media using a hybrid soft underlayer helps enhance the effective field and the field gradient in comparison with conventional media that uses only an amorphous soft underlayer. The hybrid soft underlayer can support a thicker non-magnetic seed layer yet achieve an equivalent or better effective field and field gradient. A noise plateau for intermediate recording densities is observed for a recording layer of typical magnetization. Medium noise characteristics and transition jitter in perpendicular magnetic recording are explored using micromagnetic simulation. The plateau is replaced by a normal linear dependence of noise on recording density for a low magnetization recording layer. We show analytically that a source of the plateau is similar to that producing the Non-Linear-Transition-Shift of signal. In particular, magnetostatic effects are predicted to produce positive correlation of

  11. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy.

    PubMed

    Gopman, D B; Dennis, C L; Chen, P J; Iunin, Y L; Finkel, P; Staruch, M; Shull, R D

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  12. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-06-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices.

  13. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    PubMed Central

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  14. Recording performances in perpendicular magnetic patterned media

    NASA Astrophysics Data System (ADS)

    Asbahi, M.; Moritz, J.; Dieny, B.; Gourgon, C.; Perret, C.; van de Veerdonk, R. J. M.

    2010-09-01

    We report on the recording performances and signal-to-noise ratio (SNR) analyses of perpendicular magnetic bit-patterned media. Two different types of magnetic samples are investigated. They differ by the way that they were patterned (nano-imprint versus e-beam lithography) as well as their magnetic properties (Co/Pt multilayers and CoCrPt alloy are the recording layers).Using a contact read/write quasi-static tester, we were able to characterize the write windows, the bit error rates and measure the SNR. The influence of magnetic properties and media microstructure on the writing processes is studied. We show also that the lithographical method used to replicate the media induces more or less noise due to structural distributions.

  15. Ag induced enhancement of perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Shern, C. S.; Su, C. W.; Wu, Y. E.; Chen, S. H.

    2001-12-01

    Some interesting magnetic properties were observed after Ag ultrathin films were deposited on Co/Pt(1 1 1). The spin reversal of Co can be prevented when Ag atoms cap Co on Pt(1 1 1). The out-of-plane magnetization has a significant enhancement after annealing at high temperature. The Curie temperature increases from 625 to 710 K as 1 ML of Ag is deposited on 1 ML Co/Pt(1 1 1). The change of surface anisotropy and the formation of a Co-Pt alloy are possible mechanisms for the magnetization enhancement.

  16. X-ray study of aligned magnetic stripe domains in perpendicular multilayers

    SciTech Connect

    Hellwig, O.; Denbeaux, G.P.; Kortright, J.B.; Fullerton, Eric E.

    2003-03-03

    We have investigated the stripe domain structure and the magnetic reversal of perpendicular Co/Pt based multilayers at room temperature using magnetometry, magnetic imaging and magnetic x-ray scattering. In-plane field cycling aligns the stripe domains along the field direction. In magnetic x-ray scattering the parallel stripe domains act as a magnetic grating resulting in observed Bragg reflections up to 5th order. We model the scattering profile to extract and quantify the domain as well as domain wall widths. Applying fields up to {approx}1.2 kOe perpendicular to the film reversibly changes the relative width of up versus down domains while maintaining the overall stripe periodicity. Fields above 1.2 kOe introduce irreversible changes into the domain structure by contracting and finally annihilating individual stripe domains. We compare the current results with modeling and previous measurements of films with perpendicular anisotropy.

  17. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    PubMed Central

    Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.

    2015-01-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer motif. We demonstrate the transfer of magnetic properties from thin films to lithographically defined 2 μm particles which have been lifted off into solution. We simulate the minimum energy state of a synthetic antiferromagnetic bilayer system that is free to rotate in an applied field and show that the low field susceptibility of the system is equal to the magnetic hard axis followed by a sharp switch to full magnetization as the field is increased. This agrees with the experimental results and explains the behaviour of the particles in solution. PMID:26221056

  18. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.

    2015-07-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer motif. We demonstrate the transfer of magnetic properties from thin films to lithographically defined 2 μm particles which have been lifted off into solution. We simulate the minimum energy state of a synthetic antiferromagnetic bilayer system that is free to rotate in an applied field and show that the low field susceptibility of the system is equal to the magnetic hard axis followed by a sharp switch to full magnetization as the field is increased. This agrees with the experimental results and explains the behaviour of the particles in solution.

  19. Electromigration induced fast L10 ordering phase transition in perpendicular FePt films

    NASA Astrophysics Data System (ADS)

    Feng, Chun; Li, Xujing; Yang, Meiyin; Gong, Kui; Zhu, Yuanmin; Zhan, Qian; Sun, Li; Li, Baohe; Jiang, Yong; Yu, Guanghua

    2013-01-01

    Realizing fast L10 ordering phase transition (LOPT) in L10 structured magnetic materials without heat treatment is crucial for their applications in spintronic devices. This article reports on the electromigration controlled momentum transfer and rapid ordering of Fe and Pt atoms in the as-deposited FePt films. Lattice defects in the films provide enough diffusion pathways and allow the Fe and Pt atoms rearranging. Through the current driven atomic motion and rearrangement, fast LOPT can result in the establishment of perpendicular magnetic anisotropy of the FePt films at room temperature. This effect is expected to work with other L10 typed magnetic materials for spintronic devices development.

  20. Size Dependence of Magnetic Properties of Nanoscale CoFeB-MgO Magnetic Tunnel Junctions with Perpendicular Magnetic Easy Axis Observed by Ferromagnetic Resonance

    NASA Astrophysics Data System (ADS)

    Mizunuma, Kotaro; Yamanouchi, Michihiko; Sato, Hideo; Ikeda, Shoji; Kanai, Shun; Matsukura, Fumihiro; Ohno, Hideo

    2013-06-01

    The junction diameter D dependence of effective magnetic fields in a recording layer of CoFeB-MgO magnetic tunnel junctions with perpendicular magnetic easy axis is evaluated by ferromagnetic resonance measurements using the homodyne detection technique. The effective perpendicular magnetic field increases with decreasing D, which reflects mainly the reduction of the demagnetizing factor normal to the film plane. The stray field from a reference layer also increases with reducing D, which is in agreement with the D dependence of the shift field of the center of minor resistance versus perpendicular magnetic field curves with respect to zero magnetic field.

  1. Magnetization reversal and enhanced tunnel magnetoresistance ratio in perpendicular magnetic tunnel junctions based on exchange spring electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Yin, Xiaolu; Le Roy, D.; Jiang, Jun; Wei, H. X.; Liou, S. H.; Han, X. F.

    2013-04-01

    The [Co/Pt]n multilayer based perpendicular magnetic tunnel junction stacks with wedged Co60Fe20B20 insertions up to 2 nm, and corresponding perpendicular magnetic tunnel junctions were magnetically and electrically investigated. The focus is on the influence of CoFeB insertions in the free and reference electrodes on the overall junction magnetization reversal and magnetoresistance response. The exchange spring behavior was revealed as the Co60Fe20B20 spins canting towards the in-plane direction in the [Co/Pt]n/Co60Fe20B20 hard/soft perpendicular magnetic electrodes. The broad range thickness of wedged Co60Fe20B20 insertion enables to reveal the critical transition, in particular, from rigid coupling to exchange spring coupling. With the help of 375°C annealing under 10 kOe magnetic field, the recovery from distinct multi-domain structure to nearly single domain structure was distinctly observed in the unpatterned perpendicular magnetic tunnel junction (p-MTJ) films with CoFeB thickness tCFB≥1.5 nm. Meanwhile, for the corresponding patterned perpendicular magnetic tunnel junctions with AlOx barrier, the tunnel magnetoresistance (TMR) ratio exhibited an intense enhancement over 100%. The TMR results and spin configurations were illustrated using an exchange spring model in both magnetic electrodes. The presented study shows the benefit of using exchange spring magnetic electrodes in perpendicular magnetic tunnel junction on their performance.

  2. Enhancement of perpendicular magnetic anisotropy of Co layer in exchange-biased Au/Co/NiO/Au polycrystalline system

    NASA Astrophysics Data System (ADS)

    Kuświk, P.; Szymański, B.; Anastaziak, B.; Matczak, M.; Urbaniak, M.; Ehresmann, A.; Stobiecki, F.

    2016-06-01

    The perpendicular exchange bias in NiO(antiferromagnet)/Co(ferromagnet) polycrystalline layer films is studied. It is found that the NiO layer forces the Co layer magnetization to be oriented perpendicular to the film plane in a greater thickness range than is found in the Au/Co/Au system. Simultaneously, a large coercivity and a significant perpendicular exchange bias field were observed that are owing to the interlayer exchange bias coupling between NiO and Co, which supports the perpendicular magnetic anisotropy of the Co layer. These findings are confirmed by magnetometry and magnetoresistance measurements.

  3. Perpendicularly magnetized (001)-textured D0{sub 22} MnGa films grown on an (Mg{sub 0.2}Ti{sub 0.8})O buffer with thermally oxidized Si substrates

    SciTech Connect

    Lee, Hwachol; Sukegawa, Hiroaki; Liu, Jun; Mitani, Seiji; Hono, Kazuhiro

    2015-10-28

    We report the growth of (001)-textured polycrystalline D0{sub 22} MnGa films with perpendicular magnetic anisotropy (PMA) on thermally oxidized Si substrates using an (Mg{sub 0.2}Ti{sub 0.8})O (MTO) buffer layer. The ordered D0{sub 22} MnGa film grown at the optimum substrate temperature of 530 °C on the MTO buffer layer shows PMA with magnetization of 80 kA/m, PMA energy density of 0.28 MJ/m{sup 3}, and coercivity of 2.3 T. The scanning transmission electron microscope analysis confirms the formation of a highly (001)-textured structure and the elementally sharp interfaces between the MTO layer and the MnGa layer. The achieved D0{sub 22} MnGa PMA films on an amorphous substrate will provide the possible pathway of integration of a Mn-based PMA film into Si-based substrates.

  4. Fabrication of MgO-based magnetic tunnel junctions with CoCrPt perpendicularly magnetized electrodes

    SciTech Connect

    Watanabe, Daisuke; Mizukami, Shigemi; Miyazaki, Terunobu; Oogane, Mikihiko; Naganuma, Hiroshi; Ando, Yasuo

    2009-04-01

    The applicability of perpendicularly magnetized CoCrPt films to the MgO-based magnetic tunnel junctions (MTJs) was investigated. For this study, CoCrPt films deposited on the Ru buffer exhibited hcp(0002)-oriented growth by sputtering method using the low substrate temperature of 250 deg. C, low saturation magnetization of around 360 emu/cm{sup 3}, and high magnetic anisotropy field of 6 kOe, which is sufficient to retain the thermal stability of the magnetization direction. The MgO-based MTJs with a synthetic ferrimagnetlike structure were fabricated: CoFe was coupled magnetically with CoCrPt through the thin Ru layer. Transport properties with a magnetic field applied perpendicular to the film plane revealed a tunnel magnetoresistance ratio of about 6% at room temperature.

  5. Fabrication of MgO-based magnetic tunnel junctions with CoCrPt perpendicularly magnetized electrodes

    NASA Astrophysics Data System (ADS)

    Watanabe, Daisuke; Mizukami, Shigemi; Oogane, Mikihiko; Naganuma, Hiroshi; Ando, Yasuo; Miyazaki, Terunobu

    2009-04-01

    The applicability of perpendicularly magnetized CoCrPt films to the MgO-based magnetic tunnel junctions (MTJs) was investigated. For this study, CoCrPt films deposited on the Ru buffer exhibited hcp(0002)-oriented growth by sputtering method using the low substrate temperature of 250 °C, low saturation magnetization of around 360 emu/cm3, and high magnetic anisotropy field of 6 kOe, which is sufficient to retain the thermal stability of the magnetization direction. The MgO-based MTJs with a synthetic ferrimagnetlike structure were fabricated: CoFe was coupled magnetically with CoCrPt through the thin Ru layer. Transport properties with a magnetic field applied perpendicular to the film plane revealed a tunnel magnetoresistance ratio of about 6% at room temperature.

  6. Extraordinarily large perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite Co{sub x}Fe{sub 3−x}O{sub 4}(001) (x = 0.75, 1.0) thin films

    SciTech Connect

    Niizeki, Tomohiko; Utsumi, Yuji; Aoyama, Ryohei; Yanagihara, Hideto; Inoue, Jun-ichiro; Kita, Eiji; Yamasaki, Yuichi; Nakao, Hironori; Koike, Kazuyuki

    2013-10-14

    Perpendicular magnetic anisotropy (PMA) of cobalt-ferrite Co{sub x}Fe{sub 3-x}O{sub 4} (x = 0.75 and 1.0) epitaxial thin films grown on MgO (001) by a reactive magnetron sputtering technique was investigated. The saturation magnetization was found to be 430 emu/cm{sup 3} for x = 0.75, which is comparable to that of bulk CoFe{sub 2}O{sub 4} (425 emu/cm{sup 3}). Torque measurements afforded PMA constants of K{sub u}{sup eff}=9.0 Merg/cm{sup 3} (K{sub u}=10.0 Merg/cm{sup 3}) and K{sub u}{sup eff}=9.7 Merg/cm{sup 3} for x = 0.75 and 1.0, respectively. The value of K{sub u}{sup eff} extrapolated using Miyajima's plot was as high as 14.7 Merg/cm{sup 3} for x = 1.0. The in-plane four-fold magnetic anisotropy was evaluated to be 1.6 Merg/cm{sup 3} for x = 0.75. X-ray diffraction measurement revealed our films to be pseudomorphically strained on MgO (001) with a Poisson ratio of 0.4, leading to a considerable in-plane tensile strain by which the extraordinarily large PMA could be accounted for.

  7. Purely electric-field-driven perpendicular magnetization reversal.

    PubMed

    Hu, Jia-Mian; Yang, Tiannan; Wang, Jianjun; Huang, Houbing; Zhang, Jinxing; Chen, Long-Qing; Nan, Ce-Wen

    2015-01-14

    If achieved, magnetization reversal purely with an electric field has the potential to revolutionize the spintronic devices that currently utilize power-dissipating currents. However, all existing proposals involve the use of a magnetic field. Here we use phase-field simulations to study the piezoelectric and magnetoelectric responses in a three-dimensional multiferroic nanostructure consisting of a perpendicularly magnetized nanomagnet with an in-plane long axis and a juxtaposed ferroelectric nanoisland. For the first time, we demonstrate a full reversal of perpendicular magnetization via successive precession and damping, driven purely by a perpendicular electric-field pulse of certain pulse duration across the nanoferroelectric. We discuss the materials selection and size dependence of both nanoferroelctrics and nanomagnets for experimental verification. These results offer new inspiration to the design of spintronic devices that simultaneously possess high density, high thermal stability, and high reliability. PMID:25549019

  8. Spin Hall Control of Magnetization in a Perpendicularly-Magnetized Magnetic Insulator

    NASA Astrophysics Data System (ADS)

    Pai, Chi-Feng; Quindeau, Andy; Tang, Astera; Onbasli, Mehmet; Mann, Maxwell; Caretta, Lucas; Ross, Caroline; Beach, Geoffrey

    Spin Hall effect (SHE)-induced spin-orbit torque (SOT) has been shown to be an efficient mechanism to control the magnetization in magnetic heterostructures. Although numerous works have demonstrated the efficacy of SOT in manipulating the magnetization of ferromagnetic metals (FM), SOT-controlled switching of ferromagnetic insulators (FMIs) has not yet been observed. In this work we show that spin Hall currents in Pt and Ta can generate SOTs strong enough to control the magnetization direction in an adjacent thulium iron garnet FMI film with perpendicular magnetic anisotropy. We find that dc current in the heavy metal (HM) generates an out-of-plane effective field in the FMI consistent with an antidamping torque whose magnitude is comparable to that observed in all-metallic systems. Spin Hall magnetoresistance (SMR) measurements reveal a large spin-mixing conductance, which implies considerable spin transparency at the metal/insulator interface and explains the observed strong current-induced torque. Our results show that charge currents flowing in a HM can be used to both control and detect the magnetization direction in a FMI electrically.

  9. Copper dusting effects on perpendicular magnetic anisotropy in Pt/Co/Pt tri-layers

    NASA Astrophysics Data System (ADS)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S.

    2016-05-01

    The effect of Cu dusting on perpendicular magnetic anisotropy of sputter grown Pt/Co/Pt stack in which the Cu layer is in proximity with that of Co is investigated in this work. We used magneto optic Kerr effect microscopy measurements to study the variation in the reversal mechanisms in films with Co thicknesses below 0.8nm by systematically varying their perpendicular magnetic anisotropy using controlled Cu dusting. Cu dusting was done separately above and below the cobalt layer in order to understand the role of bottom and top Pt layers in magnetization reversal mechanisms of sputtered Pt/Co/Pt stack. The introduction of even 0.3nm thick Cu layer below the cobalt layer drastically affected the perpendicular magnetic anisotropy as evident from the nucleation behavior. On the contrary, even a 4nm thick top Cu layer had little effect on the reversal mechanism. These observations along with magnetization data was used to estimate the role of top and bottom Pt in the origin of perpendicular magnetic anisotropy as well as magnetization switching mechanism in Pt/Co/Pt thin films. Also, with an increase in the bottom Cu dusting from 0.2 to 0.4nm there was an increase in the number of nucleation sites resulting in the transformation of domain wall patterns from a smooth interface type to a finger like one and finally to maze type.

  10. Isothermal switching of perpendicular exchange bias by pulsed high magnetic field

    NASA Astrophysics Data System (ADS)

    Shiratsuchi, Yu; Wakatsu, Kohei; Nakamura, Tetsuya; Oikawa, Hiroto; Maenou, Satoru; Narumi, Yasuo; Tazoe, Kou; Mitsumata, Chiharu; Kinoshita, Toyohiko; Nojiri, Hiroyuki; Nakatani, Ryoichi

    2012-06-01

    Isothermal switching of a perpendicular exchange bias by a strong pulsed magnetic field has been investigated using a Pt/Co/α-Cr2O3 thin film system. The switching of the perpendicular exchange bias is accompanied by the spin reversal of interfacial uncompensated antiferromagnetic Cr spins. We have also demonstrated that the switching of the exchange bias is reversible by changing the pulsed magnetic field direction. The mechanism of the demonstrated switching is discussed from the viewpoint of the spin flop transition of the α-Cr2O3 layer.

  11. Perpendicular magnetic anisotropy in Ta/Co2FeAl/MgO multilayers

    NASA Astrophysics Data System (ADS)

    Gabor, M. S.; Petrisor, T.; Tiusan, C.; Petrisor, T.

    2013-08-01

    In this paper, we demonstrate the stabilization of perpendicular magnetic anisotropy (PMA) in Ta/Co2FeAl/MgO multilayers sputtered on thermally oxidized Si(100) substrates. The magnetic analysis points out that these films show significant interfacial anisotropy even in the as-deposited state, KS=0.67 erg/cm2, enough to provide PMA for the as-deposited films with thicknesses below 1.5 nm. Moreover, the interfacial anisotropy is enhanced by thermal annealing up to 300 °C. The presence of a magnetic dead layer, whose thickness increases with annealing temperature, was also identified.

  12. CoCrPt antidot arrays with perpendicular magnetic anisotropy made on anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Navas, D.; Ilievski, F.; Ross, C. A.

    2009-06-01

    Ti(5 nm)/CoCrPt(5-20 nm) bilayers with perpendicular magnetic anisotropy were deposited by rf sputtering onto porous alumina films to form antidot arrays with period 105 nm and pore diameters ranging from 18 to 56 nm. The coercivities of the antidot arrays are greater than those of unpatterned films and show only a weak dependence on antidot diameter. Magnetic force microscopy of ac-demagnetized samples shows that the antidot arrays have domain sizes larger than the 105 nm period. The magnetic behavior is discussed in terms of domain wall pinning by the antidots.

  13. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector.

    PubMed

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet's principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet's principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies. PMID:26740335

  14. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector

    PubMed Central

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies. PMID:26740335

  15. Second order anisotropy contribution in perpendicular magnetic tunnel junctions

    PubMed Central

    Timopheev, A. A.; Sousa, R.; Chshiev, M.; Nguyen, H. T.; Dieny, B.

    2016-01-01

    Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form −K2cos4θ must be added to the conventional uniaxial –K1cos2θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated −K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from “easy-axis” to “easy-cone” regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface. PMID:27246631

  16. Second order anisotropy contribution in perpendicular magnetic tunnel junctions.

    PubMed

    Timopheev, A A; Sousa, R; Chshiev, M; Nguyen, H T; Dieny, B

    2016-01-01

    Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form -K2cos(4)θ must be added to the conventional uniaxial -K1cos(2)θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated -K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from "easy-axis" to "easy-cone" regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface. PMID:27246631

  17. Second order anisotropy contribution in perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Timopheev, A. A.; Sousa, R.; Chshiev, M.; Nguyen, H. T.; Dieny, B.

    2016-06-01

    Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form ‑K2cos4θ must be added to the conventional uniaxial –K1cos2θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated ‑K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from “easy-axis” to “easy-cone” regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface.

  18. Magnetic tunnel junction sensor with Co/Pt perpendicular anisotropy ferromagnetic layer

    SciTech Connect

    Wei, H. X.; Qin, Q. H.; Wen, Z. C.; Han, Prof. X. F.; Zhang, Xiaoguang

    2009-01-01

    Linear magnetoresistance (MR) is an important attribute for magnetic sensor designs for space applications, three dimensional detection of the magnetic field, and high field measurements. Here we demonstrate that a large linear MR of up to 22% can be achieved in a magnetic tunnel junction that consists of two ferromagnetic layers, one with out of plane and one with in plane magnetic anisotropy. The tunnelling magnetoresistance (TMR) is measured with the electrical current perpendicular to the film plane. The magnetic configuration of the device is analyzed.

  19. Perpendicularly magnetized spin filtering Cu/Ni multilayers

    SciTech Connect

    Shirahata, Yasuhiro; Wada, Eiji; Itoh, Mitsuru; Taniyama, Tomoyasu

    2014-01-20

    Spin filtering at perpendicular magnetized Cu/Ni multilayer/GaAs(001) interfaces is demonstrated at remanence using optical spin orientation method. [Cu(9 nm)/Ni(t{sub Ni} nm)]{sub n} multilayers are found to show a crossover from the in-plane to out-of-plane magnetic anisotropy at the Cu/Ni bilayer repetition n = 4 and the Ni layer thickness t{sub Ni} = 3. For a perpendicularly magnetized Cu/Ni multilayer/n-GaAs(001) interface, circular polarization dependent photocurrent shows a clear hysteretic behavior under optical spin orientation conditions as a function of magnetic field out-of-plane while the bias dependence exhibits a substantial peak at a forward bias, verifying that Cu/Ni multilayers work as an efficient spin filter in the remanent state.

  20. Thermal annealing effect on FeCoB soft underlayer for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Yu, Jun; Chang, Chunghee; Karns, Duane; Ju, Ganping; Kubota, Yukiko; Eppler, Walter; Brucker, Charles; Weller, Dieter

    2002-05-01

    We study the noise performance of amorphous FeCoB soft underlayers (SULs) with radial magnetic anisotropy. 200 nm thick FeCoB films are sputter deposited and optionally postannealed for 8 s at different annealing powers. The correlation of SUL read-back noise with the magnetic and structural properties is studied using spin stand testing, in-plane magneto-optical Kerr effect measurements, magnetic force microscopy, and x-ray diffraction. The effects of annealing to achieve low read-back noise are examined. It is found that as-prepared films show large dc noise associated with stripe domains due to stress-induced perpendicular anisotropy. Thermal annealing reduces the internal stress and the films become magnetically anisotropic in the radial direction. The SUL-induced dc noise drops to the electronic noise floor. dc noise is found to decrease with an increase in annealing power until the films start to crystallize.

  1. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-01

    Heulser alloys Fe2Cr1-xCoxSi (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 106 erg/cm3. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe2CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  2. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut

    2016-04-01

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  3. Dirac oscillator in perpendicular magnetic and transverse electric fields

    SciTech Connect

    Nath, D.; Roy, P.

    2014-12-15

    We study (2+1) dimensional massless Dirac oscillator in the presence of perpendicular magnetic and transverse electric fields. Exact solutions are obtained and it is shown that there exists a critical magnetic field B{sub c} such that the spectrum is different in the two regions B>B{sub c} and Bmagnetic as well as electric field. • Exact solutions are found. • Critical cases have been examined.

  4. Interface induced manipulation of perpendicular exchange bias in Pt/Co/(Pt,Cr)/CoO thin films

    NASA Astrophysics Data System (ADS)

    Akdoğan, N.; Yağmur, A.; Öztürk, M.; Demirci, E.; Öztürk, O.; Erkovan, M.

    2015-01-01

    Perpendicular exchange bias has been manipulated by changing ferromagnetic film thickness and spacer layer in Pt/Co/(Pt,Cr)/CoO thin films. The exchange bias characteristics, blocking temperature, and magnetization of thin films strongly depend on the spacer layer (Pt,Cr) between ferromagnetic and antiferromagnetic layers. While Pt/Co/Pt/CoO thin films show perpendicular exchange bias, Pt/Co/Cr/CoO has exchange bias with easy magnetization axis in the film plane. We have also observed very small hysteretic behavior from the hard axis magnetization curve of Pt/Co/Cr/CoO film. This can be attributed to misalignment of the sample or small perpendicular contribution from Pt/Co bottom interface. We have also investigated the temperature and spacer layer dependent exchange bias properties of the samples. We observed higher HEB and HC for the thicker Co layer in the Pt/Co/Pt/CoO sample. In addition, onset of exchange bias effect starts at much lower temperatures for Pt/Co/Cr/CoO thin film. This clearly shows that Cr spacer layer not only removes the perpendicular exchange bias, but also reduces the exchange interaction between Co and CoO and thus lowers the TB.

  5. Optimization of Ta thickness for perpendicular magnetic tunnel junction applications in the MgO-FeCoB-Ta system

    NASA Astrophysics Data System (ADS)

    Sokalski, Vincent; Moneck, Matthew T.; Yang, En; Zhu, Jian-Gang

    2012-08-01

    The impact of Ta thickness on magnetic anisotropy and interlayer magnetic coupling is evaluated for the Ta-FeCoB-MgO thin film system commonly used in magnetic tunnel junctions. It is shown that there exists a window of Ta thickness where strong magnetic coupling of FeCoB with another magnetic layer is achievable through Ta while still maintaining properties required for use in a perpendicular magnetic tunnel junction. We also expand on existing knowledge about the role of annealing temperature, film composition, and seedlayer sequence on magnetic anisotropy in Ta/FeCoB/MgO tri-layers of varying FeCoB thickness.

  6. Experimental modeling of intergranular exchange coupling for perpendicular thin film media

    NASA Astrophysics Data System (ADS)

    Sokalski, Vincent; Laughlin, David E.; Zhu, Jian-Gang

    2009-09-01

    We present an experimental model system that enables quantitative assessment of intergranular exchange coupling in CoCrPt-oxide perpendicular magnetic recording media. A thin film structure consisting of a high coercivity CoPt unicrystal layer and a lower coercivity CoPt layer separated by a thin oxide interlayer is used to model perpendicularly magnetized grains separated by oxide grain boundaries. Exchange coupling energy between the CoPt layers was obtained for SiOx, TiOx, and CrOx interlayers by measuring field shifts from the lower coercivity layer. Cr segregation in CoCrPt grains to grain boundaries is also modeled experimentally and found to significantly suppress exchange coupling.

  7. CrPt3 thin film media for perpendicular or magneto-optical recording

    NASA Astrophysics Data System (ADS)

    Leonhardt, T. D.; Chen, Y.; Rao, M.; Laughlin, D. E.; Lambeth, D. N.; Kryder, M. H.

    1999-04-01

    The magnetic properties of CrPt3 L12 ferrimagnetic thin films have been studied. Films were produced by sputtering multilayers of Cr and Pt onto silicon nitride coated silicon substrates. The as-deposited films are nonmagnetic. An anneal at ˜800 °C results in ferrimagnetic behavior with a perpendicular easy-axis. X-ray diffraction and transmission electron microscopy (TEM) measurements show that (111) CrPt3 is the only crystalline phase present after annealing. Rocking curves with a full width at half maximum as low as 1.8° indicate good crystallographic orientation. Magnetic properties of the films vary with composition, annealing temperature and time, layer thickness, and sputtering conditions. The films exhibit large coercivities, Hc, that can be tuned in the range 1500-8000 Oe. Saturation magnetization, Ms, is typically 150-200 emu/cc. Squarenesses, S, as high as 0.99 have been found. A uniaxial magnetic anisotropy constant, Ku, of up to 8×106erg/cc was achieved. TEM micrographs show a 35 nm average grain size and complete interdiffusion of the Cr and Pt. Magneto-optical hysteresis loops at 632.8 nm wavelength reveal Kerr rotations of about 0.21° when the films are overcoated with a quarter-wavelength dielectric.

  8. Giant perpendicular magnetocrystalline anisotropy of 3d transition-metal thin films on MgO

    SciTech Connect

    Nakamura, Kohji Ikeura, Yushi; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Magnetocrystalline anisotropy (MCA) of the Fe-based transition-metal thin films was investigated by means of first principles full-potential linearized augmented plane wave method. A giant perpendicular MCA (PMCA), up to 3 meV, was confirmed in a 7-layer Fe-Ni film/MgO(001), where an Fe{sub 2}/Ni/Fe/Ni/Fe{sub 2} atomic-layer alignment with a bcc-like-layer stacking and the Fe/MgO interfaces play key roles for leading to the large PMCA. Importantly, we find that the PMCA overcomes enough over the magnetic dipole-dipole anisotropy that favors the in-plane magnetization even when the film thickness increases.

  9. Magnetic interaction in perpendicular recording media with synthetic nucleation layers

    NASA Astrophysics Data System (ADS)

    Piramanayagam, S. N.; Tan, H. K.; Ranjbar, M.; Wong, S. K.; Sbiaa, R.; Chong, T. C.

    2011-04-01

    Perpendicular recording media, where the CoCrPt-oxide recording layer is deposited on carbon based synthetic nucleation (SN) layers, have been proposed for recording applications and studied using first-order reversal curves for their magnetic interaction behavior. The magnetic properties of media with SN layer show better intergranular segregation whereas the media without SN layer shows otherwise. It is proposed that a dual SN layer structure, where an SN layer deposited above and below the high pressure sputtered Ru layer is suitable for achieving smaller grain size as well as better intergranular segregation.

  10. Microwave assisted magnetization reversal in cylindrical antidot arrays with in-plane and perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Yumak, Mehmet; Ture, Kerim; Aktas, Gulen; Vega, Victor; Prida, Victor; Garcia, Carlos

    2012-02-01

    Porous anodic alumina is a particularly attractive self-ordered system used as template to fabricate nanostructures. The anodic film contains a self-ordered hexagonal array of parallel pores with tunable pore size and interpore distance, and whose pore locations can be templated. Deposition of magnetic films onto porous alumina leads to the formation of porous magnetic films, whose properties differ significantly from those of unpatterned films. The study of antidot arrays has both technological and fundamental importance. Although porous alumina films are typically synthesized in a planar geometry, in this work we deposited NiFe and Ti/CoCrPt magnetic films with in-plane and out-of-plane anisotropy onto cylindrical-geometry porous anodic alumina substrates to achieve cylindrical antidot arrays. The effect of both, the magnitude of the AC current and the circular magnetic field on the magnetization reversal has been studied for in-plane and perpendicular anisotropies. The level of reduction in the switching field was found to be dependent on the power, the frequency of the microwave pulses and the circular applied magnetic field. Such a reduction is associate with the competition between pumping and damping processes.

  11. Perpendicular coercivity enhancement of CoPt/TiN films by nitrogen incorporation during deposition

    SciTech Connect

    An, Hongyu; Harumoto, Takashi; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji; Wang, Jian; Szivos, Janos; Safran, Gyorgy

    2015-11-28

    The effect of N incorporation on the structure and magnetic properties of CoPt thin films deposited on glass substrates with TiN seed layers has been investigated. During the deposition of CoPt, introducing 20% N{sub 2} into Ar atmosphere promotes the (001) texture and enhances the perpendicular coercivity of CoPt film compared with the film deposited in pure Ar and post-annealed under the same conditions. From the in situ x-ray diffraction results, it is confirmed that N incorporation expands the lattice parameter of CoPt, which favors the epitaxial growth of CoPt on TiN. During the post-annealing process, N releases from CoPt film and promotes the L1{sub 0} ordering transformation of CoPt.

  12. Perpendicular coercivity enhancement of CoPt/TiN films by nitrogen incorporation during deposition

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Wang, Jian; Szivos, Janos; Harumoto, Takashi; Sannomiya, Takumi; Muraishi, Shinji; Safran, Gyorgy; Nakamura, Yoshio; Shi, Ji

    2015-11-01

    The effect of N incorporation on the structure and magnetic properties of CoPt thin films deposited on glass substrates with TiN seed layers has been investigated. During the deposition of CoPt, introducing 20% N2 into Ar atmosphere promotes the (001) texture and enhances the perpendicular coercivity of CoPt film compared with the film deposited in pure Ar and post-annealed under the same conditions. From the in situ x-ray diffraction results, it is confirmed that N incorporation expands the lattice parameter of CoPt, which favors the epitaxial growth of CoPt on TiN. During the post-annealing process, N releases from CoPt film and promotes the L10 ordering transformation of CoPt.

  13. Small-angle polarized neutron studies of perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Lister, S. J.; Wismayer, M. P.; Venkataramana, V.; de Vries, M. A.; Ray, S. J.; Lee, S. L.; Thomson, T.; Kohlbrecher, J.; Do, H.; Ikeda, Y.; Takano, K.; Dewhurst, C.

    2009-09-01

    Polarized small-angle neutron scattering has been used to measure the local magnetic structure of writable thin-film perpendicular media with a granular CoCrPt-SiOx recording layer. By exploiting the cross terms between the nuclear and magnetic scattering, we are able to probe simultaneously both the grain structure and the subgranular magnetic structure of the recording layer, which has a thickness of only 15 nm and which is embedded within a full perpendicular media structure including soft underlayer. Two models are used to analyze the data, one analytical and the other a numerical approach based on transmission electron microscopy measurements of the grains. Both models show that the recording layer consists of ferromagnetically ordered core regions that are smaller in extent than the corresponding grains and allow a direct, quantitative comparison of these two length scales.

  14. Growth-induced perpendicular magnetic anisotropy and clustering in Ni xPt 1- x alloys

    NASA Astrophysics Data System (ADS)

    Vasumathi, D.; Shapiro, A. L.; Maranville, B. B.; Hellman, F.

    2001-02-01

    Polycrystalline and epitaxial (1 0 0), (1 1 0), and (1 1 1)-oriented Ni 3Pt, NiPt, and NiPt 3 films were deposited over a range of growth temperatures from 80°C to 700°C. Films grown at moderate temperatures (200-400°C) exhibit growth-induced properties similar to Co-Pt alloys: enhanced and broadened Curie temperature, perpendicular magnetic anisotropy and large coercivity. As in Co-Pt, the magnetic properties suggest a clustering of Ni into platelets on the growth surface, as the films are being grown. Unlike Co-Pt, however, NiPt films exhibit a strong orientational dependence of anisotropy and enhanced Curie temperature, possibly resulting from different types of surface reconstructions which affect the growth surface.

  15. Antiferromagnet-induced perpendicular magnetic anisotropy in ferromagnetic/antiferromagnetic/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Yao; Lin, Po-Han; Tsai, Ming-Shian; Shih, Chun-Wei; Lee, Meng-Ju; Huang, Chun-Wei; Jih, Nae-Yeou; Wei, Der-Hsin

    2016-08-01

    This study demonstrates the effect of antiferromagnet-induced perpendicular magnetic anisotropy (PMA) on ferromagnetic/antiferromagnetic/ferromagnetic (FM/AFM/FM) trilayers and reveals its interplay with a long-range interlayer coupling between separated FM layers. In epitaxially grown 12 monolayer (ML) Ni/Co/Mn/5 ML Co/Cu(001) films, magnetic hysteresis loops and element-resolved magnetic domain imaging showed that the magnetization direction of the top layers of 12 ML Ni/Co films could be changed from the in-plane direction to the perpendicular direction, when the thickness of the Mn films (tMn) was greater than a critical value close to the thickness threshold associated with the onset of AFM ordering (tMn=3.5 ML). The top FM layers exhibited a significantly enhanced PMA when tMn increased further, and this enhancement can be attributed to a strengthened AFM ordering of the volume moments of the Mn films, as evidenced by the presence of induced domain frustration. By contrast, the long-range interlayer coupling presented clear effects only when tMn was at a lower coverage.

  16. Perpendicular propagation of electromagnetic solitons in magnetized thermal pair plasmas

    NASA Astrophysics Data System (ADS)

    Verheest, Frank

    2016-02-01

    The properties of perpendicularly propagating large amplitude electromagnetic solitons are investigated in a thermal, magnetized pair plasma. To obtain a tractable description, these solitons are assumed to be charge neutral and have a linearly polarized magnetic field, and thus represent the nonlinear extension of part of the linear extraordinary mode. From a Sagdeev pseudopotential analysis it transpires that these solitons are compressive and characterized by a wave magnetic field parallel to the static field. The existence domain in compositional parameter space shows pressure-dependent maxima for the soliton velocities, densities and total magnetic field. Physically, an increase in pressure yields a decrease in the acceptable maxima. This is also illustrated on typical pseudopotential and soliton profiles.

  17. Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Weigand, Markus; Träger, Nick; Schütz, Gisela; Goering, Eberhard J.; Skripnik, Maxim; Nowak, Ulrich; Haering, Felix; Ziemann, Paul; Wiedwald, Ulf

    2016-03-01

    While the magnetic properties of nanoscaled antidot lattices in in-plane magnetized materials have widely been investigated, much less is known about the microscopic effect of hexagonal antidot lattice patterning on materials with perpendicular magnetic anisotropy. By using a combination of first-order reversal curve measurements, magnetic x-ray microscopy, and micromagnetic simulations we elucidate the microscopic origins of the switching field distributions that arise from the introduction of antidot lattices into out-of-plane magnetized GdFe thin films. Depending on the geometric parameters of the antidot lattice we find two regimes with different magnetization reversal processes. For small antidots, the reversal process is dominated by the exchange interaction and domain wall pinning at the antidots drives up the coercivity of the system. On the other hand, for large antidots the dipolar interaction is dominating which leads to fragmentation of the system into very small domains that can be envisaged as a basis for a bit patterned media.

  18. Perpendicular magnetic tunnel junctions with synthetic antiferromagnetic pinned layers based on [Co/Pd] multilayers

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Jen; Canizo-Cabrera, A.; Garcia-Vazquez, Valentin; Chang, Yang-Hua; Wu, Te-ho

    2013-05-01

    We fabricated MgO-based perpendicular magnetic tunnel junctions (p-MTJ) with Ta/CoFeB magnetic electrodes. Synthetic antiferromagnetic (SAF) pinned layers with perpendicular magnetic anisotropy (PMA) were included into the p-MTJs by using two Co/Pd multilayers (MLs) separated by a thin Ru spacer layer. The MTJs stack has the structure bottom contact/free layer CoFeB (1.0)/MgO (1)/pinned layer CoFeB (1.0)/Ta spacer layer/SAF/Ru cap layer/top contact (the units in parenthesis are in nanometers). The SAF was optimized by changing the repetition period n in one of the Co/Pd multilayers and the Ru thickness in order to obtain PMA with antiferromagnetic (AFM) coupling. The Ru spacer values were 0.7, 0.75, 0.8, 0.85, and 0.9 nm. The magnetic studies show that all magnetic films, including the Ta/CoFeB layers, are perpendicularly magnetized. The two Co/Pd MLs are AFM coupled for n > 2. Controlling the Ru thickness, the interlayer exchange coupling strength Jiec can be tailored. Jiec vs. Ru thickness exhibits a simple exponential decay. The electrical properties of the full p-MTJ with SAF show a low resistance-area (RA) product of 44.7 Ω μm2 and a tunnel magnetoresistance (TMR) ratio of 10.2%.

  19. Interlayer exchange coupling in perpendicularly magnetized synthetic ferrimagnet structure using CoCrPt and CoFeB

    NASA Astrophysics Data System (ADS)

    Watanabe, D.; Mizukami, S.; Wu, F.; Oogane, M.; Naganuma, H.; Ando, Y.; Miyazaki, T.

    2010-01-01

    Interlayer exchange coupling in synthetic ferrimagnet structures consisting of perpendicularly magnetized CoCrPt and in-plane magnetized CoFeB layers, which are coupled by a Ru thin spacer, were investigated. The magnetization of the CoFeB layer turned perpendicular to the film plane after annealing at 300°C because of the appearance of interlayer coupling from the CoCrPt layer. The coupling varied between antiferromagnetic and ferromagnetic depending on the Ru spacer thickness. The sign and strength of the coupling were also observed through analyses of magnetization curves and ferromagnetic resonance spectra.

  20. Dynamical mechanism for coercivity tunability in the electrically controlled FePt perpendicular films with small grain size

    SciTech Connect

    Feng, Chun Li, Xujing; Jiang, Yong; Yu, Guanghua; Yang, Meiyin; Gong, Kui; Li, Baohe

    2014-01-14

    This article reports property manipulations and related dynamical evolution in electromigration controlled FePt perpendicular films. Through altering voltage and treatment time of the power supply applied on the films, electronic momentum was fleetly controlled to manipulate the kinetic energy of Fe and Pt atoms based on momentum exchanges. The electromigration control behavior was proven to cause steerable ordering degree and grain growth in the films without thermal treatment. Processed FePt films with small grain size, high magnetocrystalline anisotropy, and controllable coercivity can be easily obtained. The results provide a novel method for tuning magnetic properties of other L1{sub 0} structured films.

  1. Analysis of waveform from perpendicular magnetic printed media

    NASA Astrophysics Data System (ADS)

    Sheeda, Nurul; Okami, Satoshi; Komine, Takashi; Sugita, Ryuji

    Edge printing is one of the perpendicular magnetic printing methods for writing servo signals with high speed, high accuracy and low cost. Sub-peaks of waveform from edge printed media are concerned as the sub-peaks can cause errors during the read-back process. In this study, in order to reduce sub-peaks, the influence of printing field, bit length and patterned magnetic layer thickness of master medium on sub-peaks is investigated by using a metal-evaporated (ME) tape as a slave medium. The results show that sub-peak to main peak ratio decreases with stronger printing field, smaller bit length and thicker patterned magnetic layer of master media.

  2. Patterning of sub-50 nm perpendicular CoFeB/MgO-based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Tryputen, Larysa; Tu, Kun-Hua; Piotrowski, Stephan K.; Bapna, Mukund; Majetich, Sara A.; Sun, Congli; Voyles, Paul M.; Almasi, Hamid; Wang, Weigang; Vargas, Patricio; Tresback, Jason S.; Ross, Caroline A.

    2016-05-01

    Perpendicular magnetic tunnel junctions (p-MTJs) were patterned into nanopillars using electron-beam lithography to study their scaling and switching behaviour. Magnetoresistance measurements of annealed and unannealed p-MTJ films using scanning probe microscopy showed good agreement with Monte Carlo modeling. p-MTJ pillars demonstrated clear parallel magnetic states, both ‘up’ or both ‘down’ following AC-demagnetization. Significant variability in the resistance of p-MTJ pillars was observed and attributed to edge features generated during patterning or local inhomogeneity in the MgO layer.

  3. Patterning of sub-50 nm perpendicular CoFeB/MgO-based magnetic tunnel junctions.

    PubMed

    Tryputen, Larysa; Tu, Kun-Hua; Piotrowski, Stephan K; Bapna, Mukund; Majetich, Sara A; Sun, Congli; Voyles, Paul M; Almasi, Hamid; Wang, Weigang; Vargas, Patricio; Tresback, Jason S; Ross, Caroline A

    2016-05-01

    Perpendicular magnetic tunnel junctions (p-MTJs) were patterned into nanopillars using electron-beam lithography to study their scaling and switching behaviour. Magnetoresistance measurements of annealed and unannealed p-MTJ films using scanning probe microscopy showed good agreement with Monte Carlo modeling. p-MTJ pillars demonstrated clear parallel magnetic states, both 'up' or both 'down' following AC-demagnetization. Significant variability in the resistance of p-MTJ pillars was observed and attributed to edge features generated during patterning or local inhomogeneity in the MgO layer. PMID:27005330

  4. Anomalous enhancement in interfacial perpendicular magnetic anisotropy through uphill diffusion

    NASA Astrophysics Data System (ADS)

    Das, Tanmay; Kulkarni, Prabhanjan D.; Purandare, S. C.; Barshilia, Harish C.; Bhattacharyya, Somnath; Chowdhury, Prasanta

    2014-06-01

    We observed interfacial chemical sharpening due to uphill diffusion in post annealed ultrathin multilayer stack of Co and Pt, which leads to enhanced interfacial perpendicular magnetic anisotropy (PMA). This is surprising as these elements are considered as perfectly miscible. This chemical sharpening was confirmed through quantitative energy dispersive x-ray (EDX) spectroscopy and intensity distribution of images taken on high angle annular dark field (HAADF) detector in Scanning Transmission Electron Microscopic (STEM) mode. This observation demonstrates an evidence of miscibility gap in ultrathin coherent Co/Pt multilayer stacks.

