Sample records for pestis type iii

  1. Structure of the cytoplasmic domain of Yersinia pestis YscD, an essential component of the type III secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2012-09-17

    The Yersinia pestis YscD protein is an essential component of the type III secretion system. YscD consists of an N-terminal cytoplasmic domain (residues 1-121), a transmembrane linker (122-142) and a large periplasmic domain (143-419). Both the cytoplasmic and the periplasmic domains are required for the assembly of the type III secretion system. Here, the structure of the YscD cytoplasmic domain solved by SAD phasing is presented. Although the three-dimensional structure is similar to those of forkhead-associated (FHA) domains, comparison with the structures of canonical FHA domains revealed that the cytoplasmic domain of YscD lacks the conserved residues that are requiredmore » for binding phosphothreonine and is therefore unlikely to function as a true FHA domain.« less

  2. Typing methods for the plague pathogen, Yersinia pestis.

    PubMed

    Lindler, Luther E

    2009-01-01

    Phenotypic and genotypic methodologies have been used to differentiate the etiological agent of plague, Yersinia pestis. Historically, phenotypic methods were used to place isolates into one of three biovars based on nitrate reduction and glycerol fermentation. Classification of Y. pestis into genetic subtypes is problematic due to the relative monomorphic nature of the pathogen. Resolution into groups is dependent on the number and types of loci used in the analysis. The last 5-10 years of research and analysis in the field of Y. pestis genotyping have resulted in a recognition by Western scientists that two basic types of Y. pestis exist. One type, considered to be classic strains that are able to cause human plague transmitted by the normal flea vector, is termed epidemic strains. The other type does not typically cause human infections by normal routes of infection, but is virulent for rodents and is termed endemic strains. Previous classification schemes used outside the Western hemisphere referred to these latter strains as Pestoides varieties of Y. pestis. Recent molecular analysis has definitely shown that both endemic and epidemic strains arose independently from a common Yersinia pseudotuberculosis ancestor. Currently, 11 major groups of Y. pestis are defined globally.

  3. Glutathionylation of Yersinia pestis LcrV and Its Effects on Plague Pathogenesis.

    PubMed

    Mitchell, Anthony; Tam, Christina; Elli, Derek; Charlton, Thomas; Osei-Owusu, Patrick; Fazlollahi, Farbod; Faull, Kym F; Schneewind, Olaf

    2017-05-16

    Glutathionylation, the formation of reversible mixed disulfides between glutathione and protein cysteine residues, is a posttranslational modification previously observed for intracellular proteins of bacteria. Here we show that Yersinia pestis LcrV, a secreted protein capping the type III secretion machine, is glutathionylated at Cys 273 and that this modification promotes association with host ribosomal protein S3 (RPS3), moderates Y. pestis type III effector transport and killing of macrophages, and enhances bubonic plague pathogenesis in mice and rats. Secreted LcrV was purified and analyzed by mass spectrometry to reveal glutathionylation, a modification that is abolished by the codon substitution Cys 273 Ala in lcrV Moreover, the lcrV C273A mutation enhanced the survival of animals in models of bubonic plague. Investigating the molecular mechanism responsible for these virulence attributes, we identified macrophage RPS3 as a ligand of LcrV, an association that is perturbed by the Cys 273 Ala substitution. Furthermore, macrophages infected by the lcrV C273A variant displayed accelerated apoptotic death and diminished proinflammatory cytokine release. Deletion of gshB , which encodes glutathione synthetase of Y. pestis , resulted in undetectable levels of intracellular glutathione, and we used a Y. pestis Δ gshB mutant to characterize the biochemical pathway of LcrV glutathionylation, establishing that LcrV is modified after its transport to the type III needle via disulfide bond formation with extracellular oxidized glutathione. IMPORTANCE Yersinia pestis , the causative agent of plague, has killed large segments of the human population; however, the molecular bases for the extraordinary virulence attributes of this pathogen are not well understood. We show here that LcrV, the cap protein of bacterial type III secretion needles, is modified by host glutathione and that this modification contributes to the high virulence of Y. pestis in mouse and rat

  4. [Standard algorithm of molecular typing of Yersinia pestis strains].

    PubMed

    Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V

    2012-01-01

    Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.

  5. Glutathionylation of Yersinia pestis LcrV and Its Effects on Plague Pathogenesis

    PubMed Central

    Mitchell, Anthony; Tam, Christina; Elli, Derek; Charlton, Thomas; Osei-Owusu, Patrick; Fazlollahi, Farbod; Faull, Kym F.

    2017-01-01

    ABSTRACT Glutathionylation, the formation of reversible mixed disulfides between glutathione and protein cysteine residues, is a posttranslational modification previously observed for intracellular proteins of bacteria. Here we show that Yersinia pestis LcrV, a secreted protein capping the type III secretion machine, is glutathionylated at Cys273 and that this modification promotes association with host ribosomal protein S3 (RPS3), moderates Y. pestis type III effector transport and killing of macrophages, and enhances bubonic plague pathogenesis in mice and rats. Secreted LcrV was purified and analyzed by mass spectrometry to reveal glutathionylation, a modification that is abolished by the codon substitution Cys273Ala in lcrV. Moreover, the lcrVC273A mutation enhanced the survival of animals in models of bubonic plague. Investigating the molecular mechanism responsible for these virulence attributes, we identified macrophage RPS3 as a ligand of LcrV, an association that is perturbed by the Cys273Ala substitution. Furthermore, macrophages infected by the lcrVC273A variant displayed accelerated apoptotic death and diminished proinflammatory cytokine release. Deletion of gshB, which encodes glutathione synthetase of Y. pestis, resulted in undetectable levels of intracellular glutathione, and we used a Y. pestis ΔgshB mutant to characterize the biochemical pathway of LcrV glutathionylation, establishing that LcrV is modified after its transport to the type III needle via disulfide bond formation with extracellular oxidized glutathione. PMID:28512097

  6. Crystal structure of the Yersinia type III secretion protein YscE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Jason; Austin, Brian P.; Waugh, David S.

    2010-12-06

    The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.

  7. Investigating the ?Trojan Horse? Mechanism of Yersinia pestis Virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchen-Maloney, S L; Fitch, J P

    2005-02-08

    Yersinia pestis, the etiological agent of plague, is a Gram-negative, highly communicable, enteric bacterium that has been responsible for three historic plague pandemics. Currently, several thousand cases of plague are reported worldwide annually, and Y. pestis remains a considerable threat from a biodefense perspective. Y. pestis infection can manifest in three forms: bubonic, septicemic, and pneumonic plague. Of these three forms, pneumonic plague has the highest fatality rate ({approx}100% if left untreated), the shortest intervention time ({approx}24 hours), and is highly contagious. Currently, there are no rapid, widely available vaccines for plague and though plague may be treated with antibiotics,more » the emergence of both naturally occurring and potentially engineered antibiotic resistant strains makes the search for more effective therapies and vaccines for plague of pressing concern. The virulence mechanism of this deadly bacterium involves induction of a Type III secretion system, a syringe-like apparatus that facilitates the injection of virulence factors, termed Yersinia outer membrane proteins (Yops), into the host cell. These virulence factors inhibit phagocytosis and cytokine secretion, and trigger apoptosis of the host cell. Y. pestis virulence factors and the Type III secretion system are induced thermally, when the bacterium enters the mammalian host from the flea vector, and through host cell contact (or conditions of low Ca{sup 2+} in vitro). Apart from the temperature increase from 26 C to 37 C and host cell contact (or low Ca{sup 2+} conditions), other molecular mechanisms that influence virulence induction in Y. pestis are largely uncharacterized. This project focused on characterizing two novel mechanisms that regulate virulence factor induction in Y. pestis, immunoglobulin G (IgG) binding and quorum sensing, using a real-time reporter system to monitor induction of virulence. Incorporating a better understanding of the mechanisms of

  8. Proteomic Characterization of Yersinia pestis Virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chromy, B; Murphy, G; Gonzales, A

    2005-01-05

    Yersinia pestis, the etiological agent of plague, functions via the Type III secretion mechanism whereby virulence factors are induced upon interactions with a mammalian host. Here, the Y. pestis proteome was studied by two-dimensional differential gel electrophoresis (2-D DIGE) under physiologically relevant growth conditions mimicking the calcium concentrations and temperatures that the pathogen would encounter in the flea vector and upon interaction with the mammalian host. Over 4100 individual protein spots were detected of which hundreds were differentially expressed in the entire comparative experiment. A total of 43 proteins that were differentially expressed between the vector and host growth conditionsmore » were identified by mass spectrometry. Expected differences in expression were observed for several known virulence factors including catalase-peroxidase (KatY), murine toxin (Ymt), plasminogen activator (Pla), and F1 capsule antigen (Caf1), as well as putative virulence factors. Chaperone proteins and signaling molecules hypothesized to be involved in virulence due to their role in Type III secretion were also identified. Other differentially expressed proteins not previously reported to contribute to virulence are candidates for more detailed mechanistic studies, representing potential new virulence determinants. For example, several sugar metabolism proteins were differentially regulated in response to lower calcium and higher temperature, suggesting these proteins, while not directly connected to virulence, either represent a metabolic switch for survival in the host environment or may facilitate production of virulence factors. Results presented here contribute to a more thorough understanding of the virulence mechanism of Y. pestis through proteomic characterization of the pathogen under induced virulence.« less

  9. LcrV Mutants That Abolish Yersinia Type III Injectisome Function

    PubMed Central

    Ligtenberg, Katherine Given; Miller, Nathan C.; Mitchell, Anthony; Plano, Gregory V.

    2013-01-01

    LcrV, the type III needle cap protein of pathogenic Yersinia, has been proposed to function as a tether between YscF, the needle protein, and YopB-YopD to constitute the injectisome, a conduit for the translocation of effector proteins into host cells. Further, insertion of LcrV-capped needles from a calcium-rich environment into host cells may trigger the low-calcium signal for effector translocation. Here, we used a genetic approach to test the hypothesis that the needle cap responds to the low-calcium signal by promoting injectisome assembly. Growth restriction of Yersinia pestis in the absence of calcium (low-calcium response [LCR+] phenotype) was exploited to isolate dominant negative lcrV alleles with missense mutations in its amber stop codon (lcrV*327). The addition of at least four amino acids or the eight-residue Strep tag to the C terminus was sufficient to generate an LCR− phenotype, with variant LcrV capping type III needles that cannot assemble the YopD injectisome component. The C-terminal Strep tag appears buried within the cap structure, blocking effector transport even in Y. pestis yscF variants that are otherwise calcium blind, a constitutive type III secretion phenotype. Thus, LcrV*327 mutants arrest the needle cap in a state in which it cannot respond to the low-calcium signal with either injectisome assembly or the activation of type III secretion. Insertion of the Strep tag at other positions of LcrV produced variants with wild-type LCR+, LCR−, or dominant negative LCR− phenotypes, thereby allowing us to identify discrete sites within LcrV as essential for its attributes as a secretion substrate, needle cap, and injectisome assembly factor. PMID:23222719

  10. Plague vaccines and the molecular basis of immunity against Yersinia pestis.

    PubMed

    Quenee, Lauriane E; Schneewind, Olaf

    2009-12-01

    Yersinia pestis is the causative agent of bubonic and pneumonic plague, human diseases with high mortality. Due to the microbe's ability to spread rapidly, plague epidemics present a serious public health threat. A search for prophylactic measures was initially based on historical reports of bubonic plague survivors and their apparent immunity. Due to safety and efficacy concerns, killed whole-cell preparations or live-attenuated plague vaccines are no longer considered in the United States. Vaccine developers have focused on specific subunits of plague bacteria. LcrV, a protein at the tip of type III secretion needles, and F1, the capsular pilus antigen, are both recognized as plague protective antigens. Antibodies against LcrV and F1 interfere with Y. pestis type III injection of host cells. While LcrV is absolutely essential for Y. pestis virulence, expression of F1 is dispensable for plague pathogenesis in small animals, non-human primates and presumably also in humans. Several subunit vaccines, for example rF1+rV (rYP002), rF1V or rV10, are being developed to generate plague protection in humans. Efficacy testing and licensure for human use requires the establishment of correlates for plague immunity.

  11. Atomic resolution structure of the cytoplasmic domain of Yersinia pestis YscU, a regulatory switch involved in type III secretion

    PubMed Central

    Lountos, George T; Austin, Brian P; Nallamsetty, Sreedevi; Waugh, David S

    2009-01-01

    Crystal structures of cleaved and uncleaved forms of the YscU cytoplasmic domain, an essential component of the type III secretion system (T3SS) in Yersinia pestis, have been solved by single-wavelength anomolous dispersion and refined with X-ray diffraction data extending up to atomic resolution (1.13 Å). These crystallographic studies provide structural insights into the conformational changes induced upon auto-cleavage of the cytoplasmic domain of YscU. The structures indicate that the cleaved fragments remain bound to each other. The conserved NPTH sequence that contains the site of the N263-P264 peptide bond cleavage is found on a β-turn which, upon cleavage, undergoes a major reorientation of the loop away from the catalytic N263, resulting in altered electrostatic surface features at the site of cleavage. Additionally, a significant conformational change was observed in the N-terminal linker regions of the cleaved and noncleaved forms of YscU which may correspond to the molecular switch that influences substrate specificity. The YscU structures determined here also are in good agreement with the auto-cleavage mechanism described for the flagellar homolog FlhB and E. coli EscU. PMID:19165725

  12. Yersinia pestis IS1541 transposition provides for escape from plague immunity.

    PubMed

    Cornelius, Claire A; Quenee, Lauriane E; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf

    2009-05-01

    Yersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity. Here we asked whether Y. pestis generates mutations that enable bacterial escape from protective immunity and isolated a variant with an IS1541 insertion in caf1A encoding the F1 outer membrane usher. The caf1A::IS1541 insertion prevented assembly of F1 pili and provided escape from plague immunity via F1-specific antibodies without a reduction in virulence in mouse models of bubonic or pneumonic plague. F1-specific antibodies interfere with Y. pestis type III transport of effector proteins into host cells, an inhibitory effect that was overcome by the caf1A::IS1541 insertion. These findings suggest a model in which IS1541 insertion into caf1A provides for reversible changes in envelope structure, enabling Y. pestis to escape from adaptive immune responses and plague immunity.

  13. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    PubMed

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  14. Yersinia pestis targets neutrophils via complement receptor 3

    PubMed Central

    Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.

