Science.gov

Sample records for perturbed dna replication

  1. Perturbation of DNA replication and cell cycle progression by commonly used ( sup 3 H)thymidine labeling protocols

    SciTech Connect

    Hoy, C.A.; Lewis, E.D.; Schimke, R.T. )

    1990-04-01

    The effect of tritiated thymidine incorporation on DNA replication was studied in Chinese hamster ovary cells. Rapidly eluting (small) DNA from cells labeled with 2 microCi of ({sup 3}H)thymidine per ml (200 microCi/mmol) for 60 min matured to a large nonelutable size within approximately 2 to 4 h, as measured by the alkaline elution technique. However, DNA from cells exposed to 10 microCi of ({sup 3}H)thymidine per ml (66 microCi/mmol) was more rapidly eluting initially and did not mature to a nonelutable size during subsequent incubation. Semiconservative DNA replication measured by cesium chloride gradient analysis of bromodeoxyuridine-substituted DNA was also found to be affected by the final specific activity of the ({sup 3}H)thymidine used in the labeling protocol. Dramatic cell cycle perturbations accompanied these effects on DNA replication, suggesting that labeling protocols commonly used to study DNA metabolism produce aberrant DNA replication and subsequent cell cycle perturbations.

  2. A quantitative model of the initiation of DNA replication in Saccharomyces cerevisiae predicts the effects of system perturbations

    PubMed Central

    2012-01-01

    Background Eukaryotic cell proliferation involves DNA replication, a tightly regulated process mediated by a multitude of protein factors. In budding yeast, the initiation of replication is facilitated by the heterohexameric origin recognition complex (ORC). ORC binds to specific origins of replication and then serves as a scaffold for the recruitment of other factors such as Cdt1, Cdc6, the Mcm2-7 complex, Cdc45 and the Dbf4-Cdc7 kinase complex. While many of the mechanisms controlling these associations are well documented, mathematical models are needed to explore the network’s dynamic behaviour. We have developed an ordinary differential equation-based model of the protein-protein interaction network describing replication initiation. Results The model was validated against quantified levels of protein factors over a range of cell cycle timepoints. Using chromatin extracts from synchronized Saccharomyces cerevisiae cell cultures, we were able to monitor the in vivo fluctuations of several of the aforementioned proteins, with additional data obtained from the literature. The model behaviour conforms to perturbation trials previously reported in the literature, and accurately predicts the results of our own knockdown experiments. Furthermore, we successfully incorporated our replication initiation model into an established model of the entire yeast cell cycle, thus providing a comprehensive description of these processes. Conclusions This study establishes a robust model of the processes driving DNA replication initiation. The model was validated against observed cell concentrations of the driving factors, and characterizes the interactions between factors implicated in eukaryotic DNA replication. Finally, this model can serve as a guide in efforts to generate a comprehensive model of the mammalian cell cycle in order to explore cancer-related phenotypes. PMID:22738223

  3. Archaeal DNA replication.

    PubMed

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed. PMID:25421597

  4. Replicating repetitive DNA.

    PubMed

    Tognetti, Silvia; Speck, Christian

    2016-05-27

    The function and regulation of repetitive DNA, the 'dark matter' of the genome, is still only rudimentarily understood. Now a study investigating DNA replication of repetitive centromeric chromosome segments has started to expose a fascinating replication program that involves suppression of ATR signalling, in particular during replication stress. PMID:27230530

  5. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  6. Replicative DNA polymerases.

    PubMed

    Johansson, Erik; Dixon, Nicholas

    2013-06-01

    In 1959, Arthur Kornberg was awarded the Nobel Prize for his work on the principles by which DNA is duplicated by DNA polymerases. Since then, it has been confirmed in all branches of life that replicative DNA polymerases require a single-stranded template to build a complementary strand, but they cannot start a new DNA strand de novo. Thus, they also depend on a primase, which generally assembles a short RNA primer to provide a 3'-OH that can be extended by the replicative DNA polymerase. The general principles that (1) a helicase unwinds the double-stranded DNA, (2) single-stranded DNA-binding proteins stabilize the single-stranded DNA, (3) a primase builds a short RNA primer, and (4) a clamp loader loads a clamp to (5) facilitate the loading and processivity of the replicative polymerase, are well conserved among all species. Replication of the genome is remarkably robust and is performed with high fidelity even in extreme environments. Work over the last decade or so has confirmed (6) that a common two-metal ion-promoted mechanism exists for the nucleotidyltransferase reaction that builds DNA strands, and (7) that the replicative DNA polymerases always act as a key component of larger multiprotein assemblies, termed replisomes. Furthermore (8), the integrity of replisomes is maintained by multiple protein-protein and protein-DNA interactions, many of which are inherently weak. This enables large conformational changes to occur without dissociation of replisome components, and also means that in general replisomes cannot be isolated intact. PMID:23732474

  7. DNA Replication Origins

    PubMed Central

    Leonard, Alan C.; Méchali, Marcel

    2013-01-01

    The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression. PMID:23838439

  8. Chromatin and DNA replication.

    PubMed

    MacAlpine, David M; Almouzni, Geneviève

    2013-08-01

    The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program. PMID:23751185

  9. Targeting DNA Replication Stress for Cancer Therapy

    PubMed Central

    Zhang, Jun; Dai, Qun; Park, Dongkyoo; Deng, Xingming

    2016-01-01

    The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress. PMID:27548226

  10. Modeling Inhomogeneous DNA Replication Kinetics

    PubMed Central

    Gauthier, Michel G.; Norio, Paolo; Bechhoefer, John

    2012-01-01

    In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited. PMID:22412853

  11. Thermal trap for DNA replication.

    PubMed

    Mast, Christof B; Braun, Dieter

    2010-05-01

    The hallmark of living matter is the replication of genetic molecules and their active storage against diffusion. We implement both in the simple nonequilibrium environment of a temperature gradient. Convective flow both drives the DNA replicating polymerase chain reaction while concurrent thermophoresis accumulates the replicated 143 base pair DNA in bulk solution. The time constant for accumulation is 92 s while DNA is doubled every 50 s. The experiments explore conditions in pores of hydrothermal rock which can serve as a model environment for the origin of life. PMID:20482214

  12. DNA replication origins in archaea

    PubMed Central

    Wu, Zhenfang; Liu, Jingfang; Yang, Haibo; Xiang, Hua

    2014-01-01

    DNA replication initiation, which starts at specific chromosomal site (known as replication origins), is the key regulatory stage of chromosome replication. Archaea, the third domain of life, use a single or multiple origin(s) to initiate replication of their circular chromosomes. The basic structure of replication origins is conserved among archaea, typically including an AT-rich unwinding region flanked by several conserved repeats (origin recognition box, ORB) that are located adjacent to a replication initiator gene. Both the ORB sequence and the adjacent initiator gene are considerably diverse among different replication origins, while in silico and genetic analyses have indicated the specificity between the initiator genes and their cognate origins. These replicator–initiator pairings are reminiscent of the oriC-dnaA system in bacteria, and a model for the negative regulation of origin activity by a downstream cluster of ORB elements has been recently proposed in haloarchaea. Moreover, comparative genomic analyses have revealed that the mosaics of replicator-initiator pairings in archaeal chromosomes originated from the integration of extrachromosomal elements. This review summarizes the research progress in understanding of archaeal replication origins with particular focus on the utilization, control and evolution of multiple replication origins in haloarchaea. PMID:24808892

  13. Archaeology of Eukaryotic DNA Replication

    PubMed Central

    Makarova, Kira S.; Koonin, Eugene V.

    2013-01-01

    Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously uncharacterized archaeal proteins involved in replication and currently reveal a nearly complete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were comparable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionalization of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific duplications of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal replication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. PMID:23881942

  14. Replicating Damaged DNA in Eukaryotes

    PubMed Central

    Chatterjee, Nimrat; Siede, Wolfram

    2013-01-01

    DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail. PMID:24296172

  15. DNA-PK is Involved in Repairing a Transient Surge of DNA BreaksInduced by Deceleration of DNA Replication.

    SciTech Connect

    Shimura, Tsutomu; Martin, Melvenia M.; Torres, Michael J.; Gu,Cory; Pluth, Janice M.; DiBernardi, Maria A.; McDonald, Jeffrey S.; Aladjem, Mirit I.

    2006-09-25

    ells that suffer substantial inhibition of DNA replication halt their cell cycle via a checkpoint response mediated by the PI3 kinases ATM and ATR. It is unclear how cells cope with milder replication insults, which are under the threshold for ATM and ATR activation. A third PI3 kinase, DNA-dependent protein kinase (DNA-PK), is also activated following replication inhibition, but the role DNA-PK might play in response to perturbed replication is unclear, since this kinase does not activate the signaling cascades involved in the S-phase checkpoint. Here we report that mild, transient drug-induced perturbation of DNA replication rapidly induced DNA breaks that promptly disappeared in cells that contained a functional DNA-PK whereas such breaks persisted in cells that were deficient in DNA-PK activity. After the initial transient burst of DNA breaks, cells with a functional DNA-PK did not halt replication and continued to synthesize DNA at a slow pace in the presence of replication inhibitors. In contrast, DNA-PK deficient cells subject to low levels of replication inhibition halted cell cycle progression via an ATR-mediated S-phase checkpoint. The ATM kinase was dispensable for the induction of the initial DNA breaks. These observations suggest that DNA-PK is involved in setting a high threshold for the ATR-Chkl-mediated S-phase checkpoint by promptly repairing DNA breaks that appear immediately following inhibition of DNA replication.

  16. Replication of nanoscale DNA patterns

    NASA Astrophysics Data System (ADS)

    Maass, Corinna; Wang, Tong; Sha, Ruojie; Leunissen, Mirjam; Dreyfus, Remi; Seeman, Nadrian; Chaikin, Paul

    2011-03-01

    We present an artificial supramolecular system mimicking self- replication and information transmission strategies in nature, but without the aid of enzymes or equivalent biological mechanisms. Using DNA nanotechnology techniques, we can make DNA tiles with selective interactions based on complementary single-strand connections. A linear tile pattern distinguished by their connector sequences is transmitted to a subsequent generation of copies by connector hybridisation. Longitudinal pattern formation and transverse copy attachment are well separated by different melting temperatures. We have achieved a faithful transmission of the pattern information to the second replication generation. We use AFM imaging to test for pattern fidelity and gel electrophoresis for quantitative yield analysis. supported by a DAAD postdoc grant.

  17. Mathematical modelling of eukaryotic DNA replication.

    PubMed

    Hyrien, Olivier; Goldar, Arach

    2010-01-01

    Eukaryotic DNA replication is a complex process. Replication starts at thousand origins that are activated at different times in S phase and terminates when converging replication forks meet. Potential origins are much more abundant than actually fire within a given S phase. The choice of replication origins and their time of activation is never exactly the same in any two cells. Individual origins show different efficiencies and different firing time probability distributions, conferring stochasticity to the DNA replication process. High-throughput microarray and sequencing techniques are providing increasingly huge datasets on the population-averaged spatiotemporal patterns of DNA replication in several organisms. On the other hand, single-molecule replication mapping techniques such as DNA combing provide unique information about cell-to-cell variability in DNA replication patterns. Mathematical modelling is required to fully comprehend the complexity of the chromosome replication process and to correctly interpret these data. Mathematical analysis and computer simulations have been recently used to model and interpret genome-wide replication data in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, in Xenopus egg extracts and in mammalian cells. These works reveal how stochasticity in origin usage confers robustness and reliability to the DNA replication process. PMID:20205354

  18. Synchronization of DNA array replication kinetics

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  19. Regulation of Unperturbed DNA Replication by Ubiquitylation

    PubMed Central

    Priego Moreno, Sara; Gambus, Agnieszka

    2015-01-01

    Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation) represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks. PMID:26121093

  20. Chromatin perturbations during the DNA damage response in higher eukaryotes

    PubMed Central

    Bakkenist, Christopher J.; Kastan, Michael B.

    2016-01-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response

  1. Chromatin perturbations during the DNA damage response in higher eukaryotes.

    PubMed

    Bakkenist, Christopher J; Kastan, Michael B

    2015-12-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response

  2. Structural basis for DNA binding by replication initiator Mcm10

    SciTech Connect

    Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin; Greer, Briana; Bielinsky, Anja-Katrin; Chazin, Walter J.; Eichman, Brandt F.

    2009-06-30

    Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae result in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.

  3. Single molecule analysis of DNA replication.

    PubMed

    Herrick, J; Bensimon, A

    1999-01-01

    We describe here a novel approach for the study of DNA replication. The approach is based on a process called molecular combing and allows for the genome wide analysis of the spatial and temporal organization of replication units and replication origins in a sample of genomic DNA. Molecular combing is a process whereby molecules of DNA are stretched and aligned on a glass surface by the force exerted by a receding air/water interface. Since the stretching occurs in the immediate vicinity of the meniscus, all molecules are identically stretched in a size and sequence independent manner. The application of fluorescence hybridization to combed DNA results in a high resolution (1 to 4 kb) optical mapping that is simple, controlled and reproducible. The ability to comb up to several hundred haploid genomes on a single coverslip allows for a statistically significant number of measurements to be made. Direct labeling of replicating DNA sequences in turn enables origins of DNA replication to be visualized and mapped. These features therefore make molecular combing an attractive tool for genomic studies of DNA replication. In the following, we discuss the application of molecular combing to the study of DNA replication and genome stability. PMID:10572299

  4. Cell Cycle Regulation of DNA Replication

    PubMed Central

    Sclafani, R. A.; Holzen, T. M.

    2008-01-01

    Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of pre-replication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage. PMID:17630848

  5. The E. coli DNA Replication Fork.

    PubMed

    Lewis, J S; Jergic, S; Dixon, N E

    2016-01-01

    DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication. PMID:27241927

  6. Self-replication of DNA rings.

    PubMed

    Kim, Junghoon; Lee, Junwye; Hamada, Shogo; Murata, Satoshi; Ha Park, Sung

    2015-06-01

    Biology provides numerous examples of self-replicating machines, but artificially engineering such complex systems remains a formidable challenge. In particular, although simple artificial self-replicating systems including wooden blocks, magnetic systems, modular robots and synthetic molecular systems have been devised, such kinematic self-replicators are rare compared with examples of theoretical cellular self-replication. One of the principal reasons for this is the amount of complexity that arises when you try to incorporate self-replication into a physical medium. In this regard, DNA is a prime candidate material for constructing self-replicating systems due to its ability to self-assemble through molecular recognition. Here, we show that DNA T-motifs, which self-assemble into ring structures, can be designed to self-replicate through toehold-mediated strand displacement reactions. The inherent design of these rings allows the population dynamics of the systems to be controlled. We also analyse the replication scheme within a universal framework of self-replication and derive a quantitative metric of the self-replicability of the rings. PMID:25961509

  7. Self-replication of DNA rings

    NASA Astrophysics Data System (ADS)

    Kim, Junghoon; Lee, Junwye; Hamada, Shogo; Murata, Satoshi; Ha Park, Sung

    2015-06-01

    Biology provides numerous examples of self-replicating machines, but artificially engineering such complex systems remains a formidable challenge. In particular, although simple artificial self-replicating systems including wooden blocks, magnetic systems, modular robots and synthetic molecular systems have been devised, such kinematic self-replicators are rare compared with examples of theoretical cellular self-replication. One of the principal reasons for this is the amount of complexity that arises when you try to incorporate self-replication into a physical medium. In this regard, DNA is a prime candidate material for constructing self-replicating systems due to its ability to self-assemble through molecular recognition. Here, we show that DNA T-motifs, which self-assemble into ring structures, can be designed to self-replicate through toehold-mediated strand displacement reactions. The inherent design of these rings allows the population dynamics of the systems to be controlled. We also analyse the replication scheme within a universal framework of self-replication and derive a quantitative metric of the self-replicability of the rings.

  8. MYC and the Control of DNA Replication

    PubMed Central

    Dominguez-Sola, David; Gautier, Jean

    2014-01-01

    The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC’s diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer. PMID:24890833

  9. Maintaining Epigenetic Inheritance During DNA Replication in Plants

    PubMed Central

    Iglesias, Francisco M.; Cerdán, Pablo D.

    2016-01-01

    Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are “remembered” temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance). This “memory” effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants. PMID:26870059

  10. Conformational Dynamics in DNA Replication Selectivity

    NASA Astrophysics Data System (ADS)

    Brieba, Luis G.

    2007-11-01

    Replicative DNA polymerases are remarkable molecular machines that carry out DNA synthesis accordingly to the Watson and Crick rules (Guanine pairs with Cytosine and Adenine with Thymidine) with high specificity or fidelity. The biochemical mechanism that dictates polymerase fidelity has its fundaments in the tight active site of replicative polymerases and the shape and size of the Watson-Crick base pairs. Pre-steady state kinetic analysis have shown that during polymerase nucleotide addition, the chemical reaction is not the rate limiting step and it was postulated that DNA polymerases suffer a conformational change from an "open" to a "closed" conformation before chemistry which is also the step responsible for their high fidelity. Crystal structures of replicative DNA polymerases demonstrated that the fingers subdomain suffers a large conformational change during catalysis and that this conformational transition aligns the polymerase active site in a proper conformation for catalysis. Recent studies using single molecule techniques and Fluorescence Resonance Energy Transfer analysis also shown that at least in the case of T7 DNA polymerase, the closure of the fingers subdomain is in part the rate limiting step associated with the high fidelity of DNA polymerases, although the overall fidelity of the reaction maybe involves an assemble of chemical steps and several conformational changes. Our current knowledge indicates that the mechanisms of enzyme specificity in DNA replication involve several energy landscapes that maybe correlated with conformational changes and active site assemblies.

  11. Replication of ribosomal DNA in Xenopus laevis.

    PubMed

    Bozzoni, I; Baldari, C T; Amaldi, F; Buongiorno-Nardelli, M

    1981-09-01

    The study of the localization of the replication origins of rDNA in Xenopus laevis has been approached by two different methods. 1. The DNA of X. laevis larvae was fractionated by CsCl gradient centrifugation in bulk and ribosomal DNA and examined in the electron microscope. In bulk DNA, clusters of microbubbles, which are related with the origins of replication, appear to be spaced along the DNA molecules at intervals comparable with the size of the 'average' replicon of X. laevis. In ribosomal DNA, the distance between adjacent clusters is much shorter and corresponds to the size of the rDNA repeating unit. When ribosomal DNA was submitted to digestion with restriction enzymes (Eco RI and HindIII) the microbubbles are observed in the non-transcribed spacer-containing fragment. 2. Cultured cells of X. laevis were synchronized by mitotic selection and incubated with 5-fluoro-2-deoxyuridine for a time longer than the G1 phase. This treatment synchronizes the replicons and allows them to start replicating very slowly. It was thus possible to obtain a preferential labelling of the regions containing the origins. The analysis by gel electrophoresis of the Eco Ri-digested rDNA showed that the radioactivity was preferentially incorporated in the fragments which contain the non-transcribed spacer. The results of these two approaches indicate that the rRNA gene cluster consists of multiple units of replication, possibly one per gene unit. Furthermore they show that the origins of replication are localized into the non-transcribed spacer. PMID:7297565

  12. Processing ribonucleotides incorporated during eukaryotic DNA replication.

    PubMed

    Williams, Jessica S; Lujan, Scott A; Kunkel, Thomas A

    2016-06-01

    The information encoded in DNA is influenced by the presence of non-canonical nucleotides, the most frequent of which are ribonucleotides. In this Review, we discuss recent discoveries about ribonucleotide incorporation into DNA during replication by the three major eukaryotic replicases, DNA polymerases α, δ and ε. The presence of ribonucleotides in DNA causes short deletion mutations and may result in the generation of single- and double-strand DNA breaks, leading to genome instability. We describe how these ribonucleotides are removed from DNA through ribonucleotide excision repair and by topoisomerase I. We discuss the biological consequences and the physiological roles of ribonucleotides in DNA, and consider how deficiencies in their removal from DNA may be important in the aetiology of disease. PMID:27093943

  13. Chromatin Immunoprecipitation to Detect DNA Replication and Repair Factors

    PubMed Central

    Gadaleta, Mariana C.; Iwasaki, Osamu; Noguchi, Chiaki; Noma, Ken-Ichi; Noguchi, Eishi

    2015-01-01

    DNA replication is tightly coupled with DNA repair processes in order to preserve genomic integrity. During DNA replication, the replication fork encounters a variety of obstacles including DNA damage/adducts, secondary structures, and programmed fork-blocking sites, which are all difficult to replicate. The replication fork also collides with the transcription machinery, which shares the template DNA with the replisome complex. Under these conditions, replication forks stall, causing replication stress and/or fork collapse, ultimately leading to genomic instability. The mechanisms to overcome these replication problems remain elusive. Therefore, it is important to investigate how DNA repair and replication factors are recruited and coordinated at chromosomal regions that are difficult to replicate. In this chapter, we describe a chromatin immunoprecipitation method to locate proteins required for DNA repair during DNA replication in the fission yeast Schizosaccharomyces pombe. This method can also easily be adapted to study replisome components or chromatin-associated factors. PMID:25916713

  14. Assembling semiconductor nanocomposites using DNA replication technologies.

    SciTech Connect

    Heimer, Brandon W.; Crown, Kevin K.; Bachand, George David

    2005-11-01

    Deoxyribonucleic acid (DNA) molecules represent Nature's genetic database, encoding the information necessary for all cellular processes. From a materials engineering perspective, DNA represents a nanoscale scaffold with highly refined structure, stability across a wide range of environmental conditions, and the ability to interact with a range of biomolecules. The ability to mass-manufacture functionalized DNA strands with Angstrom-level resolution through DNA replication technology, however, has not been explored. The long-term goal of the work presented in this report is focused on exploiting DNA and in vitro DNA replication processes to mass-manufacture nanocomposite materials. The specific objectives of this project were to: (1) develop methods for replicating DNA strands that incorporate nucleotides with ''chemical handles'', and (2) demonstrate attachment of nanocrystal quantum dots (nQDs) to functionalized DNA strands. Polymerase chain reaction (PCR) and primer extension methodologies were used to successfully synthesize amine-, thiol-, and biotin-functionalized DNA molecules. Significant variability in the efficiency of modified nucleotide incorporation was observed, and attributed to the intrinsic properties of the modified nucleotides. Noncovalent attachment of streptavidin-coated nQDs to biotin-modified DNA synthesized using the primer extension method was observed by epifluorescence microscopy. Data regarding covalent attachment of nQDs to amine- and thiol-functionalized DNA was generally inconclusive; alternative characterization tools are necessary to fully evaluate these attachment methods. Full realization of this technology may facilitate new approaches to manufacturing materials at the nanoscale. In addition, composite nQD-DNA materials may serve as novel recognition elements in sensor devices, or be used as diagnostic tools for forensic analyses. This report summarizes the results obtained over the course of this 1-year project.

  15. Segregation of relaxed replicated dimers when DNA ligase and DNA polymerase I are limited during oriC-specific DNA replication.

    PubMed Central

    Munson, B R; Maier, P G; Greene, R S

    1989-01-01

    An in vitro Escherichia coli oriC-specific DNA replication system was used to investigate the DNA replication pathways of oriC plasmids. When this system was perturbed by the DNA ligase inhibitor nicotinamide mononucleotide (NMN), alterations occurred in the initiation of DNA synthesis and processing of intermediates and DNA products. Addition of high concentrations of NMN soon after initiation resulted in the accumulation of open circular dimers (OC-OC). These dimers were decatenated to open circular monomers (form II or OC), which were then processed to closed circular supercoiled monomers (form I or CC) products. After a delay, limited ligation of the interlinked dimers (OC-OC to CC-OC and CC-CC) also occurred. Similar results were obtained with replication protein extracts from polA mutants. The presence of NMN before any initiation events took place prolonged the existence of nicked template DNA and promoted, without a lag period, limited incorporation into form II molecules. This DNA synthesis was nonspecific with respect to oriC, as judged by DnaA protein dependence, and presumably occurred at nicks in the template DNA. These results are consistent with oriC-specific initiation requiring closed supercoiled molecules dependent on DNA ligase activity. The results also show that decatenation of dimers occurs readily on nicked dimer and represents an efficient pathway for processing replication intermediates in vitro. Images PMID:2544556

  16. Replication pattern of human repeated DNA sequences.

    PubMed

    Meneveri, R; Agresti, A; Breviario, D; Ginelli, E

    1984-10-01

    Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the Eco RI 340 bp family (alpha RI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S. PMID:6089891

  17. Replication of linear duplex DNA in vitro with bacteriophage T5 DNA polymerase

    SciTech Connect

    Fujimura, R. K.; Das, S. K.; Allison, D. P.; Roop, B. C.

    1980-01-01

    Two sets of experiments are presented that attempt to contribute to understanding the mechanisms of DNA replication. The specific areas discussed are fidelity of DNA replication and initiation of replication of duplex DNA. (ACR)

  18. Entropy Involved in Fidelity of DNA Replication

    PubMed Central

    Arias-Gonzalez, J. Ricardo

    2012-01-01

    Information has an entropic character which can be analyzed within the framework of the Statistical Theory in molecular systems. R. Landauer and C.H. Bennett showed that a logical copy can be carried out in the limit of no dissipation if the computation is performed sufficiently slowly. Structural and recent single-molecule assays have provided dynamic details of polymerase machinery with insight into information processing. Here, we introduce a rigorous characterization of Shannon Information in biomolecular systems and apply it to DNA replication in the limit of no dissipation. Specifically, we devise an equilibrium pathway in DNA replication to determine the entropy generated in copying the information from a DNA template in the absence of friction. Both the initial state, the free nucleotides randomly distributed in certain concentrations, and the final state, a polymerized strand, are mesoscopic equilibrium states for the nucleotide distribution. We use empirical stacking free energies to calculate the probabilities of incorporation of the nucleotides. The copied strand is, to first order of approximation, a state of independent and non-indentically distributed random variables for which the nucleotide that is incorporated by the polymerase at each step is dictated by the template strand, and to second order of approximation, a state of non-uniformly distributed random variables with nearest-neighbor interactions for which the recognition of secondary structure by the polymerase in the resultant double-stranded polymer determines the entropy of the replicated strand. Two incorporation mechanisms arise naturally and their biological meanings are explained. It is known that replication occurs far from equilibrium and therefore the Shannon entropy here derived represents an upper bound for replication to take place. Likewise, this entropy sets a universal lower bound for the copying fidelity in replication. PMID:22912695

  19. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.

    PubMed

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-06-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy. PMID:26805514

  20. On the scattering of DNA replication completion times

    NASA Astrophysics Data System (ADS)

    Meilikhov, E. Z.; Farzetdinova, R. M.

    2015-07-01

    Stochasticity of Eukaryotes' DNA replication should not lead to large fluctuations of replication times, which could result in mitotic catastrophes. Fundamental problem that cells face is how to be ensured that entire genome is replicated on time. We develop analytic approach of calculating DNA replication times, that being simplified and approximate, leads, nevertheless, to results practically coincident with those that were obtained by some sophisticated methods. In the framework of that model we consider replication times' scattering and discuss the influence of repair stopping on kinetics of DNA replication. Our main explicit formulae for DNA replication time t r ∝ ( N is the total number of DNA base pairs) is of general character and explains basic features of DNA replication kinetics.

  1. Preservation of Epigenetic Memory During DNA Replication

    PubMed Central

    Lowe, Matthew; Hostager, Reilly; Kikyo, Nobuaki

    2016-01-01

    Faithful duplication of a cell’s epigenetic state during DNA replication is essential for the maintenance of a cell’s lineage. One of the key mechanisms is the recruitment of several critical chromatin modifying enzymes to the replication fork by proliferating cell nuclear antigen (PCNA). Another mechanism is mediated by the dual function of some histone modifying enzymes as both “reader” and “writer” of the same modification. This capacity allows for parental histones to act as a seed to copy the modification onto nearby newly synthesized histones. In contrast to the vast quantity of research into the maintenance of epigenetic memory, little is known about how the recruitment of these maintenance enzymes changes during stem cell differentiation. This question is especially pertinent due to the recent emphasis on cell reprogramming for regenerative medicine. PMID:27158681

  2. Frog Virus 3 DNA Replication Occurs in Two Stages

    PubMed Central

    Goorha, R.

    1982-01-01

    Viral DNA synthesis in frog virus 3 (FV3)-infected cells occurs both in the nucleus and in the cytoplasm (Goorha et al., Virology 84:32-51, 1978). Relationships between viral DNA molecules synthesized in these two compartments and their role in the virus replication were examined. The data presented here suggest that (i) FV3 DNA replicated in two stages and (ii) nucleus and cytoplasm were the sites of stages 1 and 2 of DNA replication, respectively. Stages 1 and 2 were further distinguished by their temporal appearance during infection and by the sizes of the replicating DNA as determined by sedimentation in neutral sucrose gradients. In stage 1, replicating molecules, between the size of unit and twice the unit length, were produced early in infection (2 h postinfection). In contrast, stage 2 of DNA replication occurred only after 3 h postinfection, and replicating molecules were large concatemers. Results of pulse-chase experiments showed that the concatemeric DNA served as the precursor for the production of mature FV3 DNA. Denaturation of concatemeric DNA with alkali or digestion with S1 nuclease reduced it to less than genome size molecules, indicating the presence of extensive single-stranded regions. Analysis of replicating DNA by equilibrium centrifugation in CsCl gradients after a pulse-chase suggested that these single-stranded regions were subsequently repaired. Based on these and previous data, a scheme of FV3 replication is presented. According to this scheme, FV3 utilizes the nucleus for early transcription and stage 1 of DNA replication. The viral DNA is then transported to the cytoplasm, where it participates in stage 2 DNA replication to form a concatemeric replication complex. The processing of concatemers to produce mature viral DNA and virus assembly also occurs in the cytoplasm. This mode of replication is strikingly different from any other known DNA virus. PMID:7109033

  3. Transcription regulatory elements are punctuation marks for DNA replication.

    PubMed

    Mirkin, Ekaterina V; Castro Roa, Daniel; Nudler, Evgeny; Mirkin, Sergei M

    2006-05-01

    Collisions between DNA replication and transcription significantly affect genome organization, regulation, and stability. Previous studies have described collisions between replication forks and elongating RNA polymerases. Although replication collisions with the transcription-initiation or -termination complexes are potentially even more important because most genes are not actively transcribed during DNA replication, their existence and mechanisms remained unproven. To address this matter, we have designed a bacterial promoter that binds RNA polymerase and maintains it in the initiating mode by precluding the transition into the elongation mode. By using electrophoretic analysis of replication intermediates, we have found that this steadfast transcription-initiation complex inhibits replication fork progression in an orientation-dependent manner during head-on collisions. Transcription terminators also appeared to attenuate DNA replication, but in the opposite, codirectional orientation. Thus, transcription regulatory signals may serve as "punctuation marks" for DNA replication in vivo. PMID:16670199

  4. Replication across Regioisomeric Ethylated Thymidine Lesions by Purified DNA Polymerases

    PubMed Central

    Andersen, Nisana; Wang, Pengcheng; Wang, Yinsheng

    2013-01-01

    Causal links exist between smoking cigarettes and cancer development. Some genotoxic agents in cigarette smoke are capable of alkylating nucleobases in DNA and higher levels of ethylated DNA lesions were observed in smokers than non-smokers. In this study, we examined comprehensively how the regioisomeric O2-, N3- and O4-ethylthymidine (O2-, N3- and O4-EtdT) perturb DNA replication mediated by purified human DNA polymerases (hPol) η, κ, and ι, yeast DNA polymerase ζ (yPol ζ), and the exonuclease-free Klenow fragment (Kf−) of Escherichia coli DNA polymerase I. Our results showed that hPol η and Kf− could bypass all three lesions and generate full-length replication products, whereas hPol ι stalled after inserting a single nucleotide opposite the lesions. Bypass carried out by hPol κ and yPol ζ differed markedly amongst the three lesions: Consistent with its known capability in bypassing efficiently the minor-groove N2-substituted 2′-deoxyguanosine lesions, hPol κ was able to bypass O2-EtdT, though it experienced great difficulty in bypassing N3-EtdT and O4-EtdT; yPol ζ was only modestly blocked by O4-EtdT, but the polymerase was highly hindered by O2-EtdT and N3-EtdT. LC-MS/MS analysis of the replication products revealed that DNA synthesis opposite O4-EtdT was highly error-prone, with dGMP being preferentially inserted, while the presence of O2-EtdT and N3-EtdT in template DNA directed substantial frequencies of misincorporation of dGMP and, for hPol ι and Kf−, dTMP. Thus, our results suggested that O2-EtdT and N3-EtdT may also contribute to the AT→TA and AT→GC mutations observed in cells and tissues of animals exposed to ethylating agents. PMID:24134187

  5. Papillomavirus DNA replication - From initiation to genomic instability

    SciTech Connect

    Kadaja, Meelis; Silla, Toomas; Ustav, Ene; Ustav, Mart

    2009-02-20

    Papillomaviruses establish their productive life cycle in stratified epithelium or mucosa, where the undifferentiated proliferating keratinocytes are the initial targets for the productive viral infection. Papillomaviruses have evolved mechanisms to adapt to the normal cellular growth control pathways and to adjust their DNA replication and maintenance cycle to contend with the cellular differentiation. We provide overview of the papillomavirus DNA replication in the differentiating epithelium and describe the molecular interactions important for viral DNA replication on all steps of the viral life cycle.

  6. Herpes simplex virus induces the replication of foreign DNA

    SciTech Connect

    Danovich, R.M.; Frenkel, N.

    1988-08-01

    Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions. HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed.

  7. Herpes simplex virus induces the replication of foreign DNA.

    PubMed Central

    Danovich, R M; Frenkel, N

    1988-01-01

    Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated efficiently in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit skin cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions, HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed. Images PMID:2850486

  8. G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV

    PubMed Central

    Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P.; Robertson, Erle S.; Schildkraut, Carl L.; Verma, Subhash C.

    2016-01-01

    Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. PMID:26837574

  9. Single molecule analysis of Trypanosoma brucei DNA replication dynamics

    PubMed Central

    Calderano, Simone Guedes; Drosopoulos, William C.; Quaresma, Marina Mônaco; Marques, Catarina A.; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L.; Elias, Maria Carolina

    2015-01-01

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5′ extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894

  10. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    PubMed

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894

  11. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  12. Inhibition of virus DNA replication by artificial zinc finger proteins.

    PubMed

    Sera, Takashi

    2005-02-01

    Prevention of virus infections is a major objective in agriculture and human health. One attractive approach to the prevention is inhibition of virus replication. To demonstrate this concept in vivo, an artificial zinc finger protein (AZP) targeting the replication origin of the Beet severe curly top virus (BSCTV), a model DNA virus, was created. In vitro DNA binding assays indicated that the AZP efficiently blocked binding of the viral replication protein (Rep), which initiates virus replication, to the replication origin. All of the transgenic Arabidopsis plants expressing the AZP showed phenotypes strongly resistant to virus infection, and 84% of the transgenic plants showed no symptom. Southern blot analysis demonstrated that BSCTV replication was completely suppressed in the transgenic plants. Since the mechanism of viral DNA replication is well conserved among plants and mammals, this approach could be applied not only to agricultural crop protection but also to the prevention of virus infections in humans. PMID:15681461

  13. Biochemical reconstitution of abasic DNA lesion replication in Xenopus extracts

    PubMed Central

    Liao, Shuren; Matsumoto, Yoshihiro; Yan, Hong

    2007-01-01

    Cellular DNA is under constant attack from numerous exogenous and endogenous agents. The resulting DNA lesions, if not repaired timely, could stall DNA replication, leading to genome instability. To better understand the mechanism of DNA lesion replication at the biochemical level, we have attempted to reconstitute this process in Xenopus egg extracts, the only eukaryotic in vitro system that relies solely on cellular proteins for DNA replication. By using a plasmid DNA that carries a site-specific apurinic/apyrimidinic (AP) lesion as template, we have found that DNA replication is stalled one nucleotide before the lesion. The stalling is temporary and the lesion is eventually replicated by both an error-prone mechanism and an error-free mechanism. This is the first biochemical system that recapitulates efficiently and faithfully all major aspects of DNA lesion replication. It has provided the first direct evidence for the existence of an error-free lesion replication mechanism and also demonstrated that the error-prone mechanism is a major contributor to lesion replication. PMID:17702761

  14. Chromatin Assembly at Kinetochores Is Uncoupled from DNA Replication

    PubMed Central

    Shelby, Richard D.; Monier, Karine; Sullivan, Kevin F.

    2000-01-01

    The specification of metazoan centromeres does not depend strictly on centromeric DNA sequences, but also requires epigenetic factors. The mechanistic basis for establishing a centromeric “state” on the DNA remains unclear. In this work, we have directly examined replication timing of the prekinetochore domain of human chromosomes. Kinetochores were labeled by expression of epitope-tagged CENP-A, which stably marks prekinetochore domains in human cells. By immunoprecipitating CENP-A mononucleosomes from synchronized cells pulsed with [3H]thymidine we demonstrate that CENP-A–associated DNA is replicated in mid-to-late S phase. Cytological analysis of DNA replication further demonstrated that centromeres replicate asynchronously in parallel with numerous other genomic regions. In contrast, quantitative Western blot analysis demonstrates that CENP-A protein synthesis occurs later, in G2. Quantitative fluorescence microscopy and transient transfection in the presence of aphidicolin, an inhibitor of DNA replication, show that CENP-A can assemble into centromeres in the absence of DNA replication. Thus, unlike most genomic chromatin, histone synthesis and assembly are uncoupled from DNA replication at the kinetochore. Uncoupling DNA replication from CENP-A synthesis suggests that regulated chromatin assembly or remodeling could play a role in epigenetic centromere propagation. PMID:11086012

  15. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage

    PubMed Central

    Fu, Haiqing; Martin, Melvenia M.; Regairaz, Marie; Huang, Liang; You, Yang; Lin, Chi-Mei; Ryan, Michael; Kim, RyangGuk; Shimura, Tsutomu; Pommier, Yves; Aladjem, Mirit I.

    2015-01-01

    The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81 deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81 deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins. PMID:25879486

  16. Replication of Structured DNA and its implication in epigenetic stability

    PubMed Central

    Cea, Valentina; Cipolla, Lina; Sabbioneda, Simone

    2015-01-01

    DNA replication is an extremely risky process that cells have to endure in order to correctly duplicate and segregate their genome. This task is particularly sensitive to DNA damage and multiple mechanisms have evolved to protect DNA replication as a block to the replication fork could lead to genomic instability and possibly cell death. The DNA in the genome folds, for the most part, into the canonical B-form but in some instances can form complex secondary structures such as G-quadruplexes (G4). These G rich regions are thermodynamically stable and can constitute an obstacle to DNA and RNA metabolism. The human genome contains more than 350,000 sequences potentially capable to form G-quadruplexes and these structures are involved in a variety of cellular processes such as initiation of DNA replication, telomere maintenance and control of gene expression. Only recently, we started to understand how G4 DNA poses a problem to DNA replication and how its successful bypass requires the coordinated activity of ssDNA binding proteins, helicases and specialized DNA polymerases. Their role in the resolution and replication of structured DNA crucially prevents both genetic and epigenetic instability across the genome. PMID:26136769

  17. Dynamic look at DNA unwinding by a replicative helicase

    PubMed Central

    Lee, Seung-Jae; Syed, Salman; Enemark, Eric J.; Schuck, Stephen; Stenlund, Arne; Ha, Taekjip; Joshua-Tor, Leemor

    2014-01-01

    A prerequisite for DNA replication is the unwinding of duplex DNA catalyzed by a replicative hexameric helicase. Despite a growing body of research, key elements of helicase mechanism remain under substantial debate. In particular, the number of DNA strands encircled by the helicase ring during unwinding and the ring orientation at the replication fork completely contrast in contemporary mechanistic models. Here we use single-molecule and ensemble assays to address these questions for the papillomavirus E1 helicase. We find that E1 unwinds DNA with a strand-exclusion mechanism, with the N-terminal side of the helicase ring facing the replication fork. We show that E1 generates strikingly heterogeneous unwinding patterns stemming from varying degrees of repetitive movements, which is modulated by the DNA-binding domain. Together, our studies reveal previously unrecognized dynamic facets of replicative helicase unwinding mechanisms. PMID:24550505

  18. Dynamic look at DNA unwinding by a replicative helicase.

    PubMed

    Lee, Seung-Jae; Syed, Salman; Enemark, Eric J; Schuck, Stephen; Stenlund, Arne; Ha, Taekjip; Joshua-Tor, Leemor

    2014-03-01

    A prerequisite for DNA replication is the unwinding of duplex DNA catalyzed by a replicative hexameric helicase. Despite a growing body of research, key elements of helicase mechanism remain under substantial debate. In particular, the number of DNA strands encircled by the helicase ring during unwinding and the ring orientation at the replication fork completely contrast in contemporary mechanistic models. Here we use single-molecule and ensemble assays to address these questions for the papillomavirus E1 helicase. We find that E1 unwinds DNA with a strand-exclusion mechanism, with the N-terminal side of the helicase ring facing the replication fork. We show that E1 generates strikingly heterogeneous unwinding patterns stemming from varying degrees of repetitive movements, which is modulated by the DNA-binding domain. Together, our studies reveal previously unrecognized dynamic facets of replicative helicase unwinding mechanisms. PMID:24550505

  19. DNA-protein interaction dynamics at the Lamin B2 replication origin

    PubMed Central

    Puzzi, Luca; Marchetti, Laura; Peverali, Fiorenzo A; Biamonti, Giuseppe; Giacca, Mauro

    2015-01-01

    To date, a complete understanding of the molecular events leading to DNA replication origin activation in mammalian cells still remains elusive. In this work, we report the results of a high resolution chromatin immunoprecipitation study to detect proteins interacting with the human Lamin B2 replication origin. In addition to the pre-RC component ORC4 and to the transcription factors USF and HOXC13, we found that 2 components of the AP-1 transcription factor, c-Fos and c-Jun, are also associated with the origin DNA during the late G1 phase of the cell cycle and that these factors interact with ORC4. Both DNA replication and AP-1 factor binding to the origin region were perturbed by cell treatment with merbarone, a topoisomerase II inhibitor, suggesting that DNA topology is essential for determining origin function.

  20. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene*

    PubMed Central

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-01-01

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease. PMID:26463209

  1. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.

    PubMed

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-11-27

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease. PMID:26463209

  2. The hunt for origins of DNA replication in multicellular eukaryotes

    PubMed Central

    Urban, John M.; Foulk, Michael S.; Casella, Cinzia

    2015-01-01

    Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed. PMID:25926981

  3. The Many Roles of PCNA in Eukaryotic DNA Replication.

    PubMed

    Boehm, E M; Gildenberg, M S; Washington, M T

    2016-01-01

    Proliferating cell nuclear antigen (PCNA) plays critical roles in many aspects of DNA replication and replication-associated processes, including translesion synthesis, error-free damage bypass, break-induced replication, mismatch repair, and chromatin assembly. Since its discovery, our view of PCNA has evolved from a replication accessory factor to the hub protein in a large protein-protein interaction network that organizes and orchestrates many of the key events at the replication fork. We begin this review article with an overview of the structure and function of PCNA. We discuss the ways its many interacting partners bind and how these interactions are regulated by posttranslational modifications such as ubiquitylation and sumoylation. We then explore the many roles of PCNA in normal DNA replication and in replication-coupled DNA damage tolerance and repair processes. We conclude by considering how PCNA can interact physically with so many binding partners to carry out its numerous roles. We propose that there is a large, dynamic network of linked PCNA molecules at and around the replication fork. This network would serve to increase the local concentration of all the proteins necessary for DNA replication and replication-associated processes and to regulate their various activities. PMID:27241932

  4. Kinetic model of DNA replication in eukaryotic organisms

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John; Herrick, John; Bensimon, Aaron

    2001-03-01

    We introduce an analogy between DNA replication in eukaryotic organisms and crystal growth in one dimension. Drawing on models of crystallization kinetics developed in the 1930s to describe the freezing of metals, we formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. It allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.

  5. Direct Evidence for the Formation of Precatenanes during DNA Replication*

    PubMed Central

    Cebrián, Jorge; Castán, Alicia; Martínez, Víctor; Kadomatsu-Hermosa, Maridian J.; Parra, Cristina; Fernández-Nestosa, María José; Schaerer, Christian; Hernández, Pablo; Krimer, Dora B.; Schvartzman, Jorge B.

    2015-01-01

    The dynamics of DNA topology during replication are still poorly understood. Bacterial plasmids are negatively supercoiled. This underwinding facilitates strand separation of the DNA duplex during replication. Leading the replisome, a DNA helicase separates the parental strands that are to be used as templates. This strand separation causes overwinding of the duplex ahead. If this overwinding persists, it would eventually impede fork progression. In bacteria, DNA gyrase and topoisomerase IV act ahead of the fork to keep DNA underwound. However, the processivity of the DNA helicase might overcome DNA gyrase and topoisomerase IV. It was proposed that the overwinding that builds up ahead of the fork could force it to swivel and diffuse this positive supercoiling behind the fork where topoisomerase IV would also act to maintain replicating the DNA underwound. Putative intertwining of sister duplexes in the replicated region are called precatenanes. Fork swiveling and the formation of precatenanes, however, are still questioned. Here, we used classical genetics and high resolution two-dimensional agarose gel electrophoresis to examine the torsional tension of replication intermediates of three bacterial plasmids with the fork stalled at different sites before termination. The results obtained indicated that precatenanes do form as replication progresses before termination. PMID:25829493

  6. Checkpoint Activation of an Unconventional DNA Replication Program in Tetrahymena

    PubMed Central

    Sandoval, Pamela Y.; Lee, Po-Hsuen; Meng, Xiangzhou; Kapler, Geoffrey M.

    2015-01-01

    The intra-S phase checkpoint kinase of metazoa and yeast, ATR/MEC1, protects chromosomes from DNA damage and replication stress by phosphorylating subunits of the replicative helicase, MCM2-7. Here we describe an unprecedented ATR-dependent pathway in Tetrahymena thermophila in which the essential pre-replicative complex proteins, Orc1p, Orc2p and Mcm6p are degraded in hydroxyurea-treated S phase cells. Chromosomes undergo global changes during HU-arrest, including phosphorylation of histone H2A.X, deacetylation of histone H3, and an apparent diminution in DNA content that can be blocked by the deacetylase inhibitor sodium butyrate. Most remarkably, the cell cycle rapidly resumes upon hydroxyurea removal, and the entire genome is replicated prior to replenishment of ORC and MCMs. While stalled replication forks are elongated under these conditions, DNA fiber imaging revealed that most replicating molecules are produced by new initiation events. Furthermore, the sole origin in the ribosomal DNA minichromosome is inactive and replication appears to initiate near the rRNA promoter. The collective data raise the possibility that replication initiation occurs by an ORC-independent mechanism during the recovery from HU-induced replication stress. PMID:26218270

  7. The Cell Cycle Timing of Human Papillomavirus DNA Replication

    PubMed Central

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  8. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    PubMed

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  9. Defects in mitochondrial DNA replication and human disease.

    PubMed

    Copeland, William C

    2012-01-01

    Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease. PMID:22176657

  10. Defects in Mitochondrial DNA Replication and Human Disease

    PubMed Central

    Copeland, William C.

    2011-01-01

    Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes (MDS) such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease. PMID:22176657

  11. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress

    PubMed Central

    García-Rodríguez, Néstor; Wong, Ronald P.; Ulrich, Helle D.

    2016-01-01

    Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse. PMID:27242895

  12. Enhanced Deletion Formation by Aberrant DNA Replication in Escherichia Coli

    PubMed Central

    Saveson, C. J.; Lovett, S. T.

    1997-01-01

    Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways. PMID:9177997

  13. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  14. Hexameric ring structure of human MCM10 DNA replication factor

    PubMed Central

    Okorokov, Andrei L; Waugh, Alastair; Hodgkinson, Julie; Murthy, Andal; Hong, Hye Kyung; Leo, Elisabetta; Sherman, Michael B; Stoeber, Kai; Orlova, Elena V; Williams, Gareth H

    2007-01-01

    The DNA replication factor minichromosome maintenance 10 (MCM10) is a conserved, abundant nuclear protein crucial for origin firing. During the transition from pre-replicative complexes to pre-initiation complexes, MCM10 recruitment to replication origins is required to provide a physical link between the MCM2–7 complex DNA helicase and DNA polymerases. Here, we report the molecular structure of human MCM10 as determined by electron microscopy and single-particle analysis. The MCM10 molecule is a ring-shaped hexamer with large central and smaller lateral channels and a system of inner chambers. This structure, together with biochemical data, suggests that this important protein uses its architecture to provide a docking module for assembly of the molecular machinery required for eukaryotic DNA replication. PMID:17823614

  15. A new MCM modification cycle regulates DNA replication initiation

    PubMed Central

    Wei, Lei; Zhao, Xiaolan

    2016-01-01

    The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1 and activated in S phase to initiate replication. During this transition, the only known chemical change on MCM is the gain of multi-site phosphorylation that promotes cofactor recruitment. As replication initiation is intimately linked to multiple biological cues, additional changes on MCM can provide further regulatory points. Here, we describe a yeast MCM sumoylation cycle that negatively regulates replication. MCM subunits undergo sumoylation upon loading at origins in G1 prior to MCM phosphorylation. MCM sumoylation levels then decline as MCM phosphorylation levels rise, suggesting an inhibitory role in replication. Indeed, increasing MCM sumoylation impairs replication initiation through promoting the recruitment of a phosphatase that reduces MCM phosphorylation and activation. MCM sumoylation thus counterbalances kinase-based regulation to ensure accurate control of replication initiation. PMID:26854664

  16. Nanoscale topographical replication of graphene architecture by manufactured DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Moon, Youngkwon; Shin, Jihoon; Seo, Soonbeom; Park, Sung Ha; Ahn, Joung Real

    2015-03-01

    Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

  17. Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Moon, Y.; Shin, J.; Seo, S.; Park, J.; Dugasani, S. R.; Woo, S. H.; Park, T.; Park, S. H.; Ahn, J. R.