  5. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    NASA Astrophysics Data System (ADS)

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-04-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  6. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    PubMed Central

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-01-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line. PMID:27098108

  7. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    PubMed

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-01-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line. PMID:27098108

  8. Giant Perpendicular Magnetic Anisotropy of Graphene-Co Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Hallal, Ali; Chshiev, Mairbek; Spintec theory Team

    We report strongly enhanced perpendicular anisotropy (PMA) of Co films by graphene coating via ab-initio calculations. The results show that graphene coating can improve the surface anisotropy of Co film up to twice large of the bare Co case and keep the film effective anisotropy being out-of-plane till 25 Å of Co, in agreement with experiments. Our layer resolved analysis reveals that PMA of Co (Co/Gr) films mainly originates from the adjacent 3 Co layers close to surface (interface) and can be strongly influenced by graphene. Furthermore, orbital hybridization analysis uncovers the origin of the PMA enhancement which is due to graphene-Co bonding causing an inversion of Co 3dz 2 and 3dx 2 - y 2 Bloch states close to Fermi level. Finally, we propose to design Co-graphene heterostructures which possess a linearly increasing surface anisotropy and a constant effective anisotropy. These findings point towards a possible engineering graphene-Co junctions with giant anisotropy, which stands as a hallmark for future spintronic information processing. This work was supported by European Graphene Flagship, European Union-funded STREP project CONCEPT-GRAPHENE, French ANR Projects NANOSIM-GRAPHENE and NMGEM

  9. SrFeO amorphous underlayer for fabrication of c-axis perpendicularly orientated strontium hexaferrite films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Ong, C. K.

    2013-09-01

    A thin amorphous SrFeO underlayer on Si(100) substrate was pulse laser deposited as an underlayer for the growth of c-axis perpendicularly oriented strontium hexaferrite (SrFe12O19) films. The amorphous SrFeO underlayer was deposited at different temperatures in the range from room temperature to 700 °C, while the SrFe12O19 film was deposited at 700 °C. The SrFe12O19 films exhibited slightly perpendicular magnetic anisotropy by the rather higher coercivities in perpendicular direction (Hc⊥) than those for the in-plane direction (Hc||), due to the c-axis perpendicular orientation. The magnetization and coercivities of the SrFe12O19 film increase, but the magnetic anisotropy (ΔHc=Hc⊥-Hc||) increases firstly and then decreases, as the SrFeO underlayer deposition temperature increases.

  10. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy

    PubMed Central

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (Kueff) over 6 Merg/cm3 is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and Kueff of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory. PMID:25597496

  11. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy.

    PubMed

    Ma, Q L; Zhang, X M; Miyazaki, T; Mizukami, S

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (K(u)(eff)) over 6 Merg/cm(3) is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and K(u)(eff) of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory. PMID:25597496

  12. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (Kueff) over 6 Merg/cm3 is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and Kueff of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory.

  13. Resolving the controversy of a possible relationship between perpendicular magnetic anisotropy and the magnetic damping parameter

    SciTech Connect

    Shaw, Justin M.; Nembach, Hans T.; Silva, T. J.

    2014-08-11

    We use broadband ferromagnetic resonance spectroscopy to systematically measure the Landau-Lifshitz damping parameter, perpendicular anisotropy, and the orbital moment asymmetry in Co{sub 90}Fe{sub 10}/Ni multilayers. No relationship is found between perpendicular magnetic anisotropy and the damping parameter in this material. However, inadequate accounting for inhomogeneous linewidth broadening, spin-pumping, and two-magnon scattering could give rise to an apparent relationship between anisotropy and damping. In contrast, the orbital-moment asymmetry and the perpendicular anisotropy are linearly proportional to each other. These results demonstrate a fundamental mechanism by which perpendicular anisotropy can be varied independently of the damping parameter.

  14. Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei; Goldbach, James T.; Russell, Thomas P.; Tuominen, Mark T.

    2005-05-01

    This research is focused on the development of pulse electrodeposition techniques to fabricate a high-density array of vertically oriented, high-magnetic anisotropy cobalt nanowires using a porous polymer film template. This type of array is a competitive candidate for future perpendicular magnetic media capable of storage densities exceeding 1Terabit/in.2 The polymer template, derived from a self-assembling P(S-b-MMA) diblock copolymer film, provides precise control over the nanowire diameter (15nm) and interwire spacing (24nm), whereas nanowire length (typically 50to1000nm) is controlled accurately with the aid of real-time electrochemical quartz crystal monitoring. Pulse and pulse-reversed electrodeposition techniques, as compared to dc, are shown to significantly enhance the perpendicular magnetic anisotropy of the magnetic nanowire array and ultimately result in coercivity as large as 2.7kOe at 300K. Magnetic and structural characterizations suggest that these properties arise from an improved degree of magnetocrystalline anisotropy (due to c-axis oriented crystal growth and improvements in crystal quality) that strongly supplements the basic shape anisotropy of the nanowires. Low temperature magnetometry is used to investigate exchange bias effects due to the incorporation of CoO antiferromagnetic impurities during the electrodeposition process and subsequent Co oxidation in air.

  15. Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays

    SciTech Connect

    Ursache, Andrei; Goldbach, James T.; Russell, Thomas P.; Tuominen, Mark T.

    2005-05-15

    This research is focused on the development of pulse electrodeposition techniques to fabricate a high-density array of vertically oriented, high-magnetic anisotropy cobalt nanowires using a porous polymer film template. This type of array is a competitive candidate for future perpendicular magnetic media capable of storage densities exceeding 1 Terabit/in.{sup 2} The polymer template, derived from a self-assembling P(S-b-MMA) diblock copolymer film, provides precise control over the nanowire diameter (15 nm) and interwire spacing (24 nm), whereas nanowire length (typically 50 to 1000 nm) is controlled accurately with the aid of real-time electrochemical quartz crystal monitoring. Pulse and pulse-reversed electrodeposition techniques, as compared to dc, are shown to significantly enhance the perpendicular magnetic anisotropy of the magnetic nanowire array and ultimately result in coercivity as large as 2.7 kOe at 300 K. Magnetic and structural characterizations suggest that these properties arise from an improved degree of magnetocrystalline anisotropy (due to c-axis oriented crystal growth and improvements in crystal quality) that strongly supplements the basic shape anisotropy of the nanowires. Low temperature magnetometry is used to investigate exchange bias effects due to the incorporation of CoO antiferromagnetic impurities during the electrodeposition process and subsequent Co oxidation in air.

  16. Kinetic theory of weak turbulence in magnetized plasmas: Perpendicular propagation

    SciTech Connect

    Yoon, Peter H.

    2015-08-15

    The present paper formulates a weak turbulence theory in which electromagnetic perturbations are assumed to propagate in directions perpendicular to the ambient magnetic field. By assuming that all wave vectors lie in one direction transverse to the ambient magnetic field, the linear solution and second-order nonlinear solutions to the equation for the perturbed distribution function are obtained. Nonlinear perturbed current from the second-order nonlinearity is derived in general form, but the limiting situation of cold plasma temperature is taken in order to derive an explicit nonlinear wave kinetic equation that describes three-wave decay/coalescence interactions among X and Z modes. A potential application of the present formalism is also discussed.

  17. Magnetic and magneto-optical properties of cobalt-platinum alloys with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Weller, D.; Brändle, H.; Gorman, G.; Lin, C.-J.; Notarys, H.

    1992-11-01

    Co1-xPtx alloys with Pt contents in the range 0.45≤x≤0.9 show sizable perpendicular magnetic anisotropy, 100% perpendicular remanence and coercivities in the range 160 kA/m. Thin films of this material are grown by electron beam evaporation onto fused silica or Si, at substrate temperatures between 150 and 350 °C. Spectroscopic investigations of the polar Kerr rotation show a significant enhancement of the Pt related UV peak. A comparison of the static signal levels R×(θk2+ɛk2)1/2 of Co/Pt multilayers and alloys shows an overall 50% enhancement in the case of alloys. Curie temperatures around 200 °C are observed for Co˜22Pt˜78 compositions. These properties, together with the potentially high chemical stability and ease of manufacturing make Co1-xPtx alloys very attractive materials for short wavelength magneto-optic recording.

  18. Perpendicularly oriented barium ferrite thin films with low microwave loss, prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Da-Ming, Chen; Yuan-Xun, Li; Li-Kun, Han; Chao, Long; Huai-Wu, Zhang

    2016-06-01

    Barium ferrite (BaM) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition (PLD). The effects of deposition substrate temperature on the microstructure, magnetic and microwave properties of BaM thin films are investigated in detail. It is found that microstructure, magnetic and microwave properties of BaM thin film are very sensitive to deposition substrate temperature, and excellent BaM thin film is obtained when deposition temperature is 910 °C and oxygen pressure is 300 mTorr (1 Torr = 1.3332 × 102 Pa). X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology, and the crystallographic alignment degree can be calculated to be 0.94. Hysteresis loops reveal that the squareness ratio (M r/M s) is as high as 0.93, the saturated magnetization is 4004 Gs (1 Gs = 104 T), and the anisotropy field is 16.5 kOe (1 Oe = 79.5775 A·m‑1). Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe, and the ferromagnetic resonance linewith is 108 Oe at 50 GHz, which means that this thin film has low microwave loss. These properties make the BaM thin films have potential applications in microwave devices. Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201506), the Scientific Research Starting Foundation of Hainan University (Grant No. kyqd1539), and the Natural Science Foundation of Hainan Province (Grant No. 20165187).

  19. Perpendicular magnetic anisotropy in FePt/AlN layered structure

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Sannomiya, Takumi; Muraishi, Shinji; Shi, Ji; Nakamura, Yoshio

    2014-09-01

    FePt/AlN layered structures were deposited onto fused quartz substrate by magnetron sputtering method and found to show in-plane anisotropy. However, annealing of the films leads to a transition of magnetic anisotropy from in-plane to perpendicular direction, and the perpendicular anisotropy gets stronger as the annealing temperature increases. Structural analysis shows that the FePt and AlN layers are textured with (111) and (002) orientations, respectively, along the film normal, and no ordering transformation is found for FePt alloy. To study the origin of the developed anisotropy, stress condition was analyzed with an equal biaxial stress model using X-ray diffraction 2 θ- ω scan method and interface quality was evaluated by X-ray reflectivity measurement and transmission electron microscopy observation. The results reveal that perpendicular magnetic anisotropy of the annealed FePt/AlN layered structure can be attributed to the enhanced interface anisotropy, which is due to flattening of the interfaces through annealing.

  20. Magnetoelectric switching of perpendicular exchange bias in Pt/Co/α-Cr2O3/Pt stacked films

    NASA Astrophysics Data System (ADS)

    Toyoki, Kentaro; Shiratsuchi, Yu; Kobane, Atsushi; Mitsumata, Chiharu; Kotani, Yoshinori; Nakamura, Tetsuya; Nakatani, Ryoichi

    2015-04-01

    We report the realization of magnetoelectric switching of the perpendicular exchange bias in Pt/Co/α-Cr2O3/Pt stacked films. The perpendicular exchange bias was switched isothermally by the simultaneous application of magnetic and electric fields. The threshold electric field required to switch the perpendicular exchange bias was found to be inversely proportional to the magnetic field, which confirmed the magnetoelectric mechanism of the process. The observed temperature dependence of the threshold electric field suggested that the energy barrier of the antiferromagnetic spin reversal was significantly lower than that assuming the coherent rotation. Pulse voltage measurements indicated that the antiferromagnetic domain propagation dominates the switching process. These results suggest an analogy of the electric-field-induced magnetization with a simple ferromagnet.

  1. Field driven ferromagnetic phase evolution originating from the domain boundaries in antiferromagnetically coupled perpendicular anitsotropy films

    SciTech Connect

    Jones, Juanita; Hauet, Thomas; Gunther, Christian; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav

    2008-05-01

    Strong perpendicular anisotropy systems consisting of Co/Pt multilayer stacks that are antiferromagnetically coupled via thin Ru or NiO layers have been used as model systems to study the competition between local interlayer exchange and long-range dipolar interactions [1,2]. Magnetic Force Microscopy (MFM) studies of such systems reveal complex magnetic configurations with a mix of antiferromagnetic (AF) and ferromagnetic (FM) phases. However, MFM allows detecting surface stray fields only and can interact strongly with the magnetic structure of the sample, thus altering the original domain configuration of interest [3,4]. In the current study they combine magnetometry and state-of-the-art soft X-ray transmission microscopy (MXTM) to investigate the external field driven FM phase evolution originating from the domain boundaries in such antiferromagnetically coupled perpendicular anisotropy films. MXTM allows directly imaging the perpendicular component of the magnetization in an external field at sub 100 nm spatial resolution without disturbing the magnetic state of the sample [5,6]. Here they compare the domain evolution for two similar [Co(4{angstrom})/Pt(7{angstrom})]x-1/{l_brace}Co(4{angstrom})/Ru(9{angstrom})/[Co(4{angstrom})/Pt(7{angstrom})]x-1{r_brace}16 samples with slightly different Co/Pt stack thickness, i.e. slightly different strength of internal dipolar fields. After demagnetization they obtain AF domains with either sharp AF domain walls for the thinner multilayer stacks or 'tiger-tail' domain walls (one dimensional FM phase) for the thicker stacks. When increasing the external field strength the sharp domain walls in the tinner stack sample transform into the one-dimensional FM phase, which then serves as nucleation site for further FM stripe domains that spread out into all directions to drive the system towards saturation. Energy calculations reveal the subtle difference between the two samples and help to understand the observed transition, when

  2. Hysteresis, critical fields and superferromagnetism of the film with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Kalita, V. M.; Kulyk, M. M.; Ryabchenko, S. M.

    2016-08-01

    This paper is focused on the analysis of hysteresis and critical phenomena of magnetization reversal of superferromagnetic (SFM) state in nanogranular (NG) Co/Al2O3 film with perpendicular anisotropy. It was demonstrated that the transition from the multidomain SFM state to the homogeneous SFM state, during the magnetization process, occurs critically. The value of the field of critical transition to the homogeneous state depends on the demagnetization field, granular anisotropy and interparticle exchange anisotropy. It turned out that the temperature dependence of the coercive force of the film, despite its SFM state, accords with the Neel-Brown formula for anisotropic single-domain ferromagnetic particles, but has an anomalous angular dependence. It was concluded that domain wall motion affects these features of the coercive field. The domain wall movement may occur due to the overturn of magnetic moments of particles in the boundaries between the superdomains. At the same time, the main factors influencing the coercivity are the anisotropy of the particles, which blocks their magnetic moment reorientation, and demagnetizing factor of the film. Together they lead to the anomalous angular dependence of the coercive field.

  3. Magnetic properties of a Pt/Co2FeAl/MgO structure with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Qi; Xu, Xiao-Guang; Wang, Sheng; Wu, Yong; Zhang, De-Lin; Miao, Jun; Jiang, Yong

    2012-10-01

    Microstructures and magnetic properties of Ta/Pt/Co2FeAl (CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy (PMA) of half-metallic full-Heusler alloy films. PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope. It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA. The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature. At the intersection points, the decreasing slope of the saturation magnetization (Ms) changes because of the conversions. The dependence of Ms on the annealing temperature and MgO thickness is also studied.

  4. Critical current destabilizing perpendicular magnetization by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Mitani, Seiji; Hayashi, Masamitsu

    2015-07-01

    The critical current needed to destabilize the magnetization of a perpendicular ferromagnet via the spin Hall effect is studied. Both the dampinglike and fieldlike torques associated with the spin current generated by the spin Hall effect are included in the Landau-Lifshitz-Gilbert equation to model the system. In the absence of the fieldlike torque, the critical current is independent of the damping constant and is much larger than that of conventional spin torque switching of collinear magnetic systems, as in magnetic tunnel junctions. With the fieldlike torque included, we find that the critical current scales with the damping constant as α0 (i.e., damping independent), α , and α1 /2 depending on the sign of the fieldlike torque and other parameters such as the external field. Numerical and analytical results show that the critical current can be significantly reduced when the fieldlike torque possesses the appropriate sign, i.e., when the effective field associated with the fieldlike torque is pointing opposite to the spin direction of the incoming electrons. These results provide a pathway to reducing the current needed to switch magnetization using the spin Hall effect.

  5. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    SciTech Connect

    Guo, Peng; Feng, Jiafeng E-mail: jiafengfeng@iphy.ac.cn; Wei, Hongxiang E-mail: jiafengfeng@iphy.ac.cn; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-05

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed.

  6. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO.

    PubMed

    Baumann, S; Donati, F; Stepanow, S; Rusponi, S; Paul, W; Gangopadhyay, S; Rau, I G; Pacchioni, G E; Gragnaniello, L; Pivetta, M; Dreiser, J; Piamonteze, C; Lutz, C P; Macfarlane, R M; Jones, B A; Gambardella, P; Heinrich, A J; Brune, H

    2015-12-01

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3  meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment. PMID:26684139

  7. Evolution of perpendicular magnetized tunnel junctions upon annealing

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut; Couet, S.; Swerts, J.; Furnemont, A.

    2016-04-01

    We study the evolution of perpendicularly magnetized tunnel junctions under 300 to 400 °C annealing. The hysteresis loops do not evolve much during annealing and they are not informative of the underlying structural evolutions. These evolutions are better revealed by the frequencies of the ferromagnetic resonance eigenmodes of the tunnel junction. Their modeling provides the exchange couplings and the layers' anisotropies within the stack which can serve as a diagnosis of the tunnel junction state after each annealing step. The anisotropies of the two CoFeB-based parts and the two Co/Pt-based parts of the tunnel junction decay at different rates during annealing. The ferromagnet exchange coupling through the texture-breaking Ta layer fails above 375 °C. The Ru spacer meant to promote a synthetic antiferromagnet behavior is also insufficiently robust to annealing. Based on these evolutions we propose optimization routes for the next generation tunnel junctions.

  8. Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Cubukcu, Murat; Boulle, Olivier; Drouard, Marc; Garello, Kevin; Onur Avci, Can; Mihai Miron, Ioan; Langer, Juergen; Ocker, Berthold; Gambardella, Pietro; Gaudin, Gilles

    2014-01-01

    We report on the current-induced magnetization switching of a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its read-out using the tunnelling magnetoresistance (TMR) effect. The device is composed of a perpendicular Ta/FeCoB/MgO/FeCoB stack on top of a Ta current line. The magnetization of the bottom FeCoB layer can be switched reproducibly by the injection of current pulses with density 5 × 1011 A/m2 in the Ta layer in the presence of an in-plane bias magnetic field, leading to the full-scale change of the TMR signal. Our work demonstrates the proof of concept of a perpendicular spin-orbit torque magnetic memory cell.

  9. Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction

    SciTech Connect

    Cubukcu, Murat; Boulle, Olivier; Drouard, Marc; Mihai Miron, Ioan; Gaudin, Gilles; Langer, Juergen; Ocker, Berthold

    2014-01-27

    We report on the current-induced magnetization switching of a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its read-out using the tunnelling magnetoresistance (TMR) effect. The device is composed of a perpendicular Ta/FeCoB/MgO/FeCoB stack on top of a Ta current line. The magnetization of the bottom FeCoB layer can be switched reproducibly by the injection of current pulses with density 5 × 10{sup 11} A/m{sup 2} in the Ta layer in the presence of an in-plane bias magnetic field, leading to the full-scale change of the TMR signal. Our work demonstrates the proof of concept of a perpendicular spin-orbit torque magnetic memory cell.

  10. Perpendicular propagating modes for weakly magnetized relativistic degenerate plasma

    SciTech Connect

    Abbas, Gohar; Bashir, M. F.; Murtaza, G.

    2012-07-15

    Using the Vlasov-Maxwell system of equations, the dispersion relations for the perpendicular propagating modes (i.e., X-mode, O-mode, and upper hybrid mode) are derived for a weakly magnetized relativistic degenerate electron plasma. By using the density (n{sub 0}=p{sub F}{sup 3}/3{pi}{sup 2} Planck-Constant-Over-Two-Pi {sup 3}) and the magnetic field values for different relativistic degenerate environments, the propagation characteristics (i.e., cutoff points, resonances, dispersions, and band widths in k-space) of these modes are examined. It is observed that the relativistic effects suppress the effect of ambient magnetic field and therefore the cutoff and resonance points shift towards the lower frequency regime resulting in enhancement of the propagation domain. The dispersion relations of these modes for the non-relativistic limit (p{sub F}{sup 2} Much-Less-Than m{sub 0}{sup 2}c{sup 2}) and the ultra-relativistic limit (p{sub F}{sup 2} Much-Greater-Than m{sub 0}{sup 2}c{sup 2}) are also presented.

  11. Magneto-Optical Kerr Rotation Spectra and Perpendicular Anisotropy in Compositionally Modulated Multilayer Films of Co/Pt and Fe/Pt

    NASA Astrophysics Data System (ADS)

    Sugimoto, Toshio; Katayama, Toshikazu; Suzuki, Yoshishige; Nishihara, Yoshikazu

    1989-12-01

    Magneto-optical Kerr rotation (θK) spectra and magnetic properties such as saturation magnetization (Ms) and perpendicular magnetic anisotropy of Co/Pt and Fe/Pt compositionally modulated multilayer films (CMF’s) are investigated. An enhancement of θK is observed at the wavelengths of about 290 and 250 nm in Co/Pt and Fe/Pt CMF’s, respectively. It is found that Fe/Pt CMF’s turn into perpendicularly magnetized films in the same manner as Co/Pt CMF’s when the Fe layer becomes thinner than about 5 Å.

  12. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    SciTech Connect

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  13. MFM analysis of magnetic inhomogeneity in recorded area for perpendicular magnetic recording media by simultaneous imaging of perpendicular and in-plane magnetic field gradient

    NASA Astrophysics Data System (ADS)

    Yoshimura, Satoru; Egawa, Genta; Miyazawa, Tasuku; Li, Zhenghua; Saito, Hitoshi; Bai, Jianmin; Li, Guoqing

    2011-01-01

    A new MFM method which can measure the perpendicular and in-plane magnetic field gradient simultaneously was developed. The measuring direction of in-plane magnetic field can be easily changed only by selecting the scanning direction of MFM tip with respect to the sample. This method was used to successfully estimate the magnetic domain structure of recorded area on CoCrPt-SiO2 perpendicular magnetic recording media. When the scanning direction is along the down-track direction, the component of strong magnetic field gradient along the down-track direction can be observed with high spatial resolution at the bit transition. On the other hand, when the scanning direction is along the corss-track direction, the new MFM method is effective to mask the component of magnetic field from homogeneous recorded bits, and consequently the components of magnetic field from bended recorded bits at the track edge can be observed. The simultaneous measurement of perpendicular and in-plane magnetic field is useful to evaluate the magnetic inhomogeneity of recorded area such as bit transition and track edge.

  14. Switching Properties of sub-100 nm Perpendicular Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Tryputen, Larysa; Piotrowski, Stephan; Bapna, Mukund; Chien, Chia-Ling; Wang, Weigang; Majetich, Sara; Ross, Caroline

    2015-03-01

    Perpendicular magnetic tunnel junctions (p-MTJs) have great potential for realizing high-density non-volatile memory and logic devices. It is critical to solve scalability problem to implement such devices, to achieve low resistance area and to reduce switching current density while maintaining thermal stability. We present our recent results on fabrication of high resolution Ta/CoFeB/MgO/CoFeB/Ta p-MTJ devices and characterization of their switching properties as well as topography and current mapping by using nanoscale Conductive Atomic Force Microscopy. Our patterning method is based on using hydrogen silsesquioxane resist mask combined with ion beam etching. It allows to fabricate p-MTJ devices down to 40 nm in diameter while maintaining the magnetic quality of the multilayers. Repeatable, consistent switching behaviour has been observed in the obtained p-MTJ devices of 500 nm down to 40 nm with 10 - 800 mV voltage applied. Switching field increased as device diameter decreased, from 580 Oe at 500 nm (MR = 10%) to 410 Oe at 80 nm (MR = 9%). We discuss the effect of device sizes on the switching properties. This work was supported in part by C-SPIN, one of the six centers of STARnet, a Semiconductor Research Corporation Program sponsored by MARCO and DARPA and in part through the National Science Foundation through NCN-Needs Program, Contract 12207020-EEC.

  15. Formation of multilayered magnetic nanotracks with perpendicular anisotropy via deoxidization using ion irradiation on ultraviolet-imprinted intaglio nanostructures

    SciTech Connect

    Cho, Eikhyun; Shin, Sang Chul; Han, Jungjin; Shim, Jongmyeong; Shin, Ryung; Kang, Shinill; Kim, Sanghoon; Hong, Jongill

    2015-01-26

    We proposed a method to fabricate perpendicular magnetic nanotracks in the cobalt oxide/palladium multilayer films using UV-nanoimprinting lithography and low-energy hydrogen-ion irradiation. This is a method to magnetize UV-imprinted intaglio nanotracks via low-energy hydrogen ion irradiation, resulting the irradiated region are magnetically separated from the non-irradiated region. Multilayered magnetic nanotracks with a line width of 140 nm, which were fabricated by this parallel process without additional dry etching process, exhibited a saturation magnetization of 290 emu cm{sup −3} and a coercivity of 2 kOe. This study demonstrates a cost-effective mass production of multilayered perpendicular magnetic nanotracks and offers the possibility to achieve high density storage and memory devices.

  16. Ionic-liquid gating of perpendicularly magnetised CoFeB/MgO thin films

    NASA Astrophysics Data System (ADS)

    Liu, Y. T.; Agnus, G.; Ono, S.; Ranno, L.; Bernand-Mantel, A.; Soucaille, R.; Adam, J.-P.; Langer, J.; Ocker, B.; Ravelosona, D.; Herrera Diez, L.

    2016-07-01

    We present the modulation of anisotropy field, coercivity, and domain wall (DW) velocity in CoFeB/MgO thin films with perpendicular anisotropy by applying voltages across an ionic liquid gate. Domain wall velocities in the creep regime can be modulated by a factor of 4.2, and the anisotropy field of the device can be modulated by 40 mT when going from +0.8 V to -0.8 V. The applied E-fields are seen to significantly influence DWs' pinning, depinning, and nucleation processes. In addition, we report on the evolution of the magnetic properties of the liquid/solid device as a function of time going from the pristine CoFeB/MgO film through device fabrication and operation up to one month. These results show that the solid/liquid device structure based on CoFeB/MgO thin films can be an efficient way to control magnetic properties with voltages below 1 V.

  17. Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy

    PubMed Central

    Ueno, Tetsuro; Sinha, Jaivardhan; Inami, Nobuhito; Takeichi, Yasuo; Mitani, Seiji; Ono, Kanta; Hayashi, Masamitsu

    2015-01-01

    We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectroscopy is used to evaluate the relative orbital moment, i.e. the ratio of the orbital to spin moments, of the magnetic elements constituting the heterostructures. We find that the relative orbital moment of Co in Pt/Co/Pt remains constant against its thickness whereas the moment increases with decreasing Co layer thickness for Pt/Co/AlOx, suggesting that a non-zero interface orbital moment exists for the latter system. For Ta/CoFeB/MgO, a non-zero interface orbital moment is found only for Fe. X-ray absorption spectra shows that a particular oxidized Co state in Pt/Co/AlOx, absent in other heterosturctures, may give rise to the interface orbital moment in this system. These results show element specific contributions to the interface orbital magnetic moments in ultrathin magnetic heterostructures. PMID:26456454

  18. Magnetic patterning using ion irradiation for highly ordered CoPt alloys with perpendicular anisotropy

    SciTech Connect

    Abes, M.; Venuat, J.; Muller, D.; Carvalho, A.; Schmerber, G.; Beaurepaire, E.; Dinia, A.; Pierron-Bohnes, V.

    2004-12-15

    We used a combination of ion irradiation and e-beam lithography to magnetically pattern an ordered CoPt alloy with strong perpendicular magnetic anisotropy. Ion irradiation disorders the alloy and strongly reduces the magnetic anisotropy. Magnetic force microscopy showed a regular array of 1 {mu}m{sup 2} square dots with perpendicular anisotropy separated by 1 {mu}m large ranges with in-plane anisotropy. This is further confirmed by magnetic measurements, which showed that arrays protected by a 200 nm Pt layer present the same coercive field and the same perpendicular anisotropy as before irradiation. This is promising for applications in magnetic recording technologies.

  19. Switching current density reduction in perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions

    SciTech Connect

    You, Chun-Yeol

    2014-01-28

    We investigate the switching current density reduction of perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions using micromagnetic simulations. We find that the switching current density can be reduced with elongated lateral shapes of the magnetic tunnel junctions, and additional reduction can be achieved by using a noncollinear polarizer layer. The reduction is closely related to the details of spin configurations during switching processes with the additional in-plane anisotropy.

  20. Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain.

    PubMed

    Shepley, P M; Rushforth, A W; Wang, M; Burnell, G; Moore, T A

    2015-01-01

    The perpendicular magnetic anisotropy K(eff), magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85-1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. K(eff), measured by the extraordinary Hall effect, is reduced by 10 kJ/m(3) by tensile strain out-of-plane ε(z) = 9 × 10(-4), independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2-4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity. PMID:25605499

  1. Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain

    NASA Astrophysics Data System (ADS)

    Shepley, P. M.; Rushforth, A. W.; Wang, M.; Burnell, G.; Moore, T. A.

    2015-01-01

    The perpendicular magnetic anisotropy Keff, magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85-1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. Keff, measured by the extraordinary Hall effect, is reduced by 10 kJ/m3 by tensile strain out-of-plane ɛz = 9 × 10-4, independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2-4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity.

  2. Synthesis of L1{sub 0}-FePt perpendicular films with controllable coercivity and intergranular exchange coupling by interfacial microstructure control

    SciTech Connect

    Feng Chun; Zhang En; Yang Meiyin; Li Ning; Jiang Yong; Yu Guanghua; Li Baohe

    2010-06-15

    A series of FePtBi/Au multilayers were fabricated by magnetron sputtering. The interfacial microstructure control of Bi and Au atoms and its effect on comprehensive properties of L1{sub 0}-FePt perpendicular films were carefully studied. Results show that: perpendicular magnetic anisotropy of the L1{sub 0}-FePt film can be remarkably enhanced with the epitaxial inducement of Au atoms. On the other hand, intergranular exchange coupling (IEC) of the film is greatly decreased due to the isolation of FePt particles by nonmagnetic Au particles. Moreover, the controllable coercivity of the film can be realized by adjusting ordering degree of the film through diffusion of Bi atoms. Thus, an L1{sub 0}-FePt perpendicular film with controllable coercivity and no IEC is realized with the interfacial microstructure control of surfactant Bi and Au atoms.

  3. Microstructures and perpendicular magnetic properties of Co/Pd multilayers on various metal/MgO seed-layers

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoon; Lee, Sangho; Kim, Joonyong; Kang, Jaeyong; Hong, Jongill

    2011-04-01

    We studied the effects of metal/MgO seeds (metal = Ta, Ru, or Pd) on the crystalline structure and perpendicular magnetic properties of Co/Pd multilayers to investigate the possibility of developing a (100) texture with sufficiently high perpendicular anisotropy and small switching field distributions for applications such as patterned media and perpendicular magnetic random access memories. The Pd/MgO or the MgO seed successfully promoted a (100) texture of Co/Pd multilayers. In particular, the Pd/MgO seed developed a strong (100) texture in the Co/Pd multilayer and resulted in perpendicular magnetic anisotropies ˜2 × 106 erg/cm3. On the other hand, the Co/Pd multilayer with the Ta/MgO or the Ru/MgO seed showed a strong (111) texture, inducing a perpendicular magnetic anisotropy higher than that of the (100) textured films. The coercive fields of Co/Pd multilayers with the (111) texture were over 4 kOe and higher than those with the (100) texture, which were ˜2 kOe when they were patterned into 2 × 2 μm2 islands. The switching field distributions of the Co/Pd multilayers with the (100) texture were smaller than those of the Co/Pd multilayers with the (111) texture. Our findings suggest that the Pd/MgO or the MgO seed can be a template suitable for device applications.

  4. Size-dependent reversal of grains in perpendicular magnetic recording media measured by small-angle polarized neutron scattering

    NASA Astrophysics Data System (ADS)

    Lister, S. J.; Thomson, T.; Kohlbrecher, J.; Takano, K.; Venkataramana, V.; Ray, S. J.; Wismayer, M. P.; de Vries, M. A.; Do, H.; Ikeda, Y.; Lee, S. L.

    2010-09-01

    Polarized small-angle neutron scattering has been used to measure the magnetic structure of a CoCrPt-SiOx thin-film data storage layer, contained within a writable perpendicular recording media, at granular (<10 nm) length scales. The magnetic contribution to the scattering is measured as the magnetization is reversed by an external field, providing unique spatial information on the switching process. A simple model of noninteracting nanomagnetic grains provides a good description of the data and an analysis of the grain-size dependent reversal provides strong evidence for an increase in magnetic anisotropy with grain diameter.

  5. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K.; Chshiev, Mairbek

    2016-01-01

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25~\\AA. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis which help understanding the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose super-exchange stabilized Co-graphene heterostructures with a robust out-of-plane constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point towards possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20 times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies.

  6. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures.

    PubMed

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K; Chshiev, Mairbek

    2016-01-13

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25 Å. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis, which help understanding of the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose superexchange stabilized Co-graphene heterostructures with a robust constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point toward possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20-times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies. PMID:26641927

  7. Feasibilty of a Multi-bit Cell Perpendicular Magnetic Tunnel Junction Device

    NASA Astrophysics Data System (ADS)

    Kim, Chang Soo

    The ultimate objective of this research project was to explore the feasibility of making a multi-bit cell perpendicular magnetic tunnel junction (PMTJ) device to increase the storage density of spin-transfer-torque random access memory (STT-RAM). As a first step toward demonstrating a multi-bit cell device, this dissertation contributed a systematic and detailed study of developing a single cell PMTJ device using L10 FePt films. In the beginning of this research, 13 up-and-coming non-volatile memory (NVM) technologies were investigated and evaluated to see whether one of them might outperform NAND flash memories and even HDDs on a cost-per-TB basis in 2020. This evaluation showed that STT-RAM appears to potentially offer superior power efficiency, among other advantages. It is predicted that STTRAM's density could make it a promising candidate for replacing NAND flash memories and possibly HDDs if STTRAM could be improved to store multiple bits per cell. Ta/Mg0 under-layers were used first in order to develop (001) L1 0 ordering of FePt at a low temperature of below 400 °C. It was found that the tradeoff between surface roughness and (001) L10 ordering of FePt makes it difficult to achieve low surface roughness and good perpendicular magnetic properties simultaneously when Ta/Mg0 under-layers are used. It was, therefore, decided to investigate MgO/CrRu under-layers to simultaneously achieve smooth films with good ordering below 400°C. A well ordered 4 nm L10 FePt film with RMS surface roughness close to 0.4 nm, perpendicular coercivity of about 5 kOe, and perpendicular squareness near 1 was obtained at a deposition temperature of 390 °C on a thermally oxidized Si substrate when MgO/CrRu under-layers are used. A PMTJ device was developed by depositing a thin MgO tunnel barrier layer and a top L10 FePt film and then being postannealed at 450 °C for 30 minutes. It was found that the sputtering power needs to be minimized during the thin MgO tunnel barrier

  8. Interfacial perpendicular magnetic anisotropy in CoFeB/MgO structure with various underlayers

    NASA Astrophysics Data System (ADS)

    Oh, Young-Wan; Lee, Kyeong-Dong; Jeong, Jong-Ryul; Park, Byong-Guk

    2014-05-01

    Interfacial perpendicular magnetic anisotropy (PMA) in CoFeB/MgO structures was investigated and found to be critically relied on underlayer material and annealing temperature. With Ta or Hf underlayer, clear PMA is observed in as-deposited samples while no PMA was shown in those with Pt or Pd. This may be attributed to smaller saturation magnetization of the films with Ta or Hf underlayer, which makes the PMA of CoFeB/MgO interface dominates over demagnetization field. On the contrary, samples with Pt or Pd demonstrate PMA only after annealing, which might be due to the CoPt (or CoPd) alloy formation that enhances PMA.

  9. Magnetic Nanoparticle Arrays Self-Assembled on Perpendicular Magnetic Recording Media.

    PubMed

    Mohtasebzadeh, Abdul Rahman; Ye, Longfei; Crawford, Thomas M

    2015-01-01

    We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle-nanoparticle interactions to cluster-cluster interactions as opposed to feature-feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials. PMID:26307967

  10. Magnetic Nanoparticle Arrays Self-Assembled on Perpendicular Magnetic Recording Media

    PubMed Central

    Mohtasebzadeh, Abdul Rahman; Ye, Longfei; Crawford, Thomas M.

    2015-01-01

    We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle–nanoparticle interactions to cluster–cluster interactions as opposed to feature–feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials. PMID:26307967

  11. Manipulation of magnetic state in nanostructures by perpendicular anisotropy and magnetic field

    SciTech Connect

    Chen, J. P.; Xie, Y. L.; Chu, P.; Wang, Y. L.; Wang, Z. Q.; Gao, X. S.; Liu, J.-M.

    2014-06-28

    We investigate the transitions of spin configurations in ultrathin nanostructures by tuning the perpendicular anisotropy (K{sub z}) and out-of-plane magnetic field (H), using the Monte Carlo simulation. It is revealed that enhancing the anisotropy K{sub z} can drive the evolution of in-plane vortex state into intriguing saturated magnetization states under various H, such as the bubble domain state and quadruple-block-domain state etc. The spin configurations of these states exhibit remarkable H-dependence. In addition, the strong effects of geometry and size on the spin configurations of nanostructures are observed. In particular, a series of edged states occur in the circular disk-shaped lattices, and rich intricate saturated magnetization patterns appear in big lattices. It is suggested that the magnetic states can be manipulated by varying the perpendicular anisotropy, magnetic field, and geometry/size of the nanostructures. Furthermore, the stability (retention capacity) of the saturated magnetization states upon varying magnetic field is predicted, suggesting the potential applications of these saturated magnetization states in magnetic field-controlled data storages.

  12. Non-Axisymmetric Perpendicular Diffusion of Charged Particles and their Transport Across Tangential Magnetic Discontinuities

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; le Roux, J. A.; Engelbrecht, N. E.; Ruffolo, D.; Dunzlaff, P.

    2016-07-01

    We investigate the transport of charged particles across magnetic discontinuities, focusing specifically on stream interfaces associated with co-rotating interaction regions in the solar wind. We argue that the magnetic field fluctuations perpendicular to the magnetic discontinuity, and usually also perpendicular to the mean magnetic field, are strongly damped in the vicinity of such a magnetic structure, leading to anisotropic perpendicular diffusion. Assuming that perpendicular diffusion arises from drifts in a turbulent magnetic field, we adopt a simplified approach to derive the relevant perpendicular diffusion coefficient. This approach, which we believe gives the correct principal dependences as expected from more elaborate calculations, allows us to investigate transport in different turbulent geometries, such as longitudinal compressional turbulence that may be present near the heliopause. Although highly dependent on the (possibly anisotropic) perpendicular length scales and turbulence levels, we generally find perpendicular diffusion to be strongly damped at magnetic discontinuities, which may in turn provide an explanation for the large particle gradients associated with these structures.

  13. Ion heating perpendicular to the magnetic field. Technical report

    SciTech Connect

    Andre, M.; Chang, T.

    1994-03-28

    Several theories of ion heating perpendicular to the geomagnetic field are briefly reviewed and assessed. Perpendicular heating of ions leading to the formation of ion conics is common in the ionosphere and magnetosphere. Ion conics at altitudes above a few thousand kilometers are often associated with waves around the ion gyrofrequency. It is concluded that the majority of these ion conics that are locally heated or generated over extended altitude regimes, may be best explained by ion cyclotron resonance heating. At lower altitudes, particularly in the region of discrete auroras, energization by turbulence around the lower hybrid frequency seems to be an important heating mechanism.

  14. Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance

    SciTech Connect

    Zhang, Y.; Klein, J.-O.; Chappert, C.; Ravelosona, D.; Zhao, W. S.

    2014-01-20

    High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.

  15. Solar rotating magnetic dipole?. [around axis perpendicular to rotation axis of the sun

    NASA Technical Reports Server (NTRS)

    Antonucci, E.

    1974-01-01

    A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure.

  16. Scalable and thermally robust perpendicular magnetic tunnel junctions for STT-MRAM

    SciTech Connect

    Gottwald, M.; Kan, J. J.; Lee, K.; Zhu, X.; Park, C.; Kang, S. H.

    2015-01-19

    Thermal budget, stack thickness, and dipolar offset field control are crucial for seamless integration of perpendicular magnetic junctions (pMTJ) into semiconductor integrated circuits to build scalable spin-transfer-torque magnetoresistive random access memory. This paper is concerned with materials and process tuning to deliver thermally robust (400 °C, 30 min) and thin (i.e., fewer layers and integration-friendly) pMTJ utilizing Co/Pt-based bottom pinned layers. Interlayer roughness control is identified as a key enabler to achieve high thermal budgets. The dipolar offset fields of the developed film stacks at scaled dimensions are evaluated by micromagnetic simulations. This paper shows a path towards achieving sub-15 nm-thick pMTJ with tunneling magnetoresistance ratio higher than 150% after 30 min of thermal excursion at 400 °C.

  17. Magnetic anisotropy and reversal mechanisms in dual layer exchanged coupled perpendicular media

    NASA Astrophysics Data System (ADS)

    Thomson, T.; Lengsfield, B.; Do, H.; Terris, B. D.

    2008-04-01

    We report the magnetic properties of perpendicular media with a layered structure in which a high anisotropy, segregated, granular CoCrPt-oxide base layer is capped by a lower anisotropy CoCrPt-based film. Anisotropy field (Hk) data show that for the thickness of oxide media studied here, the measured value of Hk remains constant as cap thickness increases. This provides strong evidence that the anisotropy of the composite grain is controlled by the hard oxide layer and is not a simple average of the anisotropy of the oxide and cap layers. The reversal mechanism is explored by determining the angle dependent switching as a function of cap thickness. In the absence of a cap layer, the media show a Stoner-Wohlfarth-like reversal which becomes more Kondorsky-like [1/cos(θ)] when a critical cap thickness is reach, which we interpret as indicating greater lateral exchange coupling.

  18. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field

    PubMed Central

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z. Q.; Hwang, Chanyong

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10 mT. A theoretical model corresponding to the Duffing oscillator was developed from the Landau–Lifshitz–Gilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices. PMID:25145837

  19. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field.

    PubMed

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z Q; Hwang, Chanyong

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10 mT. A theoretical model corresponding to the Duffing oscillator was developed from the Landau-Lifshitz-Gilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices. PMID:25145837

  20. Reducing media noise of perpendicular magnetic recording tape for over-50 TB class data cartridge

    NASA Astrophysics Data System (ADS)

    Matsunuma, S.; Inoue, T.; Watanabe, T.; Doi, T.; Gomi, S.; Mashiko, Y.; Hirata, K.; Nakagawa, S.

    2011-04-01

    To reduce medium noise inherent in a perpendicular magnetic recording tape, which is deposited by facing targets sputtering, we have examined an epitaxial double-layered structure consisting of a soft magnetic underlayer (SUL), bcc-FeCoB/fcc-NiFe/Si/bcc-FeCoB, on a 4.5 μm para-aromatic polyamide (aramid) film. An epitaxial soft magnetic bilayer reduces broadband noise by 5.6 dB at 337 kilo fluxchanges per inch (kfci) compared to a single SUL medium (Tape S). This is due to the reduction in the low-frequency noise, which originates from the domain walls of the SUL. Improvement of the crystal orientation of the magnetic layer hcp-CoPtCr-SiO2 and the intermediate layer hcp-Ru by inserting a fcc-NiFe spacer in laminated SULs extends the roll-off curve toward high linear density. When each SUL layer of the bilayer was made thinner, from 25 nm (Tape D2) to 10 nm (Tape D1), the medium noise decreased, improving the signal-to-noise ratio by 8.6 dB at 337 kfci compared to Tape S. In a high resolution playback test of Tape D1, an areal density of 45.0 gigabits per square inch (Gb/in.2) was confirmed. Achieved areal density means the capability of an over-50 terabyte (TB) capacity for a typical linear-formatted data cartridge.

  1. Properties of easy-plane/perpendicular magnetic anisotropy bilayers with varied interlayer exchange coupling

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Sluka, Volker; Kardasz, Bartek; Pinarbasi, Mustafa; Kent, Andrew D.

    We explore the possibility of an easy-cone ground state in coupled easy plane/easy axis magnetic bilayers. The samples consist of a Co/Ni multilayer with perpendicular magnetic anisotropy and a CoFe layer with easy-plane anisotropy separated by a variable thickness Ru layer. Using ferromagnetic resonance spectroscopy, we characterize the magnetic behavior of the coupled thin films for different Ru thicknesses by determining the resonance fields for both the acoustic and optical FMR modes. In particular, we observe a gap in the resonance field opening up between the two modes in angular-dependent FMR, which is direct evidence for the presence of interlayer coupling. Quantitative comparisons with a theoretical model indicate that by varying the Ru thickness the coupling strength can be tuned continuously from ferromagnetic to the anti-ferromagnetic. These results are consistent with a canted magnetic ground state in zero field, a state of interest for applications in spin-torque devices, such as current tunable spin-torque oscillators. Supported by NSF-DMR1309202 and Spin-Transfer Technologies Inc.

  2. Constructive inter-track interference (CITI) codes for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed Zaki; Davey, Paul J.; Kurihara, Yoshitake

    2005-02-01

    This paper presents new modulation codes to reduce the effect of adjacent track interference (ATI) also known as inter-track interference (ITI). New modulation codes, that is constructive inter-track interference (CITI) codes and partial response (PR) targets, are investigated using computer simulation in perpendicular magnetic channel. CITI codes have been found to increase the resilience of the perpendicular magnetic channel in the presence of ITI and jitter with no increased decoding complexity.

  3. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    SciTech Connect

    Hierro-Rodriguez, A. Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.; Teixeira, J. M.; Vélez, M.

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  4. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Hierro-Rodriguez, A.; Teixeira, J. M.; Vélez, M.; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.

    2014-09-01

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo5 thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  5. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  6. Performance comparison of post-processor for PRML channel in perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Okamoto, Y.; Osawa, H.; Muraoka, H.; Nakamura, Y.

