Science.gov

Sample records for perturbed conformal field

  1. Cosmological density perturbations in a conformal scalar field theory

    NASA Astrophysics Data System (ADS)

    Libanov, M. V.; Rubakov, V. A.

    2012-02-01

    We consider a scenario in which primordial scalar perturbations are generated when a complex conformal scalar field rolls down its negative quartic potential. Initially, these are perturbations of the phase of this field, which are then converted into adiabatic perturbations of the density. The existence of perturbations in the radial field direction, which have a red power spectrum, is a potentially dangerous feature of this scenario. But we show that in the linear order in the small parameter, the self-coupling, the infrared effects are completely nullified by an appropriate field redefinition. We evaluate the statistical anisotropy inherent in the model because of the presence of the long-wave perturbations of the radial field component. In the linear order in the self-coupling, the infrared effects do not affect the statistical anisotropy. They are manifested only at the quadratic order in the self-coupling, weakly (logarithmically) enhancing the corresponding contribution to the statistical anisotropy. The resulting statistical anisotropy is a combination of a large term, which decreases as the momentum increases, and a momentum-independent nonamplified term.

  2. Masses of higher spin fields on AdS4 and conformal perturbation theory

    NASA Astrophysics Data System (ADS)

    Hikida, Yasuaki

    2016-07-01

    We study the breaking of gauge symmetry for higher spin theory on AdS4 dual to the 3d critical O (N ) vector model. It was argued that the breaking is due to the change of boundary condition for a scalar field through a loop effect and the Goldstone modes are bound states of a scalar field and higher spin field. The masses of higher spin fields were obtained from the anomalous dimensions of dual currents at the leading order in 1 /N , and we reproduce them from the O (N ) vector model in the conformal perturbation theory. The anomalous dimensions can be computed from the bulk theory using Witten diagrams, and we show that the bulk computation reduces to the boundary one in the conformal perturbation theory. With this fact our computation provides an additional support for the bulk interpretation.

  3. Integrable perturbations of conformal field theories and Yetter-Drinfeld modules

    SciTech Connect

    Bücher, David; Runkel, Ingo

    2014-11-15

    In this paper we relate a problem in representation theory — the study of Yetter-Drinfeld modules over certain braided Hopf algebras — to a problem in two-dimensional quantum field theory, namely, the identification of integrable perturbations of a conformal field theory. A prescription that parallels Lusztig's construction allows one to read off the quantum group governing the integrable symmetry. As an example, we illustrate how the quantum group for the loop algebra of sl(2) appears in the integrable structure of the perturbed uncompactified and compactified free boson.

  4. New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Mikhailov, S. V.

    2012-02-01

    We propose a hypothesis on the detailed structure for the representation of the conformal symmetry breaking term in the basic Crewther relation generalized in the perturbation theory framework in QCD renormalized in the overline {MS} scheme. We establish the validity of this representation in the O(α{/s 4 }) approximation. Using the variant of the generalized Crewther relation formulated here allows finding relations between specific contributions to the QCD perturbation series coefficients for the flavor nonsinglet part of the Adler function D{/A ns } for the electron-positron annihilation in hadrons and to the perturbation series coefficients for the Bjorken sum rule S Bjp for the polarized deep-inelastic lepton-nucleon scattering. We find new relations between the α{/s 4 } coefficients of D{/A ns } and S Bjp . Satisfaction of one of them serves as an additional theoretical verification of the recent computer analytic calculations of the terms of order α{/s 4 } in the expressions for these two quantities.

  5. Fitting of Hadron Mass Spectra and Contributions to Perturbation Theory of Conformal Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Luna Acosta, German Aurelio

    The masses of observed hadrons are fitted according to the kinematic predictions of Conformal Relativity. The hypothesis gives a remarkably good fit. The isospin SU(2) gauge invariant Lagrangian L(,(pi)NN)(x,(lamda)) is used in the calculation of d(sigma)/d(OMEGA) to 2nd-order Feynman graphs for simplified models of (pi)N(--->)(pi)N. The resulting infinite mass sums over the nucleon (Conformal) families are done via the Generalized-Sommerfeld-Watson Transform Theorem. Even though the models are too simple to be realistic, they indicate that if (DELTA)-internal lines were to be included, 2nd-order Feynman graphs may reproduce the experimental data qualitatively. The energy -dependence of the propagator and couplings in Conformal QFT is different from that of ordinary QFT. Suggestions for further work are made in the areas of ultra-violet divergences and OPEC calculations.

  6. Extended conformal field theories

    NASA Astrophysics Data System (ADS)

    Taormina, Anne

    1990-08-01

    Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.

  7. Conformal scalar field wormholes

    NASA Technical Reports Server (NTRS)

    Halliwell, Jonathan J.; Laflamme, Raymond

    1989-01-01

    The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.

  8. Warped conformal field theory

    NASA Astrophysics Data System (ADS)

    Detournay, Stéphane; Hartman, Thomas; Hofman, Diego M.

    2012-12-01

    We study field theories in two spacetime dimensions invariant under a chiral scaling symmetry that acts only on right-movers. The local symmetries include one copy of the Virasoro algebra and a U(1) current algebra. This differs from the two-dimensional conformal group but in some respects is equally powerful in constraining the theory. In particular, the symmetries on a torus lead to modular covariance of the partition function, which is used to derive a universal formula for the asymptotic density of states. For an application we turn to the holographic description of black holes in quantum gravity, motivated by the fact that the symmetries in the near-horizon geometry of any extremal black hole are identical to those of a two-dimensional field theory with chiral scaling. We consider two examples: black holes in warped AdS3 in topologically massive gravity and in string theory. In both cases, the density of states in the two-dimensional field theory reproduces the Bekenstein-Hawking entropy of black holes in the gravity theory.

  9. Logarithmic conformal field theory

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  10. Logarithmic conformal field theory

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  11. Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins

    PubMed Central

    López, Carlos J; Fleissner, Mark R; Guo, Zhefeng; Kusnetzow, Ana K; Hubbell, Wayne L

    2009-01-01

    Recent evidence suggests that proteins at equilibrium can exist in a manifold of conformational substates, and that these substates play important roles in protein function. Therefore, there is great interest in identifying regions in proteins that are in conformational exchange. Electron paramagnetic resonance spectra of spin-labeled proteins containing the nitroxide side chain (R1) often consist of two (or more) components that may arise from slow exchange between conformational substates (lifetimes > 100 ns). However, crystal structures of proteins containing R1 have shown that multicomponent spectra can also arise from equilibria between rotamers of the side chain itself. In this report, it is shown that these scenarios can be distinguished by the response of the system to solvent perturbation with stabilizing osmolytes such as sucrose. Thus, site-directed spin labeling (SDSL) emerges as a new tool to explore slow conformational exchange in proteins of arbitrary size, including membrane proteins in a native-like environment. Moreover, equilibrium between substates with even modest differences in conformation is revealed, and the simplicity of the method makes it suitable for facile screening of multiple proteins. Together with previously developed strategies for monitoring picosecond to millisecond backbone dynamics, the results presented here expand the timescale over which SDSL can be used to explore protein flexibility. PMID:19585559

  12. Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins.

    PubMed

    López, Carlos J; Fleissner, Mark R; Guo, Zhefeng; Kusnetzow, Ana K; Hubbell, Wayne L

    2009-08-01

    Recent evidence suggests that proteins at equilibrium can exist in a manifold of conformational substates, and that these substates play important roles in protein function. Therefore, there is great interest in identifying regions in proteins that are in conformational exchange. Electron paramagnetic resonance spectra of spin-labeled proteins containing the nitroxide side chain (R1) often consist of two (or more) components that may arise from slow exchange between conformational substates (lifetimes > 100 ns). However, crystal structures of proteins containing R1 have shown that multicomponent spectra can also arise from equilibria between rotamers of the side chain itself. In this report, it is shown that these scenarios can be distinguished by the response of the system to solvent perturbation with stabilizing osmolytes such as sucrose. Thus, site-directed spin labeling (SDSL) emerges as a new tool to explore slow conformational exchange in proteins of arbitrary size, including membrane proteins in a native-like environment. Moreover, equilibrium between substates with even modest differences in conformation is revealed, and the simplicity of the method makes it suitable for facile screening of multiple proteins. Together with previously developed strategies for monitoring picosecond to millisecond backbone dynamics, the results presented here expand the timescale over which SDSL can be used to explore protein flexibility. PMID:19585559

  13. Conformational Analysis on structural perturbations of the zinc finger NEMO

    NASA Astrophysics Data System (ADS)

    Godwin, Ryan; Salsbury, Freddie; Salsbury Group Team

    2014-03-01

    The NEMO (NF-kB Essential Modulator) Zinc Finger protein (2jvx) is a functional Ubiquitin-binding domain, and plays a role in signaling pathways for immune/inflammatory responses, apoptosis, and oncogenesis [Cordier et al., 2008]. Characterized by 3 cysteines and 1 histidine residue at the active site, the biologically occurring, bound zinc configuration is a stable structural motif. Perturbations of the zinc binding residues suggest conformational changes in the 423-atom protein characterized via analysis of all-atom molecular dynamics simulations. Structural perturbations include simulations with and without a zinc ion and with and without de-protonated cysteines, resulting in four distinct configurations. Simulations of various time scales show consistent results, yet the longest, GPU driven, microsecond runs show more drastic structural and dynamic fluctuations when compared to shorter duration time-scales. The last cysteine residue (26 of 28) and the helix on which it resides exhibit a secondary, locally unfolded conformation in addition to its normal bound conformation. Combined analytics elucidate how the presence of zinc and/or protonated cysteines impact the dynamics and energetic fluctuations of NEMO. Comprehensive Cancer Center of Wake Forest University Computational Biosciences shared resource supported by NCI CCSG P30CA012197.

  14. Statistical anisotropy of the curvature perturbation from vector field perturbations

    SciTech Connect

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co

    2009-05-15

    The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.

  15. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  16. Non-Perturbative Field Theories.

    NASA Astrophysics Data System (ADS)

    Stephenson, David

    Available from UMI in association with The British Library. Requires signed TDF. Some non-perturbative aspects of field theories are studied by applying lattice gauge theory techniques. The low-lying hadronic mass spectrum is calculated numerically using quenched lattice quantum chromodynamics. The results of large numerical simulations performed on a distributed array processor are presented and analysed. Particular emphasis is stressed upon the understanding of systematic and statistical errors in the calculation. In addition, the pion decay constant and the chiral condensate are evaluated. An attempt is made to relate the numerical findings to the experimentally measured quantities. A pioneering attempt to understand Yukawa couplings is discussed. A toy Fermion-Higgs system is studied numerically on a transputer array. Dynamical fermions are included in the investigation of the behavior of the system over a wide range of Yukawa couplings. A phase diagram is found for the model which shows evidence of spontaneous chiral symmetry breaking transitions. Extensions of the model are discussed together some speculations concerning the behaviour of Yukawa couplings in general. The possibility of using the lattice as a model for space-time is investigated by studying the propagation of particles on a fractal lattice. In addition, the use of truncated fractals as novel regulators is studied numerically in the hope that the problem of fermion doubling will be alleviated.

  17. Quantum field perturbation theory revisited

    NASA Astrophysics Data System (ADS)

    Matone, Marco

    2016-03-01

    Schwinger's formalism in quantum field theory can be easily implemented in the case of scalar theories in D dimension with exponential interactions, such as μDexp (α ϕ ). In particular, we use the relation exp (α δ/δ J (x ) )exp (-Z0[J ])=exp (-Z0[J +αx]) with J the external source, and αx(y )=α δ (y -x ). Such a shift is strictly related to the normal ordering of exp (α ϕ ) and to a scaling relation which follows by renormalizing μ . Next, we derive a new formulation of perturbation theory for the potentials V (ϕ )=λ/n ! :ϕn: , using the generating functional associated to :exp (α ϕ ):. The Δ (0 )-terms related to the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on scalar theories, but the method is general and similar investigations extend to other theories.

  18. Inflation and deformation of conformal field theory

    SciTech Connect

    Garriga, Jaume; Urakawa, Yuko E-mail: yurakawa@ffn.ub.es

    2013-07-01

    It has recently been suggested that a strongly coupled phase of inflation may be described holographically in terms of a weakly coupled quantum field theory (QFT). Here, we explore the possibility that the wave function of an inflationary universe may be given by the partition function of a boundary QFT. We consider the case when the field theory is a small deformation of a conformal field theory (CFT), by the addition of a relevant operator O, and calculate the primordial spectrum predicted in the corresponding holographic inflation scenario. Using the Ward-Takahashi identity associated with Weyl rescalings, we derive a simple relation between correlators of the curvature perturbation ζ and correlators of the deformation operator O at the boundary. This is done without specifying the bulk theory of gravitation, so that the result would also apply to cases where the bulk dynamics is strongly coupled. We comment on the validity of the Suyama-Yamaguchi inequality, relating the bi-spectrum and tri-spectrum of the curvature perturbation.

  19. A hydrodynamic approach to non-equilibrium conformal field theories

    NASA Astrophysics Data System (ADS)

    Bernard, Denis; Doyon, Benjamin

    2016-03-01

    We develop a hydrodynamic approach to non-equilibrium conformal field theory. We study non-equilibrium steady states in the context of one-dimensional conformal field theory perturbed by the T\\bar{T} irrelevant operator. By direct quantum computation, we show, to first order in the coupling, that a relativistic hydrodynamic emerges, which is a simple modification of one-dimensional conformal fluids. We show that it describes the steady state and its approach, and we provide the main characteristics of the steady state, which lies between two shock waves. The velocities of these shocks are modified by the perturbation and equal the sound velocities of the asymptotic baths. Pushing this approach further, we are led to conjecture that the approach to the steady state is generically controlled by the power law t -1/2, and that the widths of the shocks increase with time according to t 1/3.

  20. Logarithmic operators and logarithmic conformal field theories

    NASA Astrophysics Data System (ADS)

    Gurarie, Victor

    2013-12-01

    Logarithmic operators and logarithmic conformal field theories are reviewed. Prominent examples considered here include c = -2 and c = 0 logarithmic conformal field theories. c = 0 logarithmic conformal field theories are especially interesting since they describe some of the critical points of a variety of longstanding problems involving a two dimensional quantum particle moving in a spatially random potential, as well as critical two dimensional self-avoiding random walks and percolation. Lack of classification of logarithmic conformal field theories remains a major impediment to progress towards finding complete solutions to these problems.

  1. Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method.

    PubMed

    Reck, Kasper; Thomsen, Erik V; Hansen, Ole

    2011-01-31

    The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution. PMID:21368995

  2. Holographic de Sitter Geometry from Entanglement in Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Heller, Michal P.; Myers, Robert C.; Neiman, Yasha

    2016-02-01

    We demonstrate that, for general conformal field theories (CFTs), the entanglement for small perturbations of the vacuum is organized in a novel holographic way. For spherical entangling regions in a constant time slice, perturbations in the entanglement entropy are solutions of a Klein-Gordon equation in an auxiliary de Sitter (dS) spacetime. The role of the emergent timelike direction in dS spacetime is played by the size of the entangling sphere. For CFTs with extra conserved charges, e.g., higher-spin charges, we show that each charge gives rise to a separate dynamical scalar field in dS spacetime.

  3. Vertex operator algebras and conformal field theory

    SciTech Connect

    Huang, Y.Z. )

    1992-04-20

    This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics.

  4. Non Perturbative Aspects of Field Theory

    SciTech Connect

    Bashir, A.

    2009-04-20

    For any quantum field theory (QFT), there exists a set of Schwinger-Dyson equations (SDE) for all its Green functions. However, it is not always straight forward to extract quantitatively exact physical information from this set of equations, especially in the non perturbative regime. The situation becomes increasingly complex with growing number of external legs. I give a qualitative account of the hunt for the non perturbative Green functions in gauge theories.

  5. Defects in conformal field theory

    NASA Astrophysics Data System (ADS)

    Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco

    2016-04-01

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  6. Perturbations of single-field inflation in modified gravity theory

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao; Xia, Jun-Qing

    2015-05-01

    In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f (R). Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure f (R) theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.

  7. Perturbative renormalization of the electric field correlator

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Laine, M.

    2016-04-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ∼ 12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  8. Perturbative double field theory on general backgrounds

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Marques, Diego

    2016-01-01

    We develop the perturbation theory of double field theory around arbitrary solutions of its field equations. The exact gauge transformations are written in a manifestly background covariant way and contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant form. As a first application we specialize this theory to group manifold backgrounds, such as S U (2 )≃S3 with H -flux. In the full string theory this corresponds to a Wess-Zumino-Witten background CFT. Starting from closed string field theory, the cubic action around such backgrounds has been computed before by Blumenhagen, Hassler, and Lüst. We establish precise agreement with the cubic action derived from double field theory. This result confirms that double field theory is applicable to arbitrary curved background solutions, disproving assertions in the literature to the contrary.

  9. An introduction to conformal field theory

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias R.

    2000-04-01

    A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories.

  10. Entanglement entropy of excited states in conformal perturbation theory and the Einstein equation

    NASA Astrophysics Data System (ADS)

    Speranza, Antony J.

    2016-04-01

    For a conformal field theory (CFT) deformed by a relevant operator, the entanglement entropy of a ball-shaped region may be computed as a perturbative expansion in the coupling. A similar perturbative expansion exists for excited states near the vacuum. Using these expansions, this work investigates the behavior of excited state entanglement entropies of small, ball-shaped regions. The motivation for these calculations is Jacobson's recent work on the equivalence of the Einstein equation and the hypothesis of maximal vacuum entropy [arXiv:1505.04753], which relies on a conjecture stating that the behavior of these entropies is sufficiently similar to a CFT. In addition to the expected type of terms which scale with the ball radius as R d , the entanglement entropy calculation gives rise to terms scaling as R 2Δ, where Δ is the dimension of the deforming operator. When \\varDelta ≤ d/2 , the latter terms dominate the former, and suggest that a modification to the conjecture is needed.

  11. CFT driven cosmology and conformal higher spin fields

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.

    2016-05-01

    Conformal higher spin (CHS) field theory, which is a solid part of recent advanced checks of AdS/CFT correspondence, finds applications in cosmology. The hidden sector of weakly interacting CHS fields suggests a resolution of the hierarchy problem in the model of initial conditions for inflationary cosmology driven by a conformal field theory. These initial conditions are set by thermal garland-type cosmological instantons in the sub-Planckian energy range for the model of CHS fields with a large positive coefficient β of the Gauss-Bonnet term in their total conformal anomaly and a large number of their polarizations N . The upper bound of this range MP/√{β } is shown to be much lower than the gravitational cutoff MP/√{N } which is defined by the requirement of smallness of the perturbatively nonrenormalizable graviton loop contributions. In this way we justify the approximation scheme in which the nonrenormalizable graviton sector is subject to effective field theory under this cutoff, whereas the renormalizable sector of multiple CHS fields is treated beyond perturbation theory and dynamically generates the bound on the inflation scale of the CFT cosmology MP/√{β }≪MP/√{N }. This confirms recent predictions for the origin of the Starobinsky R2 and Higgs inflation models from the CHS cosmology, which occurs at the energy scale 3 or 4 orders of magnitude below the gravitational cutoff, √{N /β }˜10-3- 10-4 . We also consider cosmological models dominated by fermionic CHS fields with a negative β and anomaly free models of infinite towers of CHS fields with β =0 and briefly discuss the status of unitarity in CHS models.

  12. Causality constraints in conformal field theory

    NASA Astrophysics Data System (ADS)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan

    2016-05-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ ϕ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  13. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  14. Parallel magnetic field perturbations in gyrokinetic simulations

    SciTech Connect

    Joiner, N.; Hirose, A.; Dorland, W.

    2010-07-15

    At low beta it is common to neglect parallel magnetic field perturbations on the basis that they are of order beta{sup 2}. This is only true if effects of order beta are canceled by a term in the nablaB drift also of order beta[H. L. Berk and R. R. Dominguez, J. Plasma Phys. 18, 31 (1977)]. To our knowledge this has not been rigorously tested with modern gyrokinetic codes. In this work we use the gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)] to investigate whether the compressional magnetic field perturbation B{sub ||} is required for accurate gyrokinetic simulations at low beta for microinstabilities commonly found in tokamaks. The kinetic ballooning mode (KBM) demonstrates the principle described by Berk and Dominguez strongly, as does the trapped electron mode, in a less dramatic way. The ion and electron temperature gradient (ETG) driven modes do not typically exhibit this behavior; the effects of B{sub ||} are found to depend on the pressure gradients. The terms which are seen to cancel at long wavelength in KBM calculations can be cumulative in the ion temperature gradient case and increase with eta{sub e}. The effect of B{sub ||} on the ETG instability is shown to depend on the normalized pressure gradient beta{sup '} at constant beta.

  15. Conformers of CL-20 explosive and ab initio refinement using perturbation theory: implications to detonation mechanisms.

    PubMed

    Molt, Robert W; Bartlett, Rodney J; Watson, Thomas; Bazanté, Alexandre P

    2012-12-13

    We have identified the major conformers of CL-20 explosive, otherwise known as 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane, more formally known as 2,4,6,8,10,12-hexanitrohexaazatetracyclo[5.5.0.0]-dodecane, via Monte Carlo search in conformational space through molecular mechanics and subsequent quantum mechanical refinement using perturbation theory. Our search produced enough conformers to account for all of the various forms of CL-20 found in crystals. This suggests that our methodology will be useful in studying the conformational landscape of other nitramines. The energy levels of the conformers found are all within 0.25 eV of one another based on MBPT(2)/6-311G(d,p); consequently, without further refinement from a method such as coupled cluster theory, all conformers may reasonably be populated at STP in the gas phase. We also report the harmonic vibrational frequencies of conformers, including the implications on the mechanism of detonation. In particular, we establish that the weakest N-N nitramine of CL-20 is the cyclohexane equatorial nitramine. This preliminary mapping of the conformers of CL-20 makes it possible to study the mechanism of detonation of this explosive rigorously in future work. PMID:23136867

  16. Multiloop calculations in perturbative quantum field theory

    NASA Astrophysics Data System (ADS)

    Blokland, Ian Richard

    This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for problems in a field of particle physics with a very rich history. The third calculation provides an improved prediction for the decay of a top quark. In order to obtain this result, a large class of multiloop integrals has been solved for the first time. Top quark decay is just one member of a family of interesting physical processes to which these new results apply. Since specialized calculational techniques are essential ingredients in all three calculations, they are motivated and explained carefully in this thesis. These techniques, once automated with symbolic computational software, have recently opened avenues of solution to a wide variety of important problems in particle physics.