    2015-01-01

    Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083

  15. The Outer Membrane Protein A (OmpA) of Y. pestis promotes intracellular survival and virulence in mice

    PubMed Central

    Bartra, Sara Schesser; Gong, Xin; Lorica, Cherish D.; Jain, Chaitanya; Nair, Manoj K. M.; Schifferli, Dieter; Qian, Lianfen; Li, Zhongwei; Plano, Gregory V.; Schesser, Kurt

    2011-01-01

    The plague bacterium Yersinia pestis has a number of well-described strategies to protect itself from both host cells and soluble factors. In an effort to identify additional anti-host factors, we employed a transposon site hybridization (TraSH)-based approach to screen 105 Y. pestis mutants in an in vitro infection system. In addition to loci encoding various components of the well-characterized type III secretion system (T3SS), our screen unambiguously identified ompA as a pro-survival gene. We go on to show that an engineered Y. pestis ΔompA strain, as well as a ΔompA strain of the closely related pathogen Y. pseudotuberculosis, have fully functioning T3SSs but are specifically defective in surviving within macrophages. Additionally, the Y. pestis ΔompA strain was outcompeted by the wild-type strain in a mouse co-infection assay. Unlike in other bacterial pathogens in which OmpA can promote adherence, invasion, or serum resistance, the OmpA of Y. pestis is restricted to enhancing intracellular survival. Our data show that OmpA of the pathogenic Yersinia is a virulence factor on par with the T3SS. PMID:22023991

  16. Yersinia pestis caf1 variants and the limits of plague vaccine protection.

    PubMed

    Quenee, Lauriane E; Cornelius, Claire A; Ciletti, Nancy A; Elli, Derek; Schneewind, Olaf

    2008-05-01

    Yersinia pestis, the highly virulent agent of plague, is a biological weapon. Strategies that prevent plague have been sought for centuries, and immunization with live, attenuated (nonpigmented) strains or subunit vaccines with F1 (Caf1) antigen is considered effective. We show here that immunization with live, attenuated strains generates plague-protective immunity and humoral immune responses against F1 pilus antigen and LcrV. Y. pestis variants lacking caf1 (F1 pili) are not only fully virulent in animal models of bubonic and pneumonic plague but also break through immune responses generated with live, attenuated strains or F1 subunit vaccines. In contrast, immunization with purified LcrV, a protein at the tip of type III needles, generates protective immunity against the wild-type and the fully virulent caf1 mutant strain, in agreement with the notion that LcrV can elicit vaccine protection against both types of virulent plague strains.

  17. Pulmonary infection by Yersinia pestis rapidly establishes a permissive environment for microbial proliferation.

    PubMed

    Price, Paul A; Jin, Jianping; Goldman, William E

    2012-02-21

    Disease progression of primary pneumonic plague is biphasic, consisting of a preinflammatory and a proinflammatory phase. During the long preinflammatory phase, bacteria replicate to high levels, seemingly uninhibited by normal pulmonary defenses. In a coinfection model of pneumonic plague, it appears that Yersinia pestis quickly creates a localized, dominant anti-inflammatory state that allows for the survival and rapid growth of both itself and normally avirulent organisms. Yersinia pseudotuberculosis, the relatively recent progenitor of Y. pestis, shows no similar trans-complementation effect, which is unprecedented among other respiratory pathogens. We demonstrate that the effectors secreted by the Ysc type III secretion system are necessary but not sufficient to mediate this apparent immunosuppression. Even an unbiased negative selection screen using a vast pool of Y. pestis mutants revealed no selection against any known virulence genes, demonstrating the transformation of the lung from a highly restrictive to a generally permissive environment during the preinflammatory phase of pneumonic plague.

  18. Structural Characterization of the Yersinia pestis Type III Secretion System Needle Protein YscF in Complex with Its Heterodimeric Chaperone YscE/YscG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ping; Tropea, Joseph E.; Austin, Brian P.

    2008-05-03

    The plague-causing bacterium Yersinia pestis utilizes a type III secretion system to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as 'chaperones' to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 {angstrom} resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonasmore » aeruginosa type III secretion system, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal tetratricopeptide repeat motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the 49 N-terminal residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex.« less

  19. Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague.

    PubMed

    Zauberman, Ayelet; Tidhar, Avital; Levy, Yinon; Bar-Haim, Erez; Halperin, Gideon; Flashner, Yehuda; Cohen, Sara; Shafferman, Avigdor; Mamroud, Emanuelle

    2009-06-16

    An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica Oratio8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence. To test the relationship between cytotoxic potential and virulence, we replaced Y. pestis YopJ with YopP. The YopP-expressing Y. pestis strain exhibited high cytotoxic activity against macrophages in vitro. Following subcutaneous infection, this strain had reduced ability to colonize internal organs, was unable to induce septicemia and exhibited at least a 10(7)-fold reduction in virulence. Yet, upon intravenous or intranasal infection, it was still as virulent as the wild-type strain. The subcutaneous administration of the cytotoxic Y. pestis strain appears to activate a rapid and potent systemic, CTL-independent, immunoprotective response, allowing the organism to overcome simultaneous coinfection with 10,000 LD(50) of virulent Y. pestis. Moreover, three days after subcutaneous administration of this strain, animals were also protected against septicemic or primary pneumonic plague. Our findings indicate that an inverse relationship exists between the cytotoxic potential of Y. pestis and its virulence following subcutaneous infection. This appears to be associated with the ability of the engineered cytotoxic Y. pestis strain to induce very rapid, effective and long-lasting protection against bubonic and pneumonic plague. These observations have novel implications for the development of vaccines/therapies against Y. pestis and shed new light on the

  20. Bacteriophages of Yersinia pestis.

    PubMed

    Zhao, Xiangna; Skurnik, Mikael

    2016-01-01

    Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

  1. Role of Yersinia pestis Toxin Complex Family Proteins in Resistance to Phagocytosis by Polymorphonuclear Leukocytes

    PubMed Central

    Carmody, Aaron B.; Jarrett, Clayton O.; Hinnebusch, B. Joseph

    2013-01-01

    Yersinia pestis carries homologues of the toxin complex (Tc) family proteins, which were first identified in other Gram-negative bacteria as having potent insecticidal activity. The Y. pestis Tc proteins are neither toxic to fleas nor essential for survival of the bacterium in the flea, even though tc gene expression is highly upregulated and much more of the Tc proteins YitA and YipA are produced in the flea than when Y. pestis is grown in vitro. We show that Tc+ and Tc− Y. pestis strains are transmitted equivalently from coinfected fleas, further demonstrating that the Tc proteins have no discernible role, either positive or negative, in transmission by the flea vector. Tc proteins did, however, confer Y. pestis with increased resistance to killing by polymorphonuclear leukocytes (PMNs). Resistance to killing was not the result of decreased PMN viability or increased intracellular survival but instead correlated with a Tc protein-dependent resistance to phagocytosis that was independent of the type III secretion system (T3SS). Correspondingly, we did not detect T3SS-dependent secretion of the native Tc proteins YitA and YipA or the translocation of YitA– or YipA–β-lactamase fusion proteins into CHO-K1 (CHO) cells or human PMNs. Thus, although highly produced by Y. pestis within the flea and related to insecticidal toxins, the Tc proteins do not affect interaction with the flea or transmission. Rather, the Y. pestis Tc proteins inhibit phagocytosis by mouse PMNs, independent of the T3SS, and may be important for subverting the mammalian innate immune response immediately following transmission from the flea. PMID:23959716

  2. Yersinia Type III Secretion System Master Regulator LcrF

    PubMed Central

    Schwiesow, Leah; Lam, Hanh

    2015-01-01

    Many Gram-negative pathogens express a type III secretion (T3SS) system to enable growth and survival within a host. The three human-pathogenic Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, encode the Ysc T3SS, whose expression is controlled by an AraC-like master regulator called LcrF. In this review, we discuss LcrF structure and function as well as the environmental cues and pathways known to regulate LcrF expression. Similarities and differences in binding motifs and modes of action between LcrF and the Pseudomonas aeruginosa homolog ExsA are summarized. In addition, we present a new bioinformatics analysis that identifies putative LcrF binding sites within Yersinia target gene promoters. PMID:26644429

  3. Regulation of Yersina pestis Virulence by AI-2 Mediated Quorum Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segelke, B; Hok, S; Lao, V

    The proposed research was motivated by an interest in understanding Y. pestis virulence mechanisms and bacteria cell-cell communication. It is expected that a greater understanding of virulence mechanisms will ultimately lead to biothreat countermeasures and novel therapeutics. Y. pestis is the etiological agent of plague, the most devastating disease in human history. Y. pestis infection has a high mortality rate and a short incubation before mortality. There is no widely available and effective vaccine for Y. pestis and multi-drug resistant strains are emerging. Y. pestis is a recognized biothreat agent based on the wide distribution of the bacteria in researchmore » laboratories around the world and on the knowledge that methods exist to produce and aerosolize large amounts of bacteria. We hypothesized that cell-cell communication via signaling molecules, or quorum sensing, by Y. pestis is important for the regulation of virulence factor gene expression during host invasion, though a causative link had never been established. Quorum sensing is a mode of intercellular communication which enables orchestration of gene expression for many bacteria as a function of population density and available evidence suggests there may be a link between quorum sensing and regulation of Y. pesits virulence. Several pathogenic bacteria have been shown to regulate expression of virulence factor genes, including genes encoding type III secretion, via quorum sensing. The Y. pestis genome encodes several cell-cell signaling pathways and the interaction of at least three of these are thought to be involved in one or more modes of host invasion. Furthermore, Y. pestis gene expression array studies carried out at LLNL have established a correlation between expression of known virulence factors and genes involved in processing of the AI-2 quorum sensing signal. This was a basic research project that was intended to provide new insights into bacterial intercellular communication and

  4. Yersinia pestis Orientalis in Remains of Ancient Plague Patients

    PubMed Central

    Drancourt, Michel; Signoli, Michel; Dang, La Vu; Bizot, Bruno; Roux, Véronique; Tzortzis, Stéfan

    2007-01-01

    Yersinia pestis DNA was recently detected in human remains from 2 ancient plague pandemics in France and Germany. We have now sequenced Y. pestis glpD gene in such remains, showing a 93-bp deletion specific for biotype Orientalis. These data show that only Orientalis type caused the 3 plague pandemics. PMID:17479906

  5. Microgravity Effects on Yersinia Pestis Virulence

    NASA Astrophysics Data System (ADS)

    Lawal, A.; Abogunde, O.; Jejelowo, O.; Rosenzweig, J.-A.

    2010-04-01

    Microgravity effects on Yersinia pestis proliferation, cold growth, and type three secretion system function were evaluated in macrophage cell infections, HeLa cell infections, and cold growth plate assays.

  6. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis

    PubMed Central

    Zimbler, Daniel L.; Eddy, Justin L.; Schroeder, Jay A.

    2015-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463

  7. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis.

    PubMed

    Zimbler, Daniel L; Eddy, Justin L; Schroeder, Jay A; Lathem, Wyndham W

    2016-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Yersinia pestis Yop secretion protein F: purification, characterization, and protective efficacy against bubonic plague.

    PubMed

    Swietnicki, Wieslaw; Powell, Bradford S; Goodin, Jeremy

    2005-07-01

    Yersinia pestis is a gram-negative human pathogen that uses a type III secretion system to deliver virulence factors into human hosts. The delivery is contact-dependent and it has been proposed that polymerization of Yop secretion protein F (YscF) is used to puncture mammalian cell membranes to facilitate delivery of Yersinia outer protein effectors into host cells. To evaluate the potential immunogenicity and protective efficacy of YscF against Y. pestis, we used a purified recombinant YscF protein as a potential vaccine candidate in a mouse subcutaneous infection model. YscF was expressed and purified from Escherichia coli by immobilized metal-ion affinity chromatography and protein identity was confirmed by ion trap mass spectrometry. The recombinant protein was highly alpha-helical and formed relatively stable aggregates under physiological conditions. The properties were consistent with behavior expected for the native YscF, suggesting that the antigen was properly folded. Ten mice were inoculated subcutaneously, administered booster injections after one month, and challenged with 130 LD(50) of wild type Y. pestis CO92. Six animals in the vaccinated group but none in the control group survived the challenge. The vaccinated animals produced high levels of specific antibodies against YscF as determined by Western blot. The data were statistically significant (P = 0.053 by two-tailed Fisher's test), suggesting that the YscF protein can provide a protective immune response against lethal plague challenge during subcutaneous plague infection.

  9. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis

    PubMed Central

    Pourcel, C; André-Mazeaud, F; Neubauer, H; Ramisse, F; Vergnaud, G

    2004-01-01

    Background Yersinia pestis, the agent of plague, is a young and highly monomorphic species. Three biovars, each one thought to be associated with the last three Y. pestis pandemics, have been defined based on biochemical assays. More recently, DNA based assays, including DNA sequencing, IS typing, DNA arrays, have significantly improved current knowledge on the origin and phylogenetic evolution of Y. pestis. However, these methods suffer either from a lack of resolution or from the difficulty to compare data. Variable number of tandem repeats (VNTRs) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses in a growing number of pathogens and have given promising results for Y. pestis as well. Results In this study we have genotyped 180 Y. pestis isolates by multiple locus VNTR analysis (MLVA) using 25 markers. Sixty-one different genotypes were observed. The three biovars were distributed into three main branches, with some exceptions. In particular, the Medievalis phenotype is clearly heterogeneous, resulting from different mutation events in the napA gene. Antiqua strains from Asia appear to hold a central position compared to Antiqua strains from Africa. A subset of 7 markers is proposed for the quick comparison of a new strain with the collection typed here. This can be easily achieved using a Web-based facility, specifically set-up for running such identifications. Conclusion Tandem-repeat typing may prove to be a powerful complement to the existing phylogenetic tools for Y. pestis. Typing can be achieved quickly at a low cost in terms of consumables, technical expertise and equipment. The resulting data can be easily compared between different laboratories. The number and selection of markers will eventually depend upon the type and aim of investigations. PMID:15186506

  10. Real-Time Characterization of Virulence Factor Expression in Yersinia pestis Using a Green Fluorescent Protein Reporter System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forde, C; Rocco, J; Fitch, J P

    2004-06-09

    A real-time reporter system was developed to monitor the thermal induction of virulence factors in Yersinia pestis. The reporter system consists of a plasmid in Y. pestis in which the expression of green fluorescent protein (GFP) is under the control of the promoters for six virulence factors, yopE, sycE, yopK, yopT, yscN, and lcrE/yopN, which are all components of the Type III secretion virulence mechanism of Y. pestis. Induction of the expression of these genes in vivo was determined by the increase in fluorescence intensity of GFP in real time. Basal expression levels observed for the Y. pestis promoters, expressedmore » as percentages of the positive control with GFP under the control of the lac promoter, were: yopE (15%), sycE (15%), yopK (13%), yopT (4%), lcrE (3.3%) and yscN (0.8%). The yopE reporter showed the strongest gene induction following temperature transition from 26 C to 37 C. The induction levels of the other virulence factors, expressed as percentages of yopE induction, were: yopK (57%), sycE (9%), yscN (3%), lcrE (3%), and yopT (2%). The thermal induction of each of these promoter fusions was repressed by calcium, and the ratios of the initial rates of thermal induction without calcium supplementation compared to the rate with calcium supplementation were: yopE (11 fold), yscN (7 fold), yopK (6 fold), lcrE (3 fold), yopT (2 fold), and sycE (2 fold). This work demonstrates a novel approach to quantify gene induction and provides a method to rapidly determine the effects of external stimuli on expression of Y. pestis virulence factors in real time, in living cells.« less

  11. Complete Genome Sequence of Pigmentation Negative Yersinia Pestis strain Cadman Running head: Complete Genome Sequence of Y. pestis strain Cadman

    DTIC Science & Technology

    2016-10-27

    Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA 9 10 11 Running head: Complete Genome Sequence of Y. pestis strain Cadman...1 Complete Genome Sequence of Pigmentation Negative Yersinia pestis strain Cadman 1 2 3 Sean Lovetta, Kitty Chaseb, Galina Korolevaa, Gustavo...we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain 25 lacking the pgm locus. Y. pestis is the causative agent of

  12. Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG

    PubMed Central

    Sun, Ping; Tropea, Joseph E.; Austin, Brian P.; Cherry, Scott; Waugh, David S.