    2014-06-01

    Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

  18. Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures

    SciTech Connect

    Moon, Y.; Seo, S.; Park, J.; Park, T.; Ahn, J. R.; Shin, J.; Dugasani, S. R.; Woo, S. H.; Park, S. H.

    2014-06-09

    Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

  19. Inhomogeneous DNA replication kinetics is associated with immune system response

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John; Gauthier, Michel G.; Norio, Paolo

    2013-03-01

    In eukaryotic organisms, DNA replication is initiated at ``origins,'' launching ``forks'' that spread bidirectionally to replicate the genome. The distribution and firing rate of these origins and the fork progression velocity form the ``replication program.'' Previous models of DNA replication in eukaryotes have assumed firing rates and replication fork velocities to be homogeneous across the genome. But large variations in origin activity and fork velocity do occur. Here, we generalize our replication model to allow for arbitrary spatial variation of initiation rates and fork velocities in a given region of the genome. We derive and solve rate equations for the forks and replication probability, to obtain the mean-field replication program. After testing the model on simulations, we analyze the changes in replication program that occur during B cell development in the mouse. B cells play a major role in the adaptive immune system by producing the antibodies. We show that the process of cell differentiation is associated with a change in replication program, where the zones of high origin initiation rates located in the immunoglobulin heavy-chain locus shift their position as the locus prepares to undergo the recombination events responsible for generating antibody specificity. This work was funded by HSFP and NSERC-Canada (MGG and JB) and by NIH-NIGMS grant R01GM080606 (PN).

  20. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    PubMed

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor. PMID:26517699

  1. Diffusion of human Replication Protein A along single stranded DNA

    PubMed Central

    Nguyen, Binh; Sokoloski, Joshua; Galletto, Roberto; Elson, Elliot L.; Wold, Marc S.; Lohman, Timothy M.

    2014-01-01

    Replication Protein A (RPA) is a eukaryotic single stranded (ss) DNA binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA-DNA interactions, we combined ensemble and single molecule fluorescence approaches to examine human RPA diffusion along ssDNA and find that an hRPA hetero-trimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1 ~5000 nucleotide2s−1 at 37°C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA. PMID:25058683

  2. Functional amyloids as inhibitors of plasmid DNA replication.

    PubMed

    Molina-García, Laura; Gasset-Rosa, Fátima; Moreno-Del Álamo, María; Fernández-Tresguerres, M Elena; Moreno-Díaz de la Espina, Susana; Lurz, Rudi; Giraldo, Rafael

    2016-01-01

    DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is 'handcuffing', i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation. PMID:27147472

  3. Functional amyloids as inhibitors of plasmid DNA replication

    PubMed Central

    Molina-García, Laura; Gasset-Rosa, Fátima; Moreno-del Álamo, María; Fernández-Tresguerres, M. Elena; Moreno-Díaz de la Espina, Susana; Lurz, Rudi; Giraldo, Rafael

    2016-01-01

    DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is ‘handcuffing’, i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation. PMID:27147472

  4. Impaired DNA replication within progenitor cell pools promotes leukemogenesis.

    PubMed

    Bilousova, Ganna; Marusyk, Andriy; Porter, Christopher C; Cardiff, Robert D; DeGregori, James

    2005-12-01

    Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism. PMID:16277552

  5. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    SciTech Connect

    Hastings, Adam F.; Otting, Gottfried; Folmer, Rutger H.A.; Duggin, Iain G.; Wake, R. Gerry; Wilce, Matthew C.J.; Wilce, Jacqueline A. . E-mail: Jackie.Wilce@med.monash.edu.au

    2005-09-23

    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in {sup 1}H-{sup 15}N correlation spectra of a {sup 15}N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the {sup 1}H-{sup 15}N correlations was achieved using a suite of triple resonance NMR experiments with {sup 15}N,{sup 13}C,70% {sup 2}H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to {sup 1}H-{sup 15}N spectra revealed that the N-termini, {alpha}3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.

  6. Uracil DNA Glycosylase BKRF3 Contributes to Epstein-Barr Virus DNA Replication through Physical Interactions with Proteins in Viral DNA Replication Complex

    PubMed Central

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei

    2014-01-01

    ABSTRACT Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmunoprecipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme

  7. Transposition-mediated DNA re-replication in maize

    PubMed Central

    Zhang, Jianbo; Zuo, Tao; Wang, Dafang; Peterson, Thomas

    2014-01-01

    Every DNA segment in a eukaryotic genome normally replicates once and only once per cell cycle to maintain genome stability. We show here that this restriction can be bypassed through alternative transposition, a transposition reaction that utilizes the termini of two separate, nearby transposable elements (TEs). Our results suggest that alternative transposition during S phase can induce re-replication of the TEs and their flanking sequences. The DNA re-replication can spontaneously abort to generate double-strand breaks, which can be repaired to generate Composite Insertions composed of transposon termini flanking segmental duplications of various lengths. These results show how alternative transposition coupled with DNA replication and repair can significantly alter genome structure and may have contributed to rapid genome evolution in maize and possibly other eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.03724.001 PMID:25406063

  8. Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes.

    PubMed Central

    Vlazny, D A; Frenkel, N

    1981-01-01

    Serially passaged herpes simplex virus type 1 (HSV-1) strain Justin was previously shown to contain defective virus genomes consisting of head-to-tail reiterations of sequences derived from the end of the S component of the standard virus DNA. Cotransfection of purified monomeric defective genome repeat units with foster helper virus DNAs onto rabbit skin cells resulted in regeneration and replication of concatemeric defective DNA molecules which were successfully encapsidated. Thus, defective HSV-1 (Justin) genomes contain, within their limited DNA sequences, a sufficient set of recognition sites required for HSV DNA replication and packaging. The arrangement of repeat units within the regenerated defective virus genomes was consistent with their replication by a rolling circle mechanism in which a single repeat unit served as the circularized template. This replication occurred most actively late after infection and could be shown to be inhibited by low concentrations of phosphonoacetate known to inhibit the HSV-specified viral DNA polymerase selectively. The resultant concatemers were shown to be cleaved to Mr 100 X 10(6) DNA molecules which were terminated at one end with the proper ac end sequence of the parental standard virus DNA. Images PMID:6262768

  9. Porcine circovirus: transcription and rolling-circle DNA replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes the molecular studies pertaining to porcine circovirus (PCV) transcription and DNA replication. The genome of PCV is circular, single-stranded DNA and contains 1759-1768 nucleotides. Both the genome-strand (packaged in the virus particle) and the complementary-strand (synthesi...

  10. Replication-induced supercoiling: a neglected DNA transaction regulator?

    PubMed

    Yu, Haojie; Dröge, Peter

    2014-05-01

    Dynamic (-) DNA supercoiling generated in the wake of translocating protein complexes is known to occur during transcription. Recent studies indicate that (-) superhelical tension also builds up specifically in the leading duplex during replication. Here, we argue that this unrecognized supercoiling is causally involved in the regulation of key DNA transactions and deserves further consideration. PMID:24637041

  11. A Paper Model of DNA Structure and Replication.

    ERIC Educational Resources Information Center

    Sigismondi, Linda A.

    1989-01-01

    A paper model which is designed to give students a hands-on experience during lecture and blackboard instruction on DNA structure is provided. A list of materials, paper patterns, and procedures for using the models to teach DNA structure and replication are given. (CW)

  12. Effects of tet-induced oxidation products of 5-methylcytosine on DNA replication in mammalian cells.

    PubMed

    Ji, Debin; You, Changjun; Wang, Pengcheng; Wang, Yinsheng

    2014-07-21

    Recently 5-hydroxymethyl-2'-deoxycytidine (5hmdC), 5-formyl-2'-deoxycytidine (5fdC), and 5-carboxyl-2'-deoxycytidine (5cadC) were discovered in mammalian DNA as oxidation products of 5-methyl-2'-deoxycytidine (5mdC) induced by the ten-eleven translocation family of enzymes. These oxidized derivatives of 5mdC may not only act as intermediates of active cytosine demethylation in mammals but also serve as epigenetic marks on their own. It remains unclear how 5hmdC, 5fdC, and 5cadC affect DNA replication in mammalian cells. Here, we examined the effects of the three modified nucleosides on the efficiency and accuracy of DNA replication in HEK293T human kidney epithelial cells. Our results demonstrated that a single, site-specifically incorporated 5fdC or 5cadC conferred modest drops, by approximately 30%, in replication bypass efficiency without inducing detectable mutations in human cells, whereas replicative bypass of 5hmdC is both accurate and efficient. The lack of pronounced perturbation of these oxidized 5mdC derivatives on DNA replication is consistent with their roles in epigenetic regulation of gene expression. PMID:24979327

  13. Dynamics of plant DNA replication based on PCNA visualization.

    PubMed

    Yokoyama, Ryohei; Hirakawa, Takeshi; Hayashi, Seri; Sakamoto, Takuya; Matsunaga, Sachihiro

    2016-01-01

    DNA replication is an essential process for the copying of genomic information in living organisms. Imaging of DNA replication in tissues and organs is mainly performed using fixed cells after incorporation of thymidine analogs. To establish a useful marker line to measure the duration of DNA replication and analyze the dynamics of DNA replication, we focused on the proliferating cell nuclear antigen (PCNA), which functions as a DNA sliding clamp for replicative DNA polymerases and is an essential component of replisomes. In this study we produced an Arabidopsis thaliana line expressing PCNA1 fused with the green fluorescent protein under the control of its own promoter (pAtPCNA1::AtPCNA1-EGFP). The duration of the S phase measured using the expression line was consistent with that measured after incorporation of a thymidine analog. Live cell imaging revealed that three distinct nuclear localization patterns (whole, dotted, and speckled) were sequentially observable. These whole, dotted, and speckled patterns of subnuclear AtPCNA1 signals were indicative of the G1 or G2 phase, early S phase and late S phase, respectively. The results indicate that the pAtPCNA1::AtPCNA1-EGFP line is a useful marker line for visualization of S-phase progression in live plant organs. PMID:27417498

  14. Dynamics of plant DNA replication based on PCNA visualization

    PubMed Central

    Yokoyama, Ryohei; Hirakawa, Takeshi; Hayashi, Seri; Sakamoto, Takuya; Matsunaga, Sachihiro

    2016-01-01

    DNA replication is an essential process for the copying of genomic information in living organisms. Imaging of DNA replication in tissues and organs is mainly performed using fixed cells after incorporation of thymidine analogs. To establish a useful marker line to measure the duration of DNA replication and analyze the dynamics of DNA replication, we focused on the proliferating cell nuclear antigen (PCNA), which functions as a DNA sliding clamp for replicative DNA polymerases and is an essential component of replisomes. In this study we produced an Arabidopsis thaliana line expressing PCNA1 fused with the green fluorescent protein under the control of its own promoter (pAtPCNA1::AtPCNA1-EGFP). The duration of the S phase measured using the expression line was consistent with that measured after incorporation of a thymidine analog. Live cell imaging revealed that three distinct nuclear localization patterns (whole, dotted, and speckled) were sequentially observable. These whole, dotted, and speckled patterns of subnuclear AtPCNA1 signals were indicative of the G1 or G2 phase, early S phase and late S phase, respectively. The results indicate that the pAtPCNA1::AtPCNA1-EGFP line is a useful marker line for visualization of S-phase progression in live plant organs. PMID:27417498

  15. T-antigen-DNA polymerase alpha complex implicated in simian virus 40 DNA replication.

    PubMed Central

    Smale, S T; Tjian, R

    1986-01-01

    We have combined in vitro DNA replication reactions and immunological techniques to analyze biochemical interactions between simian virus (SV40) large T antigen and components of the cellular replication apparatus. First, in vitro SV40 DNA replication was characterized with specific origin mutants. Next, monoclonal antibodies were used to demonstrate that a specific domain of T antigen formed a complex with cellular DNA polymerase alpha. Several antibodies were identified that coprecipitated T antigen and DNA polymerase alpha, while others were found to selectively prevent this interaction and concomitantly inhibit DNA replication. DNA polymerase alpha also bound efficiently to a T-antigen affinity column, confirming the immunoprecipitation results and providing a useful method for purification of the complete protein complex. Taken together, these results suggest that the T-antigen-polymerase association may be a key step in the initiation of SV40 DNA replication. Images PMID:3025630

  16. The mechanism of DNA replication termination in vertebrates

    PubMed Central

    Dewar, James M.; Budzowska, Magda; Walter, Johannes C.

    2015-01-01

    Eukaryotic DNA replication terminates when replisomes from adjacent replication origins converge. Termination involves local completion of DNA synthesis, decatenation of daughter molecules, and replisome disassembly. Termination has been difficult to study because termination events are generally asynchronous and sequence non-specific. To overcome these challenges, we paused converging replisomes with a site-specific barrier in Xenopus egg extracts. Upon removal of the barrier, forks underwent synchronous and site-specific termination, allowing mechanistic dissection of this process. We show that DNA synthesis does not slow detectably as forks approach each other and that leading strands pass each other unhindered before undergoing ligation to downstream lagging strands. Dissociation of CMG helicases occurs only after the final ligation step, and is not required for completion of DNA synthesis, strongly suggesting that converging CMGs pass one another and dissociate from double-stranded DNA. This termination mechanism allows rapid completion of DNA synthesis while avoiding premature replisome disassembly PMID:26322582

  17. DNA replication origins-where do we begin?

    PubMed

    Prioleau, Marie-Noëlle; MacAlpine, David M

    2016-08-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. PMID:27542827

  18. SMARCAL1 maintains telomere integrity during DNA replication.

    PubMed

    Poole, Lisa A; Zhao, Runxiang; Glick, Gloria G; Lovejoy, Courtney A; Eischen, Christine M; Cortez, David

    2015-12-01

    The SMARCAL1 (SWI/SNF related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) DNA translocase is one of several related enzymes, including ZRANB3 (zinc finger, RAN-binding domain containing 3) and HLTF (helicase-like transcription factor), that are recruited to stalled replication forks to promote repair and restart replication. These enzymes can perform similar biochemical reactions such as fork reversal; however, genetic studies indicate they must have unique cellular activities. Here, we present data showing that SMARCAL1 has an important function at telomeres, which present an endogenous source of replication stress. SMARCAL1-deficient cells accumulate telomere-associated DNA damage and have greatly elevated levels of extrachromosomal telomere DNA (C-circles). Although these telomere phenotypes are often found in tumor cells using the alternative lengthening of telomeres (ALT) pathway for telomere elongation, SMARCAL1 deficiency does not yield other ALT phenotypes such as elevated telomere recombination. The activity of SMARCAL1 at telomeres can be separated from its genome-maintenance activity in bulk chromosomal replication because it does not require interaction with replication protein A. Finally, this telomere-maintenance function is not shared by ZRANB3 or HLTF. Our results provide the first identification, to our knowledge, of an endogenous source of replication stress that requires SMARCAL1 for resolution and define differences between members of this class of replication fork-repair enzymes. PMID:26578802

  19. Replication stress activates DNA repair synthesis in mitosis.

    PubMed

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A; Bursomanno, Sara; Aleliunaite, Aiste; Wu, Wei; Mankouri, Hocine W; Shen, Huahao; Liu, Ying; Hickson, Ian D

    2015-12-10

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach. PMID:26633632

  20. The LMO2 oncogene regulates DNA replication in hematopoietic cells

    PubMed Central

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F. T.; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, EL Bachir; Verreault, Alain; Hoang, Trang

    2016-01-01

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression. PMID:26764384

  1. Microfluidic-assisted analysis of replicating DNA molecules

    PubMed Central

    Sidorova, Julia M.; Li, Nianzhen; Schwartz, David C.; Folch, Albert; Monnat, Raymond J.

    2009-01-01

    Single molecule-based protocols have been gaining popularity as a way to visualize DNA replication at the global genomic and locus-specific levels. These protocols take advantage of the ability of many organisms to incorporate nucleoside analogs during DNA replication, together with a method for displaying stretched DNA on glass for immunostaining and microscopy. We describe here a microfluidic platform that can be used to stretch and capture labeled DNA molecules for replication analyses. This platform consists of parallel arrays of 3-sided, 3 or 4 μm high, variable width capillary channels fabricated from polymethyl siloxane (PDMS) by conventional soft lithography, and silane-modified glass coverslips to reversibly seal the open side of the channels. Capillary tension in these microchannels facilitates DNA loading, stretching and glass coverslip deposition from μL-scale DNA samples. The simplicity and extensibility of this platform should facilitate DNA replication analyses using small samples from a variety of biological and clinical sources. PMID:19444242

  2. Failsafe mechanisms couple division and DNA replication in bacteria

    PubMed Central

    Arjes, Heidi A.; Kriel, Allison; Sorto, Nohemy A.; Shaw, Jared T.; Wang, Jue D.; Levin, Petra Anne

    2014-01-01

    Summary The past twenty years have seen tremendous advances in our understanding of the mechanisms underlying bacterial cytokinesis, particularly the composition of the division machinery and the factors controlling its assembly [1]. At the same time, we understand very little about the relationship between cell division and other cell cycle events in bacteria. Here we report that inhibiting division in Bacillus subtilis and Staphylococcus aureus quickly leads to an arrest in the initiation of new rounds of DNA replication followed by a complete arrest in cell growth. Arrested cells are metabolically active but unable to initiate new rounds of either DNA replication or division when shifted to permissive conditions. Inhibiting DNA replication results in entry into a similar quiescent state, in which cells are unable to resume growth or division when returned to permissive conditions. Our data suggest the presence of two failsafe mechanisms: one linking division to the initiation of DNA replication and another linking the initiation of DNA replication to division. These findings contradict the prevailing view of the bacterial cell cycle as a series of coordinated but uncoupled events. Importantly, the terminal nature of the cell cycle arrest validates the bacterial cell cycle machinery as an effective target for antimicrobial development. PMID:25176632

  3. The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding.

    PubMed

    Richardson, Tomas T; Harran, Omar; Murray, Heath

    2016-06-16

    DNA replication is tightly controlled to ensure accurate inheritance of genetic information. In all organisms, initiator proteins possessing AAA+ (ATPases associated with various cellular activities) domains bind replication origins to license new rounds of DNA synthesis. In bacteria the master initiator protein, DnaA, is highly conserved and has two crucial DNA binding activities. DnaA monomers recognize the replication origin (oriC) by binding double-stranded DNA sequences (DnaA-boxes); subsequently, DnaA filaments assemble and promote duplex unwinding by engaging and stretching a single DNA strand. While the specificity for duplex DnaA-boxes by DnaA has been appreciated for over 30 years, the sequence specificity for single-strand DNA binding has remained unknown. Here we identify a new indispensable bacterial replication origin element composed of a repeating trinucleotide motif that we term the DnaA-trio. We show that the function of the DnaA-trio is to stabilize DnaA filaments on a single DNA strand, thus providing essential precision to this binding mechanism. Bioinformatic analysis detects DnaA-trios in replication origins throughout the bacterial kingdom, indicating that this element is part of the core oriC structure. The discovery and characterization of the novel DnaA-trio extends our fundamental understanding of bacterial DNA replication initiation, and because of the conserved structure of AAA+ initiator proteins these findings raise the possibility of specific recognition motifs within replication origins of higher organisms. PMID:27281207

  4. Low-template DNA: A single DNA analysis or two replicates?

    PubMed

    Gittelson, Simone; Steffen, Carolyn R; Coble, Michael D

    2016-07-01

    This study investigates the following two questions: (1) Should the DNA analyst concentrate the DNA extract into a single amplification or should he/she split it up to do two replicates? (2) Given the electropherogram obtained from a first analysis, is it worthwhile for the DNA analyst to invest in obtaining a second replicate? A decision-theoretic approach addresses these questions by quantitatively expressing the expected net gain (ENG) of each DNA analysis of interest. The results indicate that two replicates generally have a greater ENG than a single DNA analysis for DNA quantities capable of producing two replicates having an average allelic peak height as low as 43rfu. This supports the position that two replicates increase the information content with regard to a single analysis. PMID:27131143

  5. Human cytomegalovirus induces JC virus DNA replication in human fibroblasts.

    PubMed Central

    Heilbronn, R; Albrecht, I; Stephan, S; Bürkle, A; zur Hausen, H

    1993-01-01

    JC virus, a human papovavirus, is the causative agent of the demyelinating brain disease progressive multifocal leucoencephalopathy (PML). PML is a rare but fatal disease which develops as a complication of severe immunosuppression. Latent JC virus is harbored by many asymptomatic carriers and is transiently reactivated from the latent state upon immunosuppression. JC virus has a very restricted host range, with human glial cells being the only tissue in which it can replicate at reasonable efficiency. Evidence that latent human cytomegalovirus is harbored in the kidney similar to latent JC virus led to the speculation that during episodes of impaired immunocompetence, cytomegalovirus might serve as helper virus for JC virus replication in otherwise nonpermissive cells. We show here that cytomegalovirus infection indeed leads to considerable JC virus DNA replication in cultured human fibroblasts that are nonpermissive for the replication of JC virus alone. Cytomegalovirus-mediated JC virus replication is dependent on the JC virus origin of replication and T antigen. Ganciclovir-induced inhibition of cytomegalovirus replication is associated with a concomitant inhibition of JC virus replication. These results suggest that reactivation of cytomegalovirus during episodes of immunosuppression might lead to activation of latent JC virus, which would enhance the probability of subsequent PML development. Ganciclovir-induced repression of both cytomegalovirus and JC virus replication may form the rational basis for the development of an approach toward treatment or prevention of PML. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8248262

  6. DNA Polymerases Divide the Labor of Genome Replication.

    PubMed

    Lujan, Scott A; Williams, Jessica S; Kunkel, Thomas A

    2016-09-01

    DNA polymerases synthesize DNA in only one direction, but large genomes require RNA priming and bidirectional replication from internal origins. We review here the physical, chemical, and evolutionary constraints underlying these requirements. We then consider the roles of the major eukaryotic replicases, DNA polymerases α, δ, and ɛ, in replicating the nuclear genome. Pol α has long been known to extend RNA primers at origins and on Okazaki fragments that give rise to the nascent lagging strand. Taken together, more recent results of mutation and ribonucleotide incorporation mapping, electron microscopy, and immunoprecipitation of nascent DNA now lead to a model wherein Pol ɛ and Pol δ, respectively, synthesize the majority of the nascent leading and lagging strands of undamaged DNA. PMID:27262731

  7. DNA replication stress and cancer: cause or cure?

    PubMed

    Taylor, Elaine M; Lindsay, Howard D

    2016-01-01

    There is an extensive and growing body of evidence that DNA replication stress is a major driver in the development and progression of many cancers, and that these cancers rely heavily on replication stress response pathways for their continued proliferation. This raises the possibility that the pathways that ordinarily protect cells from the accumulation of cancer-causing mutations may actually prove to be effective therapeutic targets for a wide range of malignancies. In this review, we explore the mechanisms by which sustained proliferation can lead to replication stress and genome instability, and discuss how the pattern of mutations observed in human cancers is supportive of this oncogene-induced replication stress model. Finally, we go on to consider the implications of replication stress both as a prognostic indicator and, more encouragingly, as a potential target in cancer treatment. PMID:26616915

  8. Infection by choleraphage phi 138: bacteriophage DNA and replicative intermediates.

    PubMed Central

    Chowdhury, R; Das, J

    1986-01-01

    Choleraphage phi 138 contains a linear, double-stranded, circularly permuted DNA molecule of 30 X 10(6) daltons or 45 kilobase pairs. Upon infection, the host DNA is degraded, and synthesis of phage-specific DNA is detectable 20 min after infection. The phage utilizes primarily the host DNA degradation products for its own DNA synthesis. A physical map of phi 138 DNA was constructed with the restriction endonucleases Bg/II, HindIII, and PstI. A concatemeric replicative DNA intermediate equivalent to eight mature genome lengths was identified. The concatemer was shown to be the precursor for the synthesis of mature bacteriophage DNA which is subsequently packaged by a headful mechanism. Images PMID:3951021

  9. Modeling the Control of DNA Replication in Fission Yeast

    NASA Astrophysics Data System (ADS)

    Novak, Bela; Tyson, John J.

    1997-08-01

    A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (``endoreplication'') or initiation of mitosis before DNA is fully replicated (``mitotic catastrophe''). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of ``Start'' control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1- (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1- rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.

  10. Illegitimate replication of linear hepadnavirus DNA through nonhomologous recombination.

    PubMed Central

    Yang, W; Summers, J

    1995-01-01

    Linear hepadnavirus DNA in primary hepatocyte cultures efficiently participates in intra- and intermolecular nonhomologous recombination at its ends. The products of this recombination are (i) monomeric covalently closed circular DNAs (cccDNAs) with deletions and insertions around the site of joining and (ii) oligomeric forms in which monomers are joined near the ends in random orientation. A fraction of monomeric cccDNAs can serve as intermediates in further DNA replication through at least five generations of nonhomologous recombination in a process we call illegitimate replication. We suggest that the monomeric and oligomeric linear DNAs produced by illegitimate replication may be precursors of the integrated and other high-molecular-weight hepadnaviral DNA forms seen in chronic infection. PMID:7769660

  11. Ubiquitin-family modifications in the replication of DNA damage.

    PubMed

    Lehmann, Alan R

    2011-09-16

    The cell uses specialised Y-family DNA polymerases or damage avoidance mechanisms to replicate past damaged sites in DNA. These processes are under complex regulatory systems, which employ different types of post-translational modification. All the Y-family polymerases have ubiquitin binding domains that bind to mono-ubiquitinated PCNA to effect the switching from replicative to Y-family polymerase. Ubiquitination and de-ubiquitination of PCNA are tightly regulated. There is also evidence for another as yet unidentified ubiquitinated protein being involved in recruitment of Y-family polymerases to chromatin. Poly-ubiquitination of PCNA stimulates damage avoidance, and, at least in yeast, PCNA is SUMOylated to prevent unwanted recombination events at the replication fork. The Y-family polymerases themselves can be ubiquitinated and, in the case of DNA polymerase η, this results in the polymerase being excluded from chromatin. PMID:21704031

  12. Priming DNA replication from triple helix oligonucleotides: possible threestranded DNA in DNA polymerases.

    PubMed

    Lestienne, Patrick P

    2011-01-01

    Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G)-rich Triple Helix Primers (THP) bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre. PMID:22229092

  13. Priming DNA Replication from Triple Helix Oligonucleotides: Possible Threestranded DNA in DNA Polymerases

    PubMed Central

    Lestienne, Patrick P.

    2011-01-01

    Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G)-rich Triple Helix Primers (THP) bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre. PMID:22229092

  14. USP7 is a SUMO deubiquitinase essential for DNA replication

    PubMed Central

    Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia; Lopez-Contreras, Andres J; Ruppen, Isabel; Murga, Matilde; Muñoz, Javier; Mendez, Juan; Fernandez-Capetillo, Oscar

    2016-01-01

    Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates various aspects of DNA replication. We previously showed that the chromatin around replisomes is rich in SUMO and depleted in Ub, whereas an opposite pattern is observed in mature chromatin. How this SUMO-rich/Ub-low environment is maintained at sites of DNA replication is not known. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Chemical inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced to chromatin away from replisomes. Our findings provide a model to explain the differential accumulation of SUMO and Ub at replication forks, and identify an essential role of USP7 in DNA replication that should be taken into account for the use of USP7 inhibitors as anticancer agents. PMID:26950370

  15. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase

    PubMed Central

    Morin, José A.; Cao, Francisco J.; Lázaro, José M.; Arias-Gonzalez, J. Ricardo; Valpuesta, José M.; Carrascosa, José L.; Salas, Margarita; Ibarra, Borja

    2015-01-01

    During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN). PMID:25800740

  16. Replication by a single DNA polymerase of a stretched single-stranded DNA

    PubMed Central

    Maier, Berenike; Bensimon, David; Croquette, Vincent

    2000-01-01

    A new approach to the study of DNA/protein interactions has been opened through the recent advances in the manipulation of single DNA molecules. These allow the behavior of individual molecular motors to be studied under load and compared with bulk measurements. One example of such a motor is the DNA polymerase, which replicates DNA. We measured the replication rate by a single enzyme of a stretched single strand of DNA. The marked difference between the elasticity of single- and double-stranded DNA allows for the monitoring of replication in real time. We have found that the rate of replication depends strongly on the stretching force applied to the template. In particular, by varying the load we determined that the biochemical steps limiting replication are coupled to movement. The replication rate increases at low forces, decreases at forces greater than 4 pN, and ceases when the single-stranded DNA substrate is under a load greater than ≈20 pN. The decay of the replication rate follows an Arrhenius law and indicates that multiple bases on the template strand are involved in the rate-limiting step of each cycle. This observation is consistent with the induced-fit mechanism for error detection during replication. PMID:11050232

  17. Bent DNA functions as a replication enhancer in Saccharomyces cerevisiae.

    PubMed Central

    Williams, J S; Eckdahl, T T; Anderson, J N

    1988-01-01

    Previous studies have demonstrated that bent DNA is a conserved property of Saccharomyces cerevisiae autonomously replicating sequences (ARSs). Here we showed that bending elements are contained within ARS subdomains identified by others as replication enhancers. To provide a direct test for the function of this unusual structure, we analyzed the ARS activity of plasmids that contained synthetic bent DNA substituted for the natural bending element in yeast ARS1. The results demonstrated that deletion of the natural bending locus impaired ARS activity which was restored to a near wild-type level with synthetic bent DNA. Since the only obvious common features of the natural and synthetic bending elements are the sequence patterns that give rise to DNA bending, the results suggest that the bent structure per se is crucial for ARS function. Images PMID:3043195

  18. Respiratory-deficient human fibroblasts exhibiting defective mitochondrial DNA replication.

    PubMed Central

    Bodnar, A G; Cooper, J M; Leonard, J V; Schapira, A H

    1995-01-01

    We have characterized cultured skin fibroblasts from two siblings affected with a fatal mitochondrial disease caused by a nuclear genetic defect. Mitochondrial respiratory-chain function was severely decreased in these cells. Southern-blot analysis showed that the fibroblasts had reduced levels of mitochondrial DNA (mtDNA). The mtDNA was unstable and was eliminated from the cultured cells over many generations, generating the rho0 genotype. As the mtDNA level decreased, the cells became more dependent upon pyruvate and uridine for growth. Nuclear-encoded subunits of respiratory-chain complexes were synthesized and imported into the mitochondria of the mtDNA-depleted cells, albeit at reduced levels compared with the controls. Mitochondrial protein synthesis directed by the residual mtDNA indicated that the mtDNA was expressed and that the defect specifically involves the replication or maintenance of mtDNA. This is a unique example of a respiratory-deficient human cell line exhibiting defective mtDNA replication. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:7848281

  19. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells

    PubMed Central

    Arakawa, Hiroshi; Bednar, Theresa; Wang, Minli; Paul, Katja; Mladenov, Emil; Bencsik-Theilen, Alena A.; Iliakis, George

    2012-01-01

    In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation. PMID:22127868

  20. Essential DNA sequence for the replication of Rts1.

    PubMed Central

    Itoh, Y; Kamio, Y; Terawaki, Y

    1987-01-01

    The promoter sequence of the mini-Rts1 repA gene encoding the 33,000-dalton RepA protein that is essential for replication was defined by RNA polymerase protection experiments and by analyzing RepA protein synthesized in maxicells harboring mini-Rts1 derivatives deleted upstream of or within the presumptive promoter region. The -10 region of the promoter which shows homology to the incII repeat sequences overlaps two inverted repeats. One of the repeats forms a pair with a sequence in the -35 region, and the other forms a pair with the translation initiation region. The replication origin region, ori(Rts1), which was determined by supplying RepA protein in trans, was localized within 188 base pairs in a region containing three incII repeats and four GATC sequences. Dyad dnaA boxes that exist upstream from the GATC sequences appeared to be dispensable for the origin function, but deletion of both dnaA boxes from ori(Rts1) resulted in reduced replication frequency, suggesting that host-encoded DnaA protein is involved in the replication of Rts1 as a stimulatory element. Combination of the minimal repA and ori(Rts1) segments, even in the reverse orientation compared with the natural sequence, resulted in reconstitution of an autonomously replicating molecule. Images PMID:3546265

  1. The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants.

    PubMed

    Flores, Maria Jose; Bidnenko, Vladimir; Michel, Bénédicte

    2004-10-01

    Replication forks arrested by inactivation of the main Escherichia coli DNA polymerase (polymerase III) are reversed by the annealing of newly synthesized leading- and lagging-strand ends. Reversed forks are reset by the action of RecBC on the DNA double-strand end, and in the absence of RecBC chromosomes are linearized by the Holliday junction resolvase RuvABC. We report here that the UvrD helicase is essential for RuvABC-dependent chromosome linearization in E. coli polymerase III mutants, whereas its partners in DNA repair (UvrA/B and MutL/S) are not. We conclude that UvrD participates in replication fork reversal in E. coli. PMID:15375374

  2. Nuclear organization of DNA replication in primary mammalian cells.

    PubMed

    Kennedy, B K; Barbie, D A; Classon, M; Dyson, N; Harlow, E

    2000-11-15

    Using methods that conserve nuclear architecture, we have reanalyzed the spatial organization of the initiation of mammalian DNA synthesis. Contrary to the commonly held view that replication begins at hundreds of dispersed nuclear sites, primary fibroblasts initiate synthesis in a limited number of foci that contain replication proteins, surround the nucleolus, and overlap with previously identified internal lamin A/C structures. These foci are established in early G(1)-phase and also contain members of the retinoblastoma protein family. Later, in S-phase, DNA replication sites distribute to regions located throughout the nucleus. As this progression occurs, association with the lamin structure and pRB family members is lost. A similar temporal progression is found in all the primary cells we have examined but not in most established cell lines, indicating that the immortalization process modifies spatial control of DNA replication. These findings indicate that in normal mammalian cells, the onset of DNA synthesis is coordinately regulated at a small number of previously unrecognized perinucleolar sites that are selected in early G(1)-phase. PMID:11090133

  3. Quantitative Live Imaging of Endogenous DNA Replication in Mammalian Cells

    PubMed Central

    Burgess, Andrew; Lorca, Thierry; Castro, Anna

    2012-01-01

    Historically, the analysis of DNA replication in mammalian tissue culture cells has been limited to static time points, and the use of nucleoside analogues to pulse-label replicating DNA. Here we characterize for the first time a novel Chromobody cell line that specifically labels endogenous PCNA. By combining this with high-resolution confocal time-lapse microscopy, and with a simplified analysis workflow, we were able to produce highly detailed, reproducible, quantitative 4D data on endogenous DNA replication. The increased resolution allowed accurate classification and segregation of S phase into early-, mid-, and late-stages based on the unique subcellular localization of endogenous PCNA. Surprisingly, this localization was slightly but significantly different from previous studies, which utilized over-expressed GFP tagged forms of PCNA. Finally, low dose exposure to Hydroxyurea caused the loss of mid- and late-S phase localization patterns of endogenous PCNA, despite cells eventually completing S phase. Taken together, these results indicate that this simplified method can be used to accurately identify and quantify DNA replication under multiple and various experimental conditions. PMID:23029203

  4. DNA breaks early in replication in B cell cancers

    Cancer.gov

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  5. Inferring the spatiotemporal DNA replication program from noisy data

    NASA Astrophysics Data System (ADS)

    Baker, A.; Bechhoefer, J.

    2014-03-01

    We generalize a stochastic model of DNA replication to the case where replication-origin-initiation rates vary locally along the genome and with time. Using this generalized model, we address the inverse problem of inferring initiation rates from experimental data concerning replication in cell populations. Previous work based on curve fitting depended on arbitrarily chosen functional forms for the initiation rate, with free parameters that were constrained by the data. We introduce a nonparametric method of inference that is based on Gaussian process regression. The method replaces specific assumptions about the functional form of the initiation rate with more general prior expectations about the smoothness of variation of this rate, along the genome and in time. Using this inference method, we recover, with high precision, simulated replication schemes from noisy data that are typical of current experiments.

  6. Chromatin Dynamics During DNA Replication and Uncharacterized Replication Factors determined by Nascent Chromatin Capture (NCC) Proteomics

    PubMed Central

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Bau; Kustatscher, Georg; Nakamura, Kyosuke; de Lima Alves, Flavia; Menard, Patrice; Mejlvang, Jakob; Rappsilber, Juri; Groth, Anja

    2014-01-01

    SUMMARY To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use Nascent Chromatin Capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity-purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3995 proteins. The replication machinery and 485 chromatin factors like CAF-1, DNMT1, SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, while H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance. PMID:24561620

  7. Genome size and endonuclear DNA replication in spiders.

    PubMed

    Rasch, Ellen M; Connelly, Barbara A

    2005-08-01

    Although genome sizes (C-values) are now available for 115 arachnid species (Gregory and Shorthouse [2003] J Hered 94:285-290), the extent of genome amplification (endonuclear DNA replication or polyploidization) accompanying tissue differentiation in this diverse and abundant class of invertebrates remains unknown. To explore this aspect of arachnid development, samples of hemolymph and other tissues were taken from wild-caught specimens as air-dried smears, stained with the Feulgen reaction for DNA, and assayed using both scanning and image analysis densitometry. Cells from midgut diverticula and Malpighian tubules of Argiope and Lycosa (=Pardosa) often showed giant nuclei with 50-100 pg of DNA per nucleus, reflecting at least four cycles of endonuclear DNA replication when compared to the DNA content of hemocytes or sperm from the same specimen. Nuclei with markedly elevated DNA levels also appeared, but far less frequently, in tissue samples from several other arachnid species (Antrodiaetus, Hypochilus, Latrodectus, Liphistus and Loxosceles), but revealed no correlation with differences in somatic cell (2C) genome sizes. Our data show that several DNA classes of polysomatic nuclei regularly arise during tissue differentiation in some species of spiders and may provide an interesting model system for further study of patterns of tissue-specific variation in DNA endoreduplication during development. PMID:15971267

  8. Verifying likelihoods for low template DNA profiles using multiple replicates

    PubMed Central

    Steele, Christopher D.; Greenhalgh, Matthew; Balding, David J.

    2014-01-01

    To date there is no generally accepted method to test the validity of algorithms used to compute likelihood ratios (LR) evaluating forensic DNA profiles from low-template and/or degraded samples. An upper bound on the LR is provided by the inverse of the match probability, which is the usual measure of weight of evidence for standard DNA profiles not subject to the stochastic effects that are the hallmark of low-template profiles. However, even for low-template profiles the LR in favour of a true prosecution hypothesis should approach this bound as the number of profiling replicates increases, provided that the queried contributor is the major contributor. Moreover, for sufficiently many replicates the standard LR for mixtures is often surpassed by the low-template LR. It follows that multiple LTDNA replicates can provide stronger evidence for a contributor to a mixture than a standard analysis of a good-quality profile. Here, we examine the performance of the likeLTD software for up to eight replicate profiling runs. We consider simulated and laboratory-generated replicates as well as resampling replicates from a real crime case. We show that LRs generated by likeLTD usually do exceed the mixture LR given sufficient replicates, are bounded above by the inverse match probability and do approach this bound closely when this is expected. We also show good performance of likeLTD even when a large majority of alleles are designated as uncertain, and suggest that there can be advantages to using different profiling sensitivities for different replicates. Overall, our results support both the validity of the underlying mathematical model and its correct implementation in the likeLTD software. PMID:25082140

  9. Verifying likelihoods for low template DNA profiles using multiple replicates.

    PubMed

    Steele, Christopher D; Greenhalgh, Matthew; Balding, David J

    2014-11-01

    To date there is no generally accepted method to test the validity of algorithms used to compute likelihood ratios (LR) evaluating forensic DNA profiles from low-template and/or degraded samples. An upper bound on the LR is provided by the inverse of the match probability, which is the usual measure of weight of evidence for standard DNA profiles not subject to the stochastic effects that are the hallmark of low-template profiles. However, even for low-template profiles the LR in favour of a true prosecution hypothesis should approach this bound as the number of profiling replicates increases, provided that the queried contributor is the major contributor. Moreover, for sufficiently many replicates the standard LR for mixtures is often surpassed by the low-template LR. It follows that multiple LTDNA replicates can provide stronger evidence for a contributor to a mixture than a standard analysis of a good-quality profile. Here, we examine the performance of the likeLTD software for up to eight replicate profiling runs. We consider simulated and laboratory-generated replicates as well as resampling replicates from a real crime case. We show that LRs generated by likeLTD usually do exceed the mixture LR given sufficient replicates, are bounded above by the inverse match probability and do approach this bound closely when this is expected. We also show good performance of likeLTD even when a large majority of alleles are designated as uncertain, and suggest that there can be advantages to using different profiling sensitivities for different replicates. Overall, our results support both the validity of the underlying mathematical model and its correct implementation in the likeLTD software. PMID:25082140

  10. cis-active elements from mouse chromosomal DNA suppress simian virus 40 DNA replication.

    PubMed Central

    Hartl, M; Willnow, T; Fanning, E

    1990-01-01

    Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA. Images PMID:2159549

  11. Microplitis demolitor Bracovirus Proviral Loci and Clustered Replication Genes Exhibit Distinct DNA Amplification Patterns during Replication

    PubMed Central

    Simmonds, Tyler J.; Thomas, Sarah A.; Strand, Michael R.

    2015-01-01

    ABSTRACT Polydnaviruses are large, double-stranded DNA viruses that are beneficial symbionts of parasitoid wasps. Polydnaviruses in the genus Bracovirus (BVs) persist in wasps as proviruses, and their genomes consist of two functional components referred to as proviral segments and nudivirus-like genes. Prior studies established that the DNA domains where proviral segments reside are amplified during replication and that segments within amplified loci are circularized before packaging into nucleocapsids. One DNA domain where nudivirus-like genes are located is also amplified but never packaged into virions. We recently sequenced the genome of the braconid Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). Here, we took advantage of this resource to characterize the DNAs that are amplified during MdBV replication using a combination of Illumina and Pacific Biosciences sequencing approaches. The results showed that specific nucleotide sites identify the boundaries of amplification for proviral loci. Surprisingly, however, amplification of loci 3, 4, 6, and 8 produced head-to-tail concatemeric intermediates; loci 1, 2, and 5 produced head-to-head/tail-to-tail concatemers; and locus 7 yielded no identified concatemers. Sequence differences at amplification junctions correlated with the types of amplification intermediates the loci produced, while concatemer processing gave rise to the circularized DNAs that are packaged into nucleocapsids. The MdBV nudivirus-like gene cluster was also amplified, albeit more weakly than most proviral loci and with nondiscrete boundaries. Overall, the MdBV genome exhibited three patterns of DNA amplification during replication. Our data also suggest that PacBio sequencing could be useful in studying the replication intermediates produced by other DNA viruses. IMPORTANCE Polydnaviruses are of fundamental interest because they provide a novel example of viruses evolving into beneficial symbionts. All polydnaviruses are

  12. Determining Host Metabolic Limitations on Viral Replication via Integrated Modeling and Experimental Perturbation

    PubMed Central

    Birch, Elsa W.; Ruggero, Nicholas A.; Covert, Markus W.

    2012-01-01

    Viral replication relies on host metabolic machinery and precursors to produce large numbers of progeny - often very rapidly. A fundamental example is the infection of Escherichia coli by bacteriophage T7. The resource draw imposed by viral replication represents a significant and complex perturbation to the extensive and interconnected network of host metabolic pathways. To better understand this system, we have integrated a set of structured ordinary differential equations quantifying T7 replication and an E. coli flux balance analysis metabolic model. Further, we present here an integrated simulation algorithm enforcing mutual constraint by the models across the entire duration of phage replication. This method enables quantitative dynamic prediction of virion production given only specification of host nutritional environment, and predictions compare favorably to experimental measurements of phage replication in multiple environments. The level of detail of our computational predictions facilitates exploration of the dynamic changes in host metabolic fluxes that result from viral resource consumption, as well as analysis of the limiting processes dictating maximum viral progeny production. For example, although it is commonly assumed that viral infection dynamics are predominantly limited by the amount of protein synthesis machinery in the host, our results suggest that in many cases metabolic limitation is at least as strict. Taken together, these results emphasize the importance of considering viral infections in the context of host metabolism. PMID:23093930

  13. Origin of replication of colicin E1 plasmid DNA.

    PubMed Central

    Tomizawa, J I; Ohmori, H; Bird, R E

    1977-01-01

    Cleavage maps of colicin E1 plasmid DNA and its smaller derivative, pNT1 DNA, were constructed by using restriction endonucleases. The nucleotide sequence of a region that contains the orgin of replication was determined. The site of the nucleotide from which DNA replication is initiated was determined with 6S L-fragments, the DNA fragment first made on colicin E1 plasmid DNA. The fragments were labeled with [gamma-32P]ATP and polynucleotide 5'-hydroxyl-kinase (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) at the 5'-OH groups which were uncovered by alkali treatment. The site is one of three consecutive nucleotides, dA, dA, and dC, located at a unique position. One or a few rA residues were found to be attached to some of the DNA molecules. The transition from the primer RNA to DNA occurs in a region consisting of a segment of five A residues. Both sides of this segment are rich in G and C. Images PMID:325558

  14. Single-molecule observation of prokaryotic DNA replication.

    PubMed

    Geertsema, Hylkje J; Duderstadt, Karl E; van Oijen, Antoine M

    2015-01-01

    Replication of DNA requires the coordinated activity of a number of proteins within a multiprotein complex, the replisome. Recent advances in single-molecule techniques have enabled the observation of dynamic behavior of individual replisome components and of the replisome as a whole, aspects that previously often have been obscured by ensemble averaging in more classical solution-phase biochemical experiments. To improve robustness and reproducibility of single-molecule assays of replication and allow objective analysis and comparison of results obtained from such assays, common practices should be established. Here, we describe the technical details of two assays to study replisome activity. In one, the kinetics of replication are observed as length changes in DNA molecules mechanically stretched by a laminar flow applied to attached beads. In the other, fluorescence imaging is used to determine both the kinetics and stoichiometry of individual replisome components. These in vitro single-molecule methods allow for elucidation of the dynamic behavior of individual replication proteins of prokaryotic replication systems. PMID:25916715

  15. Asynchronous DNA replication within the human. beta. -globin gene locus

    SciTech Connect

    Epner, E.; Forrester, W.C.; Groudine, M. )

    1988-11-01

    The timing of DNA replication of the human {beta}-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span >120 kilobases across the human {beta}-globin gene locus, the authors show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-{gamma}-globin gene region and approximately 20 kilobases 5' to the {epsilon}-globin gene and 20 kilobases 3' to the {beta}-globin gene, replicate later and throughout S phase. A similar area is also present in the {alpha}-globin gene region in K562 cells. They suggest that these regions may represent sites of termination of replication forks.

  16. Topological considerations in the theory of replication of DNA.

    PubMed

    Pohl, W F; Roberts, G W

    1978-10-25

    An obvious difficulty of the Watson-Crick model of DNA is that the intertwining of the strands would seem to hinder their separation during replication. The nature of the difficulty is here made precise and is called the alignment problem. It is shown that the swivelase theory, found in current textbooks and thought to overcome the difficulty, does not in fact do so. The various conceivable solutions of the alignment problem are considered and rejected, leading to the conclusion that chromosomal DNA is not double-helical. An alternative model of DNA is discussed. In addition a topological classification of DNA denaturation processes is given, and an alternative interpretation of the gel electrophoresis experiments on circular duplex DNA is suggested. PMID:750633

  17. Rolling-circle replication of UV-irradiated duplex DNA in the phi X174 replicative-form----single-strand replication system in vitro

    SciTech Connect

    Shavitt, O.; Livneh, Z.

    1989-06-01

    Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers.