  17. Conformal field theory of critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Emig, Thorsten; Bimonte, Giuseppe; Kardar, Mehran

    2015-03-01

    Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional conformal field theories (CFT) we derive exact results for the Casimir interaction for a deformed strip and for two compact objects of arbitrary shape in terms of the free energy of a standard region (circular ring or flat strip) whose dimension is determined by the mutual capacitance of two conductors with the objects' shape; and a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details. The effect of inhomogenous boundary conditions is also discussed.

  18. Adiabatic and isocurvature perturbation projections in multi-field inflation

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Saffin, Paul M.

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  19. Relativistic Lagrangian displacement field and tensor perturbations

    NASA Astrophysics Data System (ADS)

    Rampf, Cornelius; Wiegand, Alexander

    2014-12-01

    We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the basic Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully nonperturbative approach based on the Arnowitt-Deser-Misner (ADM) split. The latter approach shows that this decomposition is not tied to a specific perturbative formulation for the solution of the Einstein equations. Rather, it can be defined at the level of the nonperturbative coordinate change from the Lagrangian to the Eulerian description. Studying such different techniques is useful because it allows us to compare and develop further the various approximation techniques available in the Lagrangian formulation. We find that one has to solve the gravitational wave equation in the relativistic analysis, otherwise the corresponding Newtonian limit will necessarily contain spurious nonpropagating tensor artifacts at second order in the Eulerian frame. We also derive the magnetic part of the Weyl tensor in the Lagrangian frame, and find that it is not only excited by gravitational waves but also by tensor perturbations which are induced through the nonlinear frame dragging. We apply our findings to calculate for the first time the relativistic displacement field, up to second order, for a Λ CDM Universe in the presence of a local primordial non-Gaussian component. Finally, we also comment on recent claims about whether mass conservation in the Lagrangian frame is violated.

  20. Non-linear realizations of conformal symmetry and effective field theory for the pseudo-conformal universe

    SciTech Connect

    Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin E-mail: joyceau@sas.upenn.edu

    2012-06-01

    The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. The scenario is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics. In this paper, we apply the well-known coset technique to derive the most general effective lagrangian describing the Goldstone field and matter fields, consistent with the assumed symmetries. The resulting action captures the low energy dynamics of any pseudo-conformal realization, including the U(1)-invariant quartic model and the Galilean Genesis scenario. We also derive this lagrangian using an alternative method of curvature invariants, consisting of writing down geometric scalars in terms of the conformal mode. Using this general effective action, we compute the two-point function for the Goldstone and a fiducial weight-0 field, as well as some sample three-point functions involving these fields.

  1. Logarithmic conformal field theory: beyond an introduction

    NASA Astrophysics Data System (ADS)

    Creutzig, Thomas; Ridout, David

    2013-12-01

    This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model \\mathfrak {M} (1,2), related to the triplet model \\mathfrak {W} (1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess-Zumino-Witten model based on \\widehat{\\mathfrak {sl}} \\left( 2 \\right) at k=-\\frac{1}{2}, related to the bosonic βγ ghost system; and the Wess-Zumino-Witten model for the Lie supergroup \\mathsf {GL} \\left( 1 {\\mid} 1 \\right), related to \\mathsf {SL} \\left( 2 {\\mid} 1 \\right) at k=-\\frac{1}{2} and 1, the Bershadsky-Polyakov algebra W_3^{(2)} and the Feigin-Semikhatov algebras W_n^{(2)}. These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models \\mathfrak {W} (q,p), the fractional level Wess-Zumino-Witten models, and the Wess-Zumino-Witten models on Lie supergroups (excluding \\mathsf {OSP} \\left( 1 {\\mid} 2n \\right)). In this review, the emphasis lies on the representation theory

  2. Scale invariance, conformality, and generalized free fields

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina

    2016-02-01

    This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.

  3. Shape dependence of entanglement entropy in conformal field theories

    NASA Astrophysics Data System (ADS)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar

    2016-04-01

    We study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on R^{1,d-1} . We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, and proportional to the coefficient C T appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient σ /C_T=π^2/24 in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.

  4. Marginally Relevant Topics in Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin Francis

    We consider a set of topics in conformal field theory. We provide an example of a 4D theory that exhibits the Contino-Pomarol-Rattazzi mechanism, where breaking conformal symmetry by an almost marginal operator leads to a light pseudo-Goldstone boson, the dilaton, and a parametrically suppressed contribution to vacuum energy. We consider SUSY QCD at the edge of the conformal window and break conformal symmetry by weakly gauging a subgroup of the flavor symmetry. Using Seiberg duality we show that for a range of parameters the singlet meson in the dual theory reaches the unitarity bound, however, this theory does not have a stable vacuum. We stabilize the vacuum with soft breaking terms, compute the mass of the dilaton, and determine the range of parameters where the leading contribution to the dilaton mass is from the almost marginal coupling. We also weigh in on a widely held belief that increasing bounds on the gluino mass, which feeds down to the stop mass through renormalization group running, are making a light stop increasingly unlikely. Here we present a counter-example. We examine the case of the Minimal Composite Supersymmetric Standard Model which has a light composite stop. The large anomalous dimension of the stop from strong dynamics pushes the stop mass toward a quasi-fixed point in the infrared, which is smaller than standard estimates by a factor of a large logarithm. The gluino can be about three times heavier than the stop, which is comparable to hierarchy achieved with supersoft Dirac gluino masses. Thus, in this class of models, a heavy gluino is not necessarily indicative of a heavy stop.

  5. Entanglement entropy in warped conformal field theories

    NASA Astrophysics Data System (ADS)

    Castro, Alejandra; Hofman, Diego M.; Iqbal, Nabil

    2016-02-01

    We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL (2, ℝ) × U (1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.

  6. Dual of the Janus solution: An interface conformal field theory

    NASA Astrophysics Data System (ADS)

    Clark, A. B.; Freedman, D. Z.; Karch, A.; Schnabl, M.

    2005-03-01

    We propose and study a specific gauge theory dual of the smooth, nonsupersymmetric (and apparently stable) Janus solution of Type IIB supergravity found in Bak et al. [J. High Energy Phys., JHEPFG, 1029-8479 05 (2003) 072]. The dual field theory is N=4 SYM theory on two half-spaces separated by a planar interface with different coupling constants in each half-space. We assume that the position dependent coupling multiplies the operator L' which is the fourth descendent of the primary TrX{IXJ} and closely related to the N=4 Lagrangian density. At the classical level supersymmetry is broken explicitly, but SO(3,2) conformal symmetry is preserved. We use conformal perturbation theory to study various correlation functions to first and second order in the discontinuity of g2YM, confirming quantum level conformal symmetry. Certain quantities such as the vacuum expectation value are protected to all orders in g2YMN, and we find perfect agreement between the weak coupling value in the gauge theory and the strong coupling gravity result. SO(3,2) symmetry requires vanishing vacuum energy, =0, and this is confirmed in first order in the discontinuity.

  7. Transformations among large c conformal field theories

    NASA Astrophysics Data System (ADS)

    Jankiewicz, Marcin; Kephart, Thomas W.

    2006-06-01

    We show that there is a set of transformations that relates all of the 24 dimensional even self-dual (Niemeier) lattices, and also leads to non-lattice objects some of which can perhaps be interpreted as a basis for the construction of holomorphic conformal field theory. In the second part of this paper, we extend our observations to higher-dimensional conformal field theories build on extremal partition functions, where we generate c=24k theories. We argue that there exists generalizations of the c=24 models based on Niemeier lattices and of the non-Niemeier spin-1 theories. The extremal cases have spectra decomposable into the irreducible representations of the Fischer-Griess Monster. This additional symmetry leads us to conjecture that these extremal theories, as well as the higher-dimensional analogs of the group lattice bases Niemeiers, will eventually yield to a full construction of their associated CFTs. We observe interesting periodicities in the coefficients of extremal partition functions and characters of the extremal vertex operator algebras.

  8. Introduction to string theory and conformal field theory

    SciTech Connect

    Belavin, A. A. Tarnopolsky, G. M.

    2010-05-15

    A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.

  9. Near horizon extremal geometry perturbations: dynamical field perturbations vs. parametric variations

    NASA Astrophysics Data System (ADS)

    Hajian, K.; Seraj, A.; Sheikh-Jabbari, M. M.

    2014-10-01

    In [1] we formulated and derived the three universal laws governing Near Horizon Extremal Geometries (NHEG). In this work we focus on the Entropy Perturbation Law (EPL) which, similarly to the first law of black hole thermodynamics, relates perturbations of the charges labeling perturbations around a given NHEG to the corresponding entropy perturbation. We show that field perturbations governed by the linearized equations of motion and symmetry conditions which we carefully specify, satisfy the EPL. We also show that these perturbations are limited to those coming from difference of two NHEG solutions (i.e. variations on the NHEG solution parameter space). Our analysis and discussions shed light on the "no-dynamics" statements of [2, 3].

  10. R{sup 2}-inflation with conformal SM Higgs field

    SciTech Connect

    Gorbunov, Dmitry; Tokareva, Anna E-mail: tokareva@ms2.inr.ac.ru

    2013-12-01

    We introduce conformal coupling of the Standard Model Higgs field to gravity and discuss the subsequent modification of R{sup 2}-inflation. The main observation is a lower temperature of reheating which happens mostly through scalaron decays into gluons due to the conformal (trace) anomaly. This modifies all predictions of the original R{sup 2}-inflation. To the next-to-leading order in slow roll parameters we calculate amplitudes and indices of scalar and tensor perturbations produced at inflation. The results are compared to the next-to-leading order predictions of R{sup 2}-inflation with minimally coupled Higgs field and of Higgs-inflation. We discuss additional features in gravity wave signal that may help to distinguish the proposed variant of R{sup 2}-inflation. Remarkably, the features are expected in the region available for study at future experiments like BBO and DECIGO. Finally, we check that (meta)stability of electroweak vacuum in the cosmological model is consistent with recent results of searches for the Higgs boson at LHC.

  11. Plasma-satellite interaction driven magnetic field perturbations

    SciTech Connect

    Saeed-ur-Rehman; Marchand, Richard

    2014-09-15

    We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.

  12. Conformal perturbation of off-critical correlators in the 3D Ising universality class

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Costagliola, G.; Magnoli, N.

    2016-07-01

    Thanks to the impressive progress of conformal bootstrap methods we have now very precise estimates of both scaling dimensions and operator product expansion coefficients for several 3D universality classes. We show how to use this information to obtain similarly precise estimates for off-critical correlators using conformal perturbation. We discuss in particular the ⟨σ (r )σ (0 )⟩ , ⟨ɛ (r )ɛ (0 )⟩ and ⟨σ (r )ɛ (0 )⟩ two-point functions in the high and low temperature regimes of the 3D Ising model and evaluate the leading and next to leading terms in the s =trΔt expansion, where t is the reduced temperature. Our results for ⟨σ (r )σ (0 )⟩ agree both with Monte Carlo simulations and with a set of experimental estimates of the critical scattering function.

  13. Relative entropies in conformal field theory.

    PubMed

    Lashkari, Nima

    2014-08-01

    Relative entropy is a measure of distinguishability for quantum states, and it plays a central role in quantum information theory. The family of Renyi entropies generalizes to Renyi relative entropies that include, as special cases, most entropy measures used in quantum information theory. We construct a Euclidean path-integral approach to Renyi relative entropies in conformal field theory, then compute the fidelity and the relative entropy of states in one spatial dimension at zero and finite temperature using a replica trick. In contrast to the entanglement entropy, the relative entropy is free of ultraviolet divergences, and is obtained as a limit of certain correlation functions. The relative entropy of two states provides an upper bound on their trace distance. PMID:25126908

  14. Suppression of edge-localized modes by magnetic field perturbations

    SciTech Connect

    Kleva, Robert G.; Guzdar, Parvez N.

    2010-11-15

    Transport bursts in simulations of edge-localized modes (ELMs) in tokamaks are suppressed by the application of magnetic field perturbations. The amplitude of the applied magnetic field perturbations is characterized by a stochasticity parameter S. When S>1, magnetic flux surfaces are destroyed and the magnetic field lines diffuse in minor radius. As S increases in the simulations, the magnitude of the ELM bursts decreases. The size of bursts is reduced to a very small value while S is still less than unity and most of the magnetic flux surfaces are still preserved. Magnetic field line stochasticity is not a requirement for the stabilization of ELMs by the magnetic field perturbations. The magnetic field perturbations act by suppressing the growth of the resistive ballooning instability that underlies the ELM bursts.

  15. On conformal field theories with extremal values

    NASA Astrophysics Data System (ADS)

    Zhiboedov, Alexander

    2014-04-01

    Unitary conformal field theories (CFTs) are believed to have positive (non-negative) energy correlators. Energy correlators are universal observables in higher-dimensional CFTs built out of integrated Wightman functions of the stress-energy tensor. We analyze energy correlators in parity invariant four-dimensional CFTs. The goal is to use the positivity of energy correlators to further constrain unitary CFTs. It is known that the positivity of the simplest one-point energy correlator implies that where a and c are the Weyl anomaly coefficients. We use the positivity of higher point energy correlators to show that CFTs with extremal values of have trivial scattering observables. More precisely, for and all energy correlators are fixed to be the ones of the free boson and the free vector theory correspondingly. Similarly, we show that the positivity and finiteness of energy correlators together imply that the three-point function of the stress tensor in a CFT cannot be proportional to the one in the theory of free boson, free fermion or free vector field.

  16. Perturbative analysis of multiple-field cosmological inflation

    SciTech Connect

    Lahiri, Joydev . E-mail: gautam@theory.saha.ernet.in

    2006-04-15

    We develop a general formalism for analyzing linear perturbations in multiple-field cosmological inflation based on the gauge-ready approach. Our inflationary model consists of an arbitrary number of scalar fields with non-minimal kinetic terms. We solve the equations for scalar- and tensor-type perturbations during inflation to the first order in slow roll, and then obtain the super-horizon solutions for adiabatic and isocurvature perturbations after inflation. Analytic expressions for power-spectra and spectral indices arising from multiple-field inflation are presented.

  17. Logarithmic conformal field theory: a lattice approach

    NASA Astrophysics Data System (ADS)

    Gainutdinov, A. M.; Jacobsen, J. L.; Read, N.; Saleur, H.; Vasseur, R.

    2013-12-01

    Logarithmic conformal field theories (LCFT) play a key role, for instance, in the description of critical geometrical problems (percolation, self-avoiding walks, etc), or of critical points in several classes of disordered systems (transition between plateaux in the integer and spin quantum Hall effects). Much progress in their understanding has been obtained by studying algebraic features of their lattice regularizations. For reasons which are not entirely understood, the non-semi-simple associative algebras underlying these lattice models—such as the Temperley-Lieb algebra or the blob algebra—indeed exhibit, in finite size, properties that are in full correspondence with those of their continuum limits. This applies not only to the structure of indecomposable modules, but also to fusion rules, and provides an ‘experimental’ way of measuring couplings, such as the ‘number b’ quantifying the logarithmic coupling of the stress-energy tensor with its partner. Most results obtained so far have concerned boundary LCFTs and the associated indecomposability in the chiral sector. While the bulk case is considerably more involved (mixing in general left and right moving sectors), progress has also recently been made in this direction, uncovering fascinating structures. This study provides a short general review of our work in this area.

  18. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy.

    PubMed

    Davydov, Dmitri R; Yang, Zhongyu; Davydova, Nadezhda; Halpert, James R; Hubbell, Wayne L

    2016-04-12

    We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes. PMID:27074675

  19. Central charge bounds in 4D conformal field theory

    SciTech Connect

    Rattazzi, Riccardo; Vichi, Alessandro; Rychkov, Slava

    2011-02-15

    We derive model-independent lower bounds on the stress tensor central charge C{sub T} in terms of the operator content of a 4-dimensional conformal field theory. More precisely, C{sub T} is bounded from below by a universal function of the dimensions of the lowest and second-lowest scalars present in the conformal field theory. The method uses the crossing symmetry constraint of the 4-point function, analyzed by means of the conformal block decomposition.

  20. Scalar field conformally coupled to a charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Valtancoli, P.

    2016-06-01

    We study the Klein-Gordon equation of a scalar field conformally coupled to a charged BTZ black hole. The background metric is obtained by coupling a non-linear and conformal invariant Maxwell field to (2 + 1) gravity. We show that the radial part is generally solved by a Heun function and, in the pure gravity limit, by a hypergeometric function.

  1. Conformal field theories, representations and lattice constructions

    NASA Astrophysics Data System (ADS)

    Dolan, L.; Goddard, P.; Montague, P.

    1996-07-01

    An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z 2-twisted theories, ℋ( Λ) andtilde H(Λ ) respectively, which may be constructed from a suitable even Euclidean lattice Λ. Similarly, one may construct latticesΛ _C andtilde Λ _C by analogous constructions from a doubly-even binary codeC. In the case whenC is self-dual, the corresponding lattices are also. Similarly, ℋ( Λ) andtilde H(Λ ) are self-dual if and only if Λ is. We show thatH(Λ _C ) has a natural “triality” structure, which induces an isomorphismH(tilde Λ _C ) ≡tilde H(Λ _C ) and also a triality structure ontilde H(tilde Λ _C ). ForC the Golay code,tilde Λ _C is the Leech lattice, and the triality ontilde H(tilde Λ _C ) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories ℋ( Λ) andtilde H(Λ ) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.

  2. Finite field-dependent symmetries in perturbative quantum gravity

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2014-01-01

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci-Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin-Vilkovisky (BV) formulation.

  3. Perturbations of matter fields in the second-order gauge-invariant cosmological perturbation theory

    NASA Astrophysics Data System (ADS)

    Nakamura, Kouji

    2009-12-01

    To show that the general framework of the second-order gauge-invariant perturbation theory developed by K. Nakamura [Prog. Theor. Phys. 110, 723 (2003)PTPKAV0033-068X10.1143/PTP.110.723; Prog. Theor. Phys. 113, 481 (2005)PTPKAV0033-068X10.1143/PTP.113.481] is applicable to a wide class of cosmological situations, some formulas for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four-dimensional homogeneous isotropic universe, which is developed in Prog. Theor. Phys. 117, 17 (2007)PTPKAV0033-068X10.1143/PTP.117.17. We derive the formulas for the perturbations of the energy-momentum tensors and equations of motion for a perfect fluid, an imperfect fluid, and a single scalar field, and show that all equations are derived in terms of gauge-invariant variables without any gauge fixing. Through these formulas, we may say that the decomposition formulas for the perturbations of any tensor field into gauge-invariant and gauge-variant parts, which are proposed in the above papers, are universal.

  4. Carbon nanotube bundles under electric field perturbations

    NASA Astrophysics Data System (ADS)

    Hammes, I.; Latgé, A.

    2012-03-01

    Here we address the important role played by electric fields applied in carbon nanotube bundles in providing convenient scenarios for their use in electronic devices. We show that a gap modulation may be derived depending on the bundle configuration and the details of the applied field configuration. The system is described by a tight binding Hamiltonian and the Green function formalism is used to calculate the local density of states. Small bundles were used to validate our model on the basis of ab initio calculations. Further analysis shows that the number of tubes, geometrical configuration details and field intensities may be controlled to tune the electronic structure close to the Fermi energy, envisaging atomic-scale devices.

  5. Perturbations of the Richardson number field by gravity waves

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Sharman, R. D.

    1985-01-01

    An analytic solution is presented for a stratified fluid of arbitrary constant Richardson number. By computer aided analysis the perturbation fields, including that of the Richardson number can be calculated. The results of the linear analytic model were compared with nonlinear simulations, leading to the following conclusions: (1) the perturbations in the Richardson number field, when small, are produced primarily by the perturbations of the shear; (2) perturbations of in the Richardson number field, even when small, are not symmetric, the increase being significantly larger than the decrease (the linear analytic solution and the nonlinear simulations both confirm this result); (3) as the perturbations grow, this asymmetry increases, but more so in the nonlinear simulations than in the linear analysis; (4) for large perturbations of the shear flow, the static stability, as represented by N2, is the dominating mechanism, becoming zero or negative, and producing convective overturning; and (5) the convectional measure of linearity in lee wave theory, NH/U, is no longer the critical parameter (it is suggested that (H/u sub 0) (du sub 0/dz) takes on this role in a shearing flow).

  6. Keep on Moving: Discovering and Perturbing the Conformational Dynamics of Enzymes

    PubMed Central

    2015-01-01

    Conspectus Because living organisms are in constant motion, the word “dynamics” can hold many meanings to biologists. Here we focus specifically on the conformational changes that occur in proteins and how studying these protein dynamics may provide insights into enzymatic catalysis. Advances in integrating techniques such as X-ray crystallography, nuclear magnetic resonance, and electron cryomicroscopy (cryo EM) allow us to model the dominant structures and exchange rates for many proteins and protein complexes. For proteins amenable to atomic resolution techniques, the major questions shift from simply describing the motions to discovering their role in function. Concurrently, there is an increasing need for using perturbations to test predictive models of dynamics–function relationships. Examples are the catalytic cycles of dihydrofolate reductase (DHFR) and cyclophilin A (CypA). In DHFR, mutations that alter the ability of the active site to sample productive higher energy states on the millisecond time scale reduce the rate of hydride transfer significantly. Recently identified rescue mutations restore function, but the mechanism by which they do so remains unclear. The exact role of any changes in the dynamics remains an open question. For CypA, a network of side chains that exchange between two conformations is critical for catalysis. Mutations that lock the network in one state also reduce catalytic activity. A further understanding of enzyme dynamics of well-studied enzymes such as dihydrofolate reductase and cyclophilin A will lead to improvement in ability to modulate the functions of computationally designed enzymes and large macromolecular machines. In designed enzymes, directed evolution experiments increase catalytic rates. Detailed X-ray studies suggest that these mutations likely limit the conformational space explored by residues in the active site. For proteins where atomic resolution information is currently inaccessible, other techniques

  7. Finite field-dependent symmetries in perturbative quantum gravity

    SciTech Connect

    Upadhyay, Sudhaker

    2014-01-15

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.

