Science.gov

Sample records for pestis outer membrane

  1. Yersinia pestis uses the Ail outer membrane protein to recruit vitronectin.

    PubMed

    Bartra, Sara Schesser; Ding, Yi; Fujimoto, L Miya; Ring, Joshua G; Jain, Vishal; Ram, Sanjay; Marassi, Francesca M; Plano, Gregory V

    2015-11-01

    Yersinia pestis, the agent of plague, requires the Ail (attachment invasion locus) outer membrane protein to survive in the blood and tissues of its mammalian hosts. Ail is important for both attachment to host cells and for resistance to complement-dependent bacteriolysis. Previous studies have shown that Ail interacts with components of the extracellular matrix, including fibronectin, laminin and heparan sulfate proteoglycans, and with the complement inhibitor C4b-binding protein. Here, we demonstrate that Ail-expressing Y. pestis strains bind vitronectin - a host protein with functions in cell attachment, fibrinolysis and inhibition of the complement system. The Ail-dependent recruitment of vitronectin resulted in efficient cleavage of vitronectin by the outer membrane Pla (plasminogen activator protease). Escherichia coli DH5α expressing Y. pestis Ail bound vitronectin, but not heat-treated vitronectin. The ability of Ail to directly bind vitronectin was demonstrated by ELISA using purified refolded Ail in nanodiscs. PMID:26377177

  2. Plasminogen activator/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins.

    PubMed Central

    Sodeinde, O A; Sample, A K; Brubaker, R R; Goguen, J D

    1988-01-01

    The related family of virulence plasmids found in the three major pathogens of the genus Yersinia all have the ability to encode a set of outer membrane proteins. In Y. enterocolitica and Y. pseudotuberculosis, these proteins are major constituents of the outer membrane when their synthesis is fully induced. In contrast, they have been difficult to detect in Y. pestis. It has recently been established that Y. pestis does synthesize these proteins, but that they are rapidly degraded due to some activity determined by the 9.5-kilobase plasmid commonly found in Y. pestis strains. We show that mutations in the pla gene of this plasmid, which encodes both the plasminogen activator and coagulase activities, blocked this degradation. A cloned 1.4-kilobase DNA fragment carrying pla was also sufficient to cause degradation in the absence of the 9.5-kilobase plasmid. Images PMID:2843471

  3. Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins.

    PubMed Central

    Straley, S C; Bowmer, W S

    1986-01-01

    Yersinia pestis, the causative agent of plague, has a virulence determinant called the low-Ca2+ response (Lcr+ phenotype) that confers on the bacterium Ca2+ dependence for growth at 37 degrees C and expression of V antigen. This virulence determinant is common to the three species of Yersinia and is mediated by Lcr plasmids (called pCD in Y. pestis). In this study, we generated insertions of Mu dI1(Ap lac) in pCD1 of Y. pestis KIM, screened for cells showing transcriptional regulation by Ca2+, and obtained inserts that define at least four pCD1 genes. Their patterns of transcription under different growth conditions closely paralleled the pattern of expression of the V antigen. We tested for expression of Lcr-specific yersinial outer membrane proteins (Yops) by the pCD1::Mu dI1(Ap lac) plasmids. Four of the inserts each eliminated expression of a different Yop; one of these Yops was unique to Y. pestis. Two of the insertions affecting Yops caused avirulence, and one caused strongly decreased virulence of Y. pestis in mice. These data indicate that Yops, like the V antigen, are virulence attributes regulated in the low-Ca2+ response. Images PMID:3002984

  4. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation.

    PubMed

    Ding, Yi; Fujimoto, L Miya; Yao, Yong; Marassi, Francesca M

    2015-04-01

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396-10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure-activity correlation experiments across a wide range of timescales. PMID:25578899

  5. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

    PubMed Central

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Marassi, Francesca M.

    2015-01-01

    Solid-state NMR studies of sedimented soluble proteins has been recently developed as an attractive approach for overcoming the size limitations of solution NMR spectroscopy and bypassing the need for sample crystallization or precipitation (Bertini et al. 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure-activity correlation experiments across a wide range of timescales. PMID:25578899

  6. The Outer Membrane Protein A (OmpA) of Y. pestis promotes intracellular survival and virulence in mice

    PubMed Central

    Bartra, Sara Schesser; Gong, Xin; Lorica, Cherish D.; Jain, Chaitanya; Nair, Manoj K. M.; Schifferli, Dieter; Qian, Lianfen; Li, Zhongwei; Plano, Gregory V.; Schesser, Kurt

    2011-01-01

    The plague bacterium Yersinia pestis has a number of well-described strategies to protect itself from both host cells and soluble factors. In an effort to identify additional anti-host factors, we employed a transposon site hybridization (TraSH)-based approach to screen 105 Y. pestis mutants in an in vitro infection system. In addition to loci encoding various components of the well-characterized type III secretion system (T3SS), our screen unambiguously identified ompA as a pro-survival gene. We go on to show that an engineered Y. pestis ΔompA strain, as well as a ΔompA strain of the closely related pathogen Y. pseudotuberculosis, have fully functioning T3SSs but are specifically defective in surviving within macrophages. Additionally, the Y. pestis ΔompA strain was outcompeted by the wild-type strain in a mouse co-infection assay. Unlike in other bacterial pathogens in which OmpA can promote adherence, invasion, or serum resistance, the OmpA of Y. pestis is restricted to enhancing intracellular survival. Our data show that OmpA of the pathogenic Yersinia is a virulence factor on par with the T3SS. PMID:22023991

  7. Methanotroph outer membrane preparation.

    PubMed

    Karlsen, Odd A; Berven, Frode S; Jensen, Harald B; Fjellbirkeland, Anne

    2011-01-01

    All presently known methanotrophs are gram-negative bacteria suggesting that they are surrounded by a two-layered membrane: an inner or cytoplasmic membrane and an outer membrane. In the methanotroph Methylococcus capsulatus (Bath), separation of the two membranes has allowed studies on protein and lipid composition of the outer membrane. Its outer membrane can be isolated from purified cell envelopes by selective solubilization of the inner membranes with the detergent Triton X-100. The proteins associated with the outer membrane can further be fractionated into integral and tightly associated proteins and peripheral loosely associated proteins. We present here protocols for this fractionation and show how the proteins associated with the outer leaflet of the outer membrane can be isolated and identified by whole-cell biotin surface labeling. PMID:21419921

  8. Outer membrane protein purification.

    PubMed

    Arigita, C; Jiskoot, W; Graaf, M R; Kersten, G F

    2001-01-01

    The major outer membrane proteins (OMPs) from Neisseria meningitidis, which are expressed at high levels, are subdivided in five classes based on molecular weight (1,2) (see Table 1). Table 1 Major Meningococcal Outer-Membrane Proteins Outer-membrane proteins Name Molecular maass Function/characteristics Class 1 PorA 44-47 kDa Porin Class 2/3 PorB 37-42 kDa Porin Class 4 Rmp Reductionmodifiableprotein, unknown Class 5 Opa 26-30 kDa Adhesion,opacity protein Opc 25 kDa Invasion, opacity protein Iron-regulated proteins Mirp 37 kDa Iron acquisition (?);majoriron-regulatedprotein FrpB 70 kDa Ferric enterobactin receptor (also FetA) Adapted from ref. (1). PMID:21336748

  9. The Leptospiral Outer Membrane

    PubMed Central

    Haake, David A; Zückert, Wolfram R

    2015-01-01

    The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H. On the other hand, the OM must enable leptospires to evade detection by the host’s immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane OMPs in many cases are better understood thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis. Readers are referred to earlier, excellent summaries related to this subject (Adler and de la Peña Moctezuma

  10. Dioxygenases in Burkholderia ambifaria and Yersinia pestis that hydroxylate the outer Kdo unit of lipopolysaccharide

    PubMed Central

    Chung, Hak Suk; Raetz, Christian R. H.

    2011-01-01

    Several Gram-negative pathogens, including Yersinia pestis, Burkholderia cepacia, and Acinetobacter haemolyticus, synthesize an isosteric analog of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), known as d-glycero-d-talo-oct-2-ulosonic acid (Ko), in which the axial hydrogen atom at the Kdo 3-position is replaced with OH. Here we report a unique Kdo 3-hydroxylase (KdoO) from Burkholderia ambifaria and Yersinia pestis, encoded by the bamb_0774 (BakdoO) and the y1812 (YpkdoO) genes, respectively. When expressed in heptosyl transferase-deficient Escherichia coli, these genes result in conversion of the outer Kdo unit of Kdo2-lipid A to Ko in an O2-dependent manner. KdoO contains the putative iron-binding motif, HXDXn>40H. Reconstitution of KdoO activity in vitro with Kdo2-lipid A as the substrate required addition of Fe2+, α-ketoglutarate, and ascorbic acid, confirming that KdoO is a Fe2+/α-ketoglutarate/O2-dependent dioxygenase. Conversion of Kdo to Ko in Kdo2-lipid A conferred reduced susceptibility to mild acid hydrolysis. Although two enzymes that catalyze Fe2+/α-ketoglutarate/O2-dependent hydroxylation of deoxyuridine in fungal extracts have been reported previously, kdoO is the first example of a gene encoding a deoxy-sugar hydroxylase. Homologues of KdoO are found exclusively in Gram-negative bacteria, including the human pathogens Burkholderia mallei, Yersinia pestis, Klebsiella pneumoniae, Legionella longbeachae, and Coxiella burnetii, as well as the plant pathogen Ralstonia solanacearum. PMID:21178073

  11. Outer Membrane Permeability and Antibiotic Resistance

    PubMed Central

    Delcour, Anne H.

    2009-01-01

    Summary To date most antibiotics are targeted at intracellular processes, and must be able to penetrate the bacterial cell envelope. In particular, the outer membrane of Gram-negative bacteria provides a formidable barrier that must be overcome. There are essentially two pathways that antibiotics can take through the outer membrane: a lipid-mediated pathway for hydrophobic antibiotics, and general diffusion porins for hydrophilic antibiotics. The lipid and protein compositions of the outer membrane have a strong impact on the sensitivity of bacteria to many types of antibiotics, and drug resistance involving modifications of these macromolecules is common. This review will describe the molecular mechanisms for permeation of antibiotics through the outer membrane, and the strategies that bacteria have deployed to resist antibiotics by modifications of these pathways. PMID:19100346

  12. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  13. Outer membrane proteins of Methylococcus capsulatus (Bath).

    PubMed

    Fjellbirkeland, A; Kleivdal, H; Joergensen, C; Thestrup, H; Jensen, H B

    1997-08-01

    Membranes obtained from whole-cell lysates of Methylococcus capsulatus (Bath) were separated by Triton X-100 extraction. The resulting insoluble fraction was enriched in outer membranes as assessed by electron microscopy and by the content of beta-hydroxy palmitic acid and particulate methane monooxygenase. Major proteins with molecular masses of approximately 27, 40, 46, 59, and 66 kDa were detected by SDS-PAGE of the Triton-X-100-insoluble membranes. MopA, MopB, MopC, MopD, and MopE (Methylococcus outer membrane protein) are proposed to designate these proteins. Several of the Mop proteins exhibited heat-modifiable properties in SDS-PAGE and were influenced by the presence of 2-mercaptoethanol in the sample buffer. The 46- and 59-kDa bands migrated as a single high-molecular-mass 95-kDa oligomer under mild denaturing conditions. When reconstituted into black lipid membranes, this oligomer was shown to serve as a channel with an estimated single-channel conductance of 1.4 nS in 1 M KCl. PMID:9238104

  14. Towards Simulations of Outer Membrane Proteins in Lipopolysaccharide Membranes

    SciTech Connect

    Soares, Thereza A.; Straatsma, TP

    2007-12-26

    Biomolecular simulation derived properties of LPS membranes that impact the structural and internal dynamics of transmembrane proteins are shown to exhibit good agreement with available experimental data within the time scale simulated, chosen force field and simulation conditions. The molecular model used offers an accurate representation of the LPS layer, including the high asymmetry and low fluidity characteristics of outer membranes. This contribution describes the data intensive analysis of the large molecular time trajectories generated for these systems using massively parallel computing resources.

  15. Yersinia pestis Ail: multiple roles of a single protein

    PubMed Central

    Kolodziejek, Anna M.; Hovde, Carolyn J.; Minnich, Scott A.

    2012-01-01

    Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen. PMID:22919692

  16. Isolation of the outer membrane and characterization of the major outer membrane protein from Spirochaeta aurantia.

    PubMed Central

    Kropinski, A M; Parr, T R; Angus, B L; Hancock, R E; Ghiorse, W C; Greenberg, E P

    1987-01-01

    The outer membrane of Spirochaeta aurantia was isolated after cells were extracted with sodium lauryl sarcosinate and was subsequently purified by differential centrifugation and KBr isopycnic gradient centrifugation. The purified outer membrane was obtained in the form of carotenoid-containing vesicles. Four protein species with apparent molecular weights of 26,000 (26K), 36.5K, 41K, and 48.5K were readily observed as components of the vesicles. The 36.5K protein was the major polypeptide and constituted approximately 90% of the outer membrane protein observed on sodium dodecyl sulfate-polyacrylamide gels. Under mild denaturing conditions the 36.5K major protein exhibited an apparent molecular weight of approximately 90,000. This, together with the results of protein cross-linking studies, indicates that the 36.5K polypeptide has an oligomeric conformation in the native state. Reconstitution of solubilized S. aurantia outer membrane into lipid bilayer membranes revealed the presence of a porin, presumably the 36.5K protein, with an estimated channel diameter of 2.3 nm based on the measured single channel conductance of 7.7 nS in 1 M KCl. Images PMID:3025168

  17. Biogenesis of outer membranes in Gram-negative bacteria.

    PubMed

    Tokuda, Hajime

    2009-03-23

    The outer membrane, an essential organelle of Gram-negative bacteria, is composed of four major components: lipopolysaccharide, phospholipids, beta-barrel proteins, and lipoproteins. The mechanisms underlying the transport of these components to outer membranes are currently under extensive examination. Among them, the sorting of lipoproteins to the outer membrane of Escherichia coli has been clarified in detail. The Lol system, composed of five proteins, catalyzes outer membrane sorting of lipoproteins. Various Lpt proteins have recently been identified as factors involved in the transport of lipopolysaccharide to the outer membrane, although the mechanism remains largely unknown. Proteins with alpha-helical membrane spanning segments are found in the inner membrane, whereas amphipathic beta-barrel proteins span the outer membrane. These beta-barrel proteins are inserted into the outer membranes through a central core protein BamA (YaeT) with the help of four outer membrane lipoproteins. In contrast, little is known about how phospholipids are transported to the outer membrane. PMID:19270402

  18. Purified outer membranes of Serpulina hyodysenteriae contain cholesterol.

    PubMed Central

    Plaza, H; Whelchel, T R; Garczynski, S F; Howerth, E W; Gherardini, F C

    1997-01-01

    We have isolated outer and inner membranes of Serpulina hyodysenteriae by using discontinuous sucrose density gradients. The outer and inner membrane fractions contained less than 1 and 2%, respectively, of the total NADH oxidase activity (soluble marker) in the cell lysate. Various membrane markers including lipooligosaccharide (LOS), the 16-kDa outer membrane lipoprotein (SmpA), and the C subunit of the F1F0 ATPase indicated that the lowest-density membrane fraction contained outer membranes while the high-density membrane fraction contained inner membranes and that both are essentially free of contamination by the periplasmic flagella, a major contaminant of membranes isolated by other techniques. The outer membrane fractions (rho = 1.10 g/cm3) contained 0.25 mg of protein/mg (dry weight), while the inner membrane samples (rho = 1.16 g/cm3) contained significantly more protein (0.55 mg of protein/mg [dry weight]). Lipid analysis revealed that the purified outer membranes contained cholesterol as a major component of the membrane lipids. Treatment of intact S. hyodysenteriae with different concentrations of digitonin, a steroid glycoside that interacts with cholesterol, indicated that the outer membrane could be selectively removed at concentrations as low as 0.125%. PMID:9286995

  19. Characterization of the major outer membrane antigens of Treponema hyodysenteriae.

    PubMed Central

    Wannemuehler, M J; Hubbard, R D; Greer, J M

    1988-01-01

    Outer membrane extracts of Treponema hyodysenteriae were used to evaluate the antibody responses in immunized or convalescent pigs. Western blot (immunoblot) analysis identified antibodies in sera reactive with 14- to 19-kilodalton (kDa) antigens. Reactivity against these antigens could be removed only by absorption of sera with butanol-water-extracted endotoxin from the homologous strain of T. hyodysenteriae. Treatment of the outer membrane extracts with 0.1 M sodium meta-periodate, but not with proteinase K, abolished reactivity with both outer membrane and endotoxin antigens (14 and 19 kDa). These results indicate that swine vaccinated with the outer membrane extract of T. hyodysenteriae develop antibody responses to outer membrane antigens qualitatively similar to those of swine convalescing from active infection, especially antibodies against low-molecular-mass antigens. The nature of the 14- to 19-kDa antigens appears consistent with that of treponemal endotoxin and lipopolysaccharide. Images PMID:2460406

  20. Bacterial outer membrane vesicles and vaccine applications.

    PubMed

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  1. Outer membrane vesicles as platform vaccine technology

    PubMed Central

    Stork, Michiel; van der Ley, Peter

    2015-01-01

    Abstract Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram‐negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self‐adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV‐containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV‐producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well‐defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications. PMID:26912077

  2. Bacterial Outer Membrane Vesicles and Vaccine Applications

    PubMed Central

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A.; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  3. Bax inserts into the mitochondrial outer membrane by different mechanisms.

    PubMed

    Cartron, Pierre-François; Bellot, Grégory; Oliver, Lisa; Grandier-Vazeille, Xavier; Manon, Stephen; Vallette, François M

    2008-09-01

    Bax insertion into the mitochondrial outer membrane is essential for the implementation of apoptosis. However, little is known about the first stage of Bax integration into the mitochondrial outer membrane. We have recently shown that TOM22, a mitochondrial outer membrane receptor, is important for insertion, although other reports have suggested that only mitochondrial lipids are involved in this process. Here, we show that monomers, but not dimers, of Bax require the presence of TOM22 and TOM40 to integrate into mitochondria. In addition we show that once inserted into the membrane, Bax can act as a receptor for cytosolic Bax. PMID:18687331

  4. Utilization of Nitrophenylphosphates and Oxime-Based Ligation for the Development of Nanomolar Affinity Inhibitors of the Yersinia pestis Outer Protein H (YopH) Phosphatase

    SciTech Connect

    Bahta, Medhanit; Lountos, George T.; Dyas, Beverly; Kim, Sung-Eun; Ulrich, Robert G.; Waugh, David S.; Burke, Jr., Terrence R.

    2012-08-10

    Our current study reports the first K{sub M} optimization of a library of nitrophenylphosphate-containing substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase (YopH). A high activity substrate identified by this method (K{sub M} = 80 {micro}M) was converted from a substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic acid and by attachment of an aminooxy handle for further structural optimization by oxime ligation. A cocrystal structure of this aminooxy-containing platform in complex with YopH allowed the identification of a conserved water molecule proximal to the aminooxy group that was subsequently employed for the design of furanyl-based oxime derivatives. By this process, a potent (IC{sub 50} = 190 nM) and nonpromiscuous inhibitor was developed with good YopH selectivity relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y. pestis replication at a noncytotoxic concentration. The current work presents general approaches to PTP inhibitor development that may be useful beyond YopH.

  5. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles

    PubMed Central

    Kieselbach, Thomas; Zijnge, Vincent; Granström, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease. PMID:26381655

  6. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    PubMed

    Kieselbach, Thomas; Zijnge, Vincent; Granström, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease. PMID:26381655

  7. Comparative Proteome Analysis of Spontaneous Outer Membrane Vesicles and Purified Outer Membranes of Neisseria meningitidis

    PubMed Central

    Otto, Andreas; Becher, Dörte; Vogel, Ulrich

    2013-01-01

    Outer membrane vesicles (OMVs) of Gram-negative bacteria receive increasing attention because of various biological functions and their use as vaccines. However, the mechanisms of OMV release and selective sorting of proteins into OMVs remain unclear. Comprehensive quantitative proteome comparisons between spontaneous OMVs (SOMVs) and the outer membrane (OM) have not been conducted so far. Here, we established a protocol for metabolic labeling of neisserial proteins with 15N. SOMV and OM proteins labeled with 15N were used as an internal standard for proteomic comparison of the SOMVs and OMs of two different strains. This labeling approach, coupled with high-sensitivity mass spectrometry, allowed us to comprehensively unravel the proteome of the SOMVs and OMs. We quantified the relative distribution of 155 proteins between SOMVs and the OM. Complement regulatory proteins, autotransporters, proteins involved in iron and zinc acquisition, and a two-partner secretion system were enriched in SOMVs. The highly abundant porins PorA and PorB and proteins connecting the OM with peptidoglycan or the inner membrane, such as RmpM, MtrE, and PilQ, were depleted in SOMVs. Furthermore, the three lytic transglycosylases MltA, MltB, and Slt were less abundant in SOMVs. In conclusion, SOMVs are likely to be released from surface areas with a low local abundance of membrane-anchoring proteins and lytic transglycosylases. The enrichment of complement regulatory proteins, autotransporters, and trace metal binding and transport proteins needs to be explored in the context of the pathogenesis of meningococcal disease. PMID:23893116

  8. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    PubMed

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  9. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  10. Proteome analysis of mitochondrial outer membrane from Neurospora crassa

    SciTech Connect

    Schmitt, Simone; Prokisch, Holger; Schlunk, Tilman; Camp, David G.; Ahting, Uwe; Waizenegger, Thomas; Scharfe, Curt M.; Meitinger, Thomas; Imhof, Axel; Neupert, Walter; Oefner, Peter J.; Rapaport, Doron

    2006-01-01

    The mitochondrial outer membrane mediates numerous interactions between the metabolic and genetic systems of mitochondria and the rest of the eukaryotic cell. We performed a proteomic study to discover novel functions of components of the mitochondrial outer membrane. Proteins of highly pure outer membrane vesicles (OMV) from Neurospora crassa were identified by a combination of liquid chromatography tandem mass spectrometry of tryptic peptide digests and gel electrophoresis of solubilized OMV proteins, followed by their identification using MALDI-MS peptide fingerprinting. Among the 30 proteins found in at least three of four separate analyses were 23 proteins with known functions in the outer membrane. These included components of the import machinery (the TOM and TOB complexes), a pore-forming component (Porin), and proteins that control fusion and fission of the organelle. In addition, proteins playing a role in various biosynthetic pathways, whose intracellular location had not been established previously, could be localized to the mitochondrial outer membrane. Thus, the proteome of the outer membrane can help in identifying new mitochondria-related functions.

  11. Virulent strain associated outer membrane proteins of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Shang, E S; Foley, D M; Blanco, D R; Champion, C I; Mirzabekov, T; Sokolov, Y; Kagan, B L; Miller, J N; Lovett, M A

    1995-01-01

    We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase activity indicating their outer membrane origin and their lack of inner membrane contamination, respectively. Hydrophobic proteins were identified by phase partitioning with Triton X-114. Most of these hydrophobic membrane proteins were not acylated, suggesting that they are outer membrane-spanning proteins. Identification of palmitate-labeled lipoproteins revealed that several were enriched in the OMV, several were enriched in the protoplasmic cylinder inner membrane fraction, and others were found exclusively associated with the inner membrane. The protein composition of OMV changed significantly with successive in vitro cultivation of strain B31. Using antiserum with specificity for virulent strain B31, we identified OMV antigens on the surface of the spirochete and identified proteins whose presence in OMV could be correlated with virulence and protective immunity in the rabbit Lyme disease model. These virulent strain associated outer membrane-spanning proteins may provide new insight into the pathogenesis of Lyme disease. Images PMID:7593626

  12. Simulations of outer membrane channels and their permeability.

    PubMed

    Pothula, Karunakar R; Solano, Carlos J F; Kleinekathöfer, Ulrich

    2016-07-01

    Channels in the outer membrane of Gram-negative bacteria provide essential pathways for the controlled and unidirectional transport of ions, nutrients and metabolites into the cell. At the same time the outer membrane serves as a physical barrier for the penetration of noxious substances such as antibiotics into the bacteria. Most antibiotics have to pass through these membrane channels to either reach cytoplasmic bound targets or to further cross the hydrophobic inner membrane. Considering the pharmaceutical significance of antibiotics, understanding the functional role and mechanism of these channels is of fundamental importance in developing strategies to design new drugs with enhanced permeation abilities. Due to the biological complexity of membrane channels and experimental limitations, computer simulations have proven to be a powerful tool to investigate the structure, dynamics and interactions of membrane channels. Considerable progress has been made in computer simulations of membrane channels during the last decade. The goal of this review is to provide an overview of the computational techniques and their roles in modeling the transport across outer membrane channels. A special emphasis is put on all-atom molecular dynamics simulations employed to better understand the transport of molecules. Moreover, recent molecular simulations of ion, substrate and antibiotics translocation through membrane pores are briefly summarized. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26721326

  13. Substrate Specificity within a Family of Outer Membrane Carboxylate Channels

    SciTech Connect

    Eren, Elif; Vijayaraghavan, Jagamya; Liu, Jiaming; Cheneke, Belete R.; Touw, Debra S.; Lepore, Bryan W.; Indic, Mridhu; Movileanu, Liviu; van den Berg, Bert; Dutzler, Raimund

    2012-01-17

    Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM) that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  14. A Molecularly Complete Planar Bacterial Outer Membrane Platform.