  18. Patterning quantum dot arrays using DNA replication principles.

    SciTech Connect

    Crown, Kevin K.; Bachand, George David

    2004-11-01

    The convergence of nanoscience and biotechnology has opened the door to the integration of a wide range of biological molecules and processes with synthetic materials and devices. A primary biomolecule of interest has been DNA based upon its role as information storage in living systems, as well as its ability to withstand a wide range of environmental conditions. DNA also offers unique chemistries and interacts with a range of biomolecules, making it an ideal component in biological sensor applications. The primary goal of this project was to develop methods that utilize in vitro DNA synthesis to provide spatial localization of nanocrystal quantum dots (nQDs). To accomplish this goal, three specific technical objectives were addressed: (1) attachment of nQDs to DNA nucleotides, (2) demonstrating the synthesis of nQD-DNA strands in bulk solution, and (3) optimizing the ratio of unlabeled to nQD-labeled nucleotides. DNA nucleotides were successfully attached to nQDs using the biotin-streptavidin linkage. Synthesis of 450-nm long, nQD-coated DNA strands was demonstrated using a DNA template and the polymerase chain reaction (PCR)-based method of DNA amplification. Modifications in the synthesis process and conditions were subsequently used to synthesize 2-{micro}m long linear nQD-DNA assemblies. In the case of the 2-{micro}m structures, both the ratio of streptavidin-coated nQDs to biotinylated dCTP, and streptavidin-coated nQD-dCTPs to unlabeled dCTPs affected the ability to synthesize the nQD-DNA assemblies. Overall, these proof-of-principles experiments demonstrated the successful synthesis of nQD-DNA using DNA templates and in vitro replication technologies. Continued development of this technology may enable rapid, spatial patterning of semiconductor nanoparticles with Angstrom-level resolution, as well as optically active probes for DNA and other biomolecular analyses.

  19. Direct interaction between cohesin complex and DNA replication machinery

    SciTech Connect

    Ryu, Min-Jung; Kim, Beom-Jun; Lee, Jeong-Won; Lee, Min-Woo; Choi, Hyun-Kyung; Kim, Seong-Tae . E-mail: stkim@med.skku.ac.kr

    2006-03-17

    Structural maintenance of chromosome 1 (Smc1) is a multifunctional protein, which has been implicated in sister chromatid cohesion, DNA recombination and repair, and the activation of cell cycle checkpoints by ionizing radiation, ultraviolet light, and other genotoxic agents. In order to identify the proteins that interact with Smc1, we conducted the Tandem affinity purification (TAP) technique and analyzed the Smc1-interacting proteins via MALDI-TOF mass spectrometry. We identified minichromosome maintenance 7 (Mcm7), an essential component of the pre-replication complex, as a novel Smc1-interacting protein. Co-immunoprecipitation revealed an interaction occurring between Smc1 and Mcm7, both in vitro and in vivo. Using a GST pull-down assay, we determined that Smc1 interacts physically with Mcm7 via its N-terminal and hinge regions, and Mcm7 interacts with Smc1 via its middle region. Interestingly, we also discovered that Smc1 interacts with other DNA replication proteins, including Mcm6, RFC1, and DNA polymerase {alpha}. These results suggest that a functional link exists between the cohesin complex and DNA replication proteins.

  20. DNA methylation is stable during replication and cell cycle arrest

    PubMed Central

    Vandiver, Amy R.; Idrizi, Adrian; Rizzardi, Lindsay; Feinberg, Andrew P.; Hansen, Kasper D.

    2015-01-01

    DNA methylation is an epigenetic modification with important functions in development. Large-scale loss of DNA methylation is a hallmark of cancer. Recent work has identified large genomic blocks of hypomethylation associated with cancer, EBV transformation and replicative senescence, all of which change the proportion of actively proliferating cells within the population measured. We asked if replication or cell-cycle arrest affects the global levels of methylation or leads to hypomethylated blocks as observed in other settings. We used fluorescence activated cell sorting to isolate primary dermal fibroblasts in G0, G1 and G2 based on DNA content and Ki67 staining. We additionally examined G0 cells arrested by contact inhibition for one week to determine the effects of extended arrest. We analyzed genome wide DNA methylation from sorted cells using whole genome bisulfite sequencing. This analysis demonstrated no global changes or large-scale hypomethylated blocks in any of the examined cell cycle phases, indicating that global levels of methylation are stable with replication and arrest. PMID:26648411

  1. Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery

    PubMed Central

    Makarova, Kira S.; Krupovic, Mart; Koonin, Eugene V.

    2014-01-01

    The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the family B and the

  2. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication

    PubMed Central

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and

  3. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.

    PubMed

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the

  4. Computer-assisted dissection of rolling circle DNA replication.

    PubMed

    Koonin, E V; Ilyina, T V

    1993-01-01

    A comparative analysis of the proteins involved in initiation and termination of rolling circle replication (RCR) was performed using computer-assisted methods of data based screening, motif search and multiple amino acid sequence alignment. Two vast classes of such proteins were delineated, one of these being associated with RCR proper, and the other with mobilization (conjugal transfer) of plasmid DNA. The common denominator of the two classes was found to be a conserved amino acid motif that consists of the sequence HisUHisUUU (U--bulky hydrophobic residue; hereafter HUH motif). Based on analogies with metalloenzymes, it is hypothesized that the two conserved His residues this motif may be involved in metal ion coordination required for the activity of the RCR and mobilization proteins. The proteins of the replication (Rep) class contained two additional conserved motifs, with the motif around the Tyr residue(s) forming the covalent link with nicked DNA being located C-proximally of the HUH motif. This class further split into two large superfamilies and several smaller families, with the proteins belonging to a single but not to different (super)families demonstrating statistically significant similarity to each other. Superfamily I, prototyped by the gene A proteins of small isometric single-stranded (ss) DNA bacteriophages, included also Rep proteins of P2-related double-stranded (ds) DNA bacteriophages, the small phage-plasmid hybrid phasyl, and several cyanobacterial and archaebacterial plasmids. These proteins contained two invariant Tyr residues separated by three partially conserved amino acids, suggesting that they all may share the cleavage-ligation mechanism proposed for phi X174 A protein and involving alternate covalent binding of both tyrosines to DNA (Van Mansfeld, A.D., Van Teeffelen, H.A., Baas, P.D., Jansz, H.S., 1986. Nucl. Acids Res. 14, 4229-4238). Superfamily II included Rep proteins of a number of ssDNA plasmids replicating mainly in gram

  5. Single-Molecule Observation of Prokaryotic DNA Replication

    PubMed Central

    Tanner, Nathan A.; van Oijen, Antoine M.

    2010-01-01

    Recent advances in optical imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and study the dynamic properties of processes that are challenging to elucidate using ensemble-averaging techniques. The use of single-molecule approaches has proven to be particularly successful in the study of the dynamic interactions between the components at the replication fork. In this section, we describe the methods necessary for in vitro single-molecule studies of prokaryotic replication systems. Through these experiments, accurate information can be obtained on the rates and processivities of DNA unwinding and polymerization. The ability to monitor in real time the progress of a single replication fork allows for the detection of short-lived, intermediate states that would be difficult to visualize in bulk-phase assays. PMID:19563119

  6. DNA replication: polymerase epsilon as a non-catalytic converter of the helicase.

    PubMed

    Zegerman, Philip

    2013-04-01

    In eukaryotes DNA polymerase epsilon (ε) synthesises the leading DNA strand during replication. A new study provides insight into how this polymerase also functions independently of its enzyme activity to assemble and activate the replicative helicase. PMID:23578873

  7. Chromosome banding and DNA replication patterns in bird karyotypes.

    PubMed

    Schmid, M; Enderle, E; Schindler, D; Schempp, W

    1989-01-01

    The karyotypes of the domestic chicken (Gallus domesticus), Japanese quail (Coturnix coturnix), and griffon vulture (Gyps fulvus) were studied with a variety of banding techniques. The DNA replication patterns of bird chromosomes, analyzed by incorporation of 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT), are presented here for the first time. In particular, the time sequence of replication of the ZZ/ZW sex chromosomes throughout the S-phase was meticulously analyzed. BrdU and dT incorporation are very useful methods to identify homoeologies between karyotypes, as well as rearrangements that occurred in the macroautosomes during speciation. The Z chromosomes of the three birds displayed the same replication patterns, indicating a high degree of evolutionary conservation. In the homogametic male, BrdU and dT incorporation revealed no evidence of asynchronous replication between euchromatic bands in the ZZ pair. The same was true of the three Z chromosomes in a triploid-diploid chimeric chicken embryo. Minor replication asynchronies between the homologous ZZ or ZZZ chromosomes were restricted to heterochromatic C-bands. These results confirm that, in the ZZ male/ZW female sex-determining system of birds, dosage compensation for Z-linked genes does not occur by inactivation of one of the two Z chromosomes in the homogametic male. The heterochromatic W chromosomes of the three species showed bright labeling with distamycin A/mithramycin counterstain-enhanced fluorescence and exhibited significantly delayed DNA replication. The nucleolus organizers of birds, frequently located in microchromosomes, were also distinguished by bright distamycin A/mithramycin fluorescence. PMID:2630186

  8. The rolling-circle melting-pot model for porcine circovirus DNA replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A stem-loop structure, formed by a pair of inverted repeats during DNA replication, is a conserved feature at the origin of DNA replication (Ori) among plant and animal viruses, bacteriophages and plasmids that replicate their genomes via the rolling-circle replication (RCR) mechanism. Porcine circo...

  9. Effects of DNA replication on mRNA noise.

    PubMed

    Peterson, Joseph R; Cole, John A; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A

    2015-12-29

    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript's half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories. PMID:26669443

  10. Effects of DNA replication on mRNA noise

    PubMed Central

    Peterson, Joseph R.; Cole, John A.; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A.

    2015-01-01

    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript’s half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories. PMID:26669443

  11. Changes in network topology during the replication of kinetoplast DNA.

    PubMed Central

    Chen, J; Englund, P T; Cozzarelli, N R

    1995-01-01

    Kinetoplast DNA of Crithidia fasciculata is a network containing several thousand topologically interlocked DNA minicircles. In the prereplicative Form I network, each of the 5000 minicircles is intact and linked to an average of three neighbors (i.e. the minicircle valence is 3). Replication involves the release of minicircles from the interior of the network, the synthesis of nicked or gapped progeny minicircles and the attachment of the progeny to the network periphery. The ultimate result is a Form II network of 10,000 nicked or gapped minicircles. Our measurements of minicircle valence and density, and the network's surface area, revealed striking changes in network topology during replication. During the S phase, the peripheral newly replicated minicircles have a density twice that of minicircles in Form I networks, which suggests that the valence might be as high as 6. Most of the holes in the central region that occur from the removal of intact minicircles are repaired so that the central density and valence remain the same, as in prereplicative networks. When minicircle replication is complete at the end of the S phase, the isolated network has the surface area of a prereplicative network, despite having twice the number of minicircles. During the G2 phase, the Form II network undergoes a remodeling in which the area doubles and the valence is reduced to 3. Finally, the interruptions in the minicircles are repaired and the double-sized network splits in two. Images PMID:8557054

  12. Vertebrate HoxB gene expression requires DNA replication.

    PubMed

    Fisher, Daniel; Méchali, Marcel

    2003-07-15

    To study the relationship between DNA replication and transcription in vivo, we investigated Hox gene activation in two vertebrate systems: the embryogenesis of Xenopus and the retinoic acid-induced differentiation of pluripotent mouse P19 cells. We show that the first cell cycles following the mid- blastula transition in Xenopus are necessary and sufficient for HoxB activation, whereas later cell cycles are necessary for the correct expression pattern. In P19 cells, HoxB expression requires proliferation, and the entire locus is activated within one cell cycle. Using synchronous cultures, we found that activation of HoxB genes is colinear within a single cell cycle, occurs during S phase and requires S phase. The HoxB locus replicates early, whereas replication is still required for maximal expression later in S phase. Thus, induction of HoxB genes occurs in a DNA replication-dependent manner and requires only one cell cycle. We propose that S-phase remodelling licenses the locus for transcriptional regulation. PMID:12853488

  13. ATPase-Dependent Quality Control of DNA Replication Origin Licensing

    PubMed Central

    Frigola, Jordi; Remus, Dirk; Mehanna, Amina; Diffley, John F. X.

    2013-01-01

    The regulated loading of the Mcm2-7 DNA helicase into pre-replicative complexes (pre-RCs) at multiple replication origins ensures precise once per cell cycle replication in eukaryotic cells. Origin Recognition Complex (ORC), Cdc6 and Cdt1 load Mcm2-7 into a double hexamer bound around duplex DNA in an ATP-dependent reaction, but the molecular mechanism of this origin ‘licensing’ is still poorly understood. Here we show that both Mcm2-7 hexamers are recruited to origins by an essential, conserved C-terminal domain of Mcm3 which interacts with and stimulates the ATPase activity of ORC•Cdc6. ATP hydrolysis can promote Mcm2-7 loading, but can also promote Mcm2-7 release if components are missing or if ORC has been inactivated by cyclin-dependent kinase phosphorylation. Our work provides new insights into how origins are licensed and reveals a novel ATPase-dependent mechanism contributing to precise once per cell cycle replication. PMID:23474987

  14. DNA replication: damage tolerance at the assembly line.

    PubMed

    Blastyák, András

    2014-07-01

    Damage tolerance mechanisms ensure resumption of DNA synthesis at damage-replisome encounters. Replication fork reversal (RFR) is one such widely recognized mechanism that acts on replisomes where lagging strand synthesis continues upon leading strand synthesis block. The possibility to form such a structure is highly counter to our current understanding of the replisome dynamics of single replisomes. Here, I suggest a model that takes coupled bidirectional replisome organization into account to solve this apparent contradiction. PMID:24957737

  15. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells.

    PubMed

    Zhang, Ya; Huang, Liang; Fu, Haiqing; Smith, Owen K; Lin, Chii Mei; Utani, Koichi; Rao, Mishal; Reinhold, William C; Redon, Christophe E; Ryan, Michael; Kim, RyangGuk; You, Yang; Hanna, Harlington; Boisclair, Yves; Long, Qiaoming; Aladjem, Mirit I

    2016-01-01

    Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin (HBB) locus. At HBB, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins. PMID:27272143

  16. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells

    PubMed Central

    Zhang, Ya; Huang, Liang; Fu, Haiqing; Smith, Owen K.; Lin, Chii Mei; Utani, Koichi; Rao, Mishal; Reinhold, William C.; Redon, Christophe E.; Ryan, Michael; Kim, RyangGuk; You, Yang; Hanna, Harlington; Boisclair, Yves; Long, Qiaoming; Aladjem, Mirit I.

    2016-01-01

    Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin (HBB) locus. At HBB, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins. PMID:27272143

  17. A novel cell permeable DNA replication and repair marker

    PubMed Central

    Herce, Henry D; Rajan, Malini; Lättig-Tünnemann, Gisela; Fillies, Marion; Cardoso, M Cristina

    2014-01-01

    Proliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker. The design of this marker has three essential molecular components: (1) an optimized artificial PCNA binding peptide; (2) a cell-penetrating peptide, derived from the HIV-1 Trans Activator of Transcription (TAT); (3) an in vivo cleavable linker, linking the two peptides. The resulting construct was taken up by human, hamster and mouse cells within minutes of addition to the media. Inside the cells, the cargo separated from the vector peptide and bound PCNA effectively. Both replication and repair sites could be directly labeled in live cells making it the first in vivo cell permeable peptide marker for these two fundamental cellular processes. Concurrently, we also introduced a quick peptide based PCNA staining method as an alternative to PCNA antibodies for immunofluorescence applications. In summary, we present here a versatile tool to instantaneously label repair and replication processes in fixed and live cells. PMID:25484186

  18. A novel cell permeable DNA replication and repair marker.

    PubMed

    Herce, Henry D; Rajan, Malini; Lättig-Tünnemann, Gisela; Fillies, Marion; Cardoso, M Cristina

    2014-01-01

    Proliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker. The design of this marker has three essential molecular components: (1) an optimized artificial PCNA binding peptide; (2) a cell-penetrating peptide, derived from the HIV-1 Trans Activator of Transcription (TAT); (3) an in vivo cleavable linker, linking the two peptides. The resulting construct was taken up by human, hamster and mouse cells within minutes of addition to the media. Inside the cells, the cargo separated from the vector peptide and bound PCNA effectively. Both replication and repair sites could be directly labeled in live cells making it the first in vivo cell permeable peptide marker for these two fundamental cellular processes. Concurrently, we also introduced a quick peptide based PCNA staining method as an alternative to PCNA antibodies for immunofluorescence applications. In summary, we present here a versatile tool to instantaneously label repair and replication processes in fixed and live cells. PMID:25484186

  19. Involvement of proliferating cell nuclear antigen (cyclin) in DNA replication in living cells.

    PubMed Central

    Zuber, M; Tan, E M; Ryoji, M

    1989-01-01

    Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase delta but not the other DNA polymerases in vitro. We injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replication in living cells. This result further implies that DNA polymerase delta is necessary for plasmid replication in vivo. Anti-PCNA antibody alone did not block plasmid replication completely, but the residual replication was abolished by coinjection of a monoclonal antibody against DNA polymerase alpha. Anti-DNA polymerase alpha alone inhibited plasmid replication by 63%. Thus, DNA polymerase alpha is also required for plasmid replication in this system. In similar studies on the replication of egg chromosomes, the inhibition by anti-PCNA antibody was only 30%, while anti-DNA polymerase alpha antibody blocked 73% of replication. We concluded that the replication machineries of chromosomes and plasmid differ in their relative content of DNA polymerase delta. In addition, we obtained evidence through the use of phenylbutyl deoxyguanosine, an inhibitor of DNA polymerase alpha, that the structure of DNA polymerase alpha holoenzyme for chromosome replication is significantly different from that for plasmid replication. Images PMID:2564636

  20. Transcriptional control of DNA replication licensing by Myc

    NASA Astrophysics Data System (ADS)

    Valovka, Taras; Schönfeld, Manuela; Raffeiner, Philipp; Breuker, Kathrin; Dunzendorfer-Matt, Theresia; Hartl, Markus; Bister, Klaus

    2013-12-01

    The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to the Myc protein, notably direct interaction with the pre-replicative complex (pre-RC) controlling the initiation of DNA replication. A key component of the pre-RC is the Cdt1 protein, an essential factor in origin licensing. Here we present data suggesting that the CDT1 gene is a transcriptional target of the Myc-Max complex. Expression of the CDT1 gene in v-myc-transformed cells directly correlates with myc expression. Also, human tumor cells with elevated c-myc expression display increased CDT1 expression. Occupation of the CDT1 promoter by Myc-Max is demonstrated by chromatin immunoprecipitation, and transactivation by Myc-Max is shown in reporter assays. Ectopic expression of CDT1 leads to cell transformation. Our results provide a possible direct mechanistic link of Myc's canonical function as a transcription factor to DNA replication. Furthermore, we suggest that aberrant transcriptional activation of CDT1 by deregulated myc alleles contributes to the genomic instabilities observed in tumor cells.

  1. DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome.

    PubMed

    Musich, Phillip R; Zou, Yue

    2011-12-01

    A common feature of progeria syndromes is a premature aging phenotype and an enhanced accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson-Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and abnormal DDR (DNA-damage response). In the present article, we review recent findings which resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We propose that progerin accumulation results in disruption of functions of some replication and repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) checkpoints, and arresting cell-cycle progression. PMID:22103522

  2. DNA replication meets genetic exchange: Chromosomal damage and its repair by homologous recombination

    PubMed Central

    Kuzminov, Andrei

    2001-01-01

    Proceedings of the National Academy of Sciences Colloquium on the roles of homologous recombination in DNA replication are summarized. Current findings in experimental systems ranging from bacteriophages to mammalian cell lines substantiate the idea that homologous recombination is a system supporting DNA replication when either the template DNA is damaged or the replication machinery malfunctions. There are several lines of supporting evidence: (i) DNA replication aggravates preexisting DNA damage, which then blocks subsequent replication; (ii) replication forks abandoned by malfunctioning replisomes become prone to breakage; (iii) mutants with malfunctioning replisomes or with elevated levels of DNA damage depend on homologous recombination; and (iv) homologous recombination primes DNA replication in vivo and can restore replication fork structures in vitro. The mechanisms of recombinational repair in bacteriophage T4, Escherichia coli, and Saccharomyces cerevisiae are compared. In vitro properties of the eukaryotic recombinases suggest a bigger role for single-strand annealing in the eukaryotic recombinational repair. PMID:11459990

  3. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development.

    PubMed

    Gawecka, Joanna E; Marh, Joel; Ortega, Michael; Yamauchi, Yasuhiro; Ward, Monika A; Ward, W Steven

    2013-01-01

    Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s). Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes) and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development. PMID:23431372

  4. FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress.

    PubMed

    Jeong, Yeon-Tae; Rossi, Mario; Cermak, Lukas; Saraf, Anita; Florens, Laurence; Washburn, Michael P; Sung, Patrick; Schildkraut, Carl L; Schildkraut, Carl; Pagano, Michele

    2013-01-21

    Proper resolution of stalled replication forks is essential for genome stability. Purification of FBH1, a UvrD DNA helicase, identified a physical interaction with replication protein A (RPA), the major cellular single-stranded DNA (ssDNA)-binding protein complex. Compared with control cells, FBH1-depleted cells responded to replication stress with considerably fewer double-strand breaks (DSBs), a dramatic reduction in the activation of ATM and DNA-PK and phosphorylation of RPA2 and p53, and a significantly increased rate of survival. A minor decrease in ssDNA levels was also observed. All these phenotypes were rescued by wild-type FBH1, but not a FBH1 mutant lacking helicase activity. FBH1 depletion had no effect on other forms of genotoxic stress in which DSBs form by means that do not require ssDNA intermediates. In response to catastrophic genotoxic stress, apoptosis prevents the persistence and propagation of DNA lesions. Our findings show that FBH1 helicase activity is required for the efficient induction of DSBs and apoptosis specifically in response to DNA replication stress. PMID:23319600

  5. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability

    PubMed Central

    Schalbetter, Stephanie A.; Mansoubi, Sahar; Chambers, Anna L.; Downs, Jessica A.; Baxter, Jonathan

    2015-01-01

    Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein–DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein–DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin. PMID:26240319

  6. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription.

    PubMed

    Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M

    2015-07-01

    The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication. PMID:25795313

  7. Optimal Control of Gene Mutation in DNA Replication

    PubMed Central

    Yu, Juanyi; Li, Jr-Shin; Tarn, Tzyh-Jong

    2012-01-01

    We propose a molecular-level control system view of the gene mutations in DNA replication from the finite field concept. By treating DNA sequences as state variables, chemical mutagens and radiation as control inputs, one cell cycle as a step increment, and the measurements of the resulting DNA sequence as outputs, we derive system equations for both deterministic and stochastic discrete-time, finite-state systems of different scales. Defining the cost function as a summation of the costs of applying mutagens and the off-trajectory penalty, we solve the deterministic and stochastic optimal control problems by dynamic programming algorithm. In addition, given that the system is completely controllable, we find that the global optimum of both base-to-base and codon-to-codon deterministic mutations can always be achieved within a finite number of steps. PMID:22454557

  8. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria

    PubMed Central

    Dalla Rosa, Ilaria; Cámara, Yolanda; Durigon, Romina; Moss, Chloe F.; Vidoni, Sara; Akman, Gokhan; Hunt, Lilian; Johnson, Mark A.; Grocott, Sarah; Wang, Liya; Thorburn, David R.; Hirano, Michio; Poulton, Joanna; Taylor, Robert W.; Elgar, Greg; Martí, Ramon; Voshol, Peter; Holt, Ian J.; Spinazzola, Antonella

    2016-01-01

    MPV17 is a mitochondrial inner membrane protein whose dysfunction causes mitochondrial DNA abnormalities and disease by an unknown mechanism. Perturbations of deoxynucleoside triphosphate (dNTP) pools are a recognized cause of mitochondrial genomic instability; therefore, we determined DNA copy number and dNTP levels in mitochondria of two models of MPV17 deficiency. In Mpv17 ablated mice, liver mitochondria showed substantial decreases in the levels of dGTP and dTTP and severe mitochondrial DNA depletion, whereas the dNTP pool was not significantly altered in kidney and brain mitochondria that had near normal levels of DNA. The shortage of mitochondrial dNTPs in Mpv17-/- liver slows the DNA replication in the organelle, as evidenced by the elevated level of replication intermediates. Quiescent fibroblasts of MPV17-mutant patients recapitulate key features of the primary affected tissue of the Mpv17-/- mice, displaying virtual absence of the protein, decreased dNTP levels and mitochondrial DNA depletion. Notably, the mitochondrial DNA loss in the patients’ quiescent fibroblasts was prevented and rescued by deoxynucleoside supplementation. Thus, our study establishes dNTP insufficiency in the mitochondria as the cause of mitochondrial DNA depletion in MPV17 deficiency, and identifies deoxynucleoside supplementation as a potential therapeutic strategy for MPV17-related disease. Moreover, changes in the expression of factors involved in mitochondrial deoxynucleotide homeostasis indicate a remodeling of nucleotide metabolism in MPV17 disease models, which suggests mitochondria lacking functional MPV17 have a restricted purine mitochondrial salvage pathway. PMID:26760297

  9. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant

    PubMed Central

    2013-01-01

    LINE-1 (L1) retrotransposons are repetitive elements in mammalian genomes. They are capable of synthesizing DNA on their own RNA templates by harnessing reverse transcriptase (RT) that they encode. Abundantly expressed full-length L1s and their RT are found to globally influence gene expression profiles, differentiation state, and proliferation capacity of early embryos and many types of cancer, albeit by yet unknown mechanisms. They are essential for the progression of early development and the establishment of a cancer-related undifferentiated state. This raises important questions regarding the functional significance of L1 RT in these cell systems. Massive nuclear L1-linked reverse transcription has been shown to occur in mouse zygotes and two-cell embryos, and this phenomenon is purported to be DNA replication independent. This review argues against this claim with the goal of understanding the nature of this phenomenon and the role of L1 RT in early embryos and cancers. Available L1 data are revisited and integrated with relevant findings accumulated in the fields of replication timing, chromatin organization, and epigenetics, bringing together evidence that strongly supports two new concepts. First, noncanonical replication of a portion of genomic full-length L1s by means of L1 RNP-driven reverse transcription is proposed to co-exist with DNA polymerase-dependent replication of the rest of the genome during the same round of DNA replication in embryonic and cancer cell systems. Second, the role of this mechanism is thought to be epigenetic; it might promote transcriptional competence of neighboring genes linked to undifferentiated states through the prevention of tethering of involved L1s to the nuclear periphery. From the standpoint of these concepts, several hitherto inexplicable phenomena can be explained. Testing methods for the model are proposed. Reviewers This article was reviewed by Dr. Philip Zegerman (nominated by Dr. Orly Alter), Dr. I. King

  10. Inferring the Spatiotemporal DNA Replication Program from Noisy Biological Data

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John; Baker, Antoine

    2014-03-01

    We generalize a stochastic model of DNA replication to the case where replication-origin-initiation rates vary locally along the genome and with time. Using this generalized model, we address the inverse problem of inferring initiation rates from experimental data concerning replication in cell populations. Previous work based on curve fitting depended on arbitrarily chosen functional forms for the initiation rate, with free parameters that were constrained by the data. We introduce a model-free, non-parametric method of inference that is based on Gaussian process regression. The method replaces specific assumptions about the functional form of initiation rate with more general prior expectations about the smoothness of variation of this rate, along the genome and in time. Using this inference method, we show that we can recover with high precision simulated replication schemes with data that are typical of current experiments. The method of Gaussian process regression can be profitably applied to a wide range of physical and biological problems. Supported by NSERC (Canada).

  11. Loss of Smu1 function de-represses DNA replication and over-activates ATR-dependent replication checkpoint.

    PubMed

    Ren, Laifeng; Liu, Yao; Guo, Liandi; Wang, Haibin; Ma, Lei; Zeng, Ming; Shao, Xin; Yang, Chunlei; Tang, Yaxiong; Wang, Lei; Liu, Cong; Li, Mingyuan

    2013-06-28

    Smu1 is an evolutionarily conserved gene that encodes a member of the WD40-repeat protein family. Disruption of Smu1 function leads to multiple cellular defects including chromosomal instability, aberrant DNA replication and alternative RNA splicing events. In this paper, we show that Smu1 is a chromatin-bound protein that functions as a negative regulator of DNA replication. Knockdown of Smu1 gene expression promotes excessive incorporation of dNTP analogue, implicating the acceleration of DNA synthesis. Smu1-silenced cells show an excessive activation of replication checkpoint in response to ultraviolate (UV) or hydroxyurea treatment, indicating that abnormal stimulation of DNA replication leads to instability of genomic structure. Hence, we propose that Smu1 participates in the protection of genomic integrity by negatively regulating the process of DNA synthesis. PMID:23727573

  12. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes

    PubMed Central

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-01-01

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. PMID:27112572

  13. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    PubMed

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-01

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. PMID:27112572

  14. Replication fork progression is paused in two large chromosomal zones flanking the DNA replication origin in Escherichia coli.

    PubMed

    Akiyama, Masahiro Tatsumi; Oshima, Taku; Chumsakul, Onuma; Ishikawa, Shu; Maki, Hisaji

    2016-08-01

    Although the speed of nascent DNA synthesis at individual replication forks is relatively uniform in bacterial cells, the dynamics of replication fork progression on the chromosome are hampered by a variety of natural impediments. Genome replication dynamics can be directly measured from an exponentially growing cell population by sequencing newly synthesized DNA strands that were specifically pulse-labeled with the thymidine analogue 5-bromo-2'-deoxyuridine (BrdU). However, a short pulse labeling with BrdU is impracticable for bacteria because of poor incorporation of BrdU into the cells, and thus, the genomewide dynamics of bacterial DNA replication remain undetermined. Using a new thymidine-requiring Escherichia coli strain, eCOMB, and high-throughput sequencing, we succeeded in determining the genomewide replication profile in bacterial cells. We also found that fork progression is paused in two ~200-kb chromosomal zones that flank the replication origin in the growing cells. This origin-proximal obstruction to fork progression was overcome by an increased thymidine concentration in the culture medium and enhanced by inhibition of transcription. These indicate that DNA replication near the origin is sensitive to the impediments to fork progression, namely a scarcity of the DNA precursor deoxythymidine triphosphate and probable conflicts between replication and transcription machineries. PMID:27353572

  15. HBx protein of hepatitis B virus promotes reinitiation of DNA replication by regulating expression and intracellular stability of replication licensing factor CDC6.

    PubMed

    Pandey, Vijaya; Kumar, Vijay

    2012-06-01

    Prevention of re-replication via negative regulation of replication initiator proteins, such as CDC6, is key to maintenance of genomic integrity, whereas their up-regulation is generally associated with perturbation in cell cycle, genomic instability, and potentially, tumorigenesis. The HBx oncoprotein of hepatitis B virus is well known to deregulate cell cycle and has been intricately linked to development of hepatocellular carcinoma. Despite a clear understanding of the proliferative effects of HBx on cell cycle, a mechanistic link between HBx-mediated hepatocarcinogenesis and host cell DNA replication remains poorly perused. Here we show that HBx overexpression in both the cellular as well as the transgenic environment resulted in the accumulation of CDC6 through transcriptional and post-translational up-regulation. The HBx-mediated increase in CDK2 activity altered the E2F1-Rb (retinoblastoma) balance, which favored CDC6 gene expression by E2F1. Besides, HBx impaired the APC(Cdh1)-dependent protein degradation pathway and conferred intracellular stability to CDC6 protein. Increase in CDC6 levels correlated with increase in CDC6 occupancy on the β-globin origin of replication, suggesting increment in origin licensing and re-replication. In conclusion, our findings strongly suggest a novel role for CDC6 in abetting the oncogenic sabotage carried out by HBx and support the paradigm that pre-replicative complex proteins have a role in oncogenic transformation. PMID:22523071

  16. Low-Resolution Structure of Vaccinia Virus DNA Replication Machinery

    PubMed Central

    Sèle, Céleste; Gabel, Frank; Gutsche, Irina; Ivanov, Ivan; Burmeister, Wim P.

    2013-01-01

    Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages. PMID:23175373

  17. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression

    PubMed Central

    Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.

    2016-01-01

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359

  18. The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor.

    PubMed

    Ivanova, Tsvetomira; Alves-Rodrigues, Isabel; Gómez-Escoda, Blanca; Dutta, Chaitali; DeCaprio, James A; Rhind, Nick; Hidalgo, Elena; Ayté, José

    2013-11-01

    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex. PMID:24006488

  19. The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor

    PubMed Central

    Ivanova, Tsvetomira; Alves-Rodrigues, Isabel; Gómez-Escoda, Blanca; Dutta, Chaitali; DeCaprio, James A.; Rhind, Nick; Hidalgo, Elena; Ayté, José

    2013-01-01

    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)–dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex. PMID:24006488

  20. Synthesis of site-specific DNA-protein conjugates and their effects on DNA replication.

    PubMed

    Yeo, Jung Eun; Wickramaratne, Susith; Khatwani, Santoshkumar; Wang, Yen-Chih; Vervacke, Jeffrey; Distefano, Mark D; Tretyakova, Natalia Y

    2014-08-15

    DNA-protein cross-links (DPCs) are bulky, helix-distorting DNA lesions that form in the genome upon exposure to common antitumor drugs, environmental/occupational toxins, ionizing radiation, and endogenous free-radical-generating systems. As a result of their considerable size and their pronounced effects on DNA-protein interactions, DPCs can interfere with DNA replication, transcription, and repair, potentially leading to mutagenesis, genotoxicity, and cytotoxicity. However, the biological consequences of these ubiquitous lesions are not fully understood due to the difficulty of generating DNA substrates containing structurally defined, site-specific DPCs. In the present study, site-specific cross-links between the two biomolecules were generated by copper-catalyzed [3 + 2] Huisgen cycloaddition (click reaction) between an alkyne group from 5-(octa-1,7-diynyl)-uracil in DNA and an azide group within engineered proteins/polypeptides. The resulting DPC substrates were subjected to in vitro primer extension in the presence of human lesion bypass DNA polymerases η, κ, ν, and ι. We found that DPC lesions to the green fluorescent protein and a 23-mer peptide completely blocked DNA replication, while the cross-link to a 10-mer peptide was bypassed. These results indicate that the polymerases cannot read through the larger DPC lesions and further suggest that proteolytic degradation may be required to remove the replication block imposed by bulky DPC adducts. PMID:24918113

  1. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression

    PubMed Central

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F.; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-01-01

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker–induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress. PMID:27407148

  2. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    PubMed

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress. PMID:27407148

  3. Mitochondrial DNA copy number and replication in reprogramming and differentiation.

    PubMed

    St John, Justin C

    2016-04-01

    Until recently, it was thought that the role of the mitochondrial genome was confined to encoding key proteins that generate ATP through the process of oxidative phosphorylation in the electron transfer chain. However, with increasing new evidence, it is apparent that the mitochondrial genome has a major role to play in a number of diseases and phenotypes. For example, mitochondrial variants and copy number have been implicated in the processes of fertilisation outcome and development and the onset of tumorigenesis. On the other hand, mitochondrial DNA (mtDNA) haplotypes have been implicated in a variety of diseases and most likely account for the adaptation that our ancestors achieved in order that they were fit for their environments. The mechanisms, which enable the mitochondrial genome to either protect or promote the disease phenotype, require further elucidation. However, there appears to be significant 'crosstalk' between the chromosomal and mitochondrial genomes that enable this to take place. One such mechanism is the regulation of DNA methylation by mitochondrial DNA, which is often perturbed in reprogrammed cells that have undergone dedifferentiation and affects mitochondrial DNA copy number. Furthermore, it appears that the mitochondrial genome interacts with the chromosomal genome to regulate the transcription of key genes at certain stages during development. Additionally, the mitochondrial genome can accumulate a series of mtDNA variants, which can lead to diseases such as cancer. It is likely that a combination of certain mitochondrial variants and aberrant patterns of mtDNA copy number could indeed account for many diseases that have previously been unaccounted for. This review focuses on the role that the mitochondrial genome plays especially during early stages of development and in cancer. PMID:26827792

  4. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    SciTech Connect

    Mathew, Shomita S.; Bridge, Eileen

    2007-09-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci.

  5. Direct Observation of Enzymes Replicating DNA Using a Single-molecule DNA Stretching Assay

    PubMed Central

    Kulczyk, Arkadiusz W.; Tanner, Nathan A.; Loparo, Joseph J.; Richardson, Charles C.; van Oijen, Antoine M.

    2010-01-01

    We describe a method for observing real time replication of individual DNA molecules mediated by proteins of the bacteriophage replication system. Linearized λ DNA is modified to have a biotin on the end of one strand, and a digoxigenin moiety on the other end of the same strand. The biotinylated end is attached to a functionalized glass coverslip and the digoxigeninated end to a small bead. The assembly of these DNA-bead tethers on the surface of a flow cell allows a laminar flow to be applied to exert a drag force on the bead. As a result, the DNA is stretched close to and parallel to the surface of the coverslip at a force that is determined by the flow rate (Figure 1). The length of the DNA is measured by monitoring the position of the bead. Length differences between single- and double-stranded DNA are utilized to obtain real-time information on the activity of the replication proteins at the fork. Measuring the position of the bead allows precise determination of the rates and processivities of DNA unwinding and polymerization (Figure 2). PMID:20332766

  6. Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint.

    PubMed

    Kim, J M; Kakusho, N; Yamada, M; Kanoh, Y; Takemoto, N; Masai, H

    2008-05-29

    Cdc7 kinase is evolutionarily conserved and is involved in initiation and progression of DNA replication. However, roles of Cdc7 in checkpoint responses remain largely unknown. In this study, we show that deletion of the Cdc7 genes in mouse embryonic stem (ES) cells abrogates hydroxyurea (HU)- or UV-induced activation of Chk1. HU-induced Chk1 activation is also impaired in human cancer cell lines in which Cdc7 is depleted by siRNA, and Cdc7-depleted cells are more sensitive to HU treatment. In contrast, ATR and Rad17 are relocated to chromatin in these cells following HU treatment, indicating that stalled DNA replication forks are detected normally. Cdc7-depleted cells exhibit defects in chromatin association and phosphorylation of Claspin, suggesting that Cdc7 exerts its effect at least partially through Claspin. Consistent with this prediction, Cdc7 interacts with and phosphorylates Claspin. We propose that Cdc7 is required for activation of the ATR-Chk1 checkpoint pathway through regulation of Claspin. PMID:18084324

  7. DNA replication components as regulators of epigenetic inheritance--lesson from fission yeast centromere.

    PubMed

    He, Haijin; Gonzalez, Marlyn; Zhang, Fan; Li, Fei

    2014-06-01

    Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome. PMID:24691906

  8. Structural basis for inhibition of DNA replication by aphidicolin

    SciTech Connect

    Baranovskiy, A. G.; Babayeva, N. D.; Suwa, Y.; Gu, J.; Pavlov, Y. I.; Tahirov, T. H.

    2014-11-27

    Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with an RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.

  9. Structural basis for inhibition of DNA replication by aphidicolin

    DOE PAGESBeta

    Baranovskiy, A. G.; Babayeva, N. D.; Suwa, Y.; Gu, J.; Pavlov, Y. I.; Tahirov, T. H.

    2014-11-27

    Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with anmore » RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.« less

  10. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  11. Control of the replication initiator DnaA by an anti-cooperativity factor

    PubMed Central

    Merrikh, Houra; Grossman, Alan D.

    2011-01-01

    Summary Proper coordination of DNA replication with cell growth and division is critical for production of viable progeny. In bacteria, coordination of DNA replication with cell growth is generally achieved by controlling activity of the replication initiator DnaA and its access to the chromosomal origin of replication, oriC. Here we describe a previously unknown mechanism for regulation of DnaA. YabA, a negative regulator of replication initiation in Bacillus subtilis, interacts with DnaA and DnaN, the sliding (processivity) clamp of DNA polymerase. We found that in vivo, YabA associated with the oriC region in a DnaA-dependent manner and limited the amount of DnaA at oriC. In vitro, purified YabA altered binding of DnaA to DNA by inhibiting cooperativity. Though previously undescribed, proteins that directly inhibit cooperativity may be a common mechanism for regulating replication initiation. Conditions that cause release of DnaN from the replisome, or overproduction of DnaN, caused decreased association of YabA and increased association of DnaA with oriC. This effect of DnaN, either directly or indirectly, is likely responsible, in part, for enabling initiation of a new round of replication following completion of a previous round. PMID:21895792

  12. Regulation of DNA replication in irradiated cells by trans-acting factors

    SciTech Connect

    Wang, Y.; Huq, M.S.; Cheng, X.; Iliakis, G.

    1995-05-01

    We compared DNA replication activity in cytoplasmic extracts prepared from irradiated and nonirradiated HeLa cells using a simian virus 40 (SV40)-based in vitro replication assay. The assay measures semi-conservative DNA replication in a plasmid carrying the SV40 origin of replication and requires SV40 T antigen as the sole noncellular protein. The plasmid DNA used in the replication reaction is never exposed to radiation. We find that replication of plasmid DNA is significantly reduced when cytoplasmic extracts from irradiated cells are used. Since plasmid replication proceeds to completion in extracts from irradiated cells, the observed reduction in the overall replication activity is probably due to a reduction in the efficiency of initiation events. The degree of inhibition of DNA replication after exposure to 10, 30 and 50 Gy X rays as measured in vitro using this assay is similar to that measured in intact cells immediately before processing for extract preparation. These observations are compatible with the induction or activation by ionizing radiation of a factor(s) that inhibits in trans DNA replication. The results contribute to our understanding of the mechanism(s) developed by the cells to regulate DNA replication when exposed to clastogenic agents. Such processes may be of significance in the restoration of DNA integrity, and may define yet another checkpoint operating during S at the level of clusters of replicons. 26 refs., 4 figs.

  13. Autonomous replication of plasmids bearing monkey DNA origin-enriched sequences

    SciTech Connect

    Frappier, L.; Zannis-Hadjopoulos, M.

    1987-10-01

    Twelve clones of origin-enriched sequences (ORS) isolated from early replicating monkey (CV-1) DNA were examined for transient episomal replication in transfected CV-1, COS-7, and HeLa cells. Plasmid DNA was isolated at time intervals after transfection and screened by the Dpn I resistance assay or by the bromodeoxyuridine substitution assay to differentiate between input and replicated DNA. The authors have identified four monkey ORS (ORS3, -8, -9, and -12) that can support plasmid replication in mammalian cells. This replication is carried out in a controlled and semiconservative manner characteristic of mammalian replicons. ORS replication was most efficient in HeLa cells. Electron microscopy showed ORS8 and ORS12 plasmids of the correct size with replication bubbles. Using a unique restriction site in ORS12, we have mapped the replication bubble within the monkey DNA sequence.

  14. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases

    PubMed Central

    Kurth, Isabel; Georgescu, Roxana E.; O’Donnell, Mike

    2013-01-01

    Chromosomal replication machines contain coupled DNA polymerases that simultaneously replicate the leading and lagging strands1. However, coupled replication presents a largely unrecognized topological problem. Since DNA polymerase must travel a helical path during synthesis, the physical connection between leading and lagging strand polymerases causes the daughter strands to entwine, or produces extensive buildup of negative supercoils in the newly synthesized DNA2–4. How DNA polymerases maintain their connection during coupled replication despite these topological challenges is a mystery. Here, we examine the dynamics of the E. coli replisome, by ensemble and single-molecule methods that may solve this topological problem independent of topoisomerases. We find that the lagging strand polymerase frequently releases from an Okazaki fragment before completion, leaving single-strand gaps behind. Dissociation of the polymerase does not result in loss from the replisome due to its contact with the leading-strand polymerase. This behavior, referred to as “signal release”, had been thought to require a protein, possibly primase, to pry polymerase from incompletely extended DNA fragments5–7. However, we observe that signal release is independent of primase and does not appear to require a protein trigger at all. Instead, the lagging-strand polymerase is simply less processive in the context of a replisome. Interestingly, when the lagging-strand polymerase is supplied with primed DNA in trans, uncoupling it from the fork, high processivity is restored. Hence, we propose that coupled polymerases introduce topological changes, possibly by accumulation of superhelical tension in the newly synthesized DNA, that cause lower processivity and transient lagging-strand polymerase dissociation from DNA. PMID:23535600

  15. Termination of DNA replication forks: “Breaking up is hard to do”

    PubMed Central

    Bailey, Rachael; Priego Moreno, Sara; Gambus, Agnieszka

    2015-01-01

    To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component – Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field. PMID:25835602

  16. USP7/HAUSP: A SUMO deubiquitinase at the heart of DNA replication.

    PubMed

    Smits, Veronique A J; Freire, Raimundo

    2016-09-01

    DNA replication is both highly conserved and controlled. Problematic DNA replication can lead to genomic instability and therefore carcinogenesis. Numerous mechanisms work together to achieve this tight control and increasing evidence suggests that post-translational modifications (phosphorylation, ubiquitination, SUMOylation) of DNA replication proteins play a pivotal role in this process. Here we discuss such modifications in the light of a recent article that describes a novel role for the deubiquitinase (DUB) USP7/HAUSP in the control of DNA replication. USP7 achieves this function by an unusual and novel mechanism, namely deubiquitination of SUMOylated proteins at the replication fork, making USP7 also a SUMO DUB (SDUB). This work extends previous observations of increased levels of SUMO and low levels of ubiquitin at the on-going replication fork. Here, we discuss this novel study, its contribution to the DNA replication and genomic stability field and what questions arise from this work. PMID:27374980

  17. DNA replication defect in Salmonella typhimurium mutants lacking the editing (epsilon) subunit of DNA polymerase III.

    PubMed Central

    Lifsics, M R; Lancy, E D; Maurer, R

    1992-01-01

    In Salmonella typhimurium, dnaQ null mutants (encoding the epsilon editing subunit of DNA polymerase III [Pol III]) exhibit a severe growth defect when the genetic background is otherwise wild type. Suppression of the growth defect requires both a mutation affecting the alpha (polymerase) subunit of DNA polymerase III and adequate levels of DNA polymerase I. In the present paper, we report on studies that clarify the nature of the physiological defect imposed by the loss of epsilon and the mechanism of its suppression. Unsuppressed dnaQ mutants exhibited chronic SOS induction, indicating exposure of single-stranded DNA in vivo, most likely as gaps in double-stranded DNA. Suppression of the growth defect was associated with suppression of SOS induction. Thus, Pol I and the mutant Pol III combined to reduce the formation of single-stranded DNA or accelerate its maturation to double-stranded DNA. Studies with mutants in major DNA repair pathways supported the view that the defect in DNA metabolism in dnaQ mutants was at the level of DNA replication rather than of repair. The requirement for Pol I was satisfied by alleles of the gene for Pol I encoding polymerase activity or by rat DNA polymerase beta (which exhibits polymerase activity only). Consequently, normal growth is restored to dnaQ mutants when sufficient polymerase activity is provided and this compensatory polymerase activity can function independently of Pol III. The high level of Pol I polymerase activity may be required to satisfy the increased demand for residual DNA synthesis at regions of single-stranded DNA generated by epsilon-minus pol III. The emphasis on adequate polymerase activity in dnaQ mutants is also observed in the purified alpha subunit containing the suppressor mutation, which exhibits a modestly elevated intrinsic polymerase activity relative to that of wild-type alpha. Images PMID:1400246

  18. Single Molecule Analysis of Replicated DNA Reveals the Usage of Multiple KSHV Genome Regions for Latent Replication

    PubMed Central

    Verma, Subhash C.; Lu, Jie; Cai, Qiliang; Kosiyatrakul, Settapong; McDowell, Maria E.; Schildkraut, Carl L.; Robertson, Erle S.

    2011-01-01

    Kaposi's sarcoma associated herpesvirus (KSHV), an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA). Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors. Our previous studies identified and characterized another latent origin, which supported the replication of plasmids ex-vivo without LANA expression in trans. Therefore identification of an additional origin site prompted us to analyze the entire KSHV genome for replication initiation sites using single molecule analysis of replicated DNA (SMARD). Our results showed that replication of DNA can initiate throughout the KSHV genome and the usage of these regions is not conserved in two different KSHV strains investigated. SMARD also showed that the utilization of multiple replication initiation sites occurs across large regions of the genome rather than a specified sequence. The replication origin of the terminal repeats showed only a slight preference for their usage indicating that LANA dependent origin at the terminal repeats (TR) plays only a limited role in genome duplication. Furthermore, we performed chromatin immunoprecipitation for ORC2 and MCM3, which are part of the pre-replication initiation complex to determine the genomic sites where these proteins accumulate, to provide further characterization of potential replication initiation sites on the KSHV genome. The ChIP data confirmed accumulation of these pre-RC proteins at multiple genomic sites in a cell cycle dependent manner. Our data also show that both the frequency and the sites of replication initiation vary within the two KSHV genomes studied here, suggesting that initiation of replication is likely to be affected by the genomic context rather than the DNA sequences. PMID

  19. Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA.