  8. Approach to exact solutions of cosmological perturbations: Tachyon field inflation

    NASA Astrophysics Data System (ADS)

    Herrera, Ramón; Pérez, Roberto G.

    2016-03-01

    An inflationary universe scenario in the context of a tachyon field is studied. This study is carried out using an ansatz for the effective potential of cosmological perturbations U (η ). We describe in great detail the analytical solutions of the scalar and tensor perturbations for two different Ansätze for the effective potential of cosmological perturbations: Easther's model and an effective potential similar to power-law inflation. Also, we find from the background equations that the effective tachyonic potentials V (φ ) in both models satisfy the properties of a tachyonic potential. We consider the recent data from the Planck to constrain the parameters in our effective potential generating the cosmological perturbations.

  9. Fast ion loss associated with perturbed field by resonant magnetic perturbation coils in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Junghee; Rhee, Tongnyeol; Yoon, S. W.; Park, G. Y.; Jeon, Y. M.; Isobe, M.; Shimizu, A.; Ogawa, K.; Park, J.-K.; Garcia-Munoz, M.

    2013-10-01

    Resonant magnetic perturbation (RMP) is the most promising strategies for ELM mitigation/suppression. However, it has been found through the modeling and the experiments that RMP for the ELM mitigation can enhance the toroidally localized fast ion loss. During KSTAR experimental campaigns in 2011 and 2012, sudden increase or decrease of the fast ion loss has been observed by the scintillator-based fast ion loss detector (FILD) when the RMP is applied. Three-dimensional perturbed magnetic field by RMP coil in vacuum is calculated by Biot-Savart's law embedded in the Lorentz orbit code (LORBIT). The LORBIT code which is based on gyro-orbit following motion has been used for the simulation of the three-dimensional fast ion trajectories in presence of non-axisymmetric magnetic perturbation. It seems the measured fast ion loss rate at the localized position depends on not only the RMP field configuration but also the plasma profile such as safety factor and so on, varying the ratio between radial drift and stochastization of the fat-ion orbits. The simulation results of fast ion orbit under magnetic perturbation w/ and w/o plasma responses will be presented and compared with KSTAR FILD measurement results in various cases.

  10. Bianchi type-I models with conformally invariant scalar field

    SciTech Connect

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-05-15

    The solutions of the Einstein equations with the trace-free energy-momentum tensor of conformally invariant scalar field as source are obtained in a spatially homogeneous anisotropic space-time. Some interesting features of the solutions are discussed.

  11. Missile launch detection electric field perturbation experiment. Final report

    SciTech Connect

    Kane, R.J.; Rynne, T.M.

    1993-04-28

    The Lawrence Livermore National Laboratory and SARA Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. LLNL and SARA deployed sensors for monitoring of basic phenomena. An attempt was made to measure perturbations of the earth geo-potential during the launch of a Lance missile. The occurrence of the perturbation is expected from the conducting body of the missile and the exhaust plume. A set of voltage-probe antennas were used to monitor the local electric field perturbation from the launch at ranges of approximately 1 km. Examination of the data acquired during the launch period failed to show identifiable correlation of the field variations with the launch event. Three reasons are ascribed to this lack of event data: (1) The electric field potential variations have a limited spatial correlation length - the fields measured in one region have little correlation to measurements made at distances of a kilometer away. The potential variations are related to localized atmospheric disturbances and are generally unpredictable. A value for the spatial correlation length is also not known. (2) The conductivity of the plume and missile body are not adequate to produce a field perturbation of adequate magnitude. Phenomena related to the exhaust plume and missile may exist and be outside of the collection range of the equipment employed for these measurements. (3) The presence of 60 Hz power line noise was of sufficient magnitude to irreversibly contaminate measurements.

  12. Waterfall field in hybrid inflation and curvature perturbation

    SciTech Connect

    Gong, Jinn-Ouk; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2011-03-01

    We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.

  13. Perturbation Theory of Massive Yang-Mills Fields

    DOE R&D Accomplishments Database

    Veltman, M.

    1968-08-01

    Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.

  14. Conformal symmetry limit of QED and QCD and identities between perturbative contributions to deep-inelastic scattering sum rules

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.

    2014-02-01

    Conformal symmetry-based relations between concrete perturbative QED and QCD approximations for the Bjorken , the Ellis-Jaffe sum rules of polarized lepton- nucleon deep-inelastic scattering (DIS), the Gross-Llewellyn Smith sum rules of neutrino-nucleon DIS, and for the Adler functions of axial-vector and vector channels are derived. They result from the application of the operator product expansion to three triangle Green functions, constructed from the non-singlet axial-vector, and two vector currents, the singlet axial-vector and two non-singlet vector currents and the non-singlet axial-vector, vector and singlet vector currents in the limit, when the conformal symmetry of the gauge models with fermions is considered unbroken. We specify the perturbative conditions for this symmetry to be valid in the case of the U(1) and SU( N c) models. The all-order perturbative identity following from the conformal invariant limit between the concrete contributions to the Bjorken, the Ellis-Jaffe and the Gross-Llewellyn Smith sum rules is proved. The analytical and numerical O( α 4) and conformal symmetry based approximations for these sum rules and for the Adler function of the non-singlet vector currents are summarized. Possible theoretical applications of the results presented are discussed.

  15. The interaction between plasma rotation, stochastic fields and tearing mode excitation by external perturbation fields

    NASA Astrophysics Data System (ADS)

    DeBock, M. F. M.; Classen, I. G. J.; Busch, C.; Jaspers, R. J. E.; Koslowski, H. R.; Unterberg, B.; TEXTOR Team

    2008-01-01

    For fusion reactors, based on the principle of magnetic confinement, it is important to avoid so-called magnetic islands or tearing modes. They reduce confinement and can be the cause of major disruptions. One class of magnetic islands is that of the perturbation field driven modes. This perturbation field can, for example, be the intrinsic error field. Theoretical work predicts a strong relationship between plasma rotation and the excitation of perturbation field modes. Experimentally, the theory on mode excitation and plasma rotation has been confirmed on several tokamaks. In those experiments, however, the control over the plasma rotation velocity and direction, and over the externally applied perturbation field was limited. In this paper experiments are presented that were carried out at the TEXTOR tokamak. Two tangential neutral beam injectors and a set of helical perturbation coils, called the dynamic ergodic divertor (DED), provide control over both the plasma rotation and the external perturbation field in TEXTOR. This made it possible to set up a series of experiments to test the theory on mode excitation and plasma rotation in detail. The perturbation field induced by the DED not only excites magnetic islands, it also sets up a layer near the plasma boundary where the magnetic field is stochastic. It will be shown that this stochastic field alters both the rotational response of the plasma on the perturbation field and the threshold for mode excitation. It therefore has to be included in an extended theory on mode excitation.

  16. Coupling structure of multi-field primordial perturbations

    SciTech Connect

    Gao, Xian

    2013-10-01

    We investigate the coupling relations among perturbations in general multi-field models. We derived the equations of motion for both background and perturbations in a general basis. Within this formalism, we revisit the construction of kinematic orthogonal normal vectors using the successive time derivatives of the background field velocity. We show that the coupling relations among modes in this kinematic basis can be reduced, by employing the background equations of motion for the scalar fields and their high order time derivatives. There are two typical features in the field space: inflationary trajectory and geometry of the potential. Correspondingly, the couplings among modes fall into two categories: one is controlled only by the kinematic quantities, the other involves high order derivatives of the potential. Remarkably, the couplings of the first category, i.e. controlled by the kinematic quantities only, show a ''chain'' structure. That is, each mode is only coupled to its two neighbour modes.

  17. New method of applying conformal group to quantum fields

    NASA Astrophysics Data System (ADS)

    Han, Lei; Wang, Hai-Jun

    2015-09-01

    Most of previous work on applying the conformal group to quantum fields has emphasized its invariant aspects, whereas in this paper we find that the conformal group can give us running quantum fields, with some constants, vertex and Green functions running, compatible with the scaling properties of renormalization group method (RGM). We start with the renormalization group equation (RGE), in which the differential operator happens to be a generator of the conformal group, named dilatation operator. In addition we link the operator/spatial representation and unitary/spinor representation of the conformal group by inquiring a conformal-invariant interaction vertex mimicking the similar process of Lorentz transformation applied to Dirac equation. By this kind of application, we find out that quite a few interaction vertices are separately invariant under certain transformations (generators) of the conformal group. The significance of these transformations and vertices is explained. Using a particular generator of the conformal group, we suggest a new equation analogous to RGE which may lead a system to evolve from asymptotic regime to nonperturbative regime, in contrast to the effect of the conventional RGE from nonperturbative regime to asymptotic regime. Supported by NSFC (91227114)

  18. Understanding conformal field theory through parafermions and Chern Simons theory

    SciTech Connect

    Hotes, S.A.

    1992-11-19

    Conformal field theories comprise a vast class of exactly solvable two dimensional quantum field theories. Conformal theories with an enlarged symmetry group, the current algebra symmetry, axe a key ingredient to possible string compactification models. The following work explores a Lagrangian approach to these theories. In the first part of this thesis, a large class of conformal theories, the so-called coset models, are derived semi-classically from a gauged version Of the Wess-Zumino-Witten functional. A non-local field transformation to the parafermionic field description is employed in the quantization procedure. Classically, these parafermionic fields satisfy non-trivial Poisson brackets, providing insight into the fractional spin nature of the conformal theory. The W-algebra symmetry is shown to appear naturally in this approach. In the second part of this thesis, the connection between the fusion algebra structure of Wess-Zumino-Witten models and the quantization of the Chern-Simons action on the torus is made explicit. The modular properties of the conformal model are also derived in this context, giving a natural demonstration of the Verlinde conjecture. The effects of background gauge fields and monopoles are also discussed.

  19. Irreversibility and higher-spin conformal field theory

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  20. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    SciTech Connect

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  1. Adler function and Bjorken polarized sum rule: Perturbation expansions in powers of the S U (Nc) conformal anomaly and studies of the conformal symmetry limit

    NASA Astrophysics Data System (ADS)

    Cvetič, Gorazd; Kataev, A. L.

    2016-07-01

    We consider a new form of analytical perturbation theory expansion in the massless S U (Nc) theory, for the nonsinglet part of the e+e--annihilation to hadrons Adler function Dn s and of the Bjorken sum rule of the polarized lepton-hadron deep-inelastic scattering Cns B j p, and demonstrate its validity at the O (αs4)-level at least. It is a two-fold series in powers of the conformal anomaly and of S U (Nc) coupling αs. Explicit expressions are obtained for the {β }-expanded perturbation coefficients at O (αs4) level in MS ¯ scheme, for both considered physical quantities. Comparisons of the terms in the {β }-expanded coefficients are made with the corresponding terms obtained by using extra gluino degrees of freedom, or skeleton-motivated expansion, or Rδ-scheme motivated expansion in the Principle of Maximal Conformality. Relations between terms of the {β }-expansion for the Dn s- and Cns B j p-functions, which follow from the conformal symmetry limit and its violation, are presented. The relevance to the possible new analyses of the experimental data for the Adler function and Bjorken sum rule is discussed.

  2. Unitary Fermi Gas, ɛ Expansion, and Nonrelativistic Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Nishida, Yusuke; Son, Dam Thanh

    We review theoretical aspects of unitary Fermi gas (UFG), which has been realized in ultracold atom experiments. We first introduce the ɛ expansion technique based on a systematic expansion in terms of the dimensionality of space. We apply this technique to compute the thermodynamic quantities, the quasiparticle cum, and the criticl temperature of UFG. We then discuss consequences of the scale and conformal invariance of UFG. We prove a correspondence between primary operators in nonrelativistic conformal field theories and energy eigenstates in a harmonic potential. We use this correspondence to compute energies of fermions at unitarity in a harmonic potential. The scale and conformal invariance together with the general coordinate invariance constrains the properties of UFG. We show the vanishing bulk viscosities of UFG and derive the low-energy effective Lagrangian for the superfluid UFG. Finally we propose other systems exhibiting the nonrelativistic scaling and conformal symmetries that can be in principle realized in ultracold atom experiments.

  3. Cosmological perturbations for an inflaton field coupled to radiation

    SciTech Connect

    Visinelli, Luca

    2015-01-01

    Within the framework of the interacting fluid formalism, we provide the numerical solution to the Boltzmann equation describing the evolution of an inflaton field coupled to radiation. We study the behavior of the system during the slow-roll regime, in the case in which an additional stochastic source term is included in the set of equations, and we recover the expression for the cosmological perturbations previously obtained in the Warm inflation scenarios.

  4. Cosmological perturbations in coherent oscillating scalar field models

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Maroto, A. L.; Jareño, S. J. Núñez

    2016-03-01

    The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V( ϕ) = λ| ϕ| n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c eff 2 = ω = ( n - 2)/( n + 2) with ω the effective equation of state. We also obtain the first order correction in k 2/ ω eff 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet's theorem.

  5. Modular Hamiltonian for Excited States in Conformal Field Theory.

    PubMed

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories. PMID:27494465

  6. Modular Hamiltonian for Excited States in Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima

    2016-07-01

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Zn replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  7. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. PMID:24316186

  8. Local conformational perturbations of the DNA molecule in the SG-model

    NASA Astrophysics Data System (ADS)

    Krasnobaeva, L. A.; Shapovalov, A. V.

    2015-11-01

    Within the formalism of the Fokker-Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker-Planck equation for the momentum distribution function coincides with the equation describing the Ornstein-Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker- Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker-Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine-Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker-Planck equation for the momentum distribution function coincides with the equation describing the Ornstein-Uhlenbek process with a regular nonstationary

  9. Local conformational perturbations of the DNA molecule in the SG-model

    SciTech Connect

    Krasnobaeva, L. A.; Shapovalov, A. V.

    2015-11-17

    Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular

  10. Toroidal modeling of penetration of the resonant magnetic perturbation field

    SciTech Connect

    Liu Yueqiang; Kirk, A.

    2013-04-15

    A toroidal, quasi-linear model is proposed to study the penetration dynamics of the resonant magnetic perturbation (RMP) field into the plasma. The model couples the linear, fluid plasma response to a toroidal momentum balance equation, which includes torques induced by both fluid electromagnetic force and by (kinetic) neoclassical toroidal viscous (NTV) force. The numerical results for a test toroidal equilibrium quantify the effects of various physical parameters on the field penetration and on the plasma rotation braking. The neoclassical toroidal viscous torque plays a dominant role in certain region of the plasma, for the RMP penetration problem considered in this work.

  11. Kinetic and Thermodynamic Characterization of Dihydrotestosterone-Induced Conformational Perturbations in Androgen Receptor Ligand-Binding Domain

    PubMed Central

    Jasuja, Ravi; Ulloor, Jagadish; Yengo, Christopher M.; Choong, Karen; Istomin, Andrei Y.; Livesay, Dennis R.; Jacobs, Donald J.; Swerdloff, Ronald S.; Mikšovská, Jaroslava; Larsen, Randy W.; Bhasin, Shalender

    2009-01-01

    Ligand-induced conformational perturbations in androgen receptor (AR) are important in coactivator recruitment and transactivation. However, molecular rearrangements in AR ligand-binding domain (AR-LBD) associated with agonist binding and their kinetic and thermodynamic parameters are poorly understood. We used steady-state second-derivative absorption and emission spectroscopy, pressure and temperature perturbations, and 4,4′-bis-anilinonaphthalene 8-sulfonate (bis-ANS) partitioning to determine the kinetics and thermodynamics of the conformational changes in AR-LBD after dihydrotestosterone (DHT) binding. In presence of DHT, the second-derivative absorption spectrum showed a red shift and a change in peak-to-peak distance. Emission intensity increased upon DHT binding, and center of spectral mass was blue shifted, denoting conformational changes resulting in more hydrophobic environment for tyrosines and tryptophans within a more compact DHT-bound receptor. In pressure perturbation calorimetry, DHT-induced energetic stabilization increased the Gibbs free energy of unfolding to 8.4 ± 1.3 kcal/mol from 3.5 ± 1.6 kcal/mol. Bis-ANS partitioning studies revealed that upon DHT binding, AR-LBD underwent biphasic rearrangement with a high activation energy (13.4 kcal/mol). An initial, molten globule-like burst phase (k ∼30 sec−1) with greater solvent accessibility was followed by rearrangement (k ∼0.01 sec−1), leading to a more compact conformation than apo-AR-LBD. Molecular simulations demonstrated unique sensitivity of tyrosine and tryptophan residues during pressure unfolding with rearrangement of residues in the coactivator recruitment surfaces distant from the ligand-binding pocket. In conclusion, DHT binding leads to energetic stabilization of AR-LBD domain and substantial rearrangement of residues distant from the ligand-binding pocket. DHT binding to AR-LBD involves biphasic receptor rearrangement including population of a molten globule

  12. Conformal field theories with infinitely many conservation laws

    SciTech Connect

    Todorov, Ivan

    2013-02-15

    Globally conformal invariant quantum field theories in a D-dimensional space-time (D even) have rational correlation functions and admit an infinite number of conserved (symmetric traceless) tensor currents. In a theory of a scalar field of dimension D-2 they were demonstrated to be generated by bilocal normal products of free massless scalar fields with an O(N), U(N), or Sp(2N) (global) gauge symmetry [B. Bakalov, N. M. Nikolov, K.-H. Rehren, and I. Todorov, 'Unitary positive energy representations of scalar bilocal fields,' Commun. Math. Phys. 271, 223-246 (2007); e-print arXiv:math-ph/0604069v3; and 'Infinite dimensional Lie algebras in 4D conformal quantum field theory,' J. Phys. A Math Theor. 41, 194002 (2008); e-print arXiv:0711.0627v2 [hep-th

  13. Detailed ultraviolet asymptotics for AdS scalar field perturbations

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg; Jai-akson, Puttarak

    2016-04-01

    We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.

  14. Introduction to conformal field theory and string theory

    SciTech Connect

    Dixon, L.J.

    1989-12-01

    These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.

  15. Non-linear curvature perturbation in multi-field inflation models with non-minimal coupling

    SciTech Connect

    White, Jonathan; Minamitsuji, Masato; Sasaki, Misao E-mail: masato.minamitsuji@ist.utl.pt

    2013-09-01

    Using the δN formalism we consider the non-linear curvature perturbation in multi-field models of inflation with non-minimal coupling. In particular, we focus on the relation between the δN formalism as applied in the conformally related Jordan and Einstein frames. Exploiting results already known in the Einstein frame, we give expressions for the power spectrum, spectral tilt and non-gaussianity associated with the Jordan frame curvature perturbation. In the case that an adiabatic limit has not been reached, we find that in general these quantities differ from those associated with the Einstein frame curvature perturbation, and also confirm their equivalence in the absence of isocurvature modes. We then proceed to consider two analytically soluble examples, the first involving a non-minimally coupled 'spectator' field and the second being a non-minimally coupled extension of the multi-brid inflation model. In the first model we find that predictions can easily be brought into agreement with the recent Planck results, as the tensor-to-scalar ratio is generally small, the spectral tilt tuneable and the non-gaussianity suppressed. In the second model we find that predictions for all three parameters can differ substantially from those predicted in the minimally coupled case, and that the recent Planck results for the spectral tilt can be used to constrain the non-minimal coupling parameters.

  16. Non-linear curvature perturbation in multi-field inflation models with non-minimal coupling

    NASA Astrophysics Data System (ADS)

    White, Jonathan; Minamitsuji, Masato; Sasaki, Misao

    2013-09-01

    Using the δN formalism we consider the non-linear curvature perturbation in multi-field models of inflation with non-minimal coupling. In particular, we focus on the relation between the δN formalism as applied in the conformally related Jordan and Einstein frames. Exploiting results already known in the Einstein frame, we give expressions for the power spectrum, spectral tilt and non-gaussianity associated with the Jordan frame curvature perturbation. In the case that an adiabatic limit has not been reached, we find that in general these quantities differ from those associated with the Einstein frame curvature perturbation, and also confirm their equivalence in the absence of isocurvature modes. We then proceed to consider two analytically soluble examples, the first involving a non-minimally coupled `spectator' field and the second being a non-minimally coupled extension of the multi-brid inflation model. In the first model we find that predictions can easily be brought into agreement with the recent Planck results, as the tensor-to-scalar ratio is generally small, the spectral tilt tuneable and the non-gaussianity suppressed. In the second model we find that predictions for all three parameters can differ substantially from those predicted in the minimally coupled case, and that the recent Planck results for the spectral tilt can be used to constrain the non-minimal coupling parameters.

  17. Large perturbation flow field analysis and simulation for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.

    1984-01-01

    An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.

  18. Conformal consistency relations for single-field inflation

    SciTech Connect

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko E-mail: jorge.norena@gmail.com

    2012-07-01

    We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit — going as 1/q{sup 3}, where q is the small wavevector — but also the subleading one, going as 1/q{sup 2}. This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q{sup 3} term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q{sup 2}. We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of ζ are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by ζ. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta.

  19. Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states

    SciTech Connect

    Fendley, Paul; Fisher, Matthew P.A.; Nayak, Chetan

    2009-07-15

    We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the {nu}=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.