    PubMed

    Hsia, Chih-Yun; Chen, Linxiao; Singh, Rohit R; DeLisa, Matthew P; Daniel, Susan

    2016-01-01

    The bacterial outer membrane (OM) is a barrier containing membrane proteins and liposaccharides that fulfill crucial functions for Gram-negative bacteria. With the advent of drug-resistant bacteria, it is necessary to understand the functional role of this membrane and its constituents to enable novel drug designs. Here we report a simple method to form an OM-like supported bilayer (OM-SB), which incorporates native lipids and membrane proteins of gram-negative bacteria from outer membrane vesicles (OMVs). We characterize the formation of OM-SBs using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. We show that the orientation of proteins in the OM-SB matches the native bacterial membrane, preserving the characteristic asymmetry of these membranes. As a demonstration of the utility of the OM-SB platform, we quantitatively measure antibiotic interactions between OM-SBs and polymyxin B, a cationic peptide used to treat Gram-negative infections. This data enriches understanding of the antibacterial mechanism of polymyxin B, including disruption kinetics and changes in membrane mechanical properties. Combining OM-SBs with microfluidics will enable higher throughput screening of antibiotics. With a broader view, we envision that a molecularly complete membrane-scaffold could be useful for cell-free applications employing engineered membrane proteins in bacterial membranes for myriad technological purposes. PMID:27600663

  15. A Molecularly Complete Planar Bacterial Outer Membrane Platform

    PubMed Central

    Hsia, Chih-Yun; Chen, Linxiao; Singh, Rohit R.; DeLisa, Matthew P.; Daniel, Susan

    2016-01-01

    The bacterial outer membrane (OM) is a barrier containing membrane proteins and liposaccharides that fulfill crucial functions for Gram-negative bacteria. With the advent of drug-resistant bacteria, it is necessary to understand the functional role of this membrane and its constituents to enable novel drug designs. Here we report a simple method to form an OM-like supported bilayer (OM-SB), which incorporates native lipids and membrane proteins of gram-negative bacteria from outer membrane vesicles (OMVs). We characterize the formation of OM-SBs using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. We show that the orientation of proteins in the OM-SB matches the native bacterial membrane, preserving the characteristic asymmetry of these membranes. As a demonstration of the utility of the OM-SB platform, we quantitatively measure antibiotic interactions between OM-SBs and polymyxin B, a cationic peptide used to treat Gram-negative infections. This data enriches understanding of the antibacterial mechanism of polymyxin B, including disruption kinetics and changes in membrane mechanical properties. Combining OM-SBs with microfluidics will enable higher throughput screening of antibiotics. With a broader view, we envision that a molecularly complete membrane-scaffold could be useful for cell-free applications employing engineered membrane proteins in bacterial membranes for myriad technological purposes. PMID:27600663

  16. Molecular Basis of Bacterial Outer Membrane Permeability Revisited

    PubMed Central

    Nikaido, Hiroshi

    2003-01-01

    Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions. PMID:14665678

  17. Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane

    PubMed Central

    Bohnert, Maria; Wenz, Lena-Sophie; Zerbes, Ralf M.; Horvath, Susanne E.; Stroud, David A.; von der Malsburg, Karina; Müller, Judith M.; Oeljeklaus, Silke; Perschil, Inge; Warscheid, Bettina; Chacinska, Agnieszka; Veenhuis, Marten; van der Klei, Ida J.; Daum, Günther; Wiedemann, Nils; Becker, Thomas; Pfanner, Nikolaus; van der Laan, Martin

    2012-01-01

    Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport–associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of β-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import β-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of β-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane β-barrel proteins. PMID:22918945

  18. Structural biology of membrane-intrinsic β-barrel enzymes: Sentinels of the bacterial outer membrane

    PubMed Central

    Bishop, Russell E.

    2016-01-01

    The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel β-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three β-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipid::lipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane β-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two β-barrel enzymes of unknown structure; namely, the Salmonella enterica 3′-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O2 to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how β-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger β-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier. PMID:17880914

  19. Identification of outer membrane proteins of Mycobacterium tuberculosis.

    PubMed

    Song, Houhui; Sandie, Reatha; Wang, Ying; Andrade-Navarro, Miguel A; Niederweis, Michael

    2008-11-01

    The cell wall of mycobacteria includes an unusual outer membrane of extremely low permeability. While Escherichia coli uses more than 60 proteins to functionalize its outer membrane, only two mycobacterial outer membrane proteins (OMPs) are known. The porin MspA of Mycobacterium smegmatis provided the proof of principle that integral mycobacterial OMPs share the beta-barrel structure, the absence of hydrophobic alpha-helices and the presence of a signal peptide with OMPs of gram-negative bacteria. These properties were exploited in a multi-step bioinformatic approach to predict OMPs of M. tuberculosis. A secondary structure analysis was performed for 587 proteins of M. tuberculosis predicted to be exported. Scores were calculated for the beta-strand content and the amphiphilicity of the beta-strands. Reference OMPs of gram-negative bacteria defined threshold values for these parameters that were met by 144 proteins of unknown function of M. tuberculosis. Two of them were verified as OMPs by a novel two-step experimental approach. Rv1698 and Rv1973 were detected only in the total membrane fraction of M. bovis BCG in Western blot experiments, while proteinase K digestion of whole cells showed the surface accessibility of these proteins. These findings established that Rv1698 and Rv1973 are indeed localized in the outer membrane and tripled the number of known OMPs of M. tuberculosis. Significantly, these results provide evidence for the usefulness of the bioinformatic approach to predict mycobacterial OMPs and indicate that M. tuberculosis likely has many OMPs with beta-barrel structure. Our findings pave the way to identify the set of proteins which functionalize the outer membrane of M. tuberculosis. PMID:18439872

  20. Investigating the ?Trojan Horse? Mechanism of Yersinia pestis Virulence

    SciTech Connect

    McCutchen-Maloney, S L; Fitch, J P

    2005-02-08

    Yersinia pestis, the etiological agent of plague, is a Gram-negative, highly communicable, enteric bacterium that has been responsible for three historic plague pandemics. Currently, several thousand cases of plague are reported worldwide annually, and Y. pestis remains a considerable threat from a biodefense perspective. Y. pestis infection can manifest in three forms: bubonic, septicemic, and pneumonic plague. Of these three forms, pneumonic plague has the highest fatality rate ({approx}100% if left untreated), the shortest intervention time ({approx}24 hours), and is highly contagious. Currently, there are no rapid, widely available vaccines for plague and though plague may be treated with antibiotics, the emergence of both naturally occurring and potentially engineered antibiotic resistant strains makes the search for more effective therapies and vaccines for plague of pressing concern. The virulence mechanism of this deadly bacterium involves induction of a Type III secretion system, a syringe-like apparatus that facilitates the injection of virulence factors, termed Yersinia outer membrane proteins (Yops), into the host cell. These virulence factors inhibit phagocytosis and cytokine secretion, and trigger apoptosis of the host cell. Y. pestis virulence factors and the Type III secretion system are induced thermally, when the bacterium enters the mammalian host from the flea vector, and through host cell contact (or conditions of low Ca{sup 2+} in vitro). Apart from the temperature increase from 26 C to 37 C and host cell contact (or low Ca{sup 2+} conditions), other molecular mechanisms that influence virulence induction in Y. pestis are largely uncharacterized. This project focused on characterizing two novel mechanisms that regulate virulence factor induction in Y. pestis, immunoglobulin G (IgG) binding and quorum sensing, using a real-time reporter system to monitor induction of virulence. Incorporating a better understanding of the mechanisms of virulence

  1. Regulation and expression of Lcr plasmid-mediated peptides in pesticinogenic Yersinia pestis

    SciTech Connect

    Sample, A.K.

    1987-01-01

    It is shown in this thesis that cells of Lcr/sup +/, Pst/sup -/ Y. pestis KIM are able to express Yops at levels comparable to that of Lcr/sup +/ Yersinia pseudotuberculosis. Pulse-chase radiolabeling with /sup 35/S-methionine was used to demonstrate that Lcr/sup +/, Pst/sup +/ Y. pestis synthesized at least 11 distinct peptides during the low calcium response and that seven of the labeled peptides were rapidly degraded. These seven peptides were stably expressed in Lcr/sup +/, Pst/sup -/ Y. pestis and were of identical molecular weights as the Yops expressed by that strain. Radiolabeled fragments of low molecular weight accumulated in the extracellular medium of Pst/sup +/ cultures and were assumed to be stable degradation fragments derived from Yops. It was also shown that the set of stable peptides, including V antigen, were made during restriction by both Pst/sup +/ and Pst/sup -/ Y. pestis KIM and were located primarily within the cytoplasm. Those radiolabeled peptides which underwent proteolytic degradation in Pst/sup +/ Y. pestis were localized to the outer membrane and extracellular medium in the Pst/sup -/ strain. It is concluded that the failure of Lcr/sup +/, Pst/sup +/ Y. pestis to express Yops is the result of post-translational degradation and is not a block in the synthesis of Yops.

  2. Disulfide-bonded outer membrane proteins in the genus Legionella.

    PubMed Central

    Butler, C A; Street, E D; Hatch, T P; Hoffman, P S

    1985-01-01

    Legionella pneumophila and related species were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for outer membrane proteins. Of the 10 species examined, 9 contained a 24-kilodalton (kDa) major outer membrane protein (MOMP) that was resolvable only when outer membrane material was heated in the presence of 2-mercaptoethanol. Labeling studies with [35S]cysteine indicated that the protein contained cysteine, and disulfide cross-linking of the unreduced complex was demonstrated by labeling with iodoacetamide. The unreduced outer membrane preparation contained peptidoglycan, and after treatment with lysozyme to remove peptidoglycan, a protein complex of 95 kDa was observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis in the absence of 2-mercaptoethanol. Reduction of the 95-kDa complex yielded 24-kDa monomers, suggesting that the 95-kDa complex was composed of four subunits. The 24-kDa MOMP from L. pneumophila was purified, and antibody produced to this protein cross-reacted with all species of Legionella as determined from an immunoblot of a sodium dodecyl sulfate gel. Only serogroup 1 strains of L. bozemanii lacked the 24-kDa MOMP and showed no cross-reactivity. These results suggest that the 24-kDa MOMP common to most species of Legionella contains a genus-specific epitope. Images PMID:3980079

  3. Topology of carnitine palmitoyltransferase I in the mitochondrial outer membrane.

    PubMed Central

    Fraser, F; Corstorphine, C G; Zammit, V A

    1997-01-01

    The topology of carnitine palmitoyltransferase I (CPT I) in the outer membrane of rat liver mitochondria was studied using several approaches. 1. The accessibility of the active site and malonyl-CoA-binding site of the enzyme from the cytosolic aspect of the membrane was investigated using preparations of octanoyl-CoA and malonyl-CoA immobilized on to agarose beads to render them impermeant through the outer membrane. Both immobilized ligands were fully able to interact effectively with CPT I. 2. The effects of proteinase K and trypsin on the activity and malonyl-CoA sensitivity of CPT I were studied using preparations of mitochondria that were either intact or had their outer membranes ruptured by hypo-osmotic swelling (OMRM). Proteinase K had a marked but similar effect on CPT I activity irrespective of whether only the cytosolic or both sides of the membrane were exposed to it. However, it affected sensitivity more rapidly in OMRM. By contrast, trypsin only reduced CPT I activity when incubated with OMRM. The sensitivity of the residual CPT I activity was unaffected by trypsin. 3. The proteolytic fragments generated by these treatments were studied by Western blotting using three anti-peptide antibodies raised against linear epitopes of CPT I. These showed that a proteinase K-sensitive site close to the N-terminus was accessible from the cytosolic side of the membrane. No trypsin-sensitive sites were accessible in intact mitochondria. In OMRM, both proteinase K and trypsin acted from the inter-membrane space side of the membrane. 4. The ability of intact mitochondria and OMRM to bind to each of the three anti-peptide antibodies was used to study the accessibility of the respective epitopes on the cytosolic and inter-membrane space sides of the membrane. 5. The results of all these approaches indicate that CPT I adopts a bitopic topology within the mitochondrial outer membrane; it has two transmembrane domains, and both the N- and C-termini are exposed on the

  4. Contribution of bacterial outer membrane vesicles to innate bacterial defense

    PubMed Central

    2011-01-01

    Background Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria throughout growth and have proposed roles in virulence, inflammation, and the response to envelope stress. Here we investigate outer membrane vesiculation as a bacterial mechanism for immediate short-term protection against outer membrane acting stressors. Antimicrobial peptides as well as bacteriophage were used to examine the effectiveness of OMV protection. Results We found that a hyper-vesiculating mutant of Escherichia coli survived treatment by antimicrobial peptides (AMPs) polymyxin B and colistin better than the wild-type. Supplementation of E. coli cultures with purified outer membrane vesicles provided substantial protection against AMPs, and AMPs significantly induced vesiculation. Vesicle-mediated protection and induction of vesiculation were also observed for a human pathogen, enterotoxigenic E. coli (ETEC), challenged with polymyxin B. When ETEC with was incubated with low concentrations of vesicles concomitant with polymyxin B treatment, bacterial survival increased immediately, and the culture gained resistance to polymyxin B. By contrast, high levels of vesicles also provided immediate protection but prevented acquisition of resistance. Co-incubation of T4 bacteriophage and OMVs showed fast, irreversible binding. The efficiency of T4 infection was significantly reduced by the formation of complexes with the OMVs. Conclusions These data reveal a role for OMVs in contributing to innate bacterial defense by adsorption of antimicrobial peptides and bacteriophage. Given the increase in vesiculation in response to the antimicrobial peptides, and loss in efficiency of infection with the T4-OMV complex, we conclude that OMV production may be an important factor in neutralizing environmental agents that target the outer membrane of Gram-negative bacteria. PMID:22133164

  5. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella

    PubMed Central

    Elhenawy, Wael; Bording-Jorgensen, Michael; Valguarnera, Ezequiel; Haurat, M. Florencia; Wine, Eytan

    2016-01-01

    ABSTRACT Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. PMID:27406567

  6. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis.

    PubMed

    Jourdain, Alexis; Martinou, Jean-Claude

    2009-10-01

    Many human pathologies are associated with defects in mitochondria such as diabetes, neurodegenerative diseases or cancer. This tiny organelle is involved in a plethora of processes in mammalian cells, including energy production, lipid metabolism and cell death. In the so-called intrinsic apoptotic pathway, the outer mitochondrial membrane (MOM) is premeabilized by the pro-apoptotic Bcl-2 members Bax and Bak, allowing the release of apoptogenic factors such as cytochrome c from the inter-membrane space into the cytosol. At the same time, mitochondria fragment in response to Drp-1 activation suggesting that mitochondrial fission could play a role in mitochondrial outer-membrane permeabilization (MOMP). In this review, we will discuss the link that could exist between mitochondrial fission and fusion machinery, Bcl-2 family members and MOMP. PMID:19439192

  7. Composition and Localization of Treponema denticola Outer Membrane Complexes ▿

    PubMed Central

    Godovikova, Valentina; Goetting-Minesky, M. Paula; Fenno, J. Christopher

    2011-01-01

    The Treponema denticola outer membrane lipoprotein-protease complex (dentilisin) contributes to periodontal disease by degrading extracellular matrix components and disrupting intercellular host signaling pathways. We recently demonstrated that prcB, located upstream of and cotranscribed with prcA and prtP, encodes a 22-kDa lipoprotein that interacts with PrtP and is required for its activity. Here we further characterize products of the protease locus and their roles in expression, formation, and localization of outer membrane complexes. PrcB migrates in native gels as part of a >400-kDa complex that includes PrtP and PrcA, as well as the major outer sheath protein Msp. PrcB is detectable as a minor constituent of the purified active protease complex, which was previously reported to consist of only PrtP and auxiliary polypeptides PrcA1 and PrcA2. Though it lacks the canonical ribosome binding site present upstream of both prcA and prtP, PrcB is present at levels similar to those of PrtP in whole-cell extracts. Immunofluorescence microscopy demonstrated cell surface exposure of the mature forms of PrtP, PrcA1, PrcB, and Msp. The 16-kDa N-terminal acylated fragment of PrtP (predicted to be released during activation of PrtP) was present in cell extracts but was detected neither in the purified active protease complex nor on the cell surface. PrcA2, detectable on the surface of Msp-deficient cells but not that of wild-type cells, coimmunoprecipitated with Msp. Our results indicate that PrcB is a component of the outer membrane lipoprotein protease complex and that Msp and PrcA2 interaction may mediate formation of a very-high-molecular-weight outer membrane complex. PMID:21986628

  8. DNA Inversion Regulates Outer Membrane Vesicle Production in Bacteroides fragilis

    PubMed Central

    Nakayama-Imaohji, Haruyuki; Hirota, Katsuhiko; Yamasaki, Hisashi; Yoneda, Saori; Nariya, Hirofumi; Suzuki, Motoo; Secher, Thomas; Miyake, Yoichiro; Oswald, Eric; Hayashi, Tetsuya; Kuwahara, Tomomi

    2016-01-01

    Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown. PMID:26859882

  9. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    SciTech Connect

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  10. Structural basis for alginate secretion across the bacterial outer membrane

    SciTech Connect

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  11. Characterization of an outer membrane mannanase from Bacteroides ovatus.

    PubMed Central

    Gherardini, F C; Salyers, A A

    1987-01-01

    Bacteroides ovatus utilizes guar gum, a high-molecular-weight branched galactomannanan, as a sole source of carbohydrate. No extracellular activity was detectable. Approximately 30% of the total cell-associated mannanase activity partitioned with cell membranes. When inner and outer membranes of B. ovatus were separated on sucrose gradients, the mannanase activity was associated mainly with fractions containing outer membranes. Enzyme activity was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or by Triton X-100 at a detergent-to-protein ratio of 1:1. The enzyme was stable for only 4 h at 37 degrees C and for 50 to 60 h at 4 degrees C. Analysis of the products of the CHAPS-solubilized mannanase on Bio-Gel A-5M and Bio-Gel P-10 gel filtration columns indicated that the enzyme breaks guar gum into high-molecular-weight fragments. The CHAPS-solubilized mannanase was partially purified by chromatography on a FPLC Mono Q column. The partially purified mannanase preparation contained three major polypeptides (Mr 94,500, 61,000, and 43,000) and several minor ones. High mannanase activity was seen only when B. ovatus was grown on guar gum. Cross-absorbed antiserum detected two other guar gum-associated outer membrane proteins: a CHAPS-extractable 49,000-dalton polypeptide and a 120,000-dalton polypeptide that was not solubilized by CHAPS. Neither of these polypeptides was detectable in the partially purified mannanase preparation. These results indicate that there are at least two guar gum-associated outer membrane polypeptides other than the mannanase. Images PMID:3553153

  12. Protective role of E. coli outer membrane vesicles against antibiotics.

    PubMed

    Kulkarni, Heramb M; Nagaraj, R; Jagannadham, Medicharla V

    2015-12-01

    The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics. PMID:26640046

  13. Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles

    PubMed Central

    Roier, Sandro; Fenninger, Judith C.; Leitner, Deborah R.; Rechberger, Gerald N.; Reidl, Joachim; Schild, Stefan

    2013-01-01

    Pasteurella multocida is able to cause disease in humans and in a wide range of animal hosts, including fowl cholera in birds, atrophic rhinitis in pigs, and snuffles in rabbits. Together with Mannheimia haemolytica, P. multocida also represents a major bacterial causative agent of bovine respiratory disease (BRD), which is one of the most important causes for economic losses for the cattle backgrounding and feedlot industry. Commercially available vaccines only partially prevent infections caused by P. multocida and M. haemolytica. Thus, this study characterized the immunogenicity of P. multocida and M. haemolytica outer membrane vesicles (OMVs) upon intranasal immunization of BALB/c mice. Enzyme-linked immunosorbent assays (ELISA) revealed that OMVs derived from P. multocida or M. haemolytica are able to induce robust humoral and mucosal immune responses against the respective donor strain. In addition, also significant cross-immunogenic potential was observed for both OMV types. Colonization studies showed that a potential protective immune response against P. multocida is not only achieved by immunization with P. multocida OMVs, but also by immunization with OMVs derived from M. haemolytica. Immunoblot and immunoprecipitation analyses demonstrated that M. haemolytica OMVs induce a more complex immune response compared to P. multocida OMVs. The outer membrane proteins OmpA, OmpH, and P6 were identified as the three major immunogenic proteins of P. multocida OMVs. Amongst others, the serotype 1-specific antigen, an uncharacterized outer membrane protein, as well as the outer membrane proteins P2 and OmpA were found to be the most important antigens of M. haemolytica OMVs. These findings are useful for the future development of broad-spectrum OMV based vaccines against BRD and other infections caused by P. multocida or M. haemolytica. PMID:23731905

  14. TMBETA-NET: discrimination and prediction of membrane spanning beta-strands in outer membrane proteins.

    PubMed

    Gromiha, M Michael; Ahmad, Shandar; Suwa, Makiko

    2005-07-01

    We have developed a web-server, TMBETA-NET for discriminating outer membrane proteins and predicting their membrane spanning beta-strand segments. The amino acid compositions of globular and outer membrane proteins have been systematically analyzed and a statistical method has been proposed for discriminating outer membrane proteins. The prediction of membrane spanning segments is mainly based on feed forward neural network and refined with beta-strand length. Our program takes the amino acid sequence as input and displays the type of the protein along with membrane-spanning beta-strand segments as a stretch of highlighted amino acid residues. Further, the probability of residues to be in transmembrane beta-strand has been provided with a coloring scheme. We observed that outer membrane proteins were discriminated with an accuracy of 89% and their membrane spanning beta-strand segments at an accuracy of 73% just from amino acid sequence information. The prediction server is available at http://psfs.cbrc.jp/tmbeta-net/. PMID:15980447

  15. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  16. Ligand-gated Diffusion Across the Bacterial Outer Membrane

    SciTech Connect

    B Lepore; M Indic; H Pham; E Hearn; D Patel; B van den Berg

    2011-12-31

    Ligand-gated channels, in which a substrate transport pathway is formed as a result of the binding of a small-molecule chemical messenger, constitute a diverse class of membrane proteins with important functions in prokaryotic and eukaryotic organisms. Despite their widespread nature, no ligand-gated channels have yet been found within the outer membrane (OM) of Gram-negative bacteria. Here we show, using in vivo transport assays, intrinsic tryptophan fluorescence and X-ray crystallography, that high-affinity (submicromolar) substrate binding to the OM long-chain fatty acid transporter FadL from Escherichia coli causes conformational changes in the N terminus that open up a channel for substrate diffusion. The OM long-chain fatty acid transporter FadL from E. coli is a unique paradigm for OM diffusion-driven transport, in which ligand gating within a {beta}-barrel membrane protein is a prerequisite for channel formation.

  17. Structural Insights into Ail-Mediated Adhesion in Yersinia pestis

    SciTech Connect

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J.; Noinaj, Nicholas; Felek, Suleyman; Tsang, Tiffany M.; Krukonis, Eric S.; Hinnebusch, B. Joseph; Buchanan, Susan K.

    2012-01-30

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.

  18. Detection of outer membrane vesicles in Synechocystis PCC 6803.

    PubMed

    Pardo, Yehudah A; Florez, Catalina; Baker, Kristopher M; Schertzer, Jeffrey W; Mahler, Gretchen J

    2015-10-01

    It has been well established that many species of Gram-negative bacteria release nanoscale outer membrane vesicles (OMVs) during normal growth. Furthermore, the roles of these structures in heterotrophic bacteria have been extensively characterized. However, little is known about the existence or function of OMVs in photoautotrophs. In the present study, we report for the first time the production of OMVs by the model photosynthetic organism Synechocystis sp. PCC 6803, a species of biotechnological importance. We detected extracellular proteins and lipids in cell-free supernatants derived from Synechocystis culture, yet the cytoplasmic and thylakoid membrane markers NADH oxidase and chlorophyll were absent. This indicated that the extracellular proteins and lipids derived from the outer membrane, and not from cell lysis. Furthermore, we identified spherical structures within the expected size range of OMVs in Synechocystis culture using scanning electron microscopy. Taken together, these results suggest that the repertoire of Gram-negative bacteria that are known to produce OMVs may be expanded to include Synechocystis PCC6803. Because of the considerable genetic characterization of Synechocystis in particular, our discovery has the potential to support novel biotechnological applications as well. PMID:26363014

  19. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  20. Protein secretion and outer membrane assembly in Alphaproteobacteria

    PubMed Central

    Gatsos, Xenia; Perry, Andrew J; Anwari, Khatira; Dolezal, Pavel; Wolynec, P Peter; Likić, Vladimir A; Purcell, Anthony W; Buchanan, Susan K; Lithgow, Trevor

    2008-01-01

    The assembly of β-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of β-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating β-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of β-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, β-propeller signatures in YfgL). Given that the process of the β-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of β-barrel proteins in eukaryotes. PMID:18759741

  1. Lipids assist the membrane insertion of a BAM-independent outer membrane protein

    PubMed Central

    Huysmans, Gerard H. M.; Guilvout, Ingrid; Chami, Mohamed; Nickerson, Nicholas N.; Pugsley, Anthony P.

    2015-01-01

    Like several other large, multimeric bacterial outer membrane proteins (OMPs), the assembly of the Klebsiella oxytoca OMP PulD does not rely on the universally conserved β-barrel assembly machinery (BAM) that catalyses outer membrane insertion. The only other factor known to interact with PulD prior to or during outer membrane targeting and assembly is the cognate chaperone PulS. Here, in vitro translation-transcription coupled PulD folding demonstrated that PulS does not act during the membrane insertion of PulD, and engineered in vivo site-specific cross-linking between PulD and PulS showed that PulS binding does not prevent membrane insertion. In vitro folding kinetics revealed that PulD is atypical compared to BAM-dependent OMPs by inserting more rapidly into membranes containing E. coli phospholipids than into membranes containing lecithin. PulD folding was fast in diC14:0-phosphatidylethanolamine liposomes but not diC14:0-phosphatidylglycerol liposomes, and in diC18:1-phosphatidylcholine liposomes but not in diC14:1-phosphatidylcholine liposomes. These results suggest that PulD efficiently exploits the membrane composition to complete final steps in insertion and explain how PulD can assemble independently of any protein-assembly machinery. Lipid-assisted assembly in this manner might apply to other large OMPs whose assembly is BAM-independent. PMID:26463896

  2. Mitogenic effects of purified outer membrane proteins from Pseudomonas aeruginosa.

    PubMed Central

    Chen, Y H; Hancock, R E; Mishell, R I

    1980-01-01

    Three major outer membrane proteins from Pseudomonas aeruginosa PAO1 were purified and tested for their ability to stimulate resting murine lymphocytes to proliferate. It was demonstrated that picomole amounts of all three proteins were mitogenic for both intact and T-lymphocyte-depleted populations of spleen cells from C3H/HeJ mice. In contrast, they had no activity against either mature or immature thymocytes. Since the strain of mice used is unable to respond to lipopolysaccharide, we condlude that the three proteins are B-cell mitogens. Images Fig. 2 PMID:6769818

  3. Characterization and Immunogenicity of Outer Membrane Vesicles from Brucella abortus.

    PubMed

    Kaur, Gagandeep; Singh, Satparkash; Sunil Kumar, B V; Mahajan, Kanika; Verma, Ramneek

    2016-01-01

    Bovine brucellosis is a worldwide spread zoonotic disease. The objectives of this study were characterization of outer membrane vesicles from B. abortus and to evaluate their immunogenicity in mice. For this purpose, OMVs were derived from B. abortus strain 99 using ultracentrifugation method. Isolated OMVs were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transmission electron microscopy which revealed spherical 20-300 nm structures rich in proteins. OMVs also showed immuno-reactivity with mice antisera in Western blot. Further, indirect ELISA showed specific and high-titer immune responses against the antigens present in OMVs suggesting their potential for a safe acellular vaccine candidate. PMID:26684926

  4. Identification of Outer Membrane Vesicles Derived from Orientia tsutsugamushi

    PubMed Central

    Lee, Sun-Myoung; Kwon, Hea Yoon; Im, Jae-Hyong; Baek, Ji Hyeon; Kang, Jae-Seung

    2015-01-01

    Orientia tsutsugamushi, a causative pathogen of Scrub typhus, is a gram-negative intracellular bacterium. Outer membrane vesicles (OMVs) are produced from the membrane of bacteria and play many roles related to the survival of the pathogen. However, there have been no reports confirming whether O. tsutsugamushi indeed produce OMVs. O. tsutsugamushi boryong was cultured in ECV-304 cells for the purification of OMVs. Western blot analysis and immunoenrichment using anti-O. tsutsugamushi monoclonal antibody and electron microscopy were employed for identification and characterization of OMVs. We confirm the presence of OMVs derived from O. tsutsugamushi, and also found that those OMVs contain a major surface antigen of 56-kDa protein and variant immunogenic antigens. PMID:26130947

  5. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria.