    2005-02-01

    In this paper, post-processors for the partial-response maximum-likelihood (PRML) channel combined with the Reed-Solomon (RS) encoder/decoder are studied in perpendicular magnetic recording. The bit error rate (BER) performance is obtained by read/write experiments using a spin-stand with a perpendicular medium and single-pole-type/giant magnetoresistive (SPT/GMR) head. The experimental results show that post-processors improve linear densities of about 10-20 kBPI in perpendicular magnetic recording.

  7. Magnetic interactions in CoCrPt-oxide based perpendicular magnetic recording media

    SciTech Connect

    Tan, H. K.; Varghese, B.; Piramanayagam, S. N.

    2014-10-28

    First order reversal curves (FORC) method has been reported to be an efficient tool to study interaction between grains and layers of magnetic materials. Although a few studies have been carried out on perpendicular recording media in the past, a study on the effect of systematic variation of exchange interaction in granular perpendicular magnetic recording media on FORC contours has not been carried out in detail. Such a study will help to understand the use of FORC better. In this paper, we have made a systematic set of samples in order to study the variation in exchange coupling and its effect on FORC contours. The pressure during the deposition of the second ruthenium layer and the magnetic layer was varied to alter the separation between the grains and hence the exchange interaction between the grains in the CoCrPt-oxide recording layer. In addition, the thickness of Co-alloy cap layer was used as an additional tool to control the exchange interaction between the magnetic grains. The results indicated that the interaction field obtained from the FORC does not vary in a significant manner when the changes in exchange interaction are small. In comparison, the peak intensity of the FORC shows a clear trend as the exchange coupling is varied, making it a more suitable parameter to study the exchange and magnetostatic interactions in systems such as magnetic recording media.

  8. Magnetic interactions in CoCrPt-oxide based perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Tan, H. K.; Varghese, B.; Piramanayagam, S. N.

    2014-10-01

    First order reversal curves (FORC) method has been reported to be an efficient tool to study interaction between grains and layers of magnetic materials. Although a few studies have been carried out on perpendicular recording media in the past, a study on the effect of systematic variation of exchange interaction in granular perpendicular magnetic recording media on FORC contours has not been carried out in detail. Such a study will help to understand the use of FORC better. In this paper, we have made a systematic set of samples in order to study the variation in exchange coupling and its effect on FORC contours. The pressure during the deposition of the second ruthenium layer and the magnetic layer was varied to alter the separation between the grains and hence the exchange interaction between the grains in the CoCrPt-oxide recording layer. In addition, the thickness of Co-alloy cap layer was used as an additional tool to control the exchange interaction between the magnetic grains. The results indicated that the interaction field obtained from the FORC does not vary in a significant manner when the changes in exchange interaction are small. In comparison, the peak intensity of the FORC shows a clear trend as the exchange coupling is varied, making it a more suitable parameter to study the exchange and magnetostatic interactions in systems such as magnetic recording media.

  9. Giant perpendicular magnetic anisotropy of an individual atom on two-dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj

    2016-08-01

    Exploring magnetism and magnetic anisotropy in otherwise nonmagnetic two-dimensional materials, such as graphene and transition metal dichalcogenides, is at the heart of spintronics research. Herein, using first-principles calculations we explore the possibility of reaching an atomic-scale perpendicular magnetic anisotropy by carefully exploring the large spin-orbit coupling, orbital magnetism, and ligand field in a suitable choice of a two-dimensional structure with transition metal adatoms. More specifically, we demonstrate perpendicular magnetic anisotropy energies up to an order of 100 meV per atom in individual ruthenium and osmium adatoms at a monosulfur vacancy in molybdenum disulfide. We further propose a phenomenological model where a spin state transition that involves hybridization between molybdenum a1 and adatomic e' orbitals is a possible mechanism for magnetization reversal from an in-plane to perpendicular orientation.

  10. Effect of sputtering pressure on stacking fault density and perpendicular magnetic anisotropy of CoPt alloys

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Woong; Oh, Young-Wan; Kim, Dae-Hoon; Kim, Jai-Young; Park, Byong-Guk

    2016-09-01

    We report the effects of Ar sputtering pressure on perpendicular magnetic anisotropy in disordered CoPt alloys via the modulation of stacking fault density. The coercivity and anisotropy field of CoPt alloys are gradually enlarged with an increase in Ar sputtering pressure from 3 mTorr to 30 mTorr. Structural analyses using transmission electron microscopy, atomic force microscopy and x-ray reflectivity show that the structural properties of the samples, such as roughness or grain size, are not significantly changed by variations in Ar sputtering pressure. On the other hand, in-plane x-ray diffraction measurements reveal that the stacking fault density is reduced in films grown under higher pressure, and instead favors HCP stacking. Our results suggest that perpendicular magnetic anisotropy in CoPt alloys can be enhanced by the growth of the sample under a high Ar sputtering pressure, which decreases stacking fault density.

  11. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  12. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-01

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  13. Non-Uniform Switching of the Perpendicular Magnetization in a Spin-Torque Magnetic Nanopillar

    SciTech Connect

    Bernstein, David

    2011-06-01

    Time-resolved scanning transmission x-ray microscopy (STXM) measurements were performed to study the current-induced magnetization switching mechanism in nanopillars exhibiting strong perpendicular magnetic anisotropy (PMA). This technique provides both short time (70 ps) and high spatial (25 nm) resolution. Direct imaging of the magnetization demonstrates that, after an incubation time of {approx} 1.3 ns, a 100 x 300 nm{sup 2} ellipsoidal device switches in {approx} 1 ns via a central domain nucleation and opposite propagation of two domain walls towards the edges. High domain wall velocities on the order of 100m/s are measured. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight into magnetization dynamics during the incubation and reversal period.

  14. Magnetic switching time of a Stoner-Wohlfarth particle in a perpendicular bias field

    NASA Astrophysics Data System (ADS)

    Xue, Dong

    This thesis studies magnetic switching of a Stoner-Wholfarth particle. The particle is characterized by a uniaxial magnetic anisotropy, and the magnetic field driving the switching is applied along the anisotropy axis. In addition, a constant small bias field is applied perpendicular to the easy axis. The dynamics of the magnetic moment are studied numerically by solving the Landau-Lifshitz-Gilbert (LLG) equation. Numeric results obtained without any approximations are then compared to the analytic theory of switching time in a perpendicular bias field. A good correspondence between the approximate analytic and exact numeric values of the switching time is observed in a wide parameter region.

  15. Enhancement of perpendicular magnetic anisotropy thanks to Pt insertions in synthetic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bandiera, S.; Sousa, R. C.; Auffret, S.; Rodmacq, B.; Dieny, B.

    2012-08-01

    Synthetic antiferromagnets are of great interest as reference layers in magnetic tunnel junctions since they allow decreasing the dipolar coupling between the two magnetic electrodes and exhibit larger pinning fields than single reference layers. In this letter, we investigate the effect of the insertion of an ultrathin Pt layer in contact with the Ru spacer in synthetic antiferromagnets with perpendicular magnetic anisotropy. Surprisingly, for Ru thickness below 0.75 nm, the antiferromagnetic coupling amplitude through Ru first increases upon Pt insertion up to a critical Pt thickness (˜0.25 nm) above which coupling decreases. In addition, the corresponding increase of perpendicular magnetic anisotropy enhances the thermal stability of the structure.

  16. Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:LaFeO3 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Fan, Meng; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Wang, Haiyan

    2016-07-01

    Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (La0.7Sr0.3MnO3)1-x : (LaFeO3)x (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition. Under a moderate magnetic field cooling, an EB field as high as ˜800 Oe is achieved in the VAN film with x = 0.33, suggesting a great potential for its applications in high density memory devices. Such enhanced EB effects in perpendicular direction can be attributed to the high quality epitaxial co-growth of vertically aligned ferromagnetic LSMO and antiferromagnetic LFO phases, and the vertical interface coupling associated with a disordered spin-glass state. The VAN design paves a powerful way for integrating perpendicular EB effect within thin films and provides a new dimension for advanced spintronic devices.

  17. Experimental and numerical studies on plasma behavior flowing across perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, T.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, N.

    2016-05-01

    To understand particle acceleration mechanisms in a collisionless shock, we have investigated the behaviors of a one-dimensional fast plasma flow in a perpendicular magnetic field by experimental and numerical simulations in a laboratory scale experiment. The velocity of the plasma flow generated by a taper-cone-shaped plasma focus device has varied by the gradient of the perpendicular magnetic field. The plasma flow has accelerated by applying the magnetic field with the negative gradient. To clarify the behavior of the plasma flow in the perpendicular magnetic field, numerical simulations based on an electromagnetic hybrid particle-in-cell (PIC) method have been carried out. These results indicate that the magnetic field gradient affects the plasma flow velocity.

  18. Ru/FeCoB crystalline soft magnetic underlayers with high anisotropy field for CoPtCr-SiO2 granular perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Matsuu, Toshimitsu; Hirata, Ken-ichiro; Hashimoto, Atsuto; Matsunuma, Satoshi; Inoue, Tetsutaro; Doi, Tsugihiro; Nakagawa, Shigeki

    2009-04-01

    Ru/FeCoB/Ru/CoPtCr-SiO2 films were fabricated as perpendicular magnetic recording media with crystalline soft magnetic underlayer (SUL). Ru/FeCoB layers possessed high in-plane anisotropy field Hk of 400 Oe and a bcc-FeCo (110) orientation. Crystalline orientation of the FeCoB in the SUL affected on a crystallite growth of a Ru intermediate layer deposited on it and on crystallite orientation of the CoPtCr-SiO2 film deposited on the Ru intermediate layer. Ru/CoPtCr-SiO2 films without Ru/FeCoB SULs exhibited a random orientation of Ru crystallites and the in-plane magnetic anisotropy. On the other hand, Ru/CoPtCr-SiO2 films deposited on the Ru/FeCoB SULs exhibited (001) preferential orientations of the CoPtCr as well as the Ru intermediate layer and possessed perpendicular magnetic anisotropy. It was confirmed that the improvement of a bcc-FeCo (110) orientation in the SUL was effective to the improvement of a hcp-Ru (001) orientation. At the media for an intermediate layer thickness of 5 nm, the similar magnetic properties as that of 30 nm were obtained. It indicated that the application of a crystalline SUL promoted the reduction in the intermediate layer thickness.

  19. Clusters of interacting single domain Co nanomagnets for multistate perpendicular magnetic media applications

    NASA Astrophysics Data System (ADS)

    Xiao, Qijun; Yang, Tianyu; Ursache, Andrei; Tuominen, Mark T.

    2008-04-01

    In this work we develop prototype elements for multistate (beyond binary) perpendicular data storage using interacting nanomagnet clusters. This experimental work confirms earlier theoretical work that predicted multiple discrete values of stable remanent magnetization for such clusters. The fabrication scheme is based on ultrahigh resolution electron beam lithography performed on a thin suspended silicon nitride membrane to reduce the secondary backscattered electrons from the substrate. A Co nanomagnet cluster array is deposited into the nanotemplate via pulse-reverse electrodeposition to create nanomagnets with the favored uniaxial perpendicular anisotropy. Magnetic force microscopy (MFM) measurements show the perpendicular magnetization of individual Co nanomagnets and the combined multiconfiguration behavior of a nanomagnet cluster. In concept, the discrete values of net remanent magnetization of the cluster, which represent distinct information states, can be "programmed" by a uniform applied field.

  20. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  1. Antiferromagnetic iridium manganese based intermediate layers for perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kumar; Piramanayagam, S. N.; Sbiaa, Rachid

    2008-08-01

    Current generation CoCrPt oxide based perpendicular magnetic recording media use two Ru-based intermediate layers in order to grow crystallographically textured, and magnetically isolated granular media. In this work, the advantage of replacing the Ru grain isolation layer with antiferromagnetic IrMn is demonstrated. Media samples using 7.5nm thick IrMn intermediate layers show perpendicular texture with dispersion below 4°, coercivity of over 4000Oe alongside magnetic exchange decoupling, average grain sizes of 6nm with distributions under 14%, and thermal stability factor of 88. The IrMn layer may also help to stabilize the recording layer grains against thermal instability effects.

  2. Perpendicular magnetic anisotropy in Fe2Cr1 - xCoxSi Heusler alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Pu; Qiu, Jin-Jun; Lu, Hui; Ji, Rong; Han, Gu-Chang; Teo, Kie-Leong

    2014-12-01

    Perpendicular magnetic anisotropy (PMA) was achieved in annealed Fe2Cr1 - xCoxSi (FCCS) Heusler alloys with different Co compositions x. The Co composition is varied to tune the Fermi level in order to achieve both higher spin polarization and better thermal stability. The PMA is thermally stable up to 400 oC for FCCS with x = 0, 0.3, 0.5 and 350 oC for FCCS with x = 0.7, 0.9, 1. The thickness of FCCS films with PMA ranges from 0.6 to 1.2 nm. The annealing temperature and FCCS thickness are found to greatly affect the PMA. The magnetic anisotropy energy density KU is 2.8  ×  106 erg cm-3 for 0.8 nm Fe2CrSi, and decreases as the Co composition x increases, suggesting that the PMA induced at the FCCS/MgO interface is dominated by the contribution of Fe atoms. There is a trade-off between high spin polarization and strong PMA by adjusting the Co composition.

  3. Magnetoelectric switching of perpendicular exchange bias in Pt/Co/α-Cr{sub 2}O{sub 3}/Pt stacked films

    SciTech Connect

    Toyoki, Kentaro; Shiratsuchi, Yu Kobane, Atsushi; Nakatani, Ryoichi; Mitsumata, Chiharu; Kotani, Yoshinori; Nakamura, Tetsuya

    2015-04-20

    We report the realization of magnetoelectric switching of the perpendicular exchange bias in Pt/Co/α-Cr{sub 2}O{sub 3}/Pt stacked films. The perpendicular exchange bias was switched isothermally by the simultaneous application of magnetic and electric fields. The threshold electric field required to switch the perpendicular exchange bias was found to be inversely proportional to the magnetic field, which confirmed the magnetoelectric mechanism of the process. The observed temperature dependence of the threshold electric field suggested that the energy barrier of the antiferromagnetic spin reversal was significantly lower than that assuming the coherent rotation. Pulse voltage measurements indicated that the antiferromagnetic domain propagation dominates the switching process. These results suggest an analogy of the electric-field-induced magnetization with a simple ferromagnet.

  4. The perpendicular electron energy flux driven by magnetic fluctuations in the edge of TEXT-U

    SciTech Connect

    Fiksel, G.; Prager, S.C.; Bengtson, R.D.; Wootton, A.J.

    1995-06-12

    A fast bolometer was used for direct measurements of parallel electron energy flux in the edge of TEXT-U. The fluctuating component of the parallel electron energy flux, combined with a measurement of magnetic fluctuations, provides an upper limit to the perpendicular electron flux. This magnetically driven energy flux cannot account for the observed energy flux.

  5. Three-wave coupling coefficients for perpendicular wave propagation in a magnetized plasma

    SciTech Connect

    Brodin, G.; Stenflo, L.

    2015-10-15

    The resonant interaction between three waves in a uniform magnetized plasma is reconsidered. Starting from previous kinetic expressions, we limit our investigation to waves propagating perpendicularly to the external magnetic field. It is shown that reliable results can only be obtained in the two-dimensional case, i.e., when the wave vectors have both x and y components.

  6. Perpendicularly magnetized ferrimagnetic [Mn50Ga50/Co2FeAl] superlattice and the utilization in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-08-01

    The ferrimagnetic superlattice (SL) [MnGa/Co2FeAl]n exhibiting perpendicular magnetic anisotropy opened a new method for spintronics materials used in magnetic random access memory, because of the high anisotropy, small damping constant and tunable magnetization. In this work, we fabricated SLs with different MnGa composition and studied the MnGa composition dependence of the structure and magnetic properties of the SLs. Furthermore, we fabricated fully perpendicular magnetic tunnel junctions with SLs as both top and bottom electrodes. A clear tunnel magnetoresistance (TMR) effect with TMR ratio of 1.3% at room temperature was observed.

  7. Domain configurations in Co/Pd and L10-FePt nanowire arrays with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ho, Pin; Tu, Kun-Hua; Zhang, Jinshuo; Sun, Congli; Chen, Jingsheng; Liontos, George; Ntetsikas, Konstantinos; Avgeropoulos, Apostolos; Voyles, Paul M.; Ross, Caroline A.

    2016-02-01

    Perpendicular magnetic anisotropy [Co/Pd]15 and L10-FePt nanowire arrays of period 63 nm with linewidths 38 nm and 27 nm and film thickness 27 nm and 20 nm respectively were fabricated using a self-assembled PS-b-PDMS diblock copolymer film as a lithographic mask. The wires are predicted to support Néel walls in the Co/Pd and Bloch walls in the FePt. Magnetostatic interactions from nearest neighbor nanowires promote a ground state configuration consisting of alternating up and down magnetization in adjacent wires. This was observed over ~75% of the Co/Pd wires after ac-demagnetization but was less prevalent in the FePt because the ratio of interaction field to switching field was much smaller. Interactions also led to correlations in the domain wall positions in adjacent Co/Pd nanowires. The reversal process was characterized by nucleation of reverse domains, followed at higher fields by propagation of the domains along the nanowires. These narrow wires provide model system for exploring domain wall structure and dynamics in perpendicular anisotropy systems.Perpendicular magnetic anisotropy [Co/Pd]15 and L10-FePt nanowire arrays of period 63 nm with linewidths 38 nm and 27 nm and film thickness 27 nm and 20 nm respectively were fabricated using a self-assembled PS-b-PDMS diblock copolymer film as a lithographic mask. The wires are predicted to support Néel walls in the Co/Pd and Bloch walls in the FePt. Magnetostatic interactions from nearest neighbor nanowires promote a ground state configuration consisting of alternating up and down magnetization in adjacent wires. This was observed over ~75% of the Co/Pd wires after ac-demagnetization but was less prevalent in the FePt because the ratio of interaction field to switching field was much smaller. Interactions also led to correlations in the domain wall positions in adjacent Co/Pd nanowires. The reversal process was characterized by nucleation of reverse domains, followed at higher fields by propagation of the

  8. Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy

    SciTech Connect

    Stebliy, Maxim E. Kolesnikov, Alexander G.; Davydenko, Alexander V.; Ognev, Alexey V.; Samardak, Alexander S.; Chebotkevich, Ludmila A.

    2015-05-07

    Formation and existence of magnetic skyrmion-like configurations in bilayer nanodisks (Ta(3 nm)/[Co(0.37 nm)/Ni(0.58 nm)]{sub 10}){sub 2} with perpendicular magnetic anisotropy are shown experimentally at room temperature. Magnetization reversal through the skyrmion state is studied using magnetic hysteresis measurements. An evolution of skyrmion configurations in the nanodisk structure is analyzed. Experimental methods and micromagnetic simulations help to understand the magnetization reversal processes occurring through the stable skyrmion-like configurations. Formation of the intermediate C-states during magnetization reversal is demonstrated. The skyrmion number for all possible spin configurations is calculated.

  9. Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy

    SciTech Connect

    Huang, Kuo-Feng; Wang, Ding-Shuo; Lai, Chih-Huang; Lin, Hsiu-Hau

    2015-12-07

    To address thermal stability issues for spintronic devices with a reduced size, we investigate spin-orbit torque in Co/Pt multilayers with strong perpendicular magnetic anisotropy. Note that the spin-orbit torque arises from the global imbalance of the spin currents from the top and bottom interfaces for each Co layer. By inserting Ta or Cu layers to strengthen the top-down asymmetry, the spin-orbit torque efficiency can be greatly modified without compromised perpendicular magnetic anisotropy. Above all, the efficiency builds up as the number of layers increases, realizing robust thermal stability and high spin-orbit-torque efficiency simultaneously in the multilayers structure.

  10. Coexistence of perpendicular and in-plane exchange bias using a single ferromagnetic layer in Pt/Co/Cr/CoO thin film

    NASA Astrophysics Data System (ADS)

    Öztürk, Mustafa; Demirci, Erdem; Erkovan, Mustafa; Öztürk, Osman; Akdoğan, Numan

    2016-04-01

    We studied the temperature dependence of magnetization and exchange bias in a Pt/Co/Cr/CoO multilayer thin film. These magnetic multilayers are of particular interest since the easy axis of ultra-thin Co is strongly affected by the interfacial anisotropies of neighbouring Pt and Cr layers. The room temperature measurements show that the sample has a magnetic easy axis only in the film plane. However, upon cooling the sample, the easy axis of the magnetization departs from its initial orientation and typical easy-axis hysteresis loops are obtained for both in-plane and perpendicular directions. In accordance with this change in the magnetization direction at lower temperatures, the sample shows an unexpected coexistence of perpendicular and in-plane exchange bias below the antiferromagnetic transition of CoO. The temperature dependence of the exchange bias field for both directions is also significantly different. Along the film plane, the exchange bias field monotonically decreases and disappears at 220 K with increasing temperature. For the perpendicular direction, however, the exchange bias field increases and reaches a maximum value at 80 K. Then it decreases and disappears at 150 K with further increasing temperature. The mechanisms behind this anomalous temperature dependence of the exchange bias as well as the step-like behaviour in the hysteresis curves are discussed.

  11. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Z. B.; Zhang, X. X.

    2014-09-01

    Magnetic properties of Co40Fe40B20 (CoFeB) thin films sandwiched between Ta and MgAl2O4 layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4 structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki = 1.22 erg/cm2, which further increases to 1.30 erg/cm2 after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  12. Perpendicular magnetic anisotropy and magneto-optical Kerr effect of vapor-deposited Co/Pt-layered structures

    NASA Astrophysics Data System (ADS)

    Zeper, W. B.; Greidanus, F. J. A. M.; Carcia, P. F.; Fincher, C. R.

    1989-06-01

    We prepared by vapor deposition at room temperature thin (500 Å) Co/Pt multilayers or layered structures directly onto glass or Si substrates. They show a preferential magnetization perpendicular to the film plane for Co thicknesses below 12 Å and a 100% perpendicular remanence for Co thicknesses below 4.5 Å. The magnetic anisotropy can be explained by an interface contribution to the anisotropy. We also investigated the magneto-optical (MO) polar Kerr effect of these multilayers. Because of their excellent magnetic properties and their potentially high oxidation and corrosion resistance, these Co/Pt-layered structures are very promising candidates for MO recording. The Kerr rotation θk at λ=820 nm for a 35×(4.0 Å Co+12.7 Å Pt)-layered structure, which has 100% magnetic remanence, is modest (-0.12°), but the reflectivity R is high (70%), which results in a respectable figure of merit Rθ2k. Furthermore, the Kerr effect increases towards shorter wavelengths and thus favors future higher-density recording.

  13. Domain configurations in Co/Pd and L10-FePt nanowire arrays with perpendicular magnetic anisotropy.

    PubMed

    Ho, Pin; Tu, Kun-Hua; Zhang, Jinshuo; Sun, Congli; Chen, Jingsheng; Liontos, George; Ntetsikas, Konstantinos; Avgeropoulos, Apostolos; Voyles, Paul M; Ross, Caroline A

    2016-03-01

    Perpendicular magnetic anisotropy [Co/Pd]15 and L10-FePt nanowire arrays of period 63 nm with linewidths 38 nm and 27 nm and film thickness 27 nm and 20 nm respectively were fabricated using a self-assembled PS-b-PDMS diblock copolymer film as a lithographic mask. The wires are predicted to support Néel walls in the Co/Pd and Bloch walls in the FePt. Magnetostatic interactions from nearest neighbor nanowires promote a ground state configuration consisting of alternating up and down magnetization in adjacent wires. This was observed over ∼75% of the Co/Pd wires after ac-demagnetization but was less prevalent in the FePt because the ratio of interaction field to switching field was much smaller. Interactions also led to correlations in the domain wall positions in adjacent Co/Pd nanowires. The reversal process was characterized by nucleation of reverse domains, followed at higher fields by propagation of the domains along the nanowires. These narrow wires provide model system for exploring domain wall structure and dynamics in perpendicular anisotropy systems. PMID:26883011

  14. Effect of Palladium Nuclei Insertion by Electroless Deposition on Magnetic Intergranular Isolation and Read/Write Characteristics in SmCo5 Perpendicular Magnetic Recording Media

    NASA Astrophysics Data System (ADS)

    Sugiyama, Atsushi; Egawa, Yuko; Koizumi, Isao; Yoshino, Masahiro; Hokkyo, Jiro; Asahi, Toru; Kiya, Takanori; Ariake, Jun; Ouchi, Kazuhiro; Osaka, Tetsuya

    In order to improve the magnetic intergranular isolation between the magnetic grains in the SmCo5 perpendicular magnetic recording media, the palladium nuclei deposited by an electrochemical process were introduced into a sputter deposition process of the SmCo5 film. A few nanometer size Pd nuclei were electrochemically deposited on the sputtered Cu underlayer by a displacement deposition (chemical plating). The sizes of Pd nuclei were controlled by adjusting the Pd ion concentration in electrolyte solutions. The magnetic domain size in Sm-Co layer deposited on Pd nuclei / Cu / Ti underlayer became smaller and the magnetization reversal process was changed from the wall motion to the coherent rotation. Moreover, the read/write characteristics were improved at higher linear recording densities.

  15. Spring magnet films.

    SciTech Connect

    Bader, S. D.; Fullerton, E. E.; Gornakov, V. S.; Inomata, A.; Jiang, J. S.; Nikitenko, V. I.; Shapiro, A. J.; Shull, R. D.; Sowers, C. H.

    1999-03-29

    The properties of exchange-spring-coupled bilayer and superlattice films are highlighted for Sm-Co hard magnet and Fe or Co soft magnet layers. The hexagonal Sm-Co is grown via magnetron sputtering in a- and b-axis epitaxial orientations. In both cases the c-axis, in the film plane, is the easy axis of magnetization. Trends in coercivity with film thickness are established and related to the respective microstructure of the two orientations. The magnetization reversal process for the bilayers is examined by magnetometry and magneto-optical imaging, as well as by simulations that utilize a one-dimensional model to provide the spin configuration for each atomic layer. The Fe magnetization is pinned to that of the Sm-Co at the interface, and reversal proceeds via a progressive twisting of the Fe magnetization. The Fe demagnetization curves are reversible as expected for a spring magnet. Comparison of experiment and simulations indicates that the spring magnet behavior can be understood from the intrinsic properties of the hard and soft layers. Estimated are made of the ultimate gain in performance that can potentially be realized in this system.

  16. Enhanced current quantization in high-frequency electron pumps in a perpendicular magnetic field

    SciTech Connect

    Wright, S. J.; Blumenthal, M. D.; Gumbs, Godfrey; Thorn, A. L.; Pepper, M.; Anderson, D.; Jones, G. A. C.; Nicoll, C. A.; Ritchie, D. A.; Janssen, T. J. B. M.; Holmes, S. N.

    2008-12-15

    We present experimental results of high-frequency quantized charge pumping through a quantum dot formed by the electric field arising from applied voltages in a GaAs/AlGaAs system in the presence of a perpendicular magnetic field B. Clear changes are observed in the quantized current plateaus as a function of applied magnetic field. We report on the robustness in the length of the quantized plateaus and improvements in the quantization as a result of the applied B field.

  17. Wave packet revivals in a graphene quantum dot in a perpendicular magnetic field

    SciTech Connect

    Torres, J. J.

    2010-10-15

    We study the time evolution of localized wave packets in graphene quantum dots in a perpendicular magnetic field, focusing on the quasiclassical and revival periodicities, for different values of the magnetic field intensities in a theoretical framework. We have considered contributions of the two inequivalent points in the Brillouin zone. The revival time has been found as an observable that shows the break valley degeneracy.

  18. Electron acceleration by parallel and perpendicular electric fields during magnetic reconnection without guide field

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Chen, L.-J.; Germaschewski, K.; Bhattacharjee, A.

    2015-11-01

    Electron acceleration due to the electric field parallel to the background magnetic field during magnetic reconnection with no guide field is investigated by theory and two-dimensional electromagnetic particle-in-cell simulations and compared with acceleration due to the electric field perpendicular to the magnetic field. The magnitude of the parallel electric potential shows dependence on the ratio of the plasma frequency to the electron cyclotron frequency as (ωpe/Ωe)-2 and on the background plasma density as nb-1/2. In the Earth's magnetotail, the parameter ωpe/Ωe˜9 and the background (lobe) density can be of the order of 0.01 cm-3, and it is expected that the parallel electric potential is not large enough to accelerate electrons up to 100 keV. Therefore, we must consider the effect of the perpendicular electric field to account for electron energization in excess of 100 keV in the Earth's magnetotail. Trajectories for high-energy electrons are traced in a simulation to demonstrate that acceleration due to the perpendicular electric field in the diffusion region is the dominant acceleration mechanism, rather than acceleration due to the parallel electric fields in the exhaust regions. For energetic electrons accelerated near the X line due to the perpendicular electric field, pitch angle scattering converts the perpendicular momentum to the parallel momentum. On the other hand, for passing electrons that are mainly accelerated by the parallel electric field, pitch angle scattering converting the parallel momentum to the perpendicular momentum occurs. In this way, particle acceleration and pitch angle scattering will generate heated electrons in the exhaust regions.

  19. Superferromagnetism in dipolarly coupled L10 FePt nanodots with perpendicular magnetization

    NASA Astrophysics Data System (ADS)

    Bedanta, S.; Seki, T.; Iwama, H.; Shima, T.; Takanashi, K.

    2015-10-01

    The magnetization reversal for perpendicularly magnetized L10-FePt (001) nanodots with different interdot distances was studied by magnetic domain observation. We show the results for two kinds of dot arrays: (i) the dots with physical percolation leading to direct exchange coupling, and (ii) the dots which are fully isolated experiencing only dipolar interaction. For the physically percolated dot array, ferromagnetic domains were observed in which domain expanded with magnetic field. On the other hand, the array with the isolated FePt dots also exhibited domain like features resembling to the percolated dots, indicating the existence of superferromagnetism in the array of FePt nanodots.

  20. Perpendicular currents and electric fields in fully and partially ionized magnetized plasma

    SciTech Connect

    Rozhansky, V.

    2013-10-15

    Perpendicular currents and self-consistent electric fields in fully and partially ionized plasma in strong magnetic field are analyzed. In fully ionized plasma, the analyses are concentrated on closing of viscosity driven currents. For partially ionized plasma, it is demonstrated that the perpendicular currents could be expressed through the total pressure gradient (including the pressure gradient of neutral particles) and viscosity of neutrals. The self-consistent electric fields and corresponding E(vector sign)×B(vector sign) could be quite large, which is important for various applications, in particular, for the divertor plasma of a tokamak in the detached regime.

  1. Composition-tuned magneto-optical Kerr effect in L10-Mn x Ga films with giant perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Zhu, L. J.; Brandt, L.; Zhao, J. H.; Woltersdorf, G.

    2016-06-01

    We report the large polar magnetooptical Kerr effect in L10-Mn x Ga (0.76  ⩽  x  ⩽  1.29) epitaxial films with giant perpendicular magnetic anisotropy. The Kerr rotation is enhanced by a factor of up to 2.5 by decreasing Mn atomic concentration, which most likely arises from the variation of the effective spin–orbit coupling strength, compensation effect of magnetic moments at different Mn atom sites, and overall strain. A significant tuning effect of composition is also observed on Kerr ellipticity and complex Kerr angle (including the magnitude and phase angle). The good epitaxial compatibility with semiconductors, moderate coercivity of 4.6–9.7 kOe, large Kerr rotation of up to 0.10°, high reflectivity of 35%–55% in a wide wavelength range of 400 ~ 850 nm, and giant magnetic anisotropic field of up to 140 kOe together make these L10-Mn x Ga films promising for scientific and technological applications in spintronics and terahertz-frequency magnetooptical modulators.

  2. Three-terminal magnetic tunneling junction device with perpendicular anisotropy CoFeB sensing layer

    SciTech Connect

    Honjo, H. Nebashi, R.; Tokutome, K.; Miura, S.; Sakimura, N.; Sugibayashi, T.; Fukami, S.; Kinoshita, K.; Murahata, M.; Kasai, N.; Ishihara, K.; Ohno, H.

    2014-05-07

    We demonstrated read and write characteristics of a three terminal memory device with a perpendicular anisotropy-free layer of a strip of [Co/Ni] and a low-switching perpendicular-anisotropy CoFeB/MgO sensing layer. This new design of the cell results in a small cell area. The switching magnetic field of the sensing layer can be decreased by changing sputtering gas for the Ta-cap from Ar to Kr. An electron energy-loss spectroscopy analysis of the cross-section of the magnetic tunneling junction (MTJ) revealed that the boron content in CoFeB with a Kr-sputtered Ta-cap was smaller than that with an Ar-sputtered one. A change in resistance for the MTJ was observed that corresponded to the magnetic switching of the Co/Ni wire and its magnetoresistance ratio and critical current were 90% and 0.8 mA, respectively.

  3. Influence of thermal agitation on the electric field induced precessional magnetization reversal with perpendicular easy axis

    SciTech Connect

    Cheng, Hongguang Deng, Ning

    2013-12-15

    We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor Δ of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup −9} can be achieved for the device of thermal stability factor Δ of 40. Low damping factor α material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.

  4. Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

    PubMed Central

    2011-01-01

    We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of approximately 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field. PMID:21711781

  5. Perpendicular magnetic tunnel junction with enhanced anisotropy obtained by utilizing an Ir/Co interface

    NASA Astrophysics Data System (ADS)

    Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji

    2016-01-01

    A highly scalable perpendicularly magnetized storage layer of a spin-torque-switching magnetic random-access memory (STT-MRAM) was developed. This storage layer attains a perpendicular magnetic anisotropy (PMA) of above 0.9 erg/cm2 at a thickness of 2 nm. Such high PMA is suitable for pushing STT-MRAM technology beyond the 20 nm node. The key was to realize dual interfacial PMA at both the Ir/Co and FeB/MgO interfaces in the united structure of the storage layer. While a high PMA was retained, a high magnetoresistance ratio (100%) and a low resistance-area product (3.0 Ω µm2) were also achieved.

  6. Composition Mapping of Co-Pt-Ti-O Perpendicular Magnetic Recording Media by Simultaneous EDS and EELS Spectrum Imaging

    SciTech Connect

    Bentley, James; Risner, Juliet D.; Sinclair, Prof. Robert

    2007-01-01

    For nearly a decade core-loss elemental mapping by energy-filtered transmission electron microscopy (EFTEM) with {approx}1 nm resolution has contributed greatly to the understanding of Co(Cr)-based thin-film longitudinal magnetic recording media for computer hard disks. Intergranular layers of non-ferromagnetic Cr-enriched material a few nanometers thick are critical for optimum performance since they decouple the magnetic exchange between grains allowing the magnetization within individual grains to be switched independently, as required for high-density recording of data. Modern perpendicular thin-film recording media, which allow higher recording densities than traditional longitudinal media, have a similar columnar grain structure with nonferromagnetic material separating and decoupling the grains. The present work involves plan-view TEM characterization of back-thinned Co-Pt media (Co/Pt{approx}4) with 6 levels of co-sputtered TiO{sub 2} from 0 to 43 vol%. The layer structure of the media was: polished Al substrate/6 nm seed layers/50 nm soft magnetic underlayer/14 nm Ru underlayer/12 nm Co-Pt-TiO{sub 2}/1 nm C overcoat.

  7. Ordered mesoporous silica films with pores oriented perpendicular to a titanium nitride substrate.

    PubMed

    Robertson, Calum; Beanland, Richard; Boden, Stuart A; Hector, Andrew L; Kashtiban, Reza J; Sloan, Jeremy; Smith, David C; Walcarius, Alain

    2015-02-14

    The production of thin mesoporous silica films with small (∼2-3 nm) pores oriented perpendicular to a titanium nitride growth surface is demonstrated using two methods. These are the growth from a Stöber silica solution with surfactant ordering at the surface of the electrode, and electrochemically assisted growth from an acidic sol achieved by polarisation of the electrode surface. The thickness, pore order and pore size that can be achieved with these two methods is contrasted. A number of methods to vary the pore size by using different surfactants and swelling agents are explored. The advantage of applying these growth methods on titanium nitride surfaces is that it provides access to a wider electrochemical window for nanowire growth and sensor applications with non-aqueous electrolytes whilst retaining good film growth and adhesion properties. PMID:25589465

  8. Rapid microwave annealing for perpendicular oriented cylinders in PS- b-PMMA thin films

    NASA Astrophysics Data System (ADS)

    Qiang, Zhe; Cavicchi, Kevin; Vogt, Bryan; University of Akron Team

    Self-assembly of block copolymer (BCP) has been extensively studied for decades due to their wide range of potential applications such as lithography. Direct microwave annealing provides rapid ordering kinetics. However, the knowledge regarding the structural and orientation evolution of morphology during microwave annealing without solvents remains sparse. Herein, we report on how microwave-annealing conditions impact the morphology developed in cylinder forming PS-b-PMMA films on unmodified silicon wafers. The fraction of perpendicular cylinders developed during microwave annealing is primarily determined by temperature ramp from microwave heating itself. The heating of the substrate during microwave annealing is varied from 0.5 °C/s to 2.8 °C/s by two factors: (1) the microwave output energy and (2) the local heating position of BCP film in the microwave reaction vessel. A maximum in the fraction of perpendicular cylinders (97 %) occurs at 1.83 °C/s and appears independent of the microwave power used. This work demonstrates the importance of controlling conditions of microwave annealing in the morphology developed.

  9. Strong perpendicular exchange bias in epitaxial La(0.7)Sr(0.3)MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling.

    PubMed

    Zhang, Wenrui; Chen, Aiping; Jian, Jie; Zhu, Yuanyuan; Chen, Li; Lu, Ping; Jia, Quanxi; MacManus-Driscoll, Judith L; Zhang, Xinghang; Wang, Haiyan

    2015-09-01

    An exchange bias effect with perpendicular anisotropy is of great interest owing to potential applications such as read heads in magnetic storage devices with high thermal stability and reduced dimensions. Here we report a novel approach for achieving perpendicular exchange bias by orienting the ferromagnetic/antiferromagnetic coupling in the vertical geometry through a unique vertically aligned nanocomposite (VAN) design. Our results demonstrate robust perpendicular exchange bias phenomena in micrometer-thick films employing a prototype material system of antiferromagnetic BiFeO3 and ferromagnetic La0.7Sr0.3MnO3. The unique response of exchange bias to a perpendicular magnetic field reveals the existence of exchange coupling along their vertical heterointerfaces, which exhibits a strong dependence on their strain states. This VAN approach enables a large selection of material systems for achieving perpendicular exchange bias, which could lead to advanced spintronic devices. PMID:26222013

  10. Ultra Low Energy Switching of Ferromagnet with Perpendicular Anisotropy on Topological Insulator by Voltage Controlled Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Ghosh, Bahniman; Pramanik, Tanmoy; Dey, Rik; Roy, Urmimala; Register, Leonard; Banerjee, Sanjay

    2015-03-01

    We propose and demonstrate, through simulation, an ultra low energy memory device on a topological insulator thin film. The device consists of a thin layer of Fe deposited on the surface of a topological insulator, Bi2Se3. The top surface of Fe is covered with MgO so that the ferromagnetic layer has perpendicular anisotropy. Current is passed on the surface of the topological insulator which switches the magnetization of the Fe ferromagnet through strong exchange interaction, between electrons contributing to the surface current on the Bi2Se3 and the d electrons in the ferromagnet, and spin transfer torque due to shunting of current through the ferromagnet. Voltage controlled magnetic anisotropy enables ultra low energy switching. Our micromagnetic simulations, predict switching time of the order of 2.4 ns and switching energy of the order of 0.16 fJ for a ferromagnetic bit with thermal stability of 90 kBT. The proposed structure combines the advantages of both large spin torque from topological insulators and those of perpendicular anisotropy materials. This work is supported by NRI SWAN and NSF NASCENT Center.

  11. Study of CoFeB thickness and composition dependence in a modified CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Chong, H.; Vu, Q. B.; Brooks, R.; Stamper, H.; Bennett, S.

    2016-02-01

    We studied the CoFeB thickness and composition dependence of tunneling magnetoresistance (TMR) and resistance-area product (RA) in a modified CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction (MTJ), in which the bottom CoFeB is coupled to an in-plane exchange biased magnetic layer. This stack structure allows us to measure TMR and RA of the MTJs in sheet film format without patterning them, using current-in-plane-tunneling (CIPT) technique. The thickness ranges for both top and bottom CoFeB to exhibit perpendicular magnetic anisotropy are similar to what are seen in each single magnetic film stack. However, CIPT measurement revealed that there exists an optimal thickness for both top and bottom CoFeB to achieve the highest TMR value. Magnetic hysteresis loops also suggest the thickness-dependent coupling between the top and bottom CoFeB layers. We studied MTJs with two CoFeB compositions (Co40Fe40B20 and Co20Fe60B20) and found that Co20Fe60B20 MTJs give higher TMR and also wider perpendicular thickness range when used at the top layer.

  12. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    SciTech Connect

    Gan, Huadong Malmhall, Roger; Wang, Zihui; Yen, Bing K; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming

    2014-11-10

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  13. Characterization of rf-SSET in both in-plane and perpendicular magnetic fields

    NASA Astrophysics Data System (ADS)

    Tang, Chunyang; Yang, Zhen; Yuan, Mingyun; Rimberg, A. J.; Savage, D. E.; Eriksson, M. A.; Rimberg Team; Eriksson Collaboration

    2013-03-01

    Previous success in coupling an aluminum radio-frequency superconducting single electron transistor (rf-SSET) to quantum dots (QDs) has demonstrated use of the rf-SSET as an ultra-sensitive and fast charge sensor. Since a magnetic field is usually necessary for quantum dot qubit manipulation, it is important to understand the effect of magnetic fields, either in-plane or perpendicular, on the performance of any charge sensor near the QDs. Here we report characterization of rf-SSETs in both in-plane and perpendicular magnetic fields. The rf-SSET works well in an in-plane fields up to 1 Tesla at a temperature of 30 mK. At 0.3K, in a perpendicular field generated by a stripline located 700 nm away, the rf-SSET charge sensitivity even shows improvement for up to 2.1 mA current through the stripline (corresponding roughly to a field of 6 Gauss). This work was supported by NSA, LPS and ARO

  14. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    NASA Astrophysics Data System (ADS)

    Gan, Huadong; Malmhall, Roger; Wang, Zihui; Yen, Bing K.; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming

    2014-11-01

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  15. Investigation on spin-orbit torque induced perpendicular switching through voltage controlled magnetism

    NASA Astrophysics Data System (ADS)

    Bi, Chong; Xu, Meng; Rosales, Marcus; Newhouse-Illige, Ty; Almasi, Hamid; Wang, Weigang

    2015-03-01

    Spin-orbit torques are shown to induce perpendicular magnetic switching in ultrathin ferromagnets (FMs) adjacent to heavy metals (HMs). Here, we demonstrated that the critical current density (Jc) for such perpendicular switching in HM/FM/oxide structures can be dramatically modulated by gate voltage induced reversible oxidation at FM/oxide interfaces. Through controlling perpendicular anisotropy and saturation magnetization (Ms) of FM layer, respectively, we show Ms, rather than anisotropy field as suggested in macrospin model, dominates Jc. Moreover, the measured external field dependent Jc results indicate that the spin-orbit torques have either a bulk or interface origin under different magnetization states. These results not only provide a promising means toward energy-efficient switching, but also offer further insights in understanding the reversal mechanism of the ferromagnetic layer. This work was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA. This work was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  16. Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures

    PubMed Central

    Tang, M. H.; Zhang, Zongzhi; Tian, S. Y.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo100–x alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo100–x alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo100–x or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique. PMID:26074295

  17. Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures.

    PubMed

    Tang, M H; Zhang, Zongzhi; Tian, S Y; Wang, J; Ma, B; Jin, Q Y

    2015-01-01

    Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo(100-x) alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo(100-x) alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo(100-x) or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique. PMID:26074295

  18. Re-assessing how much parallel and perpendicular electric fields accelerate electrons during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Bessho, Naoki; Chen, Li-Jen; Germaschewski, Kai; Bhattacharjee, Amitava

    2014-10-01

    By means of 2-D PIC simulations applicable to reconnection in the Earth's magnetotail, we show that the parallel electric field accelerates electrons only up to 40 keV, and further acceleration above that energy in fact comes from the perpendicular electric field, which can explain observations of energetic electrons with energies greater than 100 keV. We show that the parallel potential, which is the integral of the parallel electric field along the field line, is proportional to (ωpe /Ωe) - 2, and also to (nb /n0) - 1 / 2, where ωpe /Ωe is the ratio of the plasma frequency to the electron cyclotron frequency, and nb /n0 is the ratio of the lobe density to the density of the current sheet. Applying the parameters in the Earth's magnetotail to the above relations, we demonstrate that the parallel potential is not more than 40 keV. In addition to pitch angle scattering from the parallel to the perpendicular velocity for electron beams along magnetic field, which was suggested in previous studies, energetic electrons accelerated by the perpendicular electric field experience pitch angle scattering from the perpendicular to the parallel velocity, which can isotropize plasma in the exhaust.

  19. Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories

    SciTech Connect

    Song, Kyungmi; Lee, Kyung-Jin

    2015-08-07

    We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable for the optimization of STT-MRAM.

  20. Perpendicular magnetic anisotropy in Co2Fe0.4Mn0.6Si

    NASA Astrophysics Data System (ADS)

    Ludbrook, B. M.; Ruck, B. J.; Granville, S.

    2016-07-01

    We report perpendicular magnetic anisotropy (PMA) in the half-metallic ferromagnetic Heusler alloy Co2Fe0.4Mn0.6Si (CFMS) in a MgO/CFMS/Pd trilayer stack. PMA is found for CFMS thicknesses between 1 and 2 nm, with a magnetic anisotropy energy density of KU=1.5 ×106 erg/cm3 for tCFMS=1.5 nm. Both the MgO and Pd layer are necessary to induce the PMA. We measure a tunable anomalous Hall effect, where its sign and magnitude vary with both the CFMS and Pd thickness.