    PubMed

    Leslie, David J; Heinen, Christian; Schramm, Frederic D; Thüring, Marietta; Aakre, Christopher D; Murray, Sean M; Laub, Michael T; Jonas, Kristina

    2015-07-01

    Bacteria can arrest their own growth and proliferation upon nutrient depletion and under various stressful conditions to ensure their survival. However, the molecular mechanisms responsible for suppressing growth and arresting the cell cycle under such conditions remain incompletely understood. Here, we identify post-transcriptional mechanisms that help enforce a cell-cycle arrest in Caulobacter crescentus following nutrient limitation and during entry into stationary phase by limiting the accumulation of DnaA, the conserved replication initiator protein. DnaA is rapidly degraded by the Lon protease following nutrient limitation. However, the rate of DnaA degradation is not significantly altered by changes in nutrient availability. Instead, we demonstrate that decreased nutrient availability downregulates dnaA translation by a mechanism involving the 5' untranslated leader region of the dnaA transcript; Lon-dependent proteolysis of DnaA then outpaces synthesis, leading to the elimination of DnaA and the arrest of DNA replication. Our results demonstrate how regulated translation and constitutive degradation provide cells a means of precisely and rapidly modulating the concentration of key regulatory proteins in response to environmental inputs. PMID:26134530

  20. Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA

    PubMed Central

    Schramm, Frederic D.; Thüring, Marietta; Aakre, Christopher D.; Murray, Sean M.; Laub, Michael T.; Jonas, Kristina

    2015-01-01

    Bacteria can arrest their own growth and proliferation upon nutrient depletion and under various stressful conditions to ensure their survival. However, the molecular mechanisms responsible for suppressing growth and arresting the cell cycle under such conditions remain incompletely understood. Here, we identify post-transcriptional mechanisms that help enforce a cell-cycle arrest in Caulobacter crescentus following nutrient limitation and during entry into stationary phase by limiting the accumulation of DnaA, the conserved replication initiator protein. DnaA is rapidly degraded by the Lon protease following nutrient limitation. However, the rate of DnaA degradation is not significantly altered by changes in nutrient availability. Instead, we demonstrate that decreased nutrient availability downregulates dnaA translation by a mechanism involving the 5' untranslated leader region of the dnaA transcript; Lon-dependent proteolysis of DnaA then outpaces synthesis, leading to the elimination of DnaA and the arrest of DNA replication. Our results demonstrate how regulated translation and constitutive degradation provide cells a means of precisely and rapidly modulating the concentration of key regulatory proteins in response to environmental inputs. PMID:26134530

  1. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication

    PubMed Central

    Zhang, Alice Tianbu; Langley, Alexander R.; Christov, Christo P.; Kheir, Eyemen; Shafee, Thomas; Gardiner, Timothy J.; Krude, Torsten

    2011-01-01

    Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular ‘catch and release’ mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors. PMID:21610089

  2. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    PubMed

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof. PMID:25348316

  3. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    SciTech Connect

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  4. Mitochondrial DNA replication proceeds via a ‘bootlace’ mechanism involving the incorporation of processed transcripts

    PubMed Central

    Reyes, Aurelio; Kazak, Lawrence; Wood, Stuart R.; Yasukawa, Takehiro; Jacobs, Howard T.; Holt, Ian J.

    2013-01-01

    The observation that long tracts of RNA are associated with replicating molecules of mitochondrial DNA (mtDNA) suggests that the mitochondrial genome of mammals is copied by an unorthodox mechanism. Here we show that these RNA-containing species are present in living cells and tissue, based on interstrand cross-linking. Using DNA synthesis in organello, we demonstrate that isolated mitochondria incorporate radiolabeled RNA precursors, as well as DNA precursors, into replicating DNA molecules. RNA-containing replication intermediates are chased into mature mtDNA, to which they are thus in precursor–product relationship. While a DNA chain terminator rapidly blocks the labeling of mitochondrial replication intermediates, an RNA chain terminator does not. Furthermore, processed L-strand transcripts can be recovered from gel-extracted mtDNA replication intermediates. Therefore, instead of concurrent DNA and RNA synthesis, respectively, on the leading and lagging strands, preformed processed RNA is incorporated as a provisional lagging strand during mtDNA replication. These findings indicate that RITOLS is a physiological mechanism of mtDNA replication, and that it involves a ‘bootlace' mechanism, in which processed transcripts are successively hybridized to the lagging-strand template, as the replication fork advances. PMID:23595151

  5. Structure and Function of the PriC DNA Replication Restart Protein.

    PubMed

    Wessel, Sarah R; Cornilescu, Claudia C; Cornilescu, Gabriel; Metz, Alice; Leroux, Maxime; Hu, Kaifeng; Sandler, Steven J; Markley, John L; Keck, James L

    2016-08-26

    Collisions between DNA replication complexes (replisomes) and barriers such as damaged DNA or tightly bound protein complexes can dissociate replisomes from chromosomes prematurely. Replisomes must be reloaded under these circumstances to avoid incomplete replication and cell death. Bacteria have evolved multiple pathways that initiate DNA replication restart by recognizing and remodeling abandoned replication forks and reloading the replicative helicase. In vitro, the simplest of these pathways is mediated by the single-domain PriC protein, which, along with the DnaC helicase loader, can load the DnaB replicative helicase onto DNA bound by the single-stranded DNA (ssDNA)-binding protein (SSB). Previous biochemical studies have identified PriC residues that mediate interactions with ssDNA and SSB. However, the mechanisms by which PriC drives DNA replication restart have remained poorly defined due to the limited structural information available for PriC. Here, we report the NMR structure of full-length PriC from Cronobacter sakazakii PriC forms a compact bundle of α-helices that brings together residues involved in ssDNA and SSB binding at adjacent sites on the protein surface. Disruption of these interaction sites and of other conserved residues leads to decreased DnaB helicase loading onto SSB-bound DNA. We also demonstrate that PriC can directly interact with DnaB and the DnaB·DnaC complex. These data lead to a model in which PriC acts as a scaffold for recruiting DnaB·DnaC to SSB/ssDNA sites present at stalled replication forks. PMID:27382050

  6. Strain-specific determinants of beet curly top geminivirus DNA replication.

    PubMed

    Choi, I R; Stenger, D C

    1995-02-01

    The Logan and CFH strains of the geminivirus beet curly top virus (BCTV) possess cis- and trans-DNA replication factors which exhibit specificity and are not functionally interchangeable. We demonstrate that the cis-acting replication specificity element is entirely contained within a 82- to 97-bp fragment which includes most of the viral DNA origin of replication. We also demonstrate that the strain-specific trans-acting replication determinant is located within amino acid residues 3-89 of the BCTV C1 replication protein. Transient replication assays indicated that chimeric BCTV genomes containing reciprocally exchanged regions of the CFH and Logan genomes were replication competent when the cis- and trans-replication specificity elements were derived from the same strain. Two reciprocal chimeric viral genomes with heterologous cis- and trans-replication elements were incapable of self-replication, yet could trans-replicate one another in a coinoculation experiment. Only chimeric genomes possessing the Logan trans-replication element were capable of mobilizing and amplifying a transgenic Logan derived DI-DNA. DI-DNA mobilization and amplification occurred in transient replication assays even when the helper virus genome was incapable of self-replication, providing that the trans-replication element was derived from the Logan strain. These results genetically define specific regions of the BCTV C1 replication protein determining viral DNA replication origin recognition and provide clear evidence that strains of BCTV have evolved specific cis- and trans-replication factors which functionally define the Logan and CFH strains as distinct viral agents. PMID:7856103

  7. DNA transformations of Candida tropicalis with replicating and integrative vectors.

    PubMed

    Sanglard, D; Fiechter, A

    1992-12-01

    The alkane-assimilating yeast Candida tropicalis was used as a host for DNA transformations. A stable ade2 mutant (Ha900) obtained by UV-mutagenesis was used as a recipient for different vectors carrying selectable markers. A first vector, pMK16, that was developed for the transformation of C. albicans and carries an ADE2 gene marker and a Candida autonomously replicating sequence (CARS) element promoting autonomous replication, was compatible for transforming Ha900. Two transformant types were observed: (i) pink transformants which easily lose pMK16 under non-selective growth conditions; (ii) white transformants, in which the same plasmid exhibited a higher mitotic stability. In both cases pMK16 could be rescued from these cells in Escherichia coli. A second vector, pADE2, containing the isolated C. tropicalis ADE2, gene, was used to transform Ha900. This vector integrated in the yeast genome at homologous sites of the ade2 locus. Different integration types were observed at one or both ade2 alleles in single or in tandem repeats. PMID:1293885

  8. The RecQ DNA helicase Rqh1 constrains Exonuclease 1-dependent recombination at stalled replication forks.

    PubMed

    Osman, Fekret; Ahn, Jong Sook; Lorenz, Alexander; Whitby, Matthew C

    2016-01-01

    DNA double-strand break (DSB) repair by homologous recombination (HR) involves resection of the break to expose a 3' single-stranded DNA tail. In budding yeast, resection occurs in two steps: initial short-range resection, performed by Mre11-Rad50-Xrs2 and Sae2; and long-range resection catalysed by either Exo1 or Sgs1-Dna2. Here we use genetic assays to investigate the importance of Exo1 and the Sgs1 homologue Rqh1 for DNA repair and promotion of direct repeat recombination in the fission yeast Schizosaccharomyces pombe. We find that Exo1 and Rqh1 function in alternative redundant pathways for promoting survival following replication fork breakage. Exo1 promotes replication fork barrier-induced direct repeat recombination but intriguingly limits recombination induced by fork breakage. Direct repeat recombination induced by ultraviolet light depends on either Exo1 or Rqh1. Finally, we show that Rqh1 plays a major role in limiting Exo1-dependent direct repeat recombination induced by replication fork stalling but only a minor role in constraining recombination induced by fork breakage. The implications of our findings are discussed in the context of the benefits that long-range resection may bring to processing perturbed replication forks. PMID:26957021

  9. The RecQ DNA helicase Rqh1 constrains Exonuclease 1-dependent recombination at stalled replication forks

    PubMed Central

    Osman, Fekret; Ahn, Jong Sook; Lorenz, Alexander; Whitby, Matthew C.

    2016-01-01

    DNA double-strand break (DSB) repair by homologous recombination (HR) involves resection of the break to expose a 3′ single-stranded DNA tail. In budding yeast, resection occurs in two steps: initial short-range resection, performed by Mre11-Rad50-Xrs2 and Sae2; and long-range resection catalysed by either Exo1 or Sgs1-Dna2. Here we use genetic assays to investigate the importance of Exo1 and the Sgs1 homologue Rqh1 for DNA repair and promotion of direct repeat recombination in the fission yeast Schizosaccharomyces pombe. We find that Exo1 and Rqh1 function in alternative redundant pathways for promoting survival following replication fork breakage. Exo1 promotes replication fork barrier-induced direct repeat recombination but intriguingly limits recombination induced by fork breakage. Direct repeat recombination induced by ultraviolet light depends on either Exo1 or Rqh1. Finally, we show that Rqh1 plays a major role in limiting Exo1-dependent direct repeat recombination induced by replication fork stalling but only a minor role in constraining recombination induced by fork breakage. The implications of our findings are discussed in the context of the benefits that long-range resection may bring to processing perturbed replication forks. PMID:26957021

  10. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    PubMed Central

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-01-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation. PMID:26935043

  11. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    NASA Astrophysics Data System (ADS)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  12. The replication mechanism of kinetoplast DNA networks in several trypanosomatid species.

    PubMed

    Guilbride, D L; Englund, P T

    1998-03-01

    Kinetoplast DNA, a giant network of interlocked DNA circles, replicates by an unusual mechanism. Minicircles are released individually from the network by a topoisomerase II, and then, after replication, their progeny are reattached at antipodal positions on the network periphery. Studies to date have revealed two distinct variations on this model. In Crithidia fasciculata the newly replicated minicircles quickly become uniformly distributed around the network periphery, whereas in Trypanosoma brucei the minicircles accumulate near their two points of attachment. The kinetoplast DNA replication mechanism used by other related trypanosomatid species was until now unknown. Here we used a novel method, involving fluorescence microscopy of isolated networks, to investigate kinetoplast DNA replication in Leishmania tarentolae, Leishmania donovani, Trypanosoma cruzi and Phytomonas serpens. We found that all of these species have a replication mechanism resembling that of C. fasciculata and that the polar replication mechanism observed in T. brucei is so far unique to this species. PMID:9471996

  13. DNA replication and unscheduled DNA synthesis in lungs of mice exposed to cigarette smoke

    SciTech Connect

    Rasmussen, R.E.; Boyd, C.H.; Dansie, D.R.; Kouri, R.E.; Henry, C.J.

    1981-07-01

    Mice of the hybrid strain BC3F1/Cum (C57BL/Cum X C3H/AnfCum) were chronically exposed to measured amounts of machine-generated whole Kentucky reference 2A1 cigarette smoke. DNA replication and unscheduled DNA synthesis (UDS) were measured in lung tissue in vitro using a short-term organ culture method. Within one week of beginning smoke exposure, DNA replicative activity, as indicated by incorporation of (3H)-thymidine into total lung DNA, was increased more than two-fold over sham-exposed controls and remained elevated as long as smoke exposure was continued. Treatment of lung tissues in vitro with either the lung carcinogen 4-nitroquinoline-1-oxide or methylmethane sulfonate stimulated UDS, measured as incorporation of (3H)thymidine into lung DNA in the presence of hydroxyurea, presumably as the result of DNA repair activity. Until the 10th to 12th week of smoke exposure, at which time the accumulated deposition of total particulate material in the lung was approximately 40 mg, the level of UDS stimulated by the alkylating chemicals declined to approximately 50% of that seen in lung tissue from sham-exposed control mice. If the mice were removed from smoke exposure, DNA replicative activity returned to normal levels within one week, but the UDS response to DNA damage remained depressed up to five months after ending smoke exposure. The results show that both transient and apparently permanent changes are produced in mouse lung as the result of exposure to cigarette smoke. The role of these changes in lung neoplasia is under investigation.

  14. Mammalian sperm chromatin as a model for chromatin function in DNA degradation and DNA replication.

    PubMed

    Ortega, Michael A; Sil, Payel; Ward, W Steven

    2011-02-01

    Reproductive biology is considered a specialty field, however, an argument can be made that it is instead generally applicable to many fields of biology. The one-cell embryo is presented here as a model system for the study of eukaryotic DNA replication, apoptotic DNA degradation, and signaling mechanisms between the cytoplasm and nucleus. Two unique aspects of this system combine to make it particularly useful for the study of chromatin function. First, the evolutionary pressure that lead to the extreme condensation of mammalian sperm DNA resulted in a cell with virtually inert chromatin, no DNA replication or transcription ongoing in the sperm cell, and all of the cells in a G(0) state. This chromatin is suddenly transformed into actively transcribing and replicating DNA upon fertilization. Therefore, the sperm chromatin is poised to become active but does not yet possess sufficient components present in somatic chromatin structure for all these processes. The second unique aspect of this system is that the one cell embryo houses two distinct nuclei, termed pronuclei, through the first round of DNA synthesis. This means the sperm cell can be experimentally manipulated to test the affects of the various treatments on the biological functions of interest. Experimental manipulations of the system have already revealed a certain level of plasticity in the coordination of both the timing of DNA synthesis in the two pronuclei and in the response to cellular signals by each pronucleus involved with the progression through the G1/S checkpoint, including the degradation of DNA in the paternal pronucleus. The fact that two nuclei in the same cytoplasm can undergo different responses infers a level of autonomy in the nuclear control of the cell cycle. Thus, the features of mammalian fertilization can provide unique insights for the normal biology of the cell cycle in somatic cells. PMID:21204750

  15. Two heads are better than one: regulation of DNA replication by hexameric helicases

    PubMed Central

    Sclafani, Robert. A.; Fletcher, Ryan J.; Chen, Xiaojiang S.

    2008-01-01

    DNA replication is tightly regulated in a cell cycle to ensure the integrity of genomic information during successive passages. The replication process can be divided into three major steps as follows: the initial assembly of prereplication complex (pre-RC) at the replication origin, the distortion of the origin (or origin melting) for replication initiation, and the elongation phase during DNA synthesis. In this process, long stretches of double-stranded DNA (dsDNA) must be unzipped in a relatively short time window within a cell growth cycle. The daunting task of unzipping is carried out by a class of efficient molecular machines called helicases, which are shown to be ring-shaped oligomers. Here, we will focus on the current understanding of the replicative helicases involved in cellular and viral DNA replication in eukaryotic cells. PMID:15342486

  16. Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope.

    PubMed Central

    Argaman, M; Golan, R; Thomson, N H; Hansma, H G

    1997-01-01

    Phase imaging with a tapping mode atomic force microscope (AFM) has many advantages for imaging moving DNA and DNA-enzyme complexes in aqueous buffers at molecular resolution. In phase images molecules can be resolved at higher scan rates and lower forces than in height images from the AFM. Higher scan rates make it possible to image faster processes. At lower forces the molecules are imaged more gently. Moving DNA molecules are also resolved more clearly in phase images than in height images. Phase images in tapping mode AFM show the phase difference between oscillation of the piezoelectric crystal that drives the cantilever and oscillation of the cantilever as it interacts with the sample surface. Phase images presented here show moving DNA molecules that have been replicated with Sequenase in the AFM and DNA molecules tethered in complexes with Escherichia coli RNA polymerase. PMID:9336471

  17. Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts.

    PubMed

    Radulovic, Marko; Baqader, Noor O; Stoeber, Kai; Godovac-Zimmermann, Jasminka

    2016-06-01

    MS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response. Appreciable changes for both perturbations were observed for 245 proteins, but cross-talk between oxidative stress and DNA replication is dominated by 49 proteins that show strong changes for both. Many nuclear processes are influenced by a spatial switch involving the proteins {KPNA2, KPNB1, PCNA, PTMA, SET} and heme/iron proteins HMOX1 and FTH1. Dynamic spatial distribution data are presented for proteins involved in caveolae, extracellular matrix remodelling, TGFβ signaling, IGF pathways, emerin complexes, mitochondrial protein import complexes, spliceosomes, proteasomes, and so on. The data indicate that for spatially heterogeneous cells cross-compartmental communication is integral to their system biology, that coordinated spatial redistribution for crucial protein networks underlies many functional changes, and that information on dynamic spatial redistribution of proteins is essential to obtain comprehensive pictures of cellular function. We describe how spatial data of the type presented here can provide priorities for further investigation of crucial features of high-level spatial coordination across cells. We suggest that the present data are related to increasing indications that much of subcellular protein transport is constitutive and that perturbation of these constitutive transport processes may be related to cancer and other diseases. A quantitative, spatially resolved nucleus-cytoplasm interaction network is provided for further investigations. PMID:27142241

  18. Stability versus exchange: a paradox in DNA replication

    PubMed Central

    Åberg, Christoffer; Duderstadt, Karl E.; van Oijen, Antoine M.

    2016-01-01

    Multi-component biological machines, comprising individual proteins with specialized functions, perform a variety of essential processes in cells. Once assembled, most such complexes are considered very stable, retaining individual constituents as long as required. However, rapid and frequent exchange of individual factors in a range of critical cellular assemblies, including DNA replication machineries, DNA transcription regulators and flagellar motors, has recently been observed. The high stability of a multi-protein complex may appear mutually exclusive with rapid subunit exchange. Here, we describe a multisite competitive exchange mechanism, based on simultaneous binding of a protein to multiple low-affinity sites. It explains how a component can be stably integrated into a complex in the absence of competing factors, while able to rapidly exchange in the presence of competing proteins. We provide a mathematical model for the mechanism and give analytical expressions for the stability of a pre-formed complex, in the absence and presence of competitors. Using typical binding kinetic parameters, we show that the mechanism is operational under physically realistic conditions. Thus, high stability and rapid exchange within a complex can be reconciled and this framework can be used to rationalize previous observations, qualitatively as well as quantitatively. PMID:27112565

  19. Stability versus exchange: a paradox in DNA replication.

    PubMed

    Åberg, Christoffer; Duderstadt, Karl E; van Oijen, Antoine M

    2016-06-01

    Multi-component biological machines, comprising individual proteins with specialized functions, perform a variety of essential processes in cells. Once assembled, most such complexes are considered very stable, retaining individual constituents as long as required. However, rapid and frequent exchange of individual factors in a range of critical cellular assemblies, including DNA replication machineries, DNA transcription regulators and flagellar motors, has recently been observed. The high stability of a multi-protein complex may appear mutually exclusive with rapid subunit exchange. Here, we describe a multisite competitive exchange mechanism, based on simultaneous binding of a protein to multiple low-affinity sites. It explains how a component can be stably integrated into a complex in the absence of competing factors, while able to rapidly exchange in the presence of competing proteins. We provide a mathematical model for the mechanism and give analytical expressions for the stability of a pre-formed complex, in the absence and presence of competitors. Using typical binding kinetic parameters, we show that the mechanism is operational under physically realistic conditions. Thus, high stability and rapid exchange within a complex can be reconciled and this framework can be used to rationalize previous observations, qualitatively as well as quantitatively. PMID:27112565

  20. Genomics Analysis of Replicative Helicase DnaB Sequences in Proteobacteria

    PubMed Central

    Poggi, Silvana; Chandra, Sathees B.

    2014-01-01

    Replicative Helicase DnaB interacts with DnaA, DnaC, DnaG, and DNA polymerase III to commence replication, increase the movement rate of the replication fork, and to assemble part of the primosome. The formation of the replication fork is limited by the ability to load DnaB to the DNA, thus DnaB has shown to be vital to a large extent. In the absence of DnaB, the replication fork is not maintained and in a state of inactivity the replication fork degrades and collapses. To further understand importance of this enzyme from an evolutionary perspective, a genomic analysis DnaB protein sequences, chosen from five Proteobacteria subclasses was performed. Our analysis indicates that, DnaB replicative helicases of Alphaproteobacteria and Epsilonproteobacteria have diverged at an earlier stage from Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria as well as from one another. Our results were further supported, when we reanalyzed and reconstructed the phylogenetic tree after the inclusion of sequences from Actinobacteria and Firmicute phylum. In addition, Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria appear to share a closer common ancestor than from the other two subclasses. The Dot-plot analysis indicated that, the region between amino acid residues 320 to 400 was strongly conserved among all five subclasses. PMID:25395727

  1. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader.

    PubMed

    Yano, Sho T; Rothman-Denes, Lucia B

    2011-03-01

    Coliphage N4 infection leads to shut-off of host DNA replication without inhibition of host transcription or translation. We report the identification and characterization of gp8, the N4 gene product responsible for this phenotype. N4 gp8 is an Escherichia coli bacteriostatic inhibitor that colocalizes with the E. coli replisome in a replication-dependent manner. Gp8 was purified and observed to cross-link to complexes containing the replicative DNA polymerase, DNAP III, in vivo. Purified gp8 inhibits DNA polymerization by DNA polymerase III holoenzyme in vitro by interfering with polymerase processivity. Gp8 specifically inhibits the clamp-loading activity of DNAP III by targeting the delta subunit of the DNAP III clamp loader; E. coli mutations conferring gp8 resistance were identified in the holA gene, encoding delta. Delta and gp8 interact in vitro; no interaction was detected between gp8 inactive mutants and wild-type delta or between delta gp8-resistant mutants and wild-type gp8. Therefore, this work identifies the DNAP III clamp loader as a new target for inhibition of bacterial growth. Finally, we show that gp8 is not essential in N4 development under laboratory conditions, but its activity contributes to phage yield. PMID:21205014

  2. Nonenzymatic Role for WRN in Preserving Nascent DNA Strands after Replication Stress

    SciTech Connect

    Su, Fengtao; Mukherjee, Shibani; Yang, Yanyong; Mori, Eiichiro; Bhattacharya, Souparno; Kobayashi, Junya; Yannone, Steven  M.; Chen, David  J.; Asaithamby, Aroumougame

    2014-11-20

    WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRN to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.

  3. A new light on DNA replication from the inactive X chromosome

    PubMed Central

    Aladjem, Mirit I.; Fu, Haiqing

    2014-01-01

    While large portions of the mammalian genome are known to replicate sequentially in a distinct, tissue-specific order, recent studies suggest that the inactive X chromosome is duplicated rapidly via random, synchronous DNA synthesis at numerous adjacent regions. The rapid duplication of the inactive X chromosome was observed in high-resolution studies visualizing DNA replication patterns in the nucleus, and by allele-specific DNA sequencing studies measuring the extent of DNA synthesis. These studies conclude that inactive X chromosomes complete replication earlier than previously thought and suggest that the strict order of DNA replication detected in the majority of genomic regions is not preserved in non-transcribed, “silent” chromatin. These observations alter current concepts about the regulation of DNA replication in non-transcribed portions of the genome in general and in the inactive X-chromosome in particular. PMID:24706495

  4. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    PubMed Central

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  5. Timed interactions between viral and cellular replication factors during the initiation of SV40 in vitro DNA replication

    PubMed Central

    Taneja, Poonam; Nasheuer, Heinz-Peter; Hartmann, Hella; Grosse, Frank; Fanning, Ellen; Weisshart, Klaus

    2007-01-01

    The initiation of SV40 (simian virus 40) DNA replication requires the co-operative interactions between the viral Tag (large T-antigen), RPA (replication protein A) and Pol (DNA polymerase α-primase) on the template DNA. Binding interfaces mapped on these enzymes and expressed as peptides competed with the mutual interactions of the native proteins. Prevention of the genuine interactions was accomplished only prior to the primer synthesis step and blocked the assembly of a productive initiation complex. Once the complex was engaged in the synthesis of an RNA primer and its extension, the interfering effects of the peptides ceased, suggesting a stable association of the replication factors during the initiation phase. Specific antibodies were still able to disrupt preformed interactions and inhibited primer synthesis and extension activities, underlining the crucial role of specific protein–protein contacts during the entire initiation process. PMID:17666013

  6. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase.

    PubMed

    Stodola, Joseph L; Stith, Carrie M; Burgers, Peter M

    2016-05-27

    DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication. PMID:27072134

  7. In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication.

    PubMed

    Miralles Fusté, Javier; Shi, Yonghong; Wanrooij, Sjoerd; Zhu, Xuefeng; Jemt, Elisabeth; Persson, Örjan; Sabouri, Nasim; Gustafsson, Claes M; Falkenberg, Maria

    2014-12-01

    Mitochondrial DNA (mtDNA) encodes for proteins required for oxidative phosphorylation, and mutations affecting the genome have been linked to a number of diseases as well as the natural ageing process in mammals. Human mtDNA is replicated by a molecular machinery that is distinct from the nuclear replisome, but there is still no consensus on the exact mode of mtDNA replication. We here demonstrate that the mitochondrial single-stranded DNA binding protein (mtSSB) directs origin specific initiation of mtDNA replication. MtSSB covers the parental heavy strand, which is displaced during mtDNA replication. MtSSB blocks primer synthesis on the displaced strand and restricts initiation of light-strand mtDNA synthesis to the specific origin of light-strand DNA synthesis (OriL). The in vivo occupancy profile of mtSSB displays a distinct pattern, with the highest levels of mtSSB close to the mitochondrial control region and with a gradual decline towards OriL. The pattern correlates with the replication products expected for the strand displacement mode of mtDNA synthesis, lending strong in vivo support for this debated model for mitochondrial DNA replication. PMID:25474639

  8. Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA.

    PubMed

    Scholefield, Graham; Errington, Jeff; Murray, Heath

    2012-03-21

    Control of DNA replication initiation is essential for normal cell growth. A unifying characteristic of DNA replication initiator proteins across the kingdoms of life is their distinctive AAA+ nucleotide-binding domains. The bacterial initiator DnaA assembles into a right-handed helical oligomer built upon interactions between neighbouring AAA+ domains, that in vitro stretches DNA to promote replication origin opening. The Bacillus subtilis protein Soj/ParA has previously been shown to regulate DnaA-dependent DNA replication initiation; however, the mechanism underlying this control was unknown. Here, we report that Soj directly interacts with the AAA+ domain of DnaA and specifically regulates DnaA helix assembly. We also provide critical biochemical evidence indicating that DnaA assembles into a helical oligomer in vivo and that the frequency of replication initiation correlates with the extent of DnaA oligomer formation. This work defines a significant new regulatory mechanism for the control of DNA replication initiation in bacteria. PMID:22286949

  9. Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination

    PubMed Central

    Fredsøe, Jacob; Nielsen, Ida; Pedersen, Jakob Madsen; Bentsen, Iben Bach; Lisby, Michael; Bjergbaek, Lotte; Andersen, Anni H

    2015-01-01

    Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. PMID:26630413

  10. Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes) are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology. Results I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB) whereas the bacterial replicative DNA polymerase (PolC) is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the help of the archaeal

  11. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication

    PubMed Central

    Bristol, Molly L.; Wang, Xu; Smith, Nathan W.; Son, Minkyeong P.; Evans, Michael R.; Morgan, Iain M.

    2016-01-01

    Human papillomaviruses (HPVs) are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR) pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs) could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1), does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer. PMID:27338449

  12. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication.

    PubMed

    Bristol, Molly L; Wang, Xu; Smith, Nathan W; Son, Minkyeong P; Evans, Michael R; Morgan, Iain M

    2016-01-01

    Human papillomaviruses (HPVs) are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR) pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs) could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1), does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer. PMID:27338449

  13. Replication initiator DnaA binds at the Caulobacter centromere and enables chromosome segregation

    PubMed Central

    Mera, Paola E.; Kalogeraki, Virginia S.; Shapiro, Lucy

    2014-01-01

    During cell division, multiple processes are highly coordinated to faithfully generate genetically equivalent daughter cells. In bacteria, the mechanisms that underlie the coordination of chromosome replication and segregation are poorly understood. Here, we report that the conserved replication initiator, DnaA, can mediate chromosome segregation independent of replication initiation. It does so by binding directly to the parS centromere region of the chromosome, and mutations that alter this interaction result in cells that display aberrant centromere translocation and cell division. We propose that DnaA serves to coordinate bacterial DNA replication with the onset of chromosome segregation. PMID:25349407

  14. Adenovirus origin of DNA replication: sequence requirements for replication in vitro.

    PubMed Central

    Wides, R J; Challberg, M D; Rawlins, D R; Kelly, T J

    1987-01-01

    The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions. Images PMID:3821730

  15. Adenovirus DNA template for late transcription is not a replicative intermediate.

    PubMed Central

    Brison, O; Kédinger, C; Chambon, P

    1979-01-01

    The relationship between adenovirus replication and late transcription has been investigated using viral replication and transcription complexes isolated from infected HeLa cell nuclei. These two types of complexes extracted from adenovirus type 2-infected cell nuclei did not sediment at the same rate on sucrose gradients. Viral replicative intermediates were quantitatively precipitated by immunoglobulins raised against purified 72,000-dalton DNA-binding protein, whereas viral transcription complexes remained in the supernatant. These results show that late transcription does not occur on active replication complexes or on 72,000-dalton DNA-binding protein-containing replicative intermediates inactive in DNA synthesis. Additional evidence is presented indicating that it is very unlikely that replicative intermediates lacking the 72,000-dalton DNA-binding protein could be the template for late transcription. PMID:232191

  16. Cloning of two sea urchin DNA-binding proteins involved in mitochondrial DNA replication and transcription.

    PubMed

    Loguercio Polosa, Paola; Megli, Fiammetta; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2002-03-01

    The cloning of the cDNA for two mitochondrial proteins involved in sea urchin mtDNA replication and transcription is reported here. The cDNA for the mitochondrial D-loop binding protein (mtDBP) from the sea urchin Strongylocentrotus purpuratus has been cloned by a polymerase chain reaction-based approach. The protein displays a very high similarity with the Paracentrotus lividus homologue as it contains also the two leucine zipper-like domains which are thought to be involved in intramolecular interactions needed to expose the two DNA binding domains in the correct position for contacting DNA. The cDNA for the mitochondrial single-stranded DNA-binding protein (mtSSB) from P. lividus has been also cloned by a similar approach. The precursor protein is 146 amino acids long with a presequence of 16 residues. The deduced amino acid sequence shows the highest homology with the Xenopus laevis protein and the lowest with the Drosophila mtSSB. The computer modeling of the tertiary structure of P. lividus mtSSB shows a structure very similar to that experimentally determined for human mtSSB, with the conservation of the main residues involved in protein tetramerization and in DNA binding. PMID:11943466

  17. Genome-wide alterations of the DNA replication program during tumor progression

    NASA Astrophysics Data System (ADS)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  18. Dynamic binding of replication protein a is required for DNA repair

    PubMed Central

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.

    2016-01-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  19. Dynamic binding of replication protein a is required for DNA repair.

    PubMed

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H; Spies, Maria; Wold, Marc S

    2016-07-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA-DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  20. DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae.

    PubMed

    Wang, H; Elledge, S J

    1999-03-30

    In addition to DNA polymerase complexes, DNA replication requires the coordinate action of a series of proteins, including regulators Cdc28/Clb and Dbf4/Cdc7 kinases, Orcs, Mcms, Cdc6, Cdc45, and Dpb11. Of these, Dpb11, an essential BRCT repeat protein, has remained particularly enigmatic. The Schizosaccharomyces pombe homolog of DPB11, cut5, has been implicated in the DNA replication checkpoint as has the POL2 gene with which DPB11 genetically interacts. Here we describe a gene, DRC1, isolated as a dosage suppressor of dpb11-1. DRC1 is an essential cell cycle-regulated gene required for DNA replication. We show that both Dpb11 and Drc1 are required for the S-phase checkpoint, including the proper activation of the Rad53 kinase in response to DNA damage and replication blocks. Dpb11 is the second BRCT-repeat protein shown to control Rad53 function, possibly indicating a general function for this class of proteins. DRC1 and DPB11 show synthetic lethality and reciprocal dosage suppression. The Drc1 and Dpb11 proteins physically associate and function together to coordinate DNA replication and the cell cycle. PMID:10097122

  1. Ethidium bromide as a marker of mtDNA replication in living cells

    NASA Astrophysics Data System (ADS)

    Villa, Anna Maria; Fusi, Paola; Pastori, Valentina; Amicarelli, Giulia; Pozzi, Chiara; Adlerstein, Daniel; Doglia, Silvia Maria

    2012-04-01

    Mitochondrial DNA (mtDNA) in tumor cells was found to play an important role in maintaining the malignant phenotype. Using laser scanning confocal fluorescence microscopy (LSCFM) in a recent work, we reported a variable fluorescence intensity of ethidium bromide (EB) in mitochondria nucleoids of living carcinoma cells. Since when EB is bound to nucleic acids its fluorescence is intensified; a higher EB fluorescence intensity could reflect a higher DNA accessibility to EB, suggesting a higher mtDNA replication activity. To prove this hypothesis, in the present work we studied, by LSCFM, the EB fluorescence in mitochondria nucleoids of living neuroblastoma cells, a model system in which differentiation affects the level of mtDNA replication. A drastic decrease of fluorescence was observed after differentiation. To correlate EB fluorescence intensity to the mtDNA replication state, we evaluated the mtDNA nascent strands content by ligation-mediated real-time PCR, and we found a halved amount of replicating mtDNA molecules in differentiating cells. A similar result was obtained by BrdU incorporation. These results indicate that the low EB fluorescence of nucleoids in differentiated cells is correlated to a low content of replicating mtDNA, suggesting that EB may be used as a marker of mtDNA replication in living cells.

  2. Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells.

    PubMed Central

    Stillman, B W; Gluzman, Y

    1985-01-01

    Soluble extracts prepared from the nucleus and cytoplasm of human 293 cells are capable of efficient replication and supercoiling of added DNA templates that contain the origin of simian virus 40 replication. Extracts prepared from human HeLa cells are less active than similarly prepared extracts from 293 cells for initiation and elongation of nascent DNA strands. DNA synthesis is dependent on addition of purified simian virus 40 tumor (T) antigen, which is isolated by immunoaffinity chromatography of extracts from cells infected with an adenovirus modified to produce large quantities of this protein. In the presence of T antigen and the cytoplasmic extract, replication initiates at the origin and continues bidirectionally. Initiation is completely dependent on functional origin sequences; a plasmid DNA containing an origin mutation known to affect DNA replication in vivo fails to replicate in vitro. Multiple rounds of DNA synthesis occur, as shown by the appearance of heavy-heavy, bromodeoxyuridine-labeled DNA products. The products of this reaction are resolved, but are relaxed, covalently closed DNA circles. Addition of a nuclear extract during DNA synthesis promotes the negative supercoiling of the replicated DNA molecules. Images PMID:3018548

  3. Relationship of eukaryotic DNA replication to committed gene expression: general theory for gene control.

    PubMed Central

    Villarreal, L P

    1991-01-01

    The historic arguments for the participation of eukaryotic DNA replication in the control of gene expression are reconsidered along with more recent evidence. An earlier view in which gene commitment was achieved with stable chromatin structures which required DNA replication to reset expression potential (D. D. Brown, Cell 37:359-365, 1984) is further considered. The participation of nonspecific stable repressor of gene activity (histones and other chromatin proteins), as previously proposed, is reexamined. The possible function of positive trans-acting factors is now further developed by considering evidence from DNA virus models. It is proposed that these positive factors act to control the initiation of replicon-specific DNA synthesis in the S phase (early or late replication timing). Stable chromatin assembles during replication into potentially active (early S) or inactive (late S) states with prevailing trans-acting factors (early) or repressing factors (late) and may asymmetrically commit daughter templates. This suggests logical schemes for programming differentiation based on replicons and trans-acting initiators. This proposal requires that DNA replication precede major changes in gene commitment. Prior evidence against a role for DNA replication during terminal differentiation is reexamined along with other results from terminal differentiation of lower eukaryotes. This leads to a proposal that DNA replication may yet underlie terminal gene commitment, but that for it to do so there must exist two distinct modes of replication control. In one mode (mitotic replication) replicon initiation is tightly linked to the cell cycle, whereas the other mode (terminal replication) initiation is not cell cycle restricted, is replicon specific, and can lead to a terminally differentiated state. Aberrant control of mitotic and terminal modes of DNA replication may underlie the transformed state. Implications of a replicon basis for chromatin structure-function and

  4. Differential replication of circular DNA molecules co-injected into early Xenopus laevis embryos.

    PubMed Central

    Marini, N J; Hiriyanna, K T; Benbow, R M

    1989-01-01

    Replication of co-injected supercoiled DNA molecules in fertilized Xenopus eggs was monitored through the blastula stage of development. The extent of replication, as measured by 32P-dTMP incorporation into form I DNA, was directly proportional to the number of molecules, rather than the size, of the plasmid injected. Although only a small fraction of molecules of either template was replicated, incorporation was predominantly into full length daughter molecules. Over at least a 20-fold concentration range of microinjected DNA, injection of equal masses of DNA resulted in greater incorporation into the smaller form I DNA present in molar excess. The extent of incorporation into supercoiled DNA for a particular plasmid was apparently independent of the concentration of a second, co-injected plasmid. The relative extents of replication of co-injected supercoiled templates could be altered simply by changing the molar ratios of the templates. Images PMID:2762153

  5. A stem-loop structure, sequence non-specific, at the origin of DNA replication of porcine circovirus is essential for termination but not for initiation of rolling-circle DNA replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A stem-loop structure, formed by a pair of inverted repeats during DNA replication, is a conserved feature at the origin of DNA replication among plant and animal viruses, bacteriophages and plasmids that replicate their genomes via the rolling-circle replication (RCR) mechanism. In this work, a hea...

  6. ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method.

    PubMed

    Yang, Mu; Wang, Ganggang

    2016-09-15

    The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. PMID:27372608

  7. Nbs1-dependent binding of Mre11 to adenovirus E4 mutant viral DNA is important for inhibiting DNA replication

    SciTech Connect

    Mathew, Shomita S.; Bridge, Eileen

    2008-04-25

    Adenovirus (Ad) infections stimulate the activation of cellular DNA damage response and repair pathways. Ad early regulatory proteins prevent activation of DNA damage responses by targeting the MRN complex, composed of the Mre11, Rad50 and Nbs1 proteins, for relocalization and degradation. In the absence of these viral proteins, Mre11 colocalizes with viral DNA replication foci. Mre11 foci formation at DNA damage induced by ionizing radiation depends on the Nbs1 component of the MRN complex and is stabilized by the mediator of DNA damage checkpoint protein 1 (Mdc1). We find that Nbs1 is required for Mre11 localization at DNA replication foci in Ad E4 mutant infections. Mre11 is important for Mdc1 foci formation in infected cells, consistent with its role as a sensor of DNA damage. Chromatin immunoprecipitation assays indicate that both Mre11 and Mdc1 are physically bound to viral DNA, which could account for their localization in viral DNA containing foci. Efficient binding of Mre11 to E4 mutant DNA depends on the presence of Nbs1, and is correlated with a significant E4 mutant DNA replication defect. Our results are consistent with a model in which physical interaction of Mre11 with viral DNA is mediated by Nbs1, and interferes with viral DNA replication.

  8. SCFCyclin F-dependent degradation of CDC6 suppresses DNA re-replication

    PubMed Central

    Walter, David; Hoffmann, Saskia; Komseli, Eirini-Stavroula; Rappsilber, Juri; Gorgoulis, Vassilis; Sørensen, Claus Storgaard

    2016-01-01

    Maintenance of genome stability requires that DNA is replicated precisely once per cell cycle. This is believed to be achieved by limiting replication origin licensing and thereby restricting the firing of each replication origin to once per cell cycle. CDC6 is essential for eukaryotic replication origin licensing, however, it is poorly understood how CDC6 activity is constrained in higher eukaryotes. Here we report that the SCFCyclin F ubiquitin ligase complex prevents DNA re-replication by targeting CDC6 for proteasomal degradation late in the cell cycle. We show that CDC6 and Cyclin F interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCFCyclin F-mediated mechanism required for precise once per cell cycle replication. PMID:26818844

  9. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response

    PubMed Central

    Xing, Meichun; Wang, Xiaohui; Palmai-Pallag, Timea; Shen, Huahao; Helleday, Thomas; Hickson, Ian D.; Ying, Songmin

    2015-01-01

    The MUS81 protein belongs to a conserved family of DNA structure-specific nucleases that play important roles in DNA replication and repair. Inactivation of the Mus81 gene in mice has no major deleterious consequences for embryonic development, although cancer susceptibility has been reported. We have investigated the role of MUS81 in human cells by acutely depleting the protein using shRNAs. We found that MUS81 depletion from human fibroblasts leads to accumulation of ssDNA and a constitutive DNA damage response that ultimately activates cellular senescence. Moreover, we show that MUS81 is required for efficient replication fork progression during an unperturbed S-phase, and for recovery of productive replication following replication stalling. These results demonstrate essential roles for the MUS81 nuclease in maintenance of replication fork integrity. PMID:26415217

  10. DNA topoisomerase IIα controls replication origin cluster licensing and firing time in Xenopus egg extracts

    PubMed Central

    Gaggioli, Vincent; Le Viet, Barbara; Germe, Thomas; Hyrien, Olivier

    2013-01-01

    Sperm chromatin incubated in Xenopus egg extracts undergoes origin licensing and nuclear assembly before DNA replication. We found that depletion of DNA topoisomerase IIα (topo IIα), the sole topo II isozyme of eggs and its inhibition by ICRF-193, which clamps topo IIα around DNA have opposite effects on these processes. ICRF-193 slowed down replication origin cluster activation and fork progression in a checkpoint-independent manner, without altering replicon size. In contrast, topo IIα depletion accelerated origin cluster activation, and topo IIα add-back negated overinitiation. Therefore, topo IIα is not required for DNA replication, but topo IIα clamps slow replication, probably by forming roadblocks. ICRF-193 had no effect on DNA synthesis when added after nuclear assembly, confirming that topo IIα activity is dispensable for replication and revealing that topo IIα clamps formed on replicating DNA do not block replication, presumably because topo IIα acts behind and not in front of forks. Topo IIα depletion increased, and topo IIα addition reduced, chromatin loading of MCM2-7 replicative helicase, whereas ICRF-193 did not affect MCM2-7 loading. Therefore, topo IIα restrains MCM2-7 loading in an ICRF-193-resistant manner during origin licensing, suggesting a model for establishing the sequential firing of origin clusters. PMID:23757188

  11. HERC2 Interacts with Claspin and regulates DNA origin firing and replication fork progression.

    PubMed

    Izawa, Naoki; Wu, Wenwen; Sato, Ko; Nishikawa, Hiroyuki; Kato, Akihiro; Boku, Narikazu; Itoh, Fumio; Ohta, Tomohiko

    2011-09-01

    DNA replication, recombination, and repair are highly interconnected processes the disruption of which must be coordinated in cancer. HERC2, a large HECT protein required for homologous recombination repair, is an E3 ubiquitin ligase that targets breast cancer suppressor BRCA1 for degradation. Here, we show that HERC2 is a component of the DNA replication fork complex that plays a critical role in DNA elongation and origin firing. In the presence of BRCA1, endogenous HERC2 interacts with Claspin, a protein essential for G(2)-M checkpoint activation and replication fork stability. Claspin depletion slowed S-phase progression and additional HERC2 depletion reduced the effect of Claspin depletion. In addition, HERC2 interacts with replication fork complex proteins. Depletion of HERC2 alleviated the slow replication fork progression in Claspin-deficient cells, suppressed enhanced origin firing, and led to a decrease in MCM2 phosphorylation. In a HERC2-dependent manner, treatment of cells with replication inhibitor aphidicolin enhanced MCM2 phosphorylation. Taken together, our results suggest that HERC2 regulates DNA replication progression and origin firing by facilitating MCM2 phosphorylation. These findings establish HERC2 as a critical function in DNA repair, checkpoint activation, and DNA replication. PMID:21775519

  12. Well begun is half done: Rubella virus perturbs autophagy signaling, thereby facilitating the construction of viral replication compartments.

    PubMed

    Orosz, László; Megyeri, Klára

    2016-04-01

    The rubella virus is the causative agent of postnatal German measles and the congenital rubella syndrome. The majority of the rubella virus replication complexes originate from the endomembrane system. The rubella virus perturbs the signaling pathways regulating the formation of autophagic membranes in the infected cells, including the Ras/Raf/MEK/ERK and PI3K/Akt pathways. It is widely accepted that these pathways inhibit autophagy. In contrast, the class III PI3K enzymes are essential for autophagy initiation. By manipulating the Ras/Raf/MEK/ERK, class I PI3K/Akt and class III PI3K axes of signal transduction, the rubella virus may differentially regulate the autophagic cascade, with consequent stimulation of the initiation and strong suppression of the later phases. Dysregulation of autophagy by this virus can have a significant impact on the construction of replication compartments by regulating membrane trafficking. We hypothesize that the rubella virus perturbs the autophagic process in order to prevent the degradation of the virus progeny, and to ensure its replication by hijacking omegasomes for the construction of the replication complexes. The virus is therefore able to utilize an antiviral mechanism to its own advantage. Therapeutic modalities targeting the autophagic process may help to ameliorate the serious consequences of the congenital rubella syndrome. PMID:26968901

  13. Genetic and Physical Mapping of DNA Replication Origins in Haloferax volcanii

    PubMed Central

    Hartman, Amber L; Eisen, Jonathan A; Myllykallio, Hannu; Allers, Thorsten

    2007-01-01

    The halophilic archaeon Haloferax volcanii has a multireplicon genome, consisting of a main chromosome, three secondary chromosomes, and a plasmid. Genes for the initiator protein Cdc6/Orc1, which are commonly located adjacent to archaeal origins of DNA replication, are found on all replicons except plasmid pHV2. However, prediction of DNA replication origins in H. volcanii is complicated by the fact that this species has no less than 14 cdc6/orc1 genes. We have used a combination of genetic, biochemical, and bioinformatic approaches to map DNA replication origins in H. volcanii. Five autonomously replicating sequences were found adjacent to cdc6/orc1 genes and replication initiation point mapping was used to confirm that these sequences function as bidirectional DNA replication origins in vivo. Pulsed field gel analyses revealed that cdc6/orc1-associated replication origins are distributed not only on the main chromosome (2.9 Mb) but also on pHV1 (86 kb), pHV3 (442 kb), and pHV4 (690 kb) replicons. Gene inactivation studies indicate that linkage of the initiator gene to the origin is not required for replication initiation, and genetic tests with autonomously replicating plasmids suggest that the origin located on pHV1 and pHV4 may be dominant to the principal chromosomal origin. The replication origins we have identified appear to show a functional hierarchy or differential usage, which might reflect the different replication requirements of their respective chromosomes. We propose that duplication of H. volcanii replication origins was a prerequisite for the multireplicon structure of this genome, and that this might provide a means for chromosome-specific replication control under certain growth conditions. Our observations also suggest that H. volcanii is an ideal organism for studying how replication of four replicons is regulated in the context of the archaeal cell cycle. PMID:17511521

  14. Structure of the SSB-DNA polymerase III interface and its role in DNA replication

    SciTech Connect

    Marceau, Aimee H; Bahng, Soon; Massoni, Shawn C; George, Nicholas P; Sandler, Steven J; Marians, Kenneth J; Keck, James L

    2012-05-22

    Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.