    PubMed

    Wang, Yan; Wang, Rui; Jin, Feng; Liu, Yang; Yu, Jiayu; Fu, Xinmiao; Chang, Zengyi

    2016-08-01

    β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis. PMID:27298319

  6. Cell outer membrane mimetic chitosan nanoparticles: preparation, characterization and cytotoxicity.

    PubMed

    Zhao, Jing; Liang, Fei; Kong, Lingheng; Zheng, Lina; Fan, Tao

    2015-01-01

    A negatively charged copolymer poly (MPC-co-AMPS) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-acrylamide-2-methyl propane sulfonic acid (AMPS) was designed and synthesized. Chitosan nanoparticles with cell outer membrane mimetic structure were prepared by electrostatic interaction between the sulfonic acid groups of poly (MPC-co-AMPS) and the protonated amino groups of chitosan. Effects of factors on influencing the particle size, distribution, and stability were investigated. The experimental results showed that cell membrane mimetic chitosan nanoparticles with controllable and homogeneous size ranged from 100 to 300 nm were prepared at the concentration of 0.1-2.0 mg/mL and the charge ratio of 0.5-1.1. Chitosan nanoparticles prepared can exist stably for more than 45 days when placed at 4 °C and pH < 7.5. The cytotoxicity of the chitosan nanoparticles reduced significantly after surface modification with cell membrane mimetic structure, meeting the basic requirements of biomedical materials. The results suggest cell membrane mimetic chitosan nanoparticles prepared with polyanion and polycation obtain good biological compatibility and immune stealth ability, which has important academic significance and great application prospects. PMID:26230052

  7. Bacterial Origin of a Mitochondrial Outer Membrane Protein Translocase

    PubMed Central

    Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M.; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

    2012-01-01

    Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes. PMID:22778261

  8. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins.

    PubMed

    Costello, Shawn M; Plummer, Ashlee M; Fleming, Patrick J; Fleming, Karen G

    2016-08-16

    Outer membrane protein (OMP) biogenesis is critical to bacterial physiology because the cellular envelope is vital to bacterial pathogenesis and antibiotic resistance. The process of OMP biogenesis has been studied in vivo, and each of its components has been studied in isolation in vitro. This work integrates parameters and observations from both in vivo and in vitro experiments into a holistic computational model termed "Outer Membrane Protein Biogenesis Model" (OMPBioM). We use OMPBioM to assess OMP biogenesis mathematically in a global manner. Using deterministic and stochastic methods, we are able to simulate OMP biogenesis under varying genetic conditions, each of which successfully replicates experimental observations. We observe that OMPs have a prolonged lifetime in the periplasm where an unfolded OMP makes, on average, hundreds of short-lived interactions with chaperones before folding into its native state. We find that some periplasmic chaperones function primarily as quality-control factors; this function complements the folding catalysis function of other chaperones. Additionally, the effective rate for the β-barrel assembly machinery complex necessary for physiological folding was found to be higher than has currently been observed in vitro. Overall, we find a finely tuned balance between thermodynamic and kinetic parameters maximizes OMP folding flux and minimizes aggregation and unnecessary degradation. In sum, OMPBioM provides a global view of OMP biogenesis that yields unique insights into this essential pathway. PMID:27482090

  9. New Salmonella typhimurium mutants with altered outer membrane permeability.

    PubMed Central

    Sukupolvi, S; Vaara, M; Helander, I M; Viljanen, P; Mäkelä, P H

    1984-01-01

    We describe three new classes of Salmonella typhimurium mutants with increased sensitivity to hydrophobic agents. In contrast to many previously described mutants, the phage sensitivity pattern of these mutants did not give any indication of defective lipopolysaccharide. Furthermore, they had no detectable changes in their phospholipid or outer membrane protein composition, and their growth rate and cell morphology were normal. Class B mutants were nearly as sensitive to novobiocin, fusidic acid, erythromycin, rifampin, and clindamycin as are deep rough (heptoseless) mutants; in addition they were sensitive to methicillin, penicillin (to which heptoseless mutants are resistant), gentian violet, and anionic and cationic detergents. Class A and C mutants had less sensitive, but characteristic phenotypes. None of the three classes were sensitive to serum bactericidal action. The class B mutation mapped between map positions 7 and 11 on the S. typhimurium chromosome, and the class C mutation mapped between positions 5 and 7. The map position for the class A mutation remained undefined, but it was separate from the class B and C mutations and, like those, did not correspond to any gene loci known to participate in the synthesis of major outer membrane constituents. Images PMID:6378889

  10. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria

    PubMed Central

    Rassam, Patrice; Copeland, Nikki A.; Birkholz, Oliver; Tóth, Csaba; Chavent, Matthieu; Duncan, Anna L.; Cross, Stephen J.; Housden, Nicholas G.; Kaminska, Renata; Seger, Urban; Quinn, Diana M.; Garrod, Tamsin J.; Sansom, Mark S.P.; Piehler, Jacob; Baumann, Christoph G.; Kleanthous, Colin

    2016-01-01

    Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals where it can be both a commensal and a pathogen1–3. Intricate regulatory mechanisms ensure bacteria have the right complement of β-barrel outer membrane proteins (OMPs) to enable adaptation to a particular habitat4,5. Yet no mechanism is known for replacing OMPs in the outer membrane (OM), a biological enigma further confounded by the lack of an energy source and the high stability6 and abundance of OMPs5. Here, we uncover the process underpinning OMP turnover in E. coli and show it to be passive and binary in nature wherein old OMPs are displaced to the poles of growing cells as new OMPs take their place. Using fluorescent colicins as OMP-specific probes, in combination with ensemble and single-molecule fluorescence microscopy in vivo and in vitro, as well as molecular dynamics (MD) simulations, we established the mechanism for binary OMP partitioning. OMPs clustered to form islands of ~0.5 μm diameter where their diffusion was restricted by promiscuous interactions with other OMPs. OMP islands were distributed throughout the cell and contained the Bam complex, which catalyses the insertion of OMPs in the OM7,8. However, OMP biogenesis occurred as a gradient that was highest at mid-cell but largely absent at cell poles. The cumulative effect is to push old OMP islands towards the poles of growing cells, leading to a binary distribution when cells divide. Hence the OM of a Gram-negative bacterium is a spatially and temporally organised structure and this organisation lies at the heart of how OMPs are turned over in the membrane. PMID:26061769

  11. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    PubMed

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane. PMID:20419407

  12. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis.

    PubMed

    Chen, Yuhuang; Duan, Ran; Li, Xu; Li, Kewei; Liang, Junrong; Liu, Chang; Qiu, Haiyan; Xiao, Yuchun; Jing, Huaiqi; Wang, Xin

    2015-12-01

    The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level and at the amino acid sequence level. The identity of ompA sequences for 262 Y. pestis strains, 134 Y. pseudotuberculosis strains and 219 pathogenic Y. enterocolitica strains are 100%, 98.8% and 97.7% similar. The main pattern of OmpA of pathogenic Yersinia are 86.2% and 88.8% identical at the nucleotide and amino acid sequence levels, respectively. Immunological analysis showed the immunogenicity of each OmpA and cross-immunogenicity of OmpA for pathogenic Yersinia where OmpA may be a vaccine candidate for Y. pestis and other pathogenic Yersinia. PMID:26435220

  13. Functions of outer membrane receptors in mitochondrial protein import.

    PubMed

    Endo, Toshiya; Kohda, Daisuke

    2002-09-01

    Most mitochondrial proteins are synthesized in the cytosol as precursor proteins and are imported into mitochondria. The targeting signals for mitochondria are encoded in the presequences or in the mature parts of the precursor proteins, and are decoded by the receptor sites in the translocator complex in the mitochondrial outer membrane. The recently determined NMR structure of the general import receptor Tom20 in a complex with a presequence peptide reveals that, although the amphiphilicity and positive charges of the presequence is essential for the import ability of the presequence, Tom20 recognizes only the amphiphilicity, but not the positive charges. This leads to a new model that different features associated with the mitochondrial targeting sequence of the precursor protein can be recognized by the mitochondrial protein import system in different steps during the import. PMID:12191763

  14. Pseudomonas aeruginosa outer membrane adhesins for human respiratory mucus glycoproteins.

    PubMed Central

    Carnoy, C; Scharfman, A; Van Brussel, E; Lamblin, G; Ramphal, R; Roussel, P

    1994-01-01

    The attachment of Pseudomonas aeruginosa to human respiratory mucus represents an important step in the development of lung infection, especially in cases of cystic fibrosis. For this purpose, microtiter plate adhesion assays have been developed and have suggested that nonpilus adhesins of P. aeruginosa are the most important ones for binding to human respiratory mucins. In order to characterize these mucin-binding adhesins, outer membrane proteins (OMP) from two adhesive strains, 1244-NP and PAK-NP, and their poorly adhesive rpoN mutants, 1244-N3 and PAK-N1, were prepared by a mild extraction with Zwittergent 3-14. Mucin-binding adhesins were detected after polyacrylamide gel electrophoresis and blotting of the OMP on nitrocellulose replicas, using human bronchial mucins labeled with 125I. The binding properties of these OMP with lactotransferrin, another glycoprotein abundant in respiratory mucus, were also studied. Radiolabeled mucins detected four bands at 48, 46, 28, and 25 kDa with strain PAK-NP. With the nonmucoid strain 1244-NP, five bands were observed at 48, 46, 42, 28, and 25 kDa. The bands at 48 and 25 kDa were also visualized by radiolabeled lactotransferrin. These bands were partially or completely displaced by nonradiolabeled respiratory mucin glycopeptides but not by tetramethylurea, suggesting that they recognized carbohydrate sites. In contrast, the poorly adhesive strains showed weakly binding bands. These results demonstrate that outer membranes from two different nonpiliated P. aeruginosa strains express multiple adhesins with an affinity for human respiratory mucins and/or lactotransferrin. Images PMID:8168955

  15. The lethal cargo of Myxococcus xanthus outer membrane vesicles

    PubMed Central

    Berleman, James E.; Allen, Simon; Danielewicz, Megan A.; Remis, Jonathan P.; Gorur, Amita; Cunha, Jack; Hadi, Masood Z.; Zusman, David R.; Northen, Trent R.; Witkowska, H. Ewa; Auer, Manfred

    2014-01-01

    Myxococcus xanthus is a bacterial micro-predator known for hunting other microbes in a wolf pack-like manner. Outer membrane vesicles (OMVs) are produced in large quantities by M. xanthus and have a highly organized structure in the extracellular milieu, sometimes occurring in chains that link neighboring cells within a biofilm. OMVs may be a vehicle for mediating wolf pack activity by delivering hydrolytic enzymes and antibiotics aimed at killing prey microbes. Here, both the protein and small molecule cargo of the OMV and membrane fractions of M. xanthus were characterized and compared. Our analysis indicates a number of proteins that are OMV-specific or OMV-enriched, including several with putative hydrolytic function. Secondary metabolite profiling of OMVs identifies 16 molecules, many associated with antibiotic activities. Several hydrolytic enzyme homologs were identified, including the protein encoded by MXAN_3564 (mepA), an M36 protease homolog. Genetic disruption of mepA leads to a significant reduction in extracellular protease activity suggesting MepA is part of the long-predicted (yet to date undetermined) extracellular protease suite of M. xanthus. PMID:25250022

  16. Outer membrane lipoprotein biogenesis: Lol is not the end.

    PubMed

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. PMID:26370942

  17. Energy-coupled outer membrane transport proteins and regulatory proteins.

    PubMed

    Braun, Volkmar; Endriss, Franziska

    2007-06-01

    FhuA and FecA are two examples of energy-coupled outer membrane import proteins of gram-negative bacteria. FhuA transports iron complexed by the siderophore ferrichrome and serves as a receptor for phages, a toxic bacterial peptide, and a toxic protein. FecA transports diferric dicitrate and regulates transcription of an operon encoding five ferric citrate (Fec) transport genes. Properties of FhuA mutants selected according to the FhuA crystal structure are described. FhuA mutants in the TonB box, the hatch, and the beta-barrel are rather robust. TonB box mutants in FhuA FecA, FepA, Cir, and BtuB are compared; some mutations are suppressed by mutations in TonB. Mutant studies have not revealed a ferrichrome diffusion pathway, and tolerance to mutations in the region linking the TonB box to the hatch does not disclose a mechanism for how energy transfer from the cytoplasmic membrane to FhuA changes the conformation of FhuA such that bound substrates are released, the pore is opened, and substrates enter the periplasm, or how surface loops change their conformation such that TonB-dependent phages bind irreversibly and release their DNA into the cells. The FhuA and FecA crystal structures do not disclose the mechanism of these proteins, but they provide important information for specific functional studies. FecA is also a regulatory protein that transduces a signal from the cell surface into the cytoplasm. The interacting subdomains of the proteins in the FecA --> FecR --> FecI --> RNA polymerase signal transduction pathway resulting in fecABCDE transcription have been determined. Energy-coupled transporters transport not only iron and vitamin B12, but also other substrates of very low abundance such as sugars across the outer membrane; transcription regulation of the transport genes may occur similarly to that of the Fec transport genes. PMID:17370038

  18. ULTRASTRUCTURE OF VEILLONELLA AND MORPHOLOGICAL CORRELATION OF AN OUTER MEMBRANE WITH PARTICLES ASSOCIATED WITH ENDOTOXIC ACTIVITY

    PubMed Central

    Bladen, Howard A.; Mergenhagen, Stephan E.

    1964-01-01

    Bladen, Howard A. (National Institute of Dental Research, Bethesda, Md.), and Stephan E. Mergenhagen. Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. J. Bacteriol. 88:1482–1492. 1964.—Normal, phenol-water extracted, and lysozyme-treated Veillonella cells were embedded in Vestopal W, sectioned, and examined by electron microscopy. Normal cells as well as the phenol-water extract (endotoxin) were examined by negative and positive contrast techniques. In thin sections of normal cells, three separate structural entities were observed surrounding the protoplasm, and were referred to as the outer membrane, the solid membrane, and the plasma membrane. The outer membrane was a membrane composed of two dense layers (30 A) separated by a less-dense layer (20 A), and followed a convoluted and continuous path around the cell. The solid membrane appeared as a taut, dense structure 100 to 500 A wide, and was separated from the outer membrane by up to several hundred Ångstroms. The plasma membrane was a unit-type membrane. After cells were treated with phenol-water, the outer membrane was absent, but the cells remained intact owing to the solid membrane. Observation of the phenol-water extract (endotoxin) revealed predominantly circular particles or discs which had approximately the same dimensions in height as the outer membrane had in width. Negatively stained whole cells showed similar structures on their surface. Lysozyme treatment of the cells did not affect the outer membrane; however, the solid membrane became diffuse and often disappeared, suggesting that the outer membrane and the solid membrane were separate structures. Images PMID:14234809

  19. Living on the edge: Simulations of bacterial outer-membrane proteins.

    PubMed

    Pavlova, Anna; Hwang, Hyea; Lundquist, Karl; Balusek, Curtis; Gumbart, James C

    2016-07-01

    Gram-negative bacteria are distinguished in part by a second, outer membrane surrounding them. This membrane is distinct from others, possessing an outer leaflet composed not of typical phospholipids but rather large, highly charged molecules known as lipopolysaccharides. Therefore, modeling the structure and dynamics of proteins embedded in the outer membrane requires careful consideration of their native environment. In this review, we examine how simulations of such outer-membrane proteins have evolved over the last two decades, culminating most recently in detailed, highly accurate atomistic models of the outer membrane. We also draw attention to how the simulations have coupled with experiments to produce novel insights unattainable through a single approach. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26826270

  20. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis.

    PubMed

    Zimbler, Daniel L; Eddy, Justin L; Schroeder, Jay A; Lathem, Wyndham W

    2016-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463

  1. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis

    PubMed Central

    Zimbler, Daniel L.; Eddy, Justin L.; Schroeder, Jay A.

    2015-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463

  2. Iron uptake and iron-repressible polypeptides in Yersinia pestis.

    PubMed Central

    Lucier, T S; Fetherston, J D; Brubaker, R R; Perry, R D

    1996-01-01

    Pigmented (Pgm+) cells of Yersinia pestis are virulent, are sensitive to pesticin, adsorb exogenous hemin at 26 degrees C (Hms+), produce iron-repressible outer membrane proteins, and grow at 37 degrees C in iron-deficient media. These traits are lost upon spontaneous deletion of a chromosomal 102-kb pgm locus (Pgm-). Here we demonstrate that an Hms+ but pesticin-resistant (Pst(r)) mutant acquired a 5-bp deletion in the pesticin receptor gene (psn) encoding IrpB to IrpD. Growth and assimilation of iron by Pgm- and Hms+ Pst(r) mutants were markedly inhibited by ferrous chelators at 37 degrees C; inhibition by ferric and ferrous chelators was less effective at 26 degrees C. Iron-deficient growth at 26 degrees C induced iron-regulated outer membrane proteins of 34, 28.5, and 22.5 kDa and periplasmic polypeptides of 33.5 and 30 kDa. These findings provide a basis for understanding the psn-driven system of iron uptake, indicate the existence of at least one additional 26 degrees C-dependent iron assimilation system, and define over 30 iron-repressible proteins in Y. pestis. PMID:8757829

  3. Anti-Outer membrane protein C antibodies in colorectal neoplasia.

    PubMed

    Kohoutova, D; Drahosova, M; Cihak, M; Moravkova, P; Bures, J

    2016-07-01

    Sporadic colorectal cancer (CRC) represents an enormous problem worldwide. Large intestinal microbiota play an important role in the colorectal carcinogenesis. The aim of the study was to investigate anti-Outer membrane protein C (anti-OmpC) antibodies, aimed at porin C, which is embedded in the outer membrane of gram-negative bacteria, in patients with colorectal adenoma (CRA), CRC and controls. The study included 22 patients with CRA (11 men, 11 women, aged 26-79, mean 65 ± 12), 11 patients with CRC (9 men, 2 women, aged 50-83, mean 66 ± 11) and 45 controls, blood donors (24 men, 21 women, aged 20-58, mean 38 ± 10). Serum anti-OmpC antibodies were investigated by means of ELISA. Values of 0-20 U/mL were considered to be negative; values >25 U/mL were assessed as positive. A total of 9/11 (82 %) patients with CRC had positive anti-OmpC antibodies. Anti-OmpC antibodies were negative or grey-zone in 37/45 (82 %) controls. Serum anti-OmpC were found to be significantly higher in patients with CRC (median 42.4, interquartile range (IQR) 22.2) compared to controls (median 18.3, IQR 12.4), p < 0.001. No statistically significant difference in anti-OmpC was found between controls (median 18.3, IQR 12.4) and CRA patients (median 17.7, IQR 16.5), p = 0.326. Anti-OmpC were significantly higher in patients with CRC (median 42.4, IQR 22.2) compared to patients with CRA (median 17.7, IQR 16.5), p = 0.011. Positivity of anti-OmpC antibodies was found in patients with CRC, which supports the contribution of gram-negative large intestinal microbiota to the pathogenesis of CRC. PMID:26612659

  4. Interactions between magainin 2 and Salmonella typhimurium outer membranes: Effect of lipopolysaccharide structure

    SciTech Connect

    Rana, F.R.; Macias, E.A.; Sultany, C.M.; Modzrakowski, M.C.; Blazyk, J. )

    1991-06-18

    The role of the outer membrane and lipopolysaccharide (LPS) in the interaction between the small cationic antimicrobial peptide magainin 2 and the Gram-negative cell envelope was studied by FT-IR spectroscopy. Magainin 2 alters the thermotropic properties of the outer membrane-peptidoglycan complexes from wild-type Salmonella typhimurium and a series of LPS mutants which display differential susceptibility to the bactericidal activity of cationic antibiotics. These results are correlated with the LPS phosphorylation pattern and charge (characterized by high-resolution {sup 31}P NMR) and outer membrane lipid composition, and are compared to the bactericidal susceptibility. LPS mutants show a progressive loss of resistance to killing by magainin 2 as the length of the LPS polysaccharide moiety decreases. Disordering of the outer membrane lipid fatty acyl chains by magainin 2, however, depends primarily upon the magnitude of PLS charge rather than the length of the LPS polysaccharide. While disruption of outer membrane structure most likely is not the primary factor leading to cell death, the susceptibility of Gram-negative cells to magainin 2 is associated with factors that facilitate the transport of the peptide across the outer membrane, such as the magnitude and location of LPS charge, and concentration of LPS in the outer membrane, outer membrane molecular architecture, and the presence or absence of the O-antigen side chain.

  5. Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles

    PubMed Central

    Ellis, Terri N.; Kuehn, Meta J.

    2010-01-01

    Summary: Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens. PMID:20197500

  6. How does the TOM complex mediate insertion of precursor proteins into the mitochondrial outer membrane?

    PubMed Central

    Rapaport, Doron

    2005-01-01

    A multisubunit translocase of the outer mitochondrial membrane (TOM complex) mediates both the import of mitochondrial precursor proteins into the internal compartments of the organelle and the insertion of proteins residing in the mitochondrial outer membrane. The proposed β-barrel structure of Tom40, the pore-forming component of the translocase, raises the question of how the apparent uninterrupted β-barrel topology can be compatible with a role of Tom40 in releasing membrane proteins into the lipid core of the bilayer. In this review, I discuss insertion mechanisms of proteins into the outer membrane and present alternative models based on the opening of a multisubunit β-barrel TOM structure or on the interaction of outer membrane precursors with the outer face of the Tom40 β-barrel structure. PMID:16260501

  7. Vibrio fischeri-derived outer membrane vesicles trigger host development.

    PubMed

    Aschtgen, Marie-Stephanie; Wetzel, Keith; Goldman, William; McFall-Ngai, Margaret; Ruby, Edward

    2016-04-01

    Outer membrane vesicles (OMV) are critical elements in many host-cell/microbe interactions. Previous studies of the symbiotic association between Euprymna scolopes and Vibrio fischeri had shown that within 12 h of colonizing crypts deep within the squid's light organ, the symbionts trigger an irreversible programme of tissue development in the host. Here, we report that OMV produced by V. fischeri are powerful contributors to this process. The first detectable host response to the OMV is an increased trafficking of macrophage-like cells called haemocytes into surface epithelial tissues. We showed that exposing the squid to other Vibrio species fails to induce this trafficking; however, addition of a high concentration of their OMV, which can diffuse into the crypts, does. We also provide evidence that tracheal cytotoxin released by the symbionts, which can induce haemocyte trafficking, is not part of the OMV cargo, suggesting two distinct mechanisms to induce the same morphogenesis event. By manipulating the timing and localization of OMV signal delivery, we showed that haemocyte trafficking is fully induced only when V. fischeri, the sole species able to reach and grow in the crypts, succeeds in establishing a sustained colonization. Further, our data suggest that the host's detection of OMV serves as a symbiotic checkpoint prior to inducing irreversible morphogenesis. PMID:26399913

  8. Crystal structure of a COG4313 outer membrane channel

    PubMed Central

    Berg, Bert van den; Bhamidimarri, Satya Prathyusha; Winterhalter, Mathias

    2015-01-01

    COG4313 proteins form a large and widespread family of outer membrane channels and have been implicated in the uptake of a variety of hydrophobic molecules. Structure-function studies of this protein family have so far been hampered by a lack of structural information. Here we present the X-ray crystal structure of Pput2725 from the biodegrader Pseudomonas putida F1, a COG4313 channel of unknown function, using data to 2.3 Å resolution. The structure shows a 12-stranded barrel with an N-terminal segment preceding the first β-strand occluding the lumen of the barrel. Single channel electrophysiology and liposome swelling experiments suggest that while the narrow channel visible in the crystal structure does allow passage of ions and certain small molecules in vitro, Pput2725 is unlikely to function as a channel for hydrophilic molecules. Instead, the presence of bound detergent molecules inside the barrel suggests that Pput2725 mediates uptake of hydrophobic molecules. Sequence alignments and the locations of highly conserved residues suggest the presence of a dynamic lateral opening through which hydrophobic molecules might gain entry into the cell. Our results provide the basis for structure-function studies of COG4313 family members with known function, such as the SphA sphingosine uptake channel of Pseudomonas aeruginosa. PMID:26149193

  9. Myxobacteria Produce Outer Membrane-Enclosed Tubes in Unstructured Environments

    PubMed Central

    Wei, Xueming; Vassallo, Christopher N.; Pathak, Darshankumar T.

    2014-01-01

    Myxobacteria are social microbes that exhibit complex multicellular behaviors. By use of fluorescent reporters, we show that Myxococcus xanthus isolates produce long narrow filaments that are enclosed by the outer membrane (OM) and contain proteins. We show that these OM tube (OMT) structures are produced at surprisingly high levels when cells are placed in liquid medium or buffer without agitation. OMTs can be long and easily exceed multiple cell lengths. When viewed by transmission electron microscopy, their morphology varies between tubes and chain-like structures. Intermediate-like structures are also found, suggesting that OMTs may transition between these two morphotypes. In support of this, video epifluorescence microscopy found that OMTs in solution dynamically twist and jiggle. On hard surfaces, myxobacteria glide, and upon cell-cell contact, they can efficiently exchange their OM proteins and lipids by a TraAB-dependent mechanism. Although the structure of OMTs hints at a possible role as conduits for exchange, evidence is presented to the contrary. For example, abundant OMT production occurs in traA or traB mutants and when cells are grown in liquid medium, yet transfer cannot occur under these conditions. Thus, genetic and environmental conditions that promote OMT production are incongruent with OM exchange. PMID:24391054

  10. Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines.

    PubMed

    Price, Nancy L; Goyette-Desjardins, Guillaume; Nothaft, Harald; Valguarnera, Ezequiel; Szymanski, Christine M; Segura, Mariela; Feldman, Mario F

    2016-01-01

    The World Health Organization has indicated that we are entering into a post-antibiotic era in which infections that were routinely and successfully treated with antibiotics can now be lethal due to the global dissemination of multidrug resistant strains. Conjugate vaccines are an effective way to create a long-lasting immune response against bacteria. However, these vaccines present many drawbacks such as slow development, high price, and batch-to-batch inconsistencies. Alternate approaches for vaccine development are urgently needed. Here we present a new vaccine consisting of glycoengineered outer membrane vesicles (geOMVs). This platform exploits the fact that the initial steps in the biosynthesis of most bacterial glycans are similar. Therefore, it is possible to easily engineer non-pathogenic Escherichia coli lab strains to produce geOMVs displaying the glycan of the pathogen of interest. In this work we demonstrate the versatility of this platform by showing the efficacy of geOMVs as vaccines against Streptococcus pneumoniae in mice, and against Campylobacter jejuni in chicken. This cost-effective platform could be employed to generate vaccines to prevent infections caused by a wide variety of microbial agents in human and animals. PMID:27103188

  11. Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines

    PubMed Central

    Price, Nancy L.; Goyette-Desjardins, Guillaume; Nothaft, Harald; Valguarnera, Ezequiel; Szymanski, Christine M.; Segura, Mariela; Feldman, Mario F.