  20. Quantum entanglement of local operators in conformal field theories.

    PubMed

    Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi

    2014-03-21

    We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles. PMID:24702348

  1. Conformal field theory out of equilibrium: a review

    NASA Astrophysics Data System (ADS)

    Bernard, Denis; Doyon, Benjamin

    2016-06-01

    We provide a pedagogical review of the main ideas and results in non-equilibrium conformal field theory and connected subjects. These concern the understanding of quantum transport and its statistics at and near critical points. Starting with phenomenological considerations, we explain the general framework, illustrated by the example of the Heisenberg quantum chain. We then introduce the main concepts underlying conformal field theory (CFT), the emergence of critical ballistic transport, and the CFT scattering construction of non-equilibrium steady states. Using this we review the theory for energy transport in homogeneous one-dimensional critical systems, including the complete description of its large deviations and the resulting (extended) fluctuation relations. We generalize some of these ideas to one-dimensional critical charge transport and to the presence of defects, as well as beyond one-dimensional criticality. We describe non-equilibrium transport in free-particle models, where connections are made with generalized Gibbs ensembles, and in higher-dimensional and non-integrable quantum field theories, where the use of the powerful hydrodynamic ideas for non-equilibrium steady states is explained. We finish with a list of open questions. The review does not assume any advanced prior knowledge of conformal field theory, large-deviation theory or hydrodynamics.

  2. Post-measurement bipartite entanglement entropy in conformal field theories

    NASA Astrophysics Data System (ADS)

    Rajabpour, M. A.

    2015-08-01

    We derive exact formulas for bipartite von Neumann entanglement entropy after partial projective local measurement in (1 +1 ) -dimensional conformal field theories with periodic and open boundary conditions. After defining the setup we will check numerically the validity of our results in the case of Klein-Gordon field theory (coupled harmonic oscillators) and spin-1 /2 X X chain in a magnetic field. The agreement between analytical results and the numerical calculations is very good. We also find a lower bound for localizable entanglement in coupled harmonic oscillators.

  3. Locality of Gravitational Systems from Entanglement of Conformal Field Theories.

    PubMed

    Lin, Jennifer; Marcolli, Matilde; Ooguri, Hirosi; Stoica, Bogdan

    2015-06-01

    The Ryu-Takayanagi formula relates the entanglement entropy in a conformal field theory to the area of a minimal surface in its holographic dual. We show that this relation can be inverted for any state in the conformal field theory to compute the bulk stress-energy tensor near the boundary of the bulk spacetime, reconstructing the local data in the bulk from the entanglement on the boundary. We also show that positivity, monotonicity, and convexity of the relative entropy for small spherical domains between the reduced density matrices of any state and of the ground state of the conformal field theory are guaranteed by positivity conditions on the bulk matter energy density. As positivity and monotonicity of the relative entropy are general properties of quantum systems, this can be interpreted as a derivation of bulk energy conditions in any holographic system for which the Ryu-Takayanagi prescription applies. We discuss an information theoretical interpretation of the convexity in terms of the Fisher metric. PMID:26196612

  4. Reheating dynamics affects non-perturbative decay of spectator fields

    NASA Astrophysics Data System (ADS)

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field σ coupled to the Higgs Boson Φ through the term g2σ2Φ2, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling ggtrsim10-3, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  5. Reheating dynamics affects non-perturbative decay of spectator fields

    SciTech Connect

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field σ coupled to the Higgs Boson Φ through the term g{sup 2}σ{sup 2}Φ{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g∼>10{sup −3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  6. Transverse Field Perturbation For PIP-II SRF Cavities

    SciTech Connect

    Berrutti, Paolo; Khabiboulline, Timergali N.; Lebedev, Valeri; Yakovlev, Vyacheslav P.

    2015-06-01

    Proton Improvement Plan II (PIP-II) consists in a plan for upgrading the Fermilab proton accelerator complex to a beam power capability of at least 1 MW delivered to the neutrino production target. A room temperature section accelerates H⁻ ions to 2.1 MeV and creates the desired bunch structure for injection into the superconducting (SC) linac. Five cavity types, operating at three different frequencies 162.5, 325 and 650 MHz, provide acceleration to 800 MeV. This paper presents the studies on transverse field perturbation on particle dynamic for all the superconducting cavities in the linac. The effects studied include quadrupole defocusing for coaxial resonators, and dipole kick due to couplers for elliptical cavities. A multipole expansion has been performed for each of the cavity designs including effects up to octupole.

  7. The unitary conformal field theory behind 2D Asymptotic Safety

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin

    2016-02-01

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d > 2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c = 25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d > 2 dimensions and Polyakov's induced gravity action in two dimensions.

  8. Volume rendering: application in static field conformal radiosurgery

    NASA Astrophysics Data System (ADS)

    Bourland, J. Daniel; Camp, Jon J.; Robb, Richard A.

    1992-09-01

    Lesions in the head which are large or irregularly shaped present challenges for radiosurgical treatment by linear accelerator or other radiosurgery modalities. To treat these lesions we are developing static field, conformal stereotactic radiosurgery. In this procedure seven to eleven megavoltage x-ray beams are aimed at the target volume. Each beam is designed from the beam's-eye view, and has its own unique geometry: gantry angle, table angle, and shape which conforms to the projected cross-section of the target. A difficulty with this and other 3- D treatment plans is the visualization of the treatment geometry and proposed treatment plan. Is the target volume geometrically covered by the arrangement of beams, and is the dose distribution adequate? To answer these questions we have been investigating the use of ANALYZETM volume rendering to display the target anatomy and the resultant dose distribution.

  9. Bootstrapping conformal field theories with the extremal functional method.

    PubMed

    El-Showk, Sheer; Paulos, Miguel F

    2013-12-13

    The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future. PMID:24483643

  10. Universal entanglement and boundary geometry in conformal field theory

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher P.; Huang, Kuo-Wei; Jensen, Kristan

    2016-01-01

    Employing a conformal map to hyperbolic space cross a circle, we compute the universal contribution to the vacuum entanglement entropy (EE) across a sphere in even-dimensional conformal field theory. Previous attempts to derive the EE in this way were hindered by a lack of knowledge of the appropriate boundary terms in the trace anomaly. In this paper we show that the universal part of the EE can be treated as a purely boundary effect. As a byproduct of our computation, we derive an explicit form for the A-type anomaly contribution to the Wess-Zumino term for the trace anomaly, now including boundary terms. In d = 4 and 6, these boundary terms generalize earlier bulk actions derived in the literature.

  11. The Stochastic Elastica and Excluded-Volume Perturbations of DNA Conformational Ensembles

    PubMed Central

    Chirikjian, Gregory S.

    2010-01-01

    A coordinate-free Lie-group formulation for generating ensembles of DNA conformations in solution is presented. In this formulation, stochastic differential equations define sample paths on the Euclidean motion group. The ensemble of these paths exhibits the same behavior as solutions of the Fokker-Planck equation for the stochastically forced elastica. Longer chains for which the effects of excluded volume become important are handled by piecing together shorter chains and modeling their interactions. It is assumed that the final chain lengths of interest are long enough for excluded volume effects to become important, but not so long that the semi-flexible nature of the chain is lost. The effect of excluded volume is then taken into account by grouping short self-avoiding conformations into ‘bundles’ with common end constraints and computing average interaction effects between bundles. The accuracy of this approximation is shown to be good when using a numerically generated ensemble of self-avoiding sample paths as the baseline for comparison. PMID:20228889

  12. Cosmological perturbations in SFT inspired non-local scalar field models

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexey S.; Vernov, Sergey Yu.

    2012-10-01

    We study cosmological perturbations in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field and explicitly prove that for the free field it is identical to a system of local cosmological perturbation equations in a particular model with multiple (maybe infinitely many) local free scalar fields. We also show that vector and tensor perturbations are absent in this set-up.

  13. Non-conformal evolution of magnetic fields during reheating

    NASA Astrophysics Data System (ADS)

    Calzetta, Esteban; Kandus, Alejandra

    2015-03-01

    We consider the evolution of electromagnetic fields coupled to conduction currents during the reheating era after inflation, and prior to the establishing of the proton-electron plasma. We assume that the currents may be described by second order causal hydrodynamics. The resulting theory is not conformally invariant. The expansion of the Universe produces temperature gradients which couple to the current and generally oppose Ohmic dissipation. Although the effect is not strong, it suggests that the unfolding of hydrodynamic instabilities in these models may follow a different pattern than in first order theories, and even than in second order theories on non expanding backgrounds.

  14. Entanglement of low-energy excitations in conformal field theory.

    PubMed

    Alcaraz, Francisco Castilho; Ibáñez Berganza, Miguel; Sierra, Germán

    2011-05-20

    In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Rényi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Rényi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT. PMID:21668218

  15. Entanglement of Low-Energy Excitations in Conformal Field Theory

    SciTech Connect

    Alcaraz, Francisco Castilho; Ibanez Berganza, Miguel; Sierra, German

    2011-05-20

    In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.

  16. Gauge invariant two-point vertices of shadow fields, AdS/CFT, and conformal fields

    SciTech Connect

    Metsaev, R. R.

    2010-05-15

    In the framework of gauge invariant Stueckelberg approach, totally symmetric arbitrary spin shadow fields in flat space-time of dimension greater than or equal to four are studied. Gauge invariant two-point vertices for such shadow fields are obtained. We demonstrate that, in Stueckelberg gauge frame, these gauge invariant vertices become the standard two-point vertices of CFT. Light-cone gauge two-point vertices of the shadow fields are also obtained. AdS/CFT correspondence for the shadow fields and the non-normalizable solutions of free massless totally symmetric arbitrary spin AdS fields is studied. AdS fields are considered in a modified de Donder gauge and this simplifies considerably the study of AdS/CFT correspondence. We demonstrate that the bulk action, when it is evaluated on solution of the Dirichlet problem, leads to the two-point gauge invariant vertex of shadow field. Also we show that the bulk action evaluated on solution of the Dirichlet problem leads to new description of conformal fields. The new description involves Stueckelberg gauge symmetries and gives simple higher-derivative Lagrangian for the conformal arbitrary spin field. In the Stueckelberg gauge frame, our Lagrangian becomes the standard Lagrangian of conformal field. Light-cone gauge Lagrangian of the arbitrary spin conformal field is also obtained.

  17. Molecular Dynamics Investigations of the Local Structural Characteristics of DNA Oligonucleotides: Studies of Helical Axis Deformations, Conformational Sequence Dependence and Modified Nucleoside Perturbations.

    NASA Astrophysics Data System (ADS)

    Louise-May, Shirley

    The present DNA studies investigate the local structure of DNA oligonucleotides in order to characterize helical axis deformations, sequence dependent fine structure and modified nucleoside perturbations of selected oligonucleotide sequences. The molecular dynamics method is used to generate an ensemble of energetically feasible DNA conformations which can then be analyzed for dynamical conformational properties, some of which can be compared to experimentally derived values. A theory and graphical presentation for the analysis of helical deformations of DNA based on the configurational statistics of polymers, called "Persistence Analysis", was designed. The results of the analysis on prototype forms, static crystal structures and two solvated MD simulations of the sequence d(CGCGAATTCGCG) indicate that all of the expected features of bending can be sensitively and systematically identified by this approach. Comparison of the relative performance of three molecular dynamics potential functions commonly used for dynamical modeling of biological macromolecules; CHARMm, AMBER and GROMOS was investigated via in vacuo MD simulations on the dodecamer sequence d(CGCGAATTCGCG)_2 with respect to the conformational properties of each dynamical model and their ability to support A and B families of DNA. Vacuum molecular dynamics simulations using the CHARMm force field carried out on simple homo- and heteropolymers of DNA led to the conclusion that sequence dependent fine structure appears to be well defined for adenine-thymine rich sequences both at the base pair and base step level whereas much of the the fine structure found in cytosine -guanine rich sequences appears to be context dependent. The local conformational properties of the homopolymer poly (dA) -poly (dT) revealed one dynamical model which was found in general agreement with fiber models currently available. Investigation of the relative structural static and dynamical effect of the misincorporation of

  18. Positive Energy Conditions in 4D Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Farnsworth, Kara; Luty, Markus; Prilepina, Valentina

    2016-03-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality avgT00 >= - C /L4 , where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the ``conformal collider'' constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.

  19. Dynamics of perturbations in Double Field Theory & non-relativistic string theory

    NASA Astrophysics Data System (ADS)

    Ko, Sung Moon; Melby-Thompson, Charles M.; Meyer, René; Park, Jeong-Hyuck

    2015-12-01

    Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (`non-geometry'), but even locally (`non-Riemannian'). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri [1] arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of [2] on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.

  20. Energy Flux Positivity and Unitarity in Conformal Field Theories

    SciTech Connect

    Kulaxizi, Manuela; Parnachev, Andrei

    2011-01-07

    We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop light like poles. The residues of the poles can be computed, as long as the only spin-two conserved current, which appears in the stress energy tensor operator-product expansion and acquires a nonvanishing expectation value at finite temperature, is the stress energy tensor. The condition for the residues to stay positive and the theory to remain ghost-free is equivalent to the condition of positivity of energy flux.

  1. Synchrotron radiation in strongly coupled conformal field theories

    SciTech Connect

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Rajagopal, Krishna; Nickel, Dominik

    2010-06-15

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle {alpha}{approx}1/{gamma}. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  2. Energy flux positivity and unitarity in conformal field theories.

    PubMed

    Kulaxizi, Manuela; Parnachev, Andrei

    2011-01-01

    We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop lightlike poles. The residues of the poles can be computed, as long as the only spin-two conserved current, which appears in the stress energy tensor operator-product expansion and acquires a nonvanishing expectation value at finite temperature, is the stress energy tensor. The condition for the residues to stay positive and the theory to remain ghost-free is equivalent to the condition of positivity of energy flux. PMID:21231731

  3. Perturbative no-hair property of form fields for higher dimensional static black holes

    SciTech Connect

    Shiromizu, Tetsuya; Ohashi, Seiju; Tanabe, Kentaro

    2011-04-15

    In this paper we examine the static perturbation of p-form field strengths around higher dimensional Schwarzschild spacetimes. As a result, we can see that the static perturbations do not exist when p{>=}3. This result supports the no-hair properties of p-form fields. However, this does not exclude the presence of the black objects having nonspherical topology.

  4. Warped conformal field theory as lower spin gravity

    NASA Astrophysics Data System (ADS)

    Hofman, Diego M.; Rollier, Blaise

    2015-08-01

    Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.

  5. Quantum corrections to the cosmological evolution of conformally coupled fields

    SciTech Connect

    Cembranos, Jose A.R.; Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe E-mail: olive@physics.umn.edu E-mail: uzan@iap.fr

    2009-07-01

    Because the source term for the equations of motion of a conformally coupled scalar field, such as the dilaton, is given by the trace of the matter energy momentum tensor, it is commonly assumed to vanish during the radiation dominated epoch in the early universe. As a consequence, such fields are generally frozen in the early universe. Here we compute the finite temperature radiative correction to the source term and discuss its consequences on the evolution of such fields in the early universe. We discuss in particular, the case of scalar tensor theories of gravity which have general relativity as an attractor solution. We show that, in some cases, the universe can experience an early phase of contraction, followed by a non-singular bounce, and standard expansion. This can have interesting consequences for the abundance of thermal relics; for instance, it can provide a solution to the gravitino problem. We conclude by discussing the possible consequences of the quantum corrections to the evolution of the dilaton.

  6. Time-dependent perturbation of a two-state quantum system by a sinusoidal field

    NASA Technical Reports Server (NTRS)

    Dion, D. R.; Hirschfelder, J. O.

    1976-01-01

    Different methods for solving the 'two-level problem' are discussed, namely, the problem of what happens to a material system having only two nondegenerate energy levels when it is perturbed by an electromagnetic field that varies with time in a monochromatic sinusoidal fashion. The various methods discussed include: (1) the Sen Gupta technique using nondegenerate Rayleigh-Schroedinger perturbation theory, (2) the Salwen-Winter-Shirley partitioning perturbation technique, (3) the Shirley and series degenerate Rayleigh-Schroedinger expansion, (4) the degenerate Rayleigh-Schroedinger technique for considering high frequency fields, and (5) the singular perturbation expansion technique.

  7. Impact of resistive MHD plasma response on perturbation field sidebands

    NASA Astrophysics Data System (ADS)

    Orlov, D. M.; Evans, T. E.; Moyer, R. A.; Lyons, B. C.; Ferraro, N. M.; Park, G.-Y.

    2016-07-01

    Single fluid linear simulations of a KSTAR RMP ELM suppressed discharge with the M3D-C1 resistive magnetohydrodynamic code have been performed for the first time. The simulations show that the application of the n  =  1 perturbation using the KSTAR in-vessel control coils (IVCC), which apply modest levels of n  =  3 sidebands (~20% of the n  =  1), leads to levels of n  =  3 sideband that are comparable to the n  =  1 when plasma response is included. This is due to the reduced level of screening of the rational-surface-resonant n  =  3 component relative to the rational-surface-resonant n  =  1 component. The n  =  3 sidebands could play a similar role in ELM suppression on KSTAR as the toroidal sidebands (n  =  1, 2, 4) in DIII-D n  =  3 ELM suppression with missing I-coil segments (Paz Soldan et al 2014 Nucl. Fusion 54 073013). This result may help to explain the uniqueness of ELM suppression with n  =  1 perturbations in KSTAR since the effective perturbation is a mixed n  =  1/n  =  3 perturbation similar to n  =  3 ELM suppression in DIII-D.

  8. Scalar field dark energy perturbations and their scale dependence

    SciTech Connect

    Unnikrishnan, Sanil; Seshadri, T. R.; Jassal, H. K.

    2008-12-15

    We estimate the amplitude of perturbation in dark energy at different length scales for a quintessence model with an exponential potential. It is shown that on length scales much smaller than Hubble radius, perturbation in dark energy is negligible in comparison to that in dark matter. However, on scales comparable to the Hubble radius ({lambda}{sub p}>1000 Mpc) the perturbation in dark energy in general cannot be neglected. As compared to the {lambda}CDM model, the large-scale matter power spectrum is suppressed in a generic quintessence dark energy model. We show that on scales {lambda}{sub p}<1000 Mpc, this suppression is primarily due to different background evolution compared to the {lambda}CDM model. However, on much larger scales perturbation in dark energy can affect the matter power spectrum significantly. Hence this analysis can act as a discriminator between the {lambda}CDM model and other generic dark energy models with w{sub de}{ne}-1.

  9. Large-scale perturbations from the waterfall field in hybrid inflation

    SciTech Connect

    Fonseca, José; Wands, David; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2010-09-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10{sup −54} on cosmological scales.

  10. Perturbation analysis of deformed Q-balls and primordial magnetic fields

    SciTech Connect

    Uesugi, Tomoko; Shiromizu, Tetsuya; Aoki, Mayumi

    1999-11-19

    We study the excited states of the Q-balls by performing stationary perturbation on the spherical Q-balls. We find the exact solution of the stationary perturbation of the global Q-ball. For local Q-balls we solve the equations of motion for the perturbative part approximately by using expansion about the coupling constant. Furthermore we comment on the magnetic field generated by the excited states of local Q-balls during the phase transition.

  11. Apparatus and method for microwave processing of materials using field-perturbing tool

    DOEpatents

    Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.

    2001-01-01

    A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.

  12. Automated conformational energy fitting for force-field development

    PubMed Central

    Guvench, Olgun; MacKerell, Alexander D.

    2010-01-01

    We present a general conformational-energy fitting procedure based on Monte Carlo simulated annealing (MCSA) for application in the development of molecular mechanics force fields. Starting with a target potential energy surface and an unparameterized molecular mechanics potential energy surface, an optimized set of either dihedral or grid-based correction map (CMAP) parameters is produced that minimizes the root mean squared error (RMSE) between the parameterized and targeted energies. The fitting is done using an MCSA search in parameter space and consistently converges to the same RMSE irrespective of the randomized parameters used to seed the search. Any number of dihedral parameters can be simultaneously parameterized, allowing for fitting to multi-dimensional potential energy scans. Fitting options for dihedral parameters include non-uniform weighting of the target data, constraining multiple optimized parameters to the same value, constraining parameters to be no greater than a user-specified maximum value, including all or only a subset of multiplicities defining the dihedral Fourier series, and optimization of phase angles in addition to force constants. The dihedral parameter fitting algorithm’s performance is characterized through multi-dimensional fitting of cyclohexane, tetrahydropyran, and hexopyranose monosaccharide energetics, with the latter case having a 30-dimensional parameter space. The CMAP fitting is applied in the context of polypeptides, and is used to develop a parameterization that simultaneously captures the φ, ψ energetics of the alanine dipeptide and the alanine tetrapeptide. Because the dihedral energy term is common to many force fields, we have implemented the dihedral-fitting algorithm in the portable Python scripting language and have made it freely available as Supplementary Material. PMID:18458967

  13. Test of the Anti-de Sitter-Space/Conformal-Field-Theory Correspondence Using High-Spin Operators

    SciTech Connect

    Benna, M. K.; Benvenuti, S.; Klebanov, I. R.; Scardicchio, A.

    2007-03-30

    In two remarkable recent papers the planar perturbative expansion was proposed for the universal function of the coupling appearing in the dimensions of high-spin operators of the N=4 super Yang-Mills theory. We study numerically the integral equation derived by Beisert, Eden, and Staudacher, which resums the perturbative series. In a confirmation of the anti-de Sitter-space/conformal-field-theory (AdS/CFT) correspondence, we find a smooth function whose two leading terms at strong coupling match the results obtained for the semiclassical folded string spinning in AdS{sub 5}. We also make a numerical prediction for the third term in the strong coupling series.

  14. Reliability of the Optimized Perturbation Theory for scalar fields at finite temperature

    SciTech Connect

    Farias, R. L.; Teixeira, D. L. Jr.; Ramos, R. O.

    2013-03-25

    The thermodynamics of a massless scalar field with a quartic interaction is studied up to third order in the Optimized Perturbation Theory (OPT) method. A comparison with other nonperturbative approaches is performed such that the reliability of OPT is accessed.

  15. On estimating perturbative coefficients in quantum field theory and statistical physics

    SciTech Connect

    Samuel, M.A. |

    1994-05-01

    The authors present a method for estimating perturbative coefficients in quantum field theory and Statistical Physics. They are able to obtain reliable error-bars for each estimate. The results, in all cases, are excellent.