    2008-01-01

    Summary The plague-causing bacterium Yersinia pestis utilizes a Type III Secretion System (T3SS) to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as "chaperones" to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 Å resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonas aeruginosa T3SS, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat (TPR) family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal TPR motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the N-terminal 49 residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex. PMID:18281060

  13. The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome.

    PubMed

    Chung, Lawton K; Park, Yong Hwan; Zheng, Yueting; Brodsky, Igor E; Hearing, Patrick; Kastner, Daniel L; Chae, Jae Jin; Bliska, James B

    2016-09-14

    Pathogenic Yersinia, including Y. pestis, the agent of plague in humans, and Y. pseudotuberculosis, the related enteric pathogen, deliver virulence effectors into host cells via a prototypical type III secretion system to promote pathogenesis. These effectors, termed Yersinia outer proteins (Yops), modulate multiple host signaling responses. Studies in Y. pestis and Y. pseudotuberculosis have shown that YopM suppresses infection-induced inflammasome activation; however, the underlying molecular mechanism is largely unknown. Here we show that YopM specifically restricts the pyrin inflammasome, which is triggered by the RhoA-inactivating enzymatic activities of YopE and YopT, in Y. pseudotuberculosis-infected macrophages. The attenuation of a yopM mutant is fully reversed in pyrin knockout mice, demonstrating that YopM inhibits pyrin to promote virulence. Mechanistically, YopM recruits and activates the host kinases PRK1 and PRK2 to negatively regulate pyrin by phosphorylation. These results show how a virulence factor can hijack host kinases to inhibit effector-triggered pyrin inflammasome activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Immunology of Yersinia pestis Infection.

    PubMed

    Bi, Yujing

    2016-01-01

    As a pathogen of plague, Yersinia pestis caused three massive pandemics in history that killed hundreds of millions of people. Yersinia pestis is highly invasive, causing severe septicemia which, if untreated, is usually fatal to its host. To survive in the host and maintain a persistent infection, Yersinia pestis uses several stratagems to evade the innate and the adaptive immune responses. For example, infections with this organism are biphasic, involving an initial "noninflammatory" phase where bacterial replication occurs initially with little inflammation and following by extensive phagocyte influx, inflammatory cytokine production, and considerable tissue destruction, which is called "proinflammatory" phase. In contrast, the host also utilizes its immune system to eliminate the invading bacteria. Neutrophil and macrophage are the first defense against Yersinia pestis invading through phagocytosis and killing. Other innate immune cells also play different roles, such as dendritic cells which help to generate more T helper cells. After several days post infection, the adaptive immune response begins to provide organism-specific protection and has a long-lasting immunological memory. Thus, with the cooperation and collaboration of innate and acquired immunity, the bacterium may be eliminated from the host. The research of Yersinia pestis and host immune systems provides an important topic to understand pathogen-host interaction and consequently develop effective countermeasures.

  15. Adhesive Properties of YapV and Paralogous Autotransporter Proteins of Yersinia pestis

    PubMed Central

    Nair, Manoj K. M.; De Masi, Leon; Yue, Min; Galván, Estela M.; Chen, Huaiqing; Wang, Fang

    2015-01-01

    Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs. PMID:25690102

  16. IL-17 Contributes to Cell-Mediated Defense against Pulmonary Yersinia pestis Infection1

    PubMed Central

    Lin, Jr-Shiuan; Kummer, Lawrence W.; Szaba, Frank M.; Smiley, Stephen T.

    2010-01-01

    Pneumonic plague is one of the world’s most deadly infectious diseases. The causative bacterium, Yersinia pestis, has the potential to be exploited as a biological weapon and no vaccine is available. Vaccinating B cell-deficient mice with D27-pLpxL, a live attenuated Y. pestis strain, induces cell-mediated protection against lethal pulmonary Y. pestis challenge. Here we demonstrate that prime/boost vaccination with D27-pLpxL confers better protection than prime-only vaccination. The improved survival does not result from enhanced bacterial clearance, but is associated with increased levels of IL-17 mRNA and protein in the lungs of challenged mice. The boost also increases pulmonary numbers of IL-17-producing CD4 T cells. Interestingly, the vast majority of these cells simultaneously produce canonical type 1 and type 17 cytokines; most produce IL-17 and TNFα, and many produce IL-17, TNFα and IFNγ. Neutralizing IL-17 counteracts the improved survival associated with prime/boost vaccination without significantly impacting bacterial burden. Thus, IL-17 appears to mediate the enhanced protection conferred by booster immunization. Although neutralizing IL-17 significantly reduces neutrophil recruitment to the lungs of mice challenged with Y. pestis, this impact is equally evident in mice that receive one or two immunizations with D27-pLpxL, suggesting it cannot suffice to account for the improved survival that results from booster immunization. We conclude that IL-17 plays a yet to be identified role in host defense that enhances protection against pulmonary Y. pestis challenge, and we suggest that pneumonic plague vaccines should aim to induce mixed type 1 and type 17 cellular responses. PMID:21172869

  17. The Pla Protease of Yersinia pestis Degrades Fas Ligand to Manipulate Host Cell Death and Inflammation

    PubMed Central

    Caulfield, Adam J.; Walker, Margaret E.; Gielda, Lindsay M.; Lathem, Wyndham W.

    2014-01-01

    SUMMARY Pneumonic plague is a deadly respiratory disease caused by Yersinia pestis. The bacterial protease Pla contributes to disease progression and manipulation of host immunity, but the mechanisms by which this occurs are largely unknown. Here we show that Pla degrades the apoptotic signaling molecule Fas ligand (FasL) to prevent host cell apoptosis and inflammation. Wild-type Y. pestis, but not a Pla mutant (Δpla), degrades FasL, which results in decreased downstream caspase-3/7 activation and reduced apoptosis. Similarly, lungs of mice challenged with wild-type Y. pestis show reduced levels of FasL and activated caspase-3/7 compared to Δpla infection. Consistent with a role for FasL in regulating immune responses, Δpla infection results in aberrant pro-inflammatory cytokine levels. The loss of FasL or inhibition of caspase activity alters host inflammatory responses and enables enhanced Y. pestis outgrowth in the lungs. Thus, by degrading FasL, Y. pestis manipulates host cell death pathways to facilitate infection. PMID:24721571

  18. Pestoides F, an atypical Yersinia pestis strain from the former Soviet Union.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Emilio; Worsham, Patricia; Bearden, S.

    2007-01-01

    Unlike the classical Yersinia pestis strains, members of an atypical group of Y. pestis from Central Asia, denominated Y. pestis subspecies caucasica (also known as one of several pestoides types), are distinguished by a number of characteristics including their ability to ferment rhamnose and melibiose, their lack of the small plasmid encoding the plasminogen activator (pla) and pesticin, and their exceptionally large variants of the virulence plasmid pMT (encoding murine toxin and capsular antigen). We have obtained the entire genome sequence of Y. pestis Pestoides F, an isolate from the former Soviet Union that has enabled us to carryout amore » comprehensive genome-wide comparison of this organism's genomic content against the six published sequences of Y. pestis and their Y. pseudotuberculosis ancestor. Based on classical glycerol fermentation (+ve) and nitrate reduction (+ve) Y. pestis Pestoides F is an isolate that belongs to the biovar antiqua. This strain is unusual in other characteristics such as the fact that it carries a non-consensus V antigen (lcrV) sequence, and that unlike other Pla(-) strains, Pestoides F retains virulence by the parenteral and aerosol routes. The chromosome of Pestoides F is 4,517,345 bp in size comprising some 3,936 predicted coding sequences, while its pCD and pMT plasmids are 71,507 bp and 137,010 bp in size respectively. Comparison of chromosome-associated genes in Pestoides F with those in the other sequenced Y. pestis strains reveals differences ranging from strain-specific rearrangements, insertions, deletions, single nucleotide polymorphisms, and a unique distribution of insertion sequences. There is a single approximately 7 kb unique region in the chromosome not found in any of the completed Y. pestis strains sequenced to date, but which is present in the Y. pseudotuberculosis ancestor. Taken together, these findings are consistent with Pestoides F being derived from the most ancient lineage of Y. pestis yet sequenced.« less

  19. Pestoides F, and Atypical Yersinia pestis Strain from the Former Soviet Union

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, E; Worsham, P; Bearden, S

    2007-01-05

    Unlike the classical Yersinia pestis strains, members of an atypical group of Y. pestis from Central Asia, denominated Y. pestis subspecies caucasica (also known as one of several pestoides types), are distinguished by a number of characteristics including their ability to ferment rhamnose and melibiose, their lacking the small plasmid encoding the plasminogen activator (pla) and pesticin, and their exceptionally large variants of the virulence plasmid pMT (encoding murine toxin and capsular antigen). We have obtained the entire genome sequence of Y. pestis Pestoides F, an isolate from the former Soviet Union that has enabled us to carryout a comprehensivemore » genome-wide comparison of this organism's genomic content against the six published sequences of Y. pestis and their Y. pseudotuberculosis ancestor. Based on classical glycerol fermentation (+ve) and nitrate reduction (+ve) Y. pestis Pestoides F is an isolate that belongs to the biovar antiqua. This strain is unusual in other characteristics such as the fact that it carries a non-consensus V antigen (lcrV) sequence, and that unlike other Pla{sup -} strains, Pestoides F retains virulence by the parenteral and aerosol routes. The chromosome of Pestoides F is 4,517,345 bp in size comprising some 3,936 predicted coding sequences, while its pCD and pMT plasmids are 71,507 bp and 137,010 bp in size respectively. Comparison of chromosome-associated genes in Pestoides F with those in the other sequenced Y. pestis strains, reveals a series of differences ranging from strain-specific rearrangements, insertions, deletions, single nucleotide polymorphisms, and a unique distribution of insertion sequences. There is a single {approx}7 kb unique region in the chromosome not found in any of the completed Y. pestis strains sequenced to date, but which is present in the Y. pseudotuberculosis ancestor. Taken together, these findings are consistent with Pestoides F being derived from the most ancient lineage of Y. pestis yet

  20. A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium

    PubMed Central

    Rashid, Mohammed H.; Revazishvili, Tamara; Dean, Timothy; Butani, Amy; Verratti, Kathleen; Bishop-Lilly, Kimberly A.; Sozhamannan, Shanmuga; Sulakvelidze, Alexander; Rajanna, Chythanya

    2012-01-01

    Five Y. pestis bacteriophages obtained from various sources were characterized to determine their biological properties, including their taxonomic classification, host range and genomic diversity. Four of the phages (YpP-G, Y, R and YpsP-G) belong to the Podoviridae family, and the fifth phage (YpsP-PST) belongs to the Myoviridae family, of the order Caudovirales comprising of double-stranded DNA phages. The genomes of the four Podoviridae phages were fully sequenced and found to be almost identical to each other and to those of two previously characterized Y. pestis phages Yepe2 and φA1122. However, despite their genomic homogeneity, they varied in their ability to lyse Y. pestis and Y. pseudotuberculosis strains. The five phages were combined to yield a “phage cocktail” (tentatively designated “YPP-100”) capable of lysing the 59 Y. pestis strains in our collection. YPP-100 was examined for its ability to decontaminate three different hard surfaces (glass, gypsum board and stainless steel) experimentally contaminated with a mixture of three genetically diverse Y. pestis strains CO92, KIM and 1670G. Five minutes of exposure to YPP-100 preparations containing phage concentrations of ca. 109, 108 and 107 PFU/mL completely eliminated all viable Y. pestis cells from all three surfaces, but a few viable cells were recovered from the stainless steel coupons treated with YPP-100 diluted to contain ca. 106 PFU/mL. However, even that highly diluted preparation significantly (p = < 0.05) reduced Y. pestis levels by ≥ 99.97%. Our data support the idea that Y. pestis phages may be useful for decontaminating various hard surfaces naturally- or intentionally-contaminated with Y. pestis. PMID:23275868

  1. Global Expression Studies of Yersinia Pestis Pathogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, E; Motin, V; Brubaker, R

    2002-10-15

    pathogenicity of those candidate genes uncovered from these studies will be further ascertained by direct knock outs (gene inactivation) and by in vivo studies using an animal model. Discovery of new virulence factors in Y. pestis will directly impact the development of new signatures for detection and geo-location since it will help us to understand and identify those genes that are essential in making the organism pathogenic. These are genes that cannot be altered or removed from the pathogen and as such constitute the best type of signature that we can utilize in their detection and identification. Applications such as this will also enable the utilization of similar technologies to study other pathogens such as Francisella and Brucella, for which we know substantially less in terms of their modality of virulence.« less

  2. Early emergence of Yersinia pestis as a severe respiratory pathogen.

    PubMed

    Zimbler, Daniel L; Schroeder, Jay A; Eddy, Justin L; Lathem, Wyndham W

    2015-06-30

    Yersinia pestis causes the fatal respiratory disease pneumonic plague. Y. pestis recently evolved from the gastrointestinal pathogen Y. pseudotuberculosis; however, it is not known at what point Y. pestis gained the ability to induce a fulminant pneumonia. Here we show that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. As Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimizes protease activity. While this modification is unnecessary to cause pneumonic plague, the substitution is instead needed to efficiently induce the invasive infection associated with bubonic plague. These findings indicate that Y. pestis was capable of causing pneumonic plague before it evolved to optimally cause invasive infections in mammals.

  3. Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Matthew A.; Cappuccio, Jenny A.; Blanchette, Craig D.

    Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteinsmore » as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. Ultimately, these studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.« less

  4. Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles

    DOE PAGES

    Coleman, Matthew A.; Cappuccio, Jenny A.; Blanchette, Craig D.; ...

    2016-03-25

    Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteinsmore » as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. Ultimately, these studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.« less

  5. Early emergence of Yersinia pestis as a severe respiratory pathogen

    PubMed Central

    Zimbler, Daniel L.; Schroeder, Jay A.; Eddy, Justin L.; Lathem, Wyndham W.