    2016-01-01

    The World Health Organization has indicated that we are entering into a post-antibiotic era in which infections that were routinely and successfully treated with antibiotics can now be lethal due to the global dissemination of multidrug resistant strains. Conjugate vaccines are an effective way to create a long-lasting immune response against bacteria. However, these vaccines present many drawbacks such as slow development, high price, and batch-to-batch inconsistencies. Alternate approaches for vaccine development are urgently needed. Here we present a new vaccine consisting of glycoengineered outer membrane vesicles (geOMVs). This platform exploits the fact that the initial steps in the biosynthesis of most bacterial glycans are similar. Therefore, it is possible to easily engineer non-pathogenic Escherichia coli lab strains to produce geOMVs displaying the glycan of the pathogen of interest. In this work we demonstrate the versatility of this platform by showing the efficacy of geOMVs as vaccines against Streptococcus pneumoniae in mice, and against Campylobacter jejuni in chicken. This cost-effective platform could be employed to generate vaccines to prevent infections caused by a wide variety of microbial agents in human and animals. PMID:27103188

  12. Outer membrane vesicles – offensive weapons or good Samaritans?

    PubMed Central

    Olsen, Ingar; Amano, Atsuo

    2015-01-01

    Outer membrane vesicles (OMVs) from Gram-negative bacteria were first considered as artifacts and were followed with disbelief and bad reputation. Later, their existence was accepted and they became characterized as bacterial bombs, virulence bullets, and even decoys. Today, we know that OMVs also can be involved in cell–cell signaling/communication and be mediators of immune regulation and cause disease protection. Furthermore, OMVs represent a distinct bacterial secretion pathway selecting and protecting their cargo, and they can even be good Samaritans providing nutrients to the gut microbiota maintaining commensal homeostasis beneficial to the host. The versatility in functions of these nanostructures is remarkable and includes both defense and offense. The broad spectrum of usability does not stop with that, as it now seems that OMVs can be used as vaccines and adjuvants or vehicles engineered for drug treatment of emerging and new diseases not only caused by bacteria but also by virus. They may even represent new ways of selective drug treatment. PMID:25840612

  13. Regulation of peptidoglycan synthesis by outer membrane proteins

    PubMed Central

    Typas, Athanasios; Banzhaf, Manuel; van den Berg van Saparoea, Bart; Verheul, Jolanda; Biboy, Jacob; Nichols, Robert J.; Zietek, Matylda; Beilharz, Katrin; Kannenberg, Kai; von Rechenberg, Moritz; Breukink, Eefjan; den Blaauwen, Tanneke; Gross, Carol A.; Vollmer, Waldemar

    2011-01-01

    Summary Growth of the meshlike peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell but precise spatiotemporal control over this process is poorly understood. We demonstrate that PG synthases are also controlled from outside the sacculus. Two OM lipoproteins, LpoA and LpoB, are essential for the function respectively of PBP1A and PBP1B, the major E. coli bifunctional PG synthases. Each Lpo protein binds specifically to its cognate PBP and stimulates its transpeptidase activity, thereby facilitating attachment of new PG to the sacculus. LpoB shows partial septal localization and our data suggest that the LpoB-PBP1B complex contributes to OM constriction during cell division. LpoA/ LpoB and their PBP docking regions are restricted to γ-proteobacteria, providing models for niche-specific regulation of sacculus growth. PMID:21183073

  14. Proteomic analysis of Vibrio cholerae outer membrane vesicles

    PubMed Central

    Altindis, Emrah; Fu, Yang; Mekalanos, John J.

    2014-01-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria provide an interesting research material for defining cell-envelope proteins without experimental cell disruption. OMVs are also promising immunogenic platforms and may play important roles in bacterial survival and pathogenesis. We used in-solution trypsin digestion coupled to mass spectrometry to identify 90 proteins present in OMVs of Vibrio cholerae when grown under conditions that activate the TCP pilus virulence regulatory protein (ToxT) virulence regulon. The ToxT expression profile and potential contribution to virulence of these proteins were assessed using ToxT and in vivo RNA-seq, Tn-seq, and cholera stool proteomic and other genome-wide data sets. Thirteen OMV-associated proteins appear to be essential for cell growth, and therefore may represent antibacterial drug targets. Another 12 nonessential OMV proteins, including DegP protease, were required for intestinal colonization in rabbits. Comparative proteomics of a degP mutant revealed the importance of DegP in the incorporation of nine proteins into OMVs, including ones involved in biofilm matrix formation and various substrates of the type II secretion system. Taken together, these results suggest that DegP plays an important role in determining the content of OMVs and also affects phenotypes such as intestinal colonization, proper function of the type II secretion system, and formation of biofilm matrix. PMID:24706774

  15. Reconstitution of the native mitochondrial outer membrane in planar bilayers. Comparison with the outer membrane in a patch pipette and effect of aluminum compounds.

    PubMed

    Mirzabekov, T; Ballarin, C; Nicolini, M; Zatta, P; Sorgato, M C

    1993-04-01

    Detergent-free rat brain outer mitochondrial membranes were incorporated in planar lipid bilayers in the presence of an osmotic gradient, and studied at high (1 M KCl) and low (150 mM KCl) ionic strength solutions. By comparison, the main outer mitochondrial membrane protein, VDAC, extracted from rat liver with Triton X-100, was also studied in 150 mM KCl. In 1 M KCl, brain outer membranes gave rise to electrical patterns which resembled very closely those widely described for detergent-extracted VDAC, with transitions to several subconducting states upon increase of the potential difference, and sensitivity to polyanion. The potential dependence of the conductance of the outer membrane, however, was steeper and the extent of closure higher than that observed previously for rat brain VDAC. In 150 mM KCl, bilayers containing only one channel had a conductance of 700 +/- 23 pS for rat brain outer membranes, and 890 +/- 29 pS for rat liver VDAC. Use of a fast time resolution setup allowed demonstration of open-close transitions in the millisecond range, which were independent of the salt concentration and of the protein origin. We also found that a potential difference higher than approx. +/- 60 mV induced an almost irreversible decrease of the single channel conductance to few percentages of the full open state and a change in the ionic selectivity. These results show that the behavior of the outer mitochondrial membrane in planar bilayers is close to that detected with the patch clamp (Moran et al., 1992, Eur. Biophys. J. 20:311-319). The neurotoxicological action of aluminum was studied in single outer membrane channels from rat brain mitochondria. We found that microM concentrations of Al Cl3 and aluminum lactate decreased the conductance by about 50%, when the applied potential difference was positive relative to the side of the metal addition. PMID:7685821

  16. Comparative Proteomic Studies of Yersinia pestis Strains Isolated from Natural Foci in the Republic of Georgia

    PubMed Central

    Nozadze, Maia; Zhgenti, Ekaterine; Meparishvili, Maia; Tsverava, Lia; Kiguradze, Tamar; Chanturia, Gvantsa; Babuadze, Giorgi; Kekelidze, Merab; Bakanidze, Lela; Shutkova, Tatiana; Imnadze, Paata; Francesconi, Stephen C.; Obiso, Richard; Solomonia, Revaz

    2015-01-01

    Yersinia pestis, the causative agent of plague, is a highly virulent bacterium responsible for millions of human deaths throughout history. In the last decade, two natural plague foci have been described in the Republic of Georgia from which dozens of Y. pestis strains have been isolated. Analyses indicate that there are genetic differences between these strains, but it is not known if these differences are also reflected in protein expression. We chose four strains of Y. pestis (1390, 1853, 2944, and 8787) from the National Center for Disease Control and Public Health collection for proteomic studies based on neighbor-joining tree genetic analysis and geographical loci of strain origin. Proteomic expression was analyzed using two-dimensional gel electrophoresis and mass spectrometry. Select Y. pestis strains were grown under different physiological conditions and their proteomes were compared: (1) 28°C without calcium; (2) 28°C with calcium; (3) 37°C without calcium; and (4) 37°C with calcium. Candidate proteins were identified and the differences in expression of F1 antigen, tellurium-resistance protein, and outer membrane protein C, porin were validated by Western blotting. The in vitro cytotoxicity activity of these strains was also compared. The results indicate that protein expression and cytotoxic activities differ significantly among the studied strains; these differences could contribute to variations in essential physiological functions in these strains. PMID:26528469

  17. Mitochondrial outer membrane forms bridge between two mitochondria in Arabidopsis thaliana.

    PubMed

    Yamashita, Akihiro; Fujimoto, Masaru; Katayama, Kenta; Tsutsumi, Nobuhiro; Arimura, Shin-Ichi

    2016-05-01

    Mitochondria are double-membrane organelles that move around and change their shapes dynamically. In plants, the dynamics of the outer membrane is not well understood. We recently demonstrated that mitochondria had tubular protrusions of the outer membrane with little or no matrix, called MOPs (mitochondrial outer-membrane protrusions; MOPs). Here we show that a MOP can form a bridge between two mitochondria in Arabidopsis thaliana. The bridge does not appear to involve the inner membranes. Live imaging revealed stretching of the MOP bridge, demonstrating the flexibility of the outer membrane. Mitochondria frequently undergo fission and fusion. These observations raise the possibility that MOPs bridges have a role in these processes. PMID:27031262

  18. Leptospirosis serodiagnosis by ELISA based on recombinant outer membrane protein.

    PubMed

    Chalayon, Piyanart; Chanket, Phanita; Boonchawalit, Toungporn; Chattanadee, Siriporn; Srimanote, Potjanee; Kalambaheti, Thareerat

    2011-05-01

    The outer membrane protein LipL21, LipL32, LipL41 and Loa22 of Leptospira interrogans serovar Copenhageni were previously revealed by immunoproteomic analysis, using sera from acute phase infection in a guinea pig. The full-length DNA of each protein was then cloned from the same serovar and expressed in pRSET vector. The obtained molecular weight (MW) of recombinant proteins rLipL21, rLipL32 and rLoa22 were slightly higher than the MW predicted from nucleotide sequences of each inserted gene, while only the N-terminal half of rLipL41 was obtained. Mice antiserum raised against each purified recombinant protein could react with the whole cell lysate of leptospiral serovars, implying that leptospiral native proteins shared a common epitope with recombinant protein. Serodiagnosis using recombinant protein antigen based on indirect ELISA procedure was developed in this study. The optimization of the ELISA components lead to determination of optical density (OD) from a single serum-dilution of 1:1000 in the leptospirosis patients group and normal healthy control group. The cut off OD values for both IgG and IgM class were investigated, and based on this fixed dilution only the IgG class could be used for differential diagnosis of patients and normal individuals. Compared with the MAT assay, ELISA assay utilizing both rLipL32 and rLoa22 as antigen, gave high accuracy and could thus be useful as a confirmative serology test. PMID:21353274

  19. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies.

    PubMed

    Chen, Linxiao; Valentine, Jenny L; Huang, Chung-Jr; Endicott, Christine E; Moeller, Tyler D; Rasmussen, Jed A; Fletcher, Joshua R; Boll, Joseph M; Rosenthal, Joseph A; Dobruchowska, Justyna; Wang, Zhirui; Heiss, Christian; Azadi, Parastoo; Putnam, David; Trent, M Stephen; Jones, Bradley D; DeLisa, Matthew P

    2016-06-28

    The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. Here, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Using this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS-specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens. PMID:27274048

  20. Delivery of foreign antigens by engineered outer membrane vesicle vaccines.

    PubMed

    Chen, David J; Osterrieder, Nikolaus; Metzger, Stephan M; Buckles, Elizabeth; Doody, Anne M; DeLisa, Matthew P; Putnam, David

    2010-02-16

    As new disease threats arise and existing pathogens grow resistant to conventional interventions, attention increasingly focuses on the development of vaccines to induce protective immune responses. Given their admirable safety records, protein subunit vaccines are attractive for widespread immunization, but their disadvantages include poor immunogenicity and expensive manufacture. We show here that engineered Escherichia coli outer membrane vesicles (OMVs) are an easily purified vaccine-delivery system capable of greatly enhancing the immunogenicity of a low-immunogenicity protein antigen without added adjuvants. Using green-fluorescent protein (GFP) as the model subunit antigen, genetic fusion of GFP with the bacterial hemolysin ClyA resulted in a chimeric protein that elicited strong anti-GFP antibody titers in immunized mice, whereas immunization with GFP alone did not elicit such titers. Harnessing the specific secretion of ClyA to OMVs, the ClyA-GFP fusion was found localized in OMVs, resulting in engineered recombinant OMVs. The anti-GFP humoral response in mice immunized with the engineered OMV formulations was indistinguishable from the response to the purified ClyA-GFP fusion protein alone and equal to purified proteins absorbed to aluminum hydroxide, a standard adjuvant. In a major improvement over current practice, engineered OMVs containing ClyA-GFP were easily isolated by ultracentrifugation, effectively eliminating the need for laborious antigen purification from cell-culture expression systems. With the diverse collection of heterologous proteins that can be functionally localized with OMVs when fused with ClyA, this work signals the possibility of OMVs as a robust and tunable technology platform for a new generation of prophylactic and therapeutic vaccines. PMID:20133740

  1. Role of outer membrane proteins in imipenem diffusion in Pseudomonas aeruginosa.

    PubMed

    Lian, Z; Tianjue, Y

    1999-03-01

    The present study identified the properties of porins in the outer membrane in Pseudomonas aeruginosa, and showed the role of outer membrane in determining imipenem diffusion in Pseudomonas aeruginosa. The molecular weight of the major outer membrane protein was analyzed by SDS-PAGE. The purification of the porins in Pseudomonas aeruginosa was achieved by DEAE ion-exchange HPLC. The purified outer membrane proteins were reconstituted with phosphatidylcholine and dicetylphosphate into membrane vesicles, and were tested by the liposomes swelling method for the diffusion of imipenem. The permeability assay showed that OprC (70 kD), OprD2 (46 kD), and OprE (43 kD) were the channel-forming proteins. But only OprD2 was thought to be the likely route of imipenem diffusion. PMID:12899386

  2. The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain.

    PubMed

    Herndon, Jenny D; Claypool, Steven M; Koehler, Carla M

    2013-12-01

    Mutations in the mitochondrial transacylase tafazzin, Taz1p, in Saccharomyces cerevisiae cause Barth syndrome, a disease of defective cardiolipin remodeling. Taz1p is an interfacial membrane protein that localizes to both the outer and inner membranes, lining the intermembrane space. Pathogenic point mutations in Taz1p that alter import and membrane insertion result in accumulation of monolysocardiolipin. In this study, we used yeast as a model to investigate the biogenesis of Taz1p. We show that to achieve this unique topology in mitochondria, Taz1p follows a novel import pathway in which it crosses the outer membrane via the translocase of the outer membrane and then uses the Tim9p-Tim10p complex of the intermembrane space to insert into the mitochondrial outer membrane. Taz1p is then transported to membranes of an intermediate density to reach a location in the inner membrane. Moreover, a pathogenic mutation within the membrane anchor (V224R) alters Taz1p import so that it bypasses the Tim9p-Tim10p complex and interacts with the translocase of the inner membrane, TIM23, to reach the matrix. Critical targeting information for Taz1p resides in the membrane anchor and flanking sequences, which are often mutated in Barth syndrome patients. These studies suggest that altering the mitochondrial import pathway of Taz1p may be important in understanding the molecular basis of Barth syndrome. PMID:24078306

  3. ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria.

    PubMed

    Narita, Shin-ichiro

    2011-01-01

    The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed. PMID:21670534

  4. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum.

    PubMed

    Radolf, J D; Norgard, M V; Schulz, W W

    1989-03-01

    Freeze fracture and deep etching were used to investigate the ultrastructural basis for the observation that anti-treponemal antibodies bind poorly to the surface of virulent Treponema pallidum. Fractures of T. pallidum outer membranes contained scarce, uniformly sized intramembranous particles (IMPs). IMPs on the convex faces often appeared to form linear arrays that wound in spirals about the organism. In contrast to the outer membrane, IMPs of the cytoplasmic membrane were randomly distributed, numerous, and heterogeneous in size. In Escherichia coli and T. pallidum cofractures, IMPs of the E. coli outer membranes were densely packed within the concave fracture faces, while the T. pallidum fractures were identical to the experiments lacking the E. coli internal controls. Outer membranes of two representative nonpathogenic treponemes, Treponema phagedenis biotype Reiter and Treponema denticola, contained numerous IMPs, which segregated preferentially with the concave halves. Examination of apposed replicas and deep-etched specimens indicated that at least some of the IMPs extend through the T. pallidum outer membrane and are exposed on the surface of the organism. The outer membrane of intact T. pallidum appears to contain a paucity of integral membrane proteins that can serve as targets for specific antibodies. These findings appear to represent an unusual parasitic strategy for evasion of host humoral defenses. PMID:2648388

  5. Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins

    PubMed Central

    Kleanthous, Colin; Rassam, Patrice; Baumann, Christoph G

    2015-01-01

    It has until recently been unclear whether outer membrane proteins (OMPs) of Gram-negative bacteria are organized or distributed randomly. Studies now suggest promiscuous protein–protein interactions (PPIs) between β-barrel OMPs in Escherichia coli govern their local and global dynamics, engender spatiotemporal patterning of the outer membrane into micro-domains and are the basis of β-barrel protein turnover. We contextualize these latest advances, speculate on areas of bacterial cell biology that might be influenced by the organization of OMPs into supramolecular assemblies, and highlight the new questions and controversies this revised view of the bacterial outer membrane raises. PMID:26629934

  6. A novel pathway for outer membrane protein biogenesis in Gram‐negative bacteria

    PubMed Central

    Jeeves, Mark

    2015-01-01

    Summary The understanding of the biogenesis of the outer membrane of Gram‐negative bacteria is of critical importance due to the emergence of bacteria that are becoming resistant to available antibiotics. A problem that is most serious for Gram‐negative bacteria, with essentially few antibiotics under development or likely to be available for clinical use in the near future. The understanding of the Gram‐negative bacterial outer membrane is therefore critical to developing new antimicrobial agents, as this membrane makes direct contact with the external milieu, and the proteins present within this membrane are the instruments of microbial warfare, playing key roles in microbial pathogenesis, virulence and multidrug resistance. To date, a single outer membrane complex has been identified as essential for the folding and insertion of proteins into the outer membrane, this is the β‐barrel assembly machine (BAM) complex, which in some cases is supplemented by the Translocation and Assembly Module (TAM). In this issue of Molecular Microbiology, Dunstan et al. have identified a novel pathway for the insertion of a subset of integral membrane proteins into the Gram‐negative outer membrane that is independent of the BAM complex and TAM. PMID:26059329

  7. Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from Methylococcus capsulatus (Bath)

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Stan-Lotter, Helga; Kato, Katharine; Hochstein, Lawrence I.

    1992-01-01

    Cytoplasmic/intracytoplasmic and outer membrane preparations of Methylococcus capsulatus (Bath) were isolated by sucrose density gradient centrifugation of a total membrane fraction prepared by disruption using a French pressure cell. The cytoplasmic and/or intracytoplasmic membrane fraction consisted of two distinct bands, Ia and Ib (buoyant densities 1.16 and 1.18 g ml (exp -1), respectively) that together contained 57% of the protein, 68% of the phospholipid, 73% of the ubiquinone and 89% of the CN-sensitive NADH oxidase activity. The only apparent difference between these two cytoplasmic bands was a much higher phospholipid content for Ia. The outer membrane fraction (buoyant density 1.23-1.24 g ml (exp -1)) contained 60% of the lipopolysaccharide-associated, beta-hydroxypalmitic acid, 74% of the methylsterol, and 66% of the bacteriohopanepolyol (BHP); phospholipid to methyl sterol or BHP ratios were 6:1. Methanol dehydrogenase activity and a c-type cytochrome were also present in this outer membrane fraction. Phospholipase A activity was present in borh the cytoplasmic membrane and outer membrane fractions. The unique distribution of cyclic triterpenes may reflect a specific role in conferring outer membrane stability in this methanotrophic bacterium.

  8. A novel pathway for outer membrane protein biogenesis in Gram-negative bacteria.

    PubMed

    Jeeves, Mark; Knowles, Timothy J

    2015-08-01

    The understanding of the biogenesis of the outer membrane of Gram-negative bacteria is of critical importance due to the emergence of bacteria that are becoming resistant to available antibiotics. A problem that is most serious for Gram-negative bacteria, with essentially few antibiotics under development or likely to be available for clinical use in the near future. The understanding of the Gram-negative bacterial outer membrane is therefore critical to developing new antimicrobial agents, as this membrane makes direct contact with the external milieu, and the proteins present within this membrane are the instruments of microbial warfare, playing key roles in microbial pathogenesis, virulence and multidrug resistance. To date, a single outer membrane complex has been identified as essential for the folding and insertion of proteins into the outer membrane, this is the β-barrel assembly machine (BAM) complex, which in some cases is supplemented by the Translocation and Assembly Module (TAM). In this issue of Molecular Microbiology, Dunstan et al. have identified a novel pathway for the insertion of a subset of integral membrane proteins into the Gram-negative outer membrane that is independent of the BAM complex and TAM. PMID:26059329

  9. Membrane Composition Tunes the Outer Hair Cell Motor

    NASA Astrophysics Data System (ADS)

    Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.

    2009-02-01

    Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.

  10. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1.

    PubMed Central

    Myers, C R; Myers, J M

    1992-01-01

    In gram-negative bacteria, numerous cell functions, including respiration-linked electron transport, have been ascribed to the cytoplasmic membrane. Gram-negative bacteria which use solid substrates (e.g., oxidized manganese or iron) as terminal electron acceptors for anaerobic respiration are presented with a unique problem: they must somehow establish an electron transport link across the outer membrane between large particulate metal oxides and the electron transport chain in the cytoplasmic membrane. When the metal-reducing bacterium Shewanella putrefaciens MR-1 is grown under anaerobic conditions and membrane fractions are purified from cells lysed by an EDTA-lysozyme-polyoxyethylene cetyl ether (Brij 58) protocol, approximately 80% of its membrane-bound cytochromes are localized in its outer membrane. These outer membrane cytochromes could not be dislodged by treatment with chaotropic agents or by increased concentrations of the nonionic detergent Brij 58, suggesting that they are integral membrane proteins. Cytochrome distribution in cells lysed by a French press protocol confirm the localization of cytochromes to the outer membrane of anaerobically grown cells. This novel cytochrome distribution could play a key role in the anaerobic respiratory capabilities of this bacterium, especially in its ability to mediate manganese and iron reduction. Images PMID:1592800

  11. Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants.

    PubMed Central

    Smit, J; Kamio, Y; Nikaido, H

    1975-01-01

    The outer membrane layer of the cell wall was isolated from wild-type Salmonella typhimurium LT2 as well as from its mutants producing lipopolysaccharides with shorter saccharide chains. Chemical analysis of these preparations indicated the following. (i) The number of lipopolysaccharide molecules per unit area was constant, regardless of the length of the saccharide side chain in lipopolysaccharide. (ii) In contrast, in "deep rough" (Rd or Re) mutants producing the lipopolysaccharides with very short saccharide chains, the amount of outer membrane protein per unit surface area decreased to about 60% of the value in the wild type. (iii) In the wild type, the amount of phospholipids is slightly less than what is needed to cover one side of the membrane as a monolayer. In comparison with the wild type, the outer membrane of Rd and Re mutants contains about 70% more phospholipids, which therefore must be distributed in both the outer and inner leaflets of the membrane. Freeze-fracture studies showed that the outer membrane of Re mutants were easily fractured, but fracture became increasingly difficult in strains producing lipopolysaccharides with longer side chains. The convex fracture face was always nearly smooth, but the concave fracture face or the outer half of the membrane was densely covered with particles 8 to 10 nm in diameter. The density of particles was decreased in Re mutants to the same extent as the reduction in proteins, suggesting the largely proteinaceous nature of particles. A model for the supramolecular structure of the outer membrane is presented on the basis of these and other results. Images PMID:1102538

  12. Identification of Pasteurella multocida CHAPS-soluble outer membrane proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fowl cholera continues to be of concern to the poultry industry, especially for turkey growers. This disease costs the turkey industry millions of dollars annually. In order to gain a better understanding of Pasteurella multocida virulence factors involved in colonization and pathogenesis, the outer...

  13. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides

    PubMed Central

    Bansal-Mutalik, Ritu; Nikaido, Hiroshi

    2014-01-01

    Mycobacterium species, including the human pathogen Mycobacterium tuberculosis, are unique among Gram-positive bacteria in producing a complex cell wall that contains unusual lipids and functions as a permeability barrier. Lipids in the cell wall were hypothesized to form a bilayer or outer membrane that would prevent the entry of chemotherapeutic agents, but this could not be tested because of the difficulty in extracting only the cell-wall lipids. We used reverse micellar extraction to achieve this goal and carried out a quantitative analysis of both the cell wall and the inner membrane lipids of Mycobacterium smegmatis. We found that the outer leaflet of the outer membrane contains a similar number of hydrocarbon chains as the inner leaflet composed of mycolic acids covalently linked to cell-wall arabinogalactan, thus validating the outer membrane model. Furthermore, we found that preliminary extraction with reverse micelles permitted the subsequent complete extraction of inner membrane lipids with chloroform–methanol–water, revealing that one-half of hydrocarbon chains in this membrane are contributed by an unusual lipid, diacyl phosphatidylinositol dimannoside. The inner leaflet of this membrane likely is composed nearly entirely of this lipid. Because it contains four fatty acyl chains within a single molecule, it may produce a bilayer environment of unusually low fluidity and may slow the influx of drugs, contributing to the general drug resistance phenotype of mycobacteria. PMID:24639491

  14. Characterization of the Outer Membrane Protein OprF of Pseudomonas aeruginosa in a Lipopolysaccharide Membrane by Computer Simulation

    SciTech Connect

    Straatsma, TP; Soares, Thereza A.

    2009-02-01

    The N-terminal domain of outer membrane protein OprF of Pseudomonas aeruginosa forms a membrane spanning eight-stranded anti-parallel β-barrel domain that folds into a membrane channel with low conductance. The structure of this protein has been modeled after the crystal structure of the homologous protein OmpA of Escherichia coli. A number of molecular dynamics simulations have been carried out for the homology modeled structure of OprF in an explicit molecular model for the rough lipopolysaccharide (LPS) outer membrane of P. aeruginosa. The structural stability of the outer membrane model as a result of the strong electrostatic interactions compared to simple lipid bilayers is restricting both the conformational flexibility and the lateral diffusion of the porin in the membrane. Constricting side-chain interactions within the pore are similar to those found in reported simulations of the protein in a solvated lipid bilayer membrane. Because of the strong interactions between the loop regions of OprF and functional groups in the saccharide core of the LPS, the entrance to the channel from the extracellular space is widened compared to the lipid bilayer simulations in which the loops are extruding in the solvent. The specific electrostatic signature of the LPS membrane, which results in a net intrinsic dipole across the membrane, is found to be altered by the presence of OprF, resulting in a small electrically positive patch at the position of the channel.

  15. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum.