  1. Magnetic and magnetotransport properties of erbium silicide epitaxial films

    NASA Astrophysics Data System (ADS)

    Chroboczek, J. A.; Briggs, A.; Joss, W.; Auffret, S.; Pierre, J.

    1991-02-01

    Hexagonal Er3Si5 films epitaxially grown on Si show strong anisotropies in magnetization and magnetotransport below the ordering temperature. The magnetoresistance has a cusplike positive anomaly or is negative and featureless for a magnetic field applied, respectively, along or perpendicular to the [0001] axis. A noncollinear structure, composed of an antiferromagnetic and a ferromagnetic component accounts for the magnetization data. The latter used in conjunction with the Yamada-Takada theory of magnetotransport accounts for the magnetoresistance data.

  2. Influence of a perpendicular magnetic field on the thermal depinning of a single Abrikosov vortex in a superconducting Josephson junction

    SciTech Connect

    Kouzoudis, D.

    1999-02-12

    The prime interest of the present research is to measure the thermal energy needed for depinning a trapped vortex when an external magnetic field is perpendicular to the plane of the junction, and thus there are Meissner currents flowing along the edge of the film. These currents introduce an additional force and the author wishes to study thermal depinning under the influence of this force. These studies are of interest because Nb junctions are used in a wide range of electronic applications. Such junctions are useful, for instance, in superconducting quantum interference devices (SQUIDs) or in vortex-flow transistors because their performance can be enhanced by tuning the parameters of the individual junctions to optimum operation values. Furthermore gated Josephson junctions can be used as Josephson field-effect transistors (JOFETs).

  3. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  4. Thin film superconductor magnetic bearings

    SciTech Connect

    Weinberger, B.R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft that is subject to a load (L) and rotatable around an axis of rotation, a magnet mounted to the shaft, and a stator in proximity to the shaft. The stator has a superconductor thin film assembly positioned to interact with the magnet to produce a levitation force on the shaft that supports the load (L). The thin film assembly includes at least two superconductor thin films and at least one substrate. Each thin film is positioned on a substrate and all the thin films are positioned such that an applied magnetic field from the magnet passes through all the thin films. A similar bearing in which the thin film assembly is mounted on the shaft and the magnet is part of the stator also can be constructed. 8 figs.

  5. Buffer influence on magnetic dead layer, critical current, and thermal stability in magnetic tunnel junctions with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Frankowski, Marek; Żywczak, Antoni; Czapkiewicz, Maciej; Zietek, Sławomir; Kanak, Jarosław; Banasik, Monika; Powroźnik, Wiesław; Skowroński, Witold; Checiński, Jakub; Wrona, Jerzy; Głowiński, Hubert; Dubowik, Janusz; Ansermet, Jean-Philippe; Stobiecki, Tomasz

    2015-06-01

    We present a detailed study of Ta/Ru-based buffers and their influence on features crucial from the point of view of applications of Magnetic Tunnel Junctions (MTJs) such as critical switching current and thermal stability. We study buffer/FeCoB/MgO/Ta/Ru and buffer/MgO/FeCoB/Ta/Ru layers, investigating the crystallographic texture, the roughness of the buffers, the magnetic domain pattern, the magnetic dead layer thickness, and the perpendicular magnetic anisotropy fields for each sample. Additionally, we examine the effect of the current induced magnetization switching for complete nanopillar MTJs with lateral dimensions of 270 × 180 nm. Buffer Ta 5/Ru 10/Ta 3 (thicknesses in nm), which has the thickest dead layer, exhibits a much larger thermal stability factor (63 compared to 32.5) while featuring a slightly lower critical current density value (1.25 MA/cm2 compared to 1.5 MA/cm2) than the buffer with the thinnest dead layer Ta 5/Ru 20/Ta 5. We can account for these results by considering the difference in damping which compensates for the difference in the switching barrier heights.

  6. Flux penetration in a ferromagnetic/superconducting bilayer utilizing perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Cieplak, Marta Z.; Adamus, Z.; Abal'Oshev, A.; Berkowski, M.; Konczykowski, M.; Cheng, X. M.; Zhu, L. Y.; Chien, C. L.

    2006-03-01

    The Hall sensor array is a useful tool for measuring local magnetic fields. An array of miniature Hall sensors has been used to study the flux penetration in a ferromagnetic/superconducting (F/S) bilayer consisting of Nb as the S layer and Co/Pt multilayer with perpendicular magnetic anisotropy as the F layer, separated by an amorphous Si layer to avoid proximity effect. The F layer is first premagnetized to different magnetization reversal stages to obtain various magnetic domain patterns. The effect of these domain patterns on the flux behavior in the S layer is then studied at various temperatures in the superconducting state. We have observed that, in addition to the vortex pinning enhancement, some domain patterns strongly increase the first penetration field and induce large thermomagnetic instabilities (flux jumps), which are not detectable by magnetometry. We also discuss the profiles of the flux distribution across these F/S bilayers.

  7. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Pai, Chi-Feng; Mann, Maxwell; Tan, Aik Jun; Beach, Geoffrey S. D.

    2016-04-01

    We report that by measuring a current-induced hysteresis loop shift versus in-plane bias magnetic field, the spin-Hall effect (SHE) contribution of the current-induced effective field per current density χSHE can be estimated for Pt- and Ta-based magnetic heterostructures with perpendicular magnetic anisotropy. We apply this technique to a Pt-based sample with its ferromagnetic (FM) layer being wedged deposited and discover an extra effective field contribution χWedged due to the asymmetric nature of the deposited FM layer. We confirm the correlation between χWedged and the asymmetric depinning process in FM layer during magnetization switching by magneto-optical Kerr microscopy. These results indicate the possibility of engineering deterministic spin-orbit torque switching by controlling the symmetry of domain expansion through the materials growth process.

  8. Parallel and perpendicular structure of the edge turbulence in a three-dimensional magnetic field

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Scarin, P.; Spizzo, G.; Vianello, N.; Carraro, L.

    2014-09-01

    Edge turbulence and blobs are studied in the three-dimensional magnetic topology of the RFX-mod reversed field pinch. The edge of the RFX-mod shows a three-dimensional structure dominated by a helical equilibrium with (1, -7) symmetry, which gives the same space-time modulation to all of the kinetic properties. The interaction between the edge turbulence and this magnetic topology is studied. It is shown that the edge blobs are current-carrying filaments aligned with the magnetic field, and in the perpendicular plane each blob is a positive peak of electron density and a valley of temperature. The inner nature of these blobs is not affected by the presence of the O and X points of the (1, -7) island; however, the statistical properties are sensitive to them, pointing to the influence of the magnetic topology on the edge fluctuations.

  9. Enhanced tunneling magnetoresistance and perpendicular magnetic anisotropy in Mo/CoFeB/MgO magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Almasi, H.; Hickey, D. Reifsnyder; Newhouse-Illige, T.; Xu, M.; Rosales, M. R.; Nahar, S.; Held, J. T.; Mkhoyan, K. A.; Wang, W. G.

    2015-05-01

    Structural, magnetic, and transport studies have been performed on perpendicular magnetic tunnel junctions (pMTJ) with Mo as the buffer and capping layers. After annealing samples at 300 °C and higher, consistently better performance was obtained compared to that of conventional pMTJs with Ta layers. Large tunneling magnetoresistance (TMR) and perpendicular magnetic anisotropy (PMA) values were retained in a wide range of samples with Mo layers after annealing for 2 h at 400 °C, in sharp contrast to the junctions with Ta layers, in which superparamagnetic behavior with nearly vanishing magnetoresistance was observed. As a result of the greatly improved thermal stability, TMR as high as 162% was obtained in junctions containing Mo layers. These results highlight the importance of the heavy-metal layers adjacent to CoFeB electrodes for achieving larger TMR, stronger PMA, and higher thermal stability in pMTJs.

  10. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G.; Lang, Murong; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.

    2016-04-01

    Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural asymmetry into the device. Typically, however, when a current is applied to such devices with combined vertical and lateral asymmetries, both the perpendicular field-like torque and the damping-like torque coexist, hence jointly affecting the magnetization switching behavior. Here, we study perpendicular magnetization switching driven by the combination of the perpendicular field-like and the damping-like SOTs, which exhibits deterministic switching mediated through domain wall propagation. It is demonstrated that the role of the damping-like SOT in the deterministic switching is highly dependent on the magnetization direction in the domain wall. By contrast, the perpendicular field-like SOT is solely determined by the relative orientation between the lateral structural asymmetry and the current direction, regardless of the magnetization direction in the domain wall. The experimental results further the understanding of SOTs-induced switching, with implications for spintronic devices.

  11. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries

    PubMed Central

    Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G.; Lang, Murong; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.

    2016-01-01

    Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural asymmetry into the device. Typically, however, when a current is applied to such devices with combined vertical and lateral asymmetries, both the perpendicular field-like torque and the damping-like torque coexist, hence jointly affecting the magnetization switching behavior. Here, we study perpendicular magnetization switching driven by the combination of the perpendicular field-like and the damping-like SOTs, which exhibits deterministic switching mediated through domain wall propagation. It is demonstrated that the role of the damping-like SOT in the deterministic switching is highly dependent on the magnetization direction in the domain wall. By contrast, the perpendicular field-like SOT is solely determined by the relative orientation between the lateral structural asymmetry and the current direction, regardless of the magnetization direction in the domain wall. The experimental results further the understanding of SOTs-induced switching, with implications for spintronic devices. PMID:27050160

  12. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries.

    PubMed

    Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G; Lang, Murong; Wong, Kin L; Khalili Amiri, Pedram; Wang, Kang L

    2016-01-01

    Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural asymmetry into the device. Typically, however, when a current is applied to such devices with combined vertical and lateral asymmetries, both the perpendicular field-like torque and the damping-like torque coexist, hence jointly affecting the magnetization switching behavior. Here, we study perpendicular magnetization switching driven by the combination of the perpendicular field-like and the damping-like SOTs, which exhibits deterministic switching mediated through domain wall propagation. It is demonstrated that the role of the damping-like SOT in the deterministic switching is highly dependent on the magnetization direction in the domain wall. By contrast, the perpendicular field-like SOT is solely determined by the relative orientation between the lateral structural asymmetry and the current direction, regardless of the magnetization direction in the domain wall. The experimental results further the understanding of SOTs-induced switching, with implications for spintronic devices. PMID:27050160

  13. Tuning of the nucleation field in nanowires with perpendicular magnetic anisotropy

    SciTech Connect

    Kimling, Judith; Gerhardt, Theo; Kobs, Andre; Vogel, Andreas; Peter Oepen, Hans; Merkt, Ulrich; Meier, Guido; Wintz, Sebastian; Im, Mi-Young; Fischer, Peter

    2013-04-28

    We report on domain nucleation in nanowires consisting of Co/Pt multilayers with perpendicular magnetic anisotropy that are patterned by electron-beam lithography, sputter deposition, and lift-off processing. It is found that the nucleation field can be tuned by changing the geometry of the wire ends. A reduction of the nucleation field by up to 60% is achieved when the wire ends are designed as tips. This contrasts with the behavior of wires with in-plane anisotropy where the nucleation field increases when triangular-pointed ends are used. In order to clarify the origin of the reduction of the nucleation field, micromagnetic simulations are employed. The effect cannot be explained by the lateral geometrical variation but is attributable to a local reduction of the perpendicular anisotropy caused by shadowing effects due to the resist mask during sputter deposition of the multilayer.

  14. Nonlinear domain wall resonance in garnet films with perpendicular anisotropy: Critical role of nonlinear damping

    NASA Astrophysics Data System (ADS)

    Vukadinovic, N.; Ben Youssef, J.; Beaulieu, N.; Castel, V.

    2015-12-01

    Domain wall resonance spectra in the weakly nonlinear regime for garnet films with a perpendicular anisotropy supporting parallel stripe domains have been investigated using micromagnetic simulations and zero-field broadband ferromagnetic resonance experiments. The main characteristics of the 2D numerical micromagnetic approach we developed is to solve the Landau-Lifshitz equation by an iterative method in the frequency domain and to incorporate a nonlinear phenomenological damping term. It is shown that the nonlinear damping affects simultaneously the driving field dependencies of the resonance frequency and the resonance linewidth for the fundamental domain wall resonance of parallel stripe domains, and the critical field for the domain wall resonance foldover. The micromagnetic simulations allow us to reproduce quantitatively both the nonlinear redshift of the domain wall resonance frequency and the nonlinear line broadening experimentally observed for increasing values of the input microwave power.

  15. Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer

    SciTech Connect

    Tamaru, S. Kubota, H.; Yakushiji, K.; Konoto, M.; Nozaki, T.; Fukushima, A.; Imamura, H.; Taniguchi, T.; Arai, H.; Tsunegi, S.; Yuasa, S.; Suzuki, Y.

    2014-05-07

    Measurements of thermally excited ferromagnetic resonance were performed on spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer (abbreviated as PMF-STO in the following) for the purpose of obtaining magnetic properties in the PMF-STO structure. The measured spectra clearly showed a large main peak and multiple smaller peaks on the high frequency side. A Lorentzian fit on the main peak yielded Gilbert damping factor of 0.0041. The observed peaks moved in proportion to the out-of-plane bias field. From the slope of the main peak frequency as a function of the bias field, Lande g factor was estimated to be about 2.13. The mode intervals showed a clear dependence on the diameter of the PMF-STOs, i.e., intervals are larger for a smaller diameter. These results suggest that the observed peaks should correspond to eigenmodes of lateral spin wave resonance in the perpendicularly magnetized free layer.

  16. Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Kubota, H.; Yakushiji, K.; Konoto, M.; Nozaki, T.; Fukushima, A.; Imamura, H.; Taniguchi, T.; Arai, H.; Tsunegi, S.; Yuasa, S.; Suzuki, Y.

    2014-05-01

    Measurements of thermally excited ferromagnetic resonance were performed on spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer (abbreviated as PMF-STO in the following) for the purpose of obtaining magnetic properties in the PMF-STO structure. The measured spectra clearly showed a large main peak and multiple smaller peaks on the high frequency side. A Lorentzian fit on the main peak yielded Gilbert damping factor of 0.0041. The observed peaks moved in proportion to the out-of-plane bias field. From the slope of the main peak frequency as a function of the bias field, Lande g factor was estimated to be about 2.13. The mode intervals showed a clear dependence on the diameter of the PMF-STOs, i.e., intervals are larger for a smaller diameter. These results suggest that the observed peaks should correspond to eigenmodes of lateral spin wave resonance in the perpendicularly magnetized free layer.

  17. Microstructure and magnetic properties of CoCrPt -SiO2 perpendicular recording media with synthetic nucleation layers

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kumar; Piramanayagam, S. N.; Wong, Seng Kai; Kay, Yew Seng

    2008-04-01

    Thermally stable, highly textured CoCrPt -SiO2 perpendicular magnetic recording media with ˜6nm size exchange decoupled grains and tight grain size distribution were prepared on synthetic nucleation layers. The media structure consisted of 14nm thick CoCrPt -SiO2 recording layer on one Ru intermediate layer. For these films, insertion of a synthetic nucleation layer directly under the recording layer was seen to reduce the grain sizes from 6.7to6.2nm and grain size distribution from 17% to 14%. Significant reduction in the intergranular exchange coupling interactions could be achieved while improving magnetic properties. The crystallographic texture of the recording layer remained strongly (00ṡ2) oriented with the dispersion Δθ50 below 3.7°. Isothermal remanence magnetization and thermal stability behavior were studied. A model that describes the role of the synthetic nucleation layer in affecting the grain growth and magnetic properties of the recording layer is presented to understand these observations.

  18. Simulation of electric-field and spin-transfer-torque induced magnetization switching in perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangli; Zhang, Zongzhi; Liu, Yaowen; Jin, Q. Y.

    2015-05-01

    Macrospin simulations are performed to model the magnetization switching driven by the combined action of electric-field and spin-polarized electric current (spin-transfer torque; STT) in MgO/CoFeB based magnetic tunnel junctions with interfacial perpendicular magnetic anisotropy. The results indicate that at low current case, the free layer magnetization shows a fast toggle-like switching, the final parallel or antiparallel magnetization state is determined by the electric-field effect, and the STT just helps or resists it to reach the final state depending on the current direction. However, with the increase of current strength, the contribution of STT effect gradually increases, which eventually achieves a deterministic magnetization switching state. Simulations further demonstrate that by appropriately tuning the parameters of applied electric-field and current the power consumption can be easily reduced by two orders of magnitude.

  19. Simulation of electric-field and spin-transfer-torque induced magnetization switching in perpendicular magnetic tunnel junctions

    SciTech Connect

    Zhang, Xiangli; Zhang, Zongzhi; Liu, Yaowen; Jin, Q. Y.

    2015-05-07

    Macrospin simulations are performed to model the magnetization switching driven by the combined action of electric-field and spin-polarized electric current (spin-transfer torque; STT) in MgO/CoFeB based magnetic tunnel junctions with interfacial perpendicular magnetic anisotropy. The results indicate that at low current case, the free layer magnetization shows a fast toggle-like switching, the final parallel or antiparallel magnetization state is determined by the electric-field effect, and the STT just helps or resists it to reach the final state depending on the current direction. However, with the increase of current strength, the contribution of STT effect gradually increases, which eventually achieves a deterministic magnetization switching state. Simulations further demonstrate that by appropriately tuning the parameters of applied electric-field and current the power consumption can be easily reduced by two orders of magnitude.

  20. Size and voltage dependence of effective anisotropy in sub-100-nm perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Piotrowski, Stephan K.; Bapna, Mukund; Oberdick, Samuel D.; Majetich, Sara A.; Li, Mingen; Chien, C. L.; Ahmed, Rizvi; Victora, R. H.

    2016-07-01

    Magnetic tunnel junctions with perpendicular magnetic anisotropy are investigated using a conductive atomic force microscope. The 1.23 -nm Co40Fe40B20 recording layer coercivity exhibits a size dependence which suggests single-domain behavior for diameters ≤100 nm. Focusing on devices with diameters smaller than 100 nm, we determine the effect of voltage and size on the effective device anisotropy Keff using two different techniques. Keff is extracted both from distributions of the switching fields of the recording and reference layers and from measurement of thermal fluctuations of the recording layer magnetization when a field close to the switching field is applied. The results from both sets of measurements reveal that Keff increases monotonically with decreasing junction diameter, consistent with the size dependence of the demagnetization energy density. We demonstrate that Keff can be controlled with a voltage down to the smallest size measured, 64 nm.

  1. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

    NASA Astrophysics Data System (ADS)

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2015-06-01

    The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

  2. Nonadiabatic electron dynamics of single-electron transport in a perpendicular magnetic field

    SciTech Connect

    He, JianHong; Guo, HuaZhong; Gao, Jie

    2014-04-28

    We present results of our investigation into the nonadiabatic electron dynamics of a moving quantum dot assisted by surface acoustic waves (SAWs) in a perpendicular magnetic field. The measurements show the evolution of a quantized acoustoelectric current in a modulated external field, which provides direct information of the energy spectrum and the occupation of the SAW-induced elliptical dynamical quantum dot. By comparing the magnetic field dependence of the spectrum with that of a somewhat symmetric circular dot, we find the appearance of nonadiabatic excitations at low magnetic fields resulting from the anisotropy of the dot. We also detect the transitions between different quantum states of the elliptical dot, achieved by exploiting the interference of two phase-tuned SAWs. Our results demonstrate that the quantum states in an asymmetric dot are fragile and extremely sensitive to their environment.

  3. Tuning perpendicular magnetic anisotropy in (Ga,Mn)(As,P) by thermal annealing

    SciTech Connect

    Casiraghi, A.; Rushforth, A. W.; Wang, M.; Farley, N. R. S.; Wadley, P.; Hall, J. L.; Staddon, C. R.; Edmonds, K. W.; Campion, R. P.; Foxon, C. T.; Gallagher, B. L.

    2010-09-20

    We have investigated the effects of postgrowth low temperature annealing on the magnetic, electrical, and structural properties of (Ga{sub 0.94}Mn{sub 0.06})(As{sub 0.9}P{sub 0.1}) layers grown by molecular beam epitaxy. By controlling the annealing time, we are able to tune the magnetic anisotropy between an easy axis in the plane for the as-grown samples, to an easy axis perpendicular to the plane for fully annealed samples. The increase in the carrier density, as a result of annealing, is found to be the primary reason for the sign reversal of the magnetic anisotropy, in qualitative agreement with theoretical predictions.

  4. Characterization of the magnetization reversal of perpendicular Nanomagnetic Logic clocked in the ns-range

    NASA Astrophysics Data System (ADS)

    Ziemys, Grazvydas; Trummer, Christian; Gamm, Stephan Breitkreutz-v.; Eichwald, Irina; Schmitt-Landsiedel, Doris; Becherer, Markus

    2016-05-01

    We have investigated the magnetization reversal of fabricated Co/Pt nanomagnets with perpendicular anisotropy within a wide range of magnetic field pulse widths. This experiment covers the pulse lengths from 700 ms to 20 ns. We observed that the commonly used Arrhenius model fits very well the experimental data with a single parameter set for pulse times above 100 ns (tp > 100 ns). However, below 100 ns (tp < 100 ns), a steep increase of the switching field amplitude is observed and the deviation from the Arrhenius model becomes unacceptable. For short pulse times the model can be adjusted by the reversal time term for the dynamic switching field which is only dependent on the pulse amplitude and not on temperature anymore. Precise modeling of the magnetization reversal in the sub-100 ns-range is crucially important to ensure reliable operation in the favored GHz-range as well as to explore and design new kinds of Nanomagnetic Logic circuits and architectures.

  5. CoCrPt-oxide based perpendicular recording media with hybrid soft magnetic underlayers

    NASA Astrophysics Data System (ADS)

    Piramanayagam, S. N.; Srinivasan, K.; Sbiaa, R.; Dong, Yan; Victora, R. H.

    2008-11-01

    Writability of magnetic recording media with high anisotropy constant (Ku) is one of the major challenges encountered in extremely high density recording. A possible avenue to improve writability in perpendicular magnetic recording is to reduce the spacing between the writing head and the soft magnetic underlayer (SUL) or head-to-keeper spacing (HKS). A hybrid layer structure for reducing the HKS between the SUL and the writing head is investigated. The proposed structure makes use of a crystalline SUL with in-plane anisotropy together with an amorphous SUL to form a hybrid SUL (H-SUL). The H-SUL design helps to achieve better surface smoothness, thinner HKS, and good c-axis dispersion for the recording layer while still maintaining small and exchange-decoupled grains. Micromagnetic simulation demonstrates that the H-SUL scheme helps in improving writing field effectiveness and increasing field gradient along down-track and cross-track directions.

  6. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2015-06-21

    The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

  7. Nanosecond magnetization reversal in nanocrystalline magnetic films

    NASA Astrophysics Data System (ADS)

    Rahman, I. Z.; Gandhi, A. A.; Khaddem-Mousavi, M. V.; Lynch, T. F.; Rahman, M. A.

    2007-03-01

    This paper reports on the investigation of dynamic magnetization reversal process in electrodeposited nanocrystalline Ni and Ni80Fe20 films by employing nanosecond magnetic pulse technique. The surface morphology has been investigated using SEM, EDAX, XRD and AFM analyses and static magnetic properties of the films are characterized by vibrating sample magnetometer (VSM). Two different techniques are designed and employed to study the nanosecond magnetization reversal process in nanocrystalline thin films: Magneto-Optical Kerr Effect (MOKE) and nanosecond pulsed field magnetometer. Results of dynamical behavior as a function of several variables such as magnitude of applied bias magnetic field, amplitude and width of the pulsed magnetic field are analyzed in detail using both techniques. A computer simulation package called Object Oriented Micro-Magnetic Framework (OOMMF) has been used to simulate the magnetic domain patterns of the samples.

  8. Laboratory Experiments on the Generation of Perpendicular, Magnetized Collisionless Shocks by a Laser-Ablated Piston

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek

    2013-10-01

    Collisionless shocks occur ubiquitously in space plasmas and have been extensively studied insitu by spacecraft, though they are inherently limited in their flexibility. We present laboratory experiments utilizing a highly flexible laser geometry at UCLA to study the generation of magnetized, perpendicular collisionless shocks by a super-Alfvénic laser-ablated piston. Experiments were carried out on the LArge Plasma Device (LAPD), which can create a highly reproducible 20 m long by Ø1 m H or He magnetized (<= 2 kG) ambient plasma. The 100 J Raptor laser was used to ablate perpendicular to the background magnetic field a carbon target embedded in the LAPD plasma. Emission spectroscopy revealed a significant spread between laser debris charge states, consistent with 2D hybrid simulations that show fast-moving, highly ionized debris slipping through the ambient plasma, while slower, lower charge states drive a diamagnetic cavity. The cavity grew to several ion gyroradii and lasted around one gyroperiod, large and long enough to act like a piston by allowing laminar fields at the cavity edge to transfer energy from the debris to the background plasma. This is confirmed by spectroscopy, which shows a reduction in debris velocities relative to a non-magnetic case, and Thomson scattering, which shows an increase in electron densities and temperatures in the ambient plasma. An increase in the intensity of the ambient plasma seen by gated imaging also indicates an energetic population of electrons coincident with the cavity edge, while Stark-broadened ambient lines may indicate strong local electric fields. Magnetic flux probes reveal that the cavity launches whistler waves parallel to the background field, as well as a super-Alfvénic magnetosonic wave along the blowoff axis that has a magnetic field compression comparable to the Alfvenic Mach number, consistent with simulations that suggest a weak collisionless shock was formed. Supported by DOE and DTRA.

  9. Probing structure-property relationships in perpendicularly magnetized Fe/Cu(001) using MXLD and XPD

    SciTech Connect

    Cummins, T.R.; Waddill, G.D.; Goodman, K.W.

    1997-04-01

    Magnetic X-ray Linear Dichroism (MXLD) in Photoelectron Spectroscopy and X-Ray Photoelectron Diffraction (XPD) of the Fe 3p core level have been used to probe the magnetic structure-property relationships of perpendicularly magnetized Fe/Cu(001), in an element-specific fashion. A strong MEXLD effect was observed in the high resolution photoelectron spectroscopy of the Fe 3p at {open_quotes}normal{close_quotes} emission and was used to follow the loss of perpendicular ferromagnetic ordering as the temperature was raised toward room temperature. In parallel with this, {open_quotes}Forward Focussing{close_quotes} in XPD was used as a direct measure of geometric structure in the overlayer. These results and the implications of their correlation will be discussed. Additionally, an investigation of the effect of Mn doping of the Fe/Cu(001) will be described. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  10. Perpendicular magnetic tunnel junction with a strained Mn-based nanolayer

    PubMed Central

    Suzuki, K. Z.; Ranjbar, R.; Okabayashi, J.; Miura, Y.; Sugihara, A.; Tsuchiura, H.; Mizukami, S.

    2016-01-01

    A magnetic tunnel junction with a perpendicular magnetic easy-axis (p-MTJ) is a key device for spintronic non-volatile magnetoresistive random access memory (MRAM). Co-Fe-B alloy-based p-MTJs are being developed, although they have a large magnetisation and medium perpendicular magnetic anisotropy (PMA), which make it difficult to apply them to a future dense MRAM. Here, we demonstrate a p-MTJ with an epitaxially strained MnGa nanolayer grown on a unique CoGa buffer material, which exhibits a large PMA of more than 5 Merg/cm3 and magnetisation below 500 emu/cm3; these properties are sufficient for application to advanced MRAM. Although the experimental tunnel magnetoresistance (TMR) ratio is still low, first principles calculations confirm that the strain-induced crystal lattice distortion modifies the band dispersion along the tetragonal c-axis into the fully spin-polarised state; thus, a huge TMR effect can be generated in this p-MTJ. PMID:27457186

  11. Perpendicular magnetic tunnel junction with a strained Mn-based nanolayer

    NASA Astrophysics Data System (ADS)

    Suzuki, K. Z.; Ranjbar, R.; Okabayashi, J.; Miura, Y.; Sugihara, A.; Tsuchiura, H.; Mizukami, S.

    2016-07-01

    A magnetic tunnel junction with a perpendicular magnetic easy-axis (p-MTJ) is a key device for spintronic non-volatile magnetoresistive random access memory (MRAM). Co-Fe-B alloy-based p-MTJs are being developed, although they have a large magnetisation and medium perpendicular magnetic anisotropy (PMA), which make it difficult to apply them to a future dense MRAM. Here, we demonstrate a p-MTJ with an epitaxially strained MnGa nanolayer grown on a unique CoGa buffer material, which exhibits a large PMA of more than 5 Merg/cm3 and magnetisation below 500 emu/cm3 these properties are sufficient for application to advanced MRAM. Although the experimental tunnel magnetoresistance (TMR) ratio is still low, first principles calculations confirm that the strain-induced crystal lattice distortion modifies the band dispersion along the tetragonal c-axis into the fully spin-polarised state; thus, a huge TMR effect can be generated in this p-MTJ.

  12. On the perpendicular propagating modes in the ultra-relativistic weakly magnetized plasma

    SciTech Connect

    Abbas, Gohar; Iqbal, Z.; Murtaza, G.

    2015-03-15

    The dispersion relations for the weakly magnetized perpendicular propagating modes (O-mode, X-mode, and upper hybrid mode) based on the ultra-relativistic Fermi-Dirac distribution function with chemical potential are derived using the Vlasov–Maxwell model. The results are presented in terms of Polylog functions without making any approximation. It is found that as the ratio μ/T is increased, the cutoff points shift downward. A comparison is also performed with the previously derived results for ultra-relativistic Maxwellian distribution.

  13. Angular tuning of the magnetic birefringence in rippled cobalt films

    SciTech Connect

    Arranz, Miguel A.; Colino, José M.

    2015-06-22

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  14. Angular tuning of the magnetic birefringence in rippled cobalt films

    NASA Astrophysics Data System (ADS)

    Arranz, Miguel A.; Colino, José M.

    2015-06-01

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  15. Post-adiabatic supernova remnants in an interstellar magnetic field: parallel and perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Petruk, O.; Kuzyo, T.; Beshley, V.

    2016-03-01

    Gamma-rays from hadronic collisions are expected from supernova remnants (SNRs) located near molecular clouds. The temperature of the shock interacting with the dense environment quickly reaches 105 K. Radiative losses of plasma become essential in the evolution of SNRs. They decrease the thermal pressure and essentially increase the density behind the shock. The presence of an ambient magnetic field may alter the behaviour of the post-adiabatic SNRs considerably compared with the hydrodynamic scenario. In the present article, magnetohydrodynamic simulations of radiative shocks in a magnetic field are performed. High plasma compression due to radiative losses also results in a prominent increase in the strength of the tangential component of magnetic field behind the shock and a decrease of the parallel one. If the strength of the tangential field before the shock is higher than about 3 μG, it prevents formation of a very dense thin shell. The higher the strength of the tangential magnetic field, the larger the thickness and the lower the maximum density in the radiative shell. The parallel magnetic field does not affect the distribution of the hydrodynamic parameters behind the shock. There are almost independent channels of energy transformations: radiative losses are due to thermal energy, magnetic energy increases come from reducing the kinetic energy. The large density and high strength of the perpendicular magnetic field in the radiative shells of SNRs should result in a considerable increase of the hadronic gamma-ray flux compared with the leptonic one.

  16. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy

    PubMed Central

    Lequeux, Steven; Sampaio, Joao; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Matsumoto, Rie; Kubota, Hitoshi; Yuasa, Shinji; Grollier, Julie

    2016-01-01

    Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-synapses, which are the focus of this work. A key point towards the development of large scale memristive neuromorphic hardware is to build these neural networks with a memristor technology compatible with the best candidates for the future mainstream non-volatile memories. Here we show the first experimental achievement of a multilevel memristor compatible with spin-torque magnetic random access memories. The resistive switching in our spin-torque memristor is linked to the displacement of a magnetic domain wall by spin-torques in a perpendicularly magnetized magnetic tunnel junction. We demonstrate that our magnetic synapse has a large number of intermediate resistance states, sufficient for neural computation. Moreover, we show that engineering the device geometry allows leveraging the most efficient spin torque to displace the magnetic domain wall at low current densities and thus to minimize the energy cost of our memristor. Our results pave the way for spin-torque based analog magnetic neural computation. PMID:27539144

  17. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy.

    PubMed

    Lequeux, Steven; Sampaio, Joao; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Matsumoto, Rie; Kubota, Hitoshi; Yuasa, Shinji; Grollier, Julie

    2016-01-01

    Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-synapses, which are the focus of this work. A key point towards the development of large scale memristive neuromorphic hardware is to build these neural networks with a memristor technology compatible with the best candidates for the future mainstream non-volatile memories. Here we show the first experimental achievement of a multilevel memristor compatible with spin-torque magnetic random access memories. The resistive switching in our spin-torque memristor is linked to the displacement of a magnetic domain wall by spin-torques in a perpendicularly magnetized magnetic tunnel junction. We demonstrate that our magnetic synapse has a large number of intermediate resistance states, sufficient for neural computation. Moreover, we show that engineering the device geometry allows leveraging the most efficient spin torque to displace the magnetic domain wall at low current densities and thus to minimize the energy cost of our memristor. Our results pave the way for spin-torque based analog magnetic neural computation. PMID:27539144

  18. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Sánchez-Tejerina, L.; Alejos, Ó.; Martínez, E.; Muñoz, J. M.

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii-Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current.

  19. Experimental study of playback giant magnetic resonance head nonlinearity in perpendicular recording

    NASA Astrophysics Data System (ADS)

    Luo, P.; Stoev, K.; Liu, F.; Vadde, A.; Gibbons, M.; Lederman, M.; Re, M.

    2003-05-01

    In this article, nonlinear distortions of the playback giant magnetic resonance (GMR) sensor in perpendicular recording are characterized in both time and frequency domains. We use three perpendicular media with different Mrt (0.46, 0.6, and 0.8 emu/cm2) and two groups of similar magnetic-read width (MRW) but different junction type [contiguous junction (CJ) and lead-over-lay (LOL)] GMR heads. Square-wave patterns at moderate densities are recorded to minimize NLTS, partial erasure, and transition broadening effects. Both time- and frequency-domain measurements indicate that the LOL-type GMR heads show playback nonlinearity (7%-23%), while the CJ-type GMR heads do not. Micromagnetic simulation is utilized to understand the hard bias field with different junction designs. The result indicates that the hard bias (HB) field in LOL type (HB field ˜6.9 Oe) at the air bearing surface (ABS) and stripe center is much lower than that in CJ type (HB field ˜54.0 Oe). Therefore, the free layer with large HB-HB distance will be more susceptible to saturation.

  20. Coulomb drag upturn in an undoped electron-hole bilayer in perpendicular and parallel magnetic fields.

    SciTech Connect

    Seamons, John Andrew; Lilly, Michael Patrick; Morath, Christian Paul; Reno, John Louis

    2010-03-01

    A low-temperature upturn of the Coulomb drag resistivity {rho}{sub D} measured in undoped electron-hole bilayer devices, possibly manifesting from formation of a superfluid condensate or density modulated state, was recently observed. Here the effects of perpendicular and parallel magnetic fields on the drag upturn are examined. Measurements of {rho}{sub D} and drive layer resistivity {rho}{sub xx-e} as a function of temperature and magnetic field in two uEHBL devices are presented. In B{sub {perpendicular}}, the drag upturn was enhanced as the field increased up to roughly .2 T, beyond which oscillations in {rho}{sub D} and {rho}{sub xx-e}, reflecting Landau level formation, begin appearing. A small phase offset between those oscillations, which decreased at higher fields and temperatures, was also observed. In B{sub {parallel}}, the drag upturn magnitude diminished as the field increased. Above the upturn regime, both {rho}{sub D} and {rho}{sub xx-e} were enhanced by B{sub {parallel}}, the latter via decreased screening of the uniform background impurities.

  1. Coupled Néel domain wall motion in sandwiched perpendicular magnetic anisotropy nanowires

    PubMed Central

    Purnama, I.; Kerk, I. S.; Lim, G. J.; Lew, W. S.

    2015-01-01

    The operating performance of a domain wall-based magnetic device relies on the controlled motion of the domain walls within the ferromagnetic nanowires. Here, we report on the dynamics of coupled Néel domain wall in perpendicular magnetic anisotropy (PMA) nanowires via micromagnetic simulations. The coupled Néel domain wall is obtained in a sandwich structure, where two PMA nanowires that are separated by an insulating layer are stacked vertically. Under the application of high current density, we found that the Walker breakdown phenomenon is suppressed in the sandwich structure. Consequently, the coupled Néel domain wall of the sandwich structure is able to move faster as compared to individual domain walls in a single PMA nanowire. PMID:25736593

  2. Strong Perpendicular Magnetic Anisotropy at Co(111)/α-Cr2O3(0001) Interface

    NASA Astrophysics Data System (ADS)

    Shiratsuchi, Yu; Oikawa, Hiroto; Kawahara, Shin-ichi; Takechi, Yuichiro; Fujita, Toshiaki; Nakatani, Ryoichi

    2012-04-01

    We have investigated the perpendicular magnetic anisotropy (PMA) at the ferromagnetic/antiferromagnetic interface using [Pt/Co]n/α-Cr2O3 superlattices. By changing the number of stacking periods, the contributions of the Co/α-Cr2O3 and Pt/Co interfaces to the PMA are separately estimated. The results indicate that the strong PMA is induced at the Co/α-Cr2O3 interface as well as at the Pt/Co interface. The change in the interface magnetic anisotropy energy density with the ferromagnetic layer composition supports the PMA at the Co/α-Cr2O3 interface. To the best of our knowledge, this is the first demonstration of PMA at the ferromagnetic/antiferromagnetic interface.

  3. Superdiffusion of two-dimensional Yukawa liquids due to a perpendicular magnetic field.

    PubMed

    Feng, Yan; Goree, J; Liu, Bin; Intrator, T P; Murillo, M S

    2014-07-01

    Stochastic transport of a two-dimensional (2D) dusty plasma liquid with a perpendicular magnetic field is studied. Superdiffusion is found to occur especially at higher magnetic fields with β of order unity. Here, β = ω(c)/ω(pd) is the ratio of the cyclotron and plasma frequencies for dust particles. The mean-square displacement MSD = 4D(α)t(α) is found to have an exponent α > 1, indicating superdiffusion, with α increasing monotonically to 1.1 as β increases to unity. The 2D Langevin molecular dynamics simulation used here also reveals that another indicator of random particle motion, the velocity autocorrelation function, has a dominant peak frequency ω(peak) that empirically obeys ω(peak)(2) = ω(c)(2) + ω(pd)(2)/4. PMID:25122399

  4. Fabrication and characterization of focused-ion-beam trimmed write heads for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Clinton, T. W.; van der Heijden, P. A. A.; Karns, D. C.; Yu, J.; Park, C. M.; Batra, S.

    2002-05-01

    A focused ion beam (FIB) has been used to trim write heads for perpendicular magnetic recording using untrimmed HGA-level longitudinal heads. The ion-beam imaging of the write head during FIB processing was minimized to limit exposure of the active magnetic material at the ABS to a 30 keV Ga+ ion dose of less than 1014Ga+/cm2 (≈10-13 C/μm2) (the GMR reader was never exposed), which is significantly below levels where magnetic properties have been observed to degrade [W. M. Kaminsky et al., Appl. Phys. Lett. 78, 1589 (2001)]. The corresponding recording characteristics and spatial profiles of written tracks have been measured on a spin stand and a magnetic force microscope (MFM). Recording performance, such as SNR, and pulse shape of transitions, for example, as a function of head design and FIB processing is discussed, which compares very favorably to the performance of untrimmed heads. The MFM images reveal curvature in the magnetic transitions (transition smile) when writing with a single-pole writer with a straight trailing edge. Conversely, we demonstrate straight transitions using a single-pole writer with a curved trailing edge. Our results demonstrate the robustness of FIB-trimmed heads down to sub-100-nm length scales.

  5. Dot arrays of L1{sub 0}-type FePt ordered alloy perpendicular films fabricated using low-temperature sputter film deposition

    SciTech Connect

    Shimatsu, T.; Aoi, H.; Inaba, Y.; Kataoka, H.; Sayama, J.; Okamoto, S.; Kitakami, O.

    2011-04-01

    Using ultrahigh vacuum sputter film deposition, we fabricated L1{sub 0}-type Fe{sub 50}Pt{sub 50} ordered alloy perpendicular films on MgO(001) single-crystal substrates and 2.5 in. glass disks at low substrate temperatures of 200-350 deg. C. Then we examined the magnetic properties of the dot arrays made from these films. The uniaxial magnetic anisotropy K{sub u} for L1{sub 0}-type FePt films (10 nm in thickness) deposited with a Pd underlayer on MgO(001) substrates reached about 2 x 10{sup 7} erg/cm{sup 3} at the substrate temperature T{sub s} of 200 deg. C, and 3 x 10{sup 7} erg/cm{sup 3} at T{sub s} = 250 deg. C. The order parameter S was about 0.46 at T{sub s} = 300 deg. C. Moreover, K{sub u} for L1{sub 0}-FePt films fabricated on glass disks using MgO/Cr underlayers shows 3.4 x 10{sup 7} erg/cm{sup 3} at T{sub s} = 300 deg. C, which was almost equal to that for FePt single-crystal films deposited on Pd/MgO(001). The switching field distribution {sigma}/H{sub c} for dot arrays made from L1{sub 0}-FePt film [5 nm in thickness, on Pd/MgO(001) at T{sub s} = 250 deg. C] was small; {sigma}/H{sub c}= 0.11 for a dot diameter of 15 nm. This value was smaller than that of hcp-Co{sub 75}Pt{sub 25} dot arrays ({sigma}/H{sub c} = 0.18). The difference was mainly attributable to the degree of the easy axis distribution. This result demonstrates the homogeneous formation of a L1{sub 0}-type ordered structure in the FePt layers.

  6. Momentum transfer resolved memory in a magnetic system with perpendicular anisotropy

    SciTech Connect

    Seu, Keoki; Roy, Sujoy; Su, Run; Parks, Daniel; Shipton, Erik; Fullerton, Eric; Kevan, Stephen

    2011-01-28

    We have used resonant, coherent soft x-ray scattering to measure wave vector re- solved magnetic domain memory in Co/Pd multilayers. The technique uses angular cross correlation functions and can be applied to any system with circular annuli of constant values of scattering wave vector q. In our Co/Pd film, the memory exhibits a maximum at q = 0.0384 nm-1 near initial reversal that decreases in magnitude as the magnetization is further reversed. The peak is attributed to bubble domains that nucleate reproducibly near initial reversal and which grow into a labyrinth domain structure that is not reproduced from one magnetization cycle to the next.

  7. Coercivity of ledge-type L10-FePt/Fe nanocomposites with perpendicular magnetization

    NASA Astrophysics Data System (ADS)

    Goll, D.; Breitling, A.

    2009-02-01

    Exchange-coupled ledge-type L10-FePt/Fe composite systems with out-of-plane anisotropy composed of nanostructured L10-FePt films covered by Fe are prepared to analyze the influence of the soft magnetic layer thickness on the magnetic properties. By the soft magnetic layer thickness dFe the coercivity can be tailored according to a 1/dFe1.38 relation. This result can be used to realize recording media with coercivities in the range which are afforded by conventional write heads.

  8. Magnetic properties and anisotropy in magnetic thin films and superlattices

    NASA Astrophysics Data System (ADS)

    Guo, Wenli

    A systematic study of the magnetic properties and anisotropy in magnetic thin films as well as superlattices is presented in this thesis. The main objective is to investigate by means of the Green function technique the order-disorder phase transition and reorientation transition in a non-perturbative microscopic theory valid in the whole temperature range of interest. We consider the magnetic systems that may consist of an arbitrary number of layers with any spin. We start with a discussion of general properties and origins of anisotropies of the magnetic systems, and a list of questions that we are trying to answer. A comparison between different theoretical approaches follows. The Green function method is used to derive analytical expressions for various anisotropies. The energy spectrum and the spontaneous magnetization are obtained as well. Based on these results, the transition temperature and the Curie temperature are calculated as functions of the Fe film thickness. It is shown that the condition for the reorientation transition is equivalent to that for the zero energy gap at the bottom of the spin-wave spectrum. Special features under the influence of normal external field, anisotropic exchange couplings and next-nearest-neighbor couplings on the magnetization reorientation of magnetic thin films are then investigated in detail. It is demonstrated that the nature of perpendicular remanent (PR) depends primarily on the surface anisotropy and film thickness. The magnetic properties of Tb/Fe superlattices are also studied. It shows ferrimagnetic properties and normal uniaxial anisotropy. An approximation is proposed to treat magnetic Ni films of arbitrary thickness and arbitrary lattice structure for general spin. It is a much simpler way of calculation, in which one does not have to solve the determinant equation, especially the one with off-diagonal elements. The temperature and thickness dependence of various anisotropies are then investigated. There

  9. Influence of shape, size and internal structure on magnetic properties of core-edge nanodots with perpendicular anisotropy

    SciTech Connect

    Milińska, E. Wawro, A.

    2014-11-21

    The properties of perpendicularly magnetized isolated nanodots different in shape, size, and internal structure are simulated by micromagnetic calculations. Investigated dots are magnetically uniform, or they are composed of a core and an edge characterized by different anisotropy—stronger or weaker than that of the core. Based on calculated hysteresis loops, we discuss in details the magnetization reversal processes, stability of magnetic structures, and spin configurations in the dots.