    2015-01-01

    Yersinia pestis causes the fatal respiratory disease pneumonic plague. Y. pestis recently evolved from the gastrointestinal pathogen Y. pseudotuberculosis; however, it is not known at what point Y. pestis gained the ability to induce a fulminant pneumonia. Here we show that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. As Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimizes protease activity. While this modification is unnecessary to cause pneumonic plague, the substitution is instead needed to efficiently induce the invasive infection associated with bubonic plague. These findings indicate that Y. pestis was capable of causing pneumonic plague before it evolved to optimally cause invasive infections in mammals. PMID:26123398

  6. Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague.

    PubMed

    Comer, Jason E; Sturdevant, Daniel E; Carmody, Aaron B; Virtaneva, Kimmo; Gardner, Donald; Long, Dan; Rosenke, Rebecca; Porcella, Stephen F; Hinnebusch, B Joseph

    2010-12-01

    A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.

  7. Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague.

    PubMed

    Shannon, Jeffrey G; Hasenkrug, Aaron M; Dorward, David W; Nair, Vinod; Carmody, Aaron B; Hinnebusch, B Joseph

    2013-08-27

    The majority of human Yersinia pestis infections result from introduction of bacteria into the skin by the bite of an infected flea. Once in the dermis, Y. pestis can evade the host's innate immune response and subsequently disseminate to the draining lymph node (dLN). There, the pathogen replicates to large numbers, causing the pathognomonic bubo of bubonic plague. In this study, several cytometric and microscopic techniques were used to characterize the early host response to intradermal (i.d.) Y. pestis infection. Mice were infected i.d. with fully virulent or attenuated strains of dsRed-expressing Y. pestis, and tissues were analyzed by flow cytometry. By 4 h postinfection, there were large numbers of neutrophils in the infected dermis and the majority of cell-associated bacteria were associated with neutrophils. We observed a significant effect of the virulence plasmid (pCD1) on bacterial survival and neutrophil activation in the dermis. Intravital microscopy of i.d. Y. pestis infection revealed dynamic interactions between recruited neutrophils and bacteria. In contrast, very few bacteria interacted with dendritic cells (DCs), indicating that this cell type may not play a major role early in Y. pestis infection. Experiments using neutrophil depletion and a CCR7 knockout mouse suggest that dissemination of Y. pestis from the dermis to the dLN is not dependent on neutrophils or DCs. Taken together, the results of this study show a very rapid, robust neutrophil response to Y. pestis in the dermis and that the virulence plasmid pCD1 is important for the evasion of this response. Yersinia pestis remains a public health concern today because of sporadic plague outbreaks that occur throughout the world and the potential for its illegitimate use as a bioterrorism weapon. Since bubonic plague pathogenesis is initiated by the introduction of Y. pestis into the skin, we sought to characterize the response of the host's innate immune cells to bacteria early after

  8. Selective Survival of Nonpigmented Mutants in Pasteurella Pestis Cultures

    DTIC Science & Technology

    Differential death rates that occur under certain conditions in cultures of Pasteurella pestis result in dramatic population shifts. Comparable...growth and death rates were observed for pigmented inocula and their nonpigmented variants in a casein digest (NZ-Amine, Sheffield, Type A) medium

  9. Selective isolation of Yersinia pestis from plague-infected fleas

    PubMed Central

    Sarovich, Derek S.; Colman, Rebecca E.; Price, Erin P.; Chung, Wai Kwan; Lee, Judy; Schupp, James M.; Alexander, James; Keim, Paul; Wagner., David M.

    2010-01-01

    We evaluated Yersinia CIN agar for the isolation of Yersinia pestis from infected fleas. CIN media is effective for the differentiation of Y. pestis from flea commensal flora and is sufficiently inhibitory to other bacteria that typically outcompete Y. pestis after 48 hours of growth using less selective media. PMID:20385178

  10. Defective Innate Cell Response and Lymph Node Infiltration Specify Yersinia pestis Infection

    PubMed Central

    Guinet, Françoise; Avé, Patrick; Jones, Louis; Huerre, Michel; Carniel, Elisabeth

    2008-01-01

    Since its recent emergence from the enteropathogen Yersinia pseudotuberculosis, Y. pestis, the plague agent, has acquired an intradermal (id) route of entry and an extreme virulence. To identify pathophysiological events associated with the Y. pestis high degree of pathogenicity, we compared disease progression and evolution in mice after id inoculation of the two Yersinia species. Mortality studies showed that the id portal was not in itself sufficient to provide Y. pseudotuberculosis with the high virulence power of its descendant. Surprisingly, Y. pseudotuberculosis multiplied even more efficiently than Y. pestis in the dermis, and generated comparable histological lesions. Likewise, Y. pseudotuberculosis translocated to the draining lymph node (DLN) and similar numbers of the two bacterial species were found at 24 h post infection (pi) in this organ. However, on day 2 pi, bacterial loads were higher in Y. pestis-infected than in Y. pseudotuberculosis-infected DLNs. Clustering and multiple correspondence analyses showed that the DLN pathologies induced by the two species were statistically significantly different and identified the most discriminating elementary lesions. Y. pseudotuberculosis infection was accompanied by abscess-type polymorphonuclear cell infiltrates containing the infection, while Y. pestis-infected DLNs exhibited an altered tissue density and a vascular congestion, and were typified by an invasion of the tissue by free floating bacteria. Therefore, Y. pestis exceptional virulence is not due to its recently acquired portal of entry into the host, but is associated with a distinct ability to massively infiltrate the DLN, without inducing in this organ an organized polymorphonuclear cell reaction. These results shed light on pathophysiological processes that draw the line between a virulent and a hypervirulent pathogen. PMID:18301765

  11. Defective innate cell response and lymph node infiltration specify Yersinia pestis infection.

    PubMed

    Guinet, Françoise; Avé, Patrick; Jones, Louis; Huerre, Michel; Carniel, Elisabeth

    2008-02-27

    Since its recent emergence from the enteropathogen Yersinia pseudotuberculosis, Y. pestis, the plague agent, has acquired an intradermal (id) route of entry and an extreme virulence. To identify pathophysiological events associated with the Y. pestis high degree of pathogenicity, we compared disease progression and evolution in mice after id inoculation of the two Yersinia species. Mortality studies showed that the id portal was not in itself sufficient to provide Y. pseudotuberculosis with the high virulence power of its descendant. Surprisingly, Y. pseudotuberculosis multiplied even more efficiently than Y. pestis in the dermis, and generated comparable histological lesions. Likewise, Y. pseudotuberculosis translocated to the draining lymph node (DLN) and similar numbers of the two bacterial species were found at 24 h post infection (pi) in this organ. However, on day 2 pi, bacterial loads were higher in Y. pestis-infected than in Y. pseudotuberculosis-infected DLNs. Clustering and multiple correspondence analyses showed that the DLN pathologies induced by the two species were statistically significantly different and identified the most discriminating elementary lesions. Y. pseudotuberculosis infection was accompanied by abscess-type polymorphonuclear cell infiltrates containing the infection, while Y. pestis-infected DLNs exhibited an altered tissue density and a vascular congestion, and were typified by an invasion of the tissue by free floating bacteria. Therefore, Y. pestis exceptional virulence is not due to its recently acquired portal of entry into the host, but is associated with a distinct ability to massively infiltrate the DLN, without inducing in this organ an organized polymorphonuclear cell reaction. These results shed light on pathophysiological processes that draw the line between a virulent and a hypervirulent pathogen.

  12. Fibrin facilitates both innate and T cell-mediated defense against Yersinia pestis.1

    PubMed Central

    Luo, Deyan; Lin, Shiuan; Parent, Michelle A.; Kanevsky, Isis Mullarky; Szaba, Frank M.; Kummer, Lawrence W.; Duso, Debra K.; Tighe, Michael; Hill, Jim; Gruber, Andras; Mackman, Nigel; Gailani, David; Smiley, Stephen T.

    2013-01-01

    The gram-negative bacterium Yersinia pestis causes plague, a rapidly progressing and often fatal disease. The formation of fibrin at sites of Y. pestis infection supports innate host defense against plague, perhaps by providing a non-diffusible spatial cue that promotes the accumulation of inflammatory cells expressing fibrin-binding integrins. This report demonstrates that fibrin is an essential component of T cell-mediated defense against plague but can be dispensable for antibody-mediated defense. Genetic or pharmacologic depletion of fibrin abrogated innate and T cell-mediated defense in mice challenged intranasally with Y. pestis. The fibrin-deficient mice displayed reduced survival, increased bacterial burden, and exacerbated hemorrhagic pathology. They also showed fewer neutrophils within infected lung tissue and reduced neutrophil viability at sites of liver infection. Depletion of neutrophils from wild type mice weakened T cell-mediated defense against plague. The data suggest that T cells combat plague in conjunction with neutrophils, which require help from fibrin in order to withstand Y. pestis encounters and effectively clear bacteria. PMID:23487423

  13. Phenotypic and molecular characterizations of Yersinia pestis isolates from Kazakhstan and adjacent regions.

    PubMed

    Lowell, Jennifer L; Zhansarina, Aigul; Yockey, Brook; Meka-Mechenko, Tatyana; Stybayeva, Gulnaz; Atshabar, Bakyt; Nekrassova, Larissa; Tashmetov, Rinat; Kenghebaeva, Kuralai; Chu, May C; Kosoy, Michael; Antolin, Michael F; Gage, Kenneth L

    2007-01-01

    Recent interest in characterizing infectious agents associated with bioterrorism has resulted in the development of effective pathogen genotyping systems, but this information is rarely combined with phenotypic data. Yersinia pestis, the aetiological agent of plague, has been well defined genotypically on local and worldwide scales using multi-locus variable number tandem repeat analysis (MLVA), with emphasis on evolutionary patterns using old isolate collections from countries where Y. pestis has existed the longest. Worldwide MLVA studies are largely based on isolates that have been in long-term laboratory culture and storage, or on field material from parts of the world where Y. pestis has potentially circulated in nature for thousands of years. Diversity in these isolates suggests that they may no longer represent the wild-type organism phenotypically, including the possibility of altered pathogenicity. This study focused on the phenotypic and genotypic properties of 48 Y. pestis isolates collected from 10 plague foci in and bordering Kazakhstan. Phenotypic characterization was based on diagnostic tests typically performed in reference laboratories working with Y. pestis. MLVA was used to define the genotypic relationships between the central-Asian isolates and a group of North American isolates, and to examine Kazakh Y. pestis diversity according to predefined plague foci and on an intermediate geographical scale. Phenotypic properties revealed that a large portion of this collection lacks one or more plasmids necessary to complete the blocked flea/mammal transmission cycle, has lost Congo red binding capabilities (Pgm-), or both. MLVA analysis classified isolates into previously identified biovars, and in some cases groups of isolates collected within the same plague focus formed a clade. Overall, MLVA did not distinguish unique phylogeographical groups of Y. pestis isolates as defined by plague foci and indicated higher genetic diversity among older biovars.

  14. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats.

    PubMed

    Cui, Yujun; Li, Yanjun; Gorgé, Olivier; Platonov, Mikhail E; Yan, Yanfeng; Guo, Zhaobiao; Pourcel, Christine; Dentovskaya, Svetlana V; Balakhonov, Sergey V; Wang, Xiaoyi; Song, Yajun; Anisimov, Andrey P; Vergnaud, Gilles; Yang, Ruifu

    2008-07-09

    Yersinia pestis, the pathogen of plague, has greatly influenced human history on a global scale. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), an element participating in immunity against phages' invasion, is composed of short repeated sequences separated by unique spacers and provides the basis of the spoligotyping technology. In the present research, three CRISPR loci were analyzed in 125 strains of Y. pestis from 26 natural plague foci of China, the former Soviet Union and Mongolia were analyzed, for validating CRISPR-based genotyping method and better understanding adaptive microevolution of Y. pestis. Using PCR amplification, sequencing and online data processing, a high degree of genetic diversity was revealed in all three CRISPR elements. The distribution of spacers and their arrays in Y. pestis strains is strongly region and focus-specific, allowing the construction of a hypothetic evolutionary model of Y. pestis. This model suggests transmission route of microtus strains that encircled Takla Makan Desert and ZhunGer Basin. Starting from Tadjikistan, one branch passed through the Kunlun Mountains, and moved to the Qinghai-Tibet Plateau. Another branch went north via the Pamirs Plateau, the Tianshan Mountains, the Altai Mountains and the Inner Mongolian Plateau. Other Y. pestis lineages might be originated from certain areas along those routes. CRISPR can provide important information for genotyping and evolutionary research of bacteria, which will help to trace the source of outbreaks. The resulting data will make possible the development of very low cost and high-resolution assays for the systematic typing of any new isolate.

  15. Amino acid and structural variability of Yersinia pestis LcrV protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimov, A P; Dentovskaya, S V; Panfertsev, E A

    2009-11-09

    The LcrV protein is a multifunctional virulence factor and protective antigen of the plague bacterium which is generally conserved between the epidemic strains of Yersinia pestis. They investigated the diversity in the LcrV sequences among non-epidemic Y. pestis strains which have a limited virulence in selected animal models and for humans. Sequencing of lcrV genes from ten Y. pestis strains belonging to different phylogenetic groups (subspecies) showed that the LcrV proteins possess four major variable hotspots at positions 18, 72, 273, and 324-326. These major variations, together with other minor substitutions in amino acid sequences, allowed them to classify themore » LcrV alleles into five sequence types (A-E). They observed that the strains of different Y. pestis subspecies can have the same typ of LcrV, and different types of LcrV can exist within the same natural plague focus. The LcrV polymorphisms were structurally analyzed by comparing the modeled structures of LcrV from all available strains. All changes except one occurred either in flexible regions or on the surface of the protein, but local chemical properties (i.e. those of a hydrophobic, hydrophilic, amphipathic, or charged nature) were conserved across all of the strains. Polymorphisms in flexible and surface regions are likely subject to less selective pressure, and have a limited impact on the structure. In contrast, the substitution of tryptophan at position 113 with either glutamic acid or glycine likely has a serious influence on the regional structure of the protein, and these mutations might have an effect on the function of LcrV. The polymorphisms at positions 18, 72 and 273 were accountable for differences in oligomerization of LcrV. The importance of the latter property in emergence of epidemic strains of Y. pestis during evolution of this pathogen will need to be further investigated.« less

  16. [Yersinia pestis and plague - an update].

    PubMed

    Stock, Ingo

    2014-12-01

    The plague of man is a severe, systemic bacterial infectious disease. Without antibacterial therapy, the disease is associated with a high case fatality rate, ranging from 40% (bubonic plague) to nearly 100% (septicemic and pneumonic plague). The disease is caused by Yersinia pestis, a non-motile, gram-negative, facultative anaerobic bacterium belonging to the family of Enterobacteriaceae. In nature, Y. pestis has been found in several rodent species and some other small animals such as shrews. Within its reservoir host, Y. pestis circulates via flea bites. Transmission of Y. pestis to humans occurs by the bite of rat fleas, other flea vectors or by non vectorial routes, e. g., handling infected animals or consumption of contaminated food. Human-to-human transmission of the pathogen occurs primarily through aerosol droplets. Compared to the days when plague was a pandemic scourge, the disease is now relatively rare and limited to some rural areas of Africa. During the last ten years, however, plague outbreaks have been registered repea- tedly in some African regions. For treatment of plague, streptomycin is still considered the drug of choice. Chloramphenicol, doxycycline, gentamicin and ciprofloxacin are also promising drugs. Recombinant vaccines against plague are in clinical development.