  15. DNA tumor viruses: Control of gene expression and replication

    SciTech Connect

    Botchan, M.; Grodzicker, T.; Sharp, P.A.

    1986-01-01

    This book contains eight sections, each consisting of several papers. The sections are: Introduction, Transcription; Regulation of Transcription; RNA Processing and Translation; Transformation; Transforming Proteins; Replication; and Papillomaviruses.

  16. Human DNA Helicase B (HDHB) Binds to Replication Protein A and Facilitates Cellular Recovery from Replication Stress*

    PubMed Central

    Guler, Gulfem Dilek; Liu, Hanjian; Vaithiyalingam, Sivaraja; Arnett, Diana R.; Kremmer, Elisabeth; Chazin, Walter J.; Fanning, Ellen

    2012-01-01

    Maintenance of genomic stability in proliferating cells depends on a network of proteins that coordinate chromosomal replication with DNA damage responses. Human DNA helicase B (HELB or HDHB) has been implicated in chromosomal replication, but its role in this coordinated network remains undefined. Here we report that cellular exposure to UV irradiation, camptothecin, or hydroxyurea induces accumulation of HDHB on chromatin in a dose- and time-dependent manner, preferentially in S phase cells. Replication stress-induced recruitment of HDHB to chromatin is independent of checkpoint signaling but correlates with the level of replication protein A (RPA) recruited to chromatin. We show using purified proteins that HDHB physically interacts with the N-terminal domain of the RPA 70-kDa subunit (RPA70N). NMR spectroscopy and site-directed mutagenesis reveal that HDHB docks on the same RPA70N surface that recruits S phase checkpoint signaling proteins to chromatin. Consistent with this pattern of recruitment, cells depleted of HDHB display reduced recovery from replication stress. PMID:22194613

  17. Principles and concepts of DNA replication in bacteria, archaea, and eukarya.

    PubMed

    O'Donnell, Michael; Langston, Lance; Stillman, Bruce

    2013-07-01

    The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle. PMID:23818497

  18. Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya

    PubMed Central

    O’Donnell, Michael; Langston, Lance; Stillman, Bruce

    2013-01-01

    The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle. PMID:23818497

  19. Genesis and wanderings: origins and migrations in asymmetrically replicating mitochondrial DNA.

    PubMed

    Brown, Timothy A; Clayton, David A

    2006-05-01

    Mammalian mitochondria maintain a small circular genome that encodes RNA and polypeptides that are essential for the generation of ATP through oxidative phosphorylation. The mechanism of replication of mammalian mitochondrial DNA (mtDNA) has recently been a topic of controversy. New evidence has led to a modified strand-displacement model that reconciles much of the current data. This revision stems from a new appreciation for alternative light-strand origins. We consider here some of the potential mechanisms for light-strand origin initiation. We also consider further the susceptibility of branch migration within replicating mtDNA molecules. The existence of alternative light-strand origins and a propensity for branch migration in replicating mtDNA molecules exposes a new array of possible configurations of mtDNA. The assortment and assignment of these forms is relevant to the interpretation of experimental data and may also yield insight into the molecular basis of replication errors. PMID:16628009

  20. Isolation and sequencing of active origins of DNA replication by nascent strand capture and release (NSCR)

    PubMed Central

    Kunnev, Dimiter; Freeland, Amy; Qin, Maochun; Wang, Jianmin; Pruitt, Steven C.

    2015-01-01

    Nascent strand capture and release (NSCR) is a method for isolation of short nascent strands to identify origins of DNA replication. The protocol provided involves isolation of total DNA, denaturation, size fractionation on a sucrose gradient, 5′-biotinylation of the appropriate size nucleic acids, binding to a streptavidin coated magnetic beads, intensive washing, and specific release of only the RNA-containing chimeric nascent strand DNA using ribonuclease I (RNase I). The method has been applied to mammalian cells derived from proliferative tissues and cell culture but could be used for any system where DNA replication is primed by a small RNA resulting in chimeric RNA-DNA molecules. PMID:26949711

  1. Structural Basis for Error-free Replication of Oxidatively Damaged DNA by Yeast DNA Polymerase eta

    SciTech Connect

    T Silverstein; R Jain; R Johnson; L Prakash; S Prakash; A Aggarwal

    2011-12-31

    7,8-dihydro-8-oxoguanine (8-oxoG) adducts are formed frequently by the attack of oxygen-free radicals on DNA. They are among the most mutagenic lesions in cells because of their dual coding potential, where, in addition to normal base-pairing of 8-oxoG(anti) with dCTP, 8-oxoG in the syn conformation can base pair with dATP, causing G to T transversions. We provide here for the first time a structural basis for the error-free replication of 8-oxoG lesions by yeast DNA polymerase {eta} (Pol{eta}). We show that the open active site cleft of Pol{eta} can accommodate an 8-oxoG lesion in the anti conformation with only minimal changes to the polymerase and the bound DNA: at both the insertion and post-insertion steps of lesion bypass. Importantly, the active site geometry remains the same as in the undamaged complex and provides a basis for the ability of Pol to prevent the mutagenic replication of 8-oxoG lesions in cells.

  2. DNA replication in Physarum polycephalum: electron microscopic and autoradiographic analysis of replicating DNA from defined stages of the S-period.

    PubMed Central

    Funderud, S; Andreassen, R; Haugli, F

    1979-01-01

    Electron microscopic and autoradiographic analysis of replicating DNA from Physarum showed that replication occurs at a rate of 0.4 micron/min/per replicon and that replicons of size 10--15 mu occur in temporal clusters with an average of about 4 replicons per cluster. These results are compared with previous hydrodynamic measurements and with those obtained in other organisms. Images PMID:450701

  3. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. PMID:27053724

  4. The heat-shock DnaK protein is required for plasmid R1 replication and it is dispensable for plasmid ColE1 replication.

    PubMed Central

    Giraldo-Suárez, R; Fernández-Tresguerres, E; Díaz-Orejas, R; Malki, A; Kohiyama, M

    1993-01-01

    Plasmid R1 replication in vitro is inactive in extracts prepared from a dnaK756 strain but is restored to normal levels upon addition of purified DnaK protein. Replication of R1 in extracts of a dnaKwt strain can be specifically inhibited with polyclonal antibodies against DnaK. RepA-dependent replication of R1 in dnaK756 extracts supplemented with DnaKwt protein at maximum concentration is partially inhibited by rifampicin and it is severely inhibited at sub-optimal concentrations of DnaK protein. The copy number of a run-away R1 vector is reduced in a dnaK756 background at 30 degrees C and at 42 degrees C the amplification of the run-away R1 vector is prevented. However a runaway R1 vector containing dnaK gene allows the amplification of the plasmid at high temperature. These data indicate that DnaK is required for both in vitro and in vivo replication of plasmid R1 and show a partial compensation for the low level of DnaK by RNA polymerase. In contrast ColE1 replication is not affected by DnaK as indicated by the fact that ColE1 replicates with the same efficiency in extracts from dnaKwt and dnaK756 strains. Images PMID:8265367

  5. FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks.

    PubMed

    Rohleder, Florian; Huang, Jing; Xue, Yutong; Kuper, Jochen; Round, Adam; Seidman, Michael; Wang, Weidong; Kisker, Caroline

    2016-04-20

    FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair. PMID:26825464

  6. FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks

    PubMed Central

    Rohleder, Florian; Huang, Jing; Xue, Yutong; Kuper, Jochen; Round, Adam; Seidman, Michael; Wang, Weidong; Kisker, Caroline

    2016-01-01

    FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair. PMID:26825464

  7. Repair of lesions and initiation of DNA replication in vertebrate cells. Progress report, 1981-1982

    SciTech Connect

    Taylor, J.H.

    1982-01-01

    Progress is reported in the following areas: (1) the search for sequences in Xenopus DNA that serve as origins for replication; (2) preparation of a partial library of Xenopus genomic DNA and search for other origins; and (3) base pair mismatch correction and DNA methylation. (ACR)

  8. Requirement of E. coli DNA synthesis functions for the lytic replication of bacteriophage P1.

    PubMed

    Hay, N; Cohen, G

    1983-11-01

    P1 lytic growth was examined in a number of different temperature sensitive mutants of E. coli that affect chromosomal replication. Growth was analyzed by measurements of phage burst sizes and specific DNA synthesis. Efficient P1 growth required each of the bacterial elongation functions dnaE (polC), dnaZ (sub units of E. coli polymerase III holoenzyme), and dnaG (primase) but was not dependent on the elongation function dnaB (mobile promoter). Of two initiation functions tested the dnaA function was found to be dispensable for normal growth whereas the dnaC function was essential. Temperature shift experiments with different dnaC mutants showed that the initiation component of the dnaC function was needed continuously throughout at least the first half of the lytic cycle, while the dnaC elongation activity was probably required during the entire cycle for normal phage yields. In two respects the dependence of P1 lytic growth on E. coli DNA synthesis functions was significantly different from that reported for P1 plasmid replication (Scott and Vapnek, 1980). Thus, lytic replication was far more dependent on a functional polC gene product than was plasmid replication and did not require the bacterial dnaB product. PMID:6359668

  9. Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins

    PubMed Central

    Voineagu, Irina; Narayanan, Vidhya; Lobachev, Kirill S.; Mirkin, Sergei M.

    2008-01-01

    DNA inverted repeats (IRs) are hotspots of genomic instability in both prokaryotes and eukaryotes. This feature is commonly attributed to their ability to fold into hairpin- or cruciform-like DNA structures interfering with DNA replication and other genetic processes. However, direct evidence that IRs are replication stall sites in vivo is currently lacking. Here, we show by 2D electrophoretic analysis of replication intermediates that replication forks stall at IRs in bacteria, yeast, and mammalian cells. We found that DNA hairpins, rather than DNA cruciforms, are responsible for the replication stalling by comparing the effects of specifically designed imperfect IRs with varying lengths of their central spacer. Finally, we report that yeast fork-stabilizing proteins, Tof1 and Mrc1, are required to counteract repeat-mediated replication stalling. We show that the function of the Tof1 protein at DNA structure-mediated stall sites is different from its previously described effect on protein-mediated replication fork barriers. PMID:18632578

  10. Discontinuity in DNA replication during expression of accumulated initiation potential in dnaA mutants of Escherichia coli.

    PubMed Central

    Helmstetter, C E; Krajewski, C A; Leonard, A C; Weinberger, M

    1986-01-01

    Potential for initiation of chromosome replication present in temperature-sensitive, initiation-defective dnaA5 mutants of Escherichia coli B/r incubated at nonpermissive temperature was expressed by shifting to a more permissive temperature (25 degrees C). Upon expression of initiation potential, the rate of [3H]thymidine incorporation varied in a bimodal fashion, i.e., there was an initial burst of incorporation, which lasted 10 to 20 min, then a sudden decrease in incorporation, and finally a second rapid increase in incorporation. Analyses of this incorporation pattern indicated that a round of replication initiated upon expression of initiation potential, but DNA polymerization stopped after replication of 5 to 10% of the chromosome. This round of replication appeared to resume about 30 min later coincident with initiation of a second round of replication. The second initiation was unusually sensitive to low concentrations of novobiocin (ca. 1 microgram/ml) when this inhibitor was added in the presence of chloramphenicol. In the absence of chloramphenicol, novobiocin at this concentration had no detectable effect on DNA replication. It is suggested that cis-acting inhibition, attributable to an attempted second initiation immediately after the first, caused the first round to stall until both it and the second round could resume simultaneously. This DNA replication inhibition, probably caused by overinitiation, could be a consequence of restraints on replication in the vicinity of oriC, possibly topological in nature, which limit the minimum interinitiation interval in E. coli. PMID:3511039

  11. Host DNA replication forks are not preferred targets for bacteriophage Mu transposition.

    PubMed Central

    Nakai, H; Taylor, A L

    1985-01-01

    Bacteriophage Mu DNA integration in Escherichia coli strains infected after alignment of chromosomal replication was analyzed by a sandwich hybridization assay. The results indicated that Mu integrated into chromosomal segments at various distances from oriC with similar kinetics. In an extension of these studies, various Hfr strains were infected after alignment of chromosomal replication, and Mu transposition was shut down early after infection. The positions of integrated Mu copies were inferred from the transfer kinetics of Mu to an F- strain. Our analysis indicated that the location of Mu DNA in the host chromosome was not dependent on the positions of host replication forks at the time of infection. However, the procedure for aligning chromosomal replication affected DNA transfer by various Hfr strains differently, and this effect could account for prior results suggesting preferential integration of Mu at host replication forks. Images PMID:3159718

  12. How and why multiple MCMs are loaded at origins of DNA replication.

    PubMed

    Das, Shankar P; Rhind, Nicholas

    2016-07-01

    Recent work suggests that DNA replication origins are regulated by the number of multiple mini-chromosome maintenance (MCM) complexes loaded. Origins are defined by the loading of MCM - the replicative helicase which initiates DNA replication and replication kinetics determined by origin's location and firing times. However, activation of MCM is heterogeneous; different origins firing at different times in different cells. Also, more MCMs are loaded in G1 than are used in S phase. These aspects of MCM biology are explained by the observation that multiple MCMs are loaded at origins. Having more MCMs at early origins makes them more likely to fire, effecting differences in origin efficiency that define replication timing. Nonetheless, multiple MCM loading raises new questions, such as how they are loaded, where these MCMs reside at origins, and how their presence affects replication timing. In this review, we address these questions and discuss future avenues of research. PMID:27174869

  13. Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations

    PubMed Central

    Stumpf, Jeffrey D.

    2011-01-01

    DNA polymerase γ (pol γ), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol γ. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol γ assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations. PMID:20927567

  14. Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli

    PubMed Central

    Zhang, Qiufen; Zhou, Aiping; Li, Shuxian; Ni, Jinjing; Tao, Jing; Lu, Jie; Wan, Baoshan; Li, Shuai; Zhang, Jian; Zhao, Shimin; Zhao, Guo-Ping; Shao, Feng; Yao, Yu-Feng

    2016-01-01

    The regulation of chromosomal replication is critical and the activation of DnaA by ATP binding is a key step in replication initiation. However, it remains unclear whether and how the process of ATP-binding to DnaA is regulated. Here, we show that DnaA can be acetylated, and its acetylation level varies with cell growth and correlates with DNA replication initiation frequencies in E. coli. Specifically, the conserved K178 in Walker A motif of DnaA can be acetylated and its acetylation level reaches the summit at the stationary phase, which prevents DnaA from binding to ATP or oriC and leads to inhibition of DNA replication initiation. The deacetylation process of DnaA is catalyzed by deacetylase CobB. The acetylation process of DnaA is mediated by acetyltransferase YfiQ, and nonenzymatically by acetyl-phosphate. These findings suggest that the reversible acetylation of DnaA ensures cells to respond promptly to environmental changes. Since Walker A motif is universally distributed across organisms, acetylation of Walker A motif may present a novel regulatory mechanism conserved from bacteria to eukaryotes. PMID:27484197

  15. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase.

    PubMed

    Indiani, Chiara; Langston, Lance D; Yurieva, Olga; Goodman, Myron F; O'Donnell, Mike

    2009-04-14

    All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the beta-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered. PMID:19279203

  16. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase

    PubMed Central

    Indiani, Chiara; Langston, Lance D.; Yurieva, Olga; Goodman, Myron F.; O'Donnell, Mike

    2009-01-01

    All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the β-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered. PMID:19279203

  17. Origin of DNA replication in papovavirus chromatin is recognized by endogenous endonuclease.

    PubMed Central

    Waldeck, W; Föhring, B; Chowdhury, K; Gruss, P; Sauer, G

    1978-01-01

    Isolated simian virus 40 (SV40) and polyoma nucleoprotein complexes contain endonuclease that, under in vitro conditions, converts part (up to 30%) of the covalently closed superhelical DNA to full-length linear rods. The positions of the cleavage sites within the genomes of SV40 and polyoma were determined by digestion with various single-cut restriction endonucleases and subsequent agarose gel electrophoresis of the cleavage products. Both SV40 and polyoma covalently closed superhelical DNA were cleaved open at their respective origins of DNA replication (+/- 75 base pairs). The full-length linear DNA rods whose ends map adjacent to the origin of DNA replication could also be isolated by sodium dodecyl sulfate/phenol extraction both from SV40-infected permissive cells and from purified SV40 virions. These data reveal the presence of a unique structure of the papovavirus chromatin close to the initiation site of DNA replication. Images PMID:216004

  18. Low doses of ultraviolet radiation and oxidative damage induce dramatic accumulation of mitochondrial DNA replication intermediates, fork regression, and replication initiation shift

    PubMed Central

    Torregrosa-Muñumer, Rubén; Goffart, Steffi; Haikonen, Juha A.; Pohjoismäki, Jaakko L. O.

    2015-01-01

    Mitochondrial DNA is prone to damage by various intrinsic as well as environmental stressors. DNA damage can in turn cause problems for replication, resulting in replication stalling and double-strand breaks, which are suspected to be the leading cause of pathological mtDNA rearrangements. In this study, we exposed cells to subtle levels of oxidative stress or UV radiation and followed their effects on mtDNA maintenance. Although the damage did not influence mtDNA copy number, we detected a massive accumulation of RNA:DNA hybrid–containing replication intermediates, followed by an increase in cruciform DNA molecules, as well as in bidirectional replication initiation outside of the main replication origin, OH. Our results suggest that mitochondria maintain two different types of replication as an adaptation to different cellular environments; the RNA:DNA hybrid–involving replication mode maintains mtDNA integrity in tissues with low oxidative stress, and the potentially more error tolerant conventional strand-coupled replication operates when stress is high. PMID:26399294

  19. Regulation of DNA Replication Timing on Human Chromosome by a Cell-Type Specific DNA Binding Protein SATB1

    PubMed Central

    Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao

    2012-01-01

    Background Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as “replication domains”, and recent findings indicate that replication timing is under developmental and cell type-specific regulation. Methodology/Principal Findings We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Conclusions Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome. PMID:22879953

  20. ING2 controls the progression of DNA replication forks to maintain genome stability

    PubMed Central

    Larrieu, Delphine; Ythier, Damien; Binet, Romuald; Brambilla, Christian; Brambilla, Elisabeth; Sengupta, Sagar; Pedeux, Rémy

    2009-01-01

    Inhibitor of growth 2 (ING2) is a candidate tumour suppressor gene the expression of which is frequently lost in tumours. Here, we identified a new function for ING2 in the control of DNA replication and in the maintenance of genome stability. Global replication rate was markedly reduced during normal S-phase in small interfering RNA (siRNA) ING2 cells, as seen in a DNA fibre spreading experiment. Accordingly, we found that ING2 interacts with proliferating cell nuclear antigen and regulates its amount to the chromatin fraction, allowing normal replication progression and normal cell proliferation. Deregulation of DNA replication has been previously associated with genome instability. Hence, a high proportion of siRNA ING2 cells presented endoreduplication of their genome as well as an increased frequency of sister chromatid exchange. Thus, we propose for the first time that ING2 might function as a tumour suppressor gene by directly maintaining DNA integrity. PMID:19730436

  1. Multiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli.

    PubMed

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid; Løbner-Olesen, Anders

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaA(ATP) is capable of binding additional and weaker sites to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs timely by affecting either the cellular mass at which DNA replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on oriC for modulation of its activity but also at additional regulatory sites to control the nucleotide bound status of DnaA. Here we review the contribution of key DNA binding proteins to the tight regulation of chromosome replication in E. coli cells. PMID:27446932

  2. Multiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli

    PubMed Central

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid; Løbner-Olesen, Anders

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaAATP is capable of binding additional and weaker sites to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs timely by affecting either the cellular mass at which DNA replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on oriC for modulation of its activity but also at additional regulatory sites to control the nucleotide bound status of DnaA. Here we review the contribution of key DNA binding proteins to the tight regulation of chromosome replication in E. coli cells. PMID:27446932

  3. Specific binding of the adenovirus terminal protein precursor-DNA polymerase complex to the origin of DNA replication.

    PubMed Central

    Rijnders, A W; van Bergen, B G; van der Vliet, P C; Sussenbach, J S

    1983-01-01

    Initiation of adenovirus DNA replication is dependent on a complex of the precursor of the terminal protein and the adenovirus-coded DNA polymerase (pTP-pol complex). This complex catalyzes the formation of a covalent linkage between dCMP and pTP in the presence of a functional origin of DNA replication residing in the terminal nucleotide sequence of adenovirus DNA. We have purified the pTP-pol complex of adenovirus type 5 and studied its binding to double-stranded DNA. Using DNA-cellulose chromatography it could be shown that the pTP-pol complex has a higher affinity for adenovirus DNA than for calf thymus or pBR322 DNA. From the differential binding of the pTP-pol complex to plasmids containing adenovirus terminal sequences with different deletions, it has been concluded that a sequence of 14 nucleotide pairs at positions 9-22 plays a crucial role in the binding of pTP-pol to adenovirus DNA. This region is conserved in the DNA's of all human adenovirus serotypes and is obviously an important structural element of the adenovirus origin of DNA replication. Comparative binding studies with adenovirus DNA polymerase and pTP-pol indicated that pTP is responsible for the binding. The nature of the binding of pTP-pol to the conserved sequence will be discussed. Images PMID:6672772

  4. A Rolling Circle Replication Mechanism Produces Multimeric Lariats of Mitochondrial DNA in Caenorhabditis elegans

    PubMed Central

    Lewis, Samantha C.; Joers, Priit; Willcox, Smaranda; Griffith, Jack D.; Jacobs, Howard T.; Hyman, Bradley C.

    2015-01-01

    Mitochondrial DNA (mtDNA) encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s) of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s) of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans. PMID:25693201

  5. DNA2 drives processing and restart of reversed replication forks in human cells

    PubMed Central

    Thangavel, Saravanabhavan; Berti, Matteo; Levikova, Maryna; Pinto, Cosimo; Gomathinayagam, Shivasankari; Vujanovic, Marko; Zellweger, Ralph; Moore, Hayley; Lee, Eu Han; Hendrickson, Eric A.; Cejka, Petr; Stewart, Sheila; Lopes, Massimo

    2015-01-01

    Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5′-to-3′ polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors. PMID:25733713

  6. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    PubMed Central

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  7. Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress.

    PubMed

    Wallace, M D; Southard, T L; Schimenti, K J; Schimenti, J C

    2014-07-10

    Defective DNA replication can result in genomic instability, cancer and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4(Chaos3/Chaos3) ('Chaos3') mouse model that, by virtue of an amino-acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ataxia telangiectasia-mutated (ATM) double-strand break response pathway (Atm, p21/Cdkn1a and Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. Atm deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9-1-1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development. PMID:23975433

  8. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    NASA Astrophysics Data System (ADS)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  9. Evidence that a single DNA ligase is involved in replication and recombination in yeast.

    PubMed Central

    Fabre, F; Roman, H

    1979-01-01

    The possible existence in yeast of different nuclear DNA ligase enzymes led us to ask whether induced recombination (gene conversion) involves the same ligase as that involved in DNA replication. The conditional cdc9 mutant is known to be defective, under restrictive conditions, in the rejoining of Okazaki fragments. We show here that under the same conditions, x-ray-induced convertants within the cdc9 locus are produced with kinetics indicating that most, if not all, of the conversion events require the participation of the cdc9-controlled ligase. Thus, the same DNA ligase is involved in DNA replication and in induced gene conversion. PMID:388446

  10. Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling-circle replication of a plant viral DNA.

    PubMed

    Stenger, D C; Revington, G N; Stevenson, M C; Bisaro, D M

    1991-09-15

    Agrobacterium-mediated inoculation of Nicotiana benthamiana plants with Ti plasmids containing tandem genome repeats derived from different strains of the gemini-virus beet curly top virus (BCTV) resulted in the production of unit-length recombinant progeny genomes in systemically infected plants. When two putative plus-strand origins of replication were present in constructs used as inocula, a replicational escape mechanism was favored that resulted in progeny genomes of a single predominant genotype. The genotype was dependent upon the arrangement of repeated parental genomes in the inocula. Sequencing across the junction between parental BCTV strains in the recombinant progeny allowed mapping of the plus-strand origin of replication to a 20-base-pair sequence within the conserved hairpin found in all geminivirus genomes. In contrast, when inocula contained tandemly repeated BCTV genome sequences but only a single conserved hairpin, a number of different progeny genotypes were simultaneously replicated in infected plants, a result expected if unit-length viral genomes were generated by random intramolecular recombination events. These results and other considerations indicate that geminivirus DNA replication occurs by a rolling-circle mechanism. PMID:1896448

  11. Structural basis for DNA strand separation by a hexameric replicative helicase

    PubMed Central

    Chaban, Yuriy; Stead, Jonathan A.; Ryzhenkova, Ksenia; Whelan, Fiona; Lamber, Ekaterina P.; Antson, Alfred; Sanders, Cyril M.; Orlova, Elena V.

    2015-01-01

    Hexameric helicases are processive DNA unwinding machines but how they engage with a replication fork during unwinding is unknown. Using electron microscopy and single particle analysis we determined structures of the intact hexameric helicase E1 from papillomavirus and two complexes of E1 bound to a DNA replication fork end-labelled with protein tags. By labelling a DNA replication fork with streptavidin (dsDNA end) and Fab (5′ ssDNA) we located the positions of these labels on the helicase surface, showing that at least 10 bp of dsDNA enter the E1 helicase via a side tunnel. In the currently accepted ‘steric exclusion’ model for dsDNA unwinding, the active 3′ ssDNA strand is pulled through a central tunnel of the helicase motor domain as the dsDNA strands are wedged apart outside the protein assembly. Our structural observations together with nuclease footprinting assays indicate otherwise: strand separation is taking place inside E1 in a chamber above the helicase domain and the 5′ passive ssDNA strands exits the assembly through a separate tunnel opposite to the dsDNA entry point. Our data therefore suggest an alternative to the current general model for DNA unwinding by hexameric helicases. PMID:26240379

  12. DNA replication is altered in Immunodeficiency Centromeric instability Facial anomalies (ICF) cells carrying DNMT3B mutations

    PubMed Central

    Lana, Erica; Mégarbané, André; Tourrière, Hélène; Sarda, Pierre; Lefranc, Gérard; Claustres, Mireille; De Sario, Albertina

    2012-01-01

    ICF syndrome is a rare autosomal recessive disorder that is characterized by Immunodeficiency, Centromeric instability, and Facial anomalies. In all, 60% of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B) gene, encoding a de novo DNA methyltransferase. In ICF cells, constitutive heterochromatin is hypomethylated and decondensed, metaphase chromosomes undergo rearrangements (mainly involving juxtacentromeric regions), and more than 700 genes are aberrantly expressed. This work shows that DNA replication is also altered in ICF cells: (i) heterochromatic genes replicate earlier in the S-phase; (ii) global replication fork speed is higher; and (iii) S-phase is shorter. These replication defects may result from chromatin changes that modify DNA accessibility to the replication machinery and/or from changes in the expression level of genes involved in DNA replication. This work highlights the interest of using ICF cells as a model to investigate how DNA methylation regulates DNA replication in humans. PMID:22378288

  13. A proposal: Evolution of PCNA's role as a marker of newly replicated DNA

    PubMed Central

    Georgescu, Roxana; Langston, Lance; O'Donnell, Mike

    2015-01-01

    Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and function with sliding clamps. Among these processes are mismatch repair and nucleosome assembly. Interestingly, there exist polymerases that are highly processive and do not require clamps. Hence, DNA polymerase processivity does not intrinsically require that sliding clamps evolved for this purpose. We propose that polymerases evolved to require clamps as a way of ensuring that clamps are deposited on newly replicated DNA. These clamps are then used on the newly replicated daughter strands, for processes important to genomic integrity, such as mismatch repair and the assembly of nucleosomes to maintain epigenetic states of replicating cells during development. PMID:25704660

  14. A proposal: Evolution of PCNA's role as a marker of newly replicated DNA.

    PubMed

    Georgescu, Roxana; Langston, Lance; O'Donnell, Mike

    2015-05-01

    Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and function with sliding clamps. Among these processes are mismatch repair and nucleosome assembly. Interestingly, there exist polymerases that are highly processive and do not require clamps. Hence, DNA polymerase processivity does not intrinsically require that sliding clamps evolved for this purpose. We propose that polymerases evolved to require clamps as a way of ensuring that clamps are deposited on newly replicated DNA. These clamps are then used on the newly replicated daughter strands, for processes important to genomic integrity, such as mismatch repair and the assembly of nucleosomes to maintain epigenetic states of replicating cells during development. PMID:25704660

  15. Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus.

    PubMed

    Enemark, E J; Chen, G; Vaughn, D E; Stenlund, A; Joshua-Tor, L

    2000-07-01

    Papillomaviral infection causes both benign and malignant lesions and is a necessary cause of cervical carcinoma. Replication of this virus requires the replication initiation proteins E1 and E2, which bind cooperatively at the origin of replication (ori) as an (E1)2-(E2)2-DNA complex. This is a precursor to larger E1 complexes that distort and unwind the ori. We present the crystal structure of the E1 DNA binding domain refined to 1.9 A resolution. Residues critical for DNA binding are located on an extended loop and an alpha helix. We identify the E1 dimerization surface by selective mutations at an E1/E1 interface observed in the crystal and propose a model for the (E1)2-DNA complex. These and other observations suggest how the E1 DNA binding domain orchestrates assembly of the hexameric helicase on the ori. PMID:10949036

  16. Initiation of chromosome replication in dnaA and dnaC mutants of Escherichia coli B/r F.

    PubMed Central

    Helmstetter, C E; Krajewski, C A

    1982-01-01

    Regulatory aspects of chromosome replication were investigated in dnaA5 and dnaC2 mutants of the Escherichia coli B/r F. When cultures growing at 25 degrees C were shifted to 41 degrees C for extended periods and then returned to 25 degrees C, the subsequent synchronous initiations of chromosome replication were spaced at fixed intervals. When chloramphenicol was added coincident with the temperature downshift, the extend of chromosome replication in the dnaA mutant was greater than that in the dnaC mutant, but the time intervals between initiations were the same in both mutants. Furthermore, the time interval between the first two initiation events was unaffected by alterations in the rate of rifampin-sensitive RNA synthesis or cell mass increase. In the dnaC2 mutant, the capacities for both initiations were achieved in the absence of extensive DNA replication at 25 degrees C as long as protein synthesis was permitted, but the cells did not progress toward the second initiation at 25 degrees C when both protein synthesis and DNA replication were prevented. Cells of the dnaA5 mutant did not achieve the capacity for the second initiation event in the absence of extensive chromosome replication, although delayed initiation may have taken place. A plausible hypothesis to explain the data is that the minimum interval is determined by the time required for formation of a supercoiled, membrane-attached structure in the vicinity of oriC which is required for initiation of DNA synthesis. PMID:6173377

  17. DEVELOPMENT OF QUANTITATIVE AND HIGH-THROUGHPUT ASSAYS OF POLYOMAVIRUS AND PAPILLOMAVIRUS DNA REPLICATION

    PubMed Central

    Fradet-Turcotte, Amélie; Morin, Geneviève; Lehoux, Michaël; Bullock, Peter A.; Archambault, Jacques

    2011-01-01

    Polyoma- and papillomaviruses genome replication is initiated by the binding of large T antigen (LT) and of E1 and E2, respectively, at the viral origin (ori). Replication of an ori-containing plasmid occurs in cells transiently expressing these viral proteins and is typically quantified by Southern blotting or PCR. To facilitate the study of SV40 and HPV31 DNA replication, we developed cellular assays in which transient replication of the ori-plasmid is quantified using a firefly luciferase gene located in cis to the ori. Under optimized conditions, replication of the SV40 and HPV31 ori-plasmids resulted in a 50- and 150-fold increase in firefly luciferase levels, respectively. These results were validated using replication-defective mutants of LT, E1 and E2 and with inhibitors of DNA replication and cell-cycle progression. These quantitative and high-throughput assays should greatly facilitate the study of SV40 and HPV31 DNA replication and the identification of small-molecule inhibitors of this process. PMID:20079917

  18. Functional Analysis of DNA Replication Fork Reversal Catalyzed by Mycobacterium tuberculosis RuvAB Proteins*

    PubMed Central

    Khanduja, Jasbeer Singh; Muniyappa, K.

    2012-01-01

    Initially discovered in Escherichia coli, RuvAB proteins are ubiquitous in bacteria and play a dual role as molecular motor proteins responsible for branch migration of the Holliday junction(s) and reversal of stalled replication forks. Despite mounting genetic evidence for a crucial role of RuvA and RuvB proteins in reversal of stalled replication forks, the mechanistic aspects of this process are still not fully understood. Here, we elucidate the ability of Mycobacterium tuberculosis RuvAB (MtRuvAB) complex to catalyze the reversal of replication forks using a range of DNA replication fork substrates. Our studies show that MtRuvAB, unlike E. coli RuvAB, is able to drive replication fork reversal via the formation of Holliday junction intermediates, suggesting that RuvAB-catalyzed fork reversal involves concerted unwinding and annealing of nascent leading and lagging strands. We also demonstrate the reversal of replication forks carrying hemi-replicated DNA, indicating that MtRuvAB complex-catalyzed fork reversal is independent of symmetry at the fork junction. The fork reversal reaction catalyzed by MtRuvAB is coupled to ATP hydrolysis, is processive, and culminates in the formation of an extended reverse DNA arm. Notably, we found that sequence heterology failed to impede the fork reversal activity of MtRuvAB. We discuss the implications of these results in the context of recognition and processing of varied types of replication fork structures by RuvAB proteins. PMID:22094465

  19. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks

    PubMed Central

    Rozacky, Jenna; Nemec, Antoni A.; Sweasy, Joann B.; Kidane, Dawit

    2015-01-01

    DNA polymerase beta (Pol β) is a key enzymefor the protection against oxidative DNA lesions via itsrole in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5′ phosphate group (5′-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5′-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation. PMID:26090616

  20. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks.

    PubMed

    Rozacky, Jenna; Nemec, Antoni A; Sweasy, Joann B; Kidane, Dawit

    2015-09-15

    DNA polymerase beta (Pol β) is a key enzyme for the protection against oxidative DNA lesions via its role in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5' phosphate group (5'-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5'-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation. PMID:26090616

  1. SV40 DNA replication: From the A gene to a nanomachine

    PubMed Central

    Fanning, Ellen; Zhao, Kun

    2009-01-01

    Duplication of the simian virus 40 (SV40) genome is the best understood eukaryotic DNA replication process to date. Like most prokaryotic genomes, the SV40 genome is a circular duplex DNA organized in a single replicon. This small viral genome, its association with host histones in nucleosomes, and its dependence on the host cell milieu for replication factors and precursors led to its adoption as a simple and powerful model. The steps in replication, the viral initiator, the host proteins, and their mechanisms of action were initially defined using a cell-free SV40 replication reaction. Although our understanding of the vastly more complex host replication fork is advancing, no eukaryotic replisome has yet been reconstituted and the SV40 paradigm remains a point of reference. This article reviews some of the milestones in the development of this paradigm and speculates on its potential utility to address unsolved questions in eukaryotic genome maintenance. PMID:19101707

  2. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major.

    PubMed

    Lombraña, Rodrigo; Álvarez, Alba; Fernández-Justel, José Miguel; Almeida, Ricardo; Poza-Carrión, César; Gomes, Fábia; Calzada, Arturo; Requena, José María; Gómez, María

    2016-08-01

    Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs). Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance. PMID:27477279

  3. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    SciTech Connect

    Dai Heqiao; Liu Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi

    2009-04-15

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC{sub 50} of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases {alpha}, {delta} and {epsilon} is 15, 45 and 125 {mu}M, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC{sub 50} = 88 {mu}M), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of

  4. Helicases that underpin replication of protein-bound DNA in Escherichia coli.

    PubMed

    McGlynn, Peter

    2011-04-01

    A pre-requisite for successful cell division in any organism is synthesis of an accurate copy of the genetic information needed for survival. This copying process is a mammoth task, given the amount of DNA that must be duplicated, but potential blocks to replication fork movement also pose a challenge for genome duplication. Damage to the template inhibits the replication machinery but proteins bound to the template such as RNA polymerases also present barriers to replication. This review discusses recent results from Escherichia coli that shed light on the roles of helicases in overcoming protein-DNA barriers to replication and that may illustrate fundamental aspects of how duplication of protein-bound DNA is underpinned in all organisms. PMID:21428948

  5. Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells.

    PubMed

    Gerhardt, Jeannine; Bhalla, Angela D; Butler, Jill Sergesketter; Puckett, James W; Dervan, Peter B; Rosenwaks, Zev; Napierala, Marek

    2016-08-01

    Friedreich's ataxia (FRDA) is caused by the expansion of GAA repeats located in the Frataxin (FXN) gene. The GAA repeats continue to expand in FRDA patients, aggravating symptoms and contributing to disease progression. The mechanism leading to repeat expansion and decreased FXN transcription remains unclear. Using single-molecule analysis of replicated DNA, we detected that expanded GAA repeats present a substantial obstacle for the replication machinery at the FXN locus in FRDA cells. Furthermore, aberrant origin activation and lack of a proper stress response to rescue the stalled forks in FRDA cells cause an increase in 3'-5' progressing forks, which could enhance repeat expansion and hinder FXN transcription by head-on collision with RNA polymerases. Treatment of FRDA cells with GAA-specific polyamides rescues DNA replication fork stalling and alleviates expansion of the GAA repeats, implicating DNA triplexes as a replication impediment and suggesting that fork stalling might be a therapeutic target for FRDA. PMID:27425605

  6. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart

    PubMed Central

    Somyajit, Kumar; Saxena, Sneha; Babu, Sharath; Mishra, Anup; Nagaraju, Ganesh

    2015-01-01

    Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis. PMID:26354865

  7. DNA rearrangements in Euplotes crassus coincide with discrete periods of DNA replication during the polytene chromosome stage of macronuclear development.

    PubMed Central

    Frels, J S; Jahn, C L

    1995-01-01

    Macronuclear development in Euplotes crassus begins with polytenization of micronuclear chromosomes and is accompanied by highly precise excision of DNA sequences known as internal eliminated sequences and transposon-like elements (Tecs). Quantitation of radiolabeled-precursor incorporation into DNA indicates that DNA synthesis during formation of polytene chromosomes is not continuous and occurs during two distinct periods. We demonstrate that the timing of Tec excision coincides with these replication periods and that excision can occur during both periods even at a single locus. We also show that Tec and internal eliminated sequence excisions are coincident in the second replication period, thus providing further evidence for similarity in their excision mechanism. Inhibition of DNA synthesis with hydroxyurea diminishes Tec element excision, indicating that replication is an important aspect of the excision process. PMID:8524213

  8. The Fork in the Road: Histone Partitioning During DNA Replication

    PubMed Central

    Annunziato, Anthony T.

    2015-01-01

    In the following discussion the distribution of histones at the replication fork is examined, with specific attention paid to the question of H3/H4 tetramer "splitting." After a presentation of early experiments surrounding this topic, more recent contributions are detailed. The implications of these findings with respect to the transmission of histone modifications and epigenetic models are also addressed. PMID:26110314

  9. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies

    PubMed Central

    Komatsu, Tetsuro; Nagata, Kyosuke

    2015-01-01

    ABSTRACT Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. IMPORTANCE The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral

  10. The tight linkage between DNA replication and double-strand break repair in bacteriophage T4

    PubMed Central

    George, James W.; Stohr, Bradley A.; Tomso, Daniel J.; Kreuzer, Kenneth N.

    2001-01-01

    Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replication of the second plasmid, providing a useful model for T4 recombination-dependent replication (RDR). This system also provides a view of DSB repair in T4-infected cells and revealed that the DSB repair products had been replicated in their entirety by the T4 replication machinery. We analyzed the detailed structure of these products, which do not fit the simple predictions of any of three models for DSB repair. We also present evidence that the T4 RDR system functions to restart stalled or inactivated replication forks. First, we review experiments involving antitumor drug-stabilized topoisomerase cleavage complexes. The results suggest that forks blocked at cleavage complexes are resolved by recombinational repair, likely involving RDR. Second, we show here that the presence of a T4 replication origin on one plasmid substantially stimulated recombination events between it and a homologous second plasmid that did not contain a T4 origin. Furthermore, replication of the second plasmid was increased when the first plasmid contained the T4 origin. Our interpretation is that origin-initiated forks become inactivated at some frequency during replication of the first plasmid and are then restarted via RDR on the second plasmid. PMID:11459966

  11. A Role of hIPI3 in DNA Replication Licensing in Human Cells

    PubMed Central

    Huang, Yining; Amin, Aftab; Qin, Yan; Wang, Ziyi; Jiang, Huadong; Liang, Lu; Shi, Linjing; Liang, Chun

    2016-01-01

    The yeast Ipi3p is required for DNA replication and cell viability in Sacharomyces cerevisiae. It is an essential component of the Rix1 complex (Rix1p/Ipi2p-Ipi1p-Ipi3p) that is required for the processing of 35S pre-rRNA in pre-60S ribosomal particles and for the initiation of DNA replication. The human IPI3 homolog is WDR18 (WD repeat domain 18), which shares significant homology with yIpi3p. Here we report that knockdown of hIPI3 resulted in substantial defects in the chromatin association of the MCM complex, DNA replication, cell cycle progression and cell proliferation. Importantly, hIPI3 silencing did not result in a reduction of the protein level of hCDC6, hMCM7, or the ectopically expressed GFP protein, indicating that protein synthesis was not defective in the same time frame of the DNA replication and cell cycle defects. Furthermore, the mRNA and protein levels of hIPI3 fluctuate in the cell cycle, with the highest levels from M phase to early G1 phase, similar to other pre-replicative (pre-RC) proteins. Moreover, hIPI3 interacts with other replication-initiation proteins, co-localizes with hMCM7 in the nucleus, and is important for the nuclear localization of hMCM7. We also found that hIPI3 preferentially binds to the origins of DNA replication including those at the c-Myc, Lamin-B2 and β-Globin loci. These results indicate that hIPI3 is involved in human DNA replication licensing independent of its role in ribosome biogenesis. PMID:27057756

  12. Direct non transcriptional role of NF-Y in DNA replication.

    PubMed

    Benatti, Paolo; Belluti, Silvia; Miotto, Benoit; Neusiedler, Julia; Dolfini, Diletta; Drac, Marjorie; Basile, Valentina; Schwob, Etienne; Mantovani, Roberto; Blow, J Julian; Imbriano, Carol

    2016-04-01

    NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication. PMID:26732297

  13. BENZO(A)PYRENE DIOL EPOXIDE I BINDS TO DNA AT REPLICATION FORKS (JOURNAL VERSION)

    EPA Science Inventory

    The distribution in replication forks of DNA lesions caused by the treatment of S phase calls with benzo(a)pyrene-diol-epoxide-1 (BPDE-1) was studied in synchronized C3H10T1/2 cells. Sites of carcinogen modification of DNA were identified by polyclonal rabbit antibodies that were...

  14. Autographa californica Multiple Nucleopolyhedrovirus DNA Polymerase C Terminus Is Required for Nuclear Localization and Viral DNA Replication

    PubMed Central

    Feng, Guozhong

    2014-01-01

    ABSTRACT The DNA polymerase (DNApol) of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is essential for viral DNA replication. The DNApol exonuclease and polymerase domains are highly conserved and are considered functional in DNA replication. However, the role of the DNApol C terminus has not yet been characterized. To identify whether only the exonuclease and polymerase domains are sufficient for viral DNA replication, several DNApol C-terminal truncations were cloned into a dnapol-null AcMNPV bacmid with a green fluorescent protein (GFP) reporter. Surprisingly, most of the truncation constructs, despite containing both exonuclease and polymerase domains, could not rescue viral DNA replication and viral production in bacmid-transfected Sf21 cells. Moreover, GFP fusions of these same truncations failed to localize to the nucleus. Truncation of the C-terminal amino acids 950 to 984 showed nuclear localization but allowed for only limited and delayed viral spread. The C terminus contains a typical bipartite nuclear localization signal (NLS) motif at residues 804 to 827 and a monopartite NLS motif at residues 939 to 948. Each NLS, as a GFP fusion peptide, localized to the nucleus, but both NLSs were required for nuclear localization of DNApol. Alanine substitutions in a highly conserved baculovirus DNApol sequence at AcMNPV DNApol amino acids 972 to 981 demonstrated its importance for virus production and DNA replication. Collectively, the data indicated that the C terminus of AcMNPV DNApol contains two NLSs and a conserved motif, all of which are required for nuclear localization of DNApol, viral DNA synthesis, and virus production. IMPORTANCE The baculovirus DNA polymerase (DNApol) is a highly specific polymerase that allows viral DNA synthesis and hence virus replication in infected insect cells. We demonstrated that the exonuclease and polymerase domains of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) alone are

  15. Nonenzymatic Role for WRN in Preserving Nascent DNA Strands after Replication Stress

    DOE PAGESBeta

    Su, Fengtao; Mukherjee, Shibani; Yang, Yanyong; Mori, Eiichiro; Bhattacharya, Souparno; Kobayashi, Junya; Yannone, Steven  M.; Chen, David  J.; Asaithamby, Aroumougame

    2014-11-20

    WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRNmore » to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.« less

  16. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  17. MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication.

    PubMed

    Uhler, Jay P; Thörn, Christian; Nicholls, Thomas J; Matic, Stanka; Milenkovic, Dusanka; Gustafsson, Claes M; Falkenberg, Maria

    2016-07-01

    Recently, MGME1 was identified as a mitochondrial DNA nuclease with preference for single-stranded DNA (ssDNA) substrates. Loss-of-function mutations in patients lead to mitochondrial disease with DNA depletion, deletions, duplications and rearrangements. Here, we assess the biochemical role of MGME1 in the processing of flap intermediates during mitochondrial DNA replication using reconstituted systems. We show that MGME1 can cleave flaps to enable efficient ligation of newly replicated DNA strands in combination with POLγ. MGME1 generates a pool of imprecisely cut products (short flaps, nicks and gaps) that are converted to ligatable nicks by POLγ through extension or excision of the 3'-end strand. This is dependent on the 3'-5' exonuclease activity of POLγ which limits strand displacement activity and enables POLγ to back up to the nick by 3'-5' degradation. We also demonstrate that POLγ-driven strand displacement is sufficient to generate DNA- but not RNA-flap substrates suitable for MGME1 cleavage and ligation during replication. Our findings have implications for RNA primer removal models, the 5'-end processing of nascent DNA at OriH, and DNA repair. PMID:27220468

  18. MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication

    PubMed Central

    Uhler, Jay P.; Thörn, Christian; Nicholls, Thomas J.; Matic, Stanka; Milenkovic, Dusanka; Gustafsson, Claes M.; Falkenberg, Maria

    2016-01-01

    Recently, MGME1 was identified as a mitochondrial DNA nuclease with preference for single-stranded DNA (ssDNA) substrates. Loss-of-function mutations in patients lead to mitochondrial disease with DNA depletion, deletions, duplications and rearrangements. Here, we assess the biochemical role of MGME1 in the processing of flap intermediates during mitochondrial DNA replication using reconstituted systems. We show that MGME1 can cleave flaps to enable efficient ligation of newly replicated DNA strands in combination with POLγ. MGME1 generates a pool of imprecisely cut products (short flaps, nicks and gaps) that are converted to ligatable nicks by POLγ through extension or excision of the 3′-end strand. This is dependent on the 3′-5′ exonuclease activity of POLγ which limits strand displacement activity and enables POLγ to back up to the nick by 3′-5′ degradation. We also demonstrate that POLγ-driven strand displacement is sufficient to generate DNA- but not RNA-flap substrates suitable for MGME1 cleavage and ligation during replication. Our findings have implications for RNA primer removal models, the 5′-end processing of nascent DNA at OriH, and DNA repair. PMID:27220468

  19. G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells.

    PubMed

    Hasegawa, Daiki; Okabe, Sachiko; Okamoto, Keiji; Nakano, Ichiro; Shin-ya, Kazuo; Seimiya, Hiroyuki

    2016-02-26

    Glioblastoma (GBM) is an invariably fatal brain tumor in which a small subpopulation of self-renewable glioma stem cells (GSCs) contributes to tumor propagation and relapse. Targeting GSCs could therefore have a significant clinical impact for GBM. Telomestatin is a naturally-occurring compound that preferentially impairs GSC growth by perturbing transcription and inducing a DNA damage response. Telomestatin stabilizes G-quadruplexes (G4s), which are guanine-rich four-strand nucleic acid structures observed in vitro and in vivo. However, the mechanism underlying the GSC-selective nature of the DNA damage response remains unknown. Here we demonstrate that GSCs are more susceptible to telomestatin-induced telomere dysfunction and replication stress when compared with GSC-derived non-stem glioma cells (NSGCs). Telomestatin induced dissociation of the telomere-capping protein TRF2 from telomeres, leading to telomeric DNA damage in GSCs-but not in NSGCs. BIBR1532, a telomerase catalytic inhibitor, did not preferentially inhibit GSC growth, suggesting that telomestatin promotes telomere dysfunction in a telomerase-independent manner. GSCs and NSGCs had comparable levels of G4s in their nuclei, and both responded to telomestatin with phosphorylation of RPA2 at Ser33-a hallmark of replication stress. However, activation of the checkpoint kinase Chk1, induction of a DNA damage response, and subsequent growth inhibition occurred only in telomestatin-treated GSCs. These observations suggest that telomestatin impairs GSC growth through removal of TRF2 from telomeres and potent activation of the replication stress response pathway. Therefore, a novel G4-directed therapeutic strategy could specifically target cancer stem cells in GBM. PMID:26845351

  20. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication

    SciTech Connect

    Evrin, C.; Li, H.; Clarke, P.; Zech, J.; Lurz, R.; Sun, J.; Uhle, S.; Stillman, B.; Speck, C.