    PubMed Central

    Cox, D L; Chang, P; McDowall, A W; Radolf, J D

    1992-01-01

    Virulent Treponema pallidum reacts poorly with the specific antibodies present in human and rabbit syphilitic sera, a phenomenon often attributed to an outer coat of host serum proteins. Here we present additional evidence that the limited antigenicity of virulent organisms actually is due to a paucity of proteins in the outer membrane. Initially, we used electron microscopy to demonstrate that the outer membrane is highly susceptible to damage from physical manipulation (i.e., centrifugation and resuspension) and nonionic detergents. Organisms with disrupted outer membranes were markedly more antigenic than intact treponemes as determined by immunoelectron microscopy (IEM) with rabbit syphilitic and antiendoflagellar antisera. Data obtained with a new radioimmunoassay, designated the T. pallidum surface-specific radioimmunoassay, corroborated these IEM findings by demonstrating that the major T. pallidum immunogens are not surface exposed; the assay also was unable to detect serum proteins, including fibronectin, on the surfaces of intact organisms. Furthermore, IEM of T. pallidum on ultrathin cryosections with monospecific anti-47-kDa-immunogen antiserum confirmed the intracellular location of the 47-kDa immunogen. On the basis of these and previous findings, we proposed a new model for T. pallidum ultrastructure in which the outer membrane contains a small number of transmembrane proteins and the major membrane immunogens are anchored by lipids to the periplasmic leaflet of the cytoplasmic membrane. This unique ultrastructure explains the remarkable ability of virulent organisms to evade the humoral immune response of the T. pallidum-infected host. Images PMID:1541522

  16. The Enolase of Borrelia burgdorferi Is a Plasminogen Receptor Released in Outer Membrane Vesicles

    PubMed Central

    Toledo, A.; Coleman, J. L.; Kuhlow, C. J.; Crowley, J. T.

    2012-01-01

    The agent of Lyme disease, Borrelia burgdorferi, has a number of outer membrane proteins that are differentially regulated during its life cycle. In addition to their physiological functions in the organism, these proteins also likely serve different functions in invasiveness and immune evasion. In borreliae, as well as in other bacteria, a number of membrane proteins have been implicated in binding plasminogen. The activation and transformation of plasminogen into its proteolytically active form, plasmin, enhances the ability of the bacteria to disseminate in the host. Outer membrane vesicles of B. burgdorferi contain enolase, a glycolytic-cycle enzyme that catalyzes 2-phosphoglycerate to form phosphoenolpyruvate, which is also a known plasminogen receptor in Gram-positive bacteria. The enolase was cloned, expressed, purified, and used to generate rabbit antienolase serum. The enolase binds plasminogen in a lysine-dependent manner but not through ionic interactions. Although it is present in the outer membrane, microscopy and proteinase K treatment showed that enolase does not appear to be exposed on the surface. However, enolase in the outer membrane vesicles is accessible to proteolytic degradation by proteinase K. Samples from experimentally and tick-infected mice and rabbits as well as from Lyme disease patients exhibit recognition of enolase in serologic assays. Thus, this immunogenic plasminogen receptor released in outer membrane vesicles could be responsible for external proteolysis in the pericellular environment and have roles in nutrition and in enhancing dissemination. PMID:22083700

  17. Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins.

    PubMed

    Siroy, Axel; Mailaender, Claudia; Harder, Daniel; Koerber, Stephanie; Wolschendorf, Frank; Danilchanka, Olga; Wang, Ying; Heinz, Christian; Niederweis, Michael

    2008-06-27

    Mycobacteria contain an outer membrane composed of mycolic acids and a large variety of other lipids. Its protective function is an essential virulence factor of Mycobacterium tuberculosis. Only OmpA, which has numerous homologs in Gram-negative bacteria, is known to form channels in the outer membrane of M. tuberculosis so far. Rv1698 was predicted to be an outer membrane protein of unknown function. Expression of rv1698 restored the sensitivity to ampicillin and chloramphenicol of a Mycobacterium smegmatis mutant lacking the main porin MspA. Uptake experiments showed that Rv1698 partially complemented the permeability defect of the M. smegmatis porin mutant for glucose. These results indicated that Rv1698 provides an unspecific pore that can partially substitute for MspA. Lipid bilayer experiments demonstrated that purified Rv1698 is an integral membrane protein that indeed produces channels. The main single channel conductance is 4.5 +/- 0.3 nanosiemens in 1 M KCl. Zero current potential measurements revealed a weak preference for cations. Whole cell digestion of recombinant M. smegmatis with proteinase K showed that Rv1698 is surface-accessible. Taken together, these experiments demonstrated that Rv1698 is a channel protein that is likely involved in transport processes across the outer membrane of M. tuberculosis. Rv1698 has single homologs of unknown functions in Corynebacterineae and thus represents the first member of a new class of channel proteins specific for mycolic acid-containing outer membranes. PMID:18434314

  18. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria.

    PubMed

    Gornicka, Agnieszka; Bragoszewski, Piotr; Chroscicki, Piotr; Wenz, Lena-Sophie; Schulz, Christian; Rehling, Peter; Chacinska, Agnieszka

    2014-12-15

    Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex. PMID:25318675

  19. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis.

    PubMed

    Große, Lena; Wurm, Christian A; Brüser, Christian; Neumann, Daniel; Jans, Daniel C; Jakobs, Stefan

    2016-02-15

    The Bcl-2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro-apoptotic proteins. Yet the mechanistic details of the Bax-induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring-like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super-resolution data provide direct evidence in support of large Bax-delineated pores in the mitochondrial outer membrane as being crucial for Bax-mediated MOMP in cells. PMID:26783364

  20. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria

    PubMed Central

    Gornicka, Agnieszka; Bragoszewski, Piotr; Chroscicki, Piotr; Wenz, Lena-Sophie; Schulz, Christian; Rehling, Peter; Chacinska, Agnieszka

    2014-01-01

    Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex. PMID:25318675

  1. The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles

    PubMed Central

    Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  2. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  3. Rapid detection of Yersinia pestis recombinant fraction 1 capsular antigen.

    PubMed

    Tsui, Pei-Yi; Tsai, Hui-Ping; Chiao, Der-Jiang; Liu, Cheng-Che; Shyu, Rong-Hwa

    2015-09-01

    Yersinia pestis, an infectious bacterium that is a causative agent of plague, a disease which has been shown to be one of the most feared in history and which has caused millions of deaths. The capsule-like fraction 1 (F1) antigen expressed by Y. pestis is a known specific marker for the identification of the bacteria; therefore, the detection of F1 is important for Y. pestis recognition. In this study, a rapid, sensitive, and specific technique, the lateral flow assay (LFA), was successfully developed to detect Y. pestis by the recombinant F1 antigen. The assay that utilized an anti-F1 polyclonal antibody (Pab) to identify the bacteria was based on a double-antibody sandwich format on a nitrocellulose membrane. With the LFA method, 50 ng/ml of recombinant F1 protein and 10(5) CFU/mL of Y. pestis could be detected in less than 10 min. This assay also showed no cross-reaction with other Yersinia spp. or with some selected capsule-producing Enterobacteriaceae strains. Furthermore, detection of Y. pestis in simulated samples has been evaluated. The detection sensitivity of Y. pestis in various matrices was 10(5) CFU/mL, which was identical to that in PBS buffer. The results obtained suggest that LFA is an excellent tool for detection of Y. pestis contamination in an environment and hence can be used to monitor plague diseases when they emerge. PMID:25994256

  4. Membrane tether formation from voltage-clamped outer hair cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Ermilov, Sergey A.; Murdock, David R.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    Outer hair cells contribute an active mechanical feedback to the vibrations of the cochlear structures resulting in the high sensitivity and frequency selectivity of normal hearing. We have designed and implemented a novel experimental setup that combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement during tether elongation is monitored by a quadrant photodetector to obtain time-resolved measurements of the tethering force. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from outer hair cells and human embryonic kidney cells are presented.

  5. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    PubMed

    Rakshit, Tatini; Senapati, Subhadip; Sinha, Satyabrata; Whited, A M; Park, Paul S-H

    2015-01-01

    Rhodopsin forms nanoscale domains (i.e., nanodomains) in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates. PMID:26492040

  6. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  7. Chemical Analysis of the Outer Membrane and Other Layers of the Cell Envelope of Acinetobacter sp

    PubMed Central

    Thorne, Kareen J. I.; Thornley, Margaret J.; Glauert, Audrey M.

    1973-01-01

    Chemical analysis of fractions of the cell envelope of Acinetobacter sp. strain MJT/F5/199A, prepared by breakage in the French press and removal of plasma membranes, followed by sequential treatment with lysozyme and with papain, confirmed the existence of layers previously identified by electron microscopy. Outside the plasma membrane and periplasmic space, the envelope is composed of (i) a peptidoglycan-containing dense layer, (ii) an intermediate layer, (iii) a lipopolysaccharide-containing outer membrane, and (iv) an ordered array of protein subunits. A small amount of carbohydrate (3%) is found associated with protein in the fraction containing both the surface subunits and the intermediate layer. The papain-treated outer membranes contain 67% protein, 24% lipid, together with 11% lipopolysaccharide, and about 6% of non-lipopolysaccharide hexosamine. Lipid is located only in the papain-treated outer-membrane and is mainly phospholipid: 29% phosphatidyl glycerol, 30% phosphatidyl ethanolamine, and 40% cardiolipin. The principal fatty acid is C18:1. Significant amounts of alcohols16:1 and alcohols18:1, which are found in Acinetobacter waxes, were recovered from the outer membrane. Images PMID:4745422

  8. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    PubMed

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. PMID:27016758

  9. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  10. Cold Stress Makes Escherichia coli Susceptible to Glycopeptide Antibiotics by Altering Outer Membrane Integrity.

    PubMed

    Stokes, Jonathan M; French, Shawn; Ovchinnikova, Olga G; Bouwman, Catrien; Whitfield, Chris; Brown, Eric D

    2016-02-18

    A poor understanding of the mechanisms by which antibiotics traverse the outer membrane remains a considerable obstacle to the development of novel Gram-negative antibiotics. Herein, we demonstrate that the Gram-negative bacterium Escherichia coli becomes susceptible to the narrow-spectrum antibiotic vancomycin during growth at low temperatures. Heterologous expression of an Enterococcus vanHBX vancomycin resistance cluster in E. coli confirmed that the mechanism of action was through inhibition of peptidoglycan biosynthesis. To understand the nature of vancomycin permeability, we screened for strains of E. coli that displayed resistance to vancomycin at low temperature. Surprisingly, we observed that mutations in outer membrane biosynthesis suppressed vancomycin activity. Subsequent chemical analysis of lipopolysaccharide from vancomycin-sensitive and -resistant strains confirmed that suppression was correlated with truncations in the core oligosaccharide of lipopolysaccharide. These unexpected observations challenge the current understanding of outer membrane permeability, and provide new chemical insights into the susceptibility of E. coli to glycopeptide antibiotics. PMID:26853624

  11. Genome-Wide Assessment of Outer Membrane Vesicle Production in Escherichia coli

    PubMed Central

    Kulp, Adam J.; Sun, Bo; Ai, Teresa; Manning, Andrew J.; Orench-Rivera, Nichole

    2015-01-01

    The production of outer membrane vesicles by Gram-negative bacteria has been well documented; however, the mechanism behind the biogenesis of these vesicles remains unclear. Here a high-throughput experimental method and systems-scale analysis was conducted to determine vesiculation values for the whole genome knockout library of Escherichia coli mutant strains (Keio collection). The resultant dataset quantitatively recapitulates previously observed phenotypes and implicates nearly 150 new genes in the process of vesiculation. Gene functional and biochemical pathway analyses suggest that mutations that truncate outer membrane structures such as lipopolysaccharide and enterobacterial common antigen lead to hypervesiculation, whereas mutants in oxidative stress response pathways result in lower levels. This study expands and refines the current knowledge regarding the cellular pathways required for outer membrane vesiculation in E. coli. PMID:26406465

  12. Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel.

    PubMed

    Lei, Hsiang-Ting; Chou, Tsung-Han; Su, Chih-Chia; Bolla, Jani Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared A; Do, Sylvia V; Rajashankar, Kanagalaghatta R; Shafer, William M; Yu, Edward W

    2014-01-01

    Active efflux of antimicrobial agents is one of the most important strategies used by bacteria to defend against antimicrobial factors present in their environment. Mediating many cases of antibiotic resistance are transmembrane efflux pumps, composed of one or more proteins. The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here describe the crystal structure of N. gonorrhoeae MtrE, the outer membrane component of the MtrCDE tripartite multidrug efflux system. This trimeric MtrE channel forms a vertical tunnel extending down contiguously from the outer membrane surface to the periplasmic end, indicating that our structure of MtrE depicts an open conformational state of this channel. PMID:24901251

  13. Outer Membrane Permeability Barrier Disruption by Polymyxin in Polymyxin-Susceptible and -Resistant Salmonella typhimurium

    PubMed Central

    Vaara, Martti; Vaara, Timo

    1981-01-01

    In contrast to their polymyxin-susceptible parent strains, polymyxin-resistant Salmonella typhimurium mutants (pmrA strains) did not lose their outer membrane permeability barrier to macromolecules such as lysozyme and periplasmic proteins upon polymyxin treatment. The sensitization of pmrA strains to deoxycholate-induced lysis required 10-times-higher polymyxin concentrations than did the sensitization of the parent strains. These findings indicate that the pmrA mutation affects the outer membrane and decreases its susceptibility to polymyxin. By contrast, the pmrA mutants did not differ from their parents in the uptake of gentian violet after treatment with polymyxin, suggesting a degree of specificity in the pmrA effect in the outer membrane. Images PMID:6264852

  14. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Goodman, Christopher D.; McFadden, Geoffrey I.

    2016-01-01

    Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane. PMID:27442138

  15. Mitochondrial Outer Membrane Proteome of Trypanosoma brucei Reveals Novel Factors Required to Maintain Mitochondrial Morphology*

    PubMed Central

    Niemann, Moritz; Wiese, Sebastian; Mani, Jan; Chanfon, Astrid; Jackson, Christopher; Meisinger, Chris; Warscheid, Bettina; Schneider, André

    2013-01-01

    Trypanosoma brucei is a unicellular parasite that causes devastating diseases in humans and animals. It diverged from most other eukaryotes very early in evolution and, as a consequence, has an unusual mitochondrial biology. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the parasite. The outer mitochondrial membrane defines the boundary of the organelle. Its properties are therefore key for understanding how the cytosol and mitochondria communicate and how the organelle is integrated into the metabolism of the whole cell. We have purified the mitochondrial outer membrane of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal outer membrane proteome consists of 82 proteins, two-thirds of which have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins, 33 of which are specific to trypanosomatids, remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and for the first time identified factors that control mitochondrial shape in T. brucei. PMID:23221899

  16. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein

    PubMed Central

    Ducken, Deirdre R.; Brown, Wendy C.; Alperin, Debra C.; Brayton, Kelly A.; Reif, Kathryn E.; Turse, Joshua E.; Palmer, Guy H.; Noh, Susan M.

    2015-01-01

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to recombinant vaccines

  17. Lysyl-derived aldehydes in outer membrane proteins of Escherichia coli.

    PubMed Central

    Diedrich, D L; Schnaitman, C A

    1978-01-01

    The major outer membrane proteins from Escherichia coli K-12 are modified to contain alpha-aminoadipic acid delta-semialdehyde (allysine). The allysine was found to be derived from lysine and it was identified by derivatizing it to chloronorleucine by reduction, alpha-aminoadipic acid by oxidation, and to alpha,epsilon-diaminopimelic acid by reacting it with CN- and NH3. The alpha-aminoadipic acid was identified by mass spectrometry. Two major outer membrane proteins were found to possess allysine, a modified lysine characteristically found to connective tissue. PMID:358196

  18. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis

    PubMed Central

    Küper, Ulf; Meyer, Carolin; Müller, Volker; Rachel, Reinhard; Huber, Harald

    2010-01-01

    ATP synthase catalyzes ATP synthesis at the expense of an electrochemical ion gradient across a membrane that can be generated by different exergonic reactions. Sulfur reduction is the main energy-yielding reaction in the hyperthermophilic strictly anaerobic Crenarchaeon Ignicoccus hospitalis. This organism is unusual in having an inner and an outer membrane that are separated by a huge intermembrane compartment. Here we show, on the basis of immuno-EM analyses of ultrathin sections and immunofluorescence experiments with whole I. hospitalis cells, that the ATP synthase and H2:sulfur oxidoreductase complexes of this organism are located in the outer membrane. These two enzyme complexes are mandatory for the generation of an electrochemical gradient and for ATP synthesis. Thus, among all prokaryotes possessing two membranes in their cell envelope (including Planctomycetes, Gram-negative bacteria), I. hospitalis is a unique organism, with an energized outer membrane and ATP synthesis within the periplasmic space. In addition, DAPI staining and EM analyses showed that DNA and ribosomes are localized in the cytoplasm, leading to the conclusion that in I. hospitalis energy conservation is separated from information processing and protein biosynthesis. This raises questions regarding the function of the two membranes, the interaction between these compartments, and the general definition of a cytoplasmic membrane. PMID:20133662

  19. Current noise spectrum and capacitance due to the membrane motor of the outer hair cell: theory.

    PubMed Central

    Iwasa, K H

    1997-01-01

    The voltage-dependent motility of the outer hair cell is based on a membrane motor densely distributed in the lateral membrane. The gating charge of the membrane motor is manifested as a bell-shaped membrane potential dependence of the membrane capacitance. In this paper it is shown that movements of the gating charge should produce a high-pass current noise described by an inverse Lorentzian similar to the one shown by Kolb and Läuger for ion carriers. The frequency dependence of the voltage-dependent capacitance is also derived. These derivations are based on membrane motor models with two or three states. These two models lead to similar predictions on the capacitance and current noise. It is expected that the examination of the spectral properties of these quantities would be a useful means of determining the relaxation time for conformational transitions of the membrane motor. PMID:9414211

  20. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana

    PubMed Central

    Yamashita, Akihiro; Fujimoto, Masaru; Katayama, Kenta; Yamaoka, Shohei; Tsutsumi, Nobuhiro; Arimura, Shin-ichi

    2016-01-01

    Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs), while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles). Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN). The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence. PMID:26752045

  1. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana.

    PubMed

    Yamashita, Akihiro; Fujimoto, Masaru; Katayama, Kenta; Yamaoka, Shohei; Tsutsumi, Nobuhiro; Arimura, Shin-Ichi

    2016-01-01

    Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs), while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles). Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN). The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence. PMID:26752045

  2. Heat Modifiability of Outer Membrane Proteins from Gram-Negative Bacteria

    PubMed Central

    Noinaj, Nicholas; Kuszak, Adam J.; Buchanan, Susan K.

    2016-01-01

    Summary β-barrel membrane proteins are somewhat unique in that their folding states can be monitored using semi-native SDS-PAGE methods to determine if they are folded properly or not. This property, which is commonly referred to as heat modifiability, has been used for many years on both purified protein and on whole cells to monitor folded states of proteins of interest. Additionally, heat modifiability assays have proven indispensable in studying the BAM complex and its role in folding and inserting β-barrel membrane proteins into the outer membrane. Here, we describe the protocol our lab uses for performing the heat modifiability assay in our studies on outer membrane proteins. PMID:26427675

  3. Heat Modifiability of Outer Membrane Proteins from Gram-Negative Bacteria.

    PubMed

    Noinaj, Nicholas; Kuszak, Adam J; Buchanan, Susan K

    2015-01-01

    β-barrel membrane proteins are somewhat unique in that their folding states can be monitored using semi-native SDS-PAGE methods to determine if they are folded properly or not. This property, which is commonly referred to as heat modifiability, has been used for many years on both purified protein and on whole cells to monitor folded states of proteins of interest. Additionally, heat modifiability assays have proven indispensable in studying the BAM complex and its role in folding and inserting β-barrel membrane proteins into the outer membrane. Here, we describe the protocol our lab uses for performing the heat modifiability assay in our studies on outer membrane proteins. PMID:26427675

  4. Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles

    DOE PAGESBeta

    Coleman, Matthew A.; Cappuccio, Jenny A.; Blanchette, Craig D.; Gao, Tingjuan; Arroyo, Erin S.; Hinz, Angela K.; Bourguet, Feliza A.; Segelke, Brent; Hoeprich, Paul D.; Huser, Thomas; et al

    2016-03-25

    Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteinsmore » as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. Ultimately, these studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.« less

  5. Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles.

    PubMed

    Coleman, Matthew A; Cappuccio, Jenny A; Blanchette, Craig D; Gao, Tingjuan; Arroyo, Erin S; Hinz, Angela K; Bourguet, Feliza A; Segelke, Brent; Hoeprich, Paul D; Huser, Thomas; Laurence, Ted A; Motin, Vladimir L; Chromy, Brett A

    2016-01-01

    Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses. PMID:27015536

  6. Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles

    PubMed Central

    Blanchette, Craig D.; Gao, Tingjuan; Arroyo, Erin S.; Hinz, Angela K.; Bourguet, Feliza A.; Segelke, Brent; Hoeprich, Paul D.; Huser, Thomas; Laurence, Ted A.; Motin, Vladimir L.; Chromy, Brett A.

    2016-01-01

    Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses. PMID:27015536

  7. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis

    SciTech Connect

    Caldwell, H.D.; Kromhout, J.; Schachter, J.

    1981-03-01

    Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtained after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms.

  8. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane

    PubMed Central

    Salpingidou, Georgia; Smertenko, Andrei; Hausmanowa-Petrucewicz, Irena; Hussey, Patrick J.; Hutchison, Chris J.

    2007-01-01

    The type II inner nuclear membrane protein emerin is a component of the LINC complex that connects the nuclear lamina to the actin cytoskeleton. In emerin-null or -deficient human dermal fibroblasts we find that the centrosome is detached from the nucleus. Moreover, following siRNA knockdown of emerin in wild-type fibroblasts, the centrosome also becomes detached from the nucleus. We show that emerin interacts with tubulin, and that nocadozole-treated wild-type cells phenocopy the detached centrosome characteristic of emerin-null/deficient cells. We also find that a significant fraction of emerin is located at the outer nuclear membrane and peripheral ER, where it interacts directly with the centrosome. Our data provide the first evidence in mammalian cells as to the nature of the linkage of the centrosome, and therefore the tubulin cytoskeleton, with the outer nuclear membrane. PMID:17785515

  9. From Constructs to Crystals - Towards Structure Determination of β-barrel Outer Membrane Proteins.

    PubMed

    Noinaj, Nicholas; Mayclin, Stephen; Stanley, Ann M; Jao, Christine C; Buchanan, Susan K

    2016-01-01

    Membrane proteins serve important functions in cells such as nutrient transport, motility, signaling, survival and virulence, yet constitute only ~1% percent of known structures. There are two types of membrane proteins, α-helical and β-barrel. While α-helical membrane proteins can be found in nearly all cellular membranes, β-barrel membrane proteins can only be found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. One common bottleneck in structural studies of membrane proteins in general is getting enough pure sample for analysis. In hopes of assisting those interested in solving the structure of their favorite β-barrel outer membrane protein (OMP), general protocols are presented for the production of target β-barrel OMPs at levels useful for structure determination by either X-ray crystallography and/or NMR spectroscopy. Here, we outline construct design for both native expression and for expression into inclusion bodies, purification using an affinity tag, and crystallization using detergent screening, bicelle, and lipidic cubic phase techniques. These protocols have been tested and found to work for most OMPs from Gram-negative bacteria; however, there are some targets, particularly for mitochondria and chloroplasts that may require other methods for expression and purification. As such, the methods here should be applicable for most projects that involve OMPs from Gram-negative bacteria, yet the expression levels and amount of purified sample will vary depending on the target OMP. PMID:27404000

  10. NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes

    PubMed Central

    Mahalakshmi, Radhakrishnan; Franzin, Carla M.; Choi, Jungyuen; Marassi, Francesca M.

    2008-01-01

    SUMMARY The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins. PMID:17916325

  11. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins

    PubMed Central

    Tomson, Farol L.; Conley, Patrick G.; Norgard, Michael V.; Hagman, Kayla E.

    2007-01-01

    Syphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T. pallidum outer membrane proteins that could serve as targets for opsonic or bactericidal antibodies has remained a high research priority for vaccine development. However, the identification of T. pallidum outer membrane proteins has remained highly elusive. Recent studies and bioinformatics have implicated four treponemal proteins as potential outer membrane proteins (TP0155, TP0326, TP0483 and TP0956). Indirect immunofluorescence assays performed on treponemes encapsulated within agarose gel microdroplets failed to provide evidence that any of these four molecules were surface-exposed in T. pallidum. Second, recombinant fusion proteins corresponding to all four candidate outer membrane proteins were used separately, or in combination, to vaccinate New Zealand White rabbits. Despite achieving high titers (>1:50,000) of serum antibodies, none of the rabbits displayed chancre immunity after intradermal challenge with viable T. pallidum. PMID:17890130

  12. Porin Loss Impacts the Host Inflammatory Response to Outer Membrane Vesicles of Klebsiella pneumoniae

    PubMed Central

    Turner, Kelli L.; Cahill, Bethaney K.; Dilello, Sarah K.; Gutel, Dedra; Brunson, Debra N.; Albertí, Sebastián

    2015-01-01

    Antibiotic-resistant strains of Klebsiella pneumoniae often exhibit porin loss. In this study, we investigated how porin loss impacted the composition of secreted outer membrane vesicles as well as their ability to trigger proinflammatory cytokine secretion by macrophages. We hypothesize that porin loss associated with antibiotic resistance will directly impact both the composition of outer membrane vesicles and their interactions with phagocytic cells. Using clonally related clinical isolates of extended-spectrum beta-lactamase (ESBL)-positive Klebsiella pneumoniae with different patterns of porin expression, we demonstrated that altered expression of OmpK35 and OmpK36 results in broad alterations to the protein profile of secreted vesicles. Additionally, the level of OmpA incorporation was elevated in strains lacking a single porin. Porin loss significantly impacted macrophage inflammatory responses to purified vesicles. Outer membrane vesicles lacking both OmpK35 and OmpK36 elicited significantly lower levels of proinflammatory cytokine secretion than vesicles from strains expressing one or both porins. These data demonstrate that antibiotic resistance-associated porin loss has a broad and significant effect on both the composition of outer membrane vesicles and their interactions with phagocytic cells, which may impact bacterial survival and inflammatory reactions in the host. PMID:26666932

  13. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  14. TonB-Dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the ...

  15. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin.

    PubMed Central

    Ellison, R T; Giehl, T J; LaForce, F M

    1988-01-01

    Many studies have shown that lactoferrin and transferrin have antimicrobial activity against gram-negative bacteria, but a mechanism of action has not been defined. We hypothesized that the iron-binding proteins could affect the gram-negative outer membrane in a manner similar to that of the chelator EDTA. The ability of lactoferrin and transferrin to release radiolabeled lipopolysaccharide (LPS) from a UDP-galactose epimerase-deficient Escherichia coli mutant and from wild-type Salmonella typhimurium strains was tested. Initial studies in barbital-acetate buffer showed that EDTA and lactoferrin cause significant release of LPS from all three strains. Further studies found that LPS release was blocked by iron saturation of lactoferrin, occurred between pH 6 and 7.5, was comparable for bacterial concentrations from 10(4) to 10(7) CFU/ml, and increased with increasing lactoferrin concentrations. Studies using Hanks balanced salt solution lacking calcium and magnesium showed that transferrin also could cause LPS release. Additionally, both lactoferrin and transferrin increased the antibacterial effect of a subinhibitory concentration of rifampin, a drug excluded by the bacterial outer membrane. This work demonstrates that these iron-binding proteins damage the gram-negative outer membrane and alter bacterial outer membrane permeability. Images PMID:3169987

  16. Role of Phosphatidylethanolamine in the Biogenesis of Mitochondrial Outer Membrane Proteins*

    PubMed Central

    Becker, Thomas; Horvath, Susanne E.; Böttinger, Lena; Gebert, Natalia; Daum, Günther; Pfanner, Nikolaus

    2013-01-01

    The mitochondrial outer membrane contains proteinaceous machineries for the import and assembly of proteins, including TOM (translocase of the outer membrane) and SAM (sorting and assembly machinery). It has been shown that the dimeric phospholipid cardiolipin is required for the stability of TOM and SAM complexes and thus for the efficient import and assembly of β-barrel proteins and some α-helical proteins of the outer membrane. Here, we report that mitochondria deficient in phosphatidylethanolamine (PE), the second non-bilayer-forming phospholipid, are impaired in the biogenesis of β-barrel proteins, but not of α-helical outer membrane proteins. The stability of TOM and SAM complexes is not disturbed by the lack of PE. By dissecting the import steps of β-barrel proteins, we show that an early import stage involving translocation through the TOM complex is affected. In PE-depleted mitochondria, the TOM complex binds precursor proteins with reduced efficiency. We conclude that PE is required for the proper function of the TOM complex. PMID:23625917

  17. Clueless is a conserved ribonucleoprotein that binds the ribosome at the mitochondrial outer membrane

    PubMed Central

    Sen, Aditya; Cox, Rachel T.