  17. MarA-Like Regulator of Multidrug Resistance in Yersinia pestis

    PubMed Central

    Udani, Rupa A.; Levy, Stuart B.

    2006-01-01

    MarA47Yp from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47Yp gene was overexpressed. The findings suggest that marA47Yp is a marA ortholog in Y. pestis. PMID:16940090

  18. MarA-like regulator of multidrug resistance in Yersinia pestis.

    PubMed

    Udani, Rupa A; Levy, Stuart B

    2006-09-01

    MarA47(Yp) from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47(Yp) gene was overexpressed. The findings suggest that marA47(Yp) is a marA ortholog in Y. pestis.

  19. Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda.

    PubMed

    Respicio-Kingry, Laurel B; Yockey, Brook M; Acayo, Sarah; Kaggwa, John; Apangu, Titus; Kugeler, Kiersten J; Eisen, Rebecca J; Griffith, Kevin S; Mead, Paul S; Schriefer, Martin E; Petersen, Jeannine M

    2016-02-01

    Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Since the 1990s, Africa has accounted for the majority of reported human cases. In Uganda, plague cases occur in the West Nile region, near the border with Democratic Republic of Congo. Despite the ongoing risk of contracting plague in this region, little is known about Y. pestis genotypes causing human disease. During January 2004-December 2012, 1,092 suspect human plague cases were recorded in the West Nile region of Uganda. Sixty-one cases were culture-confirmed. Recovered Y. pestis isolates were analyzed using three typing methods, single nucleotide polymorphisms (SNPs), pulsed field gel electrophoresis (PFGE), and multiple variable number of tandem repeat analysis (MLVA) and subpopulations analyzed in the context of associated geographic, temporal, and clinical data for source patients. All three methods separated the 61 isolates into two distinct 1.ANT lineages, which persisted throughout the 9 year period and were associated with differences in elevation and geographic distribution. We demonstrate that human cases of plague in the West Nile region of Uganda are caused by two distinct 1.ANT genetic subpopulations. Notably, all three typing methods used, SNPs, PFGE, and MLVA, identified the two genetic subpopulations, despite recognizing different mutation types in the Y. pestis genome. The geographic and elevation differences between the two subpopulations is suggestive of their maintenance in highly localized enzootic cycles, potentially with differing vector-host community composition. This improved understanding of Y. pestis subpopulations in the West Nile region will be useful for identifying ecologic and environmental factors associated with elevated plague risk.

  20. SELECTIVE MEDIA FOR THE ISOLATION OF PASTEURELLA PESTIS

    PubMed Central

    Knisely, Ralph F.; Swaney, Lois M.; Friedlander, Harold

    1964-01-01

    Knisely, Ralph F. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.), Lois M. Swaney, and Harold Friedlander. Selective media for the isolation of Pasteurella pestis. J. Bacteriol. 88:491–496. 1964.—Several selective media are described that were successfully used to isolate virulent and avirulent strains of Pasteurella pestis from material heavily contaminated with other organisms. These media are comparatively easy to prepare, consist of readily available ingredients, and usually require no adjustment of the pH. One of the selective media described permits excellent recovery and the growth of large, easily distinguishable colonies of P. pestis in 48 hr at 26 C, and also allows the detection of fewer numbers of P. pestis organisms in soil than a previously recommended selective medium. The inhibition of other organisms frequently present in clinical specimens is described. Images PMID:14203368

  1. [COMPARATIVE ANALYSIS OF THE MLVA25- AND MLVA7-TYPING ACCORDING TO THEIR ABILITY TO ASCERTAIN FOCAL AFFILIATION OF YERSINIA PESTIS STRAINS BY THE EXAMPLE OF ISOLATES FROM THE CENTRAL-CAUCASIAN HIGHLAND NATURAL PLAGUE FOCUS].

    PubMed

    Evseeva, V V; Platonov, M E; Govorunov, I G; Efremenko, D V; Kuznetsova, I V; Dentovskaya, S V; Kulichenko, A N; Anisimov, A P

    2016-01-01

    Comparative analysis of the MLVA25- and MLVA7-typing ability to evaluate focal belonging of Y. pestis strains by the example of bv. medievalis isolates from the Central-Caucasian highland natural plague focus was carried out. The MLVA25-types of-82 isolates from this area were determined and included into the database containing information on 949 Y. pestis strains from other natural foci of Russia and other countries. Categorical-UPGMA dendrograms were created on the bases of the data concerning all 25 VNTR loci or only seven of them, which were recommended by the experts of the Russian Research Anti-Plague Institute "Microbe" for differentiation of the Y. pestis strains according to their affiliation to specific foci. The obtained data indicated greater possibility of diagnostic mistakes in the case of the MLVA7-typing and supported expediency of division of the Central-Caucasian highland natural plague focus into two sub-foci.

  2. Na+/H+ antiport is essential for Yersinia pestis virulence.

    PubMed

    Minato, Yusuke; Ghosh, Amit; Faulkner, Wyatt J; Lind, Erin J; Schesser Bartra, Sara; Plano, Gregory V; Jarrett, Clayton O; Hinnebusch, B Joseph; Winogrodzki, Judith; Dibrov, Pavel; Häse, Claudia C

    2013-09-01

    Na(+)/H(+) antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na(+)/H(+) antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na(+)/H(+) antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na(+) levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na(+)/H(+) antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens.

  3. The NLRP12 inflammasome recognizes Yersinia pestis

    PubMed Central

    Vladimer, Gregory I.; Weng, Dan; Paquette, Sara W. Montminy; Vanaja, Sivapriya Kailasan; Rathinam, Vijay A. K.; Aune, Marie Hjelmseth; Conlon, Joseph E.; Burbage, Joseph J.; Proulx, Megan K.; Liu, Qin; Reed, George; Mecsas, Joan C.; Iwakura, Yoichiro; Bertin, John; Goguen, Jon D.; Fitzgerald, Katherine A.; Lien, Egil

    2013-01-01

    Summary Yersinia pestis, the causative agent of plague, is able to suppress production of inflammatory cytokines IL-18 and IL-1β, which are generated through caspase-1–activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. Here, we sought to elucidate the role of NLRs and IL-18 during plague. Lack of IL-18 signaling led to increased susceptibility to Y. pestis, producing tetra-acylated lipid A,and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. We found that the NLRP12 inflammasome was an important regulator controlling IL-18 and IL-1β production after Y. pestis infection, and NLRP12-deficient mice were more susceptible to bacterial challenge. NLRP12 also directed interferon-γ production via induction of IL-18, but had minimal effect on signaling to the transcription factor NF-κB._ These studies reveal a role for NLRP12 in host resistance against pathogens. Minimizing NLRP12 inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis. PMID:22840842

  4. Developing live vaccines against Yersinia pestis

    PubMed Central

    Sun, Wei; Roland, Kenneth L.; Curtiss, Roy

    2014-01-01

    Three great plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people and it has been linked to biowarfare in the past. Plague is endemic in many parts of the world. In addition, the risk of plague as a bioweapon has prompted increased research to develop plague vaccines against this disease. Injectable subunit vaccines are being developed in the United States and United Kingdom. However, the live attenuated Y. pestis-EV NIIEG strain has been used as a vaccine for more than 70 years in the former Soviet Union and in some parts of Asia and provides a high degree of efficacy against plague. This vaccine has not gained general acceptance because of safety concerns. In recent years, modern molecular biological techniques have been applied to Y. pestis to construct strains with specific defined mutations designed to create safe, immunogenic vaccines with potential for use in humans and as bait vaccines to reduce the load of Y. pestis in the environment. In addition, a number of live, vectored vaccines have been reported using attenuated viral vectors or attenuated Salmonella strains to deliver plague antigens. Here we summarize the progress of live attenuated vaccines against plague. PMID:21918302

  5. Yersinia pestis--etiologic agent of plague.

    PubMed Central

    Perry, R D; Fetherston, J D

    1997-01-01

    Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague. PMID:8993858

  6. Genotyping of Global Yersinia Pestis Isolates by Using IS285

    DTIC Science & Technology

    2006-11-01

    clones and to detect their geographical/ animal origin. 1. INTRODUCTION Yersinia pestis is the causative agent of plague circulating in natural...foci among about 200 species of rodents and lagomorphs. Humans usually become infected from animals via fleabites and display the bubonic form of...philogenetic relationships between Y. pestis strains, their potential geographical and animal origin. 2. GENOTYPING OF Y. PESTIS – CLUSTERING

  7. An additional step in the transmission of Yersinia pestis?

    PubMed Central

    Easterday, W Ryan; Kausrud, Kyrre L; Star, Bastiaan; Heier, Lise; Haley, Bradd J; Ageyev, Vladimir; Colwell, Rita R; Stenseth, Nils Chr

    2012-01-01

    Plague, caused by the bacterium Yersinia pestis, is a mammalian vector-borne disease, transmitted by fleas that serve as the vector between rodent hosts. For many pathogens, including Y. pestis, there are strong evolutionary pressures that lead to a reduction in ‘useless genes', with only those retained that reflect function in the specific environment inhabited by the pathogen. Genetic traits critical for survival and transmission between two environments, the rodent and the flea, are conserved in epizootic/epidemic plague strains. However, there are genes that remain conserved for which no function in the flea–rodent cycle has yet been observed, indicating an additional environment may exist in the transmission cycle of plague. Here, we present evidence for highly conserved genes that suggests a role in the persistence of Y. pestis after death of its host. Furthermore, maintenance of these genes points to Y. pestis traversing a post-mortem path between, and possibly within, epizootic periods and offering insight into mechanisms that may allow Y. pestis an alternative route of transmission in the natural environment. PMID:21833036

  8. Yersinia pestis Ail: multiple roles of a single protein

    PubMed Central

    Kolodziejek, Anna M.; Hovde, Carolyn J.; Minnich, Scott A.

    2012-01-01

    Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen. PMID:22919692

  9. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.

    PubMed

    Bland, David M; Eisele, Nicholas A; Keleher, Lauren L; Anderson, Paul E; Anderson, Deborah M

    2011-03-02

    Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP) pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX) operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.

  10. Polymorphisms in the lcrV gene of Yersinia enterocolitica and their effect on plague protective immunity.

    PubMed

    Miller, Nathan C; Quenee, Lauriane E; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf

    2012-04-01

    Current efforts to develop plague vaccines focus on LcrV, a polypeptide that resides at the tip of type III secretion needles. LcrV-specific antibodies block Yersinia pestis type III injection of Yop effectors into host immune cells, thereby enabling phagocytes to kill the invading pathogen. Earlier work reported that antibodies against Y. pestis LcrV cannot block type III injection by Yersinia enterocolitica strains and suggested that lcrV polymorphisms may provide for escape from LcrV-mediated plague immunity. We show here that polyclonal or monoclonal antibodies raised against Y. pestis KIM D27 LcrV (LcrV(D27)) bind LcrV from Y. enterocolitica O:9 strain W22703 (LcrV(W22703)) or O:8 strain WA-314 (LcrV(WA-314)) but are otherwise unable to block type III injection by Y. enterocolitica strains. Replacing the lcrV gene on the pCD1 virulence plasmid of Y. pestis KIM D27 with either lcrV(W22703) or lcrV(WA-314) does not affect the ability of plague bacteria to secrete proteins via the type III pathway, to inject Yops into macrophages, or to cause lethal plague infections in mice. LcrV(D27)-specific antibodies blocked type III injection by Y. pestis expressing lcrV(W22703) or lcrV(WA-314) and protected mice against intravenous lethal plague challenge with these strains. Thus, although antibodies raised against LcrV(D27) are unable to block the type III injection of Y. enterocolitica strains, expression of lcrV(W22703) or lcrV(WA-314) in Y. pestis did not allow these strains to escape LcrV-mediated plague protective immunity in the intravenous challenge model.

  11. IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM.

    PubMed

    Chung, Lawton K; Philip, Naomi H; Schmidt, Valentina A; Koller, Antonius; Strowig, Till; Flavell, Richard A; Brodsky, Igor E; Bliska, James B

    2014-07-01

    YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM(-) YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopM(YPIII). To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM(32777)) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopM(KIM)) or inactivated (YopM(KIM) D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM(32777), YopM(KIM), and YopM(KIM) D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopM(KIM) deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM(32777), YopM(KIM), and YopM(KIM) deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopM(KIM) but not YopM(32777). Additionally, YopM(KIM) bound IQGAP1 and the use of Iqgap1(-/-) macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM(-) Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopM(KIM) target IQGAP1, a novel regulator of caspase-1, in macrophages. Importance: Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert

  12. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    PubMed Central

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  13. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.

    PubMed

    Eddy, J L; Schroeder, J A; Zimbler, D L; Caulfield, A J; Lathem, W W

    2016-09-01

    Essentials Effect of plasminogen activator inhibitor (PAI)-1 on plague and its Y. pestis cleavage is unknown. An intranasal mouse model of infection was used to determine the role of PAI-1 in pneumonic plague. PAI-1 is cleaved and inactivated by the Pla protease of Y. pestis in the lung airspace. PAI-1 impacts both bacterial outgrowth and the immune response to respiratory Y. pestis infection. Click to hear Dr Bock discuss pathogen activators of plasminogen. Background The hemostatic regulator plasminogen activator inhibitor-1 (PAI-1) inactivates endogenous plasminogen activators and aids in the immune response to bacterial infection. Yersinia pestis, the causative agent of plague, produces the Pla protease, a virulence factor that is required during plague. However, the specific hemostatic proteins cleaved by Pla in vivo that contribute to pathogenesis have not yet been fully elucidated. Objectives To determine whether PAI-1 is cleaved by the Pla protease during pneumonic plague, and to define the impact of PAI-1 on Y. pestis respiratory infection in the presence or absence of Pla. Methods An intranasal mouse model of pneumonic plague was used to assess the levels of total and active PAI-1 in the lung airspace, and the impact of PAI-1 deficiency on bacterial pathogenesis, the host immune response and plasmin generation following infection with wild-type or ∆pla Y. pestis. Results We found that Y. pestis cleaves and inactivates PAI-1 in the lungs in a Pla-dependent manner. The loss of PAI-1 enhances Y. pestis outgrowth in the absence of Pla, and is associated with increased conversion of plasminogen to plasmin. Furthermore, we found that PAI-1 regulates immune cell recruitment, cytokine production and tissue permeability during pneumonic plague. Conclusions Our data demonstrate that PAI-1 is an in vivo target of the Pla protease in the lungs, and that PAI-1 is a key regulator of the pulmonary innate immune response. We conclude that the inactivation of PAI-1 by Y

  14. yadBC of Yersinia pestis, a new virulence determinant for bubonic plague.