    2009-12-01

    During pre-replication complex (pre-RC) formation, origin recognition complex (ORC), Cdc6, and Cdt1 cooperatively load the 6-subunit mini chromosome maintenance (MCM2-7) complex onto DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that restricts DNA replication to once per cell cycle. During S phase MCM2-7 functions as part of the replicative helicase but within the pre-RC MCM2-7 is inactive. The organization of replicative DNA helicases before and after loading onto DNA has been studied in bacteria and viruses but not eukaryotes and is of major importance for understanding the MCM2-7 loading mechanism and replisome assembly. Lack of an efficient reconstituted pre-RC system has hindered the detailed mechanistic and structural analysis of MCM2-7 loading for a long time. We have reconstituted Saccharomyces cerevisiae pre-RC formation with purified proteins and showed efficient loading of MCM2-7 onto origin DNA in vitro. MCM2-7 loading was found to be dependent on the presence of all pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary structure of MCM2-7 changes during pre-RC formation: MCM2-7 before loading is a single hexamer in solution but is transformed into a double-hexamer during pre-RC formation. Using electron microscopy (EM), we observed that loaded MCM2-7 encircles DNA. The loaded MCM2-7 complex can slide on DNA, and sliding is not directional. Our results provide key insights into mechanisms of pre-RC formation and have important implications for understanding the role of the MCM2-7 in establishment of bidirectional replication forks.

  1. Overexpression of the Replicative Helicase in Escherichia coli Inhibits Replication Initiation and Replication Fork Reloading

    PubMed Central

    Brüning, Jan-Gert; Myka, Kamila Katarzyna; McGlynn, Peter

    2016-01-01

    Replicative helicases play central roles in chromosome duplication and their assembly onto DNA is regulated via initiators and helicase loader proteins. The Escherichia coli replicative helicase DnaB and the helicase loader DnaC form a DnaB6–DnaC6 complex that is required for loading DnaB onto single-stranded DNA. Overexpression of dnaC inhibits replication by promoting continual rebinding of DnaC to DnaB and consequent prevention of helicase translocation. Here we show that overexpression of dnaB also inhibits growth and chromosome duplication. This inhibition is countered by co-overexpression of wild-type DnaC but not of a DnaC mutant that cannot interact with DnaB, indicating that a reduction in DnaB6–DnaC6 concentration is responsible for the phenotypes associated with elevated DnaB concentration. Partial defects in the oriC-specific initiator DnaA and in PriA-specific initiation away from oriC during replication repair sensitise cells to dnaB overexpression. Absence of the accessory replicative helicase Rep, resulting in increased replication blockage and thus increased reinitiation away from oriC, also exacerbates DnaB-induced defects. These findings indicate that elevated levels of helicase perturb replication initiation not only at origins of replication but also during fork repair at other sites on the chromosome. Thus, imbalances in levels of the replicative helicase and helicase loader can inhibit replication both via inhibition of DnaB6–DnaC6 complex formation with excess DnaB, as shown here, and promotion of formation of DnaB6–DnaC6 complexes with excess DnaC [Allen GC, Jr., Kornberg A. Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J. Biol. Chem. 1991;266:22096–22101; Skarstad K, Wold S. The speed of the Escherichia coli fork in vivo depends on the DnaB:DnaC ratio. Mol. Microbiol. 1995;17:825–831]. Thus, there are two mechanisms by which an imbalance in the replicative helicase and its

  2. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter.

    PubMed Central

    Taira, T; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription. Images PMID:8065368

  3. Accommodation of pyrimidine dimers during replication of UV-damaged simian virus 40 DNA.

    PubMed Central

    Stacks, P C; White, J H; Dixon, K

    1983-01-01

    UV irradiation of simian virus 40-infected cells at fluences between 20 and 60 J/m2, which yield one to three pyrimidine dimers per simian virus 40 genome, leads to a fluence-dependent progressive decrease in simian virus 40 DNA replication as assayed by incorporation of [3H]deoxyribosylthymine into viral DNA. We used a variety of biochemical and biophysical techniques to show that this decrease is due to a block in the progression of replicative-intermediate molecules to completed form I molecules, with a concomitant decrease in the entry of molecules into the replicating pool. Despite this UV-induced inhibition of replication, some pyrimidine dimer-containing molecules become fully replicated after UV irradiation. The fraction of completed molecules containing dimers goes up with time such that by 3 h after a UV fluence of 40 J/m2, more than 50% of completed molecules contain pyrimidine dimers. We postulate that the cellular replication machinery can accommodate limited amounts of UV-induced damage and that the progressive decrease in simian virus 40 DNA synthesis after UV irradiation is due to the accumulation in the replication pool of blocked molecules containing levels of damage greater than that which can be tolerated. PMID:6621531

  4. Nek4 Regulates Entry into Replicative Senescence and the Response to DNA Damage in Human Fibroblasts

    PubMed Central

    Nguyen, Christine L.; Possemato, Richard; Bauerlein, Erica L.; Xie, Anyong; Scully, Ralph

    2012-01-01

    When explanted into culture, normal human cells exhibit a finite number of cell divisions before entering a proliferative arrest termed replicative senescence. To identify genes essential for entry into replicative senescence, we performed an RNA interference (RNAi)-based loss-of-function screen and found that suppression of the Never in Mitosis Gene A (NIMA)-related protein kinase gene NEK4 disrupted timely entry into senescence. NEK4 suppression extended the number of population doublings required to reach replicative senescence in several human fibroblast strains and resulted in decreased transcription of the cyclin-dependent kinase inhibitor p21. NEK4-suppressed cells displayed impaired cell cycle arrest in response to double-stranded DNA damage, and mass spectrometric analysis of Nek4 immune complexes identified a complex containing DNA-dependent protein kinase catalytic subunit [DNA-PK(cs)], Ku70, and Ku80. NEK4 suppression causes defects in the recruitment of DNA-PK(cs) to DNA upon induction of double-stranded DNA damage, resulting in reduced p53 activation and H2AX phosphorylation. Together, these observations implicate Nek4 as a novel regulator of replicative senescence and the response to double-stranded DNA damage. PMID:22851694

  5. Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein.

    PubMed Central

    van Bergen, B G; van der Ley, P A; van Driel, W; van Mansfeld, A D; van der Vliet, P C

    1983-01-01

    Nuclear extracts from adenovirus type 5 (Ad5) infected HeLa cells were used to study the template requirements for adenovirus DNA replication in vitro. When XbaI digested Ad5 DNA, containing the parental terminal protein (TP), was used as a template preferential synthesis of the terminal fragments was observed. The newly synthesized DNA was covalently bound to the 82 kD preterminal protein (pTP). Plasmid DNAs containing the Ad2 origin sequence or the Ad12 origin sequence with small deletions were analyzed for their capacity to support pTP-primed DNA replication. Circular plasmid DNAs were inactive. When plasmids were linearized to expose the adenovirus origin, both Ad2 and Ad12 TP-free fragments could support initiation and elongation similarly as Ad5 DNA-TP, although with lower efficiency. These observations indicate that the parental terminal protein is dispensable for initiation in vitro. The presence of 29 nucleotides ahead of the molecular end or a deletion of 14 base pairs extending into the conserved sequence (9-22) destroyed the template activity. DNA with a large deletion within the first 8 base pairs could still support replication while a small deletion could not. The results suggest that only G residues at a distance of 4-8 nucleotides from the start of the conserved sequence can be used as template during initiation of DNA replication. Images PMID:6300787

  6. Origin of replication in episomal bovine papilloma virus type 1 DNA isolated from transformed cells.

    PubMed Central

    Waldeck, W; Rösl, F; Zentgraf, H

    1984-01-01

    The origin of replication of bovine papilloma virus type 1 (BPV-1) has been determined by isolating replicative intermediates (RI) of BPV-transformed hamster embryo fibroblasts (HEF-BPV). These RI were treated with single cut restriction enzymes to determine the start-position (origin) of the extending replication eyes using electron microscopic techniques. 'Cairns'-type RI molecules were shown to contain one replication eye in monomeric as well as in dimeric molecules. The position of this eye was localized at 6940 +/- 5% bp in the physical map. In a second set of experiments BPV-1 DNA fragments cloned in pBR322 were tested for transient episomal replication. Transfected cells were harvested after increasing periods of time and screened for replication with isoschizomeric restriction enzymes to differentiate between input and replicated DNA. The part of the BPV genome harboring the replication origin spans the BPV ClaI-C restriction fragment corresponding to the non-coding region of the BPV genome and coincides with the DNase I-hypersensitive control region in the chromatin, isolated from transformed cells. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. PMID:6092063

  7. Trashing of single-stranded DNA generated during processing of arrested replication fork in E. coli.

    PubMed

    Kohiyama, Masamichi; Contremoulins, Vincent; Baudin, Xavier

    2013-11-29

    We analyzed formation of single-stranded DNA (ssDNA) related to SOS induction in nalidixilate (Nal)-treated Escherichia coli, using immunofluorescence microscopy accompanied by computer analysis. We found enhancement of both ssDNA concentrations and cells having ssDNA foci that often localized around cellpoles. Analyzing several mutants deficient in DNA repair or replication, we found, after Nal treatment, that recN, recA, uvrD and dnaB failed to increase ssDNA concentration and that recG and particularly ruvA only partially enhanced it. In Nal-treated recB mutant, despite its failure in SOS induction, ssDNA foci positive cells increased with a slight enhancement of its concentration. These observations suggest the existence of a cellular process that sequesters genotoxic ssDNA as inert form, offering a new concept for SOS suppressor genes action. PMID:23810902

  8. phiX174 cistron A protein is a multifunctional enzyme in DNA replication.

    PubMed

    Eisenberg, S; Griffith, J; Kornberg, A

    1977-08-01

    The cistron A protein induced by phage varphiX174 nicks (produces a single-strand break in) the viral strand of the superhelical varphiX duplex DNA, thereby forming a complex with the DNA. The protein, seen bound to the DNA in the electron microscope, was located in the restriction endonuclease fragment between nucleotides 4290 and 4330 on the varphiX map [Sanger, F., Air, G. M., Barrel, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., III, Slocomb, P. M. Y. & Smith, M. (1977) Nature 265, 687-695]. Replication also was initiated at this point, thus identifying the site of cistron A protein nicking and binding as the origin of replication. The cisA-DNA complex (separated from free cistron A protein), upon the addition of Escherichia coli rep protein, ATP, and DNA binding protein, is unwound to generate a single-stranded linear [presumably the nicked (+) strand] and a circular [presumably the (-) strand] molecule. The cisA-DNA complex, upon the further addition of DNA polymerase III holoenzyme and deoxynucleoside triphosphates, supports replication to generate viral, single-stranded circles, as many as 15 circles per cisA-DNA complex. The replicating intermediates seen in the electron microscope are a novel form of "rolling circle" [Gilbert, W. & Dressler, D. H. (1969) Cold Spring Harbor Symp. Quant. Biol. 33, 473-485]. The 5' end (presumably with the cistron A protein bound to it) is locked in the replication fork and loops back to accompany the strand-separation and replication fork around the template [(-) strand] circle. Thus, the multiple functions of cistron A protein include: (i) nicking the viral strand at the origin of replication to initiate a round of replication, (ii) participating in a complex which supports fork movement in strand separation and replication, (iii) nicking again at the regenerated origin to produce a unit-length DNA, and (iv) ligating the newly generated 3'-OH end to the 5'-phosphate-complexed end to form a circular

  9. A conserved MCM single-stranded DNA binding element is essential for replication initiation

    PubMed Central

    Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J

    2014-01-01

    The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001 PMID:24692448

  10. Histone H4 acetylation required for chromatin decompaction during DNA replication

    PubMed Central

    Ruan, Kun; Yamamoto, Takaharu G.; Asakawa, Haruhiko; Chikashige, Yuji; Kimura, Hiroshi; Masukata, Hisao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-01-01

    Faithful DNA replication is a prerequisite for cell proliferation. Several cytological studies have shown that chromosome structures alter in the S-phase of the cell cycle. However, the molecular mechanisms behind the alteration of chromosome structures associated with DNA replication have not been elucidated. Here, we investigated chromatin structures and acetylation of specific histone residues during DNA replication using the meiotic nucleus of the fission yeast Schizosaccharomyces pombe. The S. pombe meiotic nucleus provides a unique opportunity for measuring the levels of compaction of chromatin along the chromosome in a defined orientation. By direct measurement of chromatin compaction in living cells, we demonstrated that decompaction of chromatin occurs during meiotic DNA replication. This chromatin decompaction was suppressed by depletion of histone acetyltransferase Mst1 or by arginine substitution of specific lysine residues (K8 and K12) of histone H4. These results suggest that acetylation of histone H4 residues K8 and K12 plays a critical role in loosening chromatin structures during DNA replication. PMID:26223950

  11. Replication dynamics in fission and budding yeasts through DNA polymerase tracking.

    PubMed

    Vázquez, Enrique; Antequera, Francisco

    2015-10-01

    The dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them. Additional studies have found an overlapping distribution of DNA polymorphisms and the junctions of Okazaki fragments along mononucleosomal DNA. This sequence instability is caused by the premature release of polymerase δ and the retention of non proof-read DNA tracts replicated by polymerase α. The possible implementation of these new experimental approaches in multicellular organisms opens the door to the analysis of replication dynamics under a broad range of genetic backgrounds and physiological or pathological conditions. PMID:26293347

  12. Chromatin assembly during S phase: contributions from histone deposition, DNA replication and the cell division cycle.

    PubMed

    Krude, T; Keller, C

    2001-05-01

    During S phase of the eukaryotic cell division cycle, newly replicated DNA is rapidly assembled into chromatin. Newly synthesised histones form complexes with chromatin assembly factors, mediating their deposition onto nascent DNA and their assembly into nucleosomes. Chromatin assembly factor 1, CAF-1, is a specialised assembly factor that targets these histones to replicating DNA by association with the replication fork associated protein, proliferating cell nuclear antigen, PCNA. Nucleosomes are further organised into ordered arrays along the DNA by the activity of ATP-dependent chromatin assembly and spacing factors such as ATP-utilising chromatin assembly and remodelling factor ACE An additional level of controlling chromatin assembly pathways has become apparent by the observation of functional requirements for cyclin-dependent protein kinases, casein kinase II and protein phosphatases. In this review, we will discuss replication-associated histone deposition and nucleosome assembly pathways, and we will focus in particular on how nucleosome assembly is linked to DNA replication and how it may be regulated by the cell cycle control machinery. PMID:11437228

  13. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins

    PubMed Central

    Kunnev, Dimiter; Freeland, Amy; Qin, Maochun; Leach, Robert W.; Wang, Jianmin; Shenoy, Rajani M.

    2015-01-01

    Minichromosome maintenance (MCM) proteins are loaded onto chromatin during G1-phase and define potential locations of DNA replication initiation. MCM protein deficiency results in genome instability and high rates of cancer in mouse models. Here we develop a method of nascent strand capture and release and show that MCM2 deficiency reduces DNA replication initiation in gene-rich regions of the genome. DNA structural properties are shown to correlate with sequence motifs associated with replication origins and with locations that are preferentially affected by MCM2 deficiency. Reduced nascent strand density correlates with sites of recurrent focal CNVs in tumors arising in MCM2-deficient mice, consistent with a direct relationship between sites of reduced DNA replication initiation and genetic damage. Between 10% and 90% of human tumors, depending on type, carry heterozygous loss or mutation of one or more MCM2-7 genes, which is expected to compromise DNA replication origin licensing and result in elevated rates of genome damage at a subset of gene-rich locations. PMID:25762552

  14. DNA replication timing and higher-order nuclear organization determine single nucleotide substitution patterns in cancer genomes

    PubMed Central

    Liu, Lin; De, Subhajyoti; Michor, Franziska

    2013-01-01

    Single nucleotide substitutions (SNS) are a defining characteristic of cancer genomes. Many SNS in cancer genomes arise due to errors in DNA replication, which is spatio-temporally stratified. Here we propose that DNA replication patterns help shape the mutational landscapes of normal and cancer genomes. Using data on five fully sequenced cancer types and two personal genomes, we determined that the frequency of intergenic SNS is significantly higher in late DNA replication timing regions, even after controlling for a number of genomic features. Furthermore, some substitution signatures are more frequent in certain DNA replication timing zones. Finally, integrating data on higher-order nuclear organization, we found that genomic regions in close spatial proximity to late replicating domains display similar mutation spectra as the late replicating regions themselves. These data suggest that DNA replication timing together with higher-order genomic organization contribute to the patterns of SNS in normal and cancer genomes. PMID:23422670

  15. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents

    SciTech Connect

    Jaspers, N.G.; de Wit, J.; Regulski, M.R.; Bootsma, D.

    1982-01-01

    The effect of different carcinogenic agents on the rate of semiconservative DNA replication in normal and ataxia telangiectasis (AT) cells was investigated. The rate of DNA synthesis in all AT cell strains tested was depressed to a significantly lesser extent than in normal cells after exposure to X-rays under oxia or hypoxia or to bleomycin, agents to which AT cells are hypersensitive. In contrast, inhibition of DNA replication in normal human and AT cells was similar after treatment with some DNA-methylating agents or mitomycin C. Colony-forming ability of AT cells treated with these agents was not different from normal cells. Treatment with 4-nitroquinoline 1-oxide elicited a variable response in both AT and normal cell strains. In some strains, including those shown to be hypersensitive to the drug by other workers, the inhibition of DNA synthesis was more pronounced than in other cell strains, but no significant difference between AT and normal cells could be detected. The rejoining of DNA strand breaks induced by X-rays, measured by DNA elution techniques, occurred within l2 hr after treatment and could not be correlated with the difference in DNA synthesis inhibition in AT and normal cells. After low doses of X-rays, AT cells rejoined single-strand breaks slightly more slowly than did normal cells. The rate of DNA replication in X-irradiation AT and normal cells was not affected by nicotinamide, an inhibitor of poly(adenosine diphosphate ribose) synthesis. These data indicate that the diminished inhibition of DNA replication in carcinogen-treated AT cells (a) is a general characteristic of all AT cell strains, (b) correlates with AT cellular hypersensitivity, (c) is not directly caused by the bulk of the DNA strand breaks produced by carcinogenic agents, and (d) is not based on differences in the induction of poly(adenosine diphosphate ribose) synthesis between X-irradiated AT and normal cells.

  16. Reusable nanocopy machine particles for the replication of DNA.

    PubMed

    Say, Rıdvan; Ünlüer, Özlem Biçen; Ersöz, Arzu; Öziç, Cem; Kılıç, Volkan

    2015-01-01

    As one of the most important components copying DNA molecules in the PCR system, Taq DNA polymerase has a high processivity, however, lower persistence when compared to other polymerases. Studies for the enhancement of stability of Taq DNA polymerase is of great importance. The present study describes the integration of PCR application of cross-linked Taq DNA polymerase enzyme in a nanochamber using a ruthenium based MATyr-Ru-(bipyr)2)-MATyr monomer hapten prepared by photosensitive microemulsion polymerization technique. The conjugation and cross-linking have achieved using our previously invented Aminoacid (monomer) Decorated and Light Underpining Conjugation Approach (ANADOLUCA) method. Microemulsion polymerization media has prepared by dispersing PVA in deionized water. The nano enzyme could be easily prepared at room temperature, in daylight and under nitrogen atmosphere using ruthenium based photosensitive cross-linking agents. The nano copy machine particles (nano Taq DNA polymerase) are very stable against more acidic or more basic conditions, high temperatures and could be reusable in PCR analysis for many times without any deformation in their structures. PMID:25376531

  17. 14-3-3sigma is a cruciform DNA binding protein and associates in vivo with origins of DNA replication.

    PubMed

    Alvarez, David; Novac, Olivia; Callejo, Mario; Ruiz, Marcia T; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2002-01-01

    A human cruciform binding protein (CBP) was previously shown to bind to cruciform DNA in a structure-specific manner and be a member of the 14-3-3 protein family. CBP had been found to contain the 14-3-3 isoforms beta, gamma, epsilon, and zeta. Here, we show by Western blot analysis that the CBP-cruciform DNA complex eluted from band-shift polyacrylamide gels also contains the 14-3-3sigma isoform, which is present in HeLa cell nuclear extracts. An antibody specific for the 14-3-3sigma isoform was able to interfere with the formation of the CBP-cruciform DNA complex. The effect of the same anti-14-3-3sigma antibody in the in vitro replication of p186, a plasmid containing the minimal replication origin of the monkey origin ors8, was also analyzed. Pre-incubation of total HeLa cell extracts with this antibody decreased p186 in vitro replication to approximately 30% of control levels, while non-specific antibodies had no effect. 14-3-3sigma was found to associate in vivo with the monkey origins of DNA replication ors8 and ors12 in a cell cycle-dependent manner, as assayed by a chromatin immunoprecipitation (ChIP) assay that involved formaldehyde cross-linking, followed by immunoprecipitation with anti-14-3-3sigma antibody and quantitative PCR. The association of 14-3-3sigma with the replication origins was maximal at the G(1)/S phase. The results indicate that 14-3-3sigma is an origin binding protein involved in the regulation of DNA replication via cruciform DNA binding. PMID:12244572

  18. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools

    PubMed Central

    Waisertreiger, Irina S.-R.; Liston, Victoria G.; Menezes, Miriam R.; Kim, Hyun-Min; Lobachev, Kirill S.; Stepchenkova, Elena I.; Tahirov, Tahir H.; Rogozin, Igor B.; Pavlov, Youri. I.

    2014-01-01

    The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ε, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair. PMID:23055184

  19. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC.

    PubMed

    Kong, Daochun; Coleman, Thomas R; DePamphilis, Melvin L

    2003-07-01

    Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe. PMID:12840006

  20. APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication

    PubMed Central

    Mertz, Tony; Malc, Ewa P.; Mieczkowski, Piotr A.; Roberts, Steven A.

    2016-01-01

    Summary APOBEC family cytidine deaminases have been recently implicated as powerful mutators of cancer genomes. How APOBECs, which are ssDNA specific enzymes, gain access to chromosomal DNA is unclear. To ascertain the chromosomal ssDNA substrates of the APOBECs, we expressed APOBEC3A and APOBEC3B, the two most probable APOBECs mediating cancer mutagenesis, in a yeast model system. We demonstrate, using mutation reporters and whole genome sequencing, that APOBEC3A- and APOBEC3B-induced mutagenesis primarily results from the deamination of the lagging strand template during DNA replication. Moreover, our results indicate that both genetic deficiencies in replication fork-stabilizing proteins and chemical induction of replication stress greatly augment the mutagenesis of APOBEC3A and 3B. Taken together, these results strongly indicate that ssDNA formed during DNA lagging strand synthesis is a major substrate for APOBECs and may be the principal substrate in human cancers experiencing replication stress. PMID:26832400

  1. Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin

    SciTech Connect

    Aller, Pierre; Ye, Yu; Wallace, Susan S.; Burrows, Cynthia J.; Doubli, Sylvie

    2010-04-12

    The oxidation of guanine generates one of the most common DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). The further oxidation of 8-oxoG can produce either guanidinohydantoin (Gh) in duplex DNA or spiroiminodihydantoin (Sp) in nucleosides and ssDNA. Although Gh can be a strong block for replicative DNA polymerases such as RB69 DNA polymerase, this lesion is also mutagenic: DNA polymerases bypass Gh by preferentially incorporating a purine with a slight preference for adenine, which results in G {center_dot} C {yields} T {center_dot} A or G {center_dot} C {yields} C {center_dot} G transversions. The 2.15 {angstrom} crystal structure of the replicative RB69 DNA polymerase in complex with DNA containing Gh reveals that Gh is extrahelical and rotated toward the major groove. In this conformation Gh is no longer in position to serve as a templating base for the incorporation of an incoming nucleotide. This work also constitutes the first crystallographic structure of Gh, which is stabilized in the R configuration in the two polymerase/DNA complexes present in the crystal asymmetric unit. In contrast to 8-oxoG, Gh is found in a high syn conformation in the DNA duplex and therefore presents the same hydrogen bond donor and acceptor pattern as thymine, which explains the propensity of DNA polymerases to incorporate a purine opposite Gh when bypass occurs.

  2. A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases.

    PubMed

    Sun, Fei; Huang, Li

    2016-07-01

    Euryarchaeota and Crenarchaeota, the two main lineages of the domain Archaea, encode different chromatin proteins and differ in the use of replicative DNA polymerases. Crenarchaea possess a single family B DNA polymerase (PolB), which is capable of strand displacement modulated by the chromatin proteins Cren7 and Sul7d. Euryarchaea have two distinct replicative DNA polymerases, PolB and PolD, a family D DNA polymerase. Here we characterized the strand displacement activities of PolB and PolD from the hyperthermophilic euryarchaeon Pyrococcus furiosus and investigated the influence of HPfA1, a homolog of eukaryotic histones from P. furiosus, on these activities. We showed that both PolB and PolD were efficient in strand displacement. HPfA1 inhibited DNA strand displacement by both DNA polymerases but exhibited little effect on the displacement of a RNA strand annealed to single-stranded template DNA. This is consistent with the finding that HPfA1 bound more tightly to double-stranded DNA than to a RNA:DNA hybrid. Our results suggest that, although crenarchaea and euryarchaea differ in chromosomal packaging, they share similar mechanisms in modulating strand displacement by DNA polymerases during lagging strand DNA synthesis. PMID:27333783

  3. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome.

    PubMed Central

    Heilbronn, R; zur Hausen, H

    1989-01-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of six HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensible for SV40 DNA amplification. Our results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo. Images PMID:2547992

  4. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    SciTech Connect

    Heilbronn, R.; zur Hausen, H. )

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  5. Inhibition of Rift Valley Fever Virus Replication and Perturbation of Nucleocapsid-RNA Interactions by Suramin

    PubMed Central

    Ellenbecker, Mary; Lanchy, Jean-Marc

    2014-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. There are currently no proven safe and effective treatment options for RVFV infection. Inhibition of RNA binding to RVFV nucleocapsid protein (N) represents an attractive antiviral therapeutic strategy because several essential steps in the RVFV replication cycle involve N binding to viral RNA. In this study, we demonstrate the therapeutic potential of the drug suramin by showing that it functions well as an inhibitor of RVFV replication at multiple stages in human cell culture. Suramin has been used previously to treat trypanosomiasis in Africa. We characterize the dynamic and cooperative nature of N-RNA binding interactions and the dissociation of high-molecular-mass ribonucleoprotein complexes using suramin, which we previously identified as an N-RNA binding inhibitor in a high-throughput screen. Finally, we elucidate the molecular mechanism used by suramin in vitro to disrupt both specific and nonspecific binding events important for ribonucleoprotein formation. PMID:25267680

  6. Analysis of the kinetic hairpin transfer model for parvoviral DNA replication.

    PubMed

    Tyson, J J; Chen, K C; Lederman, M; Bates, R C

    1990-05-22

    All linear DNA molecules face special problems in replicating their 5' ends, as DNA polymerases add nucleotides only to pre-existing strands with free 3'-OH groups. Parvoviruses, a group of small animal viruses with a linear single-stranded DNA genome, cope with this problem by having palindromic terminal sequences that can fold back on themselves to form hairpin structures essential in priming DNA replication. The 3' terminal sequence that initiates replication becomes reversed in orientation during the process, and if the palindrome is imperfect, two different, reverse-complementary terminal sequences are generated. The relative abundances of the terminal sequence orientations at each end of the DNA molecules can be measured and give information about the replication process. From such clues, we developed a "kinetic hairpin transfer model" based on differential rates of hairpin formation and inversion processes depending on the conformations of the 3' termini. Numerical studies showed that this simple idea can account for the diverse pattern of DNA distributions observed in the family Parvoviridae. In this paper, we simplify the model to a set of coupled linear first-order ordinary differential equations in order to delineate its essential properties by Perron-Frobenius theory. Secondly, we examine our assumption of linear kinetics by modeling enzyme catalysis of the component steps of the hairpin transfer process. We show that the rate-determining step of the process is the binding of initiation complex to the self-priming hairpin structures. Furthermore, we find that if the replication machinery is saturated by DNA substrate late in an infection, the differential equations become non-linear but the steady-state DNA distribution is still given by the solution of our original linear equations. PMID:2165200

  7. Rfc4 Interacts with Rpa1 and Is Required for Both DNA Replication and DNA Damage Checkpoints in Saccharomyces cerevisiae

    PubMed Central

    Kim, Hee-Sook; Brill, Steven J.

    2001-01-01

    The large subunit of replication protein A (Rpa1) consists of three single-stranded DNA binding domains and an N-terminal domain (Rpa1N) of unknown function. To determine the essential role of this domain we searched for mutations that require wild-type Rpa1N for viability in yeast. A mutation in RFC4, encoding a small subunit of replication factor C (RFC), was found to display allele-specific interactions with mutations in the gene encoding Rpa1 (RFA1). Mutations that map to Rpa1N and confer sensitivity to the DNA synthesis inhibitor hydroxyurea, such as rfa1-t11, are lethal in combination with rfc4-2. The rfc4-2 mutant itself is sensitive to hydroxyurea, and like rfc2 and rfc5 strains, it exhibits defects in the DNA replication block and intra-S checkpoints. RFC4 and the DNA damage checkpoint gene RAD24 were found to be epistatic with respect to DNA damage sensitivity. We show that the rfc4-2 mutant is defective in the G1/S DNA damage checkpoint response and that both the rfc4-2 and rfa1-t11 strains are defective in the G2/M DNA damage checkpoint. Thus, in addition to its essential role as part of the clamp loader in DNA replication, Rfc4 plays a role as a sensor in multiple DNA checkpoint pathways. Our results suggest that a physical interaction between Rfc4 and Rpa1N is required for both roles. PMID:11340166

  8. Insights into the Determination of the Templating Nucleotide at the Initiation of φ29 DNA Replication.

    PubMed

    del Prado, Alicia; Lázaro, José M; Longás, Elisa; Villar, Laurentino; de Vega, Miguel; Salas, Margarita

    2015-11-01

    Bacteriophage φ29 from Bacillus subtilis starts replication of its terminal protein (TP)-DNA by a protein-priming mechanism. To start replication, the DNA polymerase forms a heterodimer with a free TP that recognizes the replication origins, placed at both 5' ends of the linear chromosome, and initiates replication using as primer the OH-group of Ser-232 of the TP. The initiation of φ29 TP-DNA replication mainly occurs opposite the second nucleotide at the 3' end of the template. Earlier analyses of the template position that directs the initiation reaction were performed using single-stranded and double-stranded oligonucleotides containing the replication origin sequence without the parental TP. Here, we show that the parental TP has no influence in the determination of the nucleotide used as template in the initiation reaction. Previous studies showed that the priming domain of the primer TP determines the template position used for initiation. The results obtained here using mutant TPs at the priming loop where Ser-232 is located indicate that the aromatic residue Phe-230 is one of the determinants that allows the positioning of the penultimate nucleotide at the polymerization active site to direct insertion of the initiator dAMP during the initiation reaction. The role of Phe-230 in limiting the internalization of the template strand in the polymerization active site is discussed. PMID:26400085

  9. Architecture and Conservation of the Bacterial DNA Replication Machinery, an Underexploited Drug Target

    PubMed Central

    Robinson, Andrew; Causer, Rebecca J; Dixon, Nicholas E

    2012-01-01

    New antibiotics with novel modes of action are required to combat the growing threat posed by multi-drug resistant bacteria. Over the last decade, genome sequencing and other high-throughput techniques have provided tremendous insight into the molecular processes underlying cellular functions in a wide range of bacterial species. We can now use these data to assess the degree of conservation of certain aspects of bacterial physiology, to help choose the best cellular targets for development of new broad-spectrum antibacterials. DNA replication is a conserved and essential process, and the large number of proteins that interact to replicate DNA in bacteria are distinct from those in eukaryotes and archaea; yet none of the antibiotics in current clinical use acts directly on the replication machinery. Bacterial DNA synthesis thus appears to be an underexploited drug target. However, before this system can be targeted for drug design, it is important to understand which parts are conserved and which are not, as this will have implications for the spectrum of activity of any new inhibitors against bacterial species, as well as the potential for development of drug resistance. In this review we assess similarities and differences in replication components and mechanisms across the bacteria, highlight current progress towards the discovery of novel replication inhibitors, and suggest those aspects of the replication machinery that have the greatest potential as drug targets. PMID:22206257

  10. A new structural framework for integrating replication protein A into DNA processing machinery

    SciTech Connect

    Brosey, Chris; Yan, Chunli; Tsutakawa, Susan; Heller, William; Rambo, Robert; Tainer, John; Ivanov, Ivaylo; Chazin, Walter

    2013-01-17

    By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA's DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA's DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.

  11. Repair Replication and Photorepair of DNA in Larvae of DROSOPHILA MELANOGASTER

    PubMed Central

    Boyd, James B.; Presley, Jack M.

    1974-01-01

    Repair replication of DNA has been studied in first instar larvae of Drosophila melanogaster with isopycnic centrifugation techniques. Larvae were fed BUdR, FUdR, streptomycin, penicillin, and Fungazone for two to four hours prior to exposure to UV, X-rays, MMS, or EMS. Feeding was continued for four hours in the presence of 3HBUdR and DNA was isolated from whole larvae. Repair replication is stimulated by each of these agents. MMS is about 10 times as potent as EMS in stimulating repair synthesis. A dose of 200 ergs/mm2 largely saturates the level of repair replication observed after UV irradiation. Repair replication rises between 0 and 80,000 R of X-rays before falling off. Semiconservative synthesis is seriously inhibited above a dose of 40,000 R of X-rays. Photorepair has been detected as a reduction in repair synthesis resulting from post-irradiation exposure to photoreactivating light. The same treatment has no detectable effect on X-ray-stimulated repair replication. Repair replication is insensitive to the presence of caffeine or hydroxyurea during the final incubation, although semiconservative synthesis is strongly inhibited by these agents. A mixture of BUdR and 3HTdR can be used to replace 3HBUdR in detecting repair replication. PMID:4371150

  12. Tim/Timeless, a member of the replication fork protection complex, operates with the Warsaw breakage syndrome DNA helicase DDX11 in the same fork recovery pathway.

    PubMed

    Calì, Federica; Bharti, Sanjay Kumar; Perna, Roberta Di; Brosh, Robert M; Pisani, Francesca M

    2016-01-29

    We present evidence that Tim establishes a physical and functional interaction with DDX11, a super-family 2 iron-sulfur cluster DNA helicase genetically linked to the chromosomal instability disorder Warsaw breakage syndrome. Tim stimulates DDX11 unwinding activity on forked DNA substrates up to 10-fold and on bimolecular anti-parallel G-quadruplex DNA structures and three-stranded D-loop approximately 4-5-fold. Electrophoretic mobility shift assays revealed that Tim enhances DDX11 binding to DNA, suggesting that the observed stimulation derives from an improved ability of DDX11 to interact with the nucleic acid substrate. Surface plasmon resonance measurements indicate that DDX11 directly interacts with Tim. DNA fiber track assays with HeLa cells exposed to hydroxyurea demonstrated that Tim or DDX11 depletion significantly reduced replication fork progression compared to control cells; whereas no additive effect was observed by co-depletion of both proteins. Moreover, Tim and DDX11 are epistatic in promoting efficient resumption of stalled DNA replication forks in hydroxyurea-treated cells. This is consistent with the finding that association of the two endogenous proteins in the cell extract chromatin fraction is considerably increased following hydroxyurea exposure. Overall, our studies provide evidence that Tim and DDX11 physically and functionally interact and act in concert to preserve replication fork progression in perturbed conditions. PMID:26503245

  13. Intensive DNA Replication and Metabolism during the Lag Phase in Cyanobacteria

    PubMed Central

    Watanabe, Satoru; Ohbayashi, Ryudo; Kanesaki, Yu; Saito, Natsumi; Chibazakura, Taku; Soga, Tomoyoshi; Yoshikawa, Hirofumi

    2015-01-01

    Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases. PMID:26331851

  14. Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes.

    PubMed Central

    Uprichard, S L; Knipe, D M

    1996-01-01

    Herpes simplex virus type 1 mutants with certain lesions in the ICP27 gene show a 5- to 10-fold reduction in viral DNA synthesis. To determine how ICP27 promotes amplification of viral DNA, we examined the synthesis, accumulation, and stability of the essential viral replication proteins and steady-state levels of the replication gene transcripts throughout the course of ICP27 mutant virus infections. These studies reveal that in the absence of ICP27, expression of the UL5, UL8, UL52, UL9, UL42, and UL30 genes is significantly reduced at the level of mRNA accumulation. In contrast to that of these beta genes, ICP8 expression is unaltered in mutant virus-infected cells, indicating that ICP27 selectively stimulates only a subset of herpes simplex virus beta genes. Analysis of multiple ICP27 mutant viruses indicates a quantitative correlation between the ability of these mutants to replicate viral DNA and the level of replication proteins produced by each mutant. Therefore, we conclude that the primary defect responsible for restricted viral DNA synthesis in cells infected with ICP27 mutants is insufficient expression of most of the essential replication genes. Of further interest, this analysis also provides new information about the structure of the UL52 gene transcripts. PMID:8627723

  15. Replication of hepatitis delta virus RNA in mice after intramuscular injection of plasmid DNA.

    PubMed Central

    Polo, J M; Lim, B; Govindarajan, S; Lai, M M

    1995-01-01

    To establish a readily manipulable small-animal system for the study of human hepatitis delta virus (HDV) replication in vivo, plasmid DNAs containing head-to-tail cDNA dimers of HDV were inoculated intramuscularly into mice. Genomic-sense HDV RNA was detected in the injected muscle within 1 week and increased to substantial levels by week 7 postinjection. The intramuscular accumulation of HDV RNA was determined to be the direct result of viral RNA replication by three lines of evidence: (i) injected tissues also accumulated antigenomic-sense HDV RNA, (ii) plasmid DNA that synthesized primary transcripts of antigenomic sense also led to the accumulation of genomic-sense HDV RNA, and (iii) injection of a cDNA dimer defective in antigenomic RNA cleavage failed to produce detectable HDV RNA in muscle. Immunohistochemical analysis of injected muscle demonstrated the presence and nuclear localization of hepatitis delta antigen in myocytes. Finally, sera from DNA-injected mice contained antibodies specific for delta antigen, indicating the induction of an immunological response to the intracellularly expressed antigen. These findings demonstrated the ability of HDV RNA to replicate in skeletal muscle and provide a useful system for the study of HDV replication, delta antigen processing, and its presentation to the immune system in vivo. Furthermore, this system offers an efficiently replicating RNA as a potential vehicle for in vivo gene transfer. PMID:7609095

  16. THE FORK AND THE KINASE: A DNA REPLICATION TALE FROM A CHK1 PERSPECTIVE

    PubMed Central

    González Besteiro, Marina A.; Gottifredi, Vanesa

    2014-01-01

    Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. The checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged-DNA. Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Such findings unveil a puzzling connection between Chk1 and DNA-lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, the multifaceted and versatile functions of Chk1 at ongoing forks and replication origins determine the extent and quality of the cellular response to replication stress. PMID:25795119

  17. The Escherichia coli Fis protein prevents initiation of DNA replication from oriC in vitro.

    PubMed Central

    Wold, S; Crooke, E; Skarstad, K

    1996-01-01

    Fis protein participates in the normal control of chromosomal replication in Escherichia coli. However, the mechanism by which it executes its effect is largely unknown. We demonstrate an inhibitory influence of purified Fis protein on replication from oriC in vitro. Fis inhibits DNA synthesis equally well in replication systems either dependent upon or independent of RNA polymerase, even when the latter is stimulated by the presence of HU or IHF. The extent of inhibition by Fis is modulated by the concentrations of DnaA protein and RNA polymerase; the more limiting the amounts of these, the more severe the inhibition by Fis. Thus, the level of inhibition seems to depend on the ease with which the open complex can be formed. Fis-mediated inhibition of DNA replication does not depend on a functional primary Fis binding site between DnaA boxes R2 and R3 in oriC, as mutations that cause reduced binding of Fis to this site do not affect the degree of inhibition. The data presented suggest that Fis prevents formation of an initiation-proficient structure at oriC by forming an alternative, initiation-preventive complex. This indicates a negative role for Fis in the regulation of replication initiation. PMID:8836178

  18. DNA repair and replication fork helicases are differentially affected by alkyl phosphotriester lesion.

    PubMed

    Suhasini, Avvaru N; Sommers, Joshua A; Yu, Stephen; Wu, Yuliang; Xu, Ting; Kelman, Zvi; Kaplan, Daniel L; Brosh, Robert M

    2012-06-01

    DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions. PMID:22500020

  19. High resolution analysis of the timing of replication of specific DNA sequences during S phase of mammalian cells.

    PubMed Central

    D'Andrea, A D; Tantravahi, U; Lalande, M; Perle, M A; Latt, S A

    1983-01-01

    A new method, utilizing selective photodegradation of 5-bromo-deoxyuridine (BUdR)-substituted DNA and flow cytometry, has been developed for analyzing the timing of replication of specific DNA sequences. Chemically synchronized Chinese hamster ovary cells were given a pulse of the deoxythymidine analogue, BUdR, at different times during S phase, and flow sorted according to DNA content, before DNA isolation. Newly-replicated, unifilarly BUdR-substituted DNA was selectively degraded by treatment with 33258 Hoechst plus near UV light followed by S1 nuclease digestion; the resistant DNA was analyzed for its content of 18s and 28s rDNA or dihydrofolate reductase (DHFR) sequences via Southern blot analysis. Both the rDNA and DHFR sequences were found to replicate almost entirely during the first quarter of S phase. The approach described should have general utility for analyzing replication kinetics of specific DNA sequences in mammalian cells. Images PMID:6192392

  20. Spermine Attenuates the Action of the DNA Intercalator, Actinomycin D, on DNA Binding and the Inhibition of Transcription and DNA Replication

    PubMed Central

    Chen, Jeremy J. W.; Wu, Wen-Lin; Yuann, Jeu-Ming P.; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion. PMID:23144800

  1. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    SciTech Connect

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  2. Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis.

    PubMed Central

    Yoon, Y; Sanchez, J A; Brun, C; Huberman, J A

    1995-01-01

    New techniques for mapping mammalian DNA replication origins are needed. We have modified the existing nascent-strand size analysis technique (L. Vassilev and E.M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989) to provide an independent means of studying replication initiation sites. We call the new method nascent-strand abundance analysis. We confirmed the validity of this method with replicating simian virus 40 DNA as a model. We then applied nascent-strand abundance and nascent-strand size analyses to mapping of initiation sites in human (HeLa) ribosomal DNA (rDNA), a region previously examined exclusively by two-dimensional gel electrophoresis methods (R.D. Little, T.H.K. Platt, and C.L. Schildkraut, Mol. Cell. Biol. 13:6600-6613, 1993). Our results partly confirm those obtained by two-dimensional gel electrophoresis techniques. Both studies suggest that replication initiates at relatively high frequency a few kilobase pairs upstream of the transcribed region and that many additional low-frequency initiation sites are distributed through most of the remainder of the ribosomal DNA repeat unit. PMID:7739533

  3. DNA polymerase η modulates replication fork progression and DNA damage responses in platinum-treated human cells

    NASA Astrophysics Data System (ADS)

    Sokol, Anna M.; Cruet-Hennequart, Séverine; Pasero, Philippe; Carty, Michael P.

    2013-11-01

    Human cells lacking DNA polymerase η (polη) are sensitive to platinum-based cancer chemotherapeutic agents. Using DNA combing to directly investigate the role of polη in bypass of platinum-induced DNA lesions in vivo, we demonstrate that nascent DNA strands are up to 39% shorter in human cells lacking polη than in cells expressing polη. This provides the first direct evidence that polη modulates replication fork progression in vivo following cisplatin and carboplatin treatment. Severe replication inhibition in individual platinum-treated polη-deficient cells correlates with enhanced phosphorylation of the RPA2 subunit of replication protein A on serines 4 and 8, as determined using EdU labelling and immunofluorescence, consistent with formation of DNA strand breaks at arrested forks in the absence of polη. Polη-mediated bypass of platinum-induced DNA lesions may therefore represent one mechanism by which cancer cells can tolerate platinum-based chemotherapy.

  4. Conversion of Topoisomerase I Cleavage Complexes on the Leading Strand of Ribosomal DNA into 5′-Phosphorylated DNA Double-Strand Breaks by Replication Runoff

    PubMed Central

    Strumberg, Dirk; Pilon, André A.; Smith, Melanie; Hickey, Robert; Malkas, Linda; Pommier, Yves

    2000-01-01

    Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3′ DNA ends are extended by DNA polymerase in vivo closely to the 5′ ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5′ ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5′ kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA. PMID:10805740

  5. How MCM loading and spreading specify eukaryotic DNA replication initiation sites

    PubMed Central

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  6. DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair.

    PubMed

    Ying, Songmin; Chen, Zhihui; Medhurst, Annette L; Neal, Jessica A; Bao, Zhengqiang; Mortusewicz, Oliver; McGouran, Joanna; Song, Xinming; Shen, Huahao; Hamdy, Freddie C; Kessler, Benedikt M; Meek, Katheryn; Helleday, Thomas

    2016-03-01

    A series of critical pathways are responsible for the detection, signaling, and restart of replication forks that encounter blocks during S-phase progression. Small base lesions may obstruct replication fork progression and processing, but the link between repair of small lesions and replication forks is unclear. In this study, we investigated a hypothesized role for DNA-PK, an important enzyme in DNA repair, in cellular responses to DNA replication stress. The enzyme catalytic subunit DNA-PKcs was phosphorylated on S2056 at sites of stalled replication forks in response to short hydroxyurea treatment. Using DNA fiber experiments, we found that catalytically active DNA-PK was required for efficient replication restart of stalled forks. Furthermore, enzymatically active DNA-PK was also required for PARP-dependent recruitment of XRCC1 to stalled replication forks. This activity was enhanced by preventing Mre11-dependent DNA end resection, suggesting that XRCC1 must be recruited early to an unresected stalled fork. We also found that XRCC1 was required for effective restart of a subset of stalled replication forks. Overall, our work suggested that DNA-PK and PARP-dependent recruitment of XRCC1 is necessary to effectively protect, repair, and restart stalled replication forks, providing new insight into how genomic stability is preserved. Cancer Res; 76(5); 1078-88. ©2015 AACR. PMID:26603896

  7. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA

    PubMed Central

    Kühl, Inge; Miranda, Maria; Posse, Viktor; Milenkovic, Dusanka; Mourier, Arnaud; Siira, Stefan J.; Bonekamp, Nina A.; Neumann, Ulla; Filipovska, Aleksandra; Polosa, Paola Loguercio; Gustafsson, Claes M.; Larsson, Nils-Göran

    2016-01-01

    Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA+ Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression. PMID:27532055

  8. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA.