    2016-01-01

    ABSTRACT Mitochondrial function is tied to the nucleus, in that hundreds of proteins encoded by nuclear genes must be imported into mitochondria. While post-translational import is fairly well understood, emerging evidence supports that mitochondrial site-specific import, or co-translational import, also occurs. However, the mechanism and the extent to which it is used are not fully understood. We have previously shown Clueless (Clu), a conserved multi-domain protein, associates with mitochondrial outer membrane proteins, including Translocase of outer membrane 20, and genetically and physically interacts with the PINK1–Parkin pathway. The human ortholog of Clu, Cluh, was shown to bind nuclear-encoded mitochondrially destined mRNAs. Here we identify the conserved tetratricopeptide domain of Clu as predominantly responsible for binding mRNA. In addition, we show Clu interacts with the ribosome at the mitochondrial outer membrane. Taken together, these data support a model whereby Clu binds to and mitochondrially targets mRNAs to facilitate mRNA localization to the outer mitochondrial membrane, potentially for site-specific or co-translational import. This role may link the presence of efficient mitochondrial protein import to mitochondrial quality control through the PINK1–Parkin pathway. PMID:26834020

  18. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  19. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  20. OmpW of Caulobacter crescentus Functions as an Outer Membrane Channel for Cations

    PubMed Central

    Benz, Roland; Jones, Michael D.; Younas, Farhan; Maier, Elke; Modi, Niraj; Mentele, Reinhard; Lottspeich, Friedrich; Kleinekathöfer, Ulrich; Smit, John

    2015-01-01

    Caulobacter crescentus is an oligotrophic bacterium that lives in dilute organic environments such as soil and freshwater. This bacterium represents an interesting model for cellular differentiation and regulation because daughter cells after division have different forms: one is motile while the other is non-motile and can adhere to surfaces. Interestingly, the known genome of C. crescentus does not contain genes predicted to code for outer membrane porins of the OmpF/C general diffusion type present in enteric bacteria or those coding for specific porins selective for classes of substrates. Instead, genes coding for 67 TonB-dependent outer membrane receptors have been identified, suggesting that active transport of specific nutrients may be the norm. Here, we report that high channel-forming activity was observed with crude outer membrane extracts of C. crescentus in lipid bilayer experiments, indicating that the outer membrane of C. crescentus contained an ion-permeable channel with a single-channel conductance of about 120 pS in 1M KCl. The channel-forming protein with an apparent molecular mass of about 20 kDa was purified to homogeneity. Partial protein sequencing of the protein indicated it was a member of the OmpW family of outer membrane proteins from Gram-negative bacteria. This channel was not observed in reconstitution experiments with crude outer membrane extracts of an OmpW deficient C. crescentus mutant. Biophysical analysis of the C. crescentus OmpW suggested that it has features that are special for general diffusion porins of Gram-negative outer membranes because it was not a wide aqueous channel. Furthermore, OmpW of C. crescentus seems to be different to known OmpW porins and has a preference for ions, in particular cations. A putative model for OmpW of C. crescentus was built on the basis of the known 3D-structures of OmpW of Escherichia coli and OprG of Pseudomonas aeruginosa using homology modeling. A comparison of the two known structures

  1. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution.

    PubMed

    Mudumbi, Krishna C; Schirmer, Eric C; Yang, Weidong

    2016-01-01

    The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo. PMID:27558844

  2. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution

    PubMed Central

    Mudumbi, Krishna C; Schirmer, Eric C; Yang, Weidong

    2016-01-01

    The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo. PMID:27558844

  3. Efficient quantification and characterization of bacterial outer membrane derived nano-particles with flow cytometric analysis.

    PubMed

    Wieser, Andreas; Storz, Enno; Liegl, Gabriele; Peter, Annabell; Pritsch, Michael; Shock, Jonathan; Wai, Sun Nyunt; Schubert, Sören

    2014-11-01

    There currently exists no efficient and easy method for size profiling and counting of membranous nano-scale particles, such as bacterial outer membrane vesicles (OMVs). We present here a cost-effective and fast method capable of profiling and counting small sample volumes of nano-scale membranous vesicles with standard laboratory equipment without the need for any washing steps. OMV populations of different bacterial species are compared and even subpopulations of OMVs can be identified after a simple labelling procedure. Counting is possible over three orders of magnitude without any changes to the protocol. Protein contaminations do not alter the described measurements. PMID:25139826

  4. The Mycobacterium tuberculosis Outer Membrane Channel Protein CpnT Confers Susceptibility to Toxic Molecules

    PubMed Central

    Danilchanka, Olga; Pires, David

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is protected from toxic solutes by an effective outer membrane permeability barrier. Recently, we showed that the outer membrane channel protein CpnT is required for efficient nutrient uptake by M. tuberculosis and Mycobacterium bovis BCG. In this study, we found that the cpnT mutant of M. bovis BCG is more resistant than the wild type to a large number of drugs and antibiotics, including rifampin, ethambutol, clarithromycin, tetracycline, and ampicillin, by 8- to 32-fold. Furthermore, the cpnT mutant of M. bovis BCG was 100-fold more resistant to nitric oxide, a major bactericidal agent required to control M. tuberculosis infections in mice. Thus, CpnT constitutes the first outer membrane susceptibility factor in slow-growing mycobacteria. The dual functions of CpnT in uptake of nutrients and mediating susceptibility to toxic molecules are reflected in macrophage infection experiments: while loss of CpnT was detrimental for M. bovis BCG in macrophages that enable bacterial replication, presumably due to inadequate nutrient uptake, it conferred a survival advantage in macrophages that mount a strong bactericidal response. Importantly, the cpnT gene showed a significantly higher density of nonsynonymous mutations in drug-resistant clinical M. tuberculosis strains, indicating that CpnT is under selective pressure in human tuberculosis and/or during chemotherapy. Our results indicate that the CpnT channel constitutes an outer membrane gateway controlling the influx of nutrients and toxic molecules into slow-growing mycobacteria. This study revealed that reducing protein-mediated outer membrane permeability might constitute a new drug resistance mechanism in slow-growing mycobacteria. PMID:25645841

  5. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    PubMed

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. PMID:26722004

  6. RND transporters protect Corynebacterium glutamicum from antibiotics by assembling the outer membrane

    PubMed Central

    Yang, Liang; Lu, Shuo; Belardinelli, Juan; Huc-Claustre, Emilie; Jones, Victoria; Jackson, Mary; Zgurskaya, Helen I

    2014-01-01

    Corynebacterium–Mycobacterium–Nocardia (CMN) group are the causative agents of a broad spectrum of diseases in humans. A distinctive feature of these Gram-positive bacteria is the presence of an outer membrane of unique structure and composition. Recently, resistance–nodulation–division (RND) transporters (nicknamed MmpLs, Mycobacterial membrane protein Large) have emerged as major contributors to the biogenesis of the outer membranes in mycobacteria and as promising drug targets. In this study, we investigated the role of RND transporters in the physiology of Corynebacterium glutamicum and analyzed properties of these proteins. Our results show that in contrast to Gram-negative species, in which RND transporters actively extrude antibiotics from cells, in C. glutamicum and relatives these transporters protect cells from antibiotics by playing essential roles in the biogenesis of the low-permeability barrier of the outer membrane. Conditional C. glutamicum mutants lacking RND proteins and with the controlled expression of either NCgl2769 (CmpL1) or NCgl0228 (CmpL4) are hypersusceptible to multiple antibiotics, have growth deficiencies in minimal medium and accumulate intracellularly trehalose monocorynomycolates, free corynomycolates, and the previously uncharacterized corynomycolate-containing lipid. Our results also suggest that similar to other RND transporters, Corynebacterial membrane proteins Large (CmpLs) functions are dependent on a proton-motive force. PMID:24942069

  7. The Protein Import Channel in the Outer Mitosomal Membrane of Giardia intestinalis

    PubMed Central

    Dagley, Michael J.; Dolezal, Pavel; Likić, Vladimir A.; Smid, Ondrej; Purcell, Anthony W.; Buchanan, Susan K.; Tachezy, Jan

    2009-01-01

    The identification of mitosomes in Giardia generated significant debate on the evolutionary origin of these organelles, whether they were highly reduced mitochondria or the product of a unique endosymbiotic event in an amitochondrial organism. As the protein import pathway is a defining characteristic of mitochondria, we sought to discover a TOM (translocase in the outer mitochondrial membrane) complex in Giardia. A Hidden Markov model search of the Giardia genome identified a Tom40 homologous sequence (GiTom40), where Tom40 is the protein translocation channel of the TOM complex. The GiTom40 protein is located in the membrane of mitosomes in a ∼200-kDa TOM complex. As Tom40 was derived in the development of mitochondria to serve as the protein import channel in the outer membrane, its presence in Giardia evidences the mitochondrial ancestry of mitosomes. PMID:19531743

  8. Mathematical Modeling of Plate–gap Biosensors with an Outer Porous Membrane

    PubMed Central

    Baronas, Romas; Ivanauskas, Feliksas; Kaunietis, Irmantas; Laurinavicius, Valdas

    2006-01-01

    A plate–gap model of a porous enzyme doped electrode covered by a porous inert membrane has been proposed and analyzed. The two–dimensional–in–space mathematical model of the plate–gap biosensors is based on the reaction–diffusion equations containing a nonlinear term related to the Michaelis–Menten kinetics. Using numerical simulation of the biosensor action, the influence of the geometry of the outer membrane on the biosensor response was investigated at wide range of analyte concentrations as well as of the reaction rates. The numerical simulation was carried out using finite–difference technique. The behavior of the plate–gap biosensors was compared with that of a flat electrode deposited with a layer of enzyme and covered with the same outer membrane.

  9. A Modular BAM Complex in the Outer Membrane of the α-Proteobacterium Caulobacter crescentus

    PubMed Central

    Anwari, Khatira; Poggio, Sebastian; Perry, Andrew; Gatsos, Xenia; Ramarathinam, Sri Harsha; Williamson, Nicholas A.; Noinaj, Nicholas; Buchanan, Susan; Gabriel, Kipros; Purcell, Anthony W.; Jacobs-Wagner, Christine; Lithgow, Trevor

    2010-01-01

    Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane. PMID:20062535

  10. Histochemical and biochemical urease localization in the periplasm and outer membrane of two Proteus mirabilis strains.

    PubMed

    McLean, R J; Cheng, K J; Gould, W D; Nickel, J C; Costerton, J W

    1986-10-01

    Proteus mirabilis, a gram-negative bacillus, is often implicated in the formation of infectious kidney stones. As ureolytic activity of this organism is thought to play a major role in its pathogenesis, we adapted our recently described urease localization technique to visualize urease activity in vivo. Urease activity was ultrastructurally localized in two clinically isolated P. mirabilis strains by precipitating the enzymatic reaction product (ammonia) with sodium tetraphenylboron. Subsequent silver staining of the cells revealed urease activity to be predominantly associated with the periplasm and outer membranes of each strain. Biochemical measurements of urease activity in P. mirabilis cell fractions correlated well with histochemical observations in that the majority of urease activity was associated with the periplasm. Membrane-bound urease activity of these strains was associated mainly with the peptidoglycan in the detergent-insoluble (outer membrane) fraction. PMID:3539291

  11. Cross-linking of anaplasma marginale outer membrane proteins enhances immunogenicity, but is not required for protection from challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial outer membrane proteins are the primary targets of a protective immune response. The specific characteristics of outer membrane-based immunogens, in terms of antigen content and context that are required for protective immunity remain unknown for a wide variety of bacterial pathogens. Usin...

  12. Solid-state NMR Study of the YadA Membrane-Anchor Domain in the Bacterial Outer Membrane.

    PubMed

    Shahid, Shakeel A; Nagaraj, Madhu; Chauhan, Nandini; Franks, Trent W; Bardiaux, Benjamin; Habeck, Michael; Orwick-Rydmark, Marcella; Linke, Dirk; van Rossum, Barth-J

    2015-10-19

    MAS-NMR was used to study the structure and dynamics at ambient temperatures of the membrane-anchor domain of YadA (YadA-M) in a pellet of the outer membrane of E. coli in which it was expressed. YadA is an adhesin from the pathogen Yersinia enterocolitica that is involved in interactions with the host cell, and it is a model protein for studying the autotransport process. Existing assignments were sucessfully transferred to a large part of the YadA-M protein in the E. coli lipid environment by using (13) C-(13) C DARR and PDSD spectra at different mixing times. The chemical shifts in most regions of YadA-M are unchanged relative to those in microcrystalline YadA-M preparations from which a structure has previously been solved, including the ASSA region that is proposed to be involved in transition-state hairpin formation for transport of the soluble domain. Comparisons of the dynamics between the microcrystalline and membrane-embedded samples indicate greater flexibility of the ASSA region in the outer-membrane preparation at physiological temperatures. This study will pave the way towards MAS-NMR structure determination of membrane proteins, and a better understanding of functionally important dynamic residues in native membrane environments. PMID:26332158

  13. The Lipopeptide Antibiotic Paenibacterin Binds to the Bacterial Outer Membrane and Exerts Bactericidal Activity through Cytoplasmic Membrane Damage

    PubMed Central

    Huang, En

    2014-01-01

    Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 μg/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin. PMID:24561581

  14. Surface-Localized Spermidine Protects the Pseudomonas aeruginosa Outer Membrane from Antibiotic Treatment and Oxidative Stress

    PubMed Central

    Johnson, Lori; Mulcahy, Heidi; Kanevets, Uliana; Shi, Yan

    2012-01-01

    Extracellular DNA acts as a cation chelator and induces the expression of antibiotic resistance genes regulated by Mg2+ levels. Here we report the characterization of novel DNA-induced genes in Pseudomonas aeruginosa that are annotated as homologs of the spermidine synthesis genes speD (PA4773) and speE (PA4774). The addition of sublethal concentrations of DNA and membrane-damaging antibiotics induced expression of the genes PA4773 to PA4775, as shown using transcriptional lux fusions and quantitative RT-PCR. Exogenous polyamine addition prevented DNA- and peptide-mediated gene induction. Mutation of PA4774 resulted in an increased outer membrane (OM) susceptibility phenotype upon polymyxin B, CP10A, and gentamicin treatment. When the membrane-localized fluorescent probe C11-BODIPY581/591 was used as an indicator of peroxidation of membrane lipids, the PA4774::lux mutant demonstrated an increased susceptibility to oxidative membrane damage from H2O2 treatment. Addition of exogenous polyamines protected the membranes of the PA4774::lux mutant from polymyxin B and H2O2 treatment. Polyamines from the outer surface were isolated and shown to contain putrescine and spermidine by using high-performance liquid chromatography and mass spectrometry. The PA4774::lux mutant did not produce spermidine on the cell surface, but genetic complementation restored surface spermidine production as well as the antibiotic and oxidative stress resistance phenotypes of the membrane. We have identified new functions for spermidine on the cell surface and propose that polyamines are produced under Mg2+-limiting conditions as an organic polycation to bind lipopolysaccharide (LPS) and to stabilize and protect the outer membrane against antibiotic and oxidative damage. PMID:22155771

  15. Outer Membrane Remodeling: The Structural Dynamics and Electrostatics of Rough Lipopolysaccharide Chemotypes.

    PubMed

    Dias, Roberta P; da Hora, Gabriel C A; Ramstedt, Madeleine; Soares, Thereza A

    2014-06-10

    Lipopolysaccharides (LPS) are the primary constituent of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. Gram-negative bacteria can synthesize modified forms of LPS in response to environmental stimuli or due to genetic mutations, a process known as outer membrane remodeling. Chemical modifications of the LPS modulate the integrity and antibiotic susceptibility of bacterial outer membranes. It also governs microbial adhesion to tissues and artificial material surfaces. We have extended a previous model of the rough LPS to include four novel chemotypes rmlC, galU, LPS Re, and Lipid-A. Atomistic molecular dynamics (MD) simulations were performed for outer membrane models constituted of each LPS chemotypes and 1,2-dipalmitoyl-3-phosphatidylethanolamine. It is shown that the decrease in the LPS polysaccharide chain length leads to a significant increase in the diffusion coefficients for the Ca(2+) counterions, increase in acyl chain packing (decrease in membrane fluidity), and attenuation of the negative potential across the LPS surface as positive counterions becomes more exposed to the solvent. The electrostatic potential on the LPS surfaces reflects heterogeneous charge distributions with increasingly larger patches of positive and negative potentials as the polysaccharide chain length decreases. Such a pattern originates from the spatial arrangement of charged phosphate-Ca(2+) clusters in the LPS inner-core that becomes exposed in the membrane surface as monosaccharide units are lost in the shortest chemotypes LPS Re and Lipid-A. These MD-derived conformational ensembles reproduce experimental trends and provide atom-level structural information on the rough LPS chemotypes that can help to rationalize antibiotic resistance and bacterial adhesion processes. PMID:26580769

  16. Influence of Core Oligosaccharide of Lipopolysaccharide to Outer Membrane Behavior of Escherichia coli

    PubMed Central

    Wang, Zhou; Wang, Jianli; Ren, Ge; Li, Ye; Wang, Xiaoyuan

    2015-01-01

    Lipopolysaccharides, major molecules in the outer membrane of Gram-negative bacteria, play important roles on membrane integrity of the cell. However, how the core oligosaccharide of lipopolysaccharide affect the membrane behavior is not well understood. In this study, the relationship between the core oligosaccharide of lipopolysaccharide and the membrane behavior was investigated using a series of Escherichia coli mutants defective in genes to affect the biosynthesis of core oligosaccharide of lipopolysaccharide. Cell surface hydrophobicity, outer membrane permeability, biofilm formation and auto-aggregation of these mutant cells were compared. Compared to the wild type W3110, cell surface hydrophobicities of mutant ΔwaaC, ΔwaaF, ΔwaaG, ΔwaaO, ΔwaaP, ΔwaaY and ΔwaaB were enhanced, outer membrane permeabilities of ΔwaaC, ΔwaaF, ΔwaaG and ΔwaaP were significantly increased, abilities of biofilm formation by ΔwaaC, ΔwaaF, ΔwaaG, ΔwaaO, ΔwaaR, ΔwaaP, ΔwaaQ and ΔwaaY decreased, and auto-aggregation abilities of ΔwaaC, ΔwaaF, ΔwaaG, ΔwaaO, ΔwaaR, ΔwaaU, ΔwaaP and ΔwaaY were strongly enhanced. These results give new insight into the influence of core oligosaccharide of lipopolysaccharide on bacterial cell membrane behavior. PMID:26023839

  17. The transport machinery for the import of preproteins across the outer mitochondrial membrane.

    PubMed

    Ryan, M T; Wagner, R; Pfanner, N

    2000-01-01

    In order for proteins to be imported into subcellular compartments, they must first traverse the organellar membranes. In mitochondria, hydrophilic protein channels in both the outer and inner membranes serve such a purpose. Recently, the channel protein of the outer mitochondrial membrane was identified to be Tom40. Tom40 is found in a high molecular weight complex termed the general import pore (GIP) complex where it is tightly associated with the receptor protein Tom22 along with Tom7, Tom6 and Tom5. Tom7 and Tom6 seem to modulate the dynamics of the GIP complex while Tom5 is involved in preprotein transfer from receptors to Tom40. The receptor proteins Tom70 and Tom20 associate with this complex in a weaker manner where they are involved in the initial recognition of preproteins. This review focuses on the identification and characterisation of the transport machinery of the outer mitochondrial membrane and how they are involved in the co-ordination and regulation of events required for the translocation of preproteins into mitochondria. PMID:10661891

  18. Functional properties of the major outer membrane protein in Stenotrophomonas maltophilia.

    PubMed

    Chen, Yih-Yuan; Wu, Han-Chiang; Lin, Juey-Wen; Weng, Shu-Fen

    2015-08-01

    Stenotrophomonas maltophilia is an opportunistic pathogen that is closely associated with high morbidity and mortality in debilitated and immunocompromised individuals. Therefore, to investigate the pathogenesis mechanism is urgently required. However, there are very few studies to evaluate the functional properties of outer membrane protein, which may contribute to the pathogenesis in S. maltophilia. In this study, three abundant proteins in the outer membrane fraction of S. maltophilia were identified by liquid chromatography-tandem mass spectrometry as OmpW1, MopB, and a hypothetical protein. MopB, a member of the OmpA family, was firstly chosen for functional investigation in this study because many OmpA-family proteins are known to be involved in pathogenesis and offer potential as vaccines. Membrane fractionation analyses demonstrated that MopB was indeed the most abundant outer membrane protein (OMP) in S. maltophilia. For functional studies, the mopB mutant of S. maltophilia (SmMopB) was constructed by insertional mutation. MopB deficiency resulted in a change in the protein composition of OMPs and altered the architecture of the outer membrane. The SmMopB strain exhibited reduced cytotoxicity toward L929 fibroblasts and was more sensitive to numerous stresses, including human serum, sodium dodecyl sulfate, and hydrogen peroxide compared with wildtype S. maltophilia. These results suggest that MopB may be a good candidate for the design of vaccines or anti-MopB drugs for controlling serious nosocomial infections of multidrug-resistant S. maltophilia, especially in immunosuppressed patients. PMID:26224456

  19. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli.

    PubMed Central

    Thanassi, D G; Suh, G S; Nikaido, H

    1995-01-01

    Accumulation of tetracycline in Escherichia coli was studied to determine its permeation pathway and to provide a basis for understanding efflux-mediated resistance. Passage of tetracycline across the outer membrane appeared to occur preferentially via the porin OmpF, with tetracycline in its magnesium-bound form. Rapid efflux of magnesium-chelated tetracycline from the periplasm was observed. In E. coli cells that do not contain exogenous tetracycline resistance genes, the steady-state level of tetracycline accumulation was decreased when porins were absent or when the fraction of Mg(2+)-chelated tetracycline was small. This is best explained by assuming the presence of a low-level endogenous active efflux system that bypasses the outer membrane barrier. When influx of tetracycline is slowed, this efflux is able to reduce the accumulation of tetracycline in the cytoplasm. In contrast, we found no evidence of a special outer membrane bypass mechanism for high-level efflux via the Tet protein, which is an inner membrane efflux pump coded for by exogenous tetA genes. Fractionation and equilibrium density gradient centrifugation experiments showed that the Tet protein is not localized to regions of inner and outer membrane adhesion. Furthermore, a high concentration of tetracycline was found in the compartment that rapidly equilibrated with the medium, most probably the periplasm, of Tet-containing E. coli cells, and the level of tetracycline accumulation in Tet-containing cells was not diminished by the mutational loss of the OmpF porin. These results suggest that the Tet protein, in contrast to the endogenous efflux system(s), pumps magnesium-chelated tetracycline into the periplasm. A quantitative model of tetracycline fluxes in E. coli cells of various types is presented. PMID:7860612

  20. Organization of cGMP sensing structures on the rod photoreceptor outer segment plasma membrane

    PubMed Central

    Nemet, Ina; Tian, Guilian; Imanishi, Yoshikazu

    2014-01-01

    A diffusion barrier segregates the plasma membrane of the rod photoreceptor outer segment into 2 domains; one which is optimized for the conductance of ions in the phototransduction cascade and another for disk membrane synthesis. We propose the former to be named “phototransductive plasma membrane domain," and the latter to be named “disk morphogenic plasma membrane domain." Within the phototransductive plasma membrane, cGMP-gated channels are concentrated in striated membrane features, which are proximally located to the sites of active cGMP production within the disk membranes. For proper localization of cGMP-gated channel to the phototransductive plasma membrane, the glutamic acid-rich protein domain encoded in the β subunit plays a critical role. Quantitative study suggests that the disk morphogenic domain likely plays an important role in enriching rhodopsin prior to its sequestration into closed disk membranes. Thus, this and our previous studies provide new insight into the mechanism that spatially organizes the vertebrate phototransduction cascade. PMID:25616687

  1. Outer-Inner Membrane Vesicles Naturally Secreted by Gram-Negative Pathogenic Bacteria

    PubMed Central

    Pérez-Cruz, Carla; Delgado, Lidia; López-Iglesias, Carmen; Mercade, Elena

    2015-01-01

    Outer-inner membrane vesicles (O-IMVs) were recently described as a new type of membrane vesicle secreted by the Antarctic bacterium Shewanella vesiculosa M7T. Their formation is characterized by the protrusion of both outer and plasma membranes, which pulls cytoplasmic components into the vesicles. To demonstrate that this is not a singular phenomenon in a bacterium occurring in an extreme environment, the identification of O-IMVs in pathogenic bacteria was undertaken. With this aim, a structural study by Transmission Electron Microscopy (TEM) and Cryo-transmission electron microscopy (Cryo-TEM) was carried out, confirming that O-IMVs are also secreted by Gram-negative pathogenic bacteria such as Neisseria gonorrhoeae, Pseudomonas aeruginosa PAO1 and Acinetobacter baumannii AB41, in which they represent between 0.23% and 1.2% of total vesicles produced. DNA and ATP, which are components solely found in the cell cytoplasm, were identified within membrane vesicles of these strains. The presence of DNA inside the O-IMVs produced by N. gonorrhoeae was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. A proteomic analysis of N. gonorrhoeae-derived membrane vesicles identified proteins from the cytoplasm and plasma membrane. This confirmation of O-IMV extends the hitherto uniform definition of membrane vesicles in Gram-negative bacteria and explains the presence of components in membrane vesicles such as DNA, cytoplasmic and inner membrane proteins, as well as ATP, detected for the first time. The production of these O-IMVs by pathogenic Gram-negative bacteria opens up new areas of study related to their involvement in lateral gene transfer, the transfer of cytoplasmic proteins, as well as the functionality and role of ATP detected in these new vesicles. PMID:25581302

  2. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    PubMed Central

    2014-01-01

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959

  3. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGESBeta

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutronmore » reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  4. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    SciTech Connect

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.

  5. Membrane recycling at the infranuclear pole of the outer hair cell

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Harasztosi, Emese; Gummer, Anthony W.