    PubMed

    Forman, Stanislav; Wulff, Christine R; Myers-Morales, Tanya; Cowan, Clarissa; Perry, Robert D; Straley, Susan C

    2008-02-01

    In all Yersinia pestis strains examined, the adhesin/invasin yadA gene is a pseudogene, yet Y. pestis is invasive for epithelial cells. To identify potential surface proteins that are structurally and functionally similar to YadA, we searched the Y. pestis genome for open reading frames with homology to yadA and found three: the bicistronic operon yadBC (YPO1387 and YPO1388 of Y. pestis CO92; y2786 and y2785 of Y. pestis KIM5), which encodes two putative surface proteins, and YPO0902, which lacks a signal sequence and likely is nonfunctional. In this study we characterized yadBC regulation and tested the importance of this operon for Y. pestis adherence, invasion, and virulence. We found that loss of yadBC caused a modest loss of invasiveness for epithelioid cells and a large decrease in virulence for bubonic plague but not for pneumonic plague in mice.

  15. Yersinia pestis Survival and Replication in Potential Ameba Reservoir

    PubMed Central

    Antolin, Michael F.; Bowen, Richard A.; Wheat, William H.; Woods, Michael; Gonzalez-Juarrero, Mercedes; Jackson, Mary

    2018-01-01

    Plague ecology is characterized by sporadic epizootics, then periods of dormancy. Building evidence suggests environmentally ubiquitous amebae act as feral macrophages and hosts to many intracellular pathogens. We conducted environmental genetic surveys and laboratory co-culture infection experiments to assess whether plague bacteria were resistant to digestion by 5 environmental ameba species. First, we demonstrated that Yersinia pestis is resistant or transiently resistant to various ameba species. Second, we showed that Y. pestis survives and replicates intracellularly within Dictyostelium discoideum amebae for ˃48 hours postinfection, whereas control bacteria were destroyed in <1 hour. Finally, we found that Y. pestis resides within ameba structures synonymous with those found in infected human macrophages, for which Y. pestis is a competent pathogen. Evidence supporting amebae as potential plague reservoirs stresses the importance of recognizing pathogen-harboring amebae as threats to public health, agriculture, conservation, and biodefense. PMID:29350155

  16. Evaluation of swabs and transport media for the recovery of Yersinia pestis.

    PubMed

    Gilbert, Sarah E; Rose, Laura J; Howard, Michele; Bradley, Meranda D; Shah, Sanjiv; Silvestri, Erin; Schaefer, Frank W; Noble-Wang, Judith

    2014-01-01

    The Government Accountability Office report investigating the surface sampling methods used during the 2001 mail contamination with Bacillus anthracis brought to light certain knowledge gaps that existed regarding environmental sampling with biothreat agents. Should a contamination event occur that involves non-spore forming biological select agents, such as Yersinia pestis, surface sample collection and processing protocols specific for these organisms will be needed. Two Y. pestis strains (virulent and avirulent), four swab types (polyester, macrofoam, rayon, and cotton), two pre-moistening solutions, six transport media, three temperatures, two levels of organic load, and four processing methods (vortexing, sonicating, combined sonicating and vortexing, no agitation) were evaluated to determine the conditions that would yield the highest percent of cultivable Y. pestis cells after storage. The optimum pre-moistening agent/transport media combination varied with the Y. pestis strain and swab type. Directly inoculated macrofoam swabs released the highest percent of cells into solution (93.9% recovered by culture) and rayon swabs were considered the second best swab option (77.0% recovered by culture). Storage at 4°C was found to be optimum for all storage times and transport media. In a worst case scenario, where the Y. pestis strain is not known and sample processing and analyses could not occur until 72h after sampling, macrofoam swabs pre-moistened with PBS supplemented with 0.05% Triton X-100 (PBSTX), stored at 4°C in neutralizing buffer (NB) as a transport medium (PBSTX/NB) or pre-moistened with NB and stored in PBSTX as a transport medium (NB/PBSTX), then vortexed 3min in the transport medium, performed significantly better than all other conditions for macrofoam swabs, regardless of strain tested (mean 12 - 72h recovery of 85.9-105.1%, p<0.001). In the same scenario, two combinations of pre-moistening medium/transport medium were found to be optimal for

  17. Variability of the protein sequences of lcrV between epidemic and atypical rhamnose-positive strains of Yersinia pestis.

    PubMed

    Anisimov, Andrey P; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Dentovskaya, Svetlana V

    2007-01-01

    Sequencing of lcrV genes and comparison of the deduced amino acid sequences from ten Y. pestis strains belonging mostly to the group of atypical rhamnose-positive isolates (non-pestis subspecies or pestoides group) showed that the LcrV proteins analyzed could be classified into five sequence types. This classification was based on major amino acid polymorphisms among LcrV proteins in the four "hot points" of the protein sequences. Some additional minor polymorphisms were found throughout these sequence types. The "hot points" corresponded to amino acids 18 (Lys --> Asn), 72 (Lys --> Arg), 273 (Cys --> Ser), and 324-326 (Ser-Gly-Lys --> Arg) in the LcrV sequence of the reference Y. pestis strain CO92. One possible explanation for polymorphism in amino acid sequences of LcrV among different strains is that strain-specific variation resulted from adaptation of the plague pathogen to different rodent and lagomorph hosts.

  18. Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague.

    PubMed

    Lemaître, Nadine; Sebbane, Florent; Long, Daniel; Hinnebusch, B Joseph

    2006-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system that transfers six Yop effector proteins into host cells. One of these proteins, YopJ, has been shown to disrupt host cell signaling pathways involved in proinflammatory cytokine production and to induce macrophage apoptosis in vitro. YopJ-dependent apoptosis in mesenteric lymph nodes has also been demonstrated in a mouse model of Yersinia pseudotuberculosis infection. These results suggest that YopJ attenuates the host innate and adaptive immune response during infection, but the role of YopJ during bubonic plague has not been completely established. We evaluated the role of Yersinia pestis YopJ in a rat model of bubonic plague following intradermal infection with a fully virulent Y. pestis strain and an isogenic yopJ mutant. Deletion of yopJ resulted in a twofold decrease in the number of apoptotic immune cells in the bubo and a threefold increase in serum tumor necrosis factor alpha levels but did not result in decreased virulence, systemic spread, or colonization levels in the spleen and blood. Our results indicate that YopJ is not essential for bubonic plague pathogenesis, even after peripheral inoculation of low doses of Y. pestis. Instead, the effects of YopJ appear to overlap and augment the immunomodulatory effects of other Y. pestis virulence factors.

  19. Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence*

    PubMed Central

    Ratner, Dmitry; Orning, M. Pontus A.; Starheim, Kristian K.; Marty-Roix, Robyn; Proulx, Megan K.; Goguen, Jon D.; Lien, Egil

    2016-01-01

    Innate immunity plays a central role in resolving infections by pathogens. Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is favored by a robust early innate immune response initiated by IL-1β and IL-18. These cytokines are produced by a two-step mechanism involving NF-κB-mediated pro-cytokine production and inflammasome-driven maturation into bioactive inflammatory mediators. Because of the anti-microbial effects induced by IL-1β/IL-18, it may be desirable for pathogens to manipulate their production. Y. pestis type III secretion system effectors YopJ and YopM can interfere with different parts of this process. Both effectors have been reported to influence inflammasome caspase-1 activity; YopJ promotes caspase-8-dependent cell death and caspase-1 cleavage, whereas YopM inhibits caspase-1 activity via an incompletely understood mechanism. However, neither effector appears essential for full virulence in vivo. Here we report that the sum of influences by YopJ and YopM on IL-1β/IL-18 release is suppressive. In the absence of YopM, YopJ minimally affects caspase-1 cleavage but suppresses IL-1β, IL-18, and other cytokines and chemokines. Importantly, we find that Y. pestis containing combined deletions of YopJ and YopM induces elevated levels of IL-1β/IL-18 in vitro and in vivo and is significantly attenuated in a mouse model of bubonic plague. The reduced virulence of the YopJ-YopM mutant is dependent on the presence of IL-1β, IL-18, and caspase-1. Thus, we conclude that Y. pestis YopJ and YopM can both exert a tight control of host IL-1β/IL-18 production to benefit the bacteria, resulting in a redundant impact on virulence. PMID:26884330

  20. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  1. Roles of Chaperone/Usher Pathways of Yersinia pestis in a Murine Model of Plague and Adhesion to Host Cells

    PubMed Central

    Hatkoff, Matthew; Runco, Lisa M.; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B.; Bliska, James B.

    2012-01-01

    Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague. PMID:22851745

  2. Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells.

    PubMed

    Hatkoff, Matthew; Runco, Lisa M; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B; Bliska, James B; Thanassi, David G

    2012-10-01

    Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague.

  3. Distinct CCR2(+) Gr1(+) cells control growth of the Yersinia pestis ΔyopM mutant in liver and spleen during systemic plague.

    PubMed

    Ye, Zhan; Uittenbogaard, Annette M; Cohen, Donald A; Kaplan, Alan M; Ambati, Jayakrishna; Straley, Susan C

    2011-02-01

    We are using a systemic plague model to identify the cells and pathways that are undermined by the virulence protein YopM of the plague bacterium Yersinia pestis. In this study, we pursued previous findings that Gr1(+) cells are required to selectively limit growth of ΔyopM Y. pestis and that CD11b(+) cells other than polymorphonuclear leukocytes (PMNs) are selectively lost in spleens infected with parent Y. pestis. When PMNs were ablated from mice, ΔyopM Y. pestis grew as well as the parent strain in liver but not in spleen, showing that these cells are critical for controlling growth of the mutant in liver but not spleen. In mice lacking expression of the chemokine receptor CCR2, wild-type growth was restored to ΔyopM Y. pestis in both organs. In spleen, the Gr1(+) cells differentially recruited by parent and ΔyopM Y. pestis infections were CCR2(+) Gr1(+) CD11b(+) CD11c(Lo-Int) MAC3(+) iNOS(+) (inducible nitric oxide synthase-positive) inflammatory dendritic cells (iDCs), and their recruitment to spleen from blood was blocked when YopM was present in the infecting strain. Consistent with influx of iDCs being affected by YopM in spleen, the growth defect of the ΔyopM mutant was relieved by the parent Y. pestis strain in a coinfection assay in which the parent strain could affect the fate of the mutant in trans. In a mouse model of bubonic plague, CCR2 also was shown to be required for ΔyopM Y. pestis to show wild-type growth in skin. The data imply that YopM's pathogenic effect indirectly undermines signaling through CCR2. We propose a model for how YopM exerts its different effects in liver and spleen.

  4. Ecology of Yersinia pestis and the Epidemiology of Plague.

    PubMed

    Dubyanskiy, Vladimir M; Yeszhanov, Aidyn B

    2016-01-01

    This chapter summarizes information about the natural foci of plague in the world. We describe the location, main hosts, and vectors of Yersinia pestis. The ecological features of the hosts and vectors of plague are listed, including predators - birds and mammals and their role in the epizootic. The epizootic process in plague and the factors affecting the dynamics of epizootic activity of natural foci of Y. pestis are described in detail. The mathematical models of the epizootic process in plague and predictive models are briefly described. The most comprehensive list of the hosts and vectors of Y. pestis in the world is presented as well.

  5. Expression profiling of Yersinia pestis during mouse pulmonary infection.

    PubMed

    Lawson, Jonathan N; Lyons, C Rick; Johnston, Stephen Albert

    2006-11-01

    Yersinia pestis, the causative agent of plague, can be transmitted by infected flea bite or inhaled aerosol. Both routes of infection have a high mortality rate, and pneumonic infections of Y. pestis represent a significant concern as a tool of bioterrorism. Understanding the transcriptional program of this pathogen during pulmonary infection should be valuable in understanding plague pathogenesis, as well as potentially offering insights into new vaccines and therapeutics. Toward this goal we developed a long oligonucleotide microarray to the plague bacillus and evaluated the expression profiles of Y. pestis in vitro and in the mouse pulmonary infection model in vivo. The in vitro analysis compared expression patterns at 27 versus 37 degrees C, as a surrogate of the transition from the flea to the mammalian host. The in vivo analysis used intranasal challenge to the mouse lung. By amplifying the Y. pestis RNA from individual mouse lungs we were able to map the transcriptional profile of plague at postinfection days 1 to 3. Our data present a very different transcriptional profile between in vivo and in vitro expression, suggesting Y. pestis responds to a variety of host signals during infection. Of note was the number of genes found in genomic regions with altered %GC content that are upregulated within the mouse lung environment. These data suggest these regions may provide particularly promising targets for both vaccines and therapeutics.

  6. Pneumonic Plague: The Darker Side of Yersinia pestis.

    PubMed

    Pechous, Roger D; Sivaraman, Vijay; Stasulli, Nikolas M; Goldman, William E

    2016-03-01

    Inhalation of the bacterium Yersinia pestis results in primary pneumonic plague. Pneumonic plague is the most severe manifestation of plague, with mortality rates approaching 100% in the absence of treatment. Its rapid disease progression, lethality, and ability to be transmitted via aerosol have compounded fears of the intentional release of Y. pestis as a biological weapon. Importantly, recent epidemics of plague have highlighted a significant role for pneumonic plague during outbreaks of Y. pestis infections. In this review we describe the characteristics of pneumonic plague, focusing on its disease progression and pathogenesis. The rapid time-course, severity, and difficulty of treating pneumonic plague highlight how differences in the route of disease transmission can enhance the lethality of an already deadly pathogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [Advance on genome research of Yersinia pestis bacteriophage].

    PubMed

    Tan, H L; Wang, P; Li, W

    2017-04-10

    Completion of the genome sequences on Yersinia pestis bacteriophage offered unprecedented opportunity for researchers to carry out related genomic studies. This review was based on the genomic sequences and provided a genomic perspective in describing the essential features of genome on Yersinia pestis bacteriophage. Based on the comparative genomics, genetic evolutionary relationship was discussed. Description of functions from the gene prediction and protein annotation provided evidence for further related studies.

  8. Quantitative competitive PCR as a technique for exploring flea-Yersina pestis dynamics.

    PubMed

    Engelthaler, D M; Hinnebusch, B J; Rittner, C M; Gage, K L

    2000-05-01

    We used a quantitative competitive polymerase chain reaction assay to quantify Yersinia pestis loads in fleas and bacteremia levels in mice that were used as sources of infectious blood meals for feeding the fleas. Xenopsylla cheopis, the Oriental rat flea, achieved higher infection rates, developed greater bacterial loads, and became infectious more rapidly than Oropsylla montana, a ground squirrel flea. Both flea species required about 10(6) Y. pestis cells per flea to be able to transmit to mice. Most fleas that achieved these levels, however, were incapable of transmitting. Our results suggest that at the time of flea feeding, host blood must contain > or = 10(6) bacteria/ml to result in detectable Y. pestis infections in these fleas, and > or = 10(7) bacteria/mL to cause infection levels sufficient for both species to eventually become capable of transmitting Y. pestis to uninfected mice. Yersinia pestis colonies primarily developed in the midguts of O. montana, whereas infections in X. cheopis often developed simultaneously in the proventriculus and the midgut. These findings were visually confirmed by infecting fleas with a strain of Y. pestis that had been transformed with the green fluorescent protein gene.