    PubMed

    Kühl, Inge; Miranda, Maria; Posse, Viktor; Milenkovic, Dusanka; Mourier, Arnaud; Siira, Stefan J; Bonekamp, Nina A; Neumann, Ulla; Filipovska, Aleksandra; Polosa, Paola Loguercio; Gustafsson, Claes M; Larsson, Nils-Göran

    2016-08-01

    Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression. PMID:27532055

  9. The evolution of genes within genes and the control of DNA replication in microviruses.

    PubMed

    Doore, Sarah M; Baird, Cameron D; Roznowski, Aaron P; Fane, Bentley A

    2014-06-01

    Single-stranded DNA(ssDNA) viral life cycles must balance double-stranded DNA (dsDNA) and ssDNA biosynthesis. Previously published in vitro results suggest that microvirus C and host cell SSB proteins play antagonistic roles to achieve this balance. To investigate this in vivo, microvirus DNA replication was characterized in cells expressing cloned C or ssb genes, which would presumably alter the C:SSB protein ratios. Representatives of each microvirus clade (φX174, G4, and α3) were used in these studies. α3 DNA replication was significantly more complex. Results suggested that the recognized α3 C gene (C(S): small) is one of two C genes. A larger 5' extended gene could be translated from an upstream GTG start codon (C(B): big). Wild-type α3 acquired resistance to elevated SSB levels by mutations that exclusively frameshifted the C(B) reading frame, whereas mutations in the origin of replication conferred resistance to elevated C protein levels. Expression of either the cloned C(B) or C(S) gene complemented am(C) mutants, demonstrating functional redundancy. When the C(S) start codon was eliminated, strains were only viable if an additional amber mutation was placed in gene C and propagated in an informational suppressing host. Thus, C(B) protein likely reaches toxic levels in the absence of C(S) translation. This phenomenon may have driven the evolution of the C(S) gene within the larger C(B) gene and could constitute a unique mechanism of regulation. Furthermore, cross-complementation data suggested that interactions between the α3 C and other viral proteins have evolved enough specificity to biochemically isolate its DNA replication from G4 and φX174. PMID:24600050

  10. Cellular transcription factors enhance herpes simplex virus type 1 oriS-dependent DNA replication.

    PubMed

    Nguyen-Huynh, A T; Schaffer, P A

    1998-05-01

    The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains three binding sites for the viral origin binding protein (OBP) flanked by transcriptional regulatory elements of the immediate-early genes encoding ICP4 and ICP22/47. To assess the role of flanking sequences in oriS function, plasmids containing oriS and either wild-type or mutant flanking sequences were tested in transient DNA replication assays. Although the ICP4 and ICP22/47 regulatory regions were shown to enhance oriS function, most individual elements in these regions, including the VP16-responsive TAATGARAT elements, were found to be dispensable for oriS function. In contrast, two oriS core-adjacent regulatory (Oscar) elements, OscarL and OscarR, at the base of the oriS palindrome were shown to enhance oriS function significantly and additively. Specifically, mutational disruption of either element reduced oriS-dependent DNA replication by 60 to 70%, and disruption of both elements reduced replication by 90%. The properties of protein-DNA complexes formed in gel mobility shift assays using uninfected and HSV-1-infected Vero cell nuclear extracts demonstrated that both OscarL and OscarR are binding sites for cellular proteins. Whereas OscarR does not correspond to the consensus binding site of any known transcription factor, OscarL contains a consensus binding site for the transcription factor Sp1. Gel mobility shift and supershift experiments using antibodies directed against members of the Sp1 family of transcription factors demonstrated the presence of Sp1 and Sp3, but not Sp2 or Sp4, in the protein-DNA complexes formed at OscarL. The abilities of OscarL and OscarR to bind their respective cellular proteins correlated directly with the efficiency of oriS-dependent DNA replication. Cooperative interactions between the Oscar-binding factors and proteins binding to adjacent OBP binding sites were not observed. Notably, Oscar element mutations that impaired oriS-dependent DNA

  11. Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation

    PubMed Central

    Marques, Catarina A.; Tiengwe, Calvin; Lemgruber, Leandro; Damasceno, Jeziel D.; Scott, Alan; Paape, Daniel; Marcello, Lucio; McCulloch, Richard

    2016-01-01

    Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying. PMID:26951375

  12. Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation.

    PubMed

    Marques, Catarina A; Tiengwe, Calvin; Lemgruber, Leandro; Damasceno, Jeziel D; Scott, Alan; Paape, Daniel; Marcello, Lucio; McCulloch, Richard

    2016-06-01

    Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying. PMID:26951375

  13. Nucleotides in the polyomavirus enhancer that control viral transcription and DNA replication.

    PubMed Central

    Tang, W J; Berger, S L; Triezenberg, S J; Folk, W R

    1987-01-01

    The polyomavirus enhancer is required in cis for high-level expression of the viral early region and for replication of the viral genome. We introduced multiple mutations in the enhancer which reduced transcription and DNA replication. Polyomaviruses with these mutant enhancers formed very small plaques in whole mouse embryo cells. Revertants of the viral mutants were isolated and characterized. Reversion occurred by any of the following events: restoration of guanosines at nucleotide (nt) 5134 and nt 5140 within the adenovirus 5 E1A enhancer core AGGAAGTGACT; acquisition of an A----G mutation at nt 5258, which is the same mutation that enables polyomavirus to grow in embryonal carcinoma F9 cells; duplication of mutated sequences between nt 5146 and 5292 (including sequences homologous with immunoglobulin G, simian virus 40, and bovine papillomavirus enhancer elements). Reversion restored both the replicative and transcriptional functions of the viruses. Revertants that acquired the F9 mutation at nt 5258 grew at least 20-fold better than the original mutant in whole mouse embryo cells, but replicated only marginally better than the original mutant in 3T6 cells. Viruses with a reversion of the mutation at nt 5140 replicated equally well in both types of cells. Since individual nucleotides in the polyomavirus enhancer simultaneously altered DNA replication and transcription in specific cell types, it is likely that these processes rely upon a common element, such as an enhancer-binding protein. Images PMID:3037332

  14. Interaction of Chk1 with Treslin Negatively Regulates the Initiation of Chromosomal DNA Replication

    PubMed Central

    Guo, Cai; Kumagai, Akiko; Schlacher, Katharina; Shevchenko, Anna; Shevchenko, Andrej; Dunphy, William G.

    2014-01-01

    SUMMARY Treslin helps to trigger the initiation of DNA replication by promoting integration of Cdc45 into the replicative helicase. Treslin is a key positive-regulatory target of cell cycle control mechanisms; activation of Treslin by cyclin-dependent kinase is essential for the initiation of replication. Here we demonstrate that Treslin is also a critical locus for negative regulatory mechanisms that suppress initiation. We found that the checkpoint-regulatory kinase Chk1 associates specifically with a C-terminal domain of Treslin (designated TRCT). Mutations in the TRCT domain abolish binding of Chk1 to Treslin and thereby eliminate Chk1-catalyzed phosphorylation of Treslin. Significantly, abolition of the Treslin-Chk1 interaction results in elevated initiation of chromosomal DNA replication during an unperturbed cell cycle, which reveals a function for Chk1 during a normal S-phase. This increase is due to enhanced loading of Cdc45 onto potential replication origins. These studies provide important insights into how vertebrate cells orchestrate proper initiation of replication. PMID:25557548

  15. Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication.

    PubMed

    Lacasse, Jonathan J; Schang, Luis M

    2012-10-01

    Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection. PMID:22875975

  16. Synthesis of Site-Specific DNA–Protein Conjugates and Their Effects on DNA Replication

    PubMed Central

    2015-01-01

    DNA–protein cross-links (DPCs) are bulky, helix-distorting DNA lesions that form in the genome upon exposure to common antitumor drugs, environmental/occupational toxins, ionizing radiation, and endogenous free-radical-generating systems. As a result of their considerable size and their pronounced effects on DNA–protein interactions, DPCs can interfere with DNA replication, transcription, and repair, potentially leading to mutagenesis, genotoxicity, and cytotoxicity. However, the biological consequences of these ubiquitous lesions are not fully understood due to the difficulty of generating DNA substrates containing structurally defined, site-specific DPCs. In the present study, site-specific cross-links between the two biomolecules were generated by copper-catalyzed [3 + 2] Huisgen cycloaddition (click reaction) between an alkyne group from 5-(octa-1,7-diynyl)-uracil in DNA and an azide group within engineered proteins/polypeptides. The resulting DPC substrates were subjected to in vitro primer extension in the presence of human lesion bypass DNA polymerases η, κ, ν, and ι. We found that DPC lesions to the green fluorescent protein and a 23-mer peptide completely blocked DNA replication, while the cross-link to a 10-mer peptide was bypassed. These results indicate that the polymerases cannot read through the larger DPC lesions and further suggest that proteolytic degradation may be required to remove the replication block imposed by bulky DPC adducts. PMID:24918113

  17. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts.

    PubMed Central

    Murakami, H; Nurse, P

    2000-01-01

    The cell cycle checkpoint mechanisms ensure the order of cell cycle events to preserve genomic integrity. Among these, the DNA-replication and DNA-damage checkpoints prevent chromosome segregation when DNA replication is inhibited or DNA is damaged. Recent studies have identified an outline of the regulatory networks for both of these controls, which apparently operate in all eukaryotes. In addition, it appears that these checkpoints have two arrest points, one is just before entry into mitosis and the other is prior to chromosome separation. The former point requires the central cell-cycle regulator Cdc2 kinase, whereas the latter involves several key regulators and substrates of the ubiquitin ligase called the anaphase promoting complex. Linkages between these cell-cycle regulators and several key checkpoint proteins are beginning to emerge. Recent findings on post-translational modifications and protein-protein interactions of the checkpoint proteins provide new insights into the checkpoint responses, although the functional significance of these biochemical properties often remains unclear. We have reviewed the molecular mechanisms acting at the DNA-replication and DNA-damage checkpoints in the fission yeast Schizosaccharomyces pombe, and the modifications of these controls during the meiotic cell cycle. We have made comparisons with the controls in fission yeast and other organisms, mainly the distantly related budding yeast. PMID:10861204

  18. Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues.

    PubMed

    Kawakami, Hironori; Ohashi, Eiji; Kanamoto, Shota; Tsurimoto, Toshiki; Katayama, Tsutomu

    2015-01-01

    In eukaryotes, the origin recognition complex (ORC) heterohexamer preferentially binds replication origins to trigger initiation of DNA replication. Crystallographic studies using eubacterial and archaeal ORC orthologs suggested that eukaryotic ORC may bind to origin DNA via putative winged-helix DNA-binding domains and AAA+ ATPase domains. However, the mechanisms how eukaryotic ORC recognizes origin DNA remain elusive. Here, we show in budding yeast that Lys-362 and Arg-367 residues of the largest subunit (Orc1), both outside the aforementioned domains, are crucial for specific binding of ORC to origin DNA. These basic residues, which reside in a putative disordered domain, were dispensable for interaction with ATP and non-specific DNA sequences, suggesting a specific role in recognition. Consistent with this, both residues were required for origin binding of Orc1 in vivo. A truncated Orc1 polypeptide containing these residues solely recognizes ARS sequence with low affinity and Arg-367 residue stimulates sequence specific binding mode of the polypeptide. Lys-362 and Arg-367 residues of Orc1 are highly conserved among eukaryotic ORCs, but not in eubacterial and archaeal orthologs, suggesting a eukaryote-specific mechanism underlying recognition of replication origins by ORC. PMID:26456755

  19. Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues

    PubMed Central

    Kawakami, Hironori; Ohashi, Eiji; Kanamoto, Shota; Tsurimoto, Toshiki; Katayama, Tsutomu

    2015-01-01

    In eukaryotes, the origin recognition complex (ORC) heterohexamer preferentially binds replication origins to trigger initiation of DNA replication. Crystallographic studies using eubacterial and archaeal ORC orthologs suggested that eukaryotic ORC may bind to origin DNA via putative winged-helix DNA-binding domains and AAA+ ATPase domains. However, the mechanisms how eukaryotic ORC recognizes origin DNA remain elusive. Here, we show in budding yeast that Lys-362 and Arg-367 residues of the largest subunit (Orc1), both outside the aforementioned domains, are crucial for specific binding of ORC to origin DNA. These basic residues, which reside in a putative disordered domain, were dispensable for interaction with ATP and non-specific DNA sequences, suggesting a specific role in recognition. Consistent with this, both residues were required for origin binding of Orc1 in vivo. A truncated Orc1 polypeptide containing these residues solely recognizes ARS sequence with low affinity and Arg-367 residue stimulates sequence specific binding mode of the polypeptide. Lys-362 and Arg-367 residues of Orc1 are highly conserved among eukaryotic ORCs, but not in eubacterial and archaeal orthologs, suggesting a eukaryote-specific mechanism underlying recognition of replication origins by ORC. PMID:26456755

  20. Rif1: A Conserved Regulator of DNA Replication and Repair Hijacked by Telomeres in Yeasts

    PubMed Central

    Mattarocci, Stefano; Hafner, Lukas; Lezaja, Aleksandra; Shyian, Maksym; Shore, David

    2016-01-01

    Rap1-interacting factor 1 (Rif1) was originally identified in the budding yeast Saccharomyces cerevisiae as a telomere-binding protein that negatively regulates telomerase-mediated telomere elongation. Although this function is conserved in the distantly related fission yeast Schizosaccharomyces pombe, recent studies, both in yeasts and in metazoans, reveal that Rif1 also functions more globally, both in the temporal control of DNA replication and in DNA repair. Rif1 proteins are large and characterized by N-terminal HEAT repeats, predicted to form an elongated alpha-helical structure. In addition, all Rif1 homologs contain two short motifs, abbreviated RVxF/SILK, that are implicated in recruitment of the PP1 (yeast Glc7) phosphatase. In yeasts the RVxF/SILK domains have been shown to play a role in control of DNA replication initiation, at least in part through targeted de-phosphorylation of proteins in the pre-Replication Complex. In human cells Rif1 is recruited to DNA double-strand breaks through an interaction with 53BP1 where it counteracts DNA resection, thus promoting repair by non-homologous end-joining. This function requires the N-terminal HEAT repeat-containing domain. Interestingly, this domain is also implicated in DNA end protection at un-capped telomeres in yeast. We conclude by discussing the deployment of Rif1 at telomeres in yeasts from both an evolutionary perspective and in light of its recently discovered global functions. PMID:27066066

  1. Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication.

    PubMed

    Yamauchi, Yasuhiro; Riel, Jonathan M; Ward, Monika A

    2012-01-01

    In spite of its highly condensed state, sperm DNA is vulnerable to damage that can originate from oxidative stress, the activity of sperm-specific nucleases, or both. After fertilization, in the oocyte, paternal chromatin undergoes dramatic changes, and during this extensive remodeling, it can be both repaired and degraded, and these processes can be linked to DNA synthesis. Here, we analyzed sperm response to damage-inducing treatments both before and after fertilization and before or after zygotic DNA replication. Epididymal mouse spermatozoa were either frozen without cryoprotection (FT) or treated with detergent Triton X-100 coupled with dithiothreitol (TX+DTT) to induce DNA damage. Fresh, untreated sperm served as control. Immediately after preparation, spermatozoa from 3 groups were taken for comet assay, or for intracytoplasmic sperm injection into prometaphase I oocytes to visualize prematurely condensed single-chromatid chromosomes, or into mature metaphase II oocytes to visualize chromosomes after DNA replication. Comet assay revealed increased DNA fragmentation in treated sperm when compared with control, with FT sperm more severely affected. Chromosome analysis demonstrated paternal DNA damage in oocytes injected with treated, but not with fresh, sperm, with FT and TX+DTT groups now yielding similar damage. There were no differences in the incidence of abnormal paternal karyoplates before and after DNA synthesis in all examined groups. This study provides evidence that subjecting sperm to DNA damage-inducing treatments results in degradation of highly condensed sperm chromatin when it is still packed within the sperm head, and that this DNA damage persists after fertilization. The difference in DNA damage in sperm subjected to 2 treatments was ameliorated in the fertilized oocytes, suggesting that some chromatin repair might have occurred. This process, however, was independent of DNA synthesis and took place during oocyte maturation. PMID:21546611

  2. The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication.

    PubMed

    Oldenburg, Delene J; Bendich, Arnold J

    2016-05-01

    The structure of a chromosomal DNA molecule may influence the way in which it is replicated and inherited. For decades plastid DNA (ptDNA) was believed to be circular, with breakage invoked to explain linear forms found upon extraction from the cell. Recent evidence indicates that ptDNA in vivo consists of linear molecules with discrete termini, although these ends were not characterized. We report the sequences of two terminal regions, End1 and End2, for maize (Zea mays L.) ptDNA. We describe structural features of these terminal regions and similarities found in other plant ptDNAs. The terminal sequences are within inverted repeat regions (leading to four genomic isomers) and adjacent to origins of replication. Conceptually, stem-loop structures may be formed following melting of the double-stranded DNA ends. Exonuclease digestion indicates that the ends in maize are unobstructed, but tobacco (Nicotiana tabacum L.) ends may have a 5'-protein. If the terminal structure of ptDNA molecules influences the retention of ptDNA, the unprotected molecular ends in mature leaves of maize may be more susceptible to degradation in vivo than the protected ends in tobacco. The terminal sequences and cumulative GC skew profiles are nearly identical for maize, wheat (Triticum aestivum L.) and rice (Oryza sativa L.), with less similarity among other plants. The linear structure is now confirmed for maize ptDNA and inferred for other plants and suggests a virus-like recombination-dependent replication mechanism for ptDNA. Plastid transformation vectors containing the terminal sequences may increase the chances of success in generating transplastomic cereals. PMID:26650613

  3. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction.

    PubMed

    Zhang, Yinbo; Baranovskiy, Andrey G; Tahirov, Emin T; Tahirov, Tahir H; Pavlov, Youri I

    2016-07-01

    DNA polymerases (pols) are sophisticated protein machines operating in the replication, repair and recombination of genetic material in the complex environment of the cell. DNA pol reactions require at least two divalent metal ions for the phosphodiester bond formation. We explore two understudied roles of metals in pol transactions with emphasis on polα, a crucial enzyme in the initiation of DNA synthesis. We present evidence that the combination of many factors, including the structure of the template/primer, the identity of the metal, the metal turnover in the pol active site, and the influence of the concentration of nucleoside triphosphates, affect DNA pol synthesis. On the poly-dT70 template, the increase of Mg(2+) concentration within the range typically used for pol reactions led to the severe loss of the ability of pol to extend DNA primers and led to a decline in DNA product sizes when extending RNA primers, simulating the effect of "counting" of the number of nucleotides in nascent primers by polα. We suggest that a high Mg(2+) concentration promotes the dynamic formation of unconventional DNA structure(s), thus limiting the apparent processivity of the enzyme. Next, we found that Zn(2+) supported robust polα reactions when the concentration of nucleotides was above the concentration of ions; however, there was only one nucleotide incorporation by the Klenow fragment of DNA pol I. Zn(2+) drastically inhibited polα, but had no effect on Klenow, when Mg(2+) was also present. It is possible that Zn(2+) perturbs metal-mediated transactions in pol active site, for example affecting the step of pyrophosphate removal at the end of each pol cycle necessary for continuation of polymerization. PMID:27235627

  4. A tale of two HSV-1 helicases: roles of phage and animal virus helicases in DNA replication and recombination.

    PubMed

    Marintcheva, B; Weller, S K

    2001-01-01

    Helicases play essential roles in many important biological processes such as DNA replication, repair, recombination, transcription, splicing, and translation. Many bacteriophages and plant and animal viruses encode one or more helicases, and these enzymes have been shown to play many roles in their respective viral life cycles. In this review we concentrate primarily on the roles of helicases in DNA replication and recombination with special emphasis on the bacteriophages T4, T7, and A as model systems. We explore comparisons between these model systems and the herpesviruses--primarily herpes simplex virus. Bacteriophage utilize various pathways of recombination-dependent DNA replication during the replication of their genomes. In fact the study of recombination in the phage systems has greatly enhanced our understanding of the importance of recombination in the replication strategies of bacteria, yeast, and higher eukaryotes. The ability to "restart" the replication process after a replication fork has stalled or has become disrupted for other reasons is a critical feature in the replication of all organisms studied. Phage helicases and other recombination proteins play critical roles in the "restart" process. Parallels between DNA replication and recombination in phage and in the herpesviruses is explored. We and others have proposed that recombination plays an important role in the life cycle of the herpesviruses, and in this review, we discuss models for herpes simplex virus type 1 (HSV-1) DNA replication. HSV-1 encodes two helicases. UL9 binds specifically to the origins of replication and is believed to initiate HSV DNA replication by unwinding at the origin; the heterotrimeric helicase-primase complex, encoded by UL5, UL8, and UL52 genes, is believed to unwind duplex viral DNA at replication forks. Structure-function analyses of UL9 and the helicase-primase are discussed with attention to the roles these proteins might play during HSV replication. PMID

  5. Analysis of the DNA replication competence of the xrs-5 mutant cells defective in Ku86.

    PubMed

    Matheos, Diamanto; Novac, Olivia; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2003-01-01

    The radiosensitive mutant xrs-5, a derivative of the Chinese hamster ovary (CHO) K1 cell line, is defective in DNA double-strand break repair and V(D)J recombination. The defective phenotypes of xrs-5 cells are complemented by the 86 kDa subunit of Ku antigen. OBA is a protein, previously purified from HeLa cells, that binds in a sequence-specific manner to mammalian origins of DNA replication. The DNA-binding subunit of OBA has been identified as Ku86. We tested the xrs-5 cell line for its ability to replicate a mammalian origin-containing plasmid, p186, in vivo and in vitro. In vivo, the p186 episomal DNA replication in transfected xrs-5 cells was reduced by 45% when compared with the CHO K1 cells transfected with p186. In vitro, although total and cytoplasmic cell extracts from xrs-5 cells replicated the p186 with the same efficiency as the parental CHO K1 cell extracts, xrs-5 nuclear extracts did not possess any detectable replication activity. Addition of affinity-purified OBA/Ku restored replication in the xrs-5 nuclear extract reaction. Western blot analyses showed that the levels of other replication proteins (Orc2, PCNA, DNA polymerase epsilon and delta, Primase and Topoisomerase IIalpha) were comparable in both the xrs-5 mutant and CHO K1 wild-type cell lines. In addition, the in vivo association of Ku with the DHFR origin-containing sequence (oribeta) was examined in both the CHO K1 and xrs-5 cell lines by a chromatin immunoprecipitation (ChIP) assay. Anti-Ku antibodies did not immunoprecipitate a detectable amount of Ku from the xrs-5 cells in the origin-containing sequence, in contrast to the CHO K1 cells, wherein Ku was found to be associated with the oribeta origin. The data implicate Ku antigen in in vivo and in vitro DNA replication and suggest the existence of another protein with Ku-like functions in the xrs-5 cells. PMID:12456721

  6. Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations

    ERIC Educational Resources Information Center

    Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.

    2005-01-01

    Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each…

  7. Incomplete replication generates somatic DNA alterations within Drosophila polytene salivary gland cells

    PubMed Central

    Yarosh, Will

    2014-01-01

    DNA replication remains unfinished in many Drosophila polyploid cells, which harbor disproportionately fewer copies of late-replicating chromosomal regions. By analyzing paired-end high-throughput sequence data from polytene larval salivary gland cells, we define 112 underreplicated (UR) euchromatic regions 60–480 kb in size. To determine the effects of underreplication on genome integrity, we analyzed anomalous read pairs and breakpoint reads throughout the euchromatic genome. Each UR euchromatic region contains many different deletions 10–500 kb in size, while very few deletions are present in fully replicated chromosome regions or UR zones from embryo DNA. Thus, during endocycles, stalled forks within UR regions break and undergo local repair instead of remaining stable and generating nested forks. As a result, each salivary gland cell contains hundreds of unique deletions that account for their copy number reductions. Similar UR regions and deletions were observed in ovarian DNA, suggesting that incomplete replication, fork breakage, and repair occur widely in polytene cells. UR regions are enriched in genes encoding immunoglobulin superfamily proteins and contain many neurally expressed and homeotic genes. We suggest that the extensive somatic DNA instability described here underlies position effect variegation, molds the structure of polytene chromosomes, and should be investigated for possible functions. PMID:25128500

  8. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins

    PubMed Central

    Gillespie, Peter J.; Gambus, Agnieszka; Blow, J. Julian

    2012-01-01

    The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication. PMID:22521908

  9. Oligomerization of Baculovirus LEF-11 Is Involved in Viral DNA Replication

    PubMed Central

    Dong, Zhan-Qi; Hu, Nan; Zhang, Jun; Chen, Ting-Ting; Cao, Ming-Ya; Li, Hai-Qing; Lei, Xue-Jiao; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2015-01-01

    We have previously reported that baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) late expression factor 11 (lef-11) is associated with viral DNA replication and have demonstrated that it potentially interacts with itself; however, whether LEF-11 forms oligomers and the impact of LEF-11 oligomerization on viral function have not been substantiated. In this study, we first demonstrated that LEF-11 is capable of forming oligomers. Additionally, a series of analyses using BmNPV LEF-11 truncation mutants indicated that two distinct domains control LEF-11 oligomerization (aa 42–61 and aa 72–101). LEF-11 truncation constructs were inserted into a lef-11-knockout BmNPV bacmid, which was used to demonstrate that truncated LEF-11 lacking either oligomerization domain abrogates viral DNA replication. Finally, site-directed mutagenesis was used to determine that the conserved hydrophobic residues Y58&I59 (representing Y58 and I59), I85 and L88&L89 (representing L88 and L89) are required for LEF-11 oligomerization and viral DNA replication. Collectively, these data indicate that BmNPV LEF-11 oligomerization influences viral DNA replication. PMID:26660313

  10. Oligomerization of Baculovirus LEF-11 Is Involved in Viral DNA Replication.

    PubMed

    Dong, Zhan-Qi; Hu, Nan; Zhang, Jun; Chen, Ting-Ting; Cao, Ming-Ya; Li, Hai-Qing; Lei, Xue-Jiao; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2015-01-01

    We have previously reported that baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) late expression factor 11 (lef-11) is associated with viral DNA replication and have demonstrated that it potentially interacts with itself; however, whether LEF-11 forms oligomers and the impact of LEF-11 oligomerization on viral function have not been substantiated. In this study, we first demonstrated that LEF-11 is capable of forming oligomers. Additionally, a series of analyses using BmNPV LEF-11 truncation mutants indicated that two distinct domains control LEF-11 oligomerization (aa 42-61 and aa 72-101). LEF-11 truncation constructs were inserted into a lef-11-knockout BmNPV bacmid, which was used to demonstrate that truncated LEF-11 lacking either oligomerization domain abrogates viral DNA replication. Finally, site-directed mutagenesis was used to determine that the conserved hydrophobic residues Y58&I59 (representing Y58 and I59), I85 and L88&L89 (representing L88 and L89) are required for LEF-11 oligomerization and viral DNA replication. Collectively, these data indicate that BmNPV LEF-11 oligomerization influences viral DNA replication. PMID:26660313

  11. Guided Practice Software for Teaching DNA Replication to Senior High School Students

    ERIC Educational Resources Information Center

    Woods, Eric C.; McKinnon, Alan E.; Hickford, Jonathan G. H.; Abell, Walt A.

    2008-01-01

    The prototype of a guided practice application was developed to instruct year 13 biology students in the process of DNA replication. The application uses a high degree of interaction to engage the student in a guided exploration and problem solving exercise. An evaluation revealed that the students showed considerable enthusiasm and significant…

  12. Replication Protein A: Single-stranded DNA's first responder : Dynamic DNA-interactions allow Replication Protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair

    PubMed Central

    Chen, Ran; Wold, Marc S.

    2015-01-01

    Summary Replication Protein A (RPA), the major single-stranded DNA-binding protein in eukaryotic cells, is required for processing of single-stranded DNA (ssDNA) intermediates found in replication, repair and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high-affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies showed that while RPA binds ssDNA with high affinity, the RPA complex can rapidly diffuse along ssDNA and be displaced by other proteins that act on ssDNA. Finally, dynamic DNA binding allows RPA to prevent error-prone repair of double-stranded breaks and promote error-free repair. Together, these findings suggest a new paradigm where RPA acts as a first responder at sites with ssDNA, thereby actively coordinating DNA repair and DNA synthesis. PMID:25171654

  13. Sequence-specific interactions between a cellular DNA-binding protein and the simian virus 40 origin of DNA replication

    SciTech Connect

    Traut, W.; Fanning, E.

    1988-02-01

    The core origin of simian virus 40 (SV40) DNA replication is composed of a 64-base-pair sequence encompassing T-antigen-binding site II and adjacent sequences on either side. A 7-base-pair sequence to the early side of T-antigen-binding site II which is conserved among the papovavirus genomes SV40, BK, JC and SA12 was recently shown to be part of a 10-base-pair sequence required for origin activity, but its functional role was not defined. In the present report, the authors used gel retention assays to identify a monkey cell factor that interacts specifically with double-stranded DNA carrying this sequence and also binds to single-stranded DNA. DNA-protein complexes formed with extracts from primate cells are more abundant and display electrophoretic mobilities distinct from those formed with rodent cell extracts. The binding activity of the factor on mutant templates is correlate with the replication activity of the origin. The results suggest that the monkey cell factor may be involved in SV40 DNA replication.

  14. Functions of Saccharomyces cerevisiae 14-3-3 proteins in response to DNA damage and to DNA replication stress.

    PubMed Central

    Lottersberger, Francisca; Rubert, Fabio; Baldo, Veronica; Lucchini, Giovanna; Longhese, Maria Pia

    2003-01-01

    Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required for proper response to DNA damage. In particular, the bmh1-103 and bmh1-266 mutant alleles cause defects in G1/S and G2/M DNA damage checkpoints, whereas only the G2/M checkpoint is altered by the bmh1-169 and bmh1-221 alleles. Impaired checkpoint responses correlate with the inability to maintain phosphorylated forms of Rad53 and/or Chk1, suggesting that Bmh proteins might regulate phosphorylation/dephosphorylation of these checkpoint kinases. Moreover, several bmh1 bmh2Delta mutants are defective in resuming DNA replication after transient deoxynucleotide depletion, and all display synthetic effects when also carrying mutations affecting the polalpha-primase and RPA DNA replication complexes, suggesting a role for Bmh proteins in DNA replication stress response. Finally, the bmh1-169 bmh2Delta and bmh1-170 bmh2Delta mutants show increased rates of spontaneous gross chromosomal rearrangements, indicating that Bmh proteins are required to suppress genome instability. PMID:14704161

  15. Replicating satellite RNA induces sequence-specific DNA methylation and truncated transcripts in plants.

    PubMed Central

    Wang, M B; Wesley, S V; Finnegan, E J; Smith, N A; Waterhouse, P M

    2001-01-01

    Tobacco plants were transformed with a chimeric transgene comprising sequences encoding beta-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense approximately 22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules. PMID:11214177

  16. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    SciTech Connect

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John; Reha-Krantz, Linda; Doubli, Sylvie; Wallace, Susan S.

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of a lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.

  17. Early nucleosome deposition on, and replication of, HSV DNA requires cell factor PCNA

    PubMed Central

    Sanders, Iryna; Boyer, Mark; Fraser, Nigel W.

    2015-01-01

    Herpes Simplex Virus (HSV) is a double stranded DNA virus that can cause lytic infections in epithelial cells of the skin and latent infections in neuronal cells of the peripheral nervous system. After virion attachment to the cell membrane, the capsid enters the cytoplasm and is transported to the nucleus. Following docking at the nuclear pore, the HSV DNA, and contents of the virion, are injected into the nucleus. The viral DNA that enters the nucleus is devoid of histones, but begins to be covered with them soon after entry. The covering of histones, in the form of nucleosomes, reaches a maximum during the early stages of infection and drops off during late infection (after DNA replication). However during latency the genome is saturated with nucleosomes. In this study, we examine the role of cell Proliferating Cell Nuclear Antigen (PCNA) a cellular DNA polymerase accessory protein (processivity factor), and cell DNA polymerases in histone deposition during the early stages of HSV infection. Using SiRNA knockdown, and a cytosine arabinoside (araC) chemical inhibitor, we conclude that PCNA is important for viral replication and histone deposition. However, cell DNA polymerases that bind PCNA do not appear to be required for these processes and PCNA does not appear to bind to the viral DNA polymerase (which has its own viral processivity factor). PMID:25672886

  18. Oxidative Stress and Replication-Independent DNA Breakage Induced by Arsenic in Saccharomyces cerevisiae

    PubMed Central

    Litwin, Ireneusz; Bocer, Tomasz; Dziadkowiec, Dorota; Wysocki, Robert

    2013-01-01

    Arsenic is a well-established human carcinogen of poorly understood mechanism of genotoxicity. It is generally accepted that arsenic acts indirectly by generating oxidative DNA damage that can be converted to replication-dependent DNA double-strand breaks (DSBs), as well as by interfering with DNA repair pathways and DNA methylation. Here we show that in budding yeast arsenic also causes replication and transcription-independent DSBs in all phases of the cell cycle, suggesting a direct genotoxic mode of arsenic action. This is accompanied by DNA damage checkpoint activation resulting in cell cycle delays in S and G2/M phases in wild type cells. In G1 phase, arsenic activates DNA damage response only in the absence of the Yku70–Yku80 complex which normally binds to DNA ends and inhibits resection of DSBs. This strongly indicates that DSBs are produced by arsenic in G1 but DNA ends are protected by Yku70–Yku80 and thus invisible for the checkpoint response. Arsenic-induced DSBs are processed by homologous recombination (HR), as shown by Rfa1 and Rad52 nuclear foci formation and requirement of HR proteins for cell survival during arsenic exposure. We show further that arsenic greatly sensitizes yeast to phleomycin as simultaneous treatment results in profound accumulation of DSBs. Importantly, we observed a similar response in fission yeast Schizosaccharomyces pombe, suggesting that the mechanisms of As(III) genotoxicity may be conserved in other organisms. PMID:23935510

  19. Primary microcephaly, impaired DNA replication, and genomic instability caused by compound heterozygous ATR mutations.

    PubMed

    Mokrani-Benhelli, Houda; Gaillard, Laetitia; Biasutto, Patricia; Le Guen, Tangui; Touzot, Fabien; Vasquez, Nadia; Komatsu, Jun; Conseiller, Emmanuel; Pïcard, Capucine; Gluckman, Eliane; Francannet, Christine; Fischer, Alain; Durandy, Anne; Soulier, Jean; de Villartay, Jean-Pierre; Cavazzana-Calvo, Marina; Revy, Patrick

    2013-02-01

    Ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases are two key regulators of DNA-damage responses (DDR) that are mainly activated in response to DNA double-strand breaks and single-stranded DNA damages, respectively. Seckel syndrome, a rare genetic disorder characterized by a microcephaly and a markedly reduced body size, has been associated with defective ATR-dependent DNA damage signaling. However, the only human genetic ATR defect reported so far is a hypomorphic splicing mutation identified in five related individuals with Seckel syndrome. Here, we report the first case of primary microcephaly with compound heterozygous mutations in ATR: a 540 kb genomic deletion on one allele and a missense mutation leading to splice dysregulation on the other, which ultimately lead to a sharp decrease in ATR expression. DNA combing technology revealed a profound spontaneous alteration of several DNA replication parameters in patient's cells and FISH analyses highlighted the genomic instability caused by ATR deficiency. Collectively, our results emphasize the crucial role for ATR in the control of DNA replication, and reinforce the complementary and nonredundant contributions of ATM and ATR in human cells to face DNA damages and warrant genome integrity. PMID:23111928

  20. DNA Replication Forks Pause at Silent Origins near the HML Locus in Budding Yeast

    PubMed Central

    Wang, Yangzhou; Vujcic, Marija; Kowalski, David

    2001-01-01

    Chromosomal replicators in budding yeast contain an autonomously replicating sequence (ARS) that functions in a plasmid, but certain ARSs are silent as replication origins in their natural chromosomal context. In chromosome III, the HML ARS cluster (ARS302-ARS303-ARS320) and ARS301 flank the transcriptionally silent mating-type locus HML, and all of these ARSs are silent as replication origins. ARS301 and ARS302 function in transcriptional silencing mediated by the origin recognition complex (ORC) and a heterochromatin structure, while the functions of ARS303 and ARS320 are not known. In this work, we discovered replication fork pause sites at the HML ARS cluster and ARS301 by analyzing DNA replication intermediates from the chromosome via two-dimensional gel electrophoresis. The replication fork pause at the HML ARS cluster was independent of cis- and trans-acting mutations that abrogate transcriptional silencing at HML. Deletion of the HML ARS cluster led to loss of the pause site. Insertion of a single, heterologous ARS (ARS305) in place of the HML ARS cluster reconstituted the pause site, as did multiple copies of DNA elements (A and B1) that bind ORC. The orc2-1 mutation, known to alter replication timing at origins, did not detectably affect the pause but activated the silent origin at the HML ARS cluster in a minority of cells. Delaying the time of fork arrival at HML led to the elimination of the pause sites at the HML ARS cluster and at the copy of ARS305 inserted in place of the cluster. Loss of the pause sites was accompanied by activation of the silent origins in the majority of cells. Thus, replication fork movement near HML pauses at a silent origin which is competent for replication initiation but kept silent through Orc2p, a component of the replication initiator. Possible functions for replication fork pause sites in checkpoints, S-phase regulation, mating-type switching, and transcriptionally silent heterochromatin are discussed. PMID:11438651

  1. A mechanistic role for DNA methylation in endothelial cell (EC)-enriched gene expression: relationship with DNA replication timing

    PubMed Central

    Shirodkar, Apurva V.; St. Bernard, Rosanne; Gavryushova, Anna; Kop, Anna; Knight, Britta J.; Yan, Matthew Shu-Ching; Man, Hon-Sum Jeffrey; Sud, Maneesh; Hebbel, Robert P.; Oettgen, Peter; Aird, William C.; Marsden, Philip A.

    2013-01-01

    Proximal promoter DNA methylation has been shown to be important for regulating gene expression. However, its relative contribution to the cell-specific expression of endothelial cell (EC)-enriched genes has not been defined. We used methyl-DNA immunoprecipitation and bisulfite conversion to analyze the DNA methylation profile of EC-enriched genes in ECs vs nonexpressing cell types, both in vitro and in vivo. We show that prototypic EC-enriched genes exhibit functional differential patterns of DNA methylation in proximal promoter regions of most (eg, CD31, von Willebrand factor [vWF], VE-cadherin, and intercellular adhesion molecule-2), but not all (eg, VEGFR-1 and VEGFR-2), EC-enriched genes. Comparable findings were evident in cultured ECs, human blood origin ECs, and murine aortic ECs. Promoter-reporter episomal transfection assays for endothelial nitric oxide synthase, VE-cadherin, and vWF indicated functional promoter activity in cell types where the native gene was not active. Inhibition of DNA methyltransferase activity indicated important functional relevance. Importantly, profiling DNA replication timing patterns indicated that EC-enriched gene promoters with differentially methylated regions replicate early in S-phase in both expressing and nonexpressing cell types. Collectively, these studies highlight the functional importance of promoter DNA methylation in controlling vascular EC gene expression. PMID:23449636

  2. Genome-wide localization of Rrm3 and Pif1 DNA helicases at stalled active and inactive DNA replication forks of Saccharomyces cerevisiae.

    PubMed

    Rossi, Silvia Emma; Carotenuto, Walter; Giannattasio, Michele

    2016-03-01

    The genome of the budding yeast Saccharomyces cerevisiae is sequenced and the location and dynamic of activation of DNA replication origins are known. G1 synchronized yeast cells can be released into S-phase in the presence of hydroxyurea (HU) (1), which slows down DNA replication and retains replication forks in proximity of DNA replication origins. In this condition, the Chromatin Immuno-Precipitation on chip (ChIP on chip) (2-4) of replisome components allows the precise localization of all active DNA replication forks. This analysis can be coupled with the ssDNA-BromodeoxyUridine (ssDNA-BrdU) Immuno-Precipitation on chip (ssDNA-BrdU IP on chip) technique (5-7), which detects the location of newly synthesized DNA. Comparison of binding and BrdU incorporation profiles allows to locate a factor of interest at DNA replication forks genome wide. We present datasets deposited in the gene expression omnibus (GEO) database under accession number GSE68214, which show how the DNA helicases Rrm3 and Pif1 (8) associate to active and inactive DNA replication forks. PMID:26981397

  3. The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication

    PubMed Central

    Gariano, Grazia Rosaria; Dell'Oste, Valentina; Bronzini, Matteo; Gatti, Deborah; Luganini, Anna; De Andrea, Marco; Gribaudo, Giorgio; Gariglio, Marisa; Landolfo, Santo

    2012-01-01

    Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor. PMID:22291595

  4. Kaposi's sarcoma-associated herpesvirus LANA recruits the DNA polymerase clamp loader to mediate efficient replication and virus persistence

    PubMed Central

    Sun, Qiming; Tsurimoto, Toshiki; Juillard, Franceline; Li, Lin; Li, Shijun; De León Vázquez, Erika; Chen, She; Kaye, Kenneth

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects tumor cells and persists as a multiple-copy, extrachromosomal, circular episome. To persist, the viral genome must replicate with each cell cycle. The KSHV latency-associated nuclear antigen (LANA) mediates viral DNA replication and persistence, but little is known regarding the underlying mechanisms. We find that LANA recruits replication factor C (RFC), the DNA polymerase clamp [proliferating cell nuclear antigen (PCNA)] loader, to drive DNA replication efficiently. Mutated LANA lacking RFC interaction was deficient for LANA-mediated DNA replication and episome persistence. RFC depletion had a negative impact on LANA’s ability to replicate and maintain viral DNA in cells containing artificial KSHV episomes or in infected cells, leading to loss of virus. LANA substantially increased PCNA loading onto DNA in vitro and recruited RFC and PCNA to KSHV DNA in cells. These findings suggest that PCNA loading is a rate-limiting step in DNA replication that is incompatible with viral survival. LANA enhancement of PCNA loading permits efficient virus replication and persistence, revealing a previously unidentified mechanism for KSHV latency. PMID:25071216

  5. Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA.

    PubMed

    Jonas, Kristina; Liu, Jing; Chien, Peter; Laub, Michael T

    2013-08-01

    The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. Cells often delay replication in the face of stressful conditions, but the underlying mechanisms remain incompletely defined. Here, we demonstrate in Caulobacter crescentus that proteotoxic stress induces a cell-cycle arrest by triggering the degradation of DnaA, the conserved replication initiator. A depletion of available Hsp70 chaperone, DnaK, either through genetic manipulation or heat shock, induces synthesis of the Lon protease, which can directly degrade DnaA. Unexpectedly, we find that unfolded proteins, which accumulate following a loss of DnaK, also allosterically activate Lon to degrade DnaA, thereby ensuring a cell-cycle arrest. Our work reveals a mechanism for regulating DNA replication under adverse growth conditions. Additionally, our data indicate that unfolded proteins can actively and directly alter substrate recognition by cellular proteases. PMID:23911325

  6. A Novel DNA Motif Contributes to Selective Replication of a Geminivirus-Associated Betasatellite by a Helper Virus-Encoded Replication-Related Protein

    PubMed Central

    Zhang, Tong; Xu, Xiongbiao; Huang, Changjun; Qian, Yajuan; Li, Zhenghe

    2015-01-01

    ABSTRACT Rolling-circle replication of single-stranded genomes of plant geminiviruses is initiated by sequence-specific DNA binding of the viral replication-related protein (Rep) to its cognate genome at the replication origin. Monopartite begomovirus-associated betasatellites can be trans replicated by both cognate and some noncognate helper viruses, but the molecular basis of replication promiscuity of betasatellites remains uncharacterized. Earlier studies showed that when tomato yellow leaf curl China virus (TYLCCNV) or tobacco curly shoot virus (TbCSV) is coinoculated with both cognate and noncognate betasatellites, the cognate betasatellite dominates over the noncognate one at the late stages of infection. In this study, we constructed reciprocal chimeric betasatellites between tomato yellow leaf curl China betasatellite and tobacco curly shoot betasatellite and assayed their competitiveness against wild-type betasatellite when coinoculated with TYLCCNV or TbCSV onto plants. We mapped a region immediately upstream of the conserved rolling-circle cruciform structure of betasatellite origin that confers the cognate Rep-mediated replication advantage over the noncognate satellite. DNase I protection and in vitro binding assays further identified a novel sequence element termed Rep-binding motif (RBM), which specifically binds to the cognate Rep protein and to the noncognate Rep, albeit at lower affinity. Furthermore, we showed that RBM-Rep binding affinity is correlated with betasatellite replication efficiency in protoplasts. Our data suggest that although strict specificity of Rep-mediated replication does not exist, betasatellites have adapted to their cognate Reps for efficient replication during coevolution. IMPORTANCE Begomoviruses are numerous circular DNA viruses that cause devastating diseases of crops worldwide. Monopartite begomoviruses are frequently associated with betasatellites which are essential for induction of typical disease symptoms

  7. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells

    PubMed Central

    Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression. PMID:26151554

  8. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid

    PubMed Central

    Muñoz-Espín, Daniel; Holguera, Isabel; Ballesteros-Plaza, David; Carballido-López, Rut; Salas, Margarita

    2010-01-01

    The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1–73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. PMID:20823229

  9. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase

    PubMed Central

    Fu, Yu V.; Yardimci, Hasan; Long, David T.; Ho, The Vinh; Guainazzi, Angelo; Bermudez, Vladimir P.; Hurwitz, Jerard; van Oijen, Antoine; Schärer, Orlando D.; Walter, Johannes C.

    2011-01-01

    Summary The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. A ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3′ to 5′ ssDNA translocase, consistent with unwinding via “steric exclusion”. Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode. PMID:21925316

  10. A new structural framework for integrating replication protein A into DNA processing machinery

    SciTech Connect

    Brosey, Chris A; Yan, Chunli; Tsutakawa, Susan E; Heller, William T; Rambo, Robert P; Tainer, John A; Ivanov, Ivaylo; Chazin, Walter J

    2013-01-01

    By coupling the protection and organization of ssDNA with the recruitment and alignment of DNA processing factors, Replication Protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA manages to coordinate the biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA s DNA binding activity, combining small-angle x-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA s DNA-binding core. It has been long held that RPA engages ssDNA in three stages, but our data reveal that RPA undergoes two rather than three transitions as it binds ssDNA. In contrast to previous models, RPA is more compact when fully engaged on 20-30 nucleotides of ssDNA than when DNA-free, and there is no evidence for significant population of a highly compacted structure in the initial 8-10 nucleotide binding mode. These results provide a new framework for understanding the integration of ssDNA into DNA processing machinery and how binding partners may manipulate RPA architecture to gain access to the substrate.

  11. A novel in vitro assay to study the mechanism by which DNA polymerases bypass blocking lesions to DNA replication

    SciTech Connect

    Randall, S.K.

    1989-01-01

    We devised a simple gel assay to measure insertion kinetics for any dNTP substrate opposite a target site. Our ability to synthesize an abasic lesion and place it at a single site in synthetic oligonucleotides allows for an in vitro analysis of the mechanism by which DNA polymerases bypass blocking lesions to DNA replication and to identify E. coli polymerases and accessory proteins that allow for insertion and bypass of such lesions. Using this assay we examine the preferred insertion of dATP by Drosophila DNA polymerase {alpha} opposite the abasic lesion compared to dGTP, dCTP, and dTTP for all different nearest-neighbors. The preferred insertion of dATP is governed by a V{sub max} discrimination little affected by nearest-neighbors. A DNA polymerase activity was purified from E coli, deleted for DNA polymerase I, that appears to be part of the SOS response of E. coli since it cannot be induced in lexA(Ind{sup {minus}}) strains. This inducible polymerase is DNA polymerase II. In contrast to DNA polymerase III, DNA polymerase II efficiently incorporates nucleotides opposite the abasic lesion and continues DNA synthesis. We addressed the role of E. coli DNA polymerase I targeted SOS mutagenesis.