    2015-12-01

    Rapid endocytic activity of outer hair cells (OHCs) in the guinea-pig cochlea has been already studied using the fluorescent membrane marker FM1-43. It was demonstrated that vesicles were endocytosed at the apical pole of OHCs and transcytosed to the basolateral membrane and through a central strand towards the nucleus. The significance of endocytic activity in the infranuclear region is still not clear. Therefore, in this study endocytic activity at the synaptic pole of OHCs was investigated. Confocal laser scanning microscopy was used to visualize dye uptake of OHCs isolated from the guinea-pig cochlea. Signal intensity changes were quantified in the apical and basal poles relative to the signal at the membrane. Data showed no significant difference in fluorescent signal intensity changes between the opposite poles of the OHC. These results suggest that endocytic activities in both the basal and the apical poles contribute equally to the membrane recycling of OHCs.

  6. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    NASA Astrophysics Data System (ADS)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  7. The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts.

    PubMed

    Panigrahi, Rashmi; Kubiszewski-Jakubiak, Szymon; Whelan, James; Vrielink, Alice

    2015-10-01

    The eukaryotic cell is defined by compartments that allow specialization of function. This compartmental structure generates a new concept in cell biology compared with the simpler prokaryotic cell structure, namely the specific targeting of proteins to intracellular compartments. Protein targeting is achieved by the action of specialized signals on proteins destined for organelles that are recognized by cognate receptors. An understanding of the specificity of targeting signal recognition leading to import requires an understanding of the receptor structures. Here, we focus on the structures of receptors of different import machineries located on the outer membrane of three organelles: peroxisomes, mitochondria, and chloroplasts. This review provides an overview of the structural features of outer membrane import receptors that recognize targeting signals. Finally, we briefly discuss combinatorial approaches that might aid in understanding the structural factors mediating receptor targeting signal recognition. PMID:26365798

  8. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    PubMed Central

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-01-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops. PMID:26282243

  9. A novel insertion pathway of mitochondrial outer membrane proteins with multiple transmembrane segments

    PubMed Central

    Otera, Hidenori; Taira, Yohsuke; Horie, Chika; Suzuki, Yurina; Suzuki, Hiroyuki; Setoguchi, Kiyoko; Kato, Hiroki; Oka, Toshihiko; Mihara, Katsuyoshi

    2007-01-01

    The central channel Tom40 of the preprotein translocase of outer membrane (TOM) complex is thought to be responsible for the import of virtually all preproteins synthesized outside the mitochondria. In this study, we analyze the topogenesis of the peripheral benzodiazepine receptor (PBR), which integrates into the mitochondrial outer membrane (MOM) through five hydrophobic transmembrane segments (TMSs) and functions in cholesterol import into the inner membrane. Analyses of in vitro and in vivo import into TOM component–depleted mitochondria reveal that PBR import (1) depends on the import receptor Tom70 but requires neither the Tom20 and Tom22 import receptors nor the import channel Tom40, (2) shares the post-Tom70 pathway with the C-tail–anchored proteins, and (3) requires factors of the mitochondrial intermembrane space. Furthermore, membrane integration of mitofusins and mitochondrial ubiquitin ligase, the MOM proteins with two and four TMSs, respectively, proceeds through the same initial pathway. These findings reveal a previously unidentified pathway of the membrane integration of MOM proteins with multiple TMSs. PMID:18158327

  10. A novel insertion pathway of mitochondrial outer membrane proteins with multiple transmembrane segments.

    PubMed

    Otera, Hidenori; Taira, Yohsuke; Horie, Chika; Suzuki, Yurina; Suzuki, Hiroyuki; Setoguchi, Kiyoko; Kato, Hiroki; Oka, Toshihiko; Mihara, Katsuyoshi

    2007-12-31

    The central channel Tom40 of the preprotein translocase of outer membrane (TOM) complex is thought to be responsible for the import of virtually all preproteins synthesized outside the mitochondria. In this study, we analyze the topogenesis of the peripheral benzodiazepine receptor (PBR), which integrates into the mitochondrial outer membrane (MOM) through five hydrophobic transmembrane segments (TMSs) and functions in cholesterol import into the inner membrane. Analyses of in vitro and in vivo import into TOM component-depleted mitochondria reveal that PBR import (1) depends on the import receptor Tom70 but requires neither the Tom20 and Tom22 import receptors nor the import channel Tom40, (2) shares the post-Tom70 pathway with the C-tail-anchored proteins, and (3) requires factors of the mitochondrial intermembrane space. Furthermore, membrane integration of mitofusins and mitochondrial ubiquitin ligase, the MOM proteins with two and four TMSs, respectively, proceeds through the same initial pathway. These findings reveal a previously unidentified pathway of the membrane integration of MOM proteins with multiple TMSs. PMID:18158327

  11. Differential proteomic analysis of outer membrane enriched extracts of Bacteroides fragilis grown under bile salts stress.

    PubMed

    Boente, Renata F; Pauer, Heidi; Silva, Deborah N S; Filho, Joaquim Santos; Sandim, Vanessa; Antunes, Luis Caetano M; Ferreira, Rosana Barreto Rocha; Zingali, Russolina B; Domingues, Regina M C P; Lobo, Leandro A

    2016-06-01

    Bacteroides fragilis is the most commonly isolated anaerobic bacteria from infectious processes. Several virulence traits contribute to the pathogenic nature of this bacterium, including the ability to tolerate the high concentrations of bile found in the gastrointestinal tract (GIT). The activity of bile salts is similar to detergents and may lead to membrane permeabilization and cell death. Modulation of outer membrane proteins (OMPs) is considered a crucial event to bile salts resistance. The primary objective of the current work was to identify B. fragilis proteins associated with the stress induced by high concentration of bile salts. The outer membrane of B. fragilis strain 638R was isolated after growth either in the presence of 2% conjugated bile salts or without bile salts. The membrane fractions were separated on SDS-PAGE and analyzed by ESI-Q/TOF tandem mass spectrometry. A total of 37 proteins were identified; among them nine were found to be expressed exclusively in the absence of bile salts whereas eight proteins were expressed only in the presence of bile salts. These proteins are related to cellular functions such as transport through membrane, nutrient uptake, and protein-protein interactions. This study demonstrates the alteration of OMPs composition in B. fragilis during bile salts stress resistance and adaptation to environmental changes. Proteomics of OMPs was also shown to be a useful approach in the identification of new targets for functional analyses. PMID:26948242

  12. Distinct constrictive processes, separated in time and space,divide Caulobacter inner and outer membranes

    SciTech Connect

    Judd, Ellen M.; Comolli, Luis R.; Chen, Joseph C.; Downing,Kenneth H.; Moerner, W.E.; McAdams, Harley H.

    2005-05-01

    Cryo-electron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner, and then the outer, membrane in a manner distinctly different from septum-forming bacteria. The smallest observed pre-fission constrictions were 60 nm for both the inner and outer membrane. FLIP experiments had previously shown cytoplasmic compartmentalization, when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments, occurring 18 min before daughter cell separation in a 135 min cell cycle. Here, we used FLIP experiments with membrane-bound and periplasmic fluorescent proteins to show that (1) periplasmic compartmentalization occurs after cytoplasmic compartmentalization, consistent with the cryoEM observations, and (2) inner membrane and periplasmic proteins can diffuse past the FtsZ constriction site, indicating that the cell division machinery does not block membrane diffusion.

  13. Intra- and Interspecies Effects of Outer Membrane Vesicles from Stenotrophomonas maltophilia on β-Lactam Resistance.

    PubMed

    Devos, Simon; Stremersch, Stephan; Raemdonck, Koen; Braeckmans, Kevin; Devreese, Bart

    2016-04-01

    The treatment ofStenotrophomonas maltophiliainfection with β-lactam antibiotics leads to increased release of outer membrane vesicles (OMVs), which are packed with two chromosomally encoded β-lactamases. Here, we show that these β-lactamase-packed OMVs are capable of establishing extracellular β-lactam degradation. We also show that they dramatically increase the apparent MICs of imipenem and ticarcillin for the cohabituating speciesPseudomonas aeruginosaandBurkholderia cenocepacia. PMID:26787686

  14. Prediction of structural features and application to outer membrane protein identification

    NASA Astrophysics Data System (ADS)

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-06-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes.

  15. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. PMID:27053724

  16. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Champion, C I; Mirzabekov, T A; Shang, E S; Blanco, D R; Erdjument-Bromage, H; Tempst, P; Kagan, B L; Miller, J N; Lovett, M A

    1996-01-01

    The outer membrane-spanning (Oms) proteins of Borrelia burgdorferi have been visualized by freeze-fracture analysis but, until recently, not further characterized. We developed a method for the isolation of B. burgdorferi outer membrane vesicles and described porin activities with single-channel conductances of 0.6 and 12.6 nS in 1 M KCI. By using both nondenaturing isoelectric focusing gel electrophoresis and fast-performance liquid chromatography separation after detergent solubilization, we found that the 0.6-nS porin activity resided in a 28-kDa protein, designated Oms28. The oms28 gene was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence of Oms28 predicted a 257-amino-acid precursor protein with a putative 24-amino-acid leader peptidase I signal sequence. Processed Oms28 yielded a mature protein with a predicted molecular mass of 25,363 Da. When overproduced in Escherichia coli, the Oms28 porin fractionated in part to the outer membrane. Sodium dodecyl sulfate-polyacrylamide gel-purified recombinant Oms28 from E. coli retained functional activity as demonstrated by an average single-channel conductance of 1.1 nS in the planar lipid bilayer assay. These findings confirmed that Oms28 is a B. burgdorferi porin, the first to be described. As such, it is potential relevance to the pathogenesis of Lyme borreliosis and to the physiology of the spirochete. PMID:8759855

  17. Protein-translocating outer membrane porins of Gram-negative bacteria.

    PubMed

    Yen, Ming Ren; Peabody, Christopher R; Partovi, Salar M; Zhai, Yufeng; Tseng, Yi Hsiung; Saier, Milton H

    2002-05-01

    Five families of outer membrane porins that function in protein secretion in Gram-negative bacteria are currently recognized. In this report, these five porin families are analyzed from structural and phylogenetic standpoints. They are the fimbrial usher protein (FUP), outer membrane factor (OMF), autotransporter (AT), two-partner secretion (TPS) and outer membrane secretin (Secretin) families. All members of these families in the current databases were identified, and all full-length homologues were multiply aligned for structural and phylogenetic analyses. The organismal distribution of homologues in each family proved to be unique with some families being restricted to proteobacteria and others being widespread in other bacterial kingdoms as well as eukaryotes. The compositions of and size differences between subfamilies provide evidence for specific orthologous relationships, which agree with available functional information and intra-subfamily phylogeny. The results reveal that horizontal transfer of genes encoding these proteins between phylogenetically distant organisms has been exceptionally rare although transfer within select bacterial kingdoms may have occurred. The resultant in silico analyses are correlated with available experimental evidence to formulate models relevant to the structures and evolutionary origins of these proteins. PMID:11988218

  18. Human antibody response to outer membrane proteins of Campylobacter jejuni during infection.

    PubMed Central

    Mills, S D; Bradbury, W C

    1984-01-01

    Two techniques were used to isolate outer membrane proteins from Campylobacter jejuni, EDTA-lysozyme extraction and sodium-N-lauroylsarcosinate (Sarkosyl) solubilization. The protein profiles of the two preparations were similar, with a few additional bands in the EDTA-lysozyme preparations. The major outer membrane protein was 43,000 (43K) daltons, and there were 8 to 10 minor bands ranging from 92K to 14K daltons. There was no difference in the protein profile of a strain causing an infection (strain 17) and the resulting stool isolate (strain 17J). Sera collected before the infection and during the acute and convalescent stages were used with Western blotting and immunoautoradiographic techniques to determine the antigenicity of outer membrane proteins. A number of antigenic proteins were detected before the infection by their reaction with preinfection serum (61K, 51K, 43K, 40K, 34K, and 31K daltons), and three additional bands appeared during the infection when acute and convalescent sera were used (92K, 56K, and 19K daltons). Furthermore, an area of the gel at less than 14.4K daltons that did not stain with Coomassie brilliant blue became visible in the immune blots when the convalescent serum was used. Images PMID:6198286

  19. Mitochondrial Outer Membrane Proteins Assist Bid in Bax-mediated Lipidic Pore Formation

    PubMed Central

    Schafer, Blanca; Quispe, Joel; Choudhary, Vineet; Chipuk, Jerry E.; Ajero, Teddy G.; Du, Han; Schneiter, Roger

    2009-01-01

    Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the “pores” and how they are formed remain obscure. We found that mitochondrial outer membranes contained very little cardiolipin, far less than that required for liposome permeabilization, despite their responsiveness to Bcl-2 family proteins. Strikingly, the incorporation of isolated mitochondrial outer membrane (MOM) proteins into liposomes lacking cardiolipin conferred responsiveness to cleaved Bid and Bax. Cardiolipin dependence was observed only when permeabilization was induced with cleaved Bid but not with Bid or Bim BH3 peptide or oligomerized Bax. Therefore, we conclude that MOM proteins specifically assist cleaved Bid in Bax-mediated permeabilization. Cryoelectron microscopy of cardiolipin-liposomes revealed that cleaved Bid and Bax produced large round holes with diameters of 25–100 nm, suggestive of lipidic pores. In sum, we propose that activated Bax induces lipidic pore formation and that MOM proteins assist cleaved Bid in this process in the absence of cardiolipin. PMID:19244344

  20. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3

    PubMed Central

    Nevot, Maria; Deroncelé, Víctor; Messner, Paul; Guinea, Jesús; Mercadé, Elena

    2015-01-01

    Summary Pseudoalteromonas antarctica NF3 is an Antarctic psychrotolerant Gram-negative bacterium that accumulates large amounts of an extracellular polymeric substance (EPS) with high protein content. Transmission electron microscopy analysis after high-pressure freezing and freeze substitution (HPF-FS) shows that the EPS is composed of a capsular polymer and large numbers of outer membrane vesicles (OMVs). These vesicles are bilayered structures and predominantly spherical in shape, with an average diameter of 25–70 nm, which is similar to what has been observed in OMVs from other Gram-negative bacteria. Analyses of lipopolysaccharide (LPS), phospholipids and protein profiles of OMVs are consistent with the bacterial outer membrane origin of these vesicles. In an initial attempt to elucidate the functions of OMVs proteins, we conducted a proteomic analysis on 1D SDS-PAGE bands. Those proteins putatively identified match with outer membrane proteins and proteins related to nutrient processing and transport in Gram-negative bacteria. This approach suggests that OMVs present in the EPS from P. antarctica NF3, might function to deliver proteins to the external media, and therefore play an important role in the survival of the bacterium in the extreme Antarctic environment. PMID:16913913

  1. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver.

    PubMed

    Kędziora, Anna; Krzyżewska, Eva; Dudek, Bartłomiej; Bugla-Płoskońska, Gabriela

    2016-01-01

    The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS) are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed. PMID:27333931

  2. Molecular characterization of enterobacterial pldA genes encoding outer membrane phospholipase A.

    PubMed Central

    Brok, R G; Brinkman, E; van Boxtel, R; Bekkers, A C; Verheij, H M; Tommassen, J

    1994-01-01

    The pldA gene of Escherichia coli encodes an outer membrane phospholipase A. A strain carrying the most commonly used mutant pldA allele appeared to express a correctly assembled PldA protein in the outer membrane. Nucleotide sequence analysis revealed that the only difference between the wild type and the mutant is the replacement of the serine residue in position 152 by phenylalanine. Since mutants that lack the pldA gene were normally viable under laboratory conditions and had no apparent phenotype except for the lack of outer membrane phospholipase activity, the exact role of the enzyme remains unknown. Nevertheless, the enzyme seems to be important for the bacteria, since Western blotting (immunoblotting) and enzyme assays showed that it is widely spread among species of the family Enterobacteriaceae. To characterize the PldA protein further, the pldA genes of Salmonella typhimurium, Klebsiella pneumoniae, and Proteus vulgaris were cloned and sequenced. The cloned genes were expressed in E. coli, and their gene products were enzymatically active. Comparison of the predicted PldA primary structures with that of E. coli PldA revealed a high degree of homology, with 79% of the amino acid residues being identical in all four proteins. Implications of the sequence comparison for the structure and the structure-function relationship of PldA protein are discussed. Images PMID:8300539

  3. Detection of apoptosis through the lipid order of the outer plasma membrane leaflet.

    PubMed

    Darwich, Zeinab; Klymchenko, Andrey S; Kucherak, Oleksandr A; Richert, Ludovic; Mély, Yves

    2012-12-01

    Cell plasma membranes of living cells maintain their asymmetry, so that the outer leaflet presents a large quantity of sphingomyelin, which is critical for formation of ordered lipid domains. Here, a recently developed probe based on Nile Red (NR12S) was applied to monitor changes in the lipid order specifically at the outer leaflet of cell membranes. Important key features of NR12S are its ratiometric response exclusively to lipid order (liquid ordered vs. liquid disordered phase) and not to surface charge, the possibility of using it at very low concentrations (10-20nM) and the very simple staining protocol. Cholesterol extraction, oxidation and sphingomyelin hydrolysis were found to red shift the emission spectrum of NR12S, indicating a decrease in the lipid order at the outer plasma membrane leaflet. Remarkably, apoptosis induced by three different agents (actinomycin D, camptothecin, staurosporine) produced very similar spectroscopic effects, suggesting that apoptosis also significantly decreases the lipid order at this leaflet. The applicability of NR12S to detect apoptosis was further validated by fluorescence microscopy and flow cytometry, using the ratio between the blue and red parts of its emission band. Thus, for the first time, an environment-sensitive probe, sensitive to lipid order, is shown to detect apoptosis, suggesting a new concept in apoptosis sensing. PMID:22846507

  4. Susceptibility of Pseudomonas aeruginosa isolates to ceftazidime is unrelated to the expression of the outer membrane protein OprC.

    PubMed

    Pérez, F J; Navarro, D; Gimeno, C; García-de-Lomas, J

    1997-01-01

    Previously, it has been postulated that the porin OprC facilitates the diffusion of ceftazidime through the outer membrane of Pseudomonas aeruginosa. To further investigate this claim, the outer membrane protein (OMP) profiles of 22 ceftazidime-susceptible clinical isolates were analyzed. No correlation was found between MIC values and the level of expression of OprC. Further, OprC was either undetectable or expressed in reduced amounts in 12 isolates. In contrast, OprF and OprE were present in all isolates studied. This study suggests that OprC is dispensable for the permeation of ceftazidime through the outer membrane of P. aeruginosa. PMID:8996738

  5. Permissive linker insertion sites in the outer membrane protein of 987P fimbriae of Escherichia coli.

    PubMed Central

    Schifferli, D M; Alrutz, M A

    1994-01-01

    The FasD protein is essential for the biogenesis of 987P fimbriae of Escherichia coli. In this study, subcellular fractionation was used to demonstrate that FasD is an outer membrane protein. In addition, the accessibility of FasD to proteases established the presence of surface-exposed FasD domains on both sides of the outer membrane. The fasD gene was sequenced, and the deduced amino acid sequence was shown to share homologous domains with a family of outer membrane proteins from various fimbrial systems. Similar to porins, fimbrial outer membrane proteins are relatively polar, lack typical hydrophobic membrane-spanning domains, and posses secondary structures predicted to be rich in turns and amphipathic beta-sheets. On the basis of the experimental data and structural predictions, FasD is postulated to consist essentially of surface-exposed turns and loops and membrane-spanning interacting amphipathic beta-strands. In an attempt to test this prediction, the fasD gene was submitted to random in-frame linker insertion mutagenesis. Preliminary experiments demonstrated that it was possible to produce fasD mutants, whose products remain functional for fimbrial export and assembly. Subsequently, 11 fasD alleles, containing linker inserts encoding beta-turn-inducing residues, were shown to express functional proteins. The insertion sites were designated permissive sites. The inserts used are expected to be least detrimental to the function of FasD when they are inserted into surface-exposed domains not directly involved in fimbrial export. In contrast, FasD is not expected to accommodate such residues in its amphipathic beta-strands without being destabilized in the membrane and losing function. All permissive sites were sequenced and shown to be located in or one residue away from predicted turns. In contrast, 5 of 10 sequenced nonpermissive sites were mapped to predicted amphipathic beta-strands. These results are consistent with the structural predictions for Fas

  6. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.

    PubMed

    Lin, Meishan; Gessmann, Dennis; Naveed, Hammad; Liang, Jie

    2016-03-01

    Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP. PMID:26860422

  7. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

    PubMed

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E; Fridberger, Anders; Zuo, Jian

    2015-09-01

    Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  8. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  9. A Novel Mitosomal β-Barrel Outer Membrane Protein in Entamoeba

    PubMed Central

    Santos, Herbert J.; Imai, Kenichiro; Makiuchi, Takashi; Tomii, Kentaro; Horton, Paul; Nozawa, Akira; Ibrahim, Mohamed; Tozawa, Yuzuru; Nozaki, Tomoyoshi

    2015-01-01

    Entamoeba possesses a highly divergent mitochondrion-related organelle known as the mitosome. Here, we report the discovery of a novel protein in Entamoeba, which we name Mitosomal β-barrel Outer Membrane Protein of 30 kDa (MBOMP30). Initially identified through in silico analysis, we experimentally confirmed that MBOMP30 is indeed a β-barrel protein. Circular dichroism analysis showed MBOMP30 has a predominant β-sheet structure. Localization to Entamoeba histolytica mitosomes was observed through Percoll-gradient fractionation and immunofluorescence assay. Mitosomal membrane integration was demonstrated by carbonate fractionation, proteinase K digestion, and immunoelectron microscopy. Interestingly, the deletion of the putative β-signal, a sequence believed to guide β-barrel outer membrane protein (BOMP) assembly, did not affect membrane integration, but abolished the formation of a ~240 kDa complex. MBOMP30 represents only the seventh subclass of eukaryotic BOMPs discovered to date and lacks detectable homologs outside Entamoeba, suggesting that it may be unique to Entamoeba mitosomes. PMID:25711150

  10. The potential and electric field in the cochlear outer hair cell membrane

    PubMed Central

    Harland, Ben; Lee, Wen-han; Brownell, William E.; Sun, Sean X.; Spector, Alexander A.

    2015-01-01

    Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell’s motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges involved. Here the relevant charges are the ions inside and outside the cell, lipid bilayer charges, and prestin-associated charges (mobile-transferred by the protein under the action of the applied field and stationary-relatively unmoved by the field). The electric potentials across and along the membrane are computed for the case of an applied DC-field. The local amplitudes and phases of the potential under different frequencies are analyzed for the case of a DC+AC-field. We found that the effect of the system of charges alters the electric potential and internal field, which deviate significantly from their traditional linear and constant distributions. Under DC+AC conditions, the strong frequency dependence of the prestin mobile charge has a relatively small effect on the amplitude and phase of the resulting potential. The obtained results can help in a better understanding and experimental verification of the mechanism of prestin performance. PMID:25687712

  11. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

    PubMed

    Zhang, Cuilin; Shi, Zhun; Zhang, Lingzhi; Zhou, Zehua; Zheng, Xiaoyuan; Liu, Guiying; Bu, Guojun; Fraser, Paul E; Xu, Huaxi; Zhang, Yun-Wu

    2016-03-01

    Mitochondrial morphology is regulated by fusion and fission machinery. Impaired mitochondria dynamics cause various diseases, including Alzheimer's disease. Appoptosin (encoded by SLC25A38) is a mitochondrial carrier protein that is located in the mitochondrial inner membrane. Appoptosin overexpression causes overproduction of reactive oxygen species (ROS) and caspase-dependent apoptosis, whereas appoptosin downregulation abolishes β-amyloid-induced mitochondrial fragmentation and neuronal death during Alzheimer's disease. Herein, we found that overexpression of appoptosin resulted in mitochondrial fragmentation in a manner independent of its carrier function, ROS production or caspase activation. Although appoptosin did not affect levels of mitochondrial outer-membrane fusion (MFN1 and MFN2), inner-membrane fusion (OPA1) and fission [DRP1 (also known as DNM1L) and FIS1] proteins, appoptosin interacted with MFN1 and MFN2, as well as with the mitochondrial ubiquitin ligase MITOL (also known as MARCH5) but not OPA1, FIS1 or DRP1. Appoptosin overexpression impaired the interaction between MFN1 and MFN2, and mitochondrial fusion. By contrast, co-expression of MFN1, MITOL and a dominant-negative form of DRP1, DRP1(K38A), partially rescued appoptosin-induced mitochondrial fragmentation and apoptosis, whereas co-expression of FIS1 aggravated appoptosin-induced apoptosis. Together, our results demonstrate that appoptosin can interact with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology. PMID:26813789

  12. The motion of a single molecule, the lambda-receptor, in the bacterial outer membrane.

    PubMed Central

    Oddershede, Lene; Dreyer, Jakob Kisbye; Grego, Sonia; Brown, Stanley; Berg-Sørensen, Kirstine

    2002-01-01

    Using optical tweezers and single particle tracking, we have revealed the motion of a single protein, the lambda-receptor, in the outer membrane of living Escherichia coli bacteria. We genetically modified the lambda-receptor placing a biotin on an extracellular site of the receptor in vivo. The efficiency of this in vivo biotinylation is very low, thus enabling the attachment of a streptavidin-coated bead binding specifically to a single biotinylated lambda-receptor. The bead was used as a handle for the optical tweezers and as a marker for the single particle tracking routine. We propose a model that allows extraction of the motion of the protein from measurements of the mobility of the bead-molecule complex; these results are equally applicable to analyze bead-protein complexes in other membrane systems. Within a domain of radius approximately 25 nm, the receptor diffuses with a diffusion constant of (1.5 +/- 1.0) x 10(-9) cm(2)/s and sits in a harmonic potential as if it were tethered by an elastic spring of spring constant of ~1.0 x 10(-2) pN/nm to the bacterial membrane. The purpose of the protein motion might be to facilitate transport of maltodextrins through the outer bacterial membrane. PMID:12496085

  13. The potential and electric field in the cochlear outer hair cell membrane.

    PubMed

    Harland, Ben; Lee, Wen-han; Brownell, William E; Sun, Sean X; Spector, Alexander A

    2015-05-01

    Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell's motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges involved. Here the relevant charges are the ions inside and outside the cell, lipid bilayer charges, and prestin-associated charges (mobile-transferred by the protein under the action of the applied field, and stationary-relatively unmoved by the field). The electric potentials across and along the membrane are computed for the case of an applied DC-field. The local amplitudes and phases of the potential under different frequencies are analyzed for the case of a DC + AC-field. We found that the effect of the system of charges alters the electric potential and internal field, which deviate significantly from their traditional linear and constant distributions. Under DC + AC conditions, the strong frequency dependence of the prestin mobile charge has a relatively small effect on the amplitude and phase of the resulting potential. The obtained results can help in a better understanding and experimental verification of the mechanism of prestin performance. PMID:25687712

  14. Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release

    PubMed Central

    Yu, Seong-Woon; Wang, Yingfei; Frydenlund, Didrik S; Ottersen, Ole Petter; Dawson, Valina L; Dawson, Ted M

    2009-01-01

    Poly(ADP-ribose) polymerase-1-dependent cell death (known as parthanatos) plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor), but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate) treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders. PMID:19863494

  15. A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis

    PubMed Central

    Horne, Jim E.; Radford, Sheena E.

    2016-01-01

    Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed. PMID:27284045

  16. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes.