  16. Effective field theory program for conformal quantum anomalies

    SciTech Connect

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; Canal, Carlos A. Garcia; Ordonez, Carlos R.

    2005-09-15

    The emergence of conformal states is established for any problem involving a domain of scales where the long-range SO(2,1) conformally invariant interaction is applicable. Whenever a clear-cut separation of ultraviolet and infrared cutoffs is in place, this renormalization mechanism is capable of producing binding in the strong-coupling regime. A realization of this phenomenon, in the form of dipole-bound anions, is discussed.

  17. Noncommutative Geometry in M-Theory and Conformal Field Theory

    SciTech Connect

    Morariu, Bogdan

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U{sub q}(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun{sub q} (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  18. Short perturbations of cosmic ray intensity and electric field in atmosphere

    NASA Technical Reports Server (NTRS)

    Alexeyenko, V. V.; Chudakov, A. E.; Sborshikov, V. G.; Tizengauzen, V. A.

    1985-01-01

    Short perturbations of cosmic ray intensity were found to be a common phenomenon. Its meteorological origin and correlation with electric field is established. The phenomenon can be explained by the electric field if the strength of this field at high altitudes is much bigger than the measured one at surface.

  19. Perturbative quantum field theory in the framework of the fermionic projector

    SciTech Connect

    Finster, Felix

    2014-04-15

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  20. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  1. Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories

    SciTech Connect

    Bagchi, Arjun

    2010-10-22

    We find a surprising connection between asymptotically flat spacetimes and nonrelativistic conformal systems in one lower dimension. The Bondi-Metzner-Sachs (BMS) group is the group of asymptotic isometries of flat Minkowski space at null infinity. This is known to be infinite dimensional in three and four dimensions. We show that the BMS algebra in 3 dimensions is the same as the 2D Galilean conformal algebra (GCA) which is of relevance to nonrelativistic conformal symmetries. We further justify our proposal by looking at a Penrose limit on a radially infalling null ray inspired by nonrelativistic scaling and obtain a flat metric. The BMS{sub 4} algebra is also discussed and found to be the same as another class of GCA, called semi-GCA, in three dimensions. We propose a general BMS-GCA correspondence. Some consequences are discussed.

  2. The characteristics of quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Shen, X.; Zhao, S.; Yao, Lu; Ouyang, X.; Qian, J.

    2014-01-01

    This paper presents new results after processing the ULF electric field (DC-15 Hz) observed by DEMETER satellite (h = 660-710 km). Typical perturbations were picked up in quasistatic electric field around some large earthquakes in 2010 at first. And then, 27 earthquakes were selected to be analyzed on quasistatic electric field in two seismic regions of Indonesia and Chile at equatorial and middle latitude area respectively. Three-component electric field data related to earthquakes were collected along all the up-orbits (in local nighttime) in a limited distance of 2000 km to the epicenters during 9 days with 7 days before and 1 day after those cases, and totally 57 perturbations were found around them. All the results show that the amplitude of quasistatic electric field perturbations varies from 1.5 to 16 mV/m in the upper ionosphere, mostly smaller than 10 mV/m. And the perturbations were mainly located just over the epicentral area or at the end of seismic faults constructed by a series of earthquakes where electromagnetic emissions may be easily formed during preparation and development processes of seismic sequences. Among all 27 cases, there are 10 earthquakes with perturbations occurring just one day before, which demonstrates the close correlation in time domain between quasistatic electric field in ionosphere and large earthquakes. Finally, combined with in situ observation of plasma parameters, the coupling mechanism of quasistatic electric field in different earth spheres was discussed.

  3. Non-perturbative methods in relativistic field theory

    SciTech Connect

    Franz Gross

    2013-03-01

    This talk reviews relativistic methods used to compute bound and low energy scattering states in field theory, with emphasis on approaches that John Tjon and I discussed (and argued about) together. I compare the Bethe–Salpeter and Covariant Spectator equations, show some applications, and then report on some of the things we have learned from the beautiful Feynman–Schwinger technique for calculating the exact sum of all ladder and crossed ladder diagrams in field theory.

  4. Proton radiography as an electromagnetic field and density perturbation diagnostic (invited)

    SciTech Connect

    Mackinnon, A.J.; Patel, P.K.; Town, R.P.; Edwards, M.J.; Phillips, T.; Lerner, S.C.; Price, D.W.; Hicks, D.; Key, M.H.; Hatchett, S.; Wilks, S.C.; Borghesi, M.; Romagnani, L.; Kar, S.; Toncian, T.; Pretzler, G.; Willi, O.; Koenig, M.; Martinolli, E.; Lepape, S.

    2004-10-01

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.

  5. Virasoro conformal blocks and thermality from classical background fields

    SciTech Connect

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.

    2015-11-30

    We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. Furthermore, we comment on the implications of our results for the universality of black hole thermality in AdS3 , or equivalently, the eigenstate thermalization hypothesis for CFT2 at large central charge.

  6. Virasoro conformal blocks and thermality from classical background fields

    DOE PAGESBeta

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.

    2015-11-30

    We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. Furthermore, we commentmore » on the implications of our results for the universality of black hole thermality in AdS3 , or equivalently, the eigenstate thermalization hypothesis for CFT2 at large central charge.« less

  7. Nonlinear perturbations of cosmological scalar fields with non-standard kinetic terms

    NASA Astrophysics Data System (ADS)

    Renaux-Petel, Sébastien; Tasinato, Gianmassimo

    2009-01-01

    We adopt a covariant formalism to derive exact evolution equations for nonlinear perturbations, in a universe dominated by two scalar fields. These scalar fields are characterized by non-canonical kinetic terms and an arbitrary field space metric, a situation typically encountered in inflationary models inspired by string theory. We decompose the nonlinear scalar perturbations into adiabatic and entropy modes, generalizing the definition adopted in the linear theory, and we derive the corresponding exact evolution equations. We also obtain a nonlinear generalization of the curvature perturbation on uniform density hypersurfaces, showing that on large scales it is sourced only by the nonlinear version of the entropy perturbation. We then expand these equations to second order in the perturbations, using a coordinate based formalism. Our results are relatively compact and elegant and enable one to identify the new effects coming from the non-canonical structure of the scalar fields Lagrangian. We also explain how to analyze, in our formalism, the interesting scenario of multi-field Dirac-Born-Infeld inflation.

  8. Close intramolecular sulfur-oxygen contacts: modified force field parameters for improved conformation generation.

    PubMed

    Lupyan, Dmitry; Abramov, Yuriy A; Sherman, Woody

    2012-11-01

    The Cambridge Structural Database (CSD) offers an excellent data source to study small molecule conformations and molecular interactions. We have analyzed 130 small molecules from the CSD containing an intramolecular sulfur-oxygen distance less than the sum of their van der Waals (vdW) radii. Close S···O distances are observed in several important medicinal chemistry motifs (e.g. a carbonyl oxygen connected by a carbon or nitrogen linker to a sulfur) and are not treated well with existing parameters in the MMFFs or OPLS_2005 force fields, resulting in suboptimal geometries and energetics. In this work, we develop modified parameters for the OPLS_2005 force field to better treat this specific interaction in order to generate conformations close to those found in the CSD structures. We use a combination of refitting a force field torsional parameter, adding a specific atom pair vdW term, and attenuating the electrostatic interactions to obtain an improvement in the accuracy of geometry minimizations and conformational searches for these molecules. Specifically, in a conformational search 58 % of the cases produced a conformation less than 0.25 Å from the CSD crystal conformation with the modified OPLS force field parameters developed in this work. In contrast, 25 and 37 % produced a conformation less than 0.25 Å with the MMFFs and OPLS_2005 force fields, respectively. As an application of the new parameters, we generated conformations for the tyrosine kinase inhibitor axitinib (trade name Inlyta) that could be correctly repacked into three observed polymorphic structures, which was not possible with conformations generated using MMFFs or OPLS_2005. The improved parameters can be mapped directly onto physical characteristics of the systems that are treated inadequately with the molecular mechanics force fields used in this study and potentially other force fields as well. PMID:23053737

  9. Effects of Large-scale Non-axisymmetric Perturbations in the Mean-field Solar Dynamo.

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Kosovichev, A. G.

    2015-11-01

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R⊙ has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number Rm. In the range of Rm = 104-106 the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.

  10. Relative unitary implementability of perturbed quantum field dynamics on de-Sitter space

    NASA Astrophysics Data System (ADS)

    Poon, Gary K.

    In this article, we study the quantum dynamics of a Klein-Gordon field on de-Sitter space. We prove time evolution is not unitarily implementable. We also consider a Klein-Gordon field perturbed by a local potential V. In this case we prove that the deviation from the V = 0 dynamics is unitarily implementable.

  11. Evolution operators in conformal field theories and conformal mappings: Entanglement Hamiltonian, the sine-square deformation, and others

    NASA Astrophysics Data System (ADS)

    Wen, Xueda; Ryu, Shinsei; Ludwig, Andreas W. W.

    2016-06-01

    By making use of conformal mapping, we construct various time-evolution operators in (1+1)-dimensional conformal field theories (CFTs), which take the form ∫d x f (x )H (x ) , where H (x ) is the Hamiltonian density of the CFT and f (x ) is an envelope function. Examples of such deformed evolution operators include the entanglement Hamiltonian and the so-called sine-square deformation of the CFT. Within our construction, the spectrum and the (finite-size) scaling of the level spacing of the deformed evolution operator are known exactly. Based on our construction, we also propose a regularized version of the sine-square deformation, which, in contrast to the original sine-square deformation, has the spectrum of the CFT defined on a spatial circle of finite circumference L , and for which the level spacing scales as 1 /L2 , once the circumference of the circle and the regularization parameter are suitably adjusted.

  12. Higher spin conformal geometry in three dimensions and prepotentials for higher spin gauge fields

    NASA Astrophysics Data System (ADS)

    Henneaux, Marc; Hörtner, Sergio; Leonard, Amaury

    2016-01-01

    We study systematically the conformal geometry of higher spin bosonic gauge fields in three spacetime dimensions. We recall the definition of the Cotton tensor for higher spins and establish a number of its properties that turn out to be key in solving in terms of prepotentials the constraint equations of the Hamiltonian (3 + 1) formulation of four-dimensional higher spin gauge fields. The prepotentials are shown to exhibit higher spin conformal symmetry. Just as for spins 1 and 2, they provide a remarkably simple, manifestly duality invariant formulation of the theory. While the higher spin conformal geometry is developed for arbitrary bosonic spin, we explicitly perform the Hamiltonian analysis and derive the solution of the constraints only in the illustrative case of spin 3. In a separate publication, the Hamiltonian analysis in terms of prepotentials is extended to all bosonic higher spins using the conformal tools of this paper, and the same emergence of higher spin conformal symmetry is confirmed.

  13. Setting the renormalization scale in perturbative QCD: Comparisons of the principle of maximum conformality with the sequential extended Brodsky-Lepage-Mackenzie approach

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Hao; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.; Mojaza, Matin

    2015-05-01

    A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach to all orders. In this paper we discuss two distinct methods. One is based on the "Principle of Maximum Conformality" (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the "sequential extended BLM" (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0 -expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. We then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio Re+e- at four-loop order in pQCD.

  14. In vivo static field perturbations in magnetic resonance

    NASA Astrophysics Data System (ADS)

    Koch, Kevin Matthew

    2007-12-01

    Fundamental magnetic resonance (MR) theory assumes the spatial homogeneity of a dominating static magnetic field B = B 0ẑ. When this assumption is violated, a myriad of artifacts and compromising factors are introduced to MR spectra and images. Though in vivo nuclear magnetic resonance (NMR) is one of the most widely used scientific and diagnostic tools in medicine and biology, it remains haunted by the continual and persistant ghost of B0 inhomogeneity. An inclusive list of in vivo NMR applications severely impacted by B0 inhomogeneity could go on ad infinitum. Examples of such applications include neurosurgical utility in functional magnetic resonance imaging (fMRI), cerebral metabolic flux mapping, cerebral diffusion tractography, and abdominal diagnostic imaging. Given this wide impact on in vivo NMR, significant effort has been exerted in developing methods of compensating B0 inhomogeneity. Complicating this task is the sample-specific nature of in vivo B 0 inhomogeneity and its exacerbation with ever increasing B 0 field strengths. State of the art B 0 inhomogeneity compensation is currently at a critical juncture where homogenization demands are overwhelming the outer capabilities of existing technology and methods. This thesis addresses the B 0 inhomogeneity problem in the mammalian brain and presents novel solutions to the homogenization technology stalemate.

  15. Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations

    NASA Astrophysics Data System (ADS)

    Gavrylenko, P.; Marshakov, A.

    2016-02-01

    We consider the conformal blocks in the theories with extended conformal W-symmetry for the integer Virasoro central charges. We show that these blocks for the generalized twist fields on sphere can be computed exactly in terms of the free field theory on the covering Riemann surface, even for a non-abelian monodromy group. The generalized twist fields are identified with particular primary fields of the W-algebra, and we propose a straightforward way to compute their W-charges. We demonstrate how these exact conformal blocks can be effectively computed using the technique arisen from the gauge theory/CFT correspondence. We discuss also their direct relation with the isomonodromic tau-function for the quasipermutation monodromy data, which can be an encouraging step on the way of definition of generic conformal blocks for W-algebra using the isomonodromy/CFT correspondence.

  16. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  17. Dynamics of Peccei-Quinn breaking field after inflation and axion isocurvature perturbations

    SciTech Connect

    Harigaya, Keisuke; Ibe, Masahiro; Kawasaki, Masahiro; Yanagida, Tsutomu T.

    2015-11-04

    The Peccei-Quinn mechanism suffers from the problem of the isocurvature perturbations. The isocurvature perturbations are suppressed if the Peccei-Quinn breaking scale is large during inflation. The oscillation of the Peccei-Quinn breaking field after inflation, however, leads to the formation of domain walls due to the parametric resonance effect. In this paper, we discuss the evolution of the Peccei-Quinn breaking field after inflation in detail, and propose a model where the parametric resonance is ineffective and hence domain walls are not formed. We also discuss consistency of our model with supersymmetric theory.

  18. Conformal field theory dual of the RS model with gauge fields in the bulk

    NASA Astrophysics Data System (ADS)

    Agashe, K.; Delgado, A.

    2003-02-01

    It has been conjectured that the (weakly coupled) Randall-Sundrum (RS) model with gauge fields in the bulk is dual to a (strongly coupled) 4D conformal field theory (CFT) with an UV cutoff and in which global symmetries of the CFT are gauged. We elucidate features of this dual CFT which are crucial for a complete understanding of the proposed duality. We argue that the limit of no (or small) brane-localized kinetic term for bulk gauge field on the RS side (often studied in the literature) is dual to no bare kinetic term for the gauge field which is coupled to the CFT global current. In this limit, the kinetic term for this gauge field in the dual CFT is “induced” by CFT loops. Then, this CFT loop contribution to the gauge field 1PI two-point function is dual (on the RS side) to the full gauge propagator (i.e., including the contribution of Kaluza-Klein and zero modes) with both external points on the Planck brane. We also emphasize that loop corrections to the gauge coupling on the RS side are dual to subleading effects in a large-N expansion on the CFT side; these subleading corrections to the gauge coupling in the dual CFT are (in general) sensitive to the strong dynamics of the CFT.

  19. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    SciTech Connect

    Kim, Kimin; Ahn, J-W; Scotti, F.; Park, J-K; Menard, J. E.

    2015-09-03

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifies the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.

  20. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    SciTech Connect

    Kim, Kimin; Ahn, J. -W.; Scotti, F.; Park, J. -K.; Menard, J. E.

    2015-09-03

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifies the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.

  1. Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    SciTech Connect

    Jassal, H. K.

    2010-04-15

    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modeled by either a scalar field or by a barotropic fluid. The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models. The dark energy equation of state evolves differently in these classes. In freezing models, the equation of state deviates from that of a cosmological constant at early times. For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times. Since the dark energy equation of state evolves differently in these classes, the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model. In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the integrated Sachs-Wolfe effect.

  2. Ambipolar radial electric field generated by anomalous transport induced by magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Chen, Dunqiang; Zhu, Siqiang; Zhang, Debing; Wang, Shaojie

    2016-05-01

    The anomalous particle transport induced by magnetic perturbations in a tokamak is investigated. The correlation between the radial position and the kinetic energy of electrons, Dr K=-e ErDr r , is predicted theoretically and is verified by simulations in the presence of a mean radial electric field. This correlation leads to a radial particle flux produced by the radial electric field. The ambipolar radial electric field can thus be predicted by using the ambipolarity condition Γri=Γre .

  3. On the reach of perturbative methods for dark matter density fields

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Schaan, Emmanuel; Zaldarriaga, Matias

    2016-03-01

    We study the mapping from Lagrangian to Eulerian space in the context of the Effective Field Theory (EFT) of Large Scale Structure. We compute Lagrangian displacements with Lagrangian Perturbation Theory (LPT) and perform the full non-perturbative transformation from displacement to density. When expanded up to a given order, this transformation reproduces the standard Eulerian Perturbation Theory (SPT) at the same order. However, the full transformation from displacement to density also includes higher order terms. These terms explicitly resum long wavelength motions, thus making the resulting density field better correlated with the true non-linear density field. As a result, the regime of validity of this approach is expected to extend that of the Eulerian EFT, and match that of the IR-resummed Eulerian EFT. This approach thus effectively enables a test of the IR-resummed EFT at the field level. We estimate the size of stochastic, non-perturbative contributions to the matter density power spectrum. We find that in our highest order calculation, at redshift z = 0 the power spectrum of the density field is reproduced with an accuracy of 1% (10%) up to k = 0.25 hMpc-1 (k = 0.46 hMpc-1). We believe that the dominant source of the remaining error is the stochastic contribution. Unfortunately, on these scales the stochastic term does not yet scale as k4 as it does in the very low k regime. Thus, modeling this contribution might be challenging.

  4. Non-Gaussianity at tree and one-loop levels from vector field perturbations

    SciTech Connect

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon; Lyth, David H.

    2009-11-15

    We study the spectrum P{sub {zeta}} and bispectrum B{sub {zeta}} of the primordial curvature perturbation {zeta} when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree-level terms [both (either) in P{sub {zeta}} and (or) in B{sub {zeta}}] and vice versa. The level of non-Gaussianity in the bispectrum, f{sub NL}, is calculated and related to the level of statistical anisotropy in the power spectrum, g{sub {zeta}}. For very small amounts of statistical anisotropy in the power spectrum, the level of non-Gaussianity may be very high, in some cases exceeding the current observational limit.

  5. Membrane potential perturbations induced in tissue cells by pulsed electric fields

    SciTech Connect

    Cooper, M.S.

    1995-09-01

    Pulsed electric fields directly influence the electrophysiology of tissue cells by transiently perturbing their transmembrane potential. To determine the magnitude and time course of this interaction, electronic cable theory was used to calculate the membrane potential perturbations induced in tissue cells by a spatially uniform, pulsed electric field. Analytic solutions were obtained that predict shifts in membrane potential along the length of cells as a function of time in response to an electrical pulse. For elongated tissue cells, or groups of tissue cells that are couple electronically by gap junctions, significant hyperpolarizations and depolarizations can result form millisecond applications of electric fields with strengths on the order of 10--100 mV/cm. The results illustrate the importance of considering cellular cable parameters in assessing the effects of transient electric fields on biological systems, as well as in predicting the efficacy of pulsed electric fields in medical treatments.

  6. Modelling of plasma response to resonant magnetic perturbation fields in MAST and ITER

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Kirk, A.; Gribov, Y.; Gryaznevich, M. P.; Hender, T. C.; Nardon, E.

    2011-08-01

    The resonant magnetic perturbation (RMP) fields, including the plasma response, are computed within a linear, full toroidal, single-fluid resistive magnetohydrodynamic (MHD) model, and under realistic plasma conditions for MAST and ITER. The response field is found to be considerably reduced, compared with the vacuum field produced by the magnetic perturbation coils. This field reduction relies strongly on the screening effect from the toroidal plasma rotation. Computations also quantify three-dimensional (3D) distortions of the plasma surface, caused by RMP fields. A correlation is found between the computed mode structures, the plasma surface displacement and the observed density pump-out effect in MAST experiments. Generally, the density pump-out tends to occur when the surface displacement peaks near the X-points.

  7. Peak deconvolution in high-field asymmetric waveform ion mobility spectrometry (FAIMS) to characterize macromolecular conformations

    NASA Astrophysics Data System (ADS)

    Robinson, Errol W.; Sellon, Rachel E.; Williams, Evan R.

    2007-01-01

    Protonated poly(ethylene glycol), produced by electrospray ionization (ESI), with molecular weights ranging from 0.3 to 5 kDa and charge states from 1+ to 7+ were characterized using high-field asymmetric waveform ion mobility spectrometry (FAIMS). Results for all but some of the 3+ and 4+ charge states are consistent with a single gas-phase conformer or family of unresolved conformers for each of these charge states. The FAIMS compensation voltage scans resulted in peaks that could be accurately fit with a single Gaussian for each peak. The peak widths increase linearly with compensation voltage for maximum ion transmission but do not depend on m/z or molecular weight. Fitting parameters obtained from the poly(ethylene glycol) data were used to analyze conformations of oxidized and reduced lysozyme formed from different solutions. For oxidized lysozyme formed from a buffered aqueous solution, a single conformer (or group of unresolved conformers) was observed for the 7+ and 8+ charge states. Two conformers were observed for the 9+ and 10+ charge states formed from more denaturing solutions. Data for the fully reduced form indicate the existence of up to three different conformers for each charge state produced directly by ESI and a general progression from a more extended to a more folded structure with decreasing charge state. These results are consistent with those obtained previously by proton-transfer reactivity and drift tube ion mobility experiments, although more conformers were identified for the fully reduced form of lysozyme using FAIMS.

  8. Conformally invariant 'massless' spin-2 field in the de Sitter universe

    SciTech Connect

    Dehghani, M.; Rouhani, S.; Takook, M. V.; Tanhayi, M. R.