  12. Molecular genetic analysis of a vaccinia virus gene with an essential role in DNA replication.

    PubMed Central

    Evans, E; Traktman, P

    1987-01-01

    We have identified a gene encoded by vaccinia virus which is essential for DNA replication. The gene, located in the HindIII D fragment of the viral genome, is transcribed early after infection into two transcripts of 3.0 and 3.7 kilobases which share a 3' terminus. The lesions of three temperature-sensitive DNA replication mutants with defects in this gene have been localized by marker rescue with progressively smaller DNA fragments. We have determined by hybrid selection that the gene encodes an 82-kilodalton protein. An antibody has been prepared against this polypeptide and used to quantitate expression of the protein after infection with wild-type virus or with a viral mutant whose lesion maps within this gene. The temporal pattern of expression in the mutant is unaffected, but the product encoded by the mutant is significantly more thermolabile than the wild-type protein. Images PMID:3041037

  13. Analyzing DNA Replication III: Antibody Labeling of Incorporated Bromodeoxyuridine (BrdU) in Tissues and Cells.

    PubMed

    Jackson, Dean; Cook, Peter R

    2008-01-01

    INTRODUCTIONThe number of cells traversing the cell cycle and the rate of progression through it provide important indices of cell growth and tumorigenicity. S-phase cells can also be identified by their high content of DNA polymerase and proliferating cell nuclear antigen, a component of the leading-strand polymerase. Although both these markers can be detected rapidly and conveniently using the appropriate antibodies, neither are found exclusively in S-phase cells. Immunolabeling after incorporation of modified DNA precursors (e.g., 5-bromodeoxyuridine [BrdU, bromodeoxyuridine]) allows more rapid and precise detection of cells in S-phase of the cell cycle. BrdU is phosphorylated by cells to give BrdUTP, and this precursor is incorporated into DNA instead of deoxythimidine triphosphate. In living cells, BrdU is incorporated into replication sites that can then be detected using fluorochrome or enzyme-coupled antibodies. Alternatively, DNA synthesis sites can be labeled at high resolution by incubating cells with analogs of the natural precursors of DNA. After fixation to preserve nuclear morphology, the DNA duplex is denatured to allow antibodies access to the BrdU. Cells labeled in this way either in vivo or in vitro display a few hundred discrete nuclear sites early in S-phase, with distinct patterns of DNA replication that are characteristic of different stages of S-phase. This protocol describes two commonly used methods of denaturation, as well as techniques for antibody labeling of mounted tissues and encapsulated cells. PMID:21356891

  14. The bacterial replicative helicase DnaB evolved from a RecA duplication.

    PubMed

    Leipe, D D; Aravind, L; Grishin, N V; Koonin, E V

    2000-01-01

    The RecA/Rad51/DCM1 family of ATP-dependent recombinases plays a crucial role in genetic recombination and double-stranded DNA break repair in Archaea, Bacteria, and Eukaryota. DnaB is the replication fork helicase in all Bacteria. We show here that DnaB shares significant sequence similarity with RecA and Rad51/DMC1 and two other related families of ATPases, Sms and KaiC. The conserved region spans the entire ATP- and DNA-binding domain that consists of about 250 amino acid residues and includes 7 distinct motifs. Comparison with the three-dimensional structure of Escherichia coli RecA and phage T7 DnaB (gp4) reveals that the area of sequence conservation includes the central parallel beta-sheet and most of the connecting helices and loops as well as a smaller domain that consists of a amino-terminal helix and a carboxy-terminal beta-meander. Additionally, we show that animals, plants, and the malarial Plasmodium but not Saccharomyces cerevisiae encode a previously undetected DnaB homolog that might function in the mitochondria. The DnaB homolog from Arabidopsis also contains a DnaG-primase domain and the DnaB homolog from the nematode seems to contain an inactivated version of the primase. This domain organization is reminiscent of bacteriophage primases-helicases and suggests that DnaB might have been horizontally introduced into the nuclear eukaryotic genome via a phage vector. We hypothesize that DnaB originated from a duplication of a RecA-like ancestor after the divergence of the bacteria from Archaea and eukaryotes, which indicates that the replication fork helicases in Bacteria and Archaea/Eukaryota have evolved independently. PMID:10645945

  15. DNA replication initiation is blocked by a distant chromosome–membrane attachment

    PubMed Central

    Magnan, David; Joshi, Mohan C.; Barker, Anna K.; Visser, Bryan J.; Bates, David

    2015-01-01

    Summary Although it has been recognized for several decades that chromosome structure regulates the capacity of replication origins to initiate, very little is known about how or if cells actively regulate structure to direct initiation [1–3]. We report that a localized inducible protein tether between the chromosome and cell membrane in E. coli cells imparts a rapid and complete block to replication initiation. Tethers, composed of a trans-membrane and transcription repressor fusion protein bound to an array of operator sequences, can be placed up to one megabase from the origin with no loss of penetrance. Tether-induced initiation blocking has no effect on elongation at pre-existing replication forks and does not cause cell or DNA damage. Whole-genome and site-specific fluorescent DNA labeling in tethered cells indicates that global nucleoid structure and chromosome organization are disrupted. Gene expression patterns, assayed by RNA sequencing shows that tethering induces global supercoiling changes, which are likely incompatible with replication initiation. Parallels between tether-induced initiation blocking and rifampicin treatment, and the role of programmed changes in chromosome structure in replication control are discussed. PMID:26255849

  16. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    PubMed Central

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  17. Global Phylogenomic Analysis Disentangles the Complex Evolutionary History of DNA Replication in Archaea

    PubMed Central

    Raymann, Kasie; Forterre, Patrick; Brochier-Armanet, Céline; Gribaldo, Simonetta

    2014-01-01

    The archaeal machinery responsible for DNA replication is largely homologous to that of eukaryotes and is clearly distinct from its bacterial counterpart. Moreover, it shows high diversity in the various archaeal lineages, including different sets of components, heterogeneous taxonomic distribution, and a large number of additional copies that are sometimes highly divergent. This has made the evolutionary history of this cellular system particularly challenging to dissect. Here, we have carried out an exhaustive identification of homologs of all major replication components in over 140 complete archaeal genomes. Phylogenomic analysis allowed assigning them to either a conserved and probably essential core of replication components that were mainly vertically inherited, or to a variable and highly divergent shell of extra copies that have likely arisen from integrative elements. This suggests that replication proteins are frequently exchanged between extrachromosomal elements and cellular genomes. Our study allowed clarifying the history that shaped this key cellular process (ancestral components, horizontal gene transfers, and gene losses), providing important evolutionary and functional information. Finally, our precise identification of core components permitted to show that the phylogenetic signal carried by DNA replication is highly consistent with that harbored by two other key informational machineries (translation and transcription), strengthening the existence of a robust organismal tree for the Archaea. PMID:24398374

  18. Cytokinetic studies reveal etiology of cytogenetic genotoxicity produced by a series of angiotensin II (AII) receptor antagonists may be perturbed DNA synthesis

    SciTech Connect

    Selden, J.R.; Miller, J.E.; Dolbeare, F.; Galloway, S.M.; Nichols, W.W. Lawrence Livermore National Lab., CA )

    1993-01-01

    Six of 13 AII receptor antagonists produced chromosomal aberrations in CHO cells. In addition, these six compounds perturbed cellular kinetics (i.e., reduced mitotic indices and cell yields). It was hypothesized that the mechanism of clastogenesis was not due to a direct genotoxic effect, but may result from disruption of DNA replication. Flow cytokinetic studies, using the BrdUrd-FITC/propidium iodide technique, were performed on all six clastogenic compounds, and a seventh candidate from this group. All seven altered CHO cell kinetics as follows: (1) The amount of BrdUrd per S phase cell was reduced; (2) Cell movement within S phase was inhibited; and (3) Lowest doses perturbing CHO cell kinetics were below minimum concentrations producing aberrations. These data provide evidence that this cytogenetic damage is mediated by a mechanism which disrupts cellular DNA synthesis.

  19. Regulation of human papillomavirus type 16 DNA replication by E2, glucocorticoid hormone and epidermal growth factor.

    PubMed

    Piccini, A; Storey, A; Romanos, M; Banks, L

    1997-08-01

    The E1 and E2 proteins are the only human papillomavirus (HPV) proteins required for transient replication of plasmids containing the viral origin. The E2 gene products play key roles in both viral transcription and replication. In this study we have analysed in further detail the nature of the association between E1 and E2 using a series of E2 proteins mutated in conserved regions of the N-terminal domain. These proteins were tested for their ability to activate transcription and to stimulate viral DNA replication. Several of these mutants revealed that the two functions of E2 can be separated, and that they define three widely spaced regions of the N-terminal domain which are important for DNA replication, two of which retain E1-binding activity. This suggests that E2 may have a role in viral DNA replication other than simply localizing E1 to the origin of replication. Additional important elements for regulating viral gene expression have been shown to be glucocorticoid hormones and epidermal growth factor (EGF). We show here that they may also be involved in regulating viral DNA replication. Our studies show that the addition of glucocorticoid hormone significantly stimulates viral DNA replication. In contrast, addition of EGF results in modest repression of viral DNA replication. These results have important implications for the pathogenesis of HPV infection and suggest that the relative levels of E2, glucocorticoid hormone and EGF may significantly affect the outcome of an HPV infection. PMID:9266995

  20. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells

    PubMed Central

    Yang, Chi-Chun; Suzuki, Masahiro; Yamakawa, Shiori; Uno, Syuzi; Ishii, Ai; Yamazaki, Satoshi; Fukatsu, Rino; Fujisawa, Ryo; Sakimura, Kenji; Tsurimoto, Toshiki; Masai, Hisao

    2016-01-01

    Claspin transmits replication stress signal from ATR to Chk1 effector kinase as a mediator. It also plays a role in efficient replication fork progression during normal growth. Here we have generated conditional knockout of Claspin and show that Claspin knockout mice are dead by E12.5 and Claspin knockout mouse embryonic fibroblast (MEF) cells show defect in S phase. Using the mutant cell lines, we report the crucial roles of the acidic patch (AP) near the C terminus of Claspin in initiation of DNA replication. Cdc7 kinase binds to AP and this binding is required for phosphorylation of Mcm. AP is involved also in intramolecular interaction with a N-terminal segment, masking the DNA-binding domain and a newly identified PIP motif, and Cdc7-mediated phosphorylation reduces the intramolecular interaction. Our results suggest a new role of Claspin in initiation of DNA replication during normal S phase through the recruitment of Cdc7 that facilitates phosphorylation of Mcm proteins. PMID:27401717

  1. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells.

    PubMed

    Yang, Chi-Chun; Suzuki, Masahiro; Yamakawa, Shiori; Uno, Syuzi; Ishii, Ai; Yamazaki, Satoshi; Fukatsu, Rino; Fujisawa, Ryo; Sakimura, Kenji; Tsurimoto, Toshiki; Masai, Hisao

    2016-01-01

    Claspin transmits replication stress signal from ATR to Chk1 effector kinase as a mediator. It also plays a role in efficient replication fork progression during normal growth. Here we have generated conditional knockout of Claspin and show that Claspin knockout mice are dead by E12.5 and Claspin knockout mouse embryonic fibroblast (MEF) cells show defect in S phase. Using the mutant cell lines, we report the crucial roles of the acidic patch (AP) near the C terminus of Claspin in initiation of DNA replication. Cdc7 kinase binds to AP and this binding is required for phosphorylation of Mcm. AP is involved also in intramolecular interaction with a N-terminal segment, masking the DNA-binding domain and a newly identified PIP motif, and Cdc7-mediated phosphorylation reduces the intramolecular interaction. Our results suggest a new role of Claspin in initiation of DNA replication during normal S phase through the recruitment of Cdc7 that facilitates phosphorylation of Mcm proteins. PMID:27401717

  2. Chk1 and p21 Cooperate to Prevent Apoptosis during DNA Replication Fork StressD⃞

    PubMed Central

    Rodriguez, Rene; Meuth, Mark

    2006-01-01

    Cells respond to DNA replication stress by triggering cell cycle checkpoints, repair, or death. To understand the role of the DNA damage response pathways in determining whether cells survive replication stress or become committed to death, we examined the effect of loss of these pathways on cellular response to agents that slow or arrest DNA synthesis. We show that replication inhibitors such as excess thymidine, hydroxyurea, and camptothecin are normally poor inducers of apoptosis. However, these agents become potent inducers of death in S-phase cells upon small interfering RNA-mediated depletion of the checkpoint kinase Chk1. This death response is independent of p53 and Chk2. p21-deficient cells, on the other hand, produce a more robust apoptotic response upon Chk1 depletion. p21 is normally induced only late after thymidine treatment. In Chk1-depleted cells p21 induction occurs earlier and does not require p53. Thus, Chk1 plays a primary role in the protection of cells from death induced by replication fork stress, whereas p21 mediates through its role in regulating entry into S phase. These findings are of potential importance to cancer therapy because we demonstrate that the efficacy of clinically relevant agents can be enhanced by manipulation of these signaling pathways. PMID:16280359

  3. Pin1 Interacts with the Epstein-Barr Virus DNA Polymerase Catalytic Subunit and Regulates Viral DNA Replication

    PubMed Central

    Narita, Yohei; Ryo, Akihide; Kawashima, Daisuke; Sugimoto, Atsuko; Kanda, Teru; Kimura, Hiroshi

    2013-01-01

    Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein is known as a regulator which recognizes phosphorylated Ser/Thr-Pro motifs and increases the rate of cis and trans amide isomer interconversion, thereby altering the conformation of its substrates. We found that Pin1 knockdown using short hairpin RNA (shRNA) technology resulted in strong suppression of productive Epstein-Barr virus (EBV) DNA replication. We further identified the EBV DNA polymerase catalytic subunit, BALF5, as a Pin1 substrate in glutathione S-transferase (GST) pulldown and immunoprecipitation assays. Lambda protein phosphatase treatment abolished the binding of BALF5 to Pin1, and mutation analysis of BALF5 revealed that replacement of the Thr178 residue by Ala (BALF5 T178A) disrupted the interaction with Pin1. To further test the effects of Pin1 in the context of virus infection, we constructed a BALF5-deficient recombinant virus. Exogenous supply of wild-type BALF5 in HEK293 cells with knockout recombinant EBV allowed efficient synthesis of viral genome DNA, but BALF5 T178A could not provide support as efficiently as wild-type BALF5. In conclusion, we found that EBV DNA polymerase BALF5 subunit interacts with Pin1 through BALF5 Thr178 in a phosphorylation-dependent manner. Pin1 might modulate EBV DNA polymerase conformation for efficient, productive viral DNA replication. PMID:23221557

  4. Theoretical models for the regulation of DNA replication in fast-growing bacteria

    NASA Astrophysics Data System (ADS)

    Creutziger, Martin; Schmidt, Mischa; Lenz, Peter

    2012-09-01

    Growing in always changing environments, Escherichia coli cells are challenged by the task to coordinate growth and division. In particular, adaption of their growth program to the surrounding medium has to guarantee that the daughter cells obtain fully replicated chromosomes. Replication is therefore to be initiated at the right time, which is particularly challenging in media that support fast growth. Here, the mother cell initiates replication not only for the daughter but also for the granddaughter cells. This is possible only if replication occurs from several replication forks that all need to be correctly initiated. Despite considerable efforts during the last 40 years, regulation of this process is still unknown. Part of the difficulty arises from the fact that many details of the relevant molecular processes are not known. Here, we develop a novel theoretical strategy for dealing with this general problem: instead of analyzing a single model, we introduce a wide variety of 128 different models that make different assumptions about the unknown processes. By comparing the predictions of these models we are able to identify the key quantities that allow the experimental discrimination of the different models. Analysis of these quantities yields that out of the 128 models 94 are not consistent with available experimental data. From the remaining 34 models we are able to conclude that mass growth and DNA replication need either to be truly coupled, by coupling DNA replication initiation to the event of cell division, or to the amount of accumulated mass. Finally, we make suggestions for experiments to further reduce the number of possible regulation scenarios.

  5. The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication.

    PubMed Central

    Lu, A; Miller, L K

    1995-01-01

    A set of 18 plasmid subclones of the Autographa californica nuclear polyhedrosis virus genome supports expression from a late viral promoter in transient expression assays (J. W. Todd, A. L. Passarelli, and L. K. Miller, J. Virol. 69:968-974, 1995). Using this set of plasmids, we have assigned a role for each of the 18 genes required for optimal late gene expression with respect to its involvement at the levels of transcription, translation, and/or DNA replication. RNase protection analyses demonstrated that all of the known late expression factor genes (lefs) affected the steady-state level of reporter gene RNA. Thus, none of the lefs appeared to be specifically involved in translation. A subset of the lefs supported plasmid replication; ie-1, lef-1, lef-2, lef-3, p143, and p35 were essential for plasmid replication, while ie-n, lef-7, and dnapol had stimulatory effects. The predicted sequence of lef-7 suggests that it is a homolog of herpesvirus single-stranded DNA-binding protein (UL29). The role of p35 in plasmid replication appears to be suppression of apoptosis, because p35 could be functionally replaced in the replication assay by either Cp-iap or Op-iap, two heterologous baculovirus genes which suppress apoptosis by a mechanism which appears to differ from that of p35. Thus, one or more of the replication-related lefs or the process of plasmid replication appears to induce cellular apoptosis. Our results indicate that the remaining lefs, lefs 4 through 11, p47, and 39K (pp31), function either at the level of transcription or at that of mRNA stabilization. PMID:7815565

  6. Role of the Escherichia coli nucleotide excision repair proteins in DNA replication.

    PubMed

    Moolenaar, G F; Moorman, C; Goosen, N

    2000-10-01

    DNA polymerase I (PolI) functions both in nucleotide excision repair (NER) and in the processing of Okazaki fragments that are generated on the lagging strand during DNA replication. Escherichia coli cells completely lacking the PolI enzyme are viable as long as they are grown on minimal medium. Here we show that viability is fully dependent on the presence of functional UvrA, UvrB, and UvrD (helicase II) proteins but does not require UvrC. In contrast, delta polA cells grow even better when the uvrC gene has been deleted. Apparently UvrA, UvrB, and UvrD are needed in a replication backup system that replaces the PolI function, and UvrC interferes with this alternative replication pathway. With specific mutants of UvrC we could show that the inhibitory effect of this protein is related to its catalytic activity that on damaged DNA is responsible for the 3' incision reaction. Specific mutants of UvrA and UvrB were also studied for their capacity to support the PolI-independent replication. Deletion of the UvrC-binding domain of UvrB resulted in a phenotype similar to that caused by deletion of the uvrC gene, showing that the inhibitory incision activity of UvrC is mediated via binding to UvrB. A mutation in the N-terminal zinc finger domain of UvrA does not affect NER in vivo or in vitro. The same mutation, however, does give inviability in combination with the delta polA mutation. Apparently the N-terminal zinc-binding domain of UvrA has specifically evolved for a function outside DNA repair. A model for the function of the UvrA, UvrB, and UvrD proteins in the alternative replication pathway is discussed. PMID:11004168

  7. Characterization of beet curly top virus subgenomic DNA localizes sequences required for replication.

    PubMed

    Frischmuth, T; Stanley, J

    1992-08-01

    Subgenomic viral DNA is accumulated in Nicotiana benthamiana and Beta vulgaris plants agroinoculated with the geminivirus beet curly top virus. The subgenomic DNA is more abundant in N. benthamiana and is distributed between two broad size groups in this host. Six unique examples, ranging in size from 887 to 1311 nucleotides, have been cloned from viral double-stranded DNA purified from N. benthamiana and analyzed by sequence determination. Deletions are distributed throughout most of the genome and only nucleotides 2946-410 are represented in all subgenomic DNAs. Comparison with a previously characterized subgenomic DNA suggests that cis-acting signals necessary for viral DNA replication are located in a predominantly intergenic region between nucleotides 2946-308. PMID:1641993

  8. The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1

    SciTech Connect

    Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Dhe-Paganon, Sirano; Brenner, Charles

    2015-11-30

    Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenic DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.

  9. DNA Damage Responses in Prokaryotes: Regulating Gene Expression, Modulating Growth Patterns, and Manipulating Replication Forks

    PubMed Central

    Kreuzer, Kenneth N.

    2013-01-01

    Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized. PMID:24097899

  10. A Possible Case of Position Effect on DNA Replication in DROSOPHILA MELANOGASTER

    PubMed Central

    Roberts, Paul A.

    1972-01-01

    The behavior of T(3;4)10 provides evidence that the centromere of 4 is not in the doublet 101D3,4, and that most of what has been called the left arm of 4 should be called basal 4R. Basal 4R usually does not replicate as much as the tip of 4R when 4 is in its normal position in the chromocenter. Translocated to the tip of 3R, however, basal 4R attains a width equal to that of the rest of the arm—a possible position effect on DNA replication. PMID:4631595

  11. A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan

    PubMed Central

    Kwan, Elizabeth X.; Foss, Eric J.; Tsuchiyama, Scott; Alvino, Gina M.; Kruglyak, Leonid; Kaeberlein, Matt; Raghuraman, M. K.; Brewer, Bonita J.; Kennedy, Brian K.; Bedalov, Antonio

    2013-01-01

    Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics. PMID:23505383

  12. Emerging critical roles of Fe-S clusters in DNA replication and repair

    PubMed Central

    Fuss, Jill O.; Tsai, Chi-Lin; Ishida, Justin P.; Tainer, John A.

    2015-01-01

    Fe-S clusters are partners in the origin of life that predate cells, acetyl-CoA metabolism, DNA, and the RNA world. The double helix solved the mystery of DNA replication by base pairing for accurate copying. Yet, for genome stability necessary to life, the double helix has equally important implications for damage repair. Here we examine striking advances that uncover Fe-S cluster roles both in copying the genetic sequence by DNA polymerases and in crucial repair processes for genome maintenance, as mutational defects cause cancer and degenerative disease. Moreover, we examine an exciting, controversial role for Fe-S clusters in a third element required for life – the long-range coordination and regulation of replication and repair events. By their ability to delocalize electrons over both Fe and S centers, Fe-S clusters have unbeatable features for protein conformational control and charge transfer via double-stranded DNA that may fundamentally transform our understanding of life, replication, and repair. PMID:25655665

  13. [beta]-Tubulin Accumulation and DNA Replication in Imbibing Tomato Seeds.

    PubMed

    De Castro, R. D.; Zheng, X.; Bergervoet, JHW.; De Vos, CHR.; Bino, R. J.

    1995-10-01

    The activation of the cell cycle in embryo root tips of imbibing tomato (Lycopersicon esculentum Mill. cv Lerica) seeds was studied by flow cytometric analyses of the nuclear DNA content and by immunodelection of [beta]-tubulin. With dry seeds, flow cytometric profiles indicated that the majority of the cells were arrested at the G1 phase of the cell cycle. In addition, [beta]-tubulin was not detectable on western blots. Upon imbibition of water, the number of cells in G2 started to increase after 24 h, and a 55-kD [beta]-tubulin signal was detected between 24 and 48 h. Two-dimensional immunoblots revealed at least three different [beta]-tubulin isotypes. Thus, [beta]-tubulin accumulation and DNA replication were induced during osmotic priming. These processes, as well as seed germination rate, were enhanced upon subsequent imbibition of water, compared with control seeds that imbibed but were not primed. By contrast, when aged seeds imbibed, DNA replication, [beta]-tubulin accumulation, and germination were delayed. In all cases studied, both DNA replication and [beta]-tubulin accumulation preceded visible germination. We suggest that activation of these cell-cycle-related processes is a prerequisite for tomato seed germination. Furthermore, [beta]-tubulin expression can be used as a parameter for following the initial processes that are activated during seed imbibition. PMID:12228608

  14. Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli

    SciTech Connect

    Yung, B.Y.; Kornberg, A.

    1988-10-01

    ADP and ATP are tightly bound to dnaA protein and are crucial to its function in DNA replication; the exchange of these nucleotides is effected specifically by the acidic phospholipids (cardiolipin and phosphatidylglycerol) present in Escherichia coli membranes. We now find that phospholipids derived from membranes lacking an unsaturated fatty acid (e.g., oleic acid) are unable to promote the exchange. This observation correlates strikingly with the long-known effect of 3-decynoyl-N-acetylcysteamine, a ''suicide analog'' that prevents initiation of a cycle of replication in E. coli by inhibiting the synthesis of oleic acid, an inhibition that can be overcome by providing the cells with oleic acid. Profound influences on the specific binding of dnaA protein to phospholipids by temperature, the content of unsaturated fatty acids, and the inclusion of cholesterol can be explained by the need for the phospholipids to be in fluid-phase vesicles. These findings suggest that membrane attachment of dnaA protein is vital for its function in the initiation of chromosome replication in E. coli.

  15. Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis

    PubMed Central

    Pedroza-Garcia, José Antonio; Domenichini, Séverine; Mazubert, Christelle; Bourge, Mickael; White, Charles; Hudik, Elodie; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; del Olmo, Ivan; Piñeiro, Manuel; Jarillo, Jose Antonio; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2016-01-01

    Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types. PMID:27193996

  16. Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases alpha and delta.

    PubMed Central

    Lee, S H; Eki, T; Hurwitz, J

    1989-01-01

    Proliferating-cell nuclear antigen (PCNA) mediates the replication of simian virus 40 (SV40) DNA by reversing the effects of a protein that inhibits the elongation reaction. Two other protein fractions, activator I and activator II, were also shown to play important roles in this process. We report that activator II isolated from HeLa cell extracts is a PCNA-dependent DNA polymerase delta that is required for efficient replication of DNA containing the SV40 origin of replication. PCNA-dependent DNA polymerase delta on a DNA singly primed phi X174 single-stranded circular DNA template required PCNA, a complex of the elongation inhibitor and activator I, and the single-stranded DNA-binding protein essential for SV40 DNA replication. DNA polymerase delta, in contrast to DNA polymerase alpha, hardly used RNA-primed DNA templates. These results indicate that both DNA polymerase alpha and delta are involved in SV40 DNA replication in vitro and their activity depends on PCNA, the elongation inhibitor, and activator I. Images PMID:2571990

  17. DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.

    PubMed

    Huang, Dongqing; Piening, Brian D; Kennedy, Jacob J; Lin, Chenwei; Jones-Weinert, Corey W; Yan, Ping; Paulovich, Amanda G

    2016-05-01

    In response to replication stress, a phospho-signaling cascade is activated and required for coordination of DNA repair and replication of damaged templates (intra-S-phase checkpoint) . How phospho-signaling coordinates the DNA replication stress response is largely unknown. We employed state-of-the-art liquid chromatography tandem-mass spectrometry (LC-MS/MS) approaches to generate high-coverage and quantitative proteomic and phospho-proteomic profiles during replication stress in yeast, induced by continuous exposure to the DNA alkylating agent methyl methanesulfonate (MMS) . We identified 32,057 unique peptides representing the products of 4296 genes and 22,061 unique phosphopeptides representing the products of 3183 genes. A total of 542 phosphopeptides (mapping to 339 genes) demonstrated an abundance change of greater than or equal to twofold in response to MMS. The screen enabled detection of nearly all of the proteins known to be involved in the DNA damage response, as well as many novel MMS-induced phosphorylations. We assessed the functional importance of a subset of key phosphosites by engineering a panel of phosphosite mutants in which an amino acid substitution prevents phosphorylation. In total, we successfully mutated 15 MMS-responsive phosphorylation sites in seven representative genes including APN1 (base excision repair); CTF4 and TOF1 (checkpoint and sister-chromatid cohesion); MPH1 (resolution of homologous recombination intermediates); RAD50 and XRS2 (MRX complex); and RAD18 (PRR). All of these phosphorylation site mutants exhibited MMS sensitivity, indicating an important role in protecting cells from DNA damage. In particular, we identified MMS-induced phosphorylation sites on Xrs2 that are required for MMS resistance in the absence of the MRX activator, Sae2, and that affect telomere maintenance. PMID:27017623

  18. Genetic Confirmation that the H5 Protein Is Required for Vaccinia Virus DNA Replication

    PubMed Central

    Boyle, Kathleen A.; Greseth, Matthew D.

    2015-01-01

    ABSTRACT The duplication of the poxvirus double-stranded DNA genome occurs in cytoplasmic membrane-delimited factories. This physical autonomy from the host nucleus suggests that poxvirus genomes encode the full repertoire of proteins committed for genome replication. Biochemical and genetic analyses have confirmed that six viral proteins are required for efficient DNA synthesis; indirect evidence has suggested that the multifunctional H5 protein may also have a role. Here we show that H5 localizes to replication factories, as visualized by immunofluorescence and immunoelectron microscopy, and can be retrieved upon purification of the viral polymerase holoenzyme complex. The temperature-sensitive (ts) mutant Dts57, which was generated by chemical mutagenesis and has a lesion in H5, exhibits defects in DNA replication and morphogenesis under nonpermissive conditions, depending upon the experimental protocol. The H5 variant encoded by the genome of this mutant is ts for function but not stability. For a more precise investigation of how H5 contributes to DNA synthesis, we placed the ts57 H5 allele in an otherwise wild-type viral background and also performed small interfering RNA-mediated depletion of H5. Finally, we generated a complementing cell line, CV-1–H5, which allowed us to generate a viral recombinant in which the H5 open reading frame was deleted and replaced with mCherry (vΔH5). Analysis of vΔH5 allowed us to demonstrate conclusively that viral DNA replication is abrogated in the absence of H5. The loss of H5 does not compromise the accumulation of other early viral replication proteins or the uncoating of the virion core, suggesting that H5 plays a direct and essential role in facilitating DNA synthesis. IMPORTANCE Variola virus, the causative agent of smallpox, is the most notorious member of the Poxviridae family. Poxviruses are unique among DNA viruses that infect mammalian cells, in that their replication is restricted to the cytoplasm of the cell

  19. Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis

    PubMed Central

    Rannou, Olivier; Le Chatelier, Emmanuelle; Larson, Marilynn A.; Nouri, Hamid; Dalmais, Bérengère; Laughton, Charles; Jannière, Laurent; Soultanas, Panos

    2013-01-01

    Bacillus subtilis has two replicative DNA polymerases. PolC is a processive high-fidelity replicative polymerase, while the error-prone DnaEBs extends RNA primers before hand-off to PolC at the lagging strand. We show that DnaEBs interacts with the replicative helicase DnaC and primase DnaG in a ternary complex. We characterize their activities and analyse the functional significance of their interactions using primase, helicase and primer extension assays, and a ‘stripped down’ reconstituted coupled assay to investigate the coordinated displacement of the parental duplex DNA at a replication fork, synthesis of RNA primers along the lagging strand and hand-off to DnaEBs. The DnaG–DnaEBs hand-off takes place after de novo polymerization of only two ribonucleotides by DnaG, and does not require other replication proteins. Furthermore, the fidelity of DnaEBs is improved by DnaC and DnaG, likely via allosteric effects induced by direct protein–protein interactions that lower the efficiency of nucleotide mis-incorporations and/or the efficiency of extension of mis-aligned primers in the catalytic site of DnaEBs. We conclude that de novo RNA primer synthesis by DnaG and initial primer extension by DnaEBs are carried out by a lagging strand–specific subcomplex comprising DnaG, DnaEBs and DnaC, which stimulates chromosomal replication with enhanced fidelity. PMID:23563155

  20. The crystal structure of Neisseria gonorrhoeae PriB reveals mechanistic differences among bacterial DNA replication restart pathways

    SciTech Connect

    Dong, Jinlan; George, Nicholas P.; Duckett, Katrina L.; DeBeer, Madeleine A.P.; Lopper, Matthew E.

    2010-05-25

    Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 {angstrom} resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeae and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.

  1. Kick-starting the cell cycle: From growth-factor stimulation to initiation of DNA replication

    NASA Astrophysics Data System (ADS)

    Aguda, Baltazar D.

    2001-03-01

    The essential genes, proteins and associated regulatory networks involved in the entry into the mammalian cell cycle are identified, from activation of growth-factor receptors to intracellular signal transduction pathways that impinge on the cell cycle machinery and ultimately on the initiation of DNA replication. Signaling pathways mediated by the oncoproteins Ras and Myc induce the activation of cyclin-dependent kinases CDK4 and CDK2, and the assembly and firing of pre-replication complexes require a collaboration among E2F, CDK2, and Cdc7 kinase. A proposed core mechanism of the restriction point, the major checkpoint prior to commitment to DNA synthesis, involves cyclin E/CDK2, the phosphatase Cdc25A, and the CDK inhibitor p27Kip1.

  2. A diffusion model for the coordination of DNA replication in Schizosaccharomyces pombe

    PubMed Central

    Pichugina, T.; Sugawara, T.; Kaykov, A.; Schierding, W.; Masuda, K.; Uewaki, J.; Grand, R. S.; Allison, J. R.; Martienssen, R. A.; Nurse, P.; Ueno, M.; O’Sullivan, J. M.

    2016-01-01

    The locations of proteins and epigenetic marks on the chromosomal DNA sequence are believed to demarcate the eukaryotic genome into distinct structural and functional domains that contribute to gene regulation and genome organization. However, how these proteins and epigenetic marks are organized in three dimensions remains unknown. Recent advances in proximity-ligation methodologies and high resolution microscopy have begun to expand our understanding of these spatial relationships. Here we use polymer models to examine the spatial organization of epigenetic marks, euchromatin and heterochromatin, and origins of replication within the Schizosaccharomyces pombe genome. These models incorporate data from microscopy and proximity-ligation experiments that inform on the positions of certain elements and contacts within and between chromosomes. Our results show a striking degree of compartmentalization of epigenetic and genomic features and lead to the proposal of a diffusion based mechanism, centred on the spindle pole body, for the coordination of DNA replication in S. pombe. PMID:26729303

  3. Regulation of DNA replication proteins in parasitic protozoans: possible role of CDK-like kinases.

    PubMed

    Deshmukh, Abhijit S; Agarwal, Meetu; Dhar, Suman Kumar

    2016-08-01

    Regulatory roles of CDKs in fundamental processes including cell cycle progression and transcription are well conserved in metazoans. This family of proteins has undergone significant evolutionary divergence and specialization. Several CDK-like kinases have been identified and characterized in parasitic protozoans. However, clear functional role and physiological relevance of these proteins in protozoans still remain elusive. In continuation with the recent finding that CDK-like protein PfPK5 regulates important DNA replication protein like origin recognition complex subunit 1 in Plasmodium falciparum, here we have discussed the emerging significance of CDK1/2 homologs in DNA replication of parasitic protozoans. In fact, involvement of these proteins in crucial cellular processes projects them as potential drug targets. The possibilities that CDKs offer as potential therapeutic targets in controlling parasite progression have also been explored. PMID:26780367

  4. Inhibition of Hepatitis B virus cccDNA replication by siRNA

    SciTech Connect

    Li Guiqiu; Gu Hongxi . E-mail: hxgu2432@163.com; Li Di; Xu Weizhen

    2007-04-06

    The development of an effective therapy for Hepatitis B virus (HBV) infection is still a challenge. Progress in RNA interference (RNAi) has shed slight on developing a new anti-HBV strategy. Here, we present a series of experiments showing a significant reduction in HBV transcripts and replication intermediates in HepG2.2.15 cells by vector-based siRNA targeted nuclear localization signal (NLS) region. More importantly, we showed that siRNA1 markedly inhibited HBV covalently closed circular DNA (cccDNA) replication. Our results indicated that HBV NLS may serve as a novel RNAi target to combat HBV infection, which can enhance anti-HBV efficacy and overcome the drawbacks of current therapies.

  5. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae

    PubMed Central

    Putnam, Christopher D.; Jaehnig, Eric J.; Kolodner, Richard D.

    2009-01-01

    The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimium threshold. PMID:19477695

  6. Homology-directed Fanconi anemia pathway crosslink repair is dependent on DNA replication

    PubMed Central

    Nakanishi, Koji; Cavallo, Francesca; Perrouault, Loïc; Giovannangeli, Carine; Moynahan, Mary Ellen; Barchi, Marco; Brunet, Erika; Jasin, Maria

    2012-01-01

    Homologous recombination (also termed homology-directed repair, HDR) is a major pathway for the repair of DNA interstrand crosslinks (ICLs) in mammalian cells. Cells from Fanconi anemia (FA) patients are characterized by extreme ICL sensitivity, but their reported defect in HDR is mild. Here, we examined ICL-induced HDR using a GFP reporter and observed a profound defect in ICL-induced HDR in FA cells, but only when the reporter could replicate. PMID:21423196

  7. Structures of herpes simplex virus type 1 genes required for replication of virus DNA.

    PubMed Central

    McGeoch, D J; Dalrymple, M A; Dolan, A; McNab, D; Perry, L J; Taylor, P; Challberg, M D

    1988-01-01

    Recently, a method has been developed to identify regions in the genome of herpes simplex virus type 1 (HSV-1) which contain genes required for DNA synthesis from an HSV-1 origin of DNA replication, and seven genomic loci have been identified as representing the necessary and sufficient gene set for such replication (C. A. Wu, N. J. Nelson, D. J. McGeoch, and M. D. Challberg, J. Virol. 62:435-443, 1988). Two of the loci represent the well-known genes for DNA polymerase and major DNA-binding protein, but the remainder had little or no previous characterization. In this report we present the DNA sequences of the five newly identified genes and their deduced transcript organizations and encoded amino acid sequences. These genes were designated UL5, UL8, UL9, UL42, and UL52 and were predicted to encode proteins with molecular weights of, respectively, 99,000, 80,000, 94,000, 51,000, and 114,000. All of these genes had clear counterparts in the genome of the related alphaherpesvirus varicella-zoster virus, but only UL5 and UL52 were detectably conserved in the distantly related gammaherpesvirus Epstein-Barr virus, as judged by amino acid sequence similarity. The sequence of the UL5 protein, and of its counterparts in the other viruses, contained a region closely resembling known ATP-binding sites; this could be indicative, for instance, of a helicase or primase activity. PMID:2826807

  8. DNA polymerase I is required for premeiotic DNA replication and sporulation but not for X-ray repair in Saccharomyces cerevisiae

    SciTech Connect

    Budd, M.E.; Wittrup, K.D.; Bailey, J.E.; Campbell, J.L.

    1989-02-01

    We have used a set of seven temperature-sensitive mutants in the DNA polymerase I gene of Saccharomyces cerevisiae to investigate the role of DNA polymerase I in various aspects of DNA synthesis in vivo. Previously, we showed that DNA polymerase I is required for mitotic DNA replication. Here we extend our studies to several stages of meiosis and repair of X-ray-induced damage. We find that sporulation is blocked in all of the DNA polymerase temperature-sensitive mutants and that premeiotic DNA replication does not occur. Commitment to meiotic recombination is only 2% of wild-type levels. Thus, DNA polymerase I is essential for these steps. However, repair of X-ray-induced single-strand breaks is not defective in the DNA polymerase temperature-sensitive mutants, and DNA polymerase I is therefore not essential for repair of such lesions. These results suggest that DNA polymerase II or III or both, the two other nuclear yeast DNA polymerases for which roles have not yet been established, carry out repair in the absence of DNA polymerase I, but that DNA polymerase II and III cannot compensate for loss of DNA polymerase I in meiotic replication and recombination. These results do not, however, rule out essential roles for DNA polymerase II or III or both in addition to that for DNA polymerase I.

  9. YAP controls retinal stem cell DNA replication timing and genomic stability

    PubMed Central

    Cabochette, Pauline; Vega-Lopez, Guillermo; Bitard, Juliette; Parain, Karine; Chemouny, Romain; Masson, Christel; Borday, Caroline; Hedderich, Marie; Henningfeld, Kristine A; Locker, Morgane; Bronchain, Odile; Perron, Muriel

    2015-01-01

    The adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc. This is associated with an increased occurrence of DNA damage and eventually p53-p21 pathway-mediated cell death. Finally, we identified PKNOX1, a transcription factor involved in the maintenance of genomic stability, as a functional and physical interactant of YAP. Altogether, we propose that YAP is required in adult retinal stem cells to regulate the temporal firing of replication origins and quality control of replicated DNA. Our data reinforce the view that specific mechanisms dedicated to S-phase control are at work in stem cells to protect them from genomic instability. DOI: http://dx.doi.org/10.7554/eLife.08488.001 PMID:26393999

  10. DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo

    PubMed Central

    Huang, Meng-Er; Facca, Céline; Fatmi, Zakaria; Baïlle, Dorothée; Bénakli, Safia; Vernis, Laurence

    2016-01-01

    Redox homeostasis is tightly controlled in cells as it is critical for most cellular functions. Iron-Sulfur centers (Fe-S) are metallic cofactors with electronic properties that are associated with proteins and allow fine redox tuning. Following the observation that altered Fe-S biosynthesis is correlated with a high sensitivity to hydroxyurea (HU), a potent DNA replication blocking agent, we identified that oxidative stress response pathway under the control of the main regulator Yap1 attenuates HU deleterious effects, as it significantly increases resistance to HU, Fe-S biosynthesis and DNA replication kinetics in the presence of HU. Yap1 effect is mediated at least in part through up-regulation of two highly conserved genes controlling cytosolic Fe-S biosynthesis and oxidative stress, Dre2 and Tah18. We next observed that HU produces deleterious effects on cytosolic Fe-S clusters in proteins in vivo but not in vitro, suggesting that HU’s impact on Fe-S in vivo is mediated by cellular metabolism. Finally, we evidenced that HU exposure was accompanied by production of reactive oxygen species intracellularly. Altogether, this study provides mechanistic insight on the initial observation that mutants with altered Fe-S biosynthesis are highly sensitive to HU and uncovers a novel mechanism of action of this widely used DNA replication inhibitor. PMID:27405729

  11. CRL4(WDR23)-Mediated SLBP Ubiquitylation Ensures Histone Supply during DNA Replication.

    PubMed

    Brodersen, Mia M L; Lampert, Fabienne; Barnes, Christopher A; Soste, Martin; Piwko, Wojciech; Peter, Matthias

    2016-05-19

    To maintain genome integrity and epigenetic information, mammalian cells must carefully coordinate the supply and deposition of histones during DNA replication. Here we report that the CUL4 E3 ubiquitin ligase complex CRL4(WDR23) directly regulates the stem-loop binding protein (SLBP), which orchestrates the life cycle of histone transcripts including their stability, maturation, and translation. Lack of CRL4(WDR23) activity is characterized by depletion of histones resulting in inhibited DNA replication and a severe slowdown of growth in human cells. Detailed analysis revealed that CRL4(WDR23) is required for efficient histone mRNA 3' end processing to produce mature histone mRNAs for translation. CRL4(WDR23) binds and ubiquitylates SLBP in vitro and in vivo, and this modification activates SLBP function in histone mRNA 3' end processing without affecting its protein levels. Together, these results establish a mechanism by which CUL4 regulates DNA replication and possible additional chromatin transactions by controlling the concerted expression of core histones. PMID:27203182

  12. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus

    PubMed Central

    Jeske, Holger; Lütgemeier, Martin; Preiß, Werner

    2001-01-01

    Geminiviruses have spread worldwide and have become increasingly important in crop plants during recent decades. Recombination among geminiviruses was one major source of new variants. Geminiviruses replicate via rolling circles, confirmed here by electron microscopic visualization and two-dimensional gel analysis of Abutilon mosaic virus (AbMV) DNA. However, only a minority of DNA intermediates are consistent with this model. The majority are compatible with recombination-dependent replication (RDR). During development of naturally infected leaves, viral intermediates compatible with both models appeared simultaneously, whereas agro-infection of leaf discs with AbMV led to an early appearance of RDR forms but no RCR intermediates. Inactivation of viral genes ac2 and ac3 delayed replication, but produced the same DNA types as after wild-type infection, indicating that these genes were not essential for RDR in leaf discs. In conclusion, host factors alone or in combination with the viral AC1 protein are necessary and sufficient for the production of RDR intermediates. The consequences of an inherent geminiviral recombination activity for the use of pathogen-derived resistance traits are discussed. PMID:11689455

  13. DNA translocation activity of the multifunctional replication protein ORF904 from the archaeal plasmid pRN1

    PubMed Central

    Sanchez, Martin; Drechsler, Markus; Stark, Holger; Lipps, Georg

    2009-01-01

    The replication protein ORF904 from the plasmid pRN1 is a multifunctional enzyme with ATPase-, primase- and DNA polymerase activity. Sequence analysis suggests the presence of at least two conserved domains: an N-terminal prim/pol domain with primase and DNA polymerase activities and a C-terminal superfamily 3 helicase domain with a strong double-stranded DNA dependant ATPase activity. The exact molecular function of the helicase domain in the process of plasmid replication remains unclear. Potentially this motor protein is involved in duplex remodelling and/or origin opening at the plasmid replication origin. In support of this we found that the monomeric replication protein ORF904 forms a hexameric ring in the presence of DNA. It is able to translocate along single-stranded DNA in 3′–5′ direction as well as on double-stranded DNA. Critical residues important for ATPase activity and DNA translocation activity were identified and are in agreement with a homology model of the helicase domain. In addition we propose that a winged helix DNA-binding domain at the C-terminus of the helicase domain could assist the binding of the replication protein specifically to the replication origin. PMID:19762479

  14. Polyploid cells rewire DNA damage response networks to overcome replication stress-induced barriers for tumour progression

    PubMed Central

    Zheng, Li; Dai, Huifang; Zhou, Mian; Li, Xiaojin; Liu, Changwei; Guo, Zhigang; Wu, Xiwei; Wu, Jun; Wang, Charles; Zhong, John; Huang, Qin; Garcia-Aguilar, Julio; Pfeifer, Gerd P.; Shen, Binghui

    2012-01-01

    Mutations in genes involved in DNA replication such as FEN1, can cause single-stranded DNA breaks (SSBs) and subsequent collapse of DNA replication forks leading to DNA replication stresses. Persistent replication stresses normally induce p53-mediated senescence or apoptosis to prevent tumor progression. It is unclear how some mutant cells can overcome persistent replication stresses and bypass the p53-mediated pathways to develop malignancy. Here we show that formation of polyploidy, which is often observed in human cancers, leads to overexpression of BRCA1, p19arf and other DNA repair genes in FEN1 mutant cells. This overexpression triggers SSB repair and non-homologous end joining pathways to increase DNA repair activity, but at the cost of frequent chromosomal translocations. Meanwhile, DNA methylation silences p53 target genes, to bypass the p53-mediated senescence and apoptosis. These molecular changes rewire DNA damage response and repair gene networks in polyploid tumor cells, enabling them to escape replication stress-induced senescence barriers. PMID:22569363

  15. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    NASA Astrophysics Data System (ADS)

    Shen, Cenchao; Yang, Wenjuan; Ji, Qiaoli; Maki, Hisaji; Dong, Anjie; Zhang, Zhizhou

    2009-11-01

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  16. Semiconservative DNA replication is initiated at a single site in recombination-deficient gene 32 mutants of bacteriophage T4.

    PubMed Central

    Dannenberg, R; Mosig, G

    1981-01-01

    We have investigated, by electron microscopy, replicative intermediate produced early after infection of Escherichia coli with two phage T4 gene 32 mutants (amA453 and tsG26) which replicate their parental DNA but are defective in secondary replications and in moderating the activities of recombination nucleases. Under conditions completely restrictive for progeny production, both of these mutant produced replicative intermediates, each containing a single internal loop. Both branches of these loops were double stranded; i.e., both leading and lagging strands were synthesized. The replicative intermediates of these mutants qualitatively and quantitatively resembled early replicating wild-type T4 chromosomes after solitary infection of E. coli. However, in contrast to intracellular wild-type T4 DNA isolated from multiple infection, the mutant DNAs showed neither multiple branches nor multiple tandem loops. These results demonstrate that a truncated gene 32 protein which consists of less than one-third of the wild-type T4 helix-destabilizing protein can facilitate the functions of T4 replication proteins, specifically those of T4 DNA polymerase and priming proteins. Our results also support the hypothesis that the generation of multiple tandem loops or branches in vegetative T4 DNA depends on recombination (Mosig et al., in B. Alberts, ed., Mechanistic Studies of DNA Replication and Genetic Recombination, p. 527-543, Academic Press, Inc., New York, 1980). Images PMID:7321104

  17. Localization of a bidirectional DNA replication origin in the native locus and in episomally amplified murine adenosine deaminase loci.

    PubMed Central

    Carroll, S M; DeRose, M L; Kolman, J L; Nonet, G H; Kelly, R E; Wahl, G M

    1993-01-01

    Gene amplification is frequently mediated by the initial production of acentric, autonomously replicating extrachromosomal elements. The 4,000 extrachromosomal copies of the mouse adenosine deaminase (ADA) amplicon in B-1/50 cells initiate their replication remarkably synchronously in early S phase and at approximately the same time as the single-copy chromosomal locus from which they were derived. The abundance of ADA sequences and favorable replication timing characteristics in this system led us to determine whether DNA replication initiates in ADA episomes within a preferred region and whether this region is the same as that used at the corresponding chromosomal locus prior to amplification. This study reports the detection and localization of a discrete set of DNA fragments in the ADA amplicon which label soon after release of synchronized B-1/50 cells into S phase. A switch in template strand complementarity of Okazaki fragments, indicative of the initiation of bidirectional DNA replication, was found to lie within the same region. This putative replication origin is located approximately 28.5 kbp upstream of the 5' end of the ADA gene. The same region initiated DNA replication in the single-copy ADA locus of the parental cells. These analyses provide the first evidence that the replication of episomal intermediates involved in gene amplification initiates within a preferred region and that the same region is used to initiate DNA synthesis within the native locus. Images PMID:8474455

  18. Cooperation of the prs and dnaA gene products for initiation of chromosome replication in Escherichia coli.

    PubMed Central

    Sakakibara, Y

    1993-01-01

    A new Escherichia coli mutant allele, named dnaR, that causes thermosensitive initiation of chromosome replication has been identified to be an allele of the prs gene, the gene for phosphoribosylpyrophosphate synthetase (Y. Sakakibara, J. Mol. Biol. 226:979-987, 1992; Y. Sakakibara, J. Mol. Biol. 226:989-996, 1992). The dnaR mutant became temperature resistant by acquisition of a mutation in the dnaA gene that did not affect the intrinsic activity for the initiation of replication. The suppressor mutant was capable of initiating replication from oriC at a high temperature restrictive for the dnaR single mutant. The thermoresistant DNA synthesis was inhibited by the presence of the wild-type dnaA allele at a high but not a low copy number. The synthesis was also inhibited by an elevated dose of a mutant dnaR allele retaining dnaR activity. Therefore, thermoresistant DNA synthesis in the suppressor mutant was dependent on both the dnaA and the dnaR functions. On the basis of these results, I conclude that the initiation of chromosome replication requires cooperation of the prs and dnaA products. PMID:8396119

  19. Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro.

    PubMed Central

    Pettit, S C; Horwitz, M S; Engler, J A

    1988-01-01

    Replication of the DNA genome of human adenovirus serotype 2 requires three virus-encoded proteins. Two of these proteins, the preterminal protein (pTP) and the adenovirus DNA polymerase, are transcribed from a single promoter at early times after virus infection. The mRNAs for these proteins share several exons, including one encoded near adenovirus genome coordinate 39. By using plasmids containing DNA fragments postulated to encode the various exons of pTP mRNA, the contributions of each exon to the synthesis of an active pTP have been measured. Only plasmids that contain both the open reading frame for pTP (genome coordinates 29.4 to 23.9) and the HindIII J fragment that contains the exon at genome coordinate 39 can express functional pTP. Images PMID:3336069