    PubMed

    Antunes, Luisa Cs; Poppleton, Daniel; Klingl, Andreas; Criscuolo, Alexis; Dupuy, Bruno; Brochier-Armanet, Céline; Beloin, Christophe; Gribaldo, Simonetta

    2016-01-01

    One of the major unanswered questions in evolutionary biology is when and how the transition between diderm (two membranes) and monoderm (one membrane) cell envelopes occurred in Bacteria. The Negativicutes and the Halanaerobiales belong to the classically monoderm Firmicutes, but possess outer membranes with lipopolysaccharide (LPS-OM). Here, we show that they form two phylogenetically distinct lineages, each close to different monoderm relatives. In contrast, their core LPS biosynthesis enzymes were inherited vertically, as in the majority of bacterial phyla. Finally, annotation of key OM systems in the Halanaerobiales and the Negativicutes shows a puzzling combination of monoderm and diderm features. Together, these results support the hypothesis that the LPS-OMs of Negativicutes and Halanaerobiales are remnants of an ancient diderm cell envelope that was present in the ancestor of the Firmicutes, and that the monoderm phenotype in this phylum is a derived character that arose multiple times independently through OM loss. PMID:27580370

  17. Linkage between anaplasma marginale outer membrane proteins enhances immunogenicity, but is not required for protection from challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective; they are difficult and expensive to isolate and standardize, and thus often impractical for development and implementation in vaccination programs. In contrast, ind...

  18. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel?

    PubMed

    Page, Malcolm G P

    2012-01-01

    There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist. PMID:23090596

  19. Involvement of Neisseria meningitidis Lipoprotein GNA2091 in the Assembly of a Subset of Outer Membrane Proteins

    PubMed Central

    Bos, Martine P.; Grijpstra, Jan; Tommassen-van Boxtel, Ria; Tommassen, Jan

    2014-01-01

    GNA2091 of Neisseria meningitidis is a lipoprotein of unknown function that is included in the novel 4CMenB vaccine. Here, we investigated the biological function and the subcellular localization of the protein. We demonstrate that GNA2091 functions in the assembly of outer membrane proteins (OMPs) because its absence resulted in the accumulation of misassembled OMPs. Cell fractionation and protease accessibility experiments showed that the protein is localized at the periplasmic side of the outer membrane. Pulldown experiments revealed that it is not stably associated with the β-barrel assembly machinery, the previously identified complex for OMP assembly. Thus, GNA2091 constitutes a novel outer membrane-based lipoprotein required for OMP assembly. Furthermore, its location at the inner side of the outer membrane indicates that protective immunity elicited by this antigen cannot be due to bactericidal or opsonic activity of antibodies. PMID:24755216

  20. Three-dimensional organization of nascent rod outer segment disk membranes

    PubMed Central

    Volland, Stefanie; Hughes, Louise C.; Kong, Christina; Burgess, Barry L.; Linberg, Kenneth A.; Luna, Gabriel; Zhou, Z. Hong; Fisher, Steven K.; Williams, David S.

    2015-01-01

    The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of phototransductive membrane disks. The disk membranes are continually renewed, but how new disks are formed remains poorly understood. Here we used electron microscope tomography to obtain 3D visualization of the nascent disks of rod photoreceptors in three mammalian species, to gain insight into the process of disk morphogenesis. We observed that nascent disks are invariably continuous with the ciliary plasma membrane, although, owing to partial enclosure, they can appear to be internal in 2D profiles. Tomographic analyses of the basal-most region of the outer segment show changes in shape of the ciliary plasma membrane indicating an invagination, which is likely a first step in disk formation. The invagination flattens to create the proximal surface of an evaginating lamella, as well as membrane protrusions that extend between adjacent lamellae, thereby initiating a disk rim. Immediately distal to this initiation site, lamellae of increasing diameter are evident, indicating growth outward from the cilium. In agreement with a previous model, our data indicate that mature disks are formed once lamellae reach full diameter, and the growth of a rim encloses the space between adjacent surfaces of two lamellae. This study provides 3D data of nascent and mature rod photoreceptor disk membranes at unprecedented z-axis depth and resolution, and provides a basis for addressing fundamental questions, ranging from protein sorting in the photoreceptor cilium to photoreceptor electrophysiology. PMID:26578801

  1. Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes

    PubMed Central

    Krumpe, Katrin; Frumkin, Idan; Herzig, Yonatan; Rimon, Nitzan; Özbalci, Cagakan; Brügger, Britta; Rapaport, Doron; Schuldiner, Maya

    2012-01-01

    Tail-anchored (TA) proteins have a single C-terminal transmembrane domain, making their biogenesis dependent on posttranslational translocation. Despite their importance, no dedicated insertion machinery has been uncovered for mitochondrial outer membrane (MOM) TA proteins. To decipher the molecular mechanisms guiding MOM TA protein insertion, we performed two independent systematic microscopic screens in which we visualized the localization of model MOM TA proteins on the background of mutants in all yeast genes. We could find no mutant in which insertion was completely blocked. However, both screens demonstrated that MOM TA proteins were partially localized to the endoplasmic reticulum (ER) in ∆spf1 cells. Spf1, an ER ATPase with unknown function, is the first protein shown to affect MOM TA protein insertion. We found that ER membranes in ∆spf1 cells become similar in their ergosterol content to mitochondrial membranes. Indeed, when we visualized MOM TA protein distribution in yeast strains with reduced ergosterol content, they phenocopied the loss of Spf1. We therefore suggest that the inherent differences in membrane composition between organelle membranes are sufficient to determine membrane integration specificity in a eukaryotic cell. PMID:22918956

  2. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells.

    PubMed

    Herrera-Valencia, E E; Rey, Alejandro D

    2014-11-28

    Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary and (ii) the coupled capillary flow of contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equation, analytical expressions for the transfer function associated with the curvature and electrical field and for the power dissipation of elastic storage energy were found. PMID:25332388

  3. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria

    PubMed Central

    Roier, Sandro; Zingl, Franz G.; Cakar, Fatih; Durakovic, Sanel; Kohl, Paul; Eichmann, Thomas O.; Klug, Lisa; Gadermaier, Bernhard; Weinzerl, Katharina; Prassl, Ruth; Lass, Achim; Daum, Günther; Reidl, Joachim; Feldman, Mario F.; Schild, Stefan

    2016-01-01

    Bacterial outer membrane vesicles (OMVs) have important biological roles in pathogenesis and intercellular interactions, but a general mechanism of OMV formation is lacking. Here we show that the VacJ/Yrb ABC (ATP-binding cassette) transport system, a proposed phospholipid transporter, is involved in OMV formation. Deletion or repression of VacJ/Yrb increases OMV production in two distantly related Gram-negative bacteria, Haemophilus influenzae and Vibrio cholerae. Lipidome analyses demonstrate that OMVs from VacJ/Yrb-defective mutants in H. influenzae are enriched in phospholipids and certain fatty acids. Furthermore, we demonstrate that OMV production and regulation of the VacJ/Yrb ABC transport system respond to iron starvation. Our results suggest a new general mechanism of OMV biogenesis based on phospholipid accumulation in the outer leaflet of the outer membrane. This mechanism is highly conserved among Gram-negative bacteria, provides a means for regulation, can account for OMV formation under all growth conditions, and might have important pathophysiological roles in vivo. PMID:26806181

  4. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H.

    PubMed

    Riva, Rauna; Korhonen, Timo K; Meri, Seppo

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella. PMID:25705210

  5. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H

    PubMed Central

    Riva, Rauna; Korhonen, Timo K.; Meri, Seppo

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella. PMID:25705210

  6. Antigen-specific serotyping of Neisseria gonorrhoeae: characterization based upon principal outer membrane protein.

    PubMed Central

    Buchanan, T M; Hildebrandt, J F

    1981-01-01

    Principal outer membrane protein (protein I) of Neisseria gonorrhoeae was prepared nearly free of lipopolysaccharide (LPS) and substantially purified from other membrane proteins by chromatography of partially purified gonococcal outer membranes over Sepharose 6B in the presence of deoxycholate at pH 9.0. This protein I of nine separate antigenic types was coated to polystyrene tubes and used in the enzyme-linked immunosorbent assay (ELISA) to measure antibody to protein I or in inhibition tests to quantitate protein I antigen. No significant inhibition of the ELISA test was produced by purified LPS from the strain used to prepare each of the protein I types or by whole gonococci bearing the same LPS but different protein I antigens as the strain used to produce a given protein I antigen. Of 125 strains of gonococci used as whole organisms to inhibit the protein I ELISA, 124 (99%) typed with one or more of the nine protein I types, and 35% of these typed with a single protein I serotype. Sixty-one of 65 (94%) strains from Seattle and Atlanta patients with disseminated gonococcal infection contained protein I serotype 1, and 16 of 24 (64%) strains from Seattle patients with salpingitis bore one or both of protein I serotypes 1 and 2. Images PMID:6166568

  7. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1

    PubMed Central

    Keller, Michael; Taskin, Asli A.; Horvath, Susanne E.; Guan, Xue Li; Prinz, Claudia; Opalińska, Magdalena; Zorzin, Carina; van der Laan, Martin; Wenk, Markus R.; Schubert, Rolf; Wiedemann, Nils; Holzer, Martin

    2015-01-01

    Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein. PMID:26347140

  8. Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells

    PubMed Central

    Maldonado, R; Wei, R; Kachlany, SC; Kazi, M; Balashova, NV

    2011-01-01

    Kingella kingae is an emerging pathogen causing osteoarticular infections in pediatric patients. Electron microscopy of K. kingae clinical isolates revealed the heterogeneously-sized membranous structures blebbing from the outer membrane that were classified as outer membrane vesicles (OMVs). OMVs purified from the secreted fraction of a septic arthritis K. kingae isolate were characterized. Among several major proteins, K. kingae OMVs contained virulence factors RtxA toxin and PilC2 pilus adhesin. RtxA was also found secreted as a soluble protein in the extracellular environment indicating that the bacterium may utilize different mechanisms for the toxin delivery. OMVs were shown to be hemolytic and possess some leukotoxic activity while high leukotoxicity was detected in the non-hemolytic OMV-free component of the secreted fraction. OMVs were internalized by human osteoblasts and synovial cells. Upon interaction with OMVs, the cells produced increased levels of human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleuskin 6 (IL-6) suggesting that these cytokines might be involved in the signaling response of infected joint and bone tissues during natural K. kingae infection. This study is the first report of OMV production by K. kingae and demonstrates that OMVs are a complex virulence factor of the organism causing cytolytic and inflammatory effects on host cells. PMID:21443941

  9. Structural basis of outer membrane protein insertion by the BAM complex.

    PubMed

    Gu, Yinghong; Li, Huanyu; Dong, Haohao; Zeng, Yi; Zhang, Zhengyu; Paterson, Neil G; Stansfeld, Phillip J; Wang, Zhongshan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2016-03-01

    All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP. PMID:26901871

  10. Allosteric signalling in the outer membrane translocation domain of PapC usher

    PubMed Central

    Farabella, Irene; Pham, Thieng; Henderson, Nadine S; Geibel, Sebastian; Phan, Gilles; Thanassi, David G; Delcour, Anne H; Waksman, Gabriel; Topf, Maya

    2014-01-01

    PapC ushers are outer-membrane proteins enabling assembly and secretion of P pili in uropathogenic E. coli. Their translocation domain is a large β-barrel occluded by a plug domain, which is displaced to allow the translocation of pilus subunits across the membrane. Previous studies suggested that this gating mechanism is controlled by a β-hairpin and an α-helix. To investigate the role of these elements in allosteric signal communication, we developed a method combining evolutionary and molecular dynamics studies of the native translocation domain and mutants lacking the β-hairpin and/or the α-helix. Analysis of a hybrid residue interaction network suggests distinct regions (residue ‘communities’) within the translocation domain (especially around β12–β14) linking these elements, thereby modulating PapC gating. Antibiotic sensitivity and electrophysiology experiments on a set of alanine-substitution mutants confirmed functional roles for four of these communities. This study illuminates the gating mechanism of PapC ushers and its importance in maintaining outer-membrane permeability. DOI: http://dx.doi.org/10.7554/eLife.03532.001 PMID:25271373

  11. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.

    PubMed

    Wang, Yan; Andole Pannuri, Archana; Ni, Dongchun; Zhou, Haizhen; Cao, Xiou; Lu, Xiaomei; Romeo, Tony; Huang, Yihua

    2016-05-01

    The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane. PMID:26957546

  12. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    PubMed

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. PMID:24412217

  13. Borrelia burgdorferi BBA74, a Periplasmic Protein Associated with the Outer Membrane, Lacks Porin-Like Properties▿

    PubMed Central

    Mulay, Vishwaroop; Caimano, Melissa J.; Liveris, Dionysios; Desrosiers, Daniel C.; Radolf, Justin D.; Schwartz, Ira

    2007-01-01

    The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% α-helix with little β-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins. PMID:17189354

  14. Borrelia burgdorferi BBA74, a periplasmic protein associated with the outer membrane, lacks porin-like properties.

    PubMed

    Mulay, Vishwaroop; Caimano, Melissa J; Liveris, Dionysios; Desrosiers, Daniel C; Radolf, Justin D; Schwartz, Ira

    2007-03-01

    The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% alpha-helix with little beta-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins. PMID:17189354

  15. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting

    PubMed Central

    Zulliger, Rahel; Conley, Shannon M.; Mwoyosvi, Maggie L.; Stuck, Michael W.; Azadi, Seifollah; Naash, Muna I.

    2015-01-01

    Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS). Here we utilize several methods including mass spectrometry after affinity purification, in vitro co-expression followed by pull-down, in vivo pull-down from mouse retinas, and proximity ligation assay to identify and confirm the SNARE proteins Syntaxin 3B and SNAP-25 as novel binding partners of RDS and ROM-1. We show that both covalently linked and non-covalently linked RDS complexes interact with Syntaxin 3B. RDS in the mouse is trafficked from the inner segment to the outer segment by both conventional (i.e., Golgi dependent) and unconventional secretory pathways, and RDS from both pathways interacts with Syntaxin3B. Syntaxin 3B and SNAP-25 are enriched in the inner segment (compared to the outer segment) suggesting that the interaction with RDS/ROM-1 occurs in the inner segment. Syntaxin 3B and SNAP-25 are involved in mediating fusion of vesicles carrying other outer segment proteins during outer segment targeting, so could be involved in the trafficking of RDS/ROM-1. PMID:26406599

  16. Folding of outer membrane protein A in the anionic biosurfactant rhamnolipid.

    PubMed

    Andersen, Kell K; Otzen, Daniel E

    2014-05-21

    Folding and stability of bacterial outer membrane proteins (OMPs) are typically studied in vitro using model systems such as phospholipid vesicles or surfactant. OMP folding requires surfactant concentrations above the critical micelle concentration (cmc) and usually only occurs in neutral or zwitterionic surfactants, but not in anionic or cationic surfactants. Various Gram-negative bacteria produce the anionic biosurfactant rhamnolipid. Here we show that the OMP OmpA can be folded in rhamnolipid at concentrations above the cmc, though the thermal stability is reduced compared to the non-ionic surfactant dodecyl maltoside. We discuss implications for possible interactions between OMPs and biosurfactants in vivo. PMID:24735722

  17. Overexpression and immunogenicity of the Oma87 outer membrane protein of Pasteurella multocida.

    PubMed

    Mitchison, M; Wei, L; Kwang, J; Wilkie, I; Adler, B

    2000-03-01

    The outer membrane protein of Oma87 from Pasteurella multocida A:1 has significant similarity to the D15 protective antigen of Haemophilus influenzae (Ruffolo and Adler, 1996). Four fragments of Oma87 from a P. multocida serotype D strain were cloned into a pGEX expression vector and transformed into E. coli JM105. Western blot analysis revealed that convalescent chicken sera reacted with only GST-F1 fusion protein which contained amino acids 18 through to 130 of Oma87 fused to the GST protein. Vaccination with the GST-F1 protein failed to protect chickens against challenge with a virulent P. multocida serotype A. PMID:10699506

  18. Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes.

    PubMed Central

    Armstrong, S K; Parr, T R; Parker, C D; Hancock, R E

    1986-01-01

    The major outer membrane protein of molecular weight 40,000 (the 40K protein) of a virulent isolate of Bordetella pertussis was purified to apparent homogeneity. The purified protein formed an oligomer band (of apparent molecular weight 90,000) on sodium dodecyl sulfate-polyacrylamide gels after solubilization at low temperatures. The porin function of this protein was characterized by the black lipid bilayer method. The 40K protein formed channels smaller than all other constitutive major outer membrane porins studied to date. The average single-channel conductance in 1 M KCl was 0.56 nS. This was less than a third of the conductance previously observed for Escherichia coli porins. Zero-current potential measurements made of the porin to determine its ion selectivity revealed the porin to be more than 100-fold selective for anions over cations. The single-channel conductance was measured as a function of salt concentration. The data could be fitted to a Lineweaver-Burk plot suggesting an anion binding site with a Kd of 1.17 M Cl- and a maximum possible conductance through the channel of 1.28 nS. Images PMID:2420780

  19. Characterization of new outer membrane proteins of Pseudomonas aeruginosa using a combinatorial peptide ligand library.

    PubMed

    Ben Mlouka, Mohamed Amine; Khemiri, Arbia; Seyer, Damien; Hardouin, Julie; Chan Tchi Song, Philippe; Dé, Emmanuelle; Jouenne, Thierry; Cosette, Pascal

    2015-02-01

    Most often, the use of ProteoMiner beads has been restricted to human serum proteins for the normalization of major proteins, such as albumin. However, there are other situations of interest in which the presence of major proteins would quench the signals of low abundance polypeptides. We propose the use of these beads for investigating the envelope of the gram-negative bacterium Pseudomonas aeruginosa. Initially, we performed comparative 2D electrophoresis to qualitatively evaluate the incidence of the normalization stage. This demonstrated a significant reduction of the major membrane proteins. Thereafter, using shotgun analysis, the same protein extract was targeted by using combinatorial peptide ligand library capture. This treatment yielded 154 additional outer membrane proteins (OMPs) uncovered by the study of the crude sample. PMID:25471289

  20. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model.

    PubMed

    Okuda, Suguru; Sherman, David J; Silhavy, Thomas J; Ruiz, Natividad; Kahne, Daniel

    2016-06-01

    Gram-negative bacteria have a double-membrane cellular envelope that enables them to colonize harsh environments and prevents the entry of many clinically available antibiotics. A main component of most outer membranes is lipopolysaccharide (LPS), a glycolipid containing several fatty acyl chains and up to hundreds of sugars that is synthesized in the cytoplasm. In the past two decades, the proteins that are responsible for transporting LPS across the cellular envelope and assembling it at the cell surface in Escherichia coli have been identified, but it remains unclear how they function. In this Review, we discuss recent advances in this area and present a model that explains how energy from the cytoplasm is used to power LPS transport across the cellular envelope to the cell surface. PMID:27026255

  1. Characterization of the insertase for β-barrel proteins of the outer mitochondrial membrane

    PubMed Central

    Klein, Astrid; Israel, Lars; Lackey, Sebastian W.K.; Nargang, Frank E.; Imhof, Axel; Baumeister, Wolfgang

    2012-01-01

    The TOB–SAM complex is an essential component of the mitochondrial outer membrane that mediates the insertion of β-barrel precursor proteins into the membrane. We report here its isolation and determine its size, composition, and structural organization. The complex from Neurospora crassa was composed of Tob55–Sam50, Tob38–Sam35, and Tob37–Sam37 in a stoichiometry of 1:1:1 and had a molecular mass of 140 kD. A very minor fraction of the purified complex was associated with one Mdm10 protein. Using molecular homology modeling for Tob55 and cryoelectron microscopy reconstructions of the TOB complex, we present a model of the TOB–SAM complex that integrates biochemical and structural data. We discuss our results and the structural model in the context of a possible mechanism of the TOB insertase. PMID:23128244

  2. Diffusion of aminoglycoside antibiotics across the outer membrane of Escherichia coli.

    PubMed Central

    Nakae, R; Nakae, T

    1982-01-01

    The diffusion of aminoglycoside antibiotics (gentamicin, kanamycin, streptomycin, fradiomycin, lividomycin, and mannosylparomomycin) through porin pores was examined in vitro by the liposome swelling technique, using vesicle membranes reconstituted from phospholipids and purified porin trimers. Results showed that aminoglycoside antibiotics diffuse through porin-pores very efficiently, as rapidly as hexoses and disaccharides, despite the fact that the molecular weights of the aminoglycosides used were higher than or close to the exclusion limit of porin pores. The susceptibility to aminoglycoside antibiotics of mutant strains producing 3 to 4% of porin was not significantly different from that of a strain producing a wild-type quantity of porin. These results were interpreted to mean that aminoglycoside antibiotics diffuse through porin-pores very efficiently. Therefore, the diffusion of these drugs through the mutant outer membranes producing 3 to 4% of porin is not a rate-limiting step for aminoglycoside diffusion and its action. PMID:6758685

  3. Mitochondrial shape and function in trypanosomes requires the outer membrane protein, TbLOK1

    PubMed Central

    Povelones, Megan L.; Tiengwe, Calvin; Gluenz, Eva; Gull, Keith; Englund, Paul T.; Jensen, Robert E.

    2016-01-01

    Summary In an RNAi library screen for loss of kinetoplast DNA (kDNA), we identified an uncharacterized Trypanosoma brucei protein, named TbLOK1, required for maintenance of mitochondrial shape and function. We found the TbLOK1 protein located in discrete patches in the mitochondrial outer membrane. Knockdown of TbLOK1 in procyclic trypanosomes caused the highly interconnected mitochondrial structure to collapse, forming an unbranched tubule remarkably similar to the streamlined organelle seen in the bloodstream form. Following RNAi, defects in mitochondrial respiration, inner membrane potential, and mitochondrial transcription were observed. At later times following TbLOK1 depletion, kDNA was lost and a more drastic alteration in mitochondrial structure was found. Our results demonstrate the close relationship between organelle structure and function in trypanosomes. PMID:23336702

  4. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    SciTech Connect

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing of these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)

  5. Ultrastructure of the outer membrane of Salmonella typhimurium bacteriocin-resistant mutants deficient in the 33K protein.

    PubMed Central

    Lounatmaa, K

    1979-01-01

    Outer membrane mutants of Salmonella typhimurium deficient in one, two, or three of the 33,000-dalton (33K), 34K, and 36K outer membrane proteins (7) were studied by using thin sectioning and freeze-fracturing electron microscopy techniques. The outer concave fracture face of all mutants deficient in the 33K protein had numerous particleless patches. In contrast to all previously examined 34K to 36K-deficient mutants, the 33K-deficient mutants showed marked heterogeneity in the size and distribution of such "empty" patches between cells of a culture. One mutant was deficient in both the 33K and the 34K to 36K "porin" protein complex; its outer membrane had very large particleless smooth areas. It is concluded that the 33K protein on one hand and the porin on the other are both able to form intramembraneous particles. Images PMID:378982

  6. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. PMID:26791981

  7. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane.

    PubMed

    Bevers, Edouard M; Williamson, Patrick L

    2016-04-01

    Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS. Recently, two proteins required for such randomization have been identified: TMEM16F, a scramblase regulated by elevated intracellular Ca(2+), and XKR8, a caspase-sensitive protein required for PS exposure in apoptotic cells. Once exposed at the cell surface, PS regulates biochemical reactions involved in blood coagulation, and bone mineralization, and also regulates a variety of cell-cell interactions. Exposed on the surface of apoptotic cells, PS controls their recognition and engulfment by other cells. This process is exploited by parasites to invade their host, and in specialized form is used to maintain photoreceptors in the eye and modify synaptic connections in the brain. This review discusses what is known about the mechanism of PS exposure at the surface of the plasma membrane of cells, how actors in the extracellular milieu sense surface exposed PS, and how this recognition is translated to downstream consequences of PS exposure. PMID:26936867

  8. Quantification of Fluoroquinolone Uptake through the Outer Membrane Channel OmpF of Escherichia coli.

    PubMed

    Cama, Jehangir; Bajaj, Harsha; Pagliara, Stefano; Maier, Theresa; Braun, Yvonne; Winterhalter, Mathias; Keyser, Ulrich F

    2015-11-01

    Decreased drug accumulation is a common cause of antibiotic resistance in microorganisms. However, there are few reliable general techniques capable of quantifying drug uptake through bacterial membranes. We present a semiquantitative optofluidic assay for studying the uptake of autofluorescent drug molecules in single liposomes. We studied the effect of the Escherichia coli outer membrane channel OmpF on the accumulation of the fluoroquinolone antibiotic, norfloxacin, in proteoliposomes. Measurements were performed at pH 5 and pH 7, corresponding to two different charge states of norfloxacin that bacteria are likely to encounter in the human gastrointestinal tract. At both pH values, the porins significantly enhance drug permeation across the proteoliposome membranes. At pH 5, where norfloxacin permeability across pure phospholipid membranes is low, the porins increase drug permeability by 50-fold on average. We estimate a flux of about 10 norfloxacin molecules per second per OmpF trimer in the presence of a 1 mM concentration gradient of norfloxacin. We also performed single channel electrophysiology measurements and found that the application of transmembrane voltages causes an electric field driven uptake in addition to concentration driven diffusion. We use our results to propose a physical mechanism for the pH mediated change in bacterial susceptibility to fluoroquinolone antibiotics. PMID:26478537

  9. Bacterial Social Networks: Structure and composition of Myxococcus xanthus outer membrane vesicle chains

    PubMed Central

    Remis, Jonathan P.; Wei, Doug; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H. Ewa; Costerton, J. William; Berleman, James E.; Auer, Manfred

    2014-01-01

    Summary The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviors, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of vesicles and vesicle chains that interconnect cells. We observed peritrichous display of vesicles and vesicle chains and increased abundance in biofilms compared to planktonic cultures. By applying a range of imaging techniques, including 3D Focused Ion Beam Scanning Electron Microscopy (FIB/SEM), we determined these structures to range between 30-60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine (GlcNAc) and N-acetylgalactoseamine (GalNAc) carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl membrane proteins transferred in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and likely provides a mechanism for the coordination of social activities. PMID:23848955

  10. Effect of ethylenediaminetetraacetate on phospholipids and outer membrane function in Escherichia coli.

    PubMed Central

    Hardaway, K L; Buller, C S

    1979-01-01

    Treatment of Escherichia coli K-12 strain S15, containing a normal amount of phospholipase A, with ethylenediaminetetraacetate (EDTA) resulted in an increase in sensitivity of the organism to actinomycin D. Strain S17, a mutant deficient in both detergent-resistant phospholipase A and detergent-sensitive phospholipase A, was considerably less sensitive to the antibiotic after the treatment. Both strains released lipopolysaccharide after EDTA treatment, indicating that this outer membrane component alone is not the barrier to actinomycin in these organisms. The phospholipase A-deficient strain released less alkaline phosphatase, a periplasmic enzyme. EDTA treatment of S15 resulted in the accumulation of free fatty acids, indicative of phospholipase A activation. Cells briefly treated with EDTA regained the barrier to actinomycin when incubated in growth media, and the cessation of the accumulation of free fatty acids was in approximate temporal agreement with restoration of the barrier. Cells in which phospholipase A was activated by brief exposure to EDTA synthesized relatively more phosphatidylethanolamine than did untreated cells in the initial period after dilution into growth media. These experiments suggest that the EDTA-induced loss of outer membrane barrier function of E. coli K-12 is mediated through the activation of phospholipase A. PMID:104974