  10. Contribution of individual interfaces in the MgO/Co/Pd trilayer to perpendicular magnetic anisotropy upon annealing

    SciTech Connect

    Kim, Minseok; Kim, Sanghoon; Ko, Jungho; Hong, Jongill

    2015-03-09

    The contribution of each interface of the MgO/Co/Pd trilayer to the perpendicular magnetic anisotropy (PMA) was studied by changing chemical and crystalline structures through annealing. We found that volumetric anisotropy in the MgO/Co/Pd trilayer was significantly increased due to enhanced magnetoelastic anisotropy caused by stress built up most likely at the MgO/Co interface during annealing. When the trilayer was annealed at 400 °C, the alloy formation at the Co/Pd interface additionally increased the volumetric anisotropy. Our x-ray magnetic circular dichroism study supported that those structural modifications led to an increase in the orbital moment through spin-orbit coupling (SOC) along the film normal two times larger than that of the as-deposited trilayer, thereby enhancing PMA greatly. Our experimental results prove that the Co/Pd interface, rather than the MgO/Co interface, plays an essential role in inducing strong PMA in the trilayer. The precise investigation of annealing effect on both volumetric and interfacial anisotropies can provide a methodological solution to improve the SOC of the trilayer that can serve as the core unit of spintronic devices.

  11. An Investigation of Perpendicular Gradients of Parallel Electric Field Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Sturner, A. P.; Ergun, R.; Newman, D. L.; Lapenta, G.

    2014-12-01

    Many observations of particle heating and acceleration throughout the universe have been associated with magnetic reconnection. Generalized Ohm's Law describes how particles move under ideal and non-ideal conditions; however, it is insufficient for describing how the magnetic field itself changes. Initial studies have shown that a curl of a parallel electric field is necessary for reconnection to occur. These analytic studies have demonstrated that perpendicular gradients in the parallel electric field drive a counter-twisting of the magnetic field on either side of the localized parallel electric field. This results in the slippage of magnetic flux tubes and a break down of the 'frozen-in' condition. In this presentation, we analyze results from self-consistent implicit kinetic particle-in-cell simulations. The strongest gradients of parallel electric fields in the simulations are along the separator and not at the X-point. We will present where in the simulation domain the 'frozen-in' condition breaks down and compare it with the location of these gradients, and discuss the implications.

  12. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    PubMed Central

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-01-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM. PMID:26656721

  13. Perpendicular Magnetic Anisotropy of Tb/Fe and Gd/Fe Multilayers Studied with Torque Magnetometer

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Perpendicular magnetic anisotropy (PMA) of multilayers critically depend on the magnetic and structural ordering of the interface. To study the effect of interface on PMA, Tb/Fe and Gd/Fe multilayers with varying Fe (0.8-9.0 nm) and Gd (0.5-2.8 nm) or Tb (0.3-6.3 nm) layer thicknesses were fabricated by planar magnetron sputtering. The magnetometer results of spin orientation clearly reveals that samples with Gd or Tb layer thickness of more than 1.2 nm display no PMA, regardless of the Fe layer thickness. Tb/Fe and Gd/Fe multilayers with thin (<1.2 nm) Tb or Gd layers display large PMA, but no PMA is observed when the Fe layer thickness is increased to 4.0 nm and higher. The bulk magnetization and anisotropy energy constant of the samples are found to increase with increasing Fe layer thickness. Torque measurement also reveals that there are two distinctly different axes of spin alignment at different energy. Tb/Fe and Gd/Fe multilayers with similar composition reveal similar magnetic and structural characteristics, and it may imply that single-ion-anisotropy of rare-earth element, which is quite large for Tb ions and very small for Gd ions, may not be the dominating cause of PMA in Td/Fe and Gd/Fe multilayers. A detailed explanation of the results will be provided based on exchange interaction at the interface.

  14. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    PubMed

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-01-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM. PMID:26656721

  15. Magnetic properties of strontium hexaferrite films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-08-01

    The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50-700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.

  16. Structure of epitaxial L10-FePt/MgO perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kohn, Amit; Tal, Nadav; Elkayam, Ayala; Kovàcs, Andras; Li, Dalai; Wang, Shouguo; Ghannadzadeh, Saman; Hesjedal, Thorsten; Ward, Roger C. C.

    2013-02-01

    Perpendicular magnetic tunnel junctions (p-MTJs) with MgO barriers are interesting for high-density information-storage devices. Chemically ordered L10-FePt is a potential electrode due to its large perpendicular magnetocrystalline anisotropy. To-date, a single theoretical study on L10-FePt/MgO p-MTJ based on an idealized structure reported significant dependence of spin-dependent tunneling on interface structure. [Y. Taniguchi et al., IEEE Trans. Magn. 44, 2585 (2008).] We report a structural study of epitaxial L10-FePt(001)[110]//MgO(001)[110]//L10-FePt(001)[110] p-MTJs, focusing on the interfaces using aberration-corrected scanning transmission electron microscopy. Interfaces are semi-coherent, with oxygen atomic-columns of MgO located opposite to iron atomic-columns in L10-FePt. Up to three lattice planes show atomic-column steps, the origin of which is attributed to antiphase boundaries in L10-FePt.

  17. Inter-layer frictional drag in double quantum wells in perpendicular magnetic fields

    NASA Astrophysics Data System (ADS)

    Feng, Xiang Guang

    Friction drag between isolated two-dimensional electron gas (2DEG) layers is a relatively new experimental probe for the study of the inter-layer interactions of two-dimensional electron systems. By measuring drag as a function of various experimental parameters we can explore details of the electron-electron interactions and gain insight into the electronic states. As many new and interesting phenomena have been discovered for two-dimensional electron gas systems in magnetic fields, beginning with the discovery of the quantum Hall-effect, we were motivated to measure drag in magnetic fields perpendicular to the 2DEG. In our drag experiment in magnetic fields, we observed two unusual phenomena. First in intermediate field range, where the Landau level splitting is smaller than the thermal energy kT, we observed an unusual increase in drag in intermediate fields, which cannot be explained by current theory based on single particle scattering. We think the cause of this unusual increase is related to inter-layer correlation induced by magnetic field. Secondly, in strong magnetic fields and unmatched layer densities, we observed negative drag peaks at certain field values, which have opposite polarity to the drag of electron-electron system at zero field. We argue that the negative drag reveals unusual dispersion of the electronic states near the Landau level, in which electrons show hole-like behavior. We hope our work can inspire more studies, both theoretically and experimentally, on the two dimensional electron systems in magnetic field. The experiments discussed here were performed in Dr. Gramila's research group in the department of physics of Pennsylvania State University.

  18. Anatomy of electric field control of perpendicular magnetic anisotropy at Fe/MgO interfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F.; Yang, H. X.; Hallal, A.; Dieny, B.; Chshiev, M.

    2016-01-01

    The charge-mediated effect of electric field on the perpendicular magnetic anisotropy (PMA) of Fe/MgO interfaces is investigated using first-principles calculations. We present an approach by discussing this effect in relation to the intrinsic dipole field existing at the Fe/MgO interface. A firm correlation between the PMA and the interfacial dipole is established and further verified in the absence of an applied electric field. The on-site projected PMA analysis not only elucidates that the effect of electric field on the PMA extends beyond the interfacial Fe layer, but also shows that the second Fe layer carries the largest contribution to the effect. This observation is interpreted in relation to the orbital hybridization changes induced by applying an electric field.

  19. Thermally activated switching of perpendicular magnet by spin-orbit spin torque

    SciTech Connect

    Lee, Ki-Seung; Lee, Seo-Won; Min, Byoung-Chul; Lee, Kyung-Jin

    2014-02-17

    We theoretically investigate the threshold current for thermally activated switching of a perpendicular magnet by spin-orbit spin torque. Based on the Fokker-Planck equation, we obtain an analytic expression of the switching current, in agreement with numerical result. We find that thermal energy barrier exhibits a quasi-linear dependence on the current, resulting in an almost linear dependence of switching current on the log-scaled current pulse-width even below 10 ns. This is in stark contrast to standard spin torque switching, where thermal energy barrier has a quadratic dependence on the current and the switching current rapidly increases at short pulses. Our results will serve as a guideline to design and interpret switching experiments based on spin-orbit spin torque.

  20. Time-resolved spin-torque switching in MgO-based perpendicularly magnetized tunnel junctions

    NASA Astrophysics Data System (ADS)

    Devolder, T.; Kim, Joo-Von; Garcia-Sanchez, F.; Swerts, J.; Kim, W.; Couet, S.; Kar, G.; Furnemont, A.

    2016-01-01

    We study nanosecond-scale spin-torque-induced switching in perpendicularly magnetized tunnel junctions. Although the switching voltages match with the macrospin instability threshold, the electrical signatures of the reversal indicate the presence of domain walls in junctions of various sizes. In the antiparallel (AP)-to-parallel (P) switching, a nucleation phase is followed by an irreversible flow of a wall through the sample at an average velocity of 40 m/s with back-and-forth oscillation movements indicating a Walker propagation regime. A model with a single wall locally responding to the spin torque reproduces the essential dynamical signatures of the reversal. The P-to-AP transition has a complex dynamics with dynamical back-hopping whose probability increases with voltage. We attribute this back-hopping to the instability of the nominally fixed layers.

  1. Magnetization switching by combining electric field and spin-transfer torque effects in a perpendicular magnetic tunnel junction

    PubMed Central

    Zhang, Xiangli; Wang, Chengjie; Liu, Yaowen; Zhang, Zongzhi; Jin, Q. Y.; Duan, Chun-Gang

    2016-01-01

    Effective manipulation of magnetization orientation driven by electric field in a perpendicularly magnetized tunnel junction introduces technologically relevant possibility for developing low power magnetic memories. However, the bipolar orientation characteristic of toggle-like magnetization switching possesses intrinsic difficulties for practical applications. By including both the in-plane (T//) and field-like (T⊥) spin-transfer torque terms in the Landau-Lifshitz-Gilbert simulation, reliable and deterministic magnetization reversal can be achieved at a significantly reduced current density of 5×109 A/m2 under the co-action of electric field and spin-polarized current, provided that the electric-field pulse duration exceeds a certain critical value τc. The required critical τc decreases with the increase of T⊥ strength because stronger T⊥ can make the finally stabilized out-of-plane component of magnetization stay in a larger negative value. The power consumption for such kind of deterministic magnetization switching is found to be two orders of magnitude lower than that of the switching driven by current only. PMID:26732287

  2. Magnetization switching by combining electric field and spin-transfer torque effects in a perpendicular magnetic tunnel junction.

    PubMed

    Zhang, Xiangli; Wang, Chengjie; Liu, Yaowen; Zhang, Zongzhi; Jin, Q Y; Duan, Chun-Gang

    2016-01-01

    Effective manipulation of magnetization orientation driven by electric field in a perpendicularly magnetized tunnel junction introduces technologically relevant possibility for developing low power magnetic memories. However, the bipolar orientation characteristic of toggle-like magnetization switching possesses intrinsic difficulties for practical applications. By including both the in-plane (T//) and field-like (T⊥) spin-transfer torque terms in the Landau-Lifshitz-Gilbert simulation, reliable and deterministic magnetization reversal can be achieved at a significantly reduced current density of 5×10(9) A/m(2) under the co-action of electric field and spin-polarized current, provided that the electric-field pulse duration exceeds a certain critical value τc. The required critical τc decreases with the increase of T⊥ strength because stronger T⊥ can make the finally stabilized out-of-plane component of magnetization stay in a larger negative value. The power consumption for such kind of deterministic magnetization switching is found to be two orders of magnitude lower than that of the switching driven by current only. PMID:26732287

  3. Magnetization switching by combining electric field and spin-transfer torque effects in a perpendicular magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangli; Wang, Chengjie; Liu, Yaowen; Zhang, Zongzhi; Jin, Q. Y.; Duan, Chun-Gang

    2016-01-01

    Effective manipulation of magnetization orientation driven by electric field in a perpendicularly magnetized tunnel junction introduces technologically relevant possibility for developing low power magnetic memories. However, the bipolar orientation characteristic of toggle-like magnetization switching possesses intrinsic difficulties for practical applications. By including both the in-plane (T//) and field-like (T⊥) spin-transfer torque terms in the Landau-Lifshitz-Gilbert simulation, reliable and deterministic magnetization reversal can be achieved at a significantly reduced current density of 5×109 A/m2 under the co-action of electric field and spin-polarized current, provided that the electric-field pulse duration exceeds a certain critical value τc. The required critical τc decreases with the increase of T⊥ strength because stronger T⊥ can make the finally stabilized out-of-plane component of magnetization stay in a larger negative value. The power consumption for such kind of deterministic magnetization switching is found to be two orders of magnitude lower than that of the switching driven by current only.

  4. Dynamics of 2D Dust Clusters with a Perpendicular Magnetic Field

    SciTech Connect

    Greiner, Franko; Carstensen, Jan; Hou Lujing; Piel, Alexander

    2008-09-07

    The physics of two-dimensional (2D) dust clusters in an unmagnetized plasma sheath has been understood in dept. However, introduction of a perpendicular magnetic field into the dusty plasma sheath leads to some new effects, such as rotation and compression of dust clusters, whose mechanism is still unclear. It is found that even for a magnetic field as low as the earth magnetic field ({approx_equal}40 {mu}T), clusters rotate as rigid about their centers. It was proposed [U. Konopka, PRE 61, 1890 (2000)] that the ExB-induced ion flow drives the dust clusters into rotation. Simulations [L.-J. Hou, PoP 12, 042104 (2005)] based on the same hypothesis also reproduced the rotation of 2D clusters in a qualitative manner. However, this model cannot fully explain the experimental observations. We present detailed experimental investigations, which show that the rotation of a dust cluster critically depends on the detailed discharge geometry. In particular, the co-rotation of the background neutral gas and its role in driving dust-cluster rotation is proposed as a mechanism to set the dust cluster in rotation.

  5. In-line spin-torque nano-oscillators in perpendicularly magnetized nanowires

    NASA Astrophysics Data System (ADS)

    van Mourik, R. A.; Phung, T.; Parkin, S. S. P.; Koopmans, B.

    2016-01-01

    We propose a scheme for an in-line spin-torque nano-oscillator (iSTNO) composed of a single nanowire. The oscillating element is an in-plane magnetized region of an otherwise out-of-plane magnetized nanowire, which supports a spin-wave mode. Analytical exploration reveals that the nonadiabatic spin-transfer torque can cancel out the damping and thus induce sustained precession in response to a direct current. Moreover, it predicts that the frequency scales linearly with current and that the wave vector depends only on geometry. Simulations with single iSTNO cells confirm that oscillations occur, and simulations with two iSTNO cells show that they frequency lock to each other roughly in antiphase, even with mismatches in geometry. iSTNO devices can be easily fabricated by irradiating regions of a perpendicular magnetic anisotropy nanowire with ions, do not require an external field, inherently support multiple iSTNOs, and thus form an attractive alternative STNO.

  6. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Devicea)

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Gekelman, W.; Niemann, C.

    2014-05-01

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.

  7. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device

    SciTech Connect

    Schaeffer, D. B. Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Gekelman, W.; Niemann, C.; Winske, D.

    2014-05-15

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.

  8. Perpendicular-anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohao; Zhao, Weisheng; Deng, Erya; Klein, Jacques-Olivier; Chappert, Claude

    2015-02-01

    We investigate the magnetization switching induced by spin-Hall-assisted spin-transfer torque (STT) in a three-terminal device consisting of a perpendicular-anisotropy magnetic tunnel junction (MTJ) and an β-W strip. Magnetization dynamics in free layer of MTJ is simulated by solving numerically a modified Landau-Lifshitz-Gilbert equation. The influences of spin-Hall write current (density, duration and direction) on the STT switching are evaluated. We find that the switching speed of a STT-MTJ can be significantly improved (reduced to <1 ns) by using a sufficiently large spin-Hall write current density (~25 MA cm-2) with an appropriate duration (~0.5 ns). Finally we develop an electrical model of three-terminal MTJ/β-W device with Verilog-A language and perform transient simulation of switching a 4 T/1MTJ/1β-W memory cell with Spectre simulator. Simulation results demonstrate that spin-Hall-assisted STT-MTJ has advantages over conventional STT-MTJ in write speed and energy.

  9. Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO system

    PubMed Central

    Lee, Hwang-Rae; Lee, Kyujoon; Cho, Jaehun; Choi, Young-Ha; You, Chun-Yeol; Jung, Myung-Hwa; Bonell, Frédéric; Shiota, Yoichi; Miwa, Shinji; Suzuki, Yoshishige

    2014-01-01

    Spin-orbit torques, including the Rashba and spin Hall effects, have been widely observed and investigated in various systems. Since interesting spin-orbit torque (SOT) arises at the interface between heavy nonmagnetic metals and ferromagnetic metals, most studies have focused on the ultra-thin ferromagnetic layer with interface perpendicular magnetic anisotropy. Here, we measured the effective longitudinal and transverse fields of bulk perpendicular magnetic anisotropy Pd/FePd (1.54 to 2.43 nm)/MgO systems using harmonic methods with careful correction procedures. We found that in our range of thicknesses, the effective longitudinal and transverse fields are five to ten times larger than those reported in interface perpendicular magnetic anisotropy systems. The observed magnitude and thickness dependence of the effective fields suggest that the SOT do not have a purely interfacial origin in our samples. PMID:25293693

  10. Magnetic Anisotropies in Samarium-Cobalt Thin Films

    NASA Astrophysics Data System (ADS)

    Chen, Kailai

    A systemic study of the deposition processes and magnetic properties for the Sm-Co film system has been carried out. Films of Sm-Co system with various magnetic anisotropies have been synthesized through sputter deposition in both crystalline and amorphous phases. The origins of various anisotropies have been studied. Thermallized sputter deposition process control was used to synthesize Fe enriched Sm-Co films with rhombohedral Th_2Zn_{17} type structure. The film exhibited unusually strong textures with the crystallographic c axes of the crystallites aligned in the film plane. A large anisotropy was resulted with easy axis in the film plane. A well defined and large in-the-film-plane anisotropy of exceptionally high value of 3.3 times 10^6 erg/cm^3 has been obtained in the amorphous SmCo films by applying a magnetic field in the film plane during deposition. It was found that the in-the-film-plane anisotropy depended essentially on the applied field and Sm concentration. For films not synthesized through thermallized sputtering, the easy axis of the film could be reoriented through post deposition annealing. In contrast, in-plane easy axes of films synthesized through thermallized sputtering deposition could not be reoriented. A perpendicular anisotropy was also presented in the film synthesized through thermallized sputtering deposition. A large in-plane anisotropy was obtained in films deposited above ambient temperatures. It was concluded that the surface induced short range ordering was the origin of the in-the-film-plane anisotropy observed in amorphous film deposited in the presence of a magnetic field. The formation mechanism was different from that of the short range ordering induced by field annealing. The perpendicular anisotropy was shown to be growth induced. Large in-plane anisotropy in amorphous films was resulted from partial crystallization in the film. Both the formation of growth induced structure and partial crystallization in the film

  11. Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis

    SciTech Connect

    Zhang, C.; Yamanouchi, M. Ikeda, S.; Sato, H.; Fukami, S.; Matsukura, F.; Ohno, H.

    2014-05-07

    We investigate in-plane current-induced magnetization reversal under an in-plane magnetic field in Hall bar shaped devices composed of Ta/CoFeB/MgO structures with perpendicular magnetic easy axis. The observed relationship between the directions of current and magnetization switching and Ta thickness dependence of magnetization switching current are accordance with those for magnetization reversal by spin transfer torque originated from the spin Hall effect in the Ta layer.

  12. Current-induced magnetization switching of a three terminal perpendicular magnetic tunnel junction by spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Cubukcu, Murat; Drouard, Marc; Boulle, Olivier; Garello, Kevin; Miron, Ioan Mihai; Langer, Juergen; Ocker, Berthold; Gambardella, Pietro; Gaudin, Gilles

    2014-03-01

    A current flowing in the plane of a magnetic multilayer with structural inversion asymmetry, such as Pt/Co/AlOx, creates a torque on the magnetization. This torque is due to the strong spin-orbit interaction present in such multilayers and can lead to fast magnetization reversal with a low writing energy.We will present the first proof of concept of a perpendicular spin-orbit torque magnetic random access memory (SOT-MRAM) cell composed of a Ta/FeCoB/MgO/FeCoB magnetic tunnel junction. The basic write and read operations, i.e., the magnetization reversal by current injection in the Ta track and its detection using the high TMR signal, are demonstrated. Our results open a path for the development of a novel class of three terminal MRAM combining fast, reliable and low energy writing. This work was supported by the European Commission under the Seventh Framework Program (Grant Agreement 318144, spot project).

  13. Magnetic Mesoporous Photonic Cellulose Films.

    PubMed

    Giese, Michael; Blusch, Lina K; Schlesinger, Maik; Meseck, Georg R; Hamad, Wadood Y; Arjmand, Mohammad; Sundararaj, Uttandaraman; MacLachlan, Mark J

    2016-09-13

    Novel hybrid materials of cellulose and magnetic nanoparticles (NPs) were synthesized and characterized. The materials combine the chiral nematic structural features of mesoporous photonic cellulose (MPC) with the magnetic properties of cobalt ferrite (CoFe2O4). The photonic, magnetic, and dielectric properties of the hybrid materials were investigated during the dynamic swelling and deswelling of the MPC films. It was observed that the dielectric properties of the generated MPC films increased tremendously following swelling in water, endorsing efficient swelling ability of the generated mesoporous films. The high magnetic permeability of the developed MPC films in conjunction with their superior dielectric properties, predominantly in the swollen state, makes them interesting for electromagnetic interference shielding applications. PMID:27588561

  14. Magnetic properties and anisotropic coercivity in nanogranular films of Co/Al2O3 above the percolation limit

    NASA Astrophysics Data System (ADS)

    Kulyk, M. M.; Kalita, V. M.; Lozenko, A. F.; Ryabchenko, S. M.; Stognei, O. V.; Sitnikov, A. V.; Korenivski, V.

    2014-08-01

    Magnetic properties of nanogranular ferromagnetic Co/Al2O3 films with 74.5 at% Co, which is above the percolation limit, are investigated. It is established that the films have perpendicular magnetic anisotropy and a weaker in-plane anisotropy. The magnetization curves show that the film consists of two magnetic components: a dominating contribution from magneto-anisotropic isolated grains with the anisotropy axis perpendicular to the film plane and a weaker contribution from the percolated part of the film. This two-component magnetic composition of the films, with the dominating contribution from the nanograins, is confirmed by transmission electron microscopy as well as by ferromagnetic resonance spectroscopy. It is further established that the coercive field of the film is almost entirely determined by the percolated part of the film. In this, the angular dependence of the coercive force, Hc (θH), is essentially proportional to sin-1θH, where θH is the angle between the applied field and the film's normal. However, for θH → 0, Hc (θH) there is a narrow minimum with Hc approaching zero. Such non-linear dependence agrees well with our modelling results for a two-component magnetic system of the film, where the non-percolated nanograins have a distinct perpendicular anisotropy. The reported results should be important for in-depth characterization and understanding the magnetism and anisotropy in inhomogeneous systems as well as for applications, specifically in perpendicular magnetic recording.

  15. Size dependence of nanosecond-scale spin-torque switching in perpendicularly magnetized tunnel junctions

    NASA Astrophysics Data System (ADS)

    Devolder, T.; Le Goff, A.; Nikitin, V.

    2016-06-01

    We have time resolved the spin-transfer-torque-induced switching in perpendicularly magnetized tunnel junctions of diameters from 50 to 250 nm in the subthreshold thermally activated regime. When the field and the spin torque concur to both favor the P to AP transition, the reversal yields monotonic resistance ramps that can be interpreted as a domain wall propagation through the device at velocities of the order of 17 to 30 nm/ns; smaller cells switch faster, and proportionally to their diameter. At the largest sizes, transient domain wall pinning can occasionally occur. When the field hinders the P to AP transition triggered by the spin torque, the P to AP switching is preceded by repetitive switching attempts, during which the resistance transiently increases until successful reversal occurs. At 50 nm, the P to AP switching proceeds reproducibly in 3 ns, with a monotonic featureless increase of the device resistance. In the reverse transition (AP to P), the variability of thermally activated reversal is not restricted to stochastic variations of incubation delays before the onset of reversal: several reversal paths are possible even in the smallest perpendicularly magnetized junctions. Besides, the nonuniform nature of the magnetic response seems still present at the nanoscale, with sometimes electrical signatures of strong disorder during the AP to P reversal. The AP to P transition is preceded by a strong instability of the AP states in devices larger than 100 nm. The resistance becomes extremely agitated before switching to P in a path yielding a slow (20 to 50 ns) and irregular increase of the conductance with substantial event-to-event variability. Unreversed bubbles of typical diameter 60 nm can persist a few additional microseconds in the largest junctions. The complexity of the AP to P switching is reduced but not suppressed when the junctions are downsized below 60 nm. The instability of the initial AP state is no longer detected but the other features

  16. Thin-film permanent magnets for integrated electromagnetic components

    NASA Astrophysics Data System (ADS)

    Cadieu, F. J.

    1992-06-01

    Methods were developed under this program that allow the deposition and photo-patterning of relatively thick (up to 100 microns) high-energy product (15-25 MgOe) highly oriented films of Sm-Co based permanent magnet materials onto various substrate materials, including GaAs and sapphire. The deposition process allows the magnetization to be in any direction desired in the plane of the film. The films have a Curie point of 700 C and are stable. NdFeB films, with magnetization perpendicular to the plane of the film, were also deposited. Methods developed included: Direct crystallization, in the presence of a magnetic field, of the sputtered materials onto heated substrates; the use of an Aluminum oxide boundary layer to promote adhesion and allow the growth of thick films; and the use of Ar and Xe as a sputtering gas to thermalize the sputtered atoms. Magnets such as those developed under this contract are a significant advance towards providing thin-film bias magnets for planar nonreciprocal microwave devices such as circulators and isolators.

  17. Intrinsic oscillation of coupled domain walls in a perpendicularly magnetized nanowire system

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Lu, Zhihong; Yuan, Cheng; Guo, Fang; Xiong, Rui; Shi, Jing

    2016-06-01

    The dynamics of two domain walls (DWs) in a system of two nanowires with perpendicular magnetocrystalline anisotropy (PMA) was investigated by micromagnetic simulation. It was found that without applied current, the motion mode of DWs is translational motion plus oscillation. Different from its in-plane counterpart, in a two-PMA-nanowire system, the oscillation of DWs before encountering is quite intrinsic—the frequency and the amplitude only depend on the separation between nanowires and the material of the nanowires, and have no relationship with applied current and the distance between two DWs. When applying proper currents, the coupled DWs will only oscillate without performing translational motion. The oscillation frequency can reach several GHz. Besides being tuned in a large range by varying the nanowire separation, the oscillation frequency can also be slightly modified by adjusting the magnetic anisotropy (K) or magnetization (Ms) of the nanowire. This finding may be of great importance for the design of microwave oscillator with stable and accurate frequency.

  18. An Analytic Study of the Perpendicularly Propagating Electromagnetic Drift Instabilities in the Magnetic Reconnection Experiment

    SciTech Connect

    Wang, Y., Kulsrud, R., Ji, H

    2008-12-03

    A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients and modest collisions as in the Magnetic Reconnection Experiment (MRX) [10]. The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough efoldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (LHDI, MTSI et.) studied previously, we believe the instability we find is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross current layer direction.

  19. Coupled granular/continuous medium for thermally stable perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Sonobe, Y.; Weller, D.; Ikeda, Y.; Takano, K.; Schabes, M. E.; Zeltzer, G.; Do, H.; Yen, B. K.; Best, M. E.

    2001-10-01

    We studied coupled granular/continuous (CGC) perpendicular media consisting of a continuous multilayer structure and a granular layer. The addition of Co/Pt multilayers decreased the nucleation field from 200 to -1800 Oe and increased the squareness from 0.9 to 1.0. The moment decay at room temperature was significantly reduced from -4.8% to -0.05% per decade. At elevated temperatures, strong exchange coupling between a granular layer and a continuous layer is needed for thermal stability. The exchange-coupled continuous layer reduces thermal demagnetization as it effectively increases the grain size, tightens the grain distribution, and prevents the reversal of individual grains. Magnetic Force Microscope image showed a larger magnetic cluster size for the CGC structure. Compared to the CoCr 18Pt 12 medium, the CGC medium had 2.3 dB higher output. However, the noise for the CGC medium increased with the recording density, while the noise for the CoCr 18Pt 12 medium remained constant from 4 to 15 kfc/mm. Further optimization and noise reduction are still required for future high density recording.

  20. Thin film metallic sensors in an alternating magnetic field for magnetic nanoparticle hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Hussein, Z. A.; Boekelheide, Z.

    In magnetic nanoparticle hyperthermia in an alternating magnetic field for cancer therapy, it is important to monitor the temperature in situ. This can be done optically or electrically, but electronic measurements can be problematic because conducting parts heat up in a changing magnetic field. Microfabricated thin film sensors may be advantageous because eddy current heating is a function of size, and are promising for further miniaturization of sensors and fabrication of arrays of sensors. Thin films could also be used for in situ magnetic field sensors or for strain sensors. For a proof of concept, we fabricated a metallic thin film resistive thermometer by photolithographically patterning a 500Å Au/100Å Cr thin film on a glass substrate. Measurements were taken in a solenoidal coil supplying 0.04 T (rms) at 235 kHz with the sensor parallel and perpendicular to the magnetic field. In the parallel orientation, the resistive thermometer mirrored the background heating from the coil, while in the perpendicular orientation self-heating was observed due to eddy current heating of the conducting elements by Faraday's law. This suggests that metallic thin film sensors can be used in an alternating magnetic field, parallel to the field, with no significant self-heating.

  1. Characterization of magnetic clustering and its effect on switching behavior and recording performance in perpendicular media

    NASA Astrophysics Data System (ADS)

    Jung, H. S.; Ghaderi, A.; Shi, Zhupei

    2011-04-01

    Characterization of magnetic clustering and its effect on magnetic switching behavior and recording performance are investigated. Intergranular exchange coupling constant (Jc) of full-stack media is controlled over a wide range by applying a bias voltage (VB) to the bottom oxide layer only while the other conditions remain the same. With increasing VB up to 300 V, Hn considerably increases by 25% while Hc and Hs remain constant. Magnetic correlation length (Dn) extracted from major and minor loops is plotted with Jc values estimated from the ΔH(M,ΔM) method. Two distinct regions emerge, with lower Jc and larger Dn at VB ≤ 200 V, and with higher Jc and much larger Dn at VB > 200 V. These regions are consistent with the microstructures of biased CoCrPt-SiO2 films reported elsewhere. An increase in the intrinsic switching field distribution is also observed at VB > 200 V. Good correlation between KuV/kT and Dn2, and the increase in coherent switching behavior for media with higher VB, can be understood by the magnetic clustering effect. All the recording parameters of OW, resolution, low-frequency amplitude, magnetic core width, and SNR correlate well with Dn.

  2. Large perpendicular magnetic anisotropy of single Co atom on MgO monolayer: A first-principles study

    SciTech Connect

    Shao, Bin; Shi, Wu-Jun; Feng, Min; Zuo, Xu

    2015-05-07

    Realizing the magnetic bit with a single atom is the ultimate goal for magnetic storage. Based on density functional theory, the magnetic anisotropy (MA) of single Co atom on MgO monolayer has been investigated. Results show that this two dimensional system possesses a large perpendicular MA, about 5.8 meV per Co atom. Besides, there exists remarkable unquenched orbital moments for different magnetization directions, which can be attributed to the reduction of coordination number in two dimensional system and is responsible for the enhanced MA. The Bloch pseudo-wavefunction and band structure of Co d-orbitals have been calculated to elucidate the origin of the perpendicular MA.

  3. Electrical detection of millimeter-waves by magnetic tunnel junctions using perpendicular magnetized L10-FePd free layer.

    PubMed

    Naganuma, Hiroshi; Kim, G; Kawada, Yuki; Inami, Nobuhito; Hatakeyama, Kenzo; Iihama, Satoshi; Nazrul Islam, Khan Mohammed; Oogane, Mikihiko; Mizukami, Shigemi; Ando, Yasuo

    2015-01-14

    Spin dynamics excited by spin-polarized current in magnetic tunnel junctions (MTJs) is potentially useful in nanoscale electrical oscillation sources and detection devices. A spin oscillator/detector should work at a high frequency, such as that of a millimeter-wave, where the quality of a semiconductor device is restricted by carrier mobility, the CR time constant, and so on. Developers of spin systems for practical use need to find out how to excite spin dynamics (i) in the millimeter-wave region, (ii) with low power consumption (ex: no external magnetic field, low damping material), and (iii) for broad frequency modulation. Here L10-ordered FePd alloy with perpendicular magnetocrystalline anisotropy (PMA) and a low damping constant, 0.007, was used for the free layer in the MTJs, and a homodyne-detected ferromagnetic resonance (FMR) signal was obtained at around 30 GHz together with the possibility of one-octave frequency modulation. The FMR signal in out-of-plane magnetized L10-ordered FePd free layer could be excited without an external magnetic field by injecting in-plane spin polarized alternating current. This study shows the potential utility of L10-ordered alloy materials such as FePt, CoPt, MnAl, and MnGa in a variety of millimeter-wave spin devices. PMID:25549140

  4. The perpendicular electron energy flux driven by magnetic fluctuations in the edge of the Texas Experimental Tokamak

    SciTech Connect

    Fiksel, G.; Bengtson, R.D.; Prager, S.C.; Wootton, A.J. |

    1995-12-01

    A fast bolometer was used for direct measurements of parallel electron energy flux in the edge of the Texas Experimental Tokamak (TEXT-U) [K. W. Gentle, Nucl. Technol. Fusion {bold 1}, 479 (1981)]. The fluctuating component of the parallel electron energy flux, combined with a measurement of magnetic fluctuations, provides an upper limit to the perpendicular electron flux. This magnetically driven energy flux cannot account for the observed energy flux. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. Characterization of Saturn's bow shock: Magnetic field observations of quasi-perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Sulaiman, A. H.; Masters, A.; Dougherty, M. K.

    2016-05-01

    Collisionless shocks vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics. This poses two complexities. First, separating the influences of these parameters on physical mechanisms such as energy dissipation. Second, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in situ observations. Here we present the parameter space of MA bow shock crossings from 2004 to 2014 as observed by the Cassini spacecraft. We find that Saturn's bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we determined the θBn of each crossing to show that Saturn's (dayside) bow shock is predominantly quasi-perpendicular by virtue of the Parker spiral at 10 AU. Our results suggest a strong dependence on MA in controlling the onset of physical mechanisms in collisionless shocks, particularly nontime stationarity and variability. We anticipate that our comprehensive assessment will yield deeper insight into high MA collisionless shocks and provide a broader scope for understanding the structures and mechanisms of collisionless shocks.

  6. Ion implantation induced modification of structural and magnetic properties of perpendicular media

    NASA Astrophysics Data System (ADS)

    Gaur, Nikita; Piramanayagam, S. N.; Maurer, S. L.; Nunes, R. W.; Steen, S.; Yang, H.; Bhatia, C. S.

    2011-09-01

    This study reports the effects of implanting various doses of boron (11B+) and argon (40Ar+) ions into the recording layer and the soft underlayer of CoCrPt-SiO2-based perpendicular recording media. Implantation of a lower dose of boron ions (1011 ions cm-2) in the recording layer was found to reduce the out-of-plane coercivity, whereas no changes in the coercivity were observed when they were implanted into the soft underlayer. In the case of argon ions, lower dose implantation did not show any changes in the coercivity, irrespective of the implanted layer. However, higher dose implantations (1016 ions cm-2) of all the species were found to cause a reduction in coercivity, irrespective of the implanted layer. The reduction in coercivity was more significant when the ions were implanted in the recording layer compared with the case of implantation in the soft underlayer. X-ray diffraction (XRD) results on samples where argon was implanted in the recording layer showed a strong shift in the position of Co (0 0 .2) peaks, indicating an increase in the 'c' parameter. The shift is explained, on the basis of x-ray photoelectron spectroscopy, to be arising from intra-layer mixing at the CoCrPt-SiO2/Ru interface. Magnetic force microscopy images indicated an increase in domain size arising from the ion implantation.

  7. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  8. Structural evolution of perpendicular lamellae in diblock copolymer thin films during solvent vapor treatment investigated by grazing-incidence small-angle X-ray scattering.

    PubMed

    Zhang, Jianqi; Posselt, Dorthe; Sepe, Alessandro; Shen, Xuhu; Perlich, Jan; Smilgies, Detlef-M; Papadakis, Christine M

    2013-08-01

    The structural evolution in poly(styrene-b-butadiene) (P(S-b-B)) diblock copolymer thin films during solvent vapor treatment is investigated in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). Using incident angles above and below the polymer critical angle, structural changes near the film surface and in the entire film are distinguished. The swelling of the film is one-dimensional along the normal of the substrate. During swelling, the initially perpendicular lamellae tilt within the film to be able to shrink. In contrast, at the film surface, the lamellae stay perpendicular, and eventually vanish at the expense of a thin PB wetting layer. During the subsequent drying, the perpendicular lamellae reappear at the surface, and finally, PS blocks protrude. By modeling, the time-dependent height of the protrusions can be quantitatively extracted. PMID:23843127

  9. Generation of Quasi-Perpendicular Collisionless Shocks by a Laser-Driven Magnetic Piston

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek

    Collisionless shocks are ubiquitous in many space and astrophysical plasmas. However, since space shocks are largely steady-state, spacecraft are not well suited to studying shock formation in situ. This work is concerned with the generation and study in a laboratory setting of magnetized, quasi-perpendicular collisionless shocks relevant to space shocks. Experiments performed at the Large Plasma Device (LAPD) at UCLA and the Trident Laser Facility at Los Alamos National Laboratory (LANL) combined a magnetic piston driven by a high-energy laser (Raptor at UCLA or Trident at LANL) incident on a carbon target with a preformed, magnetized background plasma. Magnetic flux measurements and 2D hybrid simulations indicate that a magnetosonic pulse consistent with a low-Mach number collisionless shock was formed in the ambient plasma. The characteristics of the shock are analyzed and compared to other experiments in which no shock or a shock precursor formed. The results and simulations reveal that the various experimental conditions can be organized into weak and moderate coupling regimes, in which no shock forms, and a strong coupling regime, in which a full shock forms. A framework for studying these regimes and designing future shock experiments is devised. Early-time laser-plasma parameters necessary to characterize the different shock coupling regimes are studied through experiments performed at the LAPD and Phoenix laboratory at UCLA. In addition to spectroscopic and fast-gate filtered photography, the experiments utilize a custom Thomson scattering diagnostic, optimized for a novel electron density and temperature regime where the transition from collective to non-collective scattering could be spatially resolved. Data from the experiments and 3D analytic modeling indicate that the laser-plasma is best fit at early times with an isentropic, adiabatic fluid model and is consistent with a recombination-dominated plasma for which the electron temperature Te∝ t -1

  10. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    SciTech Connect

    Jeong, J. H.; Endoh, T.; Kim, Y.; Kim, W. K.; Park, S. O.

    2014-05-07

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50 s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5 kΩ to 39 kΩ. Moreover, an additional 500 s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5 kΩ to 13.9 kΩ. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8 nm and 12.8 nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20 nm.

  11. Bias dependence of spin injection/transport properties of a perpendicularly magnetized FePt/MgO/GaAs structure

    NASA Astrophysics Data System (ADS)

    Ohsugi, Rento; Kunihashi, Yoji; Sanada, Haruki; Kohda, Makoto; Gotoh, Hideki; Sogawa, Tetsuomi; Nitta, Junsaku

    2016-04-01

    We demonstrate injection and transport of perpendicularly spin-polarized electrons in an FePt/MgO/n-GaAs structure. Spin-polarized electrons were injected from a perpendicularly magnetized FePt layer into an n-GaAs layer through a MgO barrier and detected by spatially resolved Kerr rotation microscopy. By measuring the Hanle effect, we reveal that the injected/extracted spin polarizations drastically vary with bias voltages. A spin lifetime of 3.5 ns is obtained that is consistent with the result from pump-probe measurements. This direct observation of perpendicularly polarized spin injection and lateral transport is one step toward realizing future spintronic devices.

  12. Energy distribution functions of kilovolt ions parallel and perpendicular to the magnetic field of a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1973-01-01

    The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space and cause an isotropic energy distribution. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail.

  13. Interlayer exchange coupling in [Pt/Co]n/MgO/[Co/Pt]2 perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Li, Lei; Han, Dong; Lei, Wenguang; Liu, Zhongyuan; Zhang, Fang; Mao, Xiaonan; Wang, Pengwei; Hou, Hongmiao

    2014-09-01

    In this paper, we present further study on the interlayer exchange coupling of [Pt/Co]n/MgO/[Co/Pt]2 perpendicular magnetic tunnel junctions. Antiferromagnetic interlayer couplings in [Pt/Co]n/MgO/[Co/Pt]2 are observed. The strength of antiferromagnetic coupling oscillates irregularly with the repetition number n, that may be related to the Ruderman-Kittel-Kasuya-Yosida (RKKY)-type ferromagnetic interlayer coupling existing in the [Pt/Co]n hard layer. The interlayer coupling of [Pt/Co]9/MgO(22 Å)/[Co/Pt]2 magnetic tunnel junction reaches a maximum at 200 K, and decreases gradually with increasing temperature. This thermal behavior of interlayer coupling may be related to the enhanced perpendicular magnetic anisotropy of hard layer with decreasing temperature.

  14. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS: Different Behavior of Parallel and Perpendicular Lamellae

    PubMed Central

    2015-01-01

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scattering (GISAXS). A thin film of lamellae-forming poly(styrene-b-butadiene) prepared by spin-coating features lamellae of different orientations with the lamellar spacing depending on orientation. During annealing with ethyl acetate (EAC) vapor, it is found that perpendicular lamellae behave differently from parallel ones, which is due to the fact that their initial lamellar thicknesses differ strongly. Quantitatively, the swelling process is composed of three regimes and the drying process of two regimes. The first two regimes of swelling are associated with a significant structural rearrangement of the lamellae; i.e., the lamellae first become thicker, and then perpendicular and randomly oriented lamellae vanish, which results in a purely parallel orientation at the end of the swelling process. The rearrangement is attributed to the increase of mobility of the polymer chains imparted by the solvent and to a decrease of total free energy of the thin film. In the third regime of swelling, the scaling exponent is found to be β = −0.32. During drying, the deswelling is nonaffine which may be a consequence of the increase of nonfavorable segmental interactions as the solvent is removed. PMID:25197146

  15. Preparation of perpendicular oriented TiO2 films via hydrothermal method: phase selection and growth control

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Guo, Meilan; Xia, Xiaohong; Shao, Guosheng

    2013-03-01

    Either rutile or anatase vertical orientated TiO2 array films were synthesized successfully on FTO (F: SnO2) substrate via hydrothermal method through controlling the concentration of Cl- and SO42- . The density of nanorods can be adjusted by varying the volume ratio of ethanol/water, and the degree of orientation and crystallinity of TiO2 nanofilms were enhanced with increasing dosage of ethanol. Meanwhile, completely dense anatase films with [004] oriented growth appear within a very narrow concentration window when adding sulfuric acid into precursor. Besides, other alcohols such as methanol, n-propanol and n-butyl were also used as solvent to examine the role of alcohol type during hydrothermal process for both two phase films. The growth rate and degree of perpendicular orientation declined as the alkyl length of solvents increases. Hydrogen sensing characteristics of dense films of both rutile and anatase phases showed that there was a remarkable improvement of sensitivity response over reported data. It was found that rutile films have higher sensitivity while anatase films have faster response. This work is supported by Ministry of Education of China (211108) and Science and Technology of Wuhan (2010CDA024, 201110821251).

  16. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

    PubMed Central

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V.; Samant, Mahesh G.; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn–Ge termination layers that are oppositely magnetized to the higher moment Mn–Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible. PMID:26776829

  17. Static and dynamic magnetic properties of cubic Mn-Co-Ga Heusler films

    SciTech Connect

    Demiray, A. S. Iihama, S.; Naganuma, H.; Oogane, M.; Ando, Y.; Kubota, T.; Mizukami, S. Miyazaki, T.

    2014-05-07

    We investigated the static and dynamic magnetic properties of thin films of Mn-Co-Ga Heusler compound. Gilbert damping and exchange stiffness constants of the films were evaluated by using the ferromagnetic resonance technique in the X-band regime (f = 9.4 GHz). By analyzing the experimental spectra, magnetic parameters of the films such as the line width and the Gilbert damping were deduced, and the exchange stiffness constant was estimated from the perpendicular standing spin-wave resonance. The Gilbert damping constant was estimated to be 0.017 in a specific film composition. The exchange stiffness constant showed a linear dependence on the film composition.

  18. Skyrmion lattice in a magnetic film with spatially modulated material parameters

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, M. V.

    2015-12-01

    The problem of the skyrmion stability in the magnetic film with perpendicular anisotropy inside the area with the changed material parameters is considered. The solution describing the conditions of such stabilization in the absence of Dzyaloshinskii-Moriya interaction is obtained analytically. The easy method of nanomodification of ordinary magnetic perpendicular media such as Co,Fe/Pt,Pd,Ru superlattices allowing the formation of the dense enough (with the period less than 100 nm) skyrmion lattices is suggested. By micromagnetic simulations it is shown that the skyrmion lattices can be initialized in the system by simple magnetization in the uniform external magnetic field.

  19. Experimental observation of further frequency upshift from dc to ac radiation converter with perpendicular dc magnetic field

    PubMed

    Higashiguchi; Yugami; Gao; Niiyama; Sasaki; Takahashi; Ito; Nishida

    2000-11-20

    A frequency upshift of a short microwave pulse is generated by the interaction between a relativistic underdense ionization front and a periodic electrostatic field with a perpendicular dc magnetic field. When the dc magnetic field is applied, further frequency upshift of 3 GHz is observed with respect to an unmagnetized case which has typically a GHz range. The radiation frequency depends on both the plasma density and the strength of the dc magnetic field, i.e., the plasma frequency and the cyclotron frequency. The frequency of the emitted radiation is in reasonable agreement with the theoretical values. PMID:11082591

  20. Liquid-metal flow through a thin-walled elbow in a plane perpendicular to a uniform magnetic field

    SciTech Connect

    Walker, J.S.