    2008-03-15

    A massless spin-2 field equation in de Sitter space, which is invariant under the conformal transformation, has been obtained. The framework utilized is the symmetric rank-2 tensor field of the conformal group. Our method is based on the group theoretical approach and six-cone formalism, initially introduced by Dirac. Dirac's six-cone is used to obtain conformally invariant equations on de Sitter space. The solution of the physical sector of massless spin-2 field (linear gravity) in de Sitter ambient space is written as a product of a generalized polarization tensor and a massless minimally coupled scalar field. Similar to the minimally coupled scalar field, for quantization of this sector, the Krein space quantization is utilized. We have calculated the physical part of the linear graviton two-point function. This two-point function is de Sitter invariant and free of pathological large-distance behavior.

  9. Anti-de Sitter-Space/Conformal-Field-Theory Casimir Energy for Rotating Black Holes

    SciTech Connect

    Gibbons, G.W.; Perry, M.J.; Pope, C.N.

    2005-12-02

    We show that, if one chooses the Einstein static universe as the metric on the conformal boundary of Kerr-anti-de Sitter spacetime, then the Casimir energy of the boundary conformal field theory can easily be determined. The result is independent of the rotation parameters, and the total boundary energy then straightforwardly obeys the first law of thermodynamics. Other choices for the metric on the conformal boundary will give different, more complicated, results. As an application, we calculate the Casimir energy for free self-dual tensor multiplets in six dimensions and compare it with that of the seven-dimensional supergravity dual. They differ by a factor of 5/4.

  10. Perturbative path-integral study of active- and passive-tracer diffusion in fluctuating fields

    NASA Astrophysics Data System (ADS)

    Démery, Vincent; Dean, David S.

    2011-07-01

    We study the effective diffusion constant of a Brownian particle linearly coupled to a thermally fluctuating scalar field. We use a path-integral method to compute the effective diffusion coefficient perturbatively to lowest order in the coupling constant. This method can be applied to cases where the field is affected by the particle (an active tracer) and cases where the tracer is passive. Our results are applicable to a wide range of physical problems, from a protein diffusing in a membrane to the dispersion of a passive tracer in a random potential. In the case of passive diffusion in a scalar field, we show that the coupling to the field can, in some cases, speed up the diffusion corresponding to a form of stochastic resonance. Our results on passive diffusion are also confirmed via a perturbative calculation of the probability density function of the particle in a Fokker-Planck formulation of the problem. Numerical simulations on simplified systems corroborate our results.

  11. Comparison of perturbations in fluid and scalar field models of dark energy

    SciTech Connect

    Jassal, H. K.

    2009-06-15

    We compare perturbations in a fluid model of dark energy with those in a scalar field. As compared to the {lambda}CDM model, large scale matter power spectrum is suppressed in fluid model as well as in a generic quintessence dark energy model. To check the efficacy of fluid description of dark energy in emulating a scalar field, we consider a potential which gives the same background evolution as a fluid with a constant equation of state. We show that for sub-Hubble scales, a fluid model effectively emulates a scalar field model. At larger scales, where dark energy perturbations may play a significant role, the fluid analogy breaks down and the evolution of matter density contrast depends on individual scalar field models.

  12. Conformal fields and the quantum state of the universe

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Y.

    2012-02-01

    The creation of a quantum Universe is described by a density matrix which yields an ensemble of universes with the cosmological constant limited to a bounded range Λmin <= Λ <= Λmax. The domain Λ < Λmin is ruled out by a cosmological bootstrap requirement (the self-consistent back reaction of hot matter). The upper cutoff results from the quantum effects of vacuum energy and the conformal anomaly mediated by a special ghost-avoidance renormalization. The cutoff Λmax establishes a new quantum scale - the accumulation point of an infinite sequence of garland-type instantons. The cosmological evolution starting with these initial conditions also have some new features: the stage of cosmic acceleration can be followed by a big boost singularity - a rapid growth up to infinity of the scale factor acceleration parameter. A correspondence between the 4-dimensional modified quantum Freidmann equations and the Friedmann equations arising in the context of 5-dimensional classical cosmological models was established.

  13. Gauge invariant approach to low-spin anomalous conformal currents and shadow fields

    SciTech Connect

    Metsaev, R. R.

    2011-05-15

    Conformal low-spin anomalous currents and shadow fields in flat space-time of dimensions greater than or equal to four are studied. The gauge invariant formulation for such currents and shadow fields is developed. Gauge symmetries are realized by involving Stueckelberg and auxiliary fields. The gauge invariant differential constraints for anomalous currents and shadow fields and the realization of global conformal symmetries are obtained. Gauge invariant two-point vertices for anomalous shadow fields are also obtained. In the Stueckelberg gauge frame, these gauge invariant vertices become the standard two-point vertices of conformal field theory. Light-cone gauge two-point vertices of the anomalous shadow fields are derived. The AdS/CFT correspondence for anomalous currents and shadow fields and the respective normalizable and non-normalizable solutions of massive low-spin anti-de Sitter fields is studied. The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations of motion. We demonstrate that leftover on-shell gauge symmetries of bulk massive fields correspond to gauge symmetries of boundary anomalous currents and shadow fields, while the modified (Lorentz) de Donder gauge conditions for bulk massive fields correspond to differential constraints for boundary anomalous currents and shadow fields.

  14. Quasi-conformal remapping for compensation of human visual field defects - Advances in image remapping for human field defects

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Loshin, David S.

    1989-01-01

    Image coordinate transformations are investigated for possible use in a low vision aid for human patients. These patients typically have field defects with localized retinal dysfunction predominately central (age related maculopathy) or peripheral (retinitis pigmentosa). Previously simple eccentricity-only remappings which do not maintain conformality were shown. Initial attempts on developing images which hold quasi-conformality after remapping are presented. Although the quasi-conformal images may have less local distortion, there are discontinuities in the image which may counterindicate this type of transformation for the low vision application.

  15. Quasi-Conformal Remapping For Compensation Of Human Visual Field Defects: Advances In Image Remapping For Human Field Defects

    NASA Astrophysics Data System (ADS)

    Juday, Richard D.; Loshin, David S.

    1989-06-01

    We are investigating image coordinate transformations possibly to be used in a low vision aid for human patients. These patients typically have field defects with localized retinal dysfunction predominately central (age related maculopathy) or peripheral (retinitis pigmentosa). Previously we have shown simple eccentricity-only remappings which do not maintain conformality. In this report we present our initial attempts on developing images which hold quasi-conformality after remapping. Although the quasi-conformal images may have less local distortion, there are discontinuities in the image which may counterindicate this type of transformation for the low vision application.

  16. Conformally invariant spin-3/2 field equation in de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Fatahi, N.

    2015-09-01

    In the previous paper (Behroozi et al., Phys Rev D 74:124014, 2006; Dehghani et al., Phys Rev D 77:064028, 2008), conformal invariance for massless tensor fields (scalar, vector and spin-2 fields) was studied and the solutions of their wave equations and two-point functions were obtained. In the present paper, conformally invariant wave equation for massless spinor field in de Sitter space-time has been obtained. For this propose, we use Dirac's six-cone formalism. The solutions of massless spin-1/2 and -3/2 equations, in the ambient space notation, have been calculated.

  17. Fully non-linear cosmological perturbations of multicomponent fluid and field systems

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung

    2016-09-01

    We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.

  18. On representations of conformal field theories and the construction of orbifolds

    NASA Astrophysics Data System (ADS)

    Montague, P. S.

    1996-09-01

    We consider representations of meromorphic bosonic chiral conformal field theories and demonstrate that such a representation is completely specified by a state within the theory. The necessary and sufficient conditions upon this state are derived and, because of their form, we show that we may extend the representation to a representation of a suitable larger conformal field theory. In particular, we apply this procedure to the (untwisted) lattice conformal field theories (i.e. corresponding to the propagation of a bosonic string on a torus), and deduce that Dong's proof of the uniqueness of the twisted representation for the reflection-twisted projection of the Leech lattice conformal field theory generalises to an arbitrary even (self-dual) lattice. As a consequence, we see that the reflection-twisted lattice theories of Dolan, Goddard and Montague are truly self-dual, extending the analogies with the theories of lattices and codes which were being pursued. Some comments are also made on the general concept of the definition of an orbifold of a conformal field theory in relation to this point of view.

  19. The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation.

    PubMed Central

    Bassi, G S; Murchie, A I; Lilley, D M

    1996-01-01

    The hammerhead ribozyme undergoes an ion-dependent folding process into the active conformation. We find that the folding can be blocked at specific stages by changes of sequence or functionality within the core. In the the absence of added metal ions, the global structure of the hammerhead is extended, with a large angle subtended between stems I and II. No core sequence changes appear to alter this geometry, consistent with an unstructured core under these conditions. Upon addition of low concentrations of magnesium ions, the hammerhead folds by an association of stems II and III, to include a large angle between them. This stage is inhibited or altered by mutations within the oligopurine sequence lying between stems II and III, and folding is completely prevented by an A14G mutation. Further increase in magnesium ion concentration brings about a second stage of folding in the natural sequence hammerhead, involving a reorientation of stem I, which rotates around into the same direction of stem II. Because this transition occurs over the same range of magnesium ion concentration over which the hammerhead ribozyme becomes active, it is likely that the final conformation is most closely related to the active form of the structure. Magnesium ion-dependent folding into this conformation is prevented by changes at G5, notably removal of the 2'-hydroxyl group and replacement of the base by cytidine. The ability to dissect the folding process by means of sequence changes suggests that two separate ion-dependent stages are involved in the folding of the hammerhead ribozyme into the active conformation. PMID:8752086

  20. Curvature perturbation spectrum in two-field inflation with a turning trajectory

    SciTech Connect

    Pi, Shi; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2012-10-01

    We revisit a two-component inflaton model with a turning trajectory in the field space, where the field slowly rolls down along the trajectory. We consider the case when the effective mass in the direction perpendicular to the trajectory, namely the isocurvature direction, is either of the same order as or much larger than the Hubble parameter. Assuming that the turning angular velocity is small, we compute analytically the corrections to the power spectrum of curvature perturbation caused by the mediation of the heavy isocurvature perturbation, and compare our analytic results with the numerical ones. Especially, when M{sub eff}{sup 2} >> H{sup 2}, we find that it is proportional to M{sub eff}{sup −2}. This result is consistent with the one obtained previously by an effective field theory approach.

  1. Physical unitarity for a massive Yang-Mills theory without the Higgs field: A perturbative treatment

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Suzuki, Kenta; Fukamachi, Hitoshi; Nishino, Shogo; Shinohara, Toru

    2013-01-01

    In a series of papers, we examine the physical unitarity in a massive Yang-Mills theory without the Higgs field in which the color gauge symmetry is not spontaneously broken and kept intact. For this purpose, we use a new framework proposed in the previous paper Kondo [arXiv:1208.3521] based on a nonperturbative construction of a non-Abelian field describing a massive spin-one vector boson field, which enables us to perform the perturbative and nonperturbative studies on the physical unitarity. In this paper, we present a new perturbative treatment for the physical unitarity after giving the general properties of the massive Yang-Mills theory. Then we reproduce the violation of physical unitarity in a transparent way. This paper is a preliminary work to the subsequent papers in which we present a nonperturbative framework to propose a possible scenario of restoring the physical unitarity in the Curci-Ferrari model.

  2. The perturbation correction factor of ionisation chambers in beta-radiation fields.

    PubMed

    Böhm, J

    1980-01-01

    In determining the absorbed dose in a solid medium by means of gas-filled ionisation chambers, the perturbation of the radiation field by the chamber needs to be taken into account. So far, an appropriate correction factor has neither been calculated nor measured for beta-radiation. This work describes its experimental determination for an extrapolation chamber and beta-radiation fields of 147Pm, 204Tl, and 90Sr + 90Y. The results show that the correction factor may be assumed to be the product of a shield factor and a scatter factor the magnitudes of which depend on the chamber geometry and the radiation field. The change of the perturbation correction factor with phantom depth is important for the measurement of depth dose curves. This is demonstrated by an example. PMID:7360793

  3. Enhanced Magnetic Field Perturbations and Electric Currents Observed Downstream of the High Power Helicon

    NASA Astrophysics Data System (ADS)

    Race Roberson, B.; Winglee, Robert; Ziemba, Tim; Prager, James

    2010-11-01

    The high power helicon (HPH) is a compact plasma source that can generate downstream densities of 10^17-10^18 m-3 and directed ion energies greater than 20 eV that continue to increase tens of centimeters downstream of the source. In order to understand the coupling mechanism between the helicon antenna and the plasma outside the immediate source region, measurements were made in the plasma plume downstream from the thruster of the propagating wave magnetic field and the perturbation of the axial bulk field. This magnetic field perturbation (δB) peaks at more than 15 gauss in strength downstream of the plasma source and propagates tens of centimeters downstream, cancelling the base magnetic field as it propagates. Taking the curl of this measured magnetic perturbation and assuming azimuthal symmetry suggests a peak current density of 20 kA m-2. Data will be presented that relates the cancellation of the base magnetic field to the propagation of the helicon wave and the region where the plasma current system closes.

  4. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  5. A test of magnetic field draping induced Bz perturbations ahead of fast coronal mass ejecta

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Bame, S. J.; Smith, E. J.; Cane, H. V.

    1989-01-01

    ICE plasma and magnetic field data are examined to look for observational evidence of IMF draping ahead of fast coronal mass ejections (CMEs). The utility of the draping model for predicting the Bz perturbations and hence geomagnetic activity associated with the sheath regions ahead of such CMEs is also examined. A simple prediction scheme based on the upstream radial field component is developed and a set of interplanetary shock events previously associated with interplanetary type II bursts, and hence solar source locations, is used. Of 17 events the radial component predictor developed here correctly predicts the direction considered of the Bz perturbations for 13 events (76 percent). While this result is certainly not conclusive, it is considered to be supportive of the draping scenario.

  6. Electric field-perturbation measurement of the interaction between two laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Sánchez-Aké, C.; Bredice, F.; Villagrán-Muniz, M.

    2012-02-01

    The interaction between two ns-laser-induced plasmas in air at the early-stage of expansion has been analyzed by using a method based on the direct measurement of the perturbation of an externally applied electric field. In this experimental method, the plasmas were produced by focusing two laser beams between the plates of a parallel-plane-charged capacitor. These plasmas produce a perturbation in the electric field of the capacitor which can be measured as a voltage change across a resistor connected to the ground plate. It was found that for delays shorter than 5 ns, the interaction between plasmas is mainly due to the interaction of the dipole-charge distribution of each plasma. For longer time delays, the shielding effect was dominant.

  7. Electric field-perturbation measurement of the interaction between two laser-induced plasmas

    SciTech Connect

    Sanchez-Ake, C.; Villagran-Muniz, M.; Bredice, F.

    2012-02-15

    The interaction between two ns-laser-induced plasmas in air at the early-stage of expansion has been analyzed by using a method based on the direct measurement of the perturbation of an externally applied electric field. In this experimental method, the plasmas were produced by focusing two laser beams between the plates of a parallel-plane-charged capacitor. These plasmas produce a perturbation in the electric field of the capacitor which can be measured as a voltage change across a resistor connected to the ground plate. It was found that for delays shorter than 5 ns, the interaction between plasmas is mainly due to the interaction of the dipole-charge distribution of each plasma. For longer time delays, the shielding effect was dominant.

  8. Electric field-perturbation measurement of the interaction between two laser-induced plasmas.

    PubMed

    Sánchez-Aké, C; Bredice, F; Villagrán-Muniz, M

    2012-02-01

    The interaction between two ns-laser-induced plasmas in air at the early-stage of expansion has been analyzed by using a method based on the direct measurement of the perturbation of an externally applied electric field. In this experimental method, the plasmas were produced by focusing two laser beams between the plates of a parallel-plane-charged capacitor. These plasmas produce a perturbation in the electric field of the capacitor which can be measured as a voltage change across a resistor connected to the ground plate. It was found that for delays shorter than 5 ns, the interaction between plasmas is mainly due to the interaction of the dipole-charge distribution of each plasma. For longer time delays, the shielding effect was dominant. PMID:22380088

  9. Saturn's periodic magnetic field perturbations caused by a rotating partial ring current

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Khurana, K. K.; Mitchell, D. G.; Sergis, N.; Dialynas, K.; Carbary, J. F.; Roelof, E. C.; Paranicas, C. P.; Krimigis, S. M.; Mauk, B. H.

    2010-11-01

    We demonstrate that the periodic magnetic field perturbations as observed from Cassini are caused by the plasma pressure of the energetic (>2 keV) particle distributions that are periodically injected and subsequently drift around Saturn. Plasma pressures inferred from the Cassini Plasma Spectrometer (CAPS) (<2 keV) and the Magnetospheric Imaging Instrument (MIMI) (>2 keV) are used to compute the three-dimensional pressure-driven currents and their associated magnetic field perturbations. The distribution of the “hot” (>2 keV) plasma pressure is derived from Energetic Neutral Atom (ENA) images obtained by the Ion Neutral Camera (INCA) and in-situ spectral measurements. The radial profile of “cold” (<2 keV) plasma pressure is obtained from statistical studies and is assumed to be azimuthally symmetric.

  10. On twistors and conformal field theories from six dimensions

    SciTech Connect

    Saemann, Christian; Wolf, Martin

    2013-01-15

    We discuss chiral zero-rest-mass field equations on six-dimensional space-time from a twistorial point of view. Specifically, we present a detailed cohomological analysis, develop both Penrose and Penrose-Ward transforms, and analyse the corresponding contour integral formulae. We also give twistor space action principles. We then dimensionally reduce the twistor space of six-dimensional space-time to obtain twistor formulations of various theories in lower dimensions. Besides well-known twistor spaces, we also find a novel twistor space amongst these reductions, which turns out to be suitable for a twistorial description of self-dual strings. For these reduced twistor spaces, we explain the Penrose and Penrose-Ward transforms as well as contour integral formulae.

  11. Optical visualization of electric and magnetic field perturbations in tokamak discharges by hydrogen pellet injection

    NASA Astrophysics Data System (ADS)

    Drawin, H.-W.; Dubois, M. A.

    1992-09-01

    Two-dimensional intensity distribution mappings of photographs of pellet ablation cloud trajectories in TFR and TORE SUPRA reveal irregular shapes of the luminous striations. The observed features are not well understood, but a likely interpretation is that these features are caused by pre-existing electric and/or magnetic field perturbations in the hot core of tokamak plasmas. It is suggested to further investigate pellet injection as a diagnostic tool for the study of plasma structures and transport phenomena

  12. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    SciTech Connect

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can; Keleş, Vildan; Ryu, C.Y.; Kajino, Toshitaka; Mathews, Grant J. E-mail: cemsinan@msgsu.edu.tr E-mail: kelesvi@itu.edu.tr E-mail: kajino@nao.ac.jp

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.

  13. First-Principle Perturbative Computation of Phonon Properties of Insulators in Finite Electric Fields

    NASA Astrophysics Data System (ADS)

    Wang, Xinjie

    2005-03-01

    The methods of density-functional perturbation theory have been shown to provide a powerful tool for realistic calculations of lattice-vibrational, dielectric, elastic, and other response properties of crystals.ootnotetextS. Baroni et al., Rev. Mod. Phys. 73, 515 (2001). Recently, a total-energy method for insulators in nonzero electric fields was proposed.ootnotetextI. Souza, J. 'Iñiguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002). However, the perturbative computation of phonon properties under a dc bias field has not previously been addressed. Here, we start from a variational total-energy functional with a field coupling term that represents the effect of the electric field on the crystal. The linear response of the field-polarized Bloch functions is obtained by minimizing the second-order derivative of the total-energy functional. Due to the presence of the electric field, the field-polarized Bloch functions at each k-point in the Brillouin zone are weakly coupled to those at the neighboring k-points. We implement the method in the ABINIT code and perform illustrative calculations of the phonon frequencies for III-V semicondutors.

  14. Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields.

    PubMed

    Geng, Hao; Jiang, Fan; Wu, Yun-Dong

    2016-05-19

    Cyclic peptides (CPs) are promising candidates for drugs, chemical biology tools, and self-assembling nanomaterials. However, the development of reliable and accurate computational methods for their structure prediction has been challenging. Here, 20 all-trans CPs of 5-12 residues selected from Cambridge Structure Database have been simulated using replica-exchange molecular dynamics with four different force fields. Our recently developed residue-specific force fields RSFF1 and RSFF2 can correctly identify the crystal-like conformations of more than half CPs as the most populated conformation. The RSFF2 performs the best, which consistently predicts the crystal structures of 17 out of 20 CPs with rmsd < 1.1 Å. We also compared the backbone (ϕ, ψ) sampling of residues in CPs with those in short linear peptides and in globular proteins. In general, unlike linear peptides, CPs have local conformational free energies and entropies quite similar to globular proteins. PMID:27128113

  15. Relative entropy of excited states in two dimensional conformal field theories

    NASA Astrophysics Data System (ADS)

    Sárosi, Gábor; Ugajin, Tomonori

    2016-07-01

    We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.

  16. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    SciTech Connect

    Mirus, K.A.

    1998-06-01

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  17. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Mirus, Kevin Andrew

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Rossler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high- dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  18. Impact of Resonant Magnetic Perturbation Fields on NSTX-U Advanced Divertor Topologies

    NASA Astrophysics Data System (ADS)

    Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Soukhanovskii, Vlad

    2015-11-01

    Explorations are under way to optimize the magnetic topology in the plasma edge of NSTX-U with the goal of improving neutral and impurity fueling and exhaust. The use of magnetic perturbation fields is being considered to spread heat and particle fluxes in the divertor, adjust plasma refueling, control impurity transport, and improve coupling to the exhaust systems. Also, advanced divertor configurations are being considered to improve peak heat loads on divertors. An assessment is made of the topologies of a number of representative NSTX-U advanced divertor configurations: lower single null, exact snowflake, and snowflake minus. Wall to wall magnetic connection lengths for each configuration are assessed in both their perturbed and axisymmetric configurations with perturbation coil currents of 1kA and 3kA. The magnetic perturbations yield complex strike patterns on divertor elements that are expected to be resolvable experimentally. The EMC3-EIRENE fluid plasma and kinetic neutral transport code will be used to study neutral and impurity transport and exhaust in these topologies. This work was funded in part by the Department of Energy under grant DE-SC0012315 and by startup funds of the Department of Engineering Physics at the University of Wisconsin-Madison.