  9. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chain, Patrick S. G.; Carniel, E.; Larimer, Frank W

    2004-09-01

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here, we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons with available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveal 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, to our knowledge, represent the only new genetic material in Y. pestis acquired since themore » the divergence from Y. pseudotuberculosis. In contrast, 149 other pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive insertion sequence-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of preexisting gene expression pathways, appear to be more important than acquisition of genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.« less

  10. Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis

    PubMed Central

    Pennington, Jarrod; Miller, Virginia L.

    2013-01-01

    SUMMARY Autotransporters, the largest family of secreted proteins in Gram negative bacteria, perform a variety of functions, including adherence, cytotoxicity, and immune evasion. In Yersinia pestis the autotransporter YapE has adhesive properties and contributes to bubonic infection of the mouse model. Here, we demonstrate that omptin cleavage of Y. pestis YapE is required to mediate bacterial aggregation and adherence to eukaryotic cells. We demonstrate that omptin cleavage is specific for the Y. pestis and Y. pseudotuberculosis YapE orthologs but is not conserved in the Y. enterocolitica protein. We also show that cleavage of YapE occurs in Y. pestis but not in the enteric Yersinia species, and requires the omptin Pla (plasminogen activator protease), which is encoded on the Y. pestis-specific plasmid pPCP1. Together, these data show that post-translation modification of YapE appears to be specific to Y. pestis, was acquired along with the acquisition of pPCP1 during the divergence of Y. pestis from Y. pseudotuberculosis, and are the first evidence of a novel mechanism to regulate bacterial adherence. PMID:23701256

  11. Diverse Genotypes of Yersinia pestis Caused Plague in Madagascar in 2007.

    PubMed

    Riehm, Julia M; Projahn, Michaela; Vogler, Amy J; Rajerison, Minoaerisoa; Andersen, Genevieve; Hall, Carina M; Zimmermann, Thomas; Soanandrasana, Rahelinirina; Andrianaivoarimanana, Voahangy; Straubinger, Reinhard K; Nottingham, Roxanne; Keim, Paul; Wagner, David M; Scholz, Holger C

    2015-06-01

    Yersinia pestis is the causative agent of human plague and is endemic in various African, Asian and American countries. In Madagascar, the disease represents a significant public health problem with hundreds of human cases a year. Unfortunately, poor infrastructure makes outbreak investigations challenging. DNA was extracted directly from 93 clinical samples from patients with a clinical diagnosis of plague in Madagascar in 2007. The extracted DNAs were then genotyped using three molecular genotyping methods, including, single nucleotide polymorphism (SNP) typing, multi-locus variable-number tandem repeat analysis (MLVA), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) analysis. These methods provided increasing resolution, respectively. The results of these analyses revealed that, in 2007, ten molecular groups, two newly described here and eight previously identified, were responsible for causing human plague in geographically distinct areas of Madagascar. Plague in Madagascar is caused by numerous distinct types of Y. pestis. Genotyping method choice should be based upon the discriminatory power needed, expense, and available data for any desired comparisons. We conclude that genotyping should be a standard tool used in epidemiological investigations of plague outbreaks.

  12. Delineation and analysis of chromosomal regions specifying Yersinia pestis.

    PubMed

    Derbise, Anne; Chenal-Francisque, Viviane; Huon, Christèle; Fayolle, Corinne; Demeure, Christian E; Chane-Woon-Ming, Béatrice; Médigue, Claudine; Hinnebusch, B Joseph; Carniel, Elisabeth

    2010-09-01

    Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore

  13. Distinct clones of Yersinia pestis caused the black death.

    PubMed

    Haensch, Stephanie; Bianucci, Raffaella; Signoli, Michel; Rajerison, Minoarisoa; Schultz, Michael; Kacki, Sacha; Vermunt, Marco; Weston, Darlene A; Hurst, Derek; Achtman, Mark; Carniel, Elisabeth; Bramanti, Barbara

    2010-10-07

    From AD 1347 to AD 1353, the Black Death killed tens of millions of people in Europe, leaving misery and devastation in its wake, with successive epidemics ravaging the continent until the 18(th) century. The etiology of this disease has remained highly controversial, ranging from claims based on genetics and the historical descriptions of symptoms that it was caused by Yersinia pestis to conclusions that it must have been caused by other pathogens. It has also been disputed whether plague had the same etiology in northern and southern Europe. Here we identified DNA and protein signatures specific for Y. pestis in human skeletons from mass graves in northern, central and southern Europe that were associated archaeologically with the Black Death and subsequent resurgences. We confirm that Y. pestis caused the Black Death and later epidemics on the entire European continent over the course of four centuries. Furthermore, on the basis of 17 single nucleotide polymorphisms plus the absence of a deletion in glpD gene, our aDNA results identified two previously unknown but related clades of Y. pestis associated with distinct medieval mass graves. These findings suggest that plague was imported to Europe on two or more occasions, each following a distinct route. These two clades are ancestral to modern isolates of Y. pestis biovars Orientalis and Medievalis. Our results clarify the etiology of the Black Death and provide a paradigm for a detailed historical reconstruction of the infection routes followed by this disease.

  14. Outcome of tyrosinaemia type III.

    PubMed

    Ellaway, C J; Holme, E; Standing, S; Preece, M A; Green, A; Ploechl, E; Ugarte, M; Trefz, F K; Leonard, J V

    2001-12-01

    Tyrosinaemia type III is a rare disorder caused by a deficiency of 4-hydroxyphenylpyruvate dioxygenase, the second enzyme in the catabolic pathway of tyrosine. The majority of the nine previously reported patients have presented with neurological symptoms after the neonatal period, while others detected by neonatal screening have been asymptomatic. All have had normal liver and renal function and none has skin or eye abnormalities. A further four patients with tyrosinaemia type III are described. It is not clear whether a strict low tyrosine diet alters the natural history of tyrosinaemia type III, although there remains a suspicion that treatment may be important, at least in infancy.

  15. Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages.

    PubMed

    Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D

    2015-01-01

    Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage

  16. Omics strategies for revealing Yersinia pestis virulence

    PubMed Central

    Yang, Ruifu; Du, Zongmin; Han, Yanping; Zhou, Lei; Song, Yajun; Zhou, Dongsheng; Cui, Yujun

    2012-01-01

    Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis. PMID:23248778

  17. Type III Radio Burst Duration and SEP Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Xie, H.

    2010-01-01

    Long-duration (>15 min), low-frequency (<14 MHz) type III radio bursts have been reported to be indicative of solar energetic particle events. We measured the durations of type III bursts associated with large SEP events of solar cycle 23. The Type III durations are distributed symmetrically at 1 MHz yielding a mean value of approximately 33 min (median = 32 min) for the large SEP events. When the SEP events with ground level enhancement (GLE,) are considered, the distribution is essentially unchanged (mean = 32 min, median = 30 min). To test the importance of type III bursts in indicating SEP events, we considered a set of six type III bursts from the same active region (AR 10588) whose durations fit the "long duration" criterion. We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with the type III bursts. The CMEs were of similar speeds and the flares are also of similar size and duration. All but one of the type III bursts was not associated with a type II burst in the metric or longer wavelength domains. The burst without type II burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).

  18. Insights into the genome evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, B; Stoutland, P; Derbise, A

    2004-01-24

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons to available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveals 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, represent the only new genetic material in Y. pestis acquired since the divergence from Y.more » pseudotuberculosis. In contrast, 149 new pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive IS-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of pre-existing gene expression pathways appear to be more important than acquisition of new genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.« less

  19. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    PubMed

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  20. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    DOE PAGES

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; ...

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experimentmore » (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.« less

  1. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experimentmore » (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.« less

  2. Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence.

    PubMed

    Ratner, Dmitry; Orning, M Pontus A; Starheim, Kristian K; Marty-Roix, Robyn; Proulx, Megan K; Goguen, Jon D; Lien, Egil

    2016-05-06

    Innate immunity plays a central role in resolving infections by pathogens. Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is favored by a robust early innate immune response initiated by IL-1β and IL-18. These cytokines are produced by a two-step mechanism involving NF-κB-mediated pro-cytokine production and inflammasome-driven maturation into bioactive inflammatory mediators. Because of the anti-microbial effects induced by IL-1β/IL-18, it may be desirable for pathogens to manipulate their production. Y. pestis type III secretion system effectors YopJ and YopM can interfere with different parts of this process. Both effectors have been reported to influence inflammasome caspase-1 activity; YopJ promotes caspase-8-dependent cell death and caspase-1 cleavage, whereas YopM inhibits caspase-1 activity via an incompletely understood mechanism. However, neither effector appears essential for full virulence in vivo Here we report that the sum of influences by YopJ and YopM on IL-1β/IL-18 release is suppressive. In the absence of YopM, YopJ minimally affects caspase-1 cleavage but suppresses IL-1β, IL-18, and other cytokines and chemokines. Importantly, we find that Y. pestis containing combined deletions of YopJ and YopM induces elevated levels of IL-1β/IL-18 in vitro and in vivo and is significantly attenuated in a mouse model of bubonic plague. The reduced virulence of the YopJ-YopM mutant is dependent on the presence of IL-1β, IL-18, and caspase-1. Thus, we conclude that Y. pestis YopJ and YopM can both exert a tight control of host IL-1β/IL-18 production to benefit the bacteria, resulting in a redundant impact on virulence. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Inactivation of avirulent Yersinia pestis in beef bologna by gamma irradiation

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis, a psychrotrophic pathogen capable of growth at refrigeration temperatures, can cause pharyngeal and gastrointestinal plague in humans as a result of eating contaminated foods. Because Y. pestis is listed as a select agent for food safety and defense, evaluation of food safety interv...

  4. Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Jason; Tropea, Joseph E.; Waugh, David S.

    2010-11-16

    Pathogenic Yersinia species use a type III secretion system to inject cytotoxic effector proteins directly into the cytosol of mammalian cells, where they neutralize the innate immune response by interfering with the signal-transduction pathways that control phagocytosis and inflammation. To be exported efficiently, some effectors must transiently associate with cognate cytoplasmic secretion chaperones. SycH is the chaperone for YopH, a potent eukaryotic-like protein tyrosine phosphatase that is essential for virulence. SycH also binds two negative regulators of type III secretion, YscM1 and YscM2, both of which share significant sequence homology with the chaperone-binding domain of YopH. Here, the structure ofmore » a complex between SycH and a stable fragment of YscM2 that was designed on the basis of limited proteolysis experiments is presented. The overall fold of SycH is very similar to the structures of other homodimeric secretion chaperones that have been determined to date. YscM2 wraps around SycH in an extended fashion, with some secondary but no tertiary structure, assuming a conformation distinct from the globular fold that it is predicted to adopt in the absence of SycH.« less

  5. Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice

    PubMed Central

    Filippov, Andrey A.; Sergueev, Kirill V.; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T.; Mueller, Allen J.; Fernandez-Prada, Carmen M.; Nikolich, Mikeljon P.

    2011-01-01

    Background Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis. PMID:21980477

  6. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    PubMed

    Filippov, Andrey A; Sergueev, Kirill V; He, Yunxiu; Huang, Xiao-Zhe; Gnade, Bryan T; Mueller, Allen J; Fernandez-Prada, Carmen M; Nikolich, Mikeljon P

    2011-01-01

    Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  7. Analysis of temperature-dependent changes in the metabolism of Yersinia pestis.

    NASA Astrophysics Data System (ADS)

    Navid, Ali; Almaas, Eivind

    2008-03-01

    The gram-negative bacterium Yersinia pestis is the aetiological agent of bubonic plague, a zoonotic infection that occurs through the bite of a flea. It has long been known that Y. pestis has different metabolic needs upon transition from the flea gut environment (26 C) to that of a mammalian host (37 C). To study this and other outstanding questions about metabolic function of Y. pestis, we used the available genomic, biochemical and physiological data to develop a constraint-based flux balance model of metabolism in the avirulent 91001 strain (biovar Mediaevalis) of this organism. Utilizing two sets of whole-genome DNA microarray expression data, we examined the system level changes that occur when Y. pestis acclimatizes to temperature shifts. Our results point to fundamental changes in its oxidative metabolism of sugars and use of amino acids, in particular that of arginine. This behavior is indicative of an inefficient metabolism that could be caused by adaptation to life in a nutrient rich environment.

  8. Protective efficacy of recombinant Yersinia outer proteins against bubonic plague caused by encapsulated and nonencapsulated Yersinia pestis.

    PubMed

    Andrews, G P; Strachan, S T; Benner, G E; Sample, A K; Anderson, G W; Adamovicz, J J; Welkos, S L; Pullen, J K; Friedlander, A M

    1999-03-01

    To evaluate the role of Yersinia outer proteins (Yops) in conferring protective immunity against plague, six yop loci from Yersinia pestis were individually amplified by PCR, cloned, and expressed in Escherichia coli. The recombinant proteins were purified and injected into mice. Most Yop-vaccinated animals succumbed to infection with either wild-type encapsulated Y. pestis or a virulent, nonencapsulated isogenic variant. Vaccination with YpkA significantly prolonged mean survival time but did not increase overall survival of mice infected with the nonencapsulated strain. The only significant protection against death was observed in YopD-vaccinated mice challenged with the nonencapsulated strain.

  9. Nucleotide sequences specific to Yersinia pestis and methods for the detection of Yersinia pestis

    DOEpatents

    McCready, Paula M [Tracy, CA; Radnedge, Lyndsay [San Mateo, CA; Andersen, Gary L [Berkeley, CA; Ott, Linda L [Livermore, CA; Slezak, Thomas R [Livermore, CA; Kuczmarski, Thomas A [Livermore, CA; Motin, Vladinir L [League City, TX

    2009-02-24

    Nucleotide sequences specific to Yersinia pestis that serve as markers or signatures for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  10. Discriminating the reaction types of plant type III polyketide synthases

    PubMed Central

    Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu

    2017-01-01

    Abstract Motivation: Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. Results: We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. Availability and Implementation: pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/ Contact: goto@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334262

  11. RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague.

    PubMed

    Cathelyn, Jason S; Crosby, Seth D; Lathem, Wyndham W; Goldman, William E; Miller, Virginia L

    2006-09-05

    The pathogenic species of Yersinia contain the transcriptional regulator RovA. In Yersinia pseudotuberculosis and Yersinia enterocolitica, RovA regulates expression of the invasion factor invasin (inv), which mediates translocation across the intestinal epithelium. A Y. enterocolitica rovA mutant has a significant decrease in virulence by LD(50) analysis and an altered rate of dissemination compared with either wild type or an inv mutant, suggesting that RovA regulates multiple virulence factors. Here, we show the involvement of RovA in the virulence of Yersinia pestis, which naturally lacks a functional inv gene. A Y. pestis DeltarovA mutant is attenuated approximately 80-fold by LD(50) and is defective in dissemination/colonization of spleens and lungs after s.c. inoculation. However, the DeltarovA mutant is only slightly attenuated when given via an intranasal or i.p. route, indicating a more important role for RovA in bubonic plague than pneumonic plague or systemic infection. Microarray analysis was used to define the RovA regulon. The psa locus was among the most highly down-regulated loci in the DeltarovA mutant. A DeltapsaA mutant had a significant dissemination defect after s.c. infection but only slight attenuation by the pneumonic-disease model, closely mimicking the virulence defect seen with the DeltarovA mutant. DNA-binding studies revealed that RovA specifically interacts with the psaE and psaA promoter regions, indicating a direct role for RovA in regulating this locus. Thus, RovA appears to be a global transcription factor in Y. pestis and, through its regulatory influence on genes such as psaEFABC, contributes to the virulence of Y. pestis.