    1986-04-01

    This paper presents analytical solutions for the liquid-metal flow through two straight pipes connected by a smooth elbow with the same inside radius. The pipes and the elbow lie in a plane which is perpendicular to a uniform, applied magnetic field. The strength of the magnetic field is assumed to be sufficiently strong that inertial and viscous effects are negligible. This assumption is appropriate for the liquid-lithium flow in the blanket of a magnetic confinement fusion reactor, such as a tokamak. The pipes and the elbow have thin metal walls.

  1. Magnetic and magneto-optical properties of Ni/Pt multilayers with perpendicular magnetic anisotropy at room temperature

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Shin, Sung-Chul

    1999-06-01

    The magnetic and magneto-optical properties of Ni/Pt multilayers exhibiting square Kerr hysterisis loops at room temperature were studied. Squared polar Kerr hysterisis loops at room temperature in Ni/Pt multilayer thin films were obtained for the samples prepared by sequential DC magnetron sputter deposition of nickel and platinum with tNi=13-21 Å and tPt=3.5-7.5 Å. The coercivity of these multilayers was in the range of 400-1100 Oe. The saturation magnetization was found to show an inverse dependence on the nickel sublayer thickness. About a monolayer of Ni at interface was observed to behave less magnetically than the interior Ni atoms. The polar Kerr rotation exhibited an increasing trend with decreasing wavelength in the spectral range of 7000-4000 Å. The maximum of the polar Kerr rotation was found to shift to a higher wavelength with increasing nickel sublayer thickness.

  2. Magnetic field angle dependence of out-of-plane precession in spin torque oscillators having an in-plane magnetized free layer and a perpendicularly magnetized reference layer

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Ryo; Kubota, Hitoshi; Tsunegi, Sumito; Tamaru, Shingo; Yakushiji, Kay; Fukushima, Akio; Matsumoto, Rie; Imamura, Hiroshi; Yuasa, Shinji

    2016-05-01

    Out-of-plane (OP) precession in spin torque oscillators having an in-plane (IP) magnetized free layer and a perpendicularly magnetized reference layer was studied. The bias voltage (V B) and magnetic field angle (θ) dependence of the OP precession were investigated. The absolute values of the critical magnetic fields (H\\text{B}\\text{c - } and H\\text{B}\\text{c + }) between which OP precession is excited increased as V B increased and as θ changed from the IP to the OP direction. The IP components of H\\text{B}\\text{c +/- } converged to a constant value regardless of θ. This result indicates that excitation of OP precession is suppressed entirely by the IP component of the magnetic field, and the contribution of the OP component can be ignored. The experimentally observed precession behavior was successfully modeled by macrospin simulations.

  3. Magnetization reversal mechanism of perpendicularly exchange-coupled composite L10-FePt/CoCrPt bilayers

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Zhou, S. M.; Ge, J. J.; Du, J.; Sun, L.

    2009-06-01

    Magnetization reversal mechanism in perpendicularly exchange-coupled composite hard/soft L10-FePt/CoCrPt bilayers with different soft layer thickness has been studied using magnetometry and magnetotransport measurements. For thin soft layers, the magnetization reversal process can be described by the rigid model. For thick soft layers, a different magnetization reversal process is observed which consists of three stages. An exchange-spring spin structure is first formed from the positive saturation magnetic field to small negative magnetic field. In the second stage, a Néel wall is driven and squeezed. In the last stage, multiple domain structure is formed laterally to reduce the dipolar interaction and the magnetization reversal is accomplished by the pinned domain wall motion in the hard layer.

  4. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H.

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  5. Reverse draining of a magnetic soap film

    NASA Astrophysics Data System (ADS)

    Moulton, D. E.; Pelesko, J. A.

    2010-04-01

    We investigate the draining of a vertical magnetic soap film in the presence of a strong, nonuniform magnetic field. A colloidal suspension of magnetic nanoparticles in a regular soap solution yields a magnetic soap solution, from which a soap film is formed across an isolated frame. Experiments demonstrate that with a strong magnet placed above the frame, the film may be made to flow upward against gravity. The amount of film draining upward is altered by varying the distance between the frame and magnet. A first mathematical model is developed for the evolution of the film. Simulations demonstrate qualitative agreement with the experiment.

  6. Regular and chaotic precession of magnetization in magnetic films with a stripe domain structure

    NASA Astrophysics Data System (ADS)

    Shutyĭ, A. M.

    2008-12-01

    Based on a numerical solution of the equations of motion found over a wide range of frequencies of an alternating magnetic field, the nonlinear precession dynamics of magnetization are studied in thin-film structures of the (100) type with a stripe domain structure in a perpendicular bias field. The conditions are determined under which high-amplitude regular and chaotic dynamic regimes occur. Bifurcational variations in the precession of coupled magnetic moments and dynamic-bistability states are detected. The specific features of the spectrum of Lyapunov exponents and of time analogs of Poincaré cross sections of trajectories in chaotic regimes are considered.

  7. Fabrication of perpendicular magnetic recording tape media with a data capacity of over-50TB using Si/NiFe/FeCoB soft magnetic underlayers

    NASA Astrophysics Data System (ADS)

    Gomi, S.; Mashiko, Y.; Hirata, K.; Matsunuma, S.; Inoue, T.; Doi, T.; Watanabe, T.; Nakagawa, S.

    C-axis orientations of Ru intermediate layer (IML) and CoPtCr-SiO2 recording layer (RL) are attained by using crystalline FeCoB soft magnetic underlayer (SUL). Better (110) orientation of FeCo improves not only (001) orientation of Ru IML but also that of CoPtCr RL. This leads better perpendicular magnetic anisotropy in the RL suitable for perpendicular magnetic recording media. In order to control the (110) orientation in FeCoB layer, various seed layers are prepared beneath the FeCoB layers. Ru and Si/NiFe seed layers gives FeCoB layer a large in-plane magnetic anisotropy that is effective to suppress spike noise from SUL. The laminated FeCoB SUL causes more improvement of Ru (001) texure and leads to better perpendicular magnetic anisotropy of RL. Ru/CoPtCr-SiO2 bilayer deposited on laminated FeCoB SUL on Aramid tape substrate has good perpendicular magnetic properties and reduces the noise from SUL. PACS: Type pacs here, separated by semicolons;

  8. Magnetocrystalline anisotropy and its electric-field-assisted switching of Heusler-compound-based perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bai, Zhaoqiang; Shen, Lei; Cai, Yongqing; Wu, Qingyun; Zeng, Minggang; Han, Guchang; Feng, Yuan Ping

    2014-10-01

    Employing density functional theory combined with the non-equilibrium Green's function formalism, we systematically investigate the structural, magnetic and magnetoelectric properties of the Co2FeAl(CFA)/MgO interface, as well as the spin-dependent transport characteristics of the CFA/MgO/CFA perpendicular magnetic tunnel junctions (p-MTJs). We find that the structure of the CFA/MgO interface with the oxygen-top FeAl termination has high thermal stability, which is protected by the thermodynamic equilibrium limit. Furthermore, this structure is found to have perpendicular magnetocrystalline anisotropy (MCA). Giant electric-field-assisted modifications of this interfacial MCA through magnetoelectric coupling are demonstrated with an MCA coefficient of up to 10-7 erg V-1 cm. In addition, our non-collinear spin transport calculations of the CFA/MgO/CFA p-MTJ predict a good magnetoresistance performance of the device.

  9. Temperature-dependent perpendicular magnetic anisotropy of Co-Pt on Cr2O3 antiferromagnetic oxide

    NASA Astrophysics Data System (ADS)

    Nozaki, T.; Oida, M.; Ashida, T.; Shimomura, N.; Sahashi, M.

    2013-12-01

    We clarify the origin of the interface perpendicular magnetic anisotropy (PMA) at the Cr2O3/ferromagnet interface by investigating the temperature dependence of the magnetic properties of Cr2O3/Co-Pt. We observed positive large interface PMA both above and below the blocking temperature of Cr2O3, with the PMA being less sensitive to temperature. Our results indicate that the effect of the metal/oxide interface, as well as that of the MgO/CoFeB interface, contributes strongly to the PMA at the Cr2O3/Co-Pt interface, although the effect of perpendicular exchange coupling might also slightly contribute to the interface PMA.

  10. Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy

    SciTech Connect

    Zhao, Zhengyang; Jamali, Mahdi; Smith, Angeline K.; Wang, Jian-Ping

    2015-03-30

    Spin-orbit torques are studied in Ta/TbFeCo/MgO patterned structures, where the ferrimagnetic material TbFeCo provides a strong bulk perpendicular magnetic anisotropy (bulk-PMA) independent of the interfaces. The current-induced magnetization switching in TbFeCo is investigated in the presence of a perpendicular, longitudinal, or transverse field. An unexpected partial-switching phenomenon is observed in the presence of a transverse field unique to our bulk-PMA material. It is found that the anti-damping torque related with spin Hall effect is very strong, and a spin Hall angle is determined to be 0.12. The field-like torque related with Rashba effect is unobservable, suggesting that the interface play a significant role in Rashba-like torque.

  11. Constructive ITI-coded PRML system based on a two-track model for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Kurihara, Y.; Takeda, Y.; Takaishi, Y.; Koizumi, Y.; Osawa, H.; Ahmed, M. Z.; Okamoto, Y.

    In this paper, we study not only the new constructive inter-track interference (CITI) code based on the equalized level but also Viterbi detection algorithm taking into account the ITI from adjacent tracks for the perpendicular magnetic recording channel without a differentiator of two-track model. Although the investigation of this paper was not practical but theoretical, the result shows that the permissible percentage of ITI for conventional Viterbi detection to attain better performance compared with the case of single track is 26%, while the percentage for the proposed one is improved up to 50%. Further investigation has to be required under a more realistic system and moreover may be expanded into patterned media perpendicular magnetic recording.

  12. Nanoscale patterning of CrPt3 magnetic thin films by using ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Suharyadi, Edi; Oshima, Daiki; Kato, Takeshi; Iwata, Satoshi

    We have successfully fabricated planar patterned CrPt3 ordered L12 alloy films by Kr+ ion irradiation. Planar-patterned CrPt3 nanodots with various bit sizes from 200 nm to 50 nm were successfully fabricated by 30 keV Kr+ ion irradiation at a dose of 2 × 1014 ions/cm2, where e-beam lithography was used for creating the resist mask. We have confirmed that the nanofabrication process didn't change the magnetic properties of CrPt3 ordered L12 alloy films. As-prepared film exhibited perpendicular hysteresis loop with the coercivity of 5.5 kOe. The typical perpendicular maze domain structure with the stripe structure was clearly seen in as-prepared CrPt3 film. Magnetic force microscopy (MFM) images of patterned CrPt3 nanodots indicated that each un-irradiated bit consists of localized perpendicular magnetic domain structures, which corresponds to perpendicular magnetization direction. Nanodots with bit size ⩽80 nm show either dark or bright contrast, suggesting single domain structure. No magnetic contrast in irradiated space is due to the suppressing of the magnetization by Kr+ ion irradiation.

  13. Tailoring the interfacial exchange coupling of perpendicularly magnetized Co/L10-Mn1.5Ga bilayers

    NASA Astrophysics Data System (ADS)

    Xiao, J. X.; Lu, J.; Liu, W. Q.; Zhang, Y. W.; Wang, H. L.; Zhu, L. J.; Deng, H. X.; Wei, D. H.; Xu, Y. B.; Zhao, J. H.

    2016-06-01

    We have studied the magnetic properties of Co (2–12 MLs)/L10-Mn1.5Ga (15 nm) bilayers without and with annealing at 300 °C by a combination of superconducting quantum interference device (SQUID) magnetometry and x-ray magnetic circular dichroism (XMCD). We find that the Co layer can remain perpendicularly magnetized when its thickness is less than six monolayers due to the coupling between Co and L10-Mn1.5Ga layers, which is doubly confirmed by both SQUID and XMCD measurements. Such an exchange coupling between L10-Mn1.5Ga and Co layers changes from ferromagnetic coupling to antiferromagnetic coupling after the annealing process. Furthermore, the magnetic coupling can also be tailored from ferromagnetic to antiferromagnetic by changing the L10-Mn1.5Ga surface from Mn-rich to Ga-rich. The first-principles calculations show that the interfacial coupling type is ferromagnetic for a Mn-terminated L10-Mn1.5Ga bilayer, while antiferromagnetic for a Ga-terminated bilayer. The spin and orbital moments of Co in the Co/L10-Mn1.5Ga bilayers are calculated according to the sum rules and the ratio of the orbital to spin magnetic moments for Co is not enhanced like other perpendicularly magnetized Co-based multilayers such as Co/Pd and Co/Pt.

  14. In-plane magnetic field effect on switching voltage and thermal stability in electric-field-controlled perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Grezes, C.; Rojas Rozas, A.; Ebrahimi, F.; Alzate, J. G.; Cai, X.; Katine, J. A.; Langer, J.; Ocker, B.; Khalili Amiri, P.; Wang, K. L.

    2016-07-01

    The effect of in-plane magnetic field on switching voltage (Vsw) and thermal stability factor (Δ) are investigated in electric-field-controlled perpendicular magnetic tunnel junctions (p-MTJs). Dwell time measurements are used to determine the voltage dependence of the energy barrier height for various in-plane magnetic fields (Hin), and gain insight into the Hin dependent energy landscape. We find that both Vsw and Δ decrease with increasing Hin, with a dominant linear dependence. The results are reproduced by calculations based on a macrospin model while accounting for the modified magnetization configuration in the presence of an external magnetic field.

  15. High thermal stability in W/MgO/CoFeB/W/CoFeB/W stacks via ultrathin W insertion with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Yu, Tao; Zhu, Zhengyong; Zhong, Huicai; Khamis, Khamis Masoud; Zhu, Kaigui

    2016-07-01

    The perpendicular magnetic anisotropy (PMA) of a series of top MgO/CoFeB/W stacks were studied. In these stacks, the thickness of CoFeB is limited in a range of 1.1-2.2 nm. It was found that the stack can still maintain PMA in a 1.9 nm thick CoFeB free layer. Besides, we investigated the thermal stability factor ∆ of a spin transfer torque magnetic random access memory (STT-MRAM) by inserting an ultra-thin W film of 0.8 nm between two CoFeB films. The result shows a clear PMA behavior for the samples with CoFeB thickness up to 2.5 nm, and an in-plane magnetic anisotropy (IMA) when the CoFeB is thicker than 2.5 nm. Moreover, the thermal stability factor ∆ of the CoFeB stack with W insertion is about 132 for a 50 nm size STT-MRAM device, which is remarkably improved compared to 112 for a sample without W insertion. Our results represent an alternative way to realize the endurance at high annealing temperature, high-density and high ∆ in STT-MRAM device by ultra-thin W insertion.

  16. Perpendicular magnetic anisotropy in Ta|Co{sub 40}Fe{sub 40}B{sub 20}|MgAl{sub 2}O{sub 4} structures and perpendicular CoFeB|MgAl{sub 2}O{sub 4}|CoFeB magnetic tunnel junction

    SciTech Connect

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Z. B.; Zhang, X. X.

    2014-09-08

    Magnetic properties of Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) thin films sandwiched between Ta and MgAl{sub 2}O{sub 4} layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl{sub 2}O{sub 4} structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy K{sub i} = 1.22 erg/cm{sup 2}, which further increases to 1.30 erg/cm{sup 2} after annealing, while MgAl{sub 2}O{sub 4}/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl{sub 2}O{sub 4}/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  17. Cobalt-Based Hard Magnets, Thin Films and Multilayers

    NASA Astrophysics Data System (ADS)

    Gao, Chuan

    1991-02-01

    Co-based magnetic materials including bulk, thin film and magnetic multilayers have been studied. The purpose of the first part of this work is to study a Co -based transition metal alloy to be processed to result in significant enhancement of its magnetic properties (coercivity, magnetization, and energy product) in the absence rare earths. CoZr(Hf)BSi alloys have been studied. Rapidly quenched Co_ {78}Zr_{16}B_3Si_3 and Co_{76}Hf_ {76}B_3Si_3 showed the highest coercivity (6.7 kOe and 6.5 kOe respectively). This is the highest room temperature coercivity reported in a non -rare-earth containing magnet up to now. This system has excellent thermal stability. Co-based thin film alloys were also studied and we obtain coercivities as high as 700 Oe for sputtered thin films. This lies in between the maximum value obtained for as-cast bulk alloys (50 Oe) and rapidly quenched alloys (6.7 kOe). Multilayers were studied with the objective of determining the effect of interfaces on the magnetic properties of Co alloys. Multilayers of the form Co/Cu, Co_{95}B _5/Cu and Co/Al were studied and the interface anisotropy was found to favor a magnetization perpendicular to the film. Very thin magnetic layers led to very small coercivities since the size of magnetic domains was restricted. We also noted some interesting layer-layer magnetic interactions. Finally some unusual magnetization reversal behavior was noted in which the magnetic moment goes to zero and reverses before the applied field goes to zero.

  18. Direct laser interference patterning of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Aktag, Aliekber

    Recently, patterned magnetic thin films have attracted much attention for a variety of applications such as high density magnetic recording, magnetoresistive sensing, and magnetic random access memories. In the case of magnetic recording, one scheme calls for the films to be patterned into single domain "dots", where every dot represents a thermally stable bit. In this thesis, we extended a technique called direct laser interference patterning (DLIP), originally developed by Polushkin and co-workers, to pattern and locally modify the materials properties of magnetic thin films. In this technique, a high-intensity Nd:YAG pulse laser beam was split into two, three, or four beams, which are then recombined to interfere on a sample surface. The interference intensity maxima can modify the local materials properties of the film through local "annealing" or, more drastically, by ablation. We carried out some preliminary investigations of the DLIP process in several films including co-sputtered Co-C, amorphous Dy/Co:SiO2 multilayers, and Co/SiO2 multilayers in order to refine our techniques. We successfully produced regular arrays of lines, dots, or antidots formed by ablation of the thin film. The preliminary studies also showed that, in the regime of more modest pulse energies, it is possible to modify the magnetic properties of the films without noticeably changing the film topography. We then prepared perpendicular magnetic anisotropy Co/Pt multilayers with a SiO x passivation layer and applied DLIP at fairly modest intensities to pattern the film. We then studied the structural and magnetic changes that occurred in some detail. X-ray diffraction scans showed the Co/Pt:SiO x multilayer films to be nanocrystalline before and after patterning. Atomic force microscopy images showed no evidence for topographic changes of the Co/Pt:SiOx during patterning. In contrast, magnetic force microscopy showed regular periodic dot arrays, indicating that the local magnetic

  19. Competing Anisotropy-Tunneling Correlation of the CoFeB/MgO Perpendicular Magnetic Tunnel Junction: An Electronic Approach

    PubMed Central

    Yang, Chao-Yao; Chang, Shu-Jui; Lee, Min-Han; Shen, Kuei-Hung; Yang, Shan-Yi; Lin, Horng-Ji; Tseng, Yuan-Chieh

    2015-01-01

    We intensively investigate the physical principles regulating the tunneling magneto-resistance (TMR) and perpendicular magnetic anisotropy (PMA) of the CoFeB/MgO magnetic tunnel junction (MTJ) by means of angle-resolved x-ray magnetic spectroscopy. The angle-resolved capability was easily achieved, and it provided greater sensitivity to symmetry-related d-band occupation compared to traditional x-ray spectroscopy. This added degree of freedom successfully solved the unclear mechanism of this MTJ system renowned for controllable PMA and excellent TMR. As a surprising discovery, these two physical characteristics interact in a competing manner because of opposite band-filling preference in space-correlated symmetry of the 3d-orbital. An overlooked but harmful superparamagnetic phase resulting from magnetic inhomogeneity was also observed. This important finding reveals that simultaneously achieving fast switching and a high tunneling efficiency at an ultimate level is improbable for this MTJ system owing to its fundamental limit in physics. We suggest that the development of independent TMR and PMA mechanisms is critical towards a complementary relationship between the two physical characteristics, as well as the realization of superior performance, of this perpendicular MTJ. Furthermore, this study provides an easy approach to evaluate the futurity of any emerging spintronic candidates by electronically examining the relationship between their magnetic anisotropy and transport. PMID:26596778

  20. Competing Anisotropy-Tunneling Correlation of the CoFeB/MgO Perpendicular Magnetic Tunnel Junction: An Electronic Approach.

    PubMed

    Yang, Chao-Yao; Chang, Shu-Jui; Lee, Min-Han; Shen, Kuei-Hung; Yang, Shan-Yi; Lin, Horng-Ji; Tseng, Yuan-Chieh

    2015-01-01

    We intensively investigate the physical principles regulating the tunneling magneto-resistance (TMR) and perpendicular magnetic anisotropy (PMA) of the CoFeB/MgO magnetic tunnel junction (MTJ) by means of angle-resolved x-ray magnetic spectroscopy. The angle-resolved capability was easily achieved, and it provided greater sensitivity to symmetry-related d-band occupation compared to traditional x-ray spectroscopy. This added degree of freedom successfully solved the unclear mechanism of this MTJ system renowned for controllable PMA and excellent TMR. As a surprising discovery, these two physical characteristics interact in a competing manner because of opposite band-filling preference in space-correlated symmetry of the 3d-orbital. An overlooked but harmful superparamagnetic phase resulting from magnetic inhomogeneity was also observed. This important finding reveals that simultaneously achieving fast switching and a high tunneling efficiency at an ultimate level is improbable for this MTJ system owing to its fundamental limit in physics. We suggest that the development of independent TMR and PMA mechanisms is critical towards a complementary relationship between the two physical characteristics, as well as the realization of superior performance, of this perpendicular MTJ. Furthermore, this study provides an easy approach to evaluate the futurity of any emerging spintronic candidates by electronically examining the relationship between their magnetic anisotropy and transport. PMID:26596778

  1. Electrical spin injection into GaAs based light emitting diodes using perpendicular magnetic tunnel junction-type spin injector

    NASA Astrophysics Data System (ADS)

    Tao, B. S.; Barate, P.; Frougier, J.; Renucci, P.; Xu, B.; Djeffal, A.; Jaffrès, H.; George, J.-M.; Marie, X.; Petit-Watelot, S.; Mangin, S.; Han, X. F.; Wang, Z. G.; Lu, Y.

    2016-04-01

    Remanent electrical spin injection into an InGaAs/GaAs based quantum well light emitting diode is realized by using a perpendicularly magnetized MgO/CoFeB/Ta/CoFeB/MgO spin injector. We demonstrate that the Ta interlayer plays an important role to establish the perpendicular magnetic anisotropy and the thickness of Ta interlayer determines the type of exchange coupling between the two adjacent CoFeB layers. They are ferromagnetically or antiferromagnetically coupled for a Ta thickness of 0.5 nm or 0.75 nm, respectively. A circular polarized electroluminescence (Pc) of about 10% is obtained at low temperature and at zero magnetic field. The direction of the electrically injected spins is determined only by the orientation of the magnetization of the bottom CoFeB layer which is adjacent to the MgO/GaAs interface. This work proves the critical role of the bottom CoFeB/MgO interface on the spin-injection and paves the way for the electrical control of spin injection via magnetic tunnel junction-type spin injector.

  2. Perpendicular Giant Magnetoresistance Studies of Spin-Dependent Scattering in Magnetic Multilayers.

    NASA Astrophysics Data System (ADS)

    Yang, Qing

    1995-01-01

    We present new measurements of Giant (negative) Magnetoresistance (GMR) in Ferromagnetic/Non-magnetic (F/N) metal multilayers in the Current Perpendicular to the layer Plane (CPP) geometry. At low temperature, when the spin diffusion lengths l_sp{sf} {N} and l_sp{sf }{F} in the N and F metals are longer than the layer thicknesses, t_{N } and t_{F}, and the elastic mean-free-paths lambda _sp{el}{N} and lambda_sp{el}{F}, a simple two current, series resistor model should describe CPP data. Prior work in our group showed that this model describes well data on Co/Ag, Co/Cu, and Permalloy (Py)/Cu. The present thesis both tests this model further, and first tests an extension of the model by Valet and Fert to shorter spin-diffusion lengths. The intrinsic CPP quantity is the area A times total resistance R_{t} of the multilayer. The first study in this thesis extends work by Lee in testing the model's prediction that a plot of a certain square root quantity sqrt {[ AR_{T}(H_{o })-AR_{T}(H_{s}) ] AR_{T}(H_{o}) } versus the bilayer number N should give the same straight line for a given F/N pair and for the same pair upon alloying the N-metal with impurities (e.g., Sn) that don't flip spins. Importantly, the prediction is independent of the specific values of the parameters of the multilayer. We show that samples of Co/Ag and Co/AgSn with fixed t_{Co}=t_ {N} obey the prediction. In the previous test, the experimental quantities AR_{t}(H_{o }) and AR_{t}(H_ {s})--H_{rm o} is the state of the sample as initially prepared and H_{rm s} is the state after taking the sample to above the saturation field H_{rm s} where the resistance stops decreasing--were taken to closely represent, respectively, AR_sp{t} {AP} and AR_sp{t} {P}, the states of anti-parallel (AP) and parallel (P) alignment of the magnetizations of adjacent F layers that are assumed in the models. In our second study, we test this assumption quantitatively. We made a set of (Co/Cu/Py/Cu) _{N } quadrilayers, measured

  3. In-plane electric field controlled perpendicular magnetic anisotropy in an FePt/[Pb(Mg1/3Nb2/3)O3]0.7–(PbTiO3)0.3 heterostructure

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Xu, Xiaoguang; Feng, Julong; Liu, Pengfei; Wu, Yong; Ma, Li; Zhou, Shiming; Miao, Jun; Jiang, Yong

    2016-06-01

    We report the in-plane electric field controlled perpendicular magnetic anisotropy of L10-FePt films deposited on polarized [Pb(Mg1/3Nb2/3)O3]0.7–(PbTiO3)0.3 single crystal substrates. The out-of-plane coercivity (H c⊥) of FePt films exhibits a regular response to the in-plane electric field applied on substrates. The experimental change of H c⊥ is approximately 21.3% with the electric field varying from ‑10 to 10 kV/cm. The magnetization direction can be controlled by switching the electric field. The remanence of FePt films can also be manipulated by the electric field, so that a “W”-shaped sawtooth magnetic signal can be generated by a sawtooth electric field.

  4. Effective lattice Hamiltonian for monolayer MoS2: Tailoring electronic structure with perpendicular electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Rostami, Habib; Moghaddam, Ali G.; Asgari, Reza

    2013-08-01

    We propose an effective lattice Hamiltonian for monolayer MoS2 in order to describe the low-energy band structure and investigate the effect of perpendicular electric and magnetic fields on its electronic structure. We derive a tight-binding model based on the hybridization of the d orbitals of molybdenum and p orbitals of sulfur atoms and then introduce a modified two-band continuum model of monolayer MoS2 by exploiting the quasidegenerate partitioning method. Our theory proves that the low-energy excitations of the system are no longer massive Dirac fermions. It reveals a difference between electron and hole masses and provides trigonal warping effects. Furthermore, we predict a valley-degeneracy-breaking effect in the Landau levels. In addition, we also show that applying a gate voltage perpendicular to the monolayer modifies the electronic structure, including the band gap and effective masses.

  5. A biocompatible magnetic film: synthesis and characterization

    PubMed Central

    Chatterjee, Jhunu; Haik, Yousef; Chen, Ching Jen

    2004-01-01

    Background Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. Methods A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (γ-Fe2O3, ~7 nm) have been used to produce the magnetic gel. Results The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior. Conclusion Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles. PMID:14761251

  6. Spin/orbital and magnetic quantum number selective magnetization measurements for CoFeB/MgO multilayer films.

    PubMed

    Yamazoe, M; Kato, T; Suzuki, K; Adachi, M; Shibayama, A; Hoshi, K; Itou, M; Tsuji, N; Sakurai, Y; Sakurai, H

    2016-11-01

    Spin selective magnetic hysteresis (SSMH) curves, orbital selective magnetic hysteresis (OSMH) curves and magnetic quantum number selective SSMH curves are obtained for CoFeB/MgO multilayer films by combining magnetic Compton profile measurements and superconducting quantum interference device (SQUID) magnetometer measurements. Although the SQUID magnetometer measurements do not show perpendicular magnetic anisotropy (PMA) in the CoFeB/MgO multilayer film, PMA behavior is observed in the OSMH and SSMH curves for the |m|  =  2 magnetic quantum number states. These facts indicate that magnetization switching behavior is dominated by the orbital magnetization of the |m|  =  2 magnetic quantum number states. PMID:27602698

  7. 3D and 1D calculation of hysteresis loops and energy products for anisotropic nanocomposite films with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Yuan, X. H.; Zhao, G. P.; Yue, Ming; Ye, L. N.; Xia, J.; Zhang, X. C.; Chang, J.

    2013-10-01

    In this paper, the magnetic reversal process, hysteresis loops and energy products for exchange-coupled Nd2Fe14B/α-Fe bilayers are studied systematically by a three-dimensional (3D) model. The 3D calculations are numerically solved using the finite difference method, where the results are carefully compared with those calculated by one-dimensional (1D) model. It is found that the calculated hysteresis loops and energy products based on the two methods are consistent with each other. Both nucleation fields and coercivities decrease monotonically as the soft layer thickness Ls increases. In addition, the calculated spatial distributions of magnetization orientations in the thickness direction at various applied fields based on both methods signify a three-step magnetic reversal process, which are nucleation, growth and displacement of the domain wall. The calculated magnetic orientations within the film plane, however, are totally different according to the two methods. The 3D calculation exhibits a process of vortex formation and annihilation. On the other hand, the 1D calculation gives a quasi-coherent one, where magnetization orientation is coherent in the film plane and varies in the thickness direction. This new reversal mechanism displayed in the film plane has a systematic influence on the nucleation fields, coercivity and energy products.

  8. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Wang, Zhenxing; Abolfath-Beygi, Maryam; He, Congli; Li, Xiang; Wong, Kin L.; Nordeen, Paul; Wu, Hao; Carman, Gregory P.; Han, Xiufeng; Alhomoudi, Ibrahim A.; Amiri, Pedram Khalili; Wang, Kang L.

    2015-02-01

    We demonstrate strain-induced modulation of perpendicular magnetic anisotropy (PMA) in (001)-oriented [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT) substrate/Ta/CoFeB/MgO/Ta structures using ferromagnetic resonance (FMR). An in-plane biaxial strain is produced by applying voltage between the two surfaces of the PMN-PT substrate, and is transferred to the ferromagnetic CoFeB layer, which results in tuning of the PMA of the CoFeB layer. The strain-induced change in PMA is quantitatively extracted from the experimental FMR spectra. It is shown that both first and second-order anisotropy terms are affected by the electric field, and that they have opposite voltage dependencies. A very large value of the voltage-induced perpendicular magnetic anisotropy modulation of ˜7000 fJ/V.m is obtained through this strain-mediated coupling. Using this FMR technique, the magnetostriction coefficient λ is extracted for the ultrathin 1.1 nm Co20Fe60B20 layer, and is found to be 3.7 × 10-5, which is approximately 4 times larger than the previously reported values for CoFeB films thicker than 5 nm. In addition, the effect of strain on the effective damping constant (αeff) is also studied and no obvious modulation of the αeff is observed. The results are relevant to the development of CoFeB-MgO magnetic tunnel junctions for memory applications.

  9. Effects of total thickness on (001) texture, surface morphology, and magnetic properties of [Fe/Pt]{sub n} multilayer films by monatomic layer deposition

    SciTech Connect

    Yu, Y. S.; George, T. A.; Yue, L. P.; Sellmyer, D. J.; Li, W. L.; Fei, W. D.; Li Haibo; Liu Mei

    2010-10-15

    Atomic-scale [Fe/Pt]{sub n} multilayer films with different total thickness were prepared on thermally oxidized Si (100) substrates at room temperature by monatomic layer deposition using dc-magnetron and rf-magnetron sputtering. Effects of the total thickness on (001) texture, surface morphology, and magnetic properties of the postannealed films have been investigated. It is found that the particlelike structure films with perfect (001) texture and perpendicular magnetic anisotropy are obtained with a thickness of less than or equal to 6.5 nm. After 500 deg. C annealing, the films with thickness of 6.5 and 11.9 nm show very smooth surface. In addition, with increasing total thickness of the films, (001) texture and perpendicular magnetic anisotropy of the annealed films deteriorate, and the films become continuous in structure. The total thickness of the films also affects the exchange-coupling interaction among FePt magnetic grains and the magnetization reversal process.

  10. Chemical and Magnetic Order in Vapor-Deposited Metal Films

    NASA Astrophysics Data System (ADS)

    Rooney, Peter Wiliam

    1995-01-01

    A stochastic Monte Carlo model of vapor deposition and growth of a crystalline, binary, A_3 B metallic alloy with a negative energy of mixing has been developed which incorporates deposition and surface diffusion in a physically correct manner and allows the simulation of deposition rates that are experimentally realizable. The effects of deposition rate and growth temperature on the development of short range order (SRO) in vapor-deposited films have been examined using this model. SRO in the simulated films increases with growth temperature up to the point at which the temperature corresponds to the energy of mixing, but we see no corresponding development of anisotropic SRO (preferential ordering of A-B pairs along the growth direction). Epitaxial (100) and (111) CoPt_3 films have been deposited over a range of growth temperatures from -50^circ C to 800^circC. Curie temperature (T_{rm c}) and saturation magnetization are dramatically enhanced in those films grown near 400^circ C over the values expected for the chemically homogeneous alloy. Magnetization data indicates that the high T _{rm c} films are inhomogeneous. These phenomena are interpreted as evidence of a previously unobserved magnetically driven miscibility gap in the Co-Pt phase diagram. Films grown near 400^circ C exhibit large uniaxial perpendicular magnetic anisotropy that cannot be accounted for by strain. The observed anisotropy coincides with the chemical phase separation and it seems likely that these two phenomena are related. Long range order (LRO) in the as-deposited films peaks at a growth temperature of 630^circC and then decreases with decreasing growth temperature. The decrease in LRO is either due to kinetic frustration or to competition from magnetically induced Co clustering. Theoretical phase diagrams based on the appropriate Blume-Emery-Griffiths Hamiltonian suggest the latter.

  11. Spin dynamics induced by ultrafast heating with ferromagnetic/antiferromagnetic interfacial exchange in perpendicularly magnetized hard/soft bilayers

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Iihama, S.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-11-01

    The laser-induced spin dynamics of FeCo in perpendicularly magnetized L10-MnGa/FeCo bilayers with ferromagnetic and antiferromagnetic interfacial exchange coupling (IEC) are examined using the time-resolved magneto-optical Kerr effect. We found a precessional phase reversal of the FeCo layer as the IEC changes from ferromagnetic to antiferromagnetic. Moreover, a precession-suspension window was observed when the magnetic field was applied in a certain direction for the bilayer with ferromagnetic IEC. Our observations reveal that the spin dynamics modulation is strongly dependent on the IEC type within the Landau-Lifshitz-Gilbert depiction. The IEC dependence of the precessional phase and amplitude suggests the interesting method for magnetization dynamics modulation.

  12. Spin dynamics induced by ultrafast heating with ferromagnetic/antiferromagnetic interfacial exchange in perpendicularly magnetized hard/soft bilayers

    SciTech Connect

    Ma, Q. L. E-mail: mizukami@wpi-aimr.tohoku.ac.jp; Miyazaki, T.; Mizukami, S. E-mail: mizukami@wpi-aimr.tohoku.ac.jp; Iihama, S.; Zhang, X. M.

    2015-11-30

    The laser-induced spin dynamics of FeCo in perpendicularly magnetized L1{sub 0}-MnGa/FeCo bilayers with ferromagnetic and antiferromagnetic interfacial exchange coupling (IEC) are examined using the time-resolved magneto-optical Kerr effect. We found a precessional phase reversal of the FeCo layer as the IEC changes from ferromagnetic to antiferromagnetic. Moreover, a precession-suspension window was observed when the magnetic field was applied in a certain direction for the bilayer with ferromagnetic IEC. Our observations reveal that the spin dynamics modulation is strongly dependent on the IEC type within the Landau-Lifshitz-Gilbert depiction. The IEC dependence of the precessional phase and amplitude suggests the interesting method for magnetization dynamics modulation.

  13. Spin Transfer Torque Switching and Perpendicular Magnetic Anisotropy in Full Heusler Alloy Co2FeAl-BASED Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Sukegawa, H.; Wen, Z. C.; Kasai, S.; Inomata, K.; Mitani, S.

    2014-12-01

    Some of Co-based full Heusler alloys have remarkable properties in spintronics, that is, high spin polarization of conduction electrons and low magnetic damping. Owing to these properties, magnetic tunnel junctions (MTJs) using Co-based full Heusler alloys are potentially of particular importance for spintronic application such as magnetoresistive random access memories (MRAMs). Recently, we have first demonstrated spin transfer torque (STT) switching and perpendicular magnetic anisotropy (PMA), which are required for developing high-density MRAMs, in full-Heusler Co2FeAl alloy-based MTJs. In this review, the main results of the experimental demonstrations are shown with referring to related issues, and the prospect of MTJs using Heusler alloys is also discussed.

  14. Magnetic Tunnel Junctions with Perpendicular Anisotropy Using a Co2FeAl Full-Heusler Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Kasai, Shinya; Hayashi, Masamitsu; Mitani, Seiji; Inomata, Koichiro

    2012-06-01

    We fabricated perpendicularly magnetized magnetic tunnel junctions (p-MTJs) with an ultrathin Co2FeAl (CFA) full-Heusler alloy electrode having large interface magnetic anisotropy of CFA/MgO. An out-of-plane tunnel magnetoresistance (TMR) ratio of 53% at room temperature was observed in CFA/MgO/Co20Fe60B20 p-MTJs. By inserting a 0.1-nm-thick Fe (Co50Fe50) layer between the MgO and Co20Fe60B20 layers, The TMR ratio was significantly enhanced to 91% (82%) due to the improved interface. The bias voltage dependence of differential conductance did not clearly show coherent tunneling characteristics for ultrathin CFA-MTJs, suggesting that a higher TMR ratio may be achieved by improving the B2 ordering of CFA and/or interface structure.

  15. Effect of laminated crystalline FeCoB soft magnetic underlayer for perpendicular magnetic recording tape media

    NASA Astrophysics Data System (ADS)

    Gomi, Shunsuke; Mashiko, Yasuhiro; Hirata, Ken-ichiro; Matsunuma, Satoshi; Inoue, Tetsutaro; Doi, Tsugihiro; Watanabe, Toshiyuki; Nakagawa, Shigeki

    2011-04-01

    A crystalline FeCoB soft magnetic underlayer (SUL) improves c-axis orientations of the Ru intermediate layer (IML) and the CoPtCr-SiO2 recording layer (RL). (001) orientations of Ru IML and CoPtCr RL are attained by (110) oriented texture of FeCoB SUL. Since good c-axis orientation in CoPtCr-SiO2 RL as well as domain control in the FeCoB SUL is required for high recording density, a laminated FeCoB SUL is prepared as an underlayer of the bilayered Ru/CoPtCr-SiO2 films. A laminated FeCoB SUL results in better (001) orientation in both CoPtCr-SiO2 RL and Ru IML than the single layered FeCoB SUL. This leads to the reduction of media noise in the high recording frequency region. Recording medium layers composed of a laminated FeCoB SUL and bilayered Ru/CoPtCr-SiO2 films deposited on a 4.5-μm-thick Aramid tape show better (001) orientations of Ru and CoPtCr. Media noise of the tape medium with the laminated SUL is lower than that with the single layered FeCoB SUL.

  16. Surface tension measurement techniques of magnetic fluids at an interface between different fluids using perpendicular field instability

    NASA Astrophysics Data System (ADS)

    Amin, M. Shahrooz; Elborai, Shihab; Lee, Se-Hee; He, Xiaowei; Zahn, Markus

    2005-05-01

    Two measurement techniques to determine the surface tension of ferrofluids using the perpendicular field instability are described. Four ferrofluid layers were examined with magnetic field applied perpendicularly to the surface of (1) oil-based ferrofluid in air; (2) water-based ferrofluid in air, (3) oil-based ferrofluid, and (4) fluorocarbon-based ferrofluid, both below a blend of 50% n-Propyl alcohol and 50% deionized water (propanol). Surface tension was accurately calculated by utilizing the measured Taylor wavelength from measurements of incipient fluid instability peaks and the measured densities of fluids. For cases (1) and (2), the calculated surface tension values were in good agreement with a tensiometer measurement. No accurate tensiometer measurements were conducted for the superposed liquids (3) and (4) since accurate tensiometer measurements are difficult for a two fluid layer system. The second less accurate method used the ferrofluid's nonlinear Langevin magnetization characteristics to compute the surface tension from incipience of interfacial instability conditions. Discrepancies between the surface tensions measured by the two methods were probably due to the ferrofluid particle size distributions and the strong dependence of the ferrofluid magnetization on particle size.

  17. Detrimental effect of interfacial Dzyaloshinskii-Moriya interaction on perpendicular spin-transfer-torque magnetic random access memory

    SciTech Connect

    Jang, Peong-Hwa; Lee, Seo-Won E-mail: kj-lee@korea.ac.kr; Song, Kyungmi; Lee, Seung-Jae; Lee, Kyung-Jin E-mail: kj-lee@korea.ac.kr

    2015-11-16

    Interfacial Dzyaloshinskii-Moriya interaction in ferromagnet/heavy metal bilayers is recently of considerable interest as it offers an efficient control of domain walls and the stabilization of magnetic skyrmions. However, its effect on the performance of perpendicular spin transfer torque memory has not been explored yet. We show based on numerical studies that the interfacial Dzyaloshinskii-Moriya interaction decreases the thermal energy barrier while increases the switching current. As high thermal energy barrier as well as low switching current is required for the commercialization of spin torque memory, our results suggest that the interfacial Dzyaloshinskii-Moriya interaction should be minimized for spin torque memory applications.

  18. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    SciTech Connect

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.

    2007-07-01

    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  19. Magnetic ramp scale at supercritical perpendicular collisionless shocks: Full particle electromagnetic simulations

    SciTech Connect

    Yang, Zhongwei; Lu, Quanming; Gao, Xinliang; Huang, Can; Yang, Huigen; Hu, Hongqiao; Han, Desheng; Liu, Ying

    2013-09-15

    Supercritical perpendicular collisionless shocks are known to exhibit foot, ramp, and overshoot structures. The shock ramp structure is in a smaller scale in contrast to other microstructures (foot and overshoot) within the shock front. One-dimensional full particle simulations of strictly perpendicular shocks over wide ranges of ion beta β{sub i}, Alfvén Mach number M{sub A}, and ion-to-electron mass ratio m{sub i}/m{sub e} are presented to investigate the impact of plasma parameters on the shock ramp scale. Main results are (1) the ramp scale can be as small as several electron inertial length. (2) The simulations suggest that in a regime below the critical ion beta value, the shock front undergoes a periodic self-reformation and the shock ramp scale is time-varying. At higher ion beta values, the shock front self-reformation is smeared. At still higher ion beta value, the motion of reflected ions is quite diffuse so that they can lead to a quasi-steady shock ramp. Throughout the above three conditions, the shock ramp thickness increases with β{sub i}. (3) The increase (decrease) in Mach number and the decrease (increase) in the beta value have almost equivalent impact on the state (i.e., stationary or nonstationary) of the shock ramp. Both of front and ramp thicknesses are increased with M{sub A}.

  20. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    SciTech Connect

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.

    2015-11-09

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation.

  1. Magnetization-reversal processes in an ultrathin Co/Au film

    NASA Astrophysics Data System (ADS)

    Ferré, J.; Grolier, V.; Meyer, P.; Lemerle, S.; Maziewski, A.; Stefanowicz, E.; Tarasenko, S. V.; Tarasenko, V. V.; Kisielewski, M.; Renard, D.

    1997-06-01

    Magnetization-reversal processes in a ferromagnetic cobalt film structure (Au/Co/Au), with perpendicular anisotropy, were investigated by magneto-optical magnetometry and microscopy. In the considered ultrathin Co film, the magnetization reversal between the two Ising-spin equilibrium states is dominated by the domain-wall motion mechanism. We focused our studies on processes initiated from a given demagnetized state. Starting from a magnetically saturated state generated under a large field HS, applied perpendicular to the film, this demagnetized state is created through magnetic aftereffects in a field Hd antiparallel but smaller than HS and applied during a selected time. Direct (RD) and indirect (RI) magnetization processes are then studied from this state for application of the field parallel and antiparallel to Hd, respectively. The dynamics of the magnetization reversal is much faster for the RI process since it is initiated from a quasihomogeneous 'Swiss cheese' domain state with small nonreversed regions. The magnetic accommodation phenomenon is studied, and a domain-shape memory effect evidenced. A theoretical analysis of the dynamics of magnetization processes is proposed, starting from the model of a patchy inhomogeneous media with a realistic distribution of local coercivities. The pertinent parameters for calculations are deduced from our experimental data using appropriate analytical expressions of the magnetic relaxation time and domain-wall velocity under a field. Computer simulations using these parameters reproduce well the time evolution of the magnetic domain pattern and different magnetization curves both for RD and RI magnetization processes.

  2. Nano-fabricated perpendicular magnetic anisotropy electrodes for lateral spin valves and observation of Nernst-Ettingshausen related signals

    SciTech Connect

    Chejanovsky, N.; Sharoni, A.

    2014-08-21

    Lateral spin valves (LSVs) are efficient structures for characterizing spin currents in spintronics devices. Most LSVs are based on ferromagnetic (FM) electrodes for spin-injection and detection. While there are advantages for using perpendicular magnetic anisotropy (PMA) FM, e.g., stability to nano-scaling, these have almost not been studied. This is mainly due to difficulties in fabricating PMA FMs in a lateral geometry. We present here an efficient method, based on ion-milling through an AlN mask, for fabrication of LSVs with multi-layered PMA FMs such as Co/Pd and Co/Ni. We demonstrate, using standard permalloy FMs, that the method enables efficient spin injection. We show the multi-layer electrodes retain their PMA properties as well as spin injection and detection in PMA LSVs. In addition, we find a large asymmetric voltage signal which increases with current. We attribute this to a Nernst-Ettingshausen effect caused by local Joule heating and the perpendicular magnetic easy axis.