  19. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  20. Riemann correlator in de Sitter including loop corrections from conformal fields

    NASA Astrophysics Data System (ADS)

    Fröb, Markus B.; Roura, Albert; Verdaguer, Enric

    2014-07-01

    The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H4/mp4. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.

  1. Neutron star structure in the presence of conformally coupled scalar fields

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-10-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  2. Riemann correlator in de Sitter including loop corrections from conformal fields

    SciTech Connect

    Fröb, Markus B.; Verdaguer, Enric

    2014-07-01

    The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.

  3. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    DOE PAGESBeta

    Kim, Kimin; Ahn, J. -W.; Scotti, F.; Park, J. -K.; Menard, J. E.

    2015-09-03

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifiesmore » the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.« less

  4. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    NASA Astrophysics Data System (ADS)

    Kim, Kimin; Ahn, J.-W.; Scotti, F.; Park, J.-K.; Menard, J. E.

    2015-10-01

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n   =   3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifies the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n   =   3. Amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n   =   1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.

  5. Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory.

    PubMed

    McDaniel, Jesse G; Schmidt, J R

    2016-05-27

    Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT. PMID:27070322

  6. Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory

    NASA Astrophysics Data System (ADS)

    McDaniel, Jesse G.; Schmidt, J. R.

    2016-05-01

    Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.

  7. Gravitational perturbation and Kerr/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Ghezelbash, A. M.

    2016-07-01

    We find the explicit form of two-point function for the conformal spin-2 energy momentum operators on the near horizon of a near extremal Kerr black hole by variation of a proper boundary action. In this regard, we consider an appropriate boundary action for the gravitational perturbation of the Kerr black hole. We show that the variation of the boundary action with respect to the boundary fields yields the two-point function for the energy momentum tensor of a conformal field theory. We find agreement between the two-point function and the correlators of the dual conformal field theory to the Kerr black hole.

  8. Field-Aligned and Ionospheric Current Contributions to Ground Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; McPherron, R. L.; Anderson, B. J.; Korth, H.; Russell, C. T.; Chu, X.

    2014-12-01

    AMPERE data provides global space-derived radial electric currents on temporal and spatial scales suited to studying magnetic fields at ULF frequencies. It responds little to ionspheric currents, which dominate ground-based measurements, so that AMPERE and ground datasets complement each other to give a comprehensive view of near-Earth electric currents. Connors et al. (GRL, 2014) found that a three-dimensional current system slightly modified from the original substorm current wedge (SCW) concept of McPherron et al. (JGR, 1973) represented substorm midnight sector perturbations well both in the auroral and subauroral regions, if a current equivalent to that found by integrating AMPERE downward current was used, located where clear SCW signatures were indicated by AMPERE, and featuring an ionospheric electrojet. The AMPERE upward current was found to exceed that in the SCW, at least in part since the evening sector electrojet fed into it. We extend these results with a more detailed accounting of field-aligned and ionospheric currents throughout the active period (including growth phase). Ionospheric currents for the study are obtained from ground perturbations through optimization of a simple forward model over regions or on a meridian chain. We also investigate the degree to which subauroral perturbations may be directly calculated from AMPERE results. We further find that auroral zone currents may be very localized, to the extent that the entire SCW ionospheric current flows in a very restricted latitudinal range near onset, possibly corresponding to a single auroral arc.

  9. Screening of external magnetic perturbation fields due to sheared plasma flow

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, Y. Q.; Liang, Y.; Wang, N.; Luan, Q.; Zhong, F. C.; Liu, Y.

    2016-09-01

    Within the single fluid resistive magnetohydrodynamic model, systematic toroidal modelling efforts are devoted to investigate the plasma response induced screening of the applied external 3D magnetic field perturbations in the presence of sheared toroidal flow. One particular issue of interest is addressed, when the local flow speed approaches zero at the perturbation rational surface inside the plasma. Subtle screening physics, associated with the favourable averaged toroidal curvature effect (the GGJ effect (Glasser et al 1975 Phys. Fluids 7 875)), is found to play an essential role during slow flow near the rational surface by enhancing the screening at reduced flow. A strong cancellation effect between different terms of Ohm’s law is discovered, leading to different screening physics in the GGJ regime, as compared to that of conventional screening of the typical resistive-inertial regime occurring at faster flow. These modelling results may be applicable to interpret certain mode locking experiments, as well as type-I edge localized mode suppression experiments, with resonant magnetic field perturbations being applied to tokamak plasmas at low input toroidal torque.

  10. On the reach of perturbative descriptions for dark matter displacement fields

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Schaan, Emmanuel; Zaldarriaga, Matias

    2016-03-01

    We study Lagrangian Perturbation Theory (LPT) and its regularization in the Effective Field Theory (EFT) approach. We evaluate the LPT displacement with the same phases as a corresponding N-body simulation, which allows us to compare perturbation theory to the non-linear simulation with significantly reduced cosmic variance, and provides a more stringent test than simply comparing power spectra. We reliably detect a non-vanishing leading order EFT coefficient and a stochastic displacement term, uncorrelated with the LPT terms. This stochastic term is expected in the EFT framework, and, to the best of our understanding, is not an artifact of numerical errors or transients in our simulations. This term constitutes a limit to the accuracy of perturbative descriptions of the displacement field and its phases, corresponding to a 1% error on the non-linear power spectrum at k = 0.2 h-1Mpc at z = 0. Predicting the displacement power spectrum to higher accuracy or larger wavenumbers thus requires a model for the stochastic displacement.

  11. Statistical maps of geomagnetic perturbations as a function of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Weimer, D. R.; Clauer, C. R.; Engebretson, M. J.; Hansen, T. L.; Gleisner, H.; Mann, I.; Yumoto, K.

    2010-10-01

    Mappings of geomagnetic perturbations are shown for different combinations of the solar wind velocity, interplanetary magnetic field (IMF), and dipole tilt angle (season). Average maps were derived separately for the northward, eastward, and vertical (downward) components of the geomagnetic disturbances, using spherical cap harmonics in least error fits of sorted measurements. The source data are obtained from 104 ground-based magnetometer stations in the Northern Hemisphere at geomagnetic latitudes over 40° during the years 1998 through 2001. Contour maps of statistical fits are shown along-side scatter plots of individual measurements in corrected geomagnetic apex coordinates. The patterns are consistent with previous mappings of ionospheric electric potential. Interestingly, the vertical component of the magnetic perturbations closely resembles maps of the overhead, field-aligned currents, including the Northward IMF configuration. The maximum and minimum values from the statistical mappings are graphed to show their changes as a function of southward IMF magnitude, solar wind velocity, and seasons. It is expected that this work will lead to better advance predictions of the geomagnetic perturbations that are based on real-time IMF measurements.

  12. On discrete field theory properties of the dimer and Ising models and their conformal field theory limits

    SciTech Connect

    Kriz, Igor; Loebl, Martin; Somberg, Petr

    2013-05-15

    We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.

  13. A statistical approach to multifield inflation: many-field perturbations beyond slow roll

    NASA Astrophysics Data System (ADS)

    McAllister, Liam; Renaux-Petel, Sébastien; Xu, Gang

    2012-10-01

    We study multifield contributions to the scalar power spectrum in an ensemble of six-field inflationary models obtained in string theory. We identify examples in which inflation occurs by chance, near an approximate inflection point, and we compute the primordial perturbations numerically, both exactly and using an array of truncated models. The scalar mass spectrum and the number of fluctuating fields are accurately described by a simple random matrix model. During the approach to the inflection point, bending trajectories and violations of slow roll are commonplace, and `many-field' effects, in which three or more fields influence the perturbations, are often important. However, in a large fraction of models consistent with constraints on the tilt the signatures of multifield evolution occur on unobservably large scales. Our scenario is a concrete microphysical realization of quasi-single-field inflation, with scalar masses of order H, but the cubic and quartic couplings are typically too small to produce detectable non-Gaussianity. We argue that our results are characteristic of a broader class of models arising from multifield potentials that are natural in the Wilsonian sense.

  14. A statistical approach to multifield inflation: many-field perturbations beyond slow roll

    SciTech Connect

    McAllister, Liam; Xu, Gang; Renaux-Petel, Sébastien E-mail: S.Renauxpetel@damtp.cam.ac.uk

    2012-10-01

    We study multifield contributions to the scalar power spectrum in an ensemble of six-field inflationary models obtained in string theory. We identify examples in which inflation occurs by chance, near an approximate inflection point, and we compute the primordial perturbations numerically, both exactly and using an array of truncated models. The scalar mass spectrum and the number of fluctuating fields are accurately described by a simple random matrix model. During the approach to the inflection point, bending trajectories and violations of slow roll are commonplace, and 'many-field' effects, in which three or more fields influence the perturbations, are often important. However, in a large fraction of models consistent with constraints on the tilt the signatures of multifield evolution occur on unobservably large scales. Our scenario is a concrete microphysical realization of quasi-single-field inflation, with scalar masses of order H, but the cubic and quartic couplings are typically too small to produce detectable non-Gaussianity. We argue that our results are characteristic of a broader class of models arising from multifield potentials that are natural in the Wilsonian sense.

  15. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Roberts, Daniel A.; Stanford, Douglas

    2015-09-01

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W (t )V W (t )V ⟩ . We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ˜t*-(β /2 π )log β2EwEv , where t* is the fast scrambling time (β /2 π )log c and Ew,Ev are the energy scales of the W ,V operators.

  16. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory.

    PubMed

    Roberts, Daniel A; Stanford, Douglas

    2015-09-25

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W(t)VW(t)V⟩. We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ~t_{*}-(β/2π)logβ^{2}E_{w}E_{v}, where t_{*} is the fast scrambling time (β/2π)logc and E_{w},E_{v} are the energy scales of the W,V operators. PMID:26451543

  17. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion. PMID:27276688

  18. Horizon-preserving dualities and perturbations in non-canonical scalar field cosmologies

    SciTech Connect

    Geshnizjani, Ghazal; Kinney, William H.; Dizgah, Azadeh Moradinezhad E-mail: whkinney@buffalo.edu

    2012-02-01

    We generalize the cosmological duality between inflation and cyclic contraction under the interchange a↔H to the case of non-canonical scalar field theories with varying speed of sound. The single duality in the canonical case generalizes to a family of three dualities constructed to leave the cosmological acoustic horizon invariant. We find three classes of models: (I) DBI inflation, (II) the non-canonical generalization of cyclic contraction, and (III) a new cosmological solution with rapidly decreasing speed of sound and relatively slowly growing scale factor, which we dub stalled cosmology. We construct dual analogs to the inflationary slow roll approximation, and solve for the curvature perturbation in all three cases. Both cyclic contraction and stalled cosmology predict a strongly blue spectrum for the curvature perturbations inconsistent with observations.

  19. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Gawȩdzki, Krzysztof; Nardini, Cesare

    2016-04-01

    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466, 2014), which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/√{N} , where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ , starting from a known quasi-potential for λ =0 . In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247-308, 1987; Stochastic differential systems, vol 96, pp 1-10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example of mean field diffusions: the Shinomoto-Kuramoto model of coupled rotators (Prog Theoret Phys 75:1105-1110, [74]). This

  20. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Gawȩdzki, Krzysztof; Nardini, Cesare

    2016-06-01

    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466 , 2014), which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/√{N}, where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ , starting from a known quasi-potential for λ =0. In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247-308, 1987; Stochastic differential systems, vol 96, pp 1-10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example

  1. Binding analysis of carbon nanoparticles to human immunoglobulin G: Elucidation of the cytotoxicity of CNPs and perturbation of immunoglobulin conformations

    NASA Astrophysics Data System (ADS)

    Zhang, Shengrui; Yang, Haitao; Ji, Xiaohui; Wang, Qin

    2016-02-01

    The chemical compositions, sizes and fluorescent properties of synthesized carbon nanoparticles (CNPs) were characterized. Escherichia coli (E. coli) cells were used as a model to study the cytotoxicity of CNPs, and the results of the cellular uptake of CNPs yielded excellent results: the CNPs demonstrated good biocompatibility and were non-toxic to the growth of the E. coli cells. Moreover, to assess the potential toxicity of CNPs to human health, the binding behavior of CNPs with human immunoglobulin G (HIgG) was examined by fluorescence quenching spectroscopy, synchronous fluorescence spectroscopy and circular dichroism spectroscopy under physiological conditions. The fluorescence quenching constants and parameters for the interaction at different temperatures had been calculated according to Scatchard. The thermodynamic parameters, such as enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG), were calculated, and the results indicated strong static quenching and showed that van der Waals forces, hydrogen bonds and hydrophobic interactions were the predominant intermolecular forces stabilizing the CNP-HIgG complex. Synchronous fluorescence and circular dichroism spectra provided information regarding the conformational alteration of HIgG in the presence of CNPs. These findings help to characterize the interactions between CNPs and HIgG, which may clarify the potential risks and undesirable health effects of CNPs, as well as the related cellular trafficking and systemic translocation.

  2. Binding analysis of carbon nanoparticles to human immunoglobulin G: Elucidation of the cytotoxicity of CNPs and perturbation of immunoglobulin conformations.

    PubMed

    Zhang, Shengrui; Yang, Haitao; Ji, Xiaohui; Wang, Qin

    2016-02-01

    The chemical compositions, sizes and fluorescent properties of synthesized carbon nanoparticles (CNPs) were characterized. Escherichia coli (E. coli) cells were used as a model to study the cytotoxicity of CNPs, and the results of the cellular uptake of CNPs yielded excellent results: the CNPs demonstrated good biocompatibility and were non-toxic to the growth of the E. coli cells. Moreover, to assess the potential toxicity of CNPs to human health, the binding behavior of CNPs with human immunoglobulin G (HIgG) was examined by fluorescence quenching spectroscopy, synchronous fluorescence spectroscopy and circular dichroism spectroscopy under physiological conditions. The fluorescence quenching constants and parameters for the interaction at different temperatures had been calculated according to Scatchard. The thermodynamic parameters, such as enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG), were calculated, and the results indicated strong static quenching and showed that van der Waals forces, hydrogen bonds and hydrophobic interactions were the predominant intermolecular forces stabilizing the CNP-HIgG complex. Synchronous fluorescence and circular dichroism spectra provided information regarding the conformational alteration of HIgG in the presence of CNPs. These findings help to characterize the interactions between CNPs and HIgG, which may clarify the potential risks and undesirable health effects of CNPs, as well as the related cellular trafficking and systemic translocation. PMID:26505286

  3. Computational ligand-based rational design: Role of conformational sampling and force fields in model development.

    PubMed

    Shim, Jihyun; Mackerell, Alexander D

    2011-05-01

    A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more

  4. Computational ligand-based rational design: Role of conformational sampling and force fields in model development

    PubMed Central

    Shim, Jihyun; MacKerell, Alexander D.

    2011-01-01

    A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more

  5. Scalar particle in general inertial and gravitational fields and conformal invariance revisited

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2013-08-01

    The new manifestation of conformal invariance for a massless scalar particle in a Riemannian spacetime of general relativity is found. Conformal transformations conserve the Hamiltonian and wave function in the Foldy-Wouthuysen representation. Similarity of manifestations of conformal invariance for massless scalar and Dirac particles is proved. New exact Foldy-Wouthuysen Hamiltonians are derived for both massive and massless scalar particles in a general static spacetime and in a frame rotating in the Kerr field approximated by a spatially isotropic metric. The latter case covers an observer on the ground of the Earth or on a satellite and takes into account the Lense-Thirring effect. High-precision formulas are obtained for an arbitrary spacetime metric. General quantum-mechanical equations of motion are derived. Their classical limit coincides with corresponding classical equations.

  6. Three-dimensional black holes with conformally coupled scalar and gauge fields

    NASA Astrophysics Data System (ADS)

    Cárdenas, Marcela; Fuentealba, Oscar; Martínez, Cristián

    2014-12-01

    We consider three-dimensional gravity with negative cosmological constant in the presence of a scalar and an Abelian gauge field. Both fields are conformally coupled to gravity, the scalar field through a nonminimal coupling with the curvature and the gauge field by means of a Lagrangian given by a power of the Maxwell one. A sixth-power self-interaction potential, which does not spoil conformal invariance is also included in the action. Using a circularly symmetric ansatz, we obtain black hole solutions dressed with the scalar and gauge fields, which are regular on and outside the event horizon. These charged hairy black holes are asymptotically anti-de Sitter spacetimes. The mass and the electric charge are computed by using the Regge-Teitelboim Hamiltonian approach. If both leading and subleading terms of the asymptotic condition of the scalar field are present, a boundary condition that functionally relates them is required for determining the mass. Since the asymptotic form of the scalar field solution is defined by two integration constants, the boundary condition may or may not respect the asymptotic conformal symmetry. An analysis of the temperature and entropy of these black holes is presented. The temperature is a monotonically increasing function of the horizon radius as expected for asymptotically anti-de Sitter black holes. However, restrictions on the parameters describing the black holes are found by requiring the entropy to be positive, which, given the nonminimal coupling considered here, does not follow the area law. Remarkably, the same conditions ensure that the conformally related solutions become black holes in the Einstein frame.

  7. Perturbative path-integral study of active- and passive-tracer diffusion in fluctuating fields.

    PubMed

    Démery, Vincent; Dean, David S

    2011-07-01

    We study the effective diffusion constant of a Brownian particle linearly coupled to a thermally fluctuating scalar field. We use a path-integral method to compute the effective diffusion coefficient perturbatively to lowest order in the coupling constant. This method can be applied to cases where the field is affected by the particle (an active tracer) and cases where the tracer is passive. Our results are applicable to a wide range of physical problems, from a protein diffusing in a membrane to the dispersion of a passive tracer in a random potential. In the case of passive diffusion in a scalar field, we show that the coupling to the field can, in some cases, speed up the diffusion corresponding to a form of stochastic resonance. Our results on passive diffusion are also confirmed via a perturbative calculation of the probability density function of the particle in a Fokker-Planck formulation of the problem. Numerical simulations on simplified systems corroborate our results. PMID:21867153

  8. Modelling of ion energy transport in perturbed magnetic field in collisionless toroidal plasma

    NASA Astrophysics Data System (ADS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Takamaru, Hisanori; Okamoto, Masao; Ohyabu, Nobuyoshi

    2010-11-01

    Although all physical parameters of background plasma and magnetic field are fixed, it is not trivial that transport coefficients in an ergodic region bounded radially on both sides can be always evaluated as constants with respect to time because of non-Brownian motion of guiding centres in low-collisionality cases, as shown previously in mono-energetic test-particle simulations by Maluckov et al (2003 Physica A 322 13). Here the ergodic region consists of chaotic magnetic field lines caused by resonant magnetic perturbations (RMPs). In order to understand the fundamental properties of transport phenomena in the radially bounded ergodic region, a new computer simulation code based on the δf method solving the drift kinetic equation is developed and the energy transport of ions (protons) in the perturbed magnetic field is investigated in low-collisionality cases. We evaluate the ion thermal diffusivity as a constant with respect to time by using a quasi-steady-state solution of the guiding centre distribution function in five-dimensional phase space and find that the diffusivity depends on both the strength of the RMPs and the collision frequency. The diffusivity estimated by the δf simulation in the ergodic region is extremely small compared with the prediction of field-line diffusion theory. The radial transport is affected by the fact that the width of the ergodic region is finite.

  9. From charge motion in general magnetic fields to the non perturbative gyrokinetic equation

    NASA Astrophysics Data System (ADS)

    Di Troia, C.

    2015-04-01

    The exact analytical description of non relativistic charge motion in general magnetic fields is, apparently, a simple problem, even if it has not been solved until now, apart for rare cases. The key feature of the present derivation is to adopt a non perturbative magnetic field description to find new solutions of motion. Among all solutions, two are particularly important: guiding particle and gyro-particle solutions. The guiding particle has been characterized to be minimally coupled to the magnetic field; the gyro-particle has been defined to be maximally coupled to the magnetic field and, also, to move on a closed orbit. The generic charged particle motion is shown to be expressed as the sum of such particular solutions. This non perturbative approach corresponds to the description of the particle motion in the gyro-center and/or guiding center reference frame obtained at all the orders of the modern gyro-center transformation. The Boltzmann equation is analyzed with the described exact guiding center coordinates. The obtained gyrokinetic equation is solved for the Boltzmann equation at marginal stability conditions.

  10. From charge motion in general magnetic fields to the non perturbative gyrokinetic equation

    SciTech Connect

    Di Troia, C.

    2015-04-15

    The exact analytical description of non relativistic charge motion in general magnetic fields is, apparently, a simple problem, even if it has not been solved until now, apart for rare cases. The key feature of the present derivation is to adopt a non perturbative magnetic field description to find new solutions of motion. Among all solutions, two are particularly important: guiding particle and gyro-particle solutions. The guiding particle has been characterized to be minimally coupled to the magnetic field; the gyro-particle has been defined to be maximally coupled to the magnetic field and, also, to move on a closed orbit. The generic charged particle motion is shown to be expressed as the sum of such particular solutions. This non perturbative approach corresponds to the description of the particle motion in the gyro-center and/or guiding center reference frame obtained at all the orders of the modern gyro-center transformation. The Boltzmann equation is analyzed with the described exact guiding center coordinates. The obtained gyrokinetic equation is solved for the Boltzmann equation at marginal stability conditions.

  11. Auxiliary Conformally Invariant Higher-Spin Field in de Sitter Space

    NASA Astrophysics Data System (ADS)

    Elmizadeh, M.; Tanhayi, M. R.