  3. Nano-fabricated perpendicular magnetic anisotropy electrodes for lateral spin valves and observation of Nernst-Ettingshausen related signals

    NASA Astrophysics Data System (ADS)

    Chejanovsky, N.; Sharoni, A.

    2014-08-01

    Lateral spin valves (LSVs) are efficient structures for characterizing spin currents in spintronics devices. Most LSVs are based on ferromagnetic (FM) electrodes for spin-injection and detection. While there are advantages for using perpendicular magnetic anisotropy (PMA) FM, e.g., stability to nano-scaling, these have almost not been studied. This is mainly due to difficulties in fabricating PMA FMs in a lateral geometry. We present here an efficient method, based on ion-milling through an AlN mask, for fabrication of LSVs with multi-layered PMA FMs such as Co/Pd and Co/Ni. We demonstrate, using standard permalloy FMs, that the method enables efficient spin injection. We show the multi-layer electrodes retain their PMA properties as well as spin injection and detection in PMA LSVs. In addition, we find a large asymmetric voltage signal which increases with current. We attribute this to a Nernst-Ettingshausen effect caused by local Joule heating and the perpendicular magnetic easy axis.

  4. Impact of seed layer on post-annealing behavior of transport and magnetic properties of Co/Pt multilayer-based bottom-pinned perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Jyotirmoy; Tahmasebi, Taiebeh; Swerts, Johan; Sankar Kar, Gouri; De Boeck, Jo

    2015-06-01

    The magnetic and transport properties of Co/Pt multilayer-based bottom-pinned perpendicular magnetic tunnel junctions (pMTJs) on Ru, Hf, and Ru/Hf seed layers (SLs) were investigated after annealing at different temperatures. The perpendicular synthetic antiferromagnetic (pSAF) layer on the Ru SL was found to be thermally robust (after annealing at 400 °C for 30 min). A high tunnel magnetoresistance (TMR) ratio of 100% was achieved at a low resistance-area product (5.5 Ω·µm2) and was stable up to 350 °C. For the stack on Ru SL, TMR degradation after annealing was caused by the degradation of the pMTJ (CoFeB/MgO/CoFeB), while in the Hf and Ru/Hf SL, both the pMTJ and pSAF were affected.

  5. Optically induced spin wave dynamics in [Co/Pd]{sub 8} antidot lattices with perpendicular magnetic anisotropy

    SciTech Connect

    Pal, S.; Das, K.; Barman, A.; Klos, J. W.; Gruszecki, P.; Krawczyk, M.; Hellwig, O.

    2014-10-20

    We present an all-optical time-resolved measurement of spin wave (SW) dynamics in a series of antidot lattices based on [Co(0.75 nm)/Pd(0.9 nm)]{sub 8} multilayer (ML) systems with perpendicular magnetic anisotropy. The spectra depend significantly on the areal density of the antidots. The observed SW modes are qualitatively reproduced by the plane wave method. The interesting results found in our measurements and calculations at small lattice constants can be attributed to the increase of areal density of the shells with modified magnetic properties probably due to distortion of the regular ML structure by the Ga ion bombardment and to increased coupling between localized modes. We propose and discuss the possible mechanisms for this coupling including exchange interaction, tunnelling, and dipolar interactions.

  6. Reduction of magnetic grain size of perpendicular recording media with CoCrW seed layer

    NASA Astrophysics Data System (ADS)

    Inamura, R.; Toyoda, T.; Tanaka, T.; Uzumaki, T.

    2009-04-01

    We report the use of CoCrW seed layer (SL) for making the fine grain granular structure and high crystalline orientation of CoCrPt-oxide magnetic recording layer. It is found that CoCrW SL should be of amorphouslike structure to make fine grain of CoCrPt-oxide magnetic layer. Moreover, the smooth surface of CoCrW SL provides high crystalline orientation of the CoCrPt-oxide magnetic layer.

  7. Magnetic force microscope tip-induced remagnetization of CoPt nanodisks with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Mironov, V. L.; Gribkov, B. A.; Vdovichev, S. N.; Gusev, S. A.; Fraerman, A. A.; Ermolaeva, O. L.; Shubin, A. B.; Alexeev, A. M.; Zhdan, P. A.; Binns, C.

    2009-09-01

    We report on the results of a magnetic force microscopy investigation of remagnetization processes in arrays of CoPt nanodisks with diameters of 35 and 200 nm and a thickness of 9.8 nm fabricated by e-beam lithography and ion etching. The controllable magnetization reversal of individual CoPt nanodisks by the magnetic force microscope (MFM) tip-induced magnetic field was demonstrated. We observed experimentally two essentially different processes of tip-induced remagnetization. Magnetization reversal of 200 nm disks was observed when the probe moved across the particle while in case of 35 nm nanodisks one-touch remagnetization was realized. Micromagnetic modeling based on the Landau-Lifshitz-Gilbert (LLG) equation demonstrated that the tip-induced magnetization reversal occurs through the essentially inhomogeneous states. Computer simulations confirmed that in case of 200 nm disks the mechanism of embryo nucleation with reversed magnetization and further dynamic propagation following the probe moving across the particle was realized. On the other hand one-touch remagnetization of 35 nm disks occurs through the inhomogeneous vortexlike state. Micromagnetic LLG simulations showed that magnetization reversal in an inhomogeneous MFM probe field has a lower energy barrier in comparison with the mechanism of coherent rotation, which takes place in a homogeneous external magnetic field.

  8. Magnetic cantilever actuator with sharpened magnetic thin film ellipses

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Ger, Tzong-Rong; Lai, Mei-Feng; Chen, We-Yun; Huang, Hao-Ting; Chen, Jiann-Yeu; Wang, Pei-Jen; Wei, Zung-Hang

    2015-05-01

    A SiO2 cantilever covered by elliptical magnetic thin films was designed as an actuator. Under magnetic field, the elliptical magnetic film with sharp ends would exhibit single-domain structures and generate torque to push or pull the two arms of the cantilever. The cantilever could then stretch or compress and the displacement could be controlled by adjusting the magnitude and direction of the external magnetic field. The combination between micromagnetism of patterned films and actuator was successfully demonstrated. The magnetic actuator can be applied for future application in the biological field and would be valuable for microelectromechanical systems (MEMS).

  9. Lateral Domain Transfer In a Magnetic Nanowire With Perpendicular-to-Plane-Anisotropy For Three-Dimensional Memory Applications

    NASA Astrophysics Data System (ADS)

    Gokce, Aisha; Ozatay, Ozhan; Bulut, Bugra; Rainey, Coleman; Katine, Jordan A.; Hauet, Thomas; Giordano, Anna; Finocchio, Giovanni

    2015-03-01

    Spin torque driven magnetic domain transport has been of great interest with potential applications in three dimensional magnetic race track memory and also for domain wall logic. Here we report on experimental and micromagnetic modelling results of spin torque driven magnetic domain transport in CoNi/Pd multilayers with perpendicular-to-plane anisotropy patterned to form magnetic nanowires with double constrictions where domains can be moved with spin polarized current pulses in between constricted sites. The domain nucleation was triggered by joule heating in the presence of a magnetic tip a few nm above the surface which was otherwise in the remanent state. We show that with low or high amplitude nanosecond current pulses two different types of domain transfer behavior is possible: a replicated or partially displaced domain in the neighboring constriction, or an expansion of the domain into the spacer region and the neighboring pinning site. Micromagnetic modelling of the domain transport in such devices suggests that in addition to the experimentally observed behavior a third regime where the full transfer of a single domain is also attainable. Our study shows that CoNi/Pd nanowires can be of potential practical use in a three dimensional memory structure.

  10. Chaotic magnetization dynamics in single-crystal thin-film structures

    SciTech Connect

    Shutyi, A. M. Sementsov, D. I.

    2009-01-15

    The nonlinear dynamics of homogeneously precessing magnetization in perpendicularly magnetized single-crystal films has been investigated in a wide range of ac field frequencies on the basis of a numerical solution to the Landau-Lifshitz equation and construction of the spectrum of Lyapunov exponents. The conditions for implementing and specific features of chaotic dynamic modes are revealed for films of three basic crystallographic orientations: (100), (110), and (111). It is shown that chaotic precession modes can be controlled using external magnetic fields. Time analogs of the Poincare section of chaotic mode trajectories are considered.

  11. Chaotic magnetization dynamics in single-crystal thin-film structures

    NASA Astrophysics Data System (ADS)

    Shutyi, A. M.; Sementsov, D. I.

    2009-01-01

    The nonlinear dynamics of homogeneously precessing magnetization in perpendicularly magnetized single-crystal films has been investigated in a wide range of ac field frequencies on the basis of a numerical solution to the Landau-Lifshitz equation and construction of the spectrum of Lyapunov exponents. The conditions for implementing and specific features of chaotic dynamic modes are revealed for films of three basic crystallographic orientations: (100), (110), and (111). It is shown that chaotic precession modes can be controlled using external magnetic fields. Time analogs of the Poincaré section of chaotic mode trajectories are considered.

  12. Field driven ferromagnetic phase nucleation and propagation from the domain boundaries in antiferromagnetically coupled perpendicular anisotropy films

    SciTech Connect

    Hauet, Thomas; Gunther, Christian M.; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav

    2008-12-09

    We investigate the reversal process in antiferromagnetically coupled [Co/Pt]{sub X-1}/{l_brace}Co/Ru/[Co/Pt]{sub X-1}{r_brace}{sub 16} multilayer films by combining magnetometry and Magnetic soft X-ray Transmission Microscopy (MXTM). After out-of-plane demagnetization, a stable one dimensional ferromagnetic (FM) stripe domain phase (tiger-tail phase) for a thick stack sample (X=7 is obtained), while metastable sharp antiferromagnetic (AF) domain walls are observed in the remanent state for a thinner stack sample (X=6). When applying an external magnetic field the sharp domain walls of the thinner stack sample transform at a certain threshold field into the FM stripe domain wall phase. We present magnetic energy calculations that reveal the underlying energetics driving the overall reversal mechanisms.

  13. Capping effect in magnetic properties of Ag ultra-thin films on Co/Pt(1 1 1)

    NASA Astrophysics Data System (ADS)

    Wu, Y. E.; Su, C. W.; Chen, F. C.; Shern, C. S.; Chen, R. H.

    2002-02-01

    Magneto-optical Kerr effect was used to study the changes of the magnetic property for Ag ultra-thin films deposited on Co/Pt (1 1 1) surface. The perpendicular magnetic anisotropy has a significant enhancement when the system is annealed and the Co-Pt alloy is formed. The magnetization disappears at lower temperatures, and appears at higher temperature after 1 ML Ag/1 ML Co/Pt (1 1 1) ultra-thin film was annealed at 710 K. This magnetization is reversible. The thermal energy triggering the motion of the magnetic domain walls is the possible mechanism for the larger magnetization at high temperature.

  14. Influence of the dipole interaction on the direction of the magnetization in thin ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Moschel, A.; Usadel, K. D.

    1994-11-01

    The magnetization of thin films depends in a very sensitive way on surface anisotropy fields which often favor a perpendicular orientation and on the dipole interaction which favors an in-plane magnetization. A temperature driven transition from one to the other orientation has been observed experimentally. In order to understand this behavior theoretically we performed detailed calculations of the magnetization of very thin films (thickness of up to 5 layers) within a quantum mechanical mean field approach. A surface anisotropy that favors a perpendicular orientation and a long range dipole interaction were taken into account. It is shown that these competing interactions for certain values of the parameters may result in a temperature driven switching transition from an out-of plane to an in-plane ordered state. Varying the strength of the dipole interaction we found that the switching temperature is a very sensitive function of the ratio of these two competing interactions. A perpendicular ground state magnetization of the firm is only found for values of the surface anisotropy which are larger than a critical surface anisotropy value. The reorientation of the magnetization vector has its physical origin in an entropy increase of the system when going from a perpendicular to an in-plan ordered state.

  15. Magnetic properties of nano-patterned GaMnAs films grown on ZnCdSe buffer layers

    NASA Astrophysics Data System (ADS)

    Dong, Sining; Li, Xiang; Kanzyuba, Vasily; Yoo, Taehee; Liu, Xinyu; Dobrowolska, Malgorzata; Furdyna, Jacek

    Magnetic semiconductor nanostructures are attracting intense attention, both because of their fundamental physical properties, and because of the promise which they hold for building smaller, faster and more energy-efficient devices. In this study we report successful MBE growth of GaMnAs films on the GaAs (100) substrates with ZnCdSe buffer layers, which results in perpendicular magnetic easy axis in the GaMnAs films. The GaMnAs/ZnCdSe films have been etched into nano-stripe shapes with various widths below 200nm by e-beam lithography, which resulted in a new geometry of interest for perpendicular magnetic recording. Magnetic anisotropy of as-grown GaMnAs films and nano-stripes was then studied by SQUID magnetometry. The results indicate that the GaMnAs films consist of magnetic domains with magnetization normal to the film plane, having rather high coercivety, which survives after nanofabrication. This is also confirmed by the dynamics of the domain motion as shown by AC susceptibility measurements. These findings are of interest for understanding the magnetic anisotropy mechanisms in GaMnAs and its domain structures, as well as for designing of nano-sized spintronic devices which require hard ferromagnetic behavior with perpendicular easy axes. This work was supported by the National Science Foundation Grant DMR1400432.

  16. Recording performance and thermal stability in perpendicular media with enhancement of grain isolation as well as magnetic anisotropy field

    NASA Astrophysics Data System (ADS)

    Jung, H. S.; Ikeda, Y.; Choe, G.; Shi, Zhupei

    2012-04-01

    Magnetic clustering, thermal stability, and recording performance on perpendicular media with multilayered magnetic anisotropy field (Hk)-gradient CoPtCr-oxide/Cap layers with various Ru-oxide layer thicknesses (tRu-oxide) on top of Ru/NiW layers are investigated. With increasing tRu-oxide from 0 to 1.3 nm, Hc and Hs are enhanced but Hn is reduced. Magnetic correlation length (Dn) extracted from a set of major and minor loops significantly decreases but intrinsic switching field distribution remains unaffected. A short-time switching field (Ho) proportional to Hk increases linearly while KuV/kT remains unchanged. Similar KuV/kT is explained by compensation of the reduced Dn with the enhanced Ku induced by a thin Ru-oxide. However, thermal decay rate degrades from 0.06 to 0.32%/decade, which correlates well with Hn. Similar values of initial minor loop slopes indicate no change in magnetic switching behavior. A 1 nm-thick Ru-oxide layer as a well-defined granular template significantly improves recording performance: narrower MCW at 10 T by 8 nm and higher SNR at 2 T by 1.4 dB are observed even at lower OW by 8 dB compared to the media without Ru-oxide. All the recording parameters as a function of Dn correlate well.

  17. THE EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE ON THE ACCELERATION OF ELECTRONS BY PERPENDICULAR COLLISIONLESS SHOCKS

    SciTech Connect

    Guo Fan; Giacalone, Joe

    2010-05-20

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.

  18. The Effect of Large-scale Magnetic Turbulence on the Acceleration of Electrons by Perpendicular Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Giacalone, Joe

    2010-05-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.

  19. Interfacial effects on magnetic interlayer coupling between perpendicular Co/Ni multilayers across Ru spacer

    NASA Astrophysics Data System (ADS)

    Chen, Shaohai; Xiao, Yili; Xie, W. H.; Zhang, Zongzhi; Ma, B.; Jin, Q. Y.

    2014-12-01

    The interlayer exchange coupling properties in synthetic antiferromagnetic (AF) structures based on Co/Ni perpendicular multilayers were investigated by varying the Ru spacer thickness (tRu) and the ferromagnetic (FM) layer material at the FM/Ru interfaces. Samples of two Co layers adjacent to Ru own much stronger AF coupling field (HAF) and show two HAF peaks located at tRu = 0.47 and 1.08 nm. If the interfacial Co layers are substituted by Ni, the HAF at the 1st peak decreases much more considerably, becomes lower than the 2nd one and even disappears due to strong pinhole-induced FM coupling. Such pinhole effect makes HAF of tRu < 0.85 nm remains unchanged or even decrease with decreasing temperatures. By tuning the interfacial Co layer thickness, pinhole effect has been suppressed as a result of greatly enhanced HAF, leading to a normal temperature dependence of Ruderman-Kittel-Kasuya-Yosida-type HAF even at thin tRu cases, i.e., increase in HAF with temperature decreasing.

  20. Cyclotron-resonance transmission through potassium in a perpendicular magnetic field: Effects of the charge-density wave

    NASA Astrophysics Data System (ADS)

    Park, Mi-Ae; Overhauser, A. W.

    1997-01-01

    Microwave transmission through potassium by Dunifer, Sambles, and Mace [J. Phys. Condens. Matter 1, 875 (1989)] in a perpendicular magnetic field shows five signals. They are Gantmakher-Kaner (GK) oscillations, conduction-electron-spin resonance, high-frequency oscillations, cyclotron resonance, and cyclotron-resonance subharmonics. Only the spin resonance has been successfully explained using a free-electron model. However, such a model predicts GK oscillations which are too large by several orders of magnitude. Lacueva and Overhauser [Phys. Rev. B 48, 16t935 (1993)] have shown that charge-density-wave (CDW) energy gaps which cut through the Fermi surface reduce the GK signal. CDW gaps also create a small Fermi-surface cylinder. The high-frequency oscillations were shown to result from Landau-level quantization in the cylinder. Recently we found that the anomalous microwave surface resistance, observed by Grimes and Kip [Phys. Rev. 132, 1991 (1963)], can be explained only if the cylinder axis is tilted ~45° with respect to the [110] crystal direction perpendicular to the surface. (Such a tilt was predicted by Giuliani and Overhauser [Phys. Rev. B 20, 1328 (1979)].) In this study we show that oscillatory motions, parallel to the field, of electrons in the tilted cylinder cause the cyclotron-resonance transmission. This signal and its subharmonics would be completely absent without the tilt. Consequently, four of the five transmission signals require a CDW broken symmetry.

  1. Instability analysis of spin-torque oscillator with an in-plane magnetized free layer and a perpendicularly magnetized pinned layer

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Kubota, Hitoshi

    2016-05-01

    We study the theoretical conditions to excite a stable self-oscillation in a spin-torque oscillator with an in-plane magnetized free layer and a perpendicularly magnetized pinned layer in the presence of magnetic field pointing in an arbitrary direction. The linearized Landau-Lifshitz-Gilbert (LLG) equation is found to be inapplicable to evaluate the threshold between the stable and self-oscillation states because the critical current density estimated from the linearized equation is considerably larger than that found in the numerical simulation. We derive a theoretical formula of the threshold current density by focusing on the energy gain of the magnetization from the spin torque during a time shorter than a precession period. A good agreement between the derived formula and the numerical simulation is obtained. The condition to stabilize the out-of-plane self-oscillation above the threshold is also discussed.

  2. SU-E-J-38: Comparison of 6MV Photon Dose in a Perpendicular and Parallel Magnetic Field

    SciTech Connect

    Ghila, A; Fallone, B; Rathee, S

    2014-06-01

    Purpose: Integrating a linac with an MRI system would allow for real time tumour tracking however the patient will be irradiated in the presence of a magnetic field. The present study experimentally investigates the magnetic field effects on entrance, exit, and interface dose for both transverse and parallel magnetic fields. Methods: Polystyrene was used to construct a set of phantoms for Gafchromic film measurements. One phantom had an adjustable air gap and four other phantoms had one surface at various angles. The linac-MR prototype consisting of a biplanar permanent magnet coupled to a linac was used for the transverse magnetic field measurements. A couple of solenoid electromagnets, stacked on top of each other and irradiated along their bore, were used for the parallel field measurements. Results: All doses are relative to no magnetic field. The transverse magnetic field reduced the entrance dose for all surface angles by strongly deflecting the contaminant electrons. The exit dose in a transverse magnetic field was found to be significantly higher. The entrance dose with a parallel magnetic field present is higher due to the contaminant electrons being concentrated within the beam area. The air gap phantom measurements, done in a transverse magnetic field, show a significant increase of the dose at the proximal side of the air gap and a decrease at the distal side. The measurements, done in the parallel magnetic field, show the concentration of secondary electrons in the air gap. Conclusion: The radiation dose measurements of a 6MV beam in a parallel and transverse magnetic field presented here are currently being replicated using Monte Carlo simulations. This verified Monte Carlo system could provide the dose calculation basis for future linac-MR systems.

  3. Quantum capacitance of an ultrathin topological insulator film in a magnetic field

    PubMed Central

    Tahir, M.; Sabeeh, K.; Schwingenschlögl, U.

    2013-01-01

    We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data. PMID:23405275

  4. Magnetic and Structural Properties of Ultra-Thin Cobalt Films

    NASA Astrophysics Data System (ADS)

    Wiedmann, Michael Helmut

    In situ polar Kerr effect measurements have been used to study the magnetic anisotropy of Au(111)/Co/X, Pd(111)/Co/X, Cu(111)/Co/X, and Pd(100)/Co/X sandwiches, where X is the nonmagnetic metal Ag, Au, Cu, Ir, and Pd or the insulator MgO. The films were grown by molecular beam epitaxy (MBE). For the metals, we found that the magnitude of the Co/X perpendicular interface anisotropy is strongly peaked at ~1 atomic layer (1.5-2.5 A) coverage. To investigate structural influences on the anisotropy, we have used reflection high energy diffraction (RHEED) and low energy electron diffraction (LEED) to measure changes resulting from overlayer coverage. Analysis of digitized RHEED images captured every ~ 1 A during metal overlayer coverage shows no abrupt change of the in-plane lattice constant. We have also investigated the out-of-plane lattice spacing as a function of nonmagnetic metal coverage by measuring LEED I-V curves along the (0,0) rod. In the case of Cu, where the LEED behavior is nearly kinematic, we see no evidence of any abrupt structural changes at ~1 atomic layer coverage. These results suggest the observed peak in magnetic anisotropy is not structural in origin. The influence of an insulating overlayer, MgO, on the perpendicular magnetic properties was also investigated.

  5. Microwave surface resistance of potassium in a perpendicular magnetic field: Effects of the charge-density wave

    NASA Astrophysics Data System (ADS)

    Park, Mi-Ae; Overhauser, A. W.

    1996-07-01

    The microwave surface resistance of potassium in a perpendicular magnetic field, measured by Baraff, Grimes, and Platzman in 1969, has never been completely explained until now. The sharp cyclotron resonance peak (at a magnetic field Hc) is caused by the small cylindrical section of Fermi surface created by the charge-density-wave (CDW) minigaps, having periodicities K-->n=(n+1)Q-->-nG-->110. The shape of the observed resonance requires a tilt of the CDW vector Q--> away from [110], predicted by Giuliani and Overhauser in 1979. An abrupt drop of the surface resistance for \\|H\\|>~\\|Hc\\| is caused by the heterodyne gaps, which have periodicities K-->n=n(G-->110-Q-->). These very small gaps, which begin to undergo magnetic breakdown for fields H>~1 T, interrupt the cyclotron motion of equatorial orbits. The abrupt drop in surface resistance for \\|H\\|>~\\|Hc\\| is caused by the resulting partial loss of carrier effectiveness for electrons having velocities nearly parallel to the surface.

  6. Valley Zeeman effect and spin-valley polarized conductance in monolayer MoS2 in a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Rostami, Habib; Asgari, Reza

    2015-02-01

    We study the effect of a perpendicular magnetic field on the electronic structure and charge transport of a monolayer MoS2 nanoribbon at zero temperature. We particularly explore the induced valley Zeeman effect through the coupling between the magnetic field B and the orbital magnetic moment. We show that the effective two-band Hamiltonian provides a mismatch between the valley Zeeman coupling in the conduction and valence bands due to the effective mass asymmetry and it is proportional to B2 similar to the diamagnetic shift of exciton binding energies. However, the dominant term which evolves with B linearly, originates from the multiorbital and multiband structures of the system. Besides, we investigate the transport properties of the system by calculating the spin-valley resolved conductance and show that, in a low-hole doped case, the transport channels at the edges are chiral for one of the spin components. This leads to a localization of the nonchiral spin component in the presence of disorder and thus provides a spin-valley polarized transport induced by disorder.

  7. Thermally stable voltage-controlled perpendicular magnetic anisotropy in Mo|CoFeB|MgO structures

    SciTech Connect

    Li, Xiang Yu, Guoqiang; Wong, Kin; Upadhyaya, Pramey; Akyol, Mustafa; Wang, Kang L.; Wu, Hao; Han, Xiufeng; Ong, P. V.; Kioussis, Nicholas; Hu, Qi; Ebrahimi, Farbod; Khalili Amiri, Pedram

    2015-10-05

    We study voltage-controlled magnetic anisotropy (VCMA) and other magnetic properties in annealed Mo|CoFeB|MgO layered structures. The interfacial perpendicular magnetic anisotropy (PMA) is observed to increase with annealing over the studied temperature range, and a VCMA coefficient of about 40 fJ/V-m is sustained after annealing at temperatures as high as 430 °C. Ab initio electronic structure calculations of interfacial PMA as a function of strain further show that strain relaxation may lead to the increase of interfacial PMA at higher annealing temperatures. Measurements also show that there is no significant VCMA and interfacial PMA dependence on the CoFeB thickness over the studied range, which illustrates the interfacial origin of the anisotropy and its voltage dependence, i.e., the VCMA effect. The high thermal annealing stability of Mo|CoFeB|MgO structures makes them compatible with advanced CMOS back-end-of-line processes, and will be important for integration of magnetoelectric random access memory into on-chip embedded applications.

  8. Modification of structure and magnetic anisotropy of epitaxial CoFe₂O₄ films by hydrogen reduction

    DOE PAGESBeta

    Chen, Aiping; Poudyal, Narayan; Xiong, Jie; Liu, J. Ping; Jia, Quanxi

    2015-03-16

    Heteroepitaxial CoFe₂O₄ (CFO) thin films with different thicknesses were deposited on MgO (001) substrates. The as-deposited CFO films show a clear switching of magnetic anisotropy with increasing film thickness. The thinner films (<100 nm) show a perpendicular magnetic anisotropy due to the out-of-plane compressive strain. The thicker films exhibit an in-plane easy axis owing to the dominating shape anisotropy effect. The magnetostriction coefficient of CFO films is estimated to be λ[001] =-188 × 10⁻⁶. Metallic CoFe₂ films were obtained by annealing the as-deposited CFO films in forming gas (Ar 93% + H₂ 7%) at 450 °C. XRD shows that CoFe₂more » films are textured out-of-plane and aligned in-plane, owing to lattice matching between CoFe₂ and MgO substrate. TEM results indicate that as-deposited films are continuous while the annealed films exhibit a nanopore mushroom structure. The magnetic anisotropy of CoFe₂ films is dominated by the shape effect. The results demonstrate that hydrogen reduction can be effectively used to modify microstructures and physical properties of complex metal oxide materials.« less

  9. Modification of structure and magnetic anisotropy of epitaxial CoFe₂O₄ films by hydrogen reduction

    SciTech Connect

    Chen, Aiping; Poudyal, Narayan; Xiong, Jie; Liu, J. Ping; Jia, Quanxi

    2015-03-16

    Heteroepitaxial CoFe₂O₄ (CFO) thin films with different thicknesses were deposited on MgO (001) substrates. The as-deposited CFO films show a clear switching of magnetic anisotropy with increasing film thickness. The thinner films (<100 nm) show a perpendicular magnetic anisotropy due to the out-of-plane compressive strain. The thicker films exhibit an in-plane easy axis owing to the dominating shape anisotropy effect. The magnetostriction coefficient of CFO films is estimated to be λ[001] =-188 × 10⁻⁶. Metallic CoFe₂ films were obtained by annealing the as-deposited CFO films in forming gas (Ar 93% + H₂ 7%) at 450 °C. XRD shows that CoFe₂ films are textured out-of-plane and aligned in-plane, owing to lattice matching between CoFe₂ and MgO substrate. TEM results indicate that as-deposited films are continuous while the annealed films exhibit a nanopore mushroom structure. The magnetic anisotropy of CoFe₂ films is dominated by the shape effect. The results demonstrate that hydrogen reduction can be effectively used to modify microstructures and physical properties of complex metal oxide materials.

  10. The Effect of Large Scale Magnetic Turbulence on the Acceleration of Electrons by Perpendicular Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Guo, F.; Giacalone, J.

    2009-12-01

    We investigate electron acceleration at collisionless shocks propagating into an upstream plasma containing large-scale magnetic fluctuations in the direction normal to the mean field. We treat electrons as test particles, and integrate their trajectories numerically, in a time dependent electromagnetic field which is determined from a two-dimensional hybrid (kinetic ions, fluid electron) simulation. We find the large-scale magnetic fluctuations effect the electrons in a number of ways leading to efficient and rapid energization at the shock front. Since the electrons move freely along the magnetic field lines, the large scale field line meandering allows the fast-moving electrons to cross the shock front multiple times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring electrons back and forth between them. The downstream spectrum is broadened, with a power-law like tail at high energies up to 200-300 times of the original energy. It is also shown that the spatial distribution of energetic electrons appears to be similar to in-situ observations (e.g. Bale 1999; Simnett 2005). The study may be important in understanding observations of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures in type II solar radio bursts.

  11. Regular and chaotic dynamics of magnetization precession in ferrite-garnet films

    NASA Astrophysics Data System (ADS)

    Shutyĭ, Anatoliy M.; Sementsov, Dmitriy I.

    2009-03-01

    By numerically solving equations of motion and constructing the spectrum of Lyapunov exponents, nonlinear dynamics of uniformly precessing magnetization in (110) thin film structures with perpendicular magnetic bias is investigated over a wide frequency range of the alternating field. Bifurcational changes in magnetization precession and the states of dynamical bistability are discovered. Conditions for the realization of high-amplitude regular and chaotic dynamic regimes are revealed. The possibility of controlling those precession regimes by using external magnetic fields is shown. The features of time analogs of the Poincaré section of trajectories in the chaotic regimes are studied.

  12. Effect of Mo insertion layers on the magnetoresistance and perpendicular magnetic anisotropy in Ta/CoFeB/MgO junctions

    NASA Astrophysics Data System (ADS)

    Almasi, H.; Xu, M.; Xu, Y.; Newhouse-Illige, T.; Wang, W. G.

    2016-07-01

    The effect of a thin Mo dusting layer inserted at the interface of Ta/CoFeB of perpendicular magnetic tunneling junction with MgO barriers was investigated. Unlike thick Mo layers that exhibited a strong (110) crystalline texture, the inserted Mo layer between Ta/CoFeB had little negative influence on the crystallization of CoFe (001), therefore combining the advantages of Mo as a good thermal barrier and Ta as a good boron sink. For optimized Mo dusting thickness, a large tunneling magnetoresistance of 208% was achieved in perpendicular magnetic tunneling junctions with superior thermal stability at 500 °C.

  13. Determination of the electric field induced anisotropy change in sub-100 nm perpendicularly magnetized devices

    NASA Astrophysics Data System (ADS)

    Huang, Jiancheng; Tran, Michael; Lim, Sze Ter; Huang, Aihong; Yang, Chuyi; Yap, Qi Jia; Han, Guchang

    2016-05-01

    We measure the voltage or electric field (EF) modulated change in anisotropy using two methods on the same nanometer sized device: 1) Directly using the area of the hard axis magnetization loop and 2) Indirectly using the switching field distribution method. Both methods yield similar values of efficiency. With the indirect method, the efficiency derived from the thermal stability was found to be more consistent than that from the anisotropy field. Our data also suggests that memory devices that rely solely on EF effects may benefit from larger device sizes.

  14. Perpendicularly propagating electromagnetic modes in a strongly magnetized hot plasma with non-Maxwellian distribution function

    SciTech Connect

    Zaheer, S.; Murtaza, G.; Shah, H.A.

    2006-06-15

    Electromagnetic modes (ordinary and extraordinary) for strongly magnetized plasma are studied and their damping factors {gamma}{sub or} and {gamma}{sub ex} are calculated using non-Maxwellian velocity distribution function. It is observed that for moderate values of the spectral indices r and q [used in (r, q) distribution functions], both the damping decrements show substantial change. As the value of the spectral index r increases for a fixed value of q, the damping increases for the O mode but decreases for the X mode. In the limiting case of r=0, q{yields}{infinity}, the damping factors reduce to the standard Maxwellian values.

  15. Large electric-field control of perpendicular magnetic anisotropy in strained [Co/Ni] / PZT heterostructures

    NASA Astrophysics Data System (ADS)

    Gopman, Daniel; Dennis, Cindi; Chen, P. J.; Iunin, Yury; Shull, Robert

    We present a piezoelectric/ferromagnetic heterostructure with PMA - a Co/Ni multilayer sputtered directly onto a Pb(Zr,Ti)O3 (PZT) substrate. Chemical-mechanical polishing was used to reduce the roughness of PZT plates to below 2 nm rms, enabling optimal magnetoelectric coupling via the direct interface between PZT and sputtered Co/Ni films with large PMA (Keff = (95 +/-9 kJ/m3)) . We grew the following layer stack: Ta(3)/Pt(2)/[Co(0.15)/Ni(0.6)]x4/Co(0.15)/Pt(2)/Ta(3); numbers in parentheses indicate thicknesses in nm. Applied electric fields up to +/- 2 MV/m to the PZT generated 0.05% in-plane compression in the Co/Ni multilayer, enabling a large electric-field reduction of the PMA (ΔKeff >= 103 J/m3) and of the coercive field (35%). Our results demonstrate that: (i) heterostructures combining PZT and [Co/Ni] exhibit larger PMA (Keff ~105 J/m3) than previous magnetoelectric heterostructures based on Co/Pt and CoFeB, enabling thermally stable hybrid magnetoelectric/spintronic devices only tens of nm in diameter and (ii) electric-field control of the PMA is promising for more energy efficient switching of spintronic devices.

  16. Determination of the spin torque non-adiabaticity in perpendicularly magnetized nanowires.

    PubMed

    Heinen, J; Hinzke, D; Boulle, O; Malinowski, G; Swagten, H J M; Koopmans, B; Ulysse, C; Faini, G; Ocker, B; Wrona, J; Kläui, M

    2012-01-18

    Novel nanofabrication methods and the discovery of an efficient manipulation of local magnetization based on spin polarized currents has generated a tremendous interest in the field of spintronics. The search for materials allowing for fast domain wall dynamics requires fundamental research into the effects involved (Oersted fields, adiabatic and non-adiabatic spin torque, Joule heating) and possibilities for a quantitative comparison. Theoretical descriptions reveal a material and geometry dependence of the non-adiabaticity factor β, which governs the domain wall velocity. Here, we present two independent approaches for determining β: (i) measuring the dependence of the dwell times for which a domain wall stays in a metastable pinning state on the injected current and (ii) the current-field equivalence approach. The comparison of the deduced β values highlights the problems of using one-dimensional models to describe two-dimensional dynamics and allows us to ascertain the reliability, robustness and limits of the approaches used. PMID:22172802

  17. Interplay of Rashba effect and spin Hall effect in perpendicular Pt/Co/MgO magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Yun-Chi, Zhao; Guang, Yang; Bo-Wen, Dong; Shou-Guo, Wang; Chao, Wang; Young, Sun; Jing-Yan, Zhang; Guang-Hua, Yu

    2016-07-01

    The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current, respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect. Project supported by the National Basic Research Program of China (Grant No. 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 51331002, 51371027, 51431009, 51471183, and 11274371), the National Instrumentation Program of China (Grant No. 2012YQ120048), and the Instrument Development Program of Chinese Academy of Sciences (Grant No. YZ201345).

  18. Multicomponent Theory of Buoyancy Instabilities in Astrophysical Plasma Objects: The Case of Magnetic Field Perpendicular to Gravity

    NASA Astrophysics Data System (ADS)

    Nekrasov, Anatoly K.; Shadmehri, Mohsen

    2010-12-01

    We develop a general theory of buoyancy instabilities in the electron-ion plasma with the electron heat flux based not upon magnetohydrodynamic (MHD) equations, but using a multicomponent plasma approach in which the momentum equation is solved for each species. We investigate the geometry in which the background magnetic field is perpendicular to the gravity and stratification. General expressions for the perturbed velocities are given without any simplifications. Collisions between electrons and ions are taken into account in the momentum equations in a general form, permitting us to consider both weakly and strongly collisional objects. However, the electron heat flux is assumed to be directed along the magnetic field, which implies a weakly collisional case. Using simplifications justified for an investigation of buoyancy instabilities with electron thermal flux, we derive simple dispersion relations for both collisionless and collisional cases for arbitrary directions of the wave vector. Our dispersion relations considerably differ from that obtained in the MHD framework and conditions of instability are similar to Schwarzschild's criterion. This difference is connected with simplified assumptions used in the MHD analysis of buoyancy instabilities and with the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. The results obtained can be applied to clusters of galaxies and other astrophysical objects.

  19. High speed domain wall motion in MgO-based magnetic tunnel junctions driven by perpendicular current injection

    NASA Astrophysics Data System (ADS)

    Metaxas, P. J.; Chanthbouala, A.; Matsumoto, R.; Cros, V.; Anane, A.; Grollier, J.; Fert, A.; Zvezdin, K. A.; Fukushima, A.; Yuasa, S.

    2012-02-01

    The ability to efficiently drive fast domain wall (DW) motion will pave the way for revolutionary new electronic devices ranging from DW-MRAMs to spintronic memristors. The majority of domain wall devices use a lateral, current-in-plane configuration in which critical current densities for domain wall motion remain quite high, typically being on the order of 100 MA/cm^2 with velocities generally limited to about 100 m/s. In this contribution we show that critical current densities can be decreased by up to two orders of magnitude using the current-perpendicular-to-plane geometry. Indeed, we demonstrate that a DW can be propagated back and forth along the free layer of a MgO-based magnetic tunnel junction (MTJ) in the absence of an external magnetic field using current densities that are on the order of 5 MA/cm^2. More notably however, we obtain high domain wall velocities for these low current densities: the MTJ's large resistance variations allow us to carry out time-resolved measurements of the wall motion from which we evidence DW velocities exceeding 500m/s.

  20. Temperature dependence of FMR and magnetization in nanocrystalline zinc ferrite thin films

    NASA Astrophysics Data System (ADS)

    Sahu, B. N.; Doshi, Akash S.; Prabhu, R.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.

    2016-05-01

    Single phase nano-crystalline zinc ferrite thin films were deposited by RF-magnetron sputtering on quartz substrate at room temperature (RT) in pure Argon environment and annealed (in air) at different temperatures. Temperature dependence of magnetization was studied on these films using both VSM and by observing FMR (in X band). Value of exchange stiffness constant (D) was obtained by fitting Bloch's law to the low temperature magnetization data. The value of D decreased monotonously with the annealing temperature (TA) of the samples. A film annealed at TA = 523 K, exhibited the highest magnetization value. The FMR line width of the films decreased with increase in measurement temperature. At RT (˜293 K), the lowest value of line width (ΔH) was 15 kA/m and 13 kA/m in parallel and perpendicular configuration respectively for the sample annealed at TA = 623 K.

  1. Edge magnetism of finite graphene-like nanoribbons in the presence of intrinsic spin-orbit interaction and perpendicular electric field.

    PubMed

    Krompiewski, S

    2016-08-01

    This paper elucidates the combined effect of intrinsic spin-orbit interaction (ISOI) and perpendicular electric field [Formula: see text] on edge states in finite graphene-like nanoribbons. It is shown that the ISOI generates magnetic anisotropy which makes the in-plane edge magnetization configuration more energetically stable than the commonly studied out-of-plane one. The anisotropy less severely suppresses the former configuration than the latter. As concerns the E z effect, the following evolution of electric transport properties is predicted: magnetic insulator, non-magnetic narrow-band semiconductor, and finally non-magnetic band insulator. PMID:27324448

  2. Edge magnetism of finite graphene-like nanoribbons in the presence of intrinsic spin–orbit interaction and perpendicular electric field

    NASA Astrophysics Data System (ADS)

    Krompiewski, S.

    2016-08-01

    This paper elucidates the combined effect of intrinsic spin–orbit interaction (ISOI) and perpendicular electric field ({E}z) on edge states in finite graphene-like nanoribbons. It is shown that the ISOI generates magnetic anisotropy which makes the in-plane edge magnetization configuration more energetically stable than the commonly studied out-of-plane one. The anisotropy less severely suppresses the former configuration than the latter. As concerns the E z effect, the following evolution of electric transport properties is predicted: magnetic insulator, non-magnetic narrow-band semiconductor, and finally non-magnetic band insulator.

  3. A DIRECT APPROACH FOR DETERMINING THE PERPENDICULAR MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES IN A TURBULENT AND SPATIALLY VARYING MAGNETIC FIELD

    SciTech Connect

    He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn

    2012-12-15

    A direct approach for explicitly determining the perpendicular mean free path of solar energetic particles (SEPs) influenced by parallel diffusion and composite dynamical turbulence in a spatially varying magnetic field is presented. As theoretical applications of the direct approach, we investigate the inherent relations between the perpendicular mean free path and various parameters concerning physical properties of SEPs as well as those of interplanetary conditions such as the solar wind and the turbulent magnetic field. Comparisons of the perpendicular mean free paths with and without adiabatic focusing are also presented. The direct method shows encouraging agreement with spacecraft observations, suggesting it is a reliable and useful tool for use in theoretical investigations and space weather forecasting.

  4. Comment on ``Size-dependent scaling of perpendicular exchange bias in magnetic nanostructures''

    NASA Astrophysics Data System (ADS)

    Baltz, V.; Bollero, A.; Rodmacq, B.; Dieny, B.; Sort, J.

    2008-01-01

    From results at one given temperature (300K) , Malinowski [Phys. Rev. B 75, 012413 (2007)] draw the conclusion that lateral confinement of ferromagnetic-antiferromagnetic exchange-biased structures does not enhance thermally activated unpinning of the antiferromagnetic spins, which would thus contrast with a recent report [Phys. Rev. Lett. 94, 117201 (2005)], as explicitly mentioned in their manuscript. In this Comment, we discuss why such a conclusion might need revision above a “crossover temperature,” as evidenced in the literature. The value of such a crossover temperature certainly depends on the magnetic parameters of each system studied, e.g., anisotropy and exchange stiffness. From the above reasons, and contrary to the statement of Malinowski , we rather think that their results might well agree with the report to which they refer to. In our Comment we notably aim at complementing the conclusion of Malinowski by explaining why some differences between the two studies are observed at one given temperature, and why it might be expected to observe similar trends over a whole range of temperatures.

  5. The magnetic properties and microstructure of Co-Pt thin films using wet etching process.

    PubMed

    Lee, Chang-Hyoung; Cho, Young-Lae; Lee, Won-Pyo; Suh, Su-Jeong

    2014-11-01

    Perpendicular magnetic recording (PMR) is a promising candidate for high density magnetic recording and has already been applied to hard disk drive (HDD) systems. However, media noise still limits the recording density. To reduce the media noise and achieve a high signal-to-noise ratio (SNR) in hard disk media, the grains of the magnetic layer must be magnetically isolated from each other. This study examined whether sputter-deposited Co-Pt thin films can have adjacent grains that are physically isolated. To accomplish this, the effects of the sputtering conditions and wet etching process on magnetic properties and the microstructure of the films were investigated. The film structure was Co-Pt (30 nm)/Ru (30 nm)/NiFe (10 nm)/Ta (5 nm). The composition of the Co-Pt thin films was Co-30.7 at.% Pt. The Co-Pt thin films were deposited in Ar gas at 5, 10, 12.5, and 15 mTorr. Wet etching process was performed using 7% nitric acid solution at room temperature. These films had high out-of-plane coercivity of up to 7032 Oe, which is twice that of the as-deposited film. These results suggest that wet etched Co-Pt thin films have weaker exchange coupling and enhanced out-of-plane coercivity, which would reduce the medium noise. PMID:25958585

  6. Composite elastic magnet films with hard magnetic feature

    NASA Astrophysics Data System (ADS)

    Wang, Weisong; Yao, Zhongmei; Chen, Jackie C.; Fang, Ji

    2004-10-01

    Hard magnetic materials with high remnant magnetic moment, Mr, have unique advantages that can achieve bi-directional (push-pull) movement in an external magnetic field. This paper presents the results on the fabrication and testing of novel composite elastic permanent magnet films. The microsize hard barium ferrite powder, NdFeB powder, and different silicone elastomers have been used to fabricate various large elongation hard magnetic films. Three different fabrication methods, screen-coating processing, moulding processing and squeegee-coating processing, have been investigated, and the squeegee-coating process was proven to be the most successful method. The uniform composite elastic permanent magnet films range from 40 µm to 216 µm in thickness have been successfully fabricated. These films were then magnetized in the thickness direction after fabrication. They exhibited permanent magnet behaviour; for instance, the film (0.640 mm3 in volume) made of polydimethyl siloxane (PDMS) and hard barium ferrite powders is measured to give a coercive force, Hc, of 3.24 × 105 A m-1 and Mr of 1.023 × 10-5 A m2, and the film (0.504 mm3 in volume) made of PDMS and NdFeB powders gives 1.55 × 105 A m-1 Hc and 8.081 × 10-5 A m2 Mr. These composite elastic permanent magnet films' mechanical properties, like Young's modulus and deflection force, have been evaluated. To validate the films' Young's modulus, a finite-element computer simulation (ANSYS®) is used and one film is chosen whose Young's modulus (16.60 MPa) is confirmed by the simulation results with ANSYS®. The large elongation composite elastic permanent magnet film provides an excellent diaphragm material, which plays an important role in the micropump or valve. The movement of the 126 µm thick film with 4.5 mm diameter made of PDMS and NdFeB powders has been tested in a 0.21 Tesla external magnetic field. It was proven to have large deflection of 125 µm.