    2016-03-01

    We employ de Sitter isometry to study a mixed symmetric rank-3 tensor field in de Sitter space by finding the field equation, solution and two-point function which are conformally invariant. It is proved that such a tensor field plays a key role in conformal theory of linear gravity (Binegar et al., Phys. Rev. D 27, 2249, 1983) . In de Sitter space from the group theoretical point of view this kind of tensor could associate with two unitary irreducible representations (UIR) of the de Sitter group (Takook et al., J.Math. Phys. 51, 032503, 2010), which one representation has a flat limit, namely, in zero curvature coincides to the UIR of Poincaré group, however, the second one which is named as auxiliary field, becomes significant in the study of conformal gravity in de Sitter background. We show that the rank-3 tensor solution can be written in terms of a massless minimally coupled scalar field and also the related two-point function is a function of a massless minimally coupled scalar two-point function.

  12. Ulysses Observations of Tripolar Guide-Magnetic Field Perturbations Across Solar Wind Reconnection Exhausts

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Peng, B.; Markidis, S.; Gosling, J. T.; McComas, D. J.; Lapenta, G.; Newman, D. L.

    2014-12-01

    We report observations from 15 solar wind reconnection exhausts encountered along the Ulysses orbit beyond 4 AU in 1996-1999 and 2002-2005. The events, which lasted between 17 and 45 min, were found at heliospheric latitudes between -36o and 21o with one event detected as high as 58o. All events shared a common characteristic of a tripolar guide-magnetic field perturbation being detected across the observed exhausts. The signature consists of an enhanced guide field magnitude within the exhaust center and two regions of significantly depressed guide-fields adjacent to the center region. The events displayed magnetic field shear angles as low as 37o with a mean of 89o. This corresponds to a strong external guide field relative to the anti-parallel reconnecting component of the magnetic field with a mean ratio of 1.3 and a maximum ratio of 3.1. A 2-D kinetic reconnection simulation for realistic solar wind conditions reveals that tripolar guide fields form at current sheets in the presence of multiple X-lines as two magnetic islands interact with one another for such strong guide fields. The Ulysses observations are also compared with the results of a 3-D kinetic simulation of multiple flux ropes in a strong guide field.

  13. Non-perturbative treatment of strongly-interacting fields: Insights from liquid theory

    NASA Astrophysics Data System (ADS)

    Trachenko, K.; Brazhkin, V. V.

    2014-08-01

    We outline a new programme of solving the problem of treating strong interactions in field theories. The programme does not involve perturbation theories and associated problems of divergences. We apply our recent idea of treating strongly interacting liquids to field theories by showing the equivalence of Hamiltonians of liquids and interacting fields. In this approach, the motion of the field results in the disappearance of n-1 transverse modes with frequency smaller than the Frenkel frequency ωF, similar to the loss of two transverse modes in a liquid with frequency ω<ωF. We illustrate the proposed programme with the calculation of the energy and propagator, and show that the results cannot be obtained in perturbation theory to any finite order. Importantly, the Frenkel energy gap EF=ħωF and the associated massive Frenkel particle naturally appear in our consideration, the result that is relevant for current efforts to demonstrate a mass gap in interacting field theories such as Yang-Mills theory. Notably, our mechanism involves a physically sensible starting point in terms of real masses (frequencies) in the harmonic non-interacting field, in contrast to the Higgs effect involving the imaginary mass as a starting point. We further note that the longitudinal mode in our approach remains gapless, implying that both short-range and long-range forces with massive and massless particles naturally emerge and unify in a single interacting field, a result not hitherto anticipated. Finally, we comment on the relationship between our results and hydrodynamic description of the quark-gluon plasma.

  14. Stochastic geometry of critical curves, Schramm Loewner evolutions and conformal field theory

    NASA Astrophysics Data System (ADS)

    Gruzberg, Ilya A.

    2006-10-01

    Conformally invariant curves that appear at critical points in two-dimensional statistical mechanics systems and their fractal geometry have received a lot of attention in recent years. On the one hand, Schramm (2000 Israel J. Math. 118 221 (Preprint math.PR/9904022)) has invented a new rigorous as well as practical calculational approach to critical curves, based on a beautiful unification of conformal maps and stochastic processes, and by now known as Schramm-Loewner evolution (SLE). On the other hand, Duplantier (2000 Phys. Rev. Lett. 84 1363; Fractal Geometry and Applications: A Jubilee of Benot Mandelbrot: Part 2 (Proc. Symp. Pure Math. vol 72) (Providence, RI: American Mathematical Society) p 365 (Preprint math-ph/0303034)) has applied boundary quantum gravity methods to calculate exact multifractal exponents associated with critical curves. In the first part of this paper, I provide a pedagogical introduction to SLE. I present mathematical facts from the theory of conformal maps and stochastic processes related to SLE. Then I review basic properties of SLE and provide practical derivation of various interesting quantities related to critical curves, including fractal dimensions and crossing probabilities. The second part of the paper is devoted to a way of describing critical curves using boundary conformal field theory (CFT) in the so-called Coulomb gas formalism. This description provides an alternative (to quantum gravity) way of obtaining the multifractal spectrum of critical curves using only traditional methods of CFT based on free bosonic fields.

  15. Perturbative Aspects of the Chern-Simons Topological Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bar-Natan, Dror-Dror

    We investigate the Feynman-diagram perturbative expansion of the Chern-Simons topological quantum field theory. After introducing the theory, we compute the on -loop expectation value for knots and links, recovering Gauss' linking number formula for links and the self-linking number of a framed knot. The self-linking formula is shown to suffer from an anomaly proportional to the total torsion of the knot, whose definition requires 'framing' the knot. This explains the appearance of framings. In an appendix, we use these results to characterize the total torsion of a curve as the only parametrization independent quantity of vanishing scaling dimension having 'local' variation, explaining why no further anomalies are expected. We then treat rigorously the two loop expectation value of a knot, finding it to be finite and invariant under isotopy. We identify the resulting knot invariant to essentially be the second coefficient of the Conway polynomial, in agreement with Witten's earlier non-perturbative computation. We give 'formal' (namely, algebraic with missing analytical details) proofs that the perturbative expansion gives manifold and link invariants and suggest that a slight generalization of the Feynman rules of the Chern-Simons theory might still give knot invariants, possibly new. We discuss the relation between perturbation theory and the Vassiliev knot invariants, solving a related algebraic problem posed by Birman and Lin. We compute the stationary phase approximation to the Chern-Simons path integral with compact and non -compact gauge group, explaining the appearance of framings of 3-manifolds and the so called 'shift in k', and finding the result in the non-compact case not to be a simple analytic continuation of the result in the compact case. Finally we outline our expectation for the behavior of the theory beyond the one- and two-loop rigorous results.

  16. Primordial Perturbations Produced by a Self Interacting Scalar Field in the Braneworld: The Dynamical Systems Perspective

    NASA Astrophysics Data System (ADS)

    García Aspeitia, Miguel A.; Magaña, Juan Aldebarán; Matos, Tonatiuh; Rodriguez, Pablo A.

    2010-07-01

    In this work we explore the primordial perturbations by the slow-roll inflation produced by the simplest chaotic inflation model driven by a scalar field with potential VΦ = 12mφ2φ2 in a hidden brane and it is analyzed through a dynamical system to explore the consecuences in the evolution of the visible brane (our Universe). We use the most accepted constraints of the five dimensional Planck mass endorsed by the current experimental data in our universe (visible brane) to fit the initial conditions of φ and φ of the inflation in the hidden brane.

  17. Tumor Treating Fields Perturb the Localization of Septins and Cause Aberrant Mitotic Exit

    PubMed Central

    Holtzman, Talia S.; Lee, Sze Xian; Wong, Eric T.; Swanson, Kenneth D.

    2015-01-01

    The anti-tumor effects of chemotherapy and radiation are thought to be mediated by triggering G1/S or G2/M cell cycle checkpoints, while spindle poisons, such as paclitaxel, block metaphase exit by initiating the spindle assembly checkpoint. In contrast, we have found that 150 kilohertz (kHz) alternating electric fields, also known as Tumor Treating Fields (TTFields), perturbed cells at the transition from metaphase to anaphase. Cells exposed to the TTFields during mitosis showed normal progression to this point, but exhibited uncontrolled membrane blebbing that coincided with metaphase exit. The ability of such alternating electric fields to affect cellular physiology is likely to be dependent on their interactions with proteins possessing high dipole moments. The mitotic Septin complex consisting of Septin 2, 6 and 7, possesses a high calculated dipole moment of 2711 Debyes (D) and plays a central role in positioning the cytokinetic cleavage furrow, and governing its contraction during ingression. We showed that during anaphase, TTFields inhibited Septin localization to the anaphase spindle midline and cytokinetic furrow, as well as its association with microtubules during cell attachment and spreading on fibronectin. After aberrant metaphase exit as a consequence of TTFields exposure, cells exhibited aberrant nuclear architecture and signs of cellular stress including an overall decrease in cellular proliferation, followed by apoptosis that was strongly influenced by the p53 mutational status. Thus, TTFields are able to diminish cell proliferation by specifically perturbing key proteins involved in cell division, leading to mitotic catastrophe and subsequent cell death. PMID:26010837

  18. Vacuum modeling of three-dimensional magnetic field topology under resonant magnetic perturbations on EAST

    NASA Astrophysics Data System (ADS)

    Jia, M.; Sun, Y.; Zhong, F.; Li, H.; Li, G.; Wang, L.; Gan, K.; Zhang, B.; Qian, J.; Shen, B.

    2016-05-01

    A numerical model using field line tracing for modeling of three-dimensional magnetic field topology under resonant magnetic perturbations (RMPs) on experimental advanced superconducting tokamak (EAST) is presented. The topological structure is calculated in the vacuum paradigm. The modeling result predicts that the possible strike point splitting on a plasma-facing component and the lobes-like structure on the boundary are observable in the diagnostics at different locations. It is shown that the magnetic perturbations with a resonant dominant spectrum can induce a large footprint splitting effect as well as a wide stochastic layer. This is useful for observations using diagnostics with limited spatial resolution. The impact of RMP fields on marginally disconnected double null configurations is investigated. To avoid the transient heat load on the upper divertor or plasma-facing components near the upper x-point, it is necessary to keep the distance between two separatrices of a near double null configuration larger than a threshold value that depends on the RMP strength and the equilibrium properties. A preliminary RMP experiment on EAST shows that there is a good agreement between the splitting width predicted by the code and that of the particle flux measured by divertor probes. An enhancement of particle flux on the upper divertor during the RMP phase is observed in the lower single null discharge.

  19. Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

    PubMed Central

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672

  20. Field perturbation experiments, an alternate approach to the assessment of human effects in terrestrial ecosystems

    SciTech Connect

    Suter, II, G W

    1980-01-01

    The National Environmental Policy Act of 1969 (NEPA) was initially interpreted as requiring full disclosure of the environmental impacts of a federal action. Because of the limitations of time, money, and manpower, this requirement that all impacts be considered has led to superficial analysis of many important impacts. Data collection has largely been limited to the enumeration of species because this information can be applied to the analysis of any problem. The President's Council on Environmental Quality (CEQ) has provided a solution to this problem by reinterpreting NEPA as requiring analysis of those impacts which have significant bearing on decision making. Because assessment resources can now be concentrated on a few critical issues, it should be possible to perform field perturbation experiments to provide direct evidence of the effects of a specific mixture of pollutants or physical disturbances on the specific mixture of pollutants or physical disturbances on the specific receiving ecosystem. Techniques are described for field simulation of gaseous and particulate air pollution, soil pollutants, disturbance of the earth's surface, and disturbance of wildlife. These techniques are discussed in terms of their realism, cost, and the restrictions which they place on the measurement of ecological parameters. Development and use of these field perturbation techniques should greatly improve the accuracy of predictive assessments and further our understanding of ecosystem processes.

  1. Toroidal modeling of plasma response and resonant magnetic perturbation field penetration

    NASA Astrophysics Data System (ADS)

    Liu, Y. Q.; Kirk, A.; Sun, Y.; Cahyna, P.; Chapman, I. T.; Denner, P.; Fishpool, G.; Garofalo, A. M.; Harrison, J. R.; Nardon, E.; the MAST Team

    2012-12-01

    The penetration dynamics of the resonant magnetic perturbation (RMP) field is simulated in the full toroidal geometry, under realistic plasma conditions in MAST experiments. The physics associated with several aspects of the RMP penetration—the plasma response and rotational screening, the resonant and non-resonant torques and the toroidal momentum balance—are highlighted. In particular, the plasma response is found to significantly amplify the non-resonant component of the RMP field for some of the MAST plasmas. A fast rotating plasma, in response to static external magnetic fields, experiences a more distributed electromagnetic torque due to the resonance with continuum waves in the plasma. At fast plasma flow (such as for the MAST plasma), the electromagnetic torque is normally dominant over the neoclassical toroidal viscous (NTV) torque. However, at sufficiently slow plasma flow, the NTV torque can play a significant role in the toroidal momentum balance, thanks to the precession drift resonance enhanced, so-called superbanana plateau regime.

  2. On the correction, perturbation and modification of small field detectors in relative dosimetry.

    PubMed

    Papaconstadopoulos, P; Tessier, F; Seuntjens, J

    2014-10-01

    The purpose of this study was to derive a complete set of correction and perturbation factors for output factors (OF) and dose profiles. Modern small field detectors were investigated including a plastic scintillator (Exradin W1, SI), a liquid ionization chamber (microLion 31018, PTW), an unshielded diode (Exradin D1V, SI) and a synthetic diamond (microDiamond 60019, PTW). A Monte Carlo (MC) beam model was commissioned for use in small fields following two commissioning procedures: (1) using intermediate and moderately small fields (down to 2 × 2 cm(2)) and (2) using only small fields (0.5 × 0.5 cm(2) -2 × 2 cm(2)). In the latter case the detectors were explicitly modelled in the dose calculation. The commissioned model was used to derive the correction and perturbation factors with respect to a small point in water as suggested by the Alfonso formalism. In MC calculations the design of two detectors was modified in order to minimize or eliminate the corrections needed. The results of this study indicate that a commissioning process using large fields does not lead to an accurate estimation of the source size, even if a 2 × 2 cm(2) field is included. Furthermore, the detector should be explicitly modelled in the calculations. On the output factors, the scintillator W1 needed the smallest correction (+0.6%), followed by the microDiamond (+1.3%). Larger corrections were observed for the microLion (+2.4%) and diode D1V (-2.4%). On the profiles, significant corrections were observed out of the field on the gradient and tail regions. The scintillator needed the smallest corrections (-4%), followed by the microDiamond (-11%), diode D1V (+13%) and microLion (-15%). The major perturbations reported were due to volume averaging and high density materials that surround the active volumes. These effects presented opposite trends in both OF and profiles. By decreasing the radius of the microLion to 0.85 mm we could modify the volume averaging effect in order

  3. [Research in two-dimensional critical phenomena and conformal field theory]. Final report

    SciTech Connect

    Not Available

    1990-12-31

    A very theoretical description is given of research in two- dimensional critical phenomena and conformal field theory. Major progress is reported in the field of fluctuating two-dimensional surfaces. A discretized representation of fluctuating geometry is used where surfaces are represented by triangulations; continuum surfaces are recovered by taking the size of the triangles to zero. One of the central goals of the theory of critical phenomena is to find all possible universality classes of n-dimensional critical phenomena; this goal has been translated into the problem of clasifying all possible scale-invariant euclidean quantum field theories. (RWR)

  4. Experimental investigation of mechanisms of mid-latitude ionosphere and geophysical fields perturbation

    NASA Astrophysics Data System (ADS)

    Gavrilov, Boris; Zetzer, Julius; Egorov, Dmitry

    The investigations are carried out to study mechanisms and channels of the mid-latitude ionosphere, near-Earth electric field and current perturbations, and their connection to high-latitude and magnetospheric events. The basis of these investigations is a measurement of the geophysical fields in the Geophysical Observatory Mikhnevo (54.9 N, 37,8 E) of the Institute of Geospheres Dynamics RAS situated at 80 km to the south from Moscow. The observatory includes a set of measuring complexes for radiophysics, magnetic, electrical, optic, infrasound, seismic, and other investigations. All of them are controlled by the united computer centre in the common scale of time. Our approach bases on well known conception that the main reasons of the mid-latitude perturbations are the processes in the auroral regions. But auroral phenomena impact on mid-latitudes by means of different physical mechanisms and agents of disturbances. Fortunately, they differ from each other in the time of their generation and velocities of their propagation. For example, the typical velocity of propagation of thermosphere winds is about 100 m/s, the acoustic gravity wave propagate with a velocity of about 400 m/s, and a prompt penetration of the magnetospheric electric field affects the mid-latitude practically instantly. If we can determine a time lag between the action of the perturbation source and mid-latitude ionosphere response, we can determine the velocity of perturbation propagation and recognize the dominating mechanisms and channels of disturbances. The important requirements for the organization of such investigation is a positioning of different measuring facilities in one place and organization of coordinated and synchronous registration of the ionosphere parameters and geophysical fields variations with high temporal resolution. The Mikhnevo observatory gives us such ability. As an indicator and marker of high latitude events (magnetic storms and substorms) we use AE-index. The

  5. Classification of operator algebraic conformal field theories in dimensions one and two

    NASA Astrophysics Data System (ADS)

    Kawahigashi, Yasuyuki

    2006-03-01

    We formulate conformal field theory in the setting of algebraic quantum field theory as Haag-Kastler nets of local observable algebras with diffeomorphism covariance on the two-dimensional Minkowski space. We then obtain a decomposition of a two-dimensional theory into two chiral theories. We give the first classification result of such chiral theories with representation theoretic invariants. That is, we use the central charge as the first invariant, and if it is less than 1, we obtain a complete classification. Our classification list contains a new net which does not seem to arise from the known constructions such as the coset or orbifold constructions. We also present a classification of full two-dimensional conformal theories. These are joint works with Roberto Longo.

  6. Entanglement entropy of black holes and anti-de Sitter space/conformal-field-theory correspondence.

    PubMed

    Solodukhin, Sergey N

    2006-11-17

    A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L(2)lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted. PMID:17155672

  7. Quantum quenches in 1  +  1 dimensional conformal field theories

    NASA Astrophysics Data System (ADS)

    Calabrese, Pasquale; Cardy, John

    2016-06-01

    We review the imaginary time path integral approach to the quench dynamics of conformal field theories. We show how this technique can be applied to the determination of the time dependence of correlation functions and entanglement entropy for both global and local quenches. We also briefly review other quench protocols. We carefully discuss the limits of applicability of these results to realistic models of condensed matter and cold atoms.

  8. Thigmomorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation

    NASA Technical Reports Server (NTRS)

    Telewski, F. W.; Jaffe, M. J.

    1986-01-01

    Field- and greenhouse-grown Abies fraseri (Pursh) Poir. (Fraser fir) were analyzed for wind- or mechanically-induced flexure changes. These changes included inhibition of stem and needle elongation, reinforcement of branch bases around the stem, and increased radial growth in the direction of the mechanical perturbation (MP). Mature trees exposed to high wind conditions were severely flag-formed. These modified tree crowns had a lower drag than crowns of non-flag formed trees in wind-tunnel tests. In both field-grown and greenhouse-grown A. fraseri, MP induced a decrease in flexibility and increased elasticity of the stems. The increased radial growth of the stems overrode the increase in elasticity, resulting in the overall decrease in flexibility. The increase in radial growth caused by wind or mechanical flexure was due to greater cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decrease in stem elongation in these trees was due, at least in part, to a decrease in tracheid length. The potential biological and mechanical significance of these induced growth changes in trees are addressed. The data support the thigmomorphogenetic theory, which states that plants respond to wind and other mechanical perturbations in a way that is favorable to the plant for continued survival in windy environments.

  9. Delta-N formalism for the evolution of the curvature perturbations in generalized multi-field inflation

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro

    2009-11-01

    The δN formalism is considered to calculate the evolution of the curvature perturbation in generalized multi-field inflation models. The result is consistent with the usual calculation of the standard kinetic term. For the calculation of the generalized kinetic term, we improved the definition of the adiabatic field. Our calculation improves the usual calculation of R˙ based on the field equations and the perturbations, giving a very simple and intuitive argument for the evolution equations in terms of the perturbations of the inflaton velocity. Significance of non-equilibrium corrections are also discussed, which is caused by the small-scale (decaying) inhomogeneities. This formalism based on the modulated inflation scenario (i.e., calculation based on the perturbations related to the inflaton velocity) provides a powerful tool for investigating the signature of moduli that may appear in string theory.

  10. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field

    PubMed Central

    Kelly, Catherine M.; Northey, Thomas; Ryan, Kate; Brooks, Bernard R.; Kholkin, Andrei; Rodriguez, Brian J.; Buchete, Nicolae-Viorel

    2014-01-01

    Aromatic peptides such as diphenylalanine (FF) have the characteristic capacity to self-assemble into ordered nanostructures such as peptide nanotubes, which are biocompatible, thermally and chemically stable, and have strong piezoelectric activity and high mechanical strength. The physical properties of FF aggregates open up a variety of potential biomedical applications. Electric fields are commonly applied to align FF nanotubes, yet little is known about the effect of the electric field on the assembly process. Using all-atom molecular dynamics with explicit water molecules, we probe the conformational dynamics of individual, solvated FF molecules with both charged and neutral ends, to account for different possible pH conditions. With charged ends, the FF molecules show more complex dynamics, experiencing three main conformational states (cis, trans and extended). We first examine the structural response of FF monomers to the application of a constant external electric field over a range of intensities. We also probe the aggregation mechanism of FF peptides, both with and without an externally applied electric field, and find that the presence of even relatively weak fields can accelerate the formation of ordered FF aggregates, primarily by facilitating the alignment of individual molecular dipole moments. The correlation between the strength of the external electric field and the local dipolar interactions is modulated both by the conformational response of individual FF peptides (e.g. backbone stretching, hydrogen bonds and relative alignment of aromatic sidechains) and by the response of neighboring FF and water molecules. These field-dependent observations may facilitate future studies on the controlled formation of nano-structured aggregates of piezoelectric peptides and the understanding of their specific electromechanical properties. PMID:25240398