  7. Cap-Induced Magnetic Anisotropy in Ultra-thin Fe/MgO(001) Films

    NASA Astrophysics Data System (ADS)

    Brown-Heft, Tobias; Pendharkar, Mihir; Lee, Elizabeth; Palmstrom, Chris

    Magnetic anisotropy plays an important role in the design of spintronic devices. Perpendicular magnetic anisotropy (PMA) is preferred for magnetic tunnel junctions because the resulting energy barrier between magnetization states can be very high and this allows enhanced device scalability suitable for magnetic random access memory applications. Interface induced anisotropy is often used to control magnetic easy axes. For example, the Fe/MgO(001) system has been predicted to exhibit PMA in the ultrathin Fe limit. We have used in-situ magneto optic Kerr effect and ex-situ SQUID to study the changes in anisotropy constants between bare Fe/MgO(001) films and those capped with MgO, Pt, and Ta. In some cases in-plane anisotropy terms reverse sign after capping. We also observe transitions from superparamagnetic to ferromagnetic behavior induced by capping layers. Perpendicular anisotropy is observed for Pt/Fe/MgO(001) films after annealing to 300°C. These effects are characterized and incorporated into a magnetic simulation that accurately reproduces the behavior of the films. This work was supported in part by the Semiconductor Research Corporation programs (1) MSR-Intel, and (2) C-SPIN.

  8. Modeling magnetization curves in magnetic thin films with striped patterns

    NASA Astrophysics Data System (ADS)

    Di Pietro Martínez, M.; Milano, J.; Eddrief, M.; Marangolo, M.; Bustingorry, S.

    2016-04-01

    In this work, we study magnetic thin films presenting magnetic stripe patterns. A fingerprint of such domains is a linear behavior of the in-plane magnetization curves below a given saturation field. We present free energy models for the in-plane magnetization curves which permit us to extract key geometrical information about the stripe patterns, such as the maximum canted angle of the magnetization and the domain wall width. As an example, we discuss in this work magnetization curves for Fe1-x Ga x magnetic films which present a stripe pattern with a period of 160 nm and we found a typical maximum canted angle of {{85}{^\\circ}} and a domain wall width around 30 nm.

  9. Investigation of extrinsic damping caused by magnetic dead layer in Ta-CoFeB-MgO multilayers with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Sato, Noriyuki; O'Brien, Kevin P.; Millard, Kent; Doyle, Brian; Oguz, Kaan

    2016-03-01

    We systematically investigated the influence of the dead layer, the oxidation degree of naturally oxidized MgO, the structure of adjacent nonmagnetic metal layers on the damping parameter, and the perpendicular anisotropy of Ta(Ru)/Co20Fe60B20/MgO and MgO/Co20Fe60B20/Ta films using the vector network analyzer ferromagnetic resonance measurement technique. MgO/Co20Fe60B20/Ta film shows almost twice larger extrinsic damping than that for Ta/Co20Fe60B20/MgO film, whereas the perpendicular anisotropy is much smaller. This two-fold enhancement of damping parameter is successfully explained by the extrinsic damping arises from the dead layer at the CoFeB-Ta interface through the Elliott-Yafet mechanism in addition to the conventional spin-pumping model. Furthermore, we found that the oxidation degree of naturally oxidized MgO has no significant impact on the damping parameter, while the perpendicular anisotropy for MgO/Co20Fe60B20/Ta film is enhanced by longer oxidation time.

  10. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    SciTech Connect

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response of the non-circular skyrmions depends on the direction of external currents.

  11. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    DOE PAGESBeta

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less

  12. High frequency dynamics of the soft underlayer in perpendicular recording system

    NASA Astrophysics Data System (ADS)

    Ju, G.; van de Veerdonk, R. J. M.; Tamaru, S.; Crawford, T. M.; Parker, G.; Kubota, Y.; Wu, M. L.; Batra, S.; Weller, D.; Bain, J. A.

    2002-05-01

    In this study, we present time-resolved Kerr microscopy of the magnetization dynamics in response to the reversal of the write current in the soft magnetic underlayers (SULs) films used in dual layer perpendicular recording media. 20-nm-thick FeCoB films with a 5 nm Pd cap layer are positioned in contact with a single-pole-type high-speed perpendicular magnetic write head. The temporal responses of both in-plane and out-of-plane magnetization components of the SUL were simultaneously measured using the time-resolved Kerr effect. Precessional effects were observed in both magnetization components during the SUL switching, using a driving pulse current with rise-time of about 0.8 ns. The precessional frequencies range from 3 to 7 GHz, depending on the distance (x) away from the main pole. The present results highlight the importance of soft magnetic underlayer dynamics for high data rate perpendicular magnetic recording technology.

  13. Performance of a Chase-type decoding algorithm for Reed-Solomon codes on perpendicular magnetic recording channels

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chang, W.; Cruz, J. R.

    Algebraic soft-decision Reed-Solomon (RS) decoding algorithms with improved error-correcting capability and comparable complexity to standard algebraic hard-decision algorithms could be very attractive for possible implementation in the next generation of read channels. In this work, we investigate the performance of a low-complexity Chase (LCC)-type soft-decision RS decoding algorithm, recently proposed by Bellorado and Kavčić, on perpendicular magnetic recording channels for sector-long RS codes of practical interest. Previous results for additive white Gaussian noise channels have shown that for a moderately long high-rate code, the LCC algorithm can achieve a coding gain comparable to the Koetter-Vardy algorithm with much lower complexity. We present a set of numerical results that show that this algorithm provides small coding gains, on the order of a fraction of a dB, with similar complexity to the hard-decision algorithms currently used, and that larger coding gains can be obtained if we use more test patterns, which significantly increases its computational complexity.

  14. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited)

    NASA Astrophysics Data System (ADS)

    Thomas, Luc; Jan, Guenole; Zhu, Jian; Liu, Huanlong; Lee, Yuan-Jen; Le, Son; Tong, Ru-Ying; Pi, Keyu; Wang, Yu-Jen; Shen, Dongna; He, Renren; Haq, Jesmin; Teng, Jeffrey; Lam, Vinh; Huang, Kenlin; Zhong, Tom; Torng, Terry; Wang, Po-Kang

    2014-05-01

    Magnetic random access memories based on the spin transfer torque phenomenon (STT-MRAMs) have become one of the leading candidates for next generation memory applications. Among the many attractive features of this technology are its potential for high speed and endurance, read signal margin, low power consumption, scalability, and non-volatility. In this paper, we discuss our recent results on perpendicular STT-MRAM stack designs that show STT efficiency higher than 5 kBT/μA, energy barriers higher than 100 kBT at room temperature for sub-40 nm diameter devices, and tunnel magnetoresistance higher than 150%. We use both single device data and results from 8 Mb array to demonstrate data retention sufficient for automotive applications. Moreover, we also demonstrate for the first time thermal stability up to 400 °C exceeding the requirement of Si CMOS back-end processing, thus opening the realm of non-volatile embedded memory to STT-MRAM technology.

  15. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited)

    SciTech Connect

    Thomas, Luc Jan, Guenole; Zhu, Jian; Liu, Huanlong; Lee, Yuan-Jen; Le, Son; Tong, Ru-Ying; Pi, Keyu; Wang, Yu-Jen; Shen, Dongna; He, Renren; Haq, Jesmin; Teng, Jeffrey; Lam, Vinh; Huang, Kenlin; Zhong, Tom; Torng, Terry; Wang, Po-Kang

    2014-05-07

    Magnetic random access memories based on the spin transfer torque phenomenon (STT-MRAMs) have become one of the leading candidates for next generation memory applications. Among the many attractive features of this technology are its potential for high speed and endurance, read signal margin, low power consumption, scalability, and non-volatility. In this paper, we discuss our recent results on perpendicular STT-MRAM stack designs that show STT efficiency higher than 5 k{sub B}T/μA, energy barriers higher than 100 k{sub B}T at room temperature for sub-40 nm diameter devices, and tunnel magnetoresistance higher than 150%. We use both single device data and results from 8 Mb array to demonstrate data retention sufficient for automotive applications. Moreover, we also demonstrate for the first time thermal stability up to 400 °C exceeding the requirement of Si CMOS back-end processing, thus opening the realm of non-volatile embedded memory to STT-MRAM technology.

  16. Large Voltage-Induced Changes in the Perpendicular Magnetic Anisotropy of an MgO-Based Tunnel Junction with an Ultrathin Fe Layer

    NASA Astrophysics Data System (ADS)

    Nozaki, Takayuki; Kozioł-Rachwał, Anna; Skowroński, Witold; Zayets, Vadym; Shiota, Yoichi; Tamaru, Shingo; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Suzuki, Yoshishige

    2016-04-01

    We study the voltage control of perpendicular magnetic anisotropy in an ultrathin Fe layer sandwiched between the Cr buffer and MgO tunneling barrier layers. A high-interface magnetic anisotropy energy of 2.1 mJ /m2 is achieved in the Cr/ultrathin Fe /MgO structure. A large voltage-induced perpendicular magnetic anisotropy change is observed under the negative-bias voltage applications for the case of the Fe layer thinner than 0.6 nm. The amplitude of the voltage-induced anisotropy energy change exhibits a strong Fe-thickness dependence and it reaches as high as 290 fJ /Vm . The observed high values of the surface anisotropy and voltage-induced anisotropy energy change demonstrate the feasibility of voltage-driven spintronic devices.

  17. Heat assisted recording on bottom layer of dual recording layer perpendicular magnetic recording media for two and a half dimensional (2.5D) magnetic data storage

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.; Santoso, B.; Shi, J. Z.; Xu, B. X.; Tsai, J. W. H.

    2015-05-01

    In this paper, we present a study on two and a half dimensional (2.5D) perpendicular magnetic recording (PMR) media consisting of dual hard magnetic recording layers (RL) with 1st or top RL1 used for conventional data storage and 2nd or bottom RL2 used for dedicated servo with lower linear densities or DC servo patterns with focus on the writability issue of the bottom servo layer (RL2). We demonstrate experimentally the feasibility to magnetically erase, write, and re-write RL2 by laser assist on a home built heat-assisted-magnetic-recording writing test system. Experimental data (by magnetic force microscopy measurements) show that the signal amplitudes of the pre-recorded magnetic patterns for both RL1 and RL2 decrease at almost the same rate with thermal erasure using scanning laser power (Pw) from 13 mW to 23 mW, clearly indicating equally effective laser heating and close temperature rise for RL1 and RL2 for far field laser heating with laser pulse duration in sub-μs and μs range. This is further verified by theoretical simulations of the thermal distribution and the temperature rise depth profile in dual layer media by laser heating. Simulations indicate very little temperature difference of less than 6 K (˜1% of maximum temperature rise) between RL1 and RL2 because the main mechanism of temperature rises in RL1 and RL2 is due to the effective thermal conduction from the top layers to lower layers. These experimental and theoretical study results could provide useful understanding and insights into servo writing methods of 2.5D PMR media.

  18. Patterning of magnetic thin films and multilayers using nanostructured tantalum gettering templates.

    PubMed

    Qiu, Wenlan; Chang, Long; Lee, Dahye; Dannangoda, Chamath; Martirosyan, Karen; Litvinov, Dmitri

    2015-03-25

    This work demonstrates that a nonmagnetic thin film of cobalt oxide (CoO) sandwiched between Ta seed and capping layers can be effectively reduced to a magnetic cobalt thin film by annealing at 200 °C, whereas CoO does not exhibit ferromagnetic properties at room temperature and is stable at up to ∼400 °C. The CoO reduction is attributed to the thermodynamically driven gettering of oxygen by tantalum, similar to the exothermic reduction-oxidation reaction observed in thermite systems. Similarly, annealing at 200 °C of a nonmagnetic [CoO/Pd]N multilayer thin film sandwiched between Ta seed and Ta capping layers results in the conversion into a magnetic [Co/Pd]N multilayer, a material with perpendicular magnetic anisotropy that is of interest for magnetic data storage applications. A nanopatterning approach is introduced where [CoO/Pd]N multilayers is locally reduced into [Co/Pd]N multilayers to achieve perpendicular magnetic anisotropy nanostructured array. This technique can potentially be adapted to nanoscale patterning of other systems for which thermodynamically favorable combination of oxide and gettering layers can be identified. PMID:25761738

  19. Electrodeposited Co-Pt thin films for magnetic hard disks

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.

    1993-03-01

    ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.

  20. A CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction coupled to an in-plane exchange-biased magnetic layer

    SciTech Connect

    Zhu, M. Chong, H.; Vu, Q. B.; Vo, T.; Brooks, R.; Stamper, H.; Bennett, S.; Piccirillo, J.

    2015-05-25

    We report a stack structure which utilizes an in-plane exchange-biased magnetic layer to influence the coercivity of the bottom CoFeB layer in a CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction. By employing a thickness wedge deposition technique, we were able to study various aspects of this stack using vibrating sample magnetometer including: (1) the coupling between two CoFeB layers as a function of MgO thickness; and (2) the coupling between the bottom CoFeB and the in-plane magnetic layer as a function of Ta spacer thickness. Furthermore, modification of the bottom CoFeB coercivity allows one to measure tunneling magnetoresistance and resistance-area product (RA) of CoFeB/MgO/CoFeB in this pseudo-spin-valve format using current-in-plane-tunneling technique, without resorting to (Co/Pt){sub n} or (Co/Pd){sub n} multilayer pinning.

  1. Temperature dependence of the perpendicular magnetic anisotropy in Ta/Co2FeAl/MgO structures probed by Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Gabor, M. S.; Petrisor, T.; Pop, O.; Colis, S.; Tiusan, C.

    2015-10-01

    We report a detailed study of the temperature dependence of the magnetic anisotropy in Ta/Co2FeAl/MgO structures by means of Anomalous Hall Effect measurements. The volume magnetic anisotropy, although negligible at room temperature, shows a non-negligible value at low temperatures and favors an in-plane easy magnetization axis. The surface magnetic anisotropy, which promotes the perpendicular magnetic easy axis, shows an increase from 0.76 ± 0.05 erg /cm2 at 300 K, up to 1.08 ± 0.04 erg /cm2 at 5 K, attributed to the evolution of the Co2FeAl layer saturation magnetization with temperature.

  2. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  3. Magnetic anisotropy of strained epitaxial manganite films

    SciTech Connect

    Demidov, V. V. Borisenko, I. V.; Klimov, A. A.; Ovsyannikov, G. A.; Petrzhik, A. M.; Nikitov, S. A.

    2011-05-15

    The in-plane magnetic anisotropy of epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) films is studied at room temperature by the following three independent techniques: magnetooptical Kerr effect, ferromagnetic resonance at a frequency of 9.61 GHz, and recording of absorption spectra of electromagnetic radiation at a frequency of 290.6 MHz. The films are deposited onto NdGaO{sub 3} (NGO) substrates in which the (110)NGO plane is tilted at an angle of 0-25.7 Degree-Sign to the substrate plane. The uniaxial magnetic anisotropy induced by the strain of the film is found to increase with the tilt angle of the (110)NGO plane. A model is proposed to describe the change in the magnetic anisotropy energy with the tilt angle. A sharp increase in the radio-frequency absorption in a narrow angular range of a dc magnetic field near a hard magnetization axis is detected The anisotropy parameters of the LSMO films grown on (110)NGO, (001)SrTiO{sub 3}, and (001)[(LaAlO{sub 3}){sub 0.3} + (Sr{sub 2}AlTaO{sub 6}){sub 0.7}] substrates are compared.

  4. Dynamic Characterization of Thin Film Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  5. Magnetic thin-film split-domain current sensor-recorder

    DOEpatents

    Hsieh, Edmund J.

    1979-01-01

    A sensor-recorder for recording a representation of the direction and peak amplitude of a transient current. A magnetic thin film is coated on a glass substrate under the influence of a magnetic field so that the finished film is magnetically uniaxial and anisotropic. The film is split into two oppositely magnetized contiguous domains with a central boundary by subjecting adjacent portions of the film simultaneously to magnetic fields that are opposed 180.degree.. With the split-domain sensor-recorder placed with the film plane and domain boundary either perpendicular or parallel to the expected conductive path of a transient current, the occurrence of the transient causes switching of a portion of one domain to the direction of the other domain. The amount of the switched domain portion is indicative of the amplitude of the peak current of the transient, while the particular domain that is switched is indicative of the direction of the current. The resulting domain patterns may be read with a passive magnetic tape viewer.

  6. Nano- and microstructures of magnetic field-guided maghemite nanoparticles in diblock copolymer films.

    PubMed

    Yao, Yuan; Metwalli, Ezzeldin; Niedermeier, Martin A; Opel, Matthias; Lin, Chen; Ning, Jing; Perlich, Jan; Roth, Stephan V; Müller-Buschbaum, Peter

    2014-04-01

    The control over the alignment of nanoparticles within a block copolymer matrix was investigated for different external magnetic fields with respect to producing well-aligned, highly oriented metal-oxide-polymer nanopatterns. Hybrid films were prepared by solution casting under a range of external magnetic fields. The nano- and microstructure of maghemite nanoparticles within poly(styrene-b-methyl methacrylate) diblock copolymer films as a function of the nanoparticle concentration was studied using optical microscopy, atomic force microscopy, scanning electron microscopy, and grazing incidence small-angle X-ray scattering. Because of a polystyrene (PS) coating, the nanoparticles are incorporated in the PS domains of the diblock copolymer morphology. At higher nanoparticle concentrations, nanoparticle aggregates perturb the block copolymer structure and accumulate at the films surface into wire-shaped stripes. These wire-shaped nanoparticle aggregates form mainly because of the competition between nanoparticle-polymer friction and magnetic dipolar interaction. The magnetic behavior of the hybrid films was probed at different temperatures for two orthogonal directions (with the line-shaped particle aggregates parallel and perpendicular to the magnetic field). The hybrid film systems show superparamagnetic behavior and remarkable shape anisotropy that render them interesting for magnetic applications. PMID:24621173

  7. Abrupt Transition from Ferromagnetic to Antiferromagnetic of Interfacial Exchange in Perpendicularly Magnetized L10-MnGa/FeCo Tuned by Fermi Level Position

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Mizukami, S.; Kubota, T.; Zhang, X. M.; Ando, Y.; Miyazaki, T.

    2014-04-01

    An abrupt transition of the interfacial exchange coupling from ferromagnetic to antiferromagnetic was observed in the interface of perpendicularly magnetized L10-MnGa /Fe1-xCox epitaxial bilayers when x was around 25%. By considering the special band structure of the MnGa alloy, we present a model explaining this transition by the spin-polarization reversal of Fe1-xCox alloys due to the rise of the Fermi level as the Co content increases. The effect of interfacial exchange coupling on the coercive force (Hc) and the spin-dependent tunneling effect in perpendicular magnetic tunnel junctions (pMTJs) based on the coupled composite were also studied. Changes from the normal spin valve to inverted magnetoresistance loops corresponding to the coupling transition were observed in pMTJs with MnGa /Fe1-xCox as an electrode.

  8. Effect of oxygen pressure on microstructure and magnetic properties of strontium hexaferrite (SrFe 12O 19) film prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-04-01

    The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.

  9. Structural and magnetic properties of epitaxial CrO2 thin films grown on TiO2 (001) substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyu; Zhong, Xing; Visscher, P. B.; LeClair, Patrick R.; Gupta, Arunava

    2013-04-01

    The structural and magnetic properties of epitaxial CrO2 thin films grown on (001)-oriented TiO2 substrates by atmospheric pressure chemical vapor deposition are investigated. Due to the competition between demagnetization and a relatively weak perpendicular magnetocrystalline anisotropy, the deposited CrO2 (001) films exhibit magnetic properties that are significantly different from CrO2 (100) and CrO2 (110) films grown on TiO2 substrates. Based on the thickness dependence of M-H curves, a surface anisotropy is confirmed to exist, likely originating from strain in the film. The out-of-plane hysteresis curves can be well described by a distribution of effective anisotropy that may be due to a varying local demagnetizing field and a distribution of strain across the film. For the in-plane magnetization, the hysteresis curves are consistent with stripe or vortex domain structures of an almost closed flux configuration at remanence.

  10. Microwave assistance effect on magnetization switching in Co-Cr-Pt granular film

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi; Kikuchi, Nobuaki; Hotta, Akira; Furuta, Masaki; Kitakami, Osamu; Shimatsu, Takehito

    2013-11-01

    Experimental verification of microwave assistance effect on a perpendicular magnetic CoCrPt based granular film is demonstrated. Significant reduction of coercivity under the assistance of a radio frequency (rf) field is clearly observed. But the coercivity strongly depends on the duration of rf field, indicating that the magnetic moments of constituent grains are severely perturbed by thermal agitation. Analysis based on the Néel-Arrhenius law has revealed that the dynamic coercivity in nanosecond region can be reduced by 50% only by applying a small rf field with the amplitude less than 2% of the anisotropy field.

  11. Control over magnetic spectrum of multilayer magnetic film metamaterial

    NASA Astrophysics Data System (ADS)

    Iakubov, I. T.; Lagarkov, A. N.; Rozanov, K. N.; Starostenko, S. N.; Zezyulina, P. A.

    2015-07-01

    A RLC electric circuit with magnetic core is studied experimentally and theoretically as a promising design of a metamaterial cell. Laminates made of multilayered ferromagnetic films are used as the magnetic core. The wire coiled around the core allows the frequency dependence of permeability to be adjusted according to needs of a particular task by creating a region of intensive magnetic loss below the ferromagnetic resonance frequency of the bare core. The theoretic analysis is based on the quasi-statics of magnetic fields and electric currents. The intensity of the loss peak is proportional to the value of μ'2/μ″, where μ' and μ″ are the frequency-dependent components of permeability of the core material. The magnetic spectra of cells with cores made of laminates of NiFe films and FeCo films have been measured. It is shown that the application of the winding allows the magnetic loss peak to be shifted from 1 GHz to 0.3 GHz for NiFe and from 5 GHz to 0.7 GHz for FeCo. The effective imaginary permeability at the resonant frequency increases by the factors of 5 and 6, correspondingly. The theory agrees well with the measured data.

  12. Fabrication of thin films for a small alternating gradient field magnetometer for biomedical magnetic sensing applications

    NASA Astrophysics Data System (ADS)

    Jones, N. J.; McNerny, K. L.; Sokalski, V.; Diaz-Michelena, M.; Laughlin, D. E.; McHenry, M. E.

    2011-04-01

    Thin film alternating gradient field magnetometers (AGFM) have potential for measuring magnetic moments of minerals in extraterrestrial soil samples. AGFM sensors offer increased spatial resolution required to detect magnetic nanoparticles for biosensing applications. We have fabricated a patterned thin film with the properties necessary for use in a small AGFM system. Hexagonal-close-packed CoCrPt thin films of 20 and 500 nm were sputtered (nominal composition of Co66Cr15Pt19), showing a high magnetic moment and large out-of-plane anisotropy. The films showed a Δθ50 of better than 3° for the (002) CoCrPt peak for all films, which improves with thickness. The texture is partly due to the NiW and Ru underlayers. The films showed an out-of-plane easy axis, indicating a strong uniaxial anisotropy that exceeds the shape demagnetization energy. This is due to the addition of Cr, which decreases the magnetic moment of the films; magnetoelastic coupling and film stresses may also aid in achieving a perpendicular anisotropy. The first-order uniaxial anisotropy constants were calculated as a function of temperature, ranging from 3.7 × 106 ergs/cm3 at room temperature to 6.8 × 105 ergs/cm3 at 500 °C, and the T dependence agrees with Akulov's theory for uniaxial materials. The thickest film was etched with a checkerboard pattern to decrease the demagnetization effects, which are seen more influentially in the thicker films. This opened up the hysteresis loop, and decreased the amount of field necessary to overcome the thin film geometry.

  13. Magnetic and Magneto-Optical Properties of Nano - Multilayer Thin Films

    NASA Astrophysics Data System (ADS)

    Shen, Jian Xiang

    Structural, magnetic and magneto-optical properties were investigated experimentally in nanostructured rare earth/Fe (rare earth=Gd, Tb, Dy), Co/Pt and Bi-doped DIG/T (T=Fe, Co, Dy and DIG=Dy-Iron-Garnet) multilayer thin films. In the rare earth/Fe system, it was found that the magnetization reversal could be correlated with the intrinsic magnetic parameters, especially the perpendicular magnetic anisotropy. It was found that higher anisotropy leads to magnetization reversal primarily by domain wall motion due to the higher domain wall energy. The coercivities of these multilayers were strongly dependent on the temperature as well as magnetic field sweep rate, and a strong magnetic after effect was observed. These results demonstrate that thermal activation plays an important role in the determination of the coercivity. The coercivity of Co/Pt multilayer thin films increases with increasing total thickness of the film and magnetization reversal behavior was largely by wall motion, independent of thickness. However the magnetic domain structure depends strongly on the total thickness, presumably due to subtle differences in the defect structures which pin domain walls. In agreement with other studies, it was found that magnetic polarization of the Pt atoms contributed significantly to the total magnetization and Kerr rotation at blue wavelength. Amorphous DIG/Fe multilayer films were prepared by magnetron sputtering, and subsequently crystallized by rapid thermal annealing. The resulting films had small grain size (down to 10 nm) so that they are appropriate materials for magneto-optical storage applications. Depending on the Bi composition, Faraday rotation of up to 15 degrees/ μm was observed. Domain wall expansion into maze-like domains dominated the reversal process. The dielectric constant tensors, including the off-diagonal component responsible for magneto-optical activity, are reported for several samples.

  14. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer

    PubMed Central

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-01-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482

  15. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-12-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics.

  16. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer.

    PubMed

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-01-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482

  17. Electrical-field and spin-transfer torque effects in CoFeB/MgO-based perpendicular magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Yoshida, Chikako; Noshiro, Hideyuki; Yamazaki, Yuichi; Sugii, Toshihiro; Furuya, Atsushi; Ataka, Tadashi; Tanaka, Tomohiro; Uehara, Yuji

    2016-05-01

    The electric-field (E) dependence of the magnetoresistance (RH) loops for top-pinned perpendicular CoFeB/MgO-based magnetic tunnel junctions (MTJs) in the presence of a spin-transfer torque (STT)-current was measured. The E effects were distinguished from the STT-current effects using a micromagnetic simulation. The coercive field (Hc) decreased and the RH loop shifted as both the positive and negative bias E increased owing to the STT current. Furthermore, E-assisted switching for an MTJ with a diameter of 20 nm, which exhibited a nearly coherent magnetization reversal, was demonstrated using micromagnetic simulation.

  18. An Alternative Map from a 2 + 1 Dimensional Charged Dirac Oscillator in the Background of a Uniform Perpendicular Magnetic Field to a Quantum Optics Model

    NASA Astrophysics Data System (ADS)

    Hou, Yu-Long; Wang, Qing; Long, Zheng-Wen; Jing, Jian

    2015-05-01

    We propose an alternative map from the the 2-dimensional charged Dirac oscillator in the background of a uniform perpendicular magnetic field onto a quantum optics model which contains both Jaynes-Cummings (JC) and Anti-Jaynes-Cummings (AJC) interactions. Different from previous work, we only introduce one kind of phonons and realize a symmetrical competition which is controlled by the magnetic field. Furthermore, we find that this model behaves as a quantum phase transition when a dimensionless parameter crosses its critical value. Several characteristics of quantum phase transition are exhibited explicitly.

  19. Local compositional analysis of magnetic crystal grain and boundary in CoCrPt-SiO2 granular perpendicular recording media

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Handa, Takahiro; Takahashi, Yoshio

    2010-01-01

    The compositions of magnetic crystal grains and boundaries of a CoCrPt-SiO2 granular perpendicular medium were investigated for plan-view and cross-sectional samples by using a transmission electron microscope equipped with an energy-dispersive X-ray spectrometer. The grain boundary composition, which is not easy to measure because of the small width around 1 nm, is estimated from the average composition of magnetic layer and that of crystal grains by considering the grain boundary volume ratio determined by structure observation. The grain boundary is shown to include Si as the major metallic element together with not small amounts of other metallic elements.

  20. Magnetic Damping in Ferromagnetic Thin Films

    NASA Astrophysics Data System (ADS)

    Oogane, Mikihiko; Wakitani, Takeshi; Yakata, Satoshi; Yilgin, Resul; Ando, Yasuo; Sakuma, Akimasa; Miyazaki, Terunobu

    2006-05-01

    We determined the Gilbert damping constants of Fe-Co-Ni and Co-Fe-B alloys with various compositions and half-metallic Co2MnAl Heusler alloy films prepared by magnetron sputtering. The ferromagnetic resonance (FMR) technique was used to determine the damping constants of the prepared films. The out-of-plane angular dependences of the resonance field (HR) and line width (Δ Hpp) of FMR spectra were measured and fitted using the Landau-Lifshitz-Gilbert (LLG) equation. The experimental results fitted well, considering the inhomogeneities of the films in the fitting. The damping constants of the metallic films were much larger than those of bulk ferrimagnetic insulators and were roughly proportional to (g-2)2, where g is the Lande g factor. We discuss the origin of magnetic damping, considering spin-orbit and s-d interactions.

  1. Dependency of anti-ferro-magnetic coupling strength on Ru spacer thickness of [Co/Pd]{sub n}-synthetic-anti-ferro-magnetic layer in perpendicular magnetic-tunnel-junctions fabricated on 12-inch TiN electrode wafer

    SciTech Connect

    Chae, Kyo-Suk; Shim, Tae-Hun; Park, Jea-Gun

    2014-07-21

    We investigated the Ru spacer-thickness effect on the anti-ferro-magnetic coupling strength (J{sub ex}) of a [Co/Pd]{sub n}-synthetic-anti-ferro-magnetic layer fabricated with Co{sub 2}Fe{sub 6}B{sub 2}/MgO based perpendicular-magnetic-tunneling-junction spin-valves on 12-in. TiN electrode wafers. J{sub ex} peaked at a certain Ru spacer-thickness: specifically, a J{sub ex} of 0.78 erg/cm{sup 2} at 0.6 nm, satisfying the J{sub ex} criteria for realizing the mass production of terra-bit-level perpendicular-spin-transfer-torque magnetic-random-access-memory. Otherwise, J{sub ex} rapidly degraded when the Ru spacer-thickness was less than or higher than 0.6 nm. As a result, the allowable Ru thickness variation should be controlled less than 0.12 nm to satisfy the J{sub ex} criteria. However, the Ru spacer-thickness did not influence the tunneling-magneto-resistance (TMR) and resistance-area (RA) of the perpendicular-magnetic-tunneling-junction (p-MTJ) spin-valves since the Ru spacer in the synthetic-anti-ferro-magnetic layer mainly affects the anti-ferro-magnetic coupling efficiency rather than the crystalline linearity of the Co{sub 2}Fe{sub 6}B{sub 2} free layer/MgO tunneling barrier/Co{sub 2}Fe{sub 6}B{sub 2} pinned layer, although Co{sub 2}Fe{sub 6}B{sub 2}/MgO based p-MTJ spin-valves ex-situ annealed at 275 °C achieved a TMR of ∼70% at a RA of ∼20 Ω μm{sup 2}.

  2. Perpendicular magnetic tunnel junctions with a synthetic storage or reference layer: A new route towards Pt- and Pd-free junctions

    PubMed Central

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2016-01-01

    We report here the development of Pt and Pd-free perpendicular magnetic tunnel junctions (p-MTJ) for STT-MRAM applications. We start by studying a p-MTJ consisting of a bottom synthetic Co/Pt reference layer and a synthetic FeCoB/Ru/FeCoB storage layer covered with an MgO layer. We first investigate the evolution of RKKY coupling with Ru spacer thickness in such a storage layer. The coupling becomes antiferromagnetic above 0.5 nm and its strength decreases monotonously with increasing Ru thickness. This contrasts with the behavior of Co-based systems for which a maximum in interlayer coupling is generally observed around 0.8 nm. A thin Ta insertion below the Ru spacer considerably decreases the coupling energy, without basically changing its variation with Ru thickness. After optimization of the non-magnetic and magnetic layer thicknesses, it appears that such a FeCoB/Ru/FeCoB synthetic storage layer sandwiched between MgO barriers can be made stable enough to actually be used as hard reference layer in single or double magnetic tunnel junctions, the storage layer being now a single soft FeCoB layer. Finally, we realize Pt- or Pd-free robust perpendicular magnetic tunnel junctions, still keeping the advantage of a synthetic reference layer in terms of reduction of stray fields at small pillar sizes. PMID:26883933

  3. Perpendicular magnetic tunnel junctions with a synthetic storage or reference layer: A new route towards Pt- and Pd-free junctions.

    PubMed

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C; Prejbeanu, Ioan L; Dieny, Bernard

    2016-01-01

    We report here the development of Pt and Pd-free perpendicular magnetic tunnel junctions (p-MTJ) for STT-MRAM applications. We start by studying a p-MTJ consisting of a bottom synthetic Co/Pt reference layer and a synthetic FeCoB/Ru/FeCoB storage layer covered with an MgO layer. We first investigate the evolution of RKKY coupling with Ru spacer thickness in such a storage layer. The coupling becomes antiferromagnetic above 0.5 nm and its strength decreases monotonously with increasing Ru thickness. This contrasts with the behavior of Co-based systems for which a maximum in interlayer coupling is generally observed around 0.8 nm. A thin Ta insertion below the Ru spacer considerably decreases the coupling energy, without basically changing its variation with Ru thickness. After optimization of the non-magnetic and magnetic layer thicknesses, it appears that such a FeCoB/Ru/FeCoB synthetic storage layer sandwiched between MgO barriers can be made stable enough to actually be used as hard reference layer in single or double magnetic tunnel junctions, the storage layer being now a single soft FeCoB layer. Finally, we realize Pt- or Pd-free robust perpendicular magnetic tunnel junctions, still keeping the advantage of a synthetic reference layer in terms of reduction of stray fields at small pillar sizes. PMID:26883933

  4. Perpendicular magnetic tunnel junctions with a synthetic storage or reference layer: A new route towards Pt- and Pd-free junctions

    NASA Astrophysics Data System (ADS)

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2016-02-01

    We report here the development of Pt and Pd-free perpendicular magnetic tunnel junctions (p-MTJ) for STT-MRAM applications. We start by studying a p-MTJ consisting of a bottom synthetic Co/Pt reference layer and a synthetic FeCoB/Ru/FeCoB storage layer covered with an MgO layer. We first investigate the evolution of RKKY coupling with Ru spacer thickness in such a storage layer. The coupling becomes antiferromagnetic above 0.5 nm and its strength decreases monotonously with increasing Ru thickness. This contrasts with the behavior of Co-based systems for which a maximum in interlayer coupling is generally observed around 0.8 nm. A thin Ta insertion below the Ru spacer considerably decreases the coupling energy, without basically changing its variation with Ru thickness. After optimization of the non-magnetic and magnetic layer thicknesses, it appears that such a FeCoB/Ru/FeCoB synthetic storage layer sandwiched between MgO barriers can be made stable enough to actually be used as hard reference layer in single or double magnetic tunnel junctions, the storage layer being now a single soft FeCoB layer. Finally, we realize Pt- or Pd-free robust perpendicular magnetic tunnel junctions, still keeping the advantage of a synthetic reference layer in terms of reduction of stray fields at small pillar sizes.

  5. Magnetization reversal in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque

    SciTech Connect

    Li, Jia

    2014-10-07

    We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current is present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.

  6. Magnetization reversal in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque

    NASA Astrophysics Data System (ADS)

    Li, Jia

    2014-10-01

    We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current is present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.

  7. Modification of structure and magnetic anisotropy of epitaxial CoFe2O4 films by hydrogen reduction

    NASA Astrophysics Data System (ADS)

    Chen, Aiping; Poudyal, Narayan; Xiong, Jie; Liu, J. Ping; Jia, Quanxi

    2015-03-01

    Heteroepitaxial CoFe2O4 (CFO) thin films with different thicknesses were deposited on MgO (001) substrates. The as-deposited CFO films show a clear switching of magnetic anisotropy with increasing film thickness. The thinner films (<100 nm) show a perpendicular magnetic anisotropy due to the out-of-plane compressive strain. The thicker films exhibit an in-plane easy axis owing to the dominating shape anisotropy effect. The magnetostriction coefficient of CFO films is estimated to be λ[001] = -188 × 10-6. Metallic CoFe2 films were obtained by annealing the as-deposited CFO films in forming gas (Ar 93% + H2 7%) at 450 °C. XRD shows that CoFe2 films are textured out-of-plane and aligned in-plane, owing to lattice matching between CoFe2 and MgO substrate. TEM results indicate that as-deposited films are continuous while the annealed films exhibit a nanopore mushroom structure. The magnetic anisotropy of CoFe2 films is dominated by the shape effect. The results demonstrate that hydrogen reduction can be effectively used to modify microstructures and physical properties of complex metal oxide materials.

  8. BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

    NASA Astrophysics Data System (ADS)

    Swerts, J.; Mertens, S.; Lin, T.; Couet, S.; Tomczak, Y.; Sankaran, K.; Pourtois, G.; Kim, W.; Meersschaut, J.; Souriau, L.; Radisic, D.; Van Elshocht, S.; Kar, G.; Furnemont, A.

    2015-06-01

    Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface of the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm2. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.

  9. BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

    SciTech Connect

    Swerts, J. Mertens, S.; Lin, T.; Couet, S.; Tomczak, Y.; Sankaran, K.; Pourtois, G.; Kim, W.; Meersschaut, J.; Souriau, L.; Radisic, D.; Van Elshocht, S.; Kar, G.; Furnemont, A.

    2015-06-29

    Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface of the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.

  10. Microstructure and magnetic properties of La-Co substituted strontium hexaferrite films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Ebrahimi, S. A. Seyyed; Ong, C. K.

    2013-09-01

    Microstructure and magnetic properties of La-Co substituted strontium hexaferrite films (Sr1-xLaxFe12-xCoxO19) fabricated by pulsed laser deposition on Si(100)/Pt(111) substrate were investigated. The coercivities of the films in perpendicular direction were higher than those in in-plane direction which confirms the perpendicular magnetic anisotropy of the films. Atomic force microscopy images of the films revealed decreasing of the plate-like grains size, from 300 to 110 nm with increasing the La-Co contents. The saturation magnetization increased slightly till x=0.2 and then decreased from x=0.2 to x=0.4. However, the coercivity increased from 2.3 kOe for the SrFe12O19 film to 4.1 kOe for the Sr0.6La0.4Fe11.6Co0.4O19 film, because of the decrease of the grain size and increase of the magnetic anisotropy field.

  11. Quantifying data retention of perpendicular spin-transfer-torque magnetic random access memory chips using an effective thermal stability factor method

    SciTech Connect

    Thomas, Luc Jan, Guenole; Le, Son; Wang, Po-Kang

    2015-04-20

    The thermal stability of perpendicular Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) devices is investigated at chip level. Experimental data are analyzed in the framework of the Néel-Brown model including distributions of the thermal stability factor Δ. We show that in the low error rate regime important for applications, the effect of distributions of Δ can be described by a single quantity, the effective thermal stability factor Δ{sub eff}, which encompasses both the median and the standard deviation of the distributions. Data retention of memory chips can be assessed accurately by measuring Δ{sub eff} as a function of device diameter and temperature. We apply this method to show that 54 nm devices based on our perpendicular STT-MRAM design meet our 10 year data retention target up to 120 °C.

  12. Magnetic and structural properties of Co2FeAl thin films grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Belmeguenai, Mohamed; Tuzcuoglu, Hanife; Gabor, Mihai; Petrisor, Traian; Tiusan, Coriolan; Berling, Dominique; Zighem, Fatih; Mourad Chérif, Salim

    2015-01-01

    The correlation between magnetic and structural properties of Co2FeAl (CFA) thin films of different thicknesses (10 nmfilms. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2.

  13. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  14. Scalable Thick-Film Magnetics: Nano Structured Scalable Thick-Film Magnetics

    SciTech Connect

    2011-01-01

    ADEPT Project: Magnetic components are typically the largest components in a power converter. To date, however, researchers haven't found an effective way to reduce their size without negatively impacting their performance. And, reducing the size of the converter's other components isn't usually an option because shrinking them can also diminish the effectiveness of the magnetic components. GE is developing smaller magnetic components for power converters that maintain high performance levels. The company is building smaller components with magnetic films. These films are created using the condensation of a vaporized form of the magnetic material. It's a purely physical process that involves no chemical reactions, so the film composition is uniform. This process makes it possible to create a millimeter-thick film deposition over a wide surface area fairly quickly, which would save on manufacturing costs. In fact, GE can produce 1-10 millimeter-thick films in hours. The magnetic components that GE is developing for this project could be used in a variety of applications, including solar inverters, electric vehicles, and lighting.

  15. Electrodeposited Co{sub 93.2}P{sub 6.8} nanowire arrays with core-shell microstructure and perpendicular magnetic anisotropy

    SciTech Connect

    Nasirpouri, F.; Peighambari, S. M.; Samardak, A. S. Ognev, A. V.; Sukovatitsina, E. V.; Modin, E. B.; Chebotkevich, L. A.; Komogortsev, S. V.; Bending, S. J.

    2015-05-07

    We demonstrate the formation of an unusual core-shell microstructure in Co{sub 93.2}P{sub 6.8} nanowires electrodeposited by alternating current (ac) in an alumina template. By means of transmission electron microscopy, it is shown that the coaxial-like nanowires contain amorphous and crystalline phases. Analysis of the magnetization data for Co-P alloy nanowires indicates that a ferromagnetic core is surrounded by a weakly ferromagnetic or non-magnetic phase, depending on the phosphor content. The nanowire arrays exhibit an easy axis of magnetization parallel to the wire axis. For this peculiar composition and structure, the coercivity values are 2380 ± 50 and 1260 ± 35 Oe, parallel and perpendicular to the plane directions of magnetization, respectively. This effect is attributed to the core-shell structure making the properties and applications of these nanowires similar to pure cobalt nanowires with an improved perpendicular anisotropy.

  16. Structural and Magnetic Properties of Fe Films Electrodeposited on Al Substrates

    NASA Astrophysics Data System (ADS)

    Mebarki, M.; Layadi, A.; Khelladi, M. R.; Azizi, A.; Tiercelin, N.; Preobrazhensky, V.; Pernod, P.

    2016-07-01

    Series of Fe films have been prepared by electrodeposition in a solution of iron chloride onto Al substrate. Different deposition times were used in the elaboration process. The texture, the strain, and the grain size values were derived from X-ray diffraction experiments. Scanning electron microscopy (SEM) has been used to get the surface and the cross section images. Vibrating Sample magnetometer has been used to obtain the hysteresis curves; the external magnetic field was applied in different directions in the film plane, and also perpendicular to the film. Hysteresis curves have been obtained at low temperatures [120 K (-153 °C) to room temperature]. The <100> texture, small strain, and grain size ranging from 58 to 113 nm are found for these Fe/Al films. All samples show an in-plane magnetic anisotropy, with no preferred orientation within the film plane. Depending on the film thickness range, different mechanisms have been found to be responsible for the coercive field H C behavior. These magnetic properties are correlated with the structural ones and with the SEM observations.

  17. Development of nanostructured, stress-free Co-rich CoPtP films for magnetic microelectromechanical system applications

    NASA Astrophysics Data System (ADS)

    Kulkarni, Santosh; Roy, Saibal

    2007-05-01

    Co-rich CoPtP alloys have been electrodeposited using direct current (dc) and pulse-reverse (PR) plating techniques. The surface morphology, crystalline structure, grain size, and magnetic properties of the plated films have been compared. The x-ray analysis and magnetic measurements reveal the presence of Co hcp hard magnetic phase with c axis perpendicular to the substrate for dc and in plane for PR plated films. The dc plated films have a granular structure in the micron scale with large cracks, which are manifestation of stress in the film. Only by using a combination of optimized PR plating conditions and stress relieving additive, we are able to produce 1-6μm thick (for 1 hour of plating), stress-free, and nanostructured (˜20nm) Co-rich CoPtP single hcp phase at room temperature, with an intrinsic coercivity of 1500Oe.

  18. Magnetic properties of novel epitaxial films

    SciTech Connect

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc ..cap alpha..-Fe and fcc ..gamma..-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk ..cap alpha..-Fe. The controversial ..gamma..-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism.

  19. Magnetic cassette for radiographic film material

    SciTech Connect

    Dallas, D.

    1985-03-26

    A radiographic film cassette having a plurality of magnet components integral with the cassette holder for adhering the cassette to ferrous material in X-raying for defects in welds or fissures in shipyards, pipe lines, or the like. What is provided is a substantially flexible cassette envelope comprising first and second layers of radiographic intensifying screens with a sheet of radiographic film positioned therebetween. The cassette would be a cassette envelope constructed of waterproof fabric or other suitable material providing a light-free environment, and having the ability to flex around the curvature of the surface of a pipe or the like to be x-rayed. There is further provided a plurality of magnet components, preferably situated in each corner of the cassette envelope and flexibly attached thereto for overall adherence of the envelope to the surface of the pipe or the like to be x-rayed during the process.

  20. Effect of nonuniform microstructure on magnetic switching behavior in CoCrPt -SiO2 perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Jung, H. S.; Kuo, M.; Malhotra, S. S.; Bertero, G.

    2008-04-01

    The effect of nonuniform microstructure on magnetic switching behavior for CoCrPt -SiO2 single layer media with oxygen contents (OCs) from 4% to 10% and recording layer thickness (tmag) from 2to27nm is investigated. Plan-view transmission electron microscopy images clearly show nonuniform microstructure of CoCrPt -SiO2 with OC =10% along the film thickness direction: poor grain isolation at a thin layer, excellent grain isolation at a medium layer, and formation of subgrains at a thick layer. The highest coercivity (Hc) is not observed on the medium with the best grain isolation. An initial CoPt layer with less grain isolation forms on top of Ru interlayer with increasing OC in films. It exhibits domain wall switching, resulting in significant incoherent switching. This is consistent with large magnetic activation volume at tmag⩽6nm. Other plausible incoherent switching mechanism for thicker layer media showing low Hc is likely due to formation of subgrains with less grain isolation.