  12. Gene flow in a Yersinia pestis vector, Oropsylla hirsuta, during a plague epizootic.

    PubMed

    Jones, Philip H; Washburn, Leigh R; Britten, Hugh B

    2011-09-01

    Appreciating how Yersinia pestis, the etiological agent of plague, spreads among black - tailed prairie dog (Cynomys ludovicianus) colonies (BTPD), is vital to wildlife conservation programs in North American grasslands. A little - studied aspect of the system is the role of Y. pestis vectors, i.e. fleas, play in the spreading of plague in natural settings. We investigated the genetic structure and variability of a common prairie dog flea (Oropsylla hirsuta) in BTPD colonies in order to examine dispersal patterns. Given that this research took place during a widespread plague epizootic, there was the added advantage of gaining information on the dynamics of sylvatic plague. Oropsylla hirsuta were collected from BTPD burrows in nine colonies from May 2005 to July 2005, and eight polymorphic microsatellite markers were used to generate genotypic data from them. Gene flow estimates revealed low genetic differentiation among fleas sampled from different colonies. NestedPCR plague assays confirmed the presence of Y. pestis with the average Y. pestis prevalence across all nine colonies at 12%. No significant correlations were found between the genetic variability and gene flow of O. hirsuta and Y. pestis prevalence on a per -colony basis. Oropsylla hirsuta dispersal among BTPD colonies was high, potentially explaining the rapid spread of Y. pestis in our study area in 2005 and 2006.

  13. Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago

    PubMed Central

    Rasmussen, Simon; Allentoft, Morten Erik; Nielsen, Kasper; Orlando, Ludovic; Sikora, Martin; Sjögren, Karl-Göran; Pedersen, Anders Gorm; Schubert, Mikkel; Van Dam, Alex; Kapel, Christian Moliin Outzen; Nielsen, Henrik Bjørn; Brunak, Søren; Avetisyan, Pavel; Epimakhov, Andrey; Khalyapin, Mikhail Viktorovich; Gnuni, Artak; Kriiska, Aivar; Lasak, Irena; Metspalu, Mait; Moiseyev, Vyacheslav; Gromov, Andrei; Pokutta, Dalia; Saag, Lehti; Varul, Liivi; Yepiskoposyan, Levon; Sicheritz-Pontén, Thomas; Foley, Robert A.; Lahr, Marta Mirazón; Nielsen, Rasmus; Kristiansen, Kristian; Willerslev, Eske

    2015-01-01

    Summary The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics. PMID:26496604

  14. Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navid, A; Almaas, E

    2009-01-13

    The gram-negative bacterium Yersinia pestis, the aetiological agent of bubonic plague, is one the deadliest pathogens known to man. Despite its historical reputation, plague is a modern disease which annually afflicts thousands of people. Public safety considerations greatly limit clinical experimentation on this organism and thus development of theoretical tools to analyze the capabilities of this pathogen is of utmost importance. Here, we report the first genome-scale metabolic model of Yersinia pestis biovar Mediaevalis based both on its recently annotated genome, and physiological and biochemical data from literature. Our model demonstrates excellent agreement with Y. pestis known metabolic needs andmore » capabilities. Since Y. pestis is a meiotrophic organism, we have developed CryptFind, a systematic approach to identify all candidate cryptic genes responsible for known and theoretical meiotrophic phenomena. In addition to uncovering every known cryptic gene for Y. pestis, our analysis of the rhamnose fermentation pathway suggests that betB is the responsible cryptic gene. Despite all of our medical advances, we still do not have a vaccine for bubonic plague. Recent discoveries of antibiotic resistant strains of Yersinia pestis coupled with the threat of plague being used as a bioterrorism weapon compel us to develop new tools for studying the physiology of this deadly pathogen. Using our theoretical model, we can study the cell's phenotypic behavior under different circumstances and identify metabolic weaknesses which may be harnessed for the development of therapeutics. Additionally, the automatic identification of cryptic genes expands the usage of genomic data for pharmaceutical purposes.« less

  15. Evaluation of the Effect of Host Immune Status on Short-Term Yersinia pestis Infection in Fleas With Implications for the Enzootic Host Model for Maintenance of Y. pestis During Interepizootic Periods

    PubMed Central

    GRAHAM, CHRISTINE B.; WOODS, MICHAEL E.; VETTER, SARA M.; PETERSEN, JEANNINE M.; MONTENIERI, JOHN A.; HOLMES, JENNIFER L.; MAES, SARAH E.; BEARDEN, SCOTT W.; GAGE, KENNETH L.; EISEN, REBECCA J.

    2015-01-01

    Plague, a primarily flea-borne disease caused by Yersinia pestis, is characterized by rapidly spreading epizootics separated by periods of quiescence. Little is known about how and where Y. pestis persists between epizootics. It is commonly proposed, however, that Y. pestis is maintained during interepizootic periods in enzootic cycles involving flea vectors and relatively resistant host populations. According to this model, while susceptible individuals serve as infectious sources for feeding fleas and subsequently die of infection, resistant hosts survive infection, develop antibodies to the plague bacterium, and continue to provide bloodmeals to infected fleas. For Y. pestis to persist under this scenario, fleas must remain infected after feeding on hosts carrying antibodies to Y. pestis. Studies of other vector-borne pathogens suggest that host immunity may negatively impact pathogen survival in the vector. Here, we report infection rates and bacterial loads for fleas (both Xenopsylla cheopis (Rothschild) and Oropsylla montana (Baker)) that consumed an infectious bloodmeal and subsequently fed on an immunized or age-matched naive mouse. We demonstrate that neither the proportion of infected fleas nor the bacterial loads in infected fleas were significantly lower within 3 d of feeding on immunized versus naive mice. Our findings thus provide support for one assumption underlying the enzootic host model of interepizootic maintenance of Y. pestis. PMID:25276941

  16. Fast and Simple Detection of Yersinia pestis Applicable to Field Investigation of Plague Foci

    PubMed Central

    Simon, Stéphanie; Demeure, Christian; Lamourette, Patricia; Filali, Sofia; Plaisance, Marc; Créminon, Christophe; Volland, Hervé; Carniel, Elisabeth

    2013-01-01

    Yersinia pestis, the plague bacillus, has a rodent-flea-rodent life cycle but can also persist in the environment for various periods of time. There is now a convenient and effective test (F1-dipstick) for the rapid identification of Y. pestis from human patient or rodent samples, but this test cannot be applied to environmental or flea materials because the F1 capsule is mostly produced at 37°C. The plasminogen activator (PLA), a key virulence factor encoded by a Y. pestis-specific plasmid, is synthesized both at 20°C and 37°C, making it a good candidate antigen for environmental detection of Y. pestis by immunological methods. A recombinant PLA protein from Y. pestis synthesized by an Escherichia coli strain was used to produce monoclonal antibodies (mAbs). PLA-specific mAbs devoid of cross-reactions with other homologous proteins were further cloned. A pair of mAbs was selected based on its specificity, sensitivity, comprehensiveness, and ability to react with Y. pestis strains grown at different temperatures. These antibodies were used to develop a highly sensitive one-step PLA-enzyme immunoassay (PLA-EIA) and an immunostrip (PLA-dipstick), usable as a rapid test under field conditions. These two PLA-immunometric tests could be valuable, in addition to the F1-disptick, to confirm human plague diagnosis in non-endemic areas (WHO standard case definition). They have the supplementary advantage of allowing a rapid and easy detection of Y. pestis in environmental and flea samples, and would therefore be of great value for surveillance and epidemiological investigations of plague foci. Finally, they will be able to detect natural or genetically engineered F1-negative Y. pestis strains in human patients and environmental samples. PMID:23383008

  17. The Yersinia pestis gcvB gene encodes two small regulatory RNA molecules

    PubMed Central

    McArthur, Sarah D; Pulvermacher, Sarah C; Stauffer, George V

    2006-01-01

    Background In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism. Results In this study, we report that the Yersinia pestis KIM6 gcvB gene encodes two small RNAs. Transcription of gcvB is activated by the GcvA protein and repressed by the GcvR protein. The gcvB-encoded RNAs are required for repression of the Y. pestis dppA gene, encoding the periplasmic-binding protein component of the dipeptide transport system, showing that the GcvB RNAs have regulatory activity. A deletion of the gcvB gene from the Y. pestis KIM6 chromosome results in a decrease in the generation time of the organism as well as a change in colony morphology. Conclusion The results of this study indicate that the Y. pestis gcvB gene encodes two small non-coding regulatory RNAs that repress dppA expression. A gcvB deletion is pleiotropic, suggesting that the sRNAs are likely involved in controlling genes in addition to dppA. PMID:16768793

  18. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago.

    PubMed

    Rasmussen, Simon; Allentoft, Morten Erik; Nielsen, Kasper; Orlando, Ludovic; Sikora, Martin; Sjögren, Karl-Göran; Pedersen, Anders Gorm; Schubert, Mikkel; Van Dam, Alex; Kapel, Christian Moliin Outzen; Nielsen, Henrik Bjørn; Brunak, Søren; Avetisyan, Pavel; Epimakhov, Andrey; Khalyapin, Mikhail Viktorovich; Gnuni, Artak; Kriiska, Aivar; Lasak, Irena; Metspalu, Mait; Moiseyev, Vyacheslav; Gromov, Andrei; Pokutta, Dalia; Saag, Lehti; Varul, Liivi; Yepiskoposyan, Levon; Sicheritz-Pontén, Thomas; Foley, Robert A; Lahr, Marta Mirazón; Nielsen, Rasmus; Kristiansen, Kristian; Willerslev, Eske

    2015-10-22

    The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Yersinia pestis Requires Host Rab1b for Survival in Macrophages

    PubMed Central

    Connor, Michael G.; Pulsifer, Amanda R.; Price, Christopher T.; Abu Kwaik, Yousef; Lawrenz, Matthew B.

    2015-01-01

    Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH. PMID:26495854

  20. Protocol for Detection of Yersinia pestis in Environmental ...

    EPA Pesticide Factsheets

    Methods Report This is the first ever open-access and detailed protocol available to all government departments and agencies, and their contractors to detect Yersinia pestis, the pathogen that causes plague, from multiple environmental sample types including water. Each analytical method includes sample processing procedure for each sample type in a step-by-step manner. It includes real-time PCR, traditional microbiological culture, and the Rapid Viability PCR (RV-PCR) analytical methods. For large volume water samples it also includes an ultra-filtration-based sample concentration procedure. Because of such a non-restrictive availability of this protocol to all government departments and agencies, and their contractors, the nation will now have increased laboratory capacity to analyze large number of samples during a wide-area plague incident.

  1. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry

    PubMed Central

    2010-01-01

    Background Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. Results When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. Conclusion These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates. PMID:21073689

  2. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    PubMed

    Ayyadurai, Saravanan; Flaudrops, Christophe; Raoult, Didier; Drancourt, Michel

    2010-11-12

    Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates.

  3. An Experimentally-Supported Genome-Scale Metabolic Network Reconstruction for Yersinia pestis CO92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charusanti, Pep; Chauhan, Sadhana; Mcateer, Kathleen

    2011-10-13

    Yersinia pestis is a gram-negative bacterium that causes plague, a disease linked historically to the Black Death in Europe during the Middle Ages and to several outbreaks during the modern era. Metabolism in Y. pestis displays remarkable flexibility and robustness, allowing the bacterium to proliferate in both warm-blooded mammalian hosts and cold-blooded insect vectors such as fleas. Here we report a genome-scale reconstruction and mathematical model of metabolism for Y. pestis CO92 and supporting experimental growth and metabolite measurements. The model contains 815 genes, 678 proteins, 963 unique metabolites and 1678 reactions, accurately simulates growth on a range of carbonmore » sources both qualitatively and quantitatively, and identifies gaps in several key biosynthetic pathways and suggests how those gaps might be filled. Furthermore, our model presents hypotheses to explain certain known nutritional requirements characteristic of this strain. Y. pestis continues to be a dangerous threat to human health during modern times. The Y. pestis genome-scale metabolic reconstruction presented here, which has been benchmarked against experimental data and correctly reproduces known phenotypes, thus provides an in silico platform with which to investigate the metabolism of this important human pathogen.« less

  4. Evolution and virulence contributions of the autotransporter proteins YapJ and YapK of Yersinia pestis CO92 and their homologs in Y. pseudotuberculosis IP32953.

    PubMed

    Lenz, Jonathan D; Temple, Brenda R S; Miller, Virginia L

    2012-10-01

    Yersinia pestis, the causative agent of plague, evolved from the gastrointestinal pathogen Yersinia pseudotuberculosis. Both species have numerous type Va autotransporters, most of which appear to be highly conserved. In Y. pestis CO92, the autotransporter genes yapK and yapJ share a high level of sequence identity. By comparing yapK and yapJ to three homologous genes in Y. pseudotuberculosis IP32953 (YPTB0365, YPTB3285, and YPTB3286), we show that yapK is conserved in Y. pseudotuberculosis, while yapJ is unique to Y. pestis. All of these autotransporters exhibit >96% identity in the C terminus of the protein and identities ranging from 58 to 72% in their N termini. By extending this analysis to include homologous sequences from numerous Y. pestis and Y. pseudotuberculosis strains, we determined that these autotransporters cluster into a YapK (YPTB3285) class and a YapJ (YPTB3286) class. The YPTB3286-like gene of most Y. pestis strains appears to be inactivated, perhaps in favor of maintaining yapJ. Since autotransporters are important for virulence in many bacterial pathogens, including Y. pestis, any change in autotransporter content should be considered for its impact on virulence. Using established mouse models of Y. pestis infection, we demonstrated that despite the high level of sequence identity, yapK is distinct from yapJ in its contribution to disseminated Y. pestis infection. In addition, a mutant lacking both of these genes exhibits an additive attenuation, suggesting nonredundant roles for yapJ and yapK in systemic Y. pestis infection. However, the deletion of the homologous genes in Y. pseudotuberculosis does not seem to impact the virulence of this organism in orogastric or systemic infection models.

  5. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague

    PubMed Central

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2014-01-01

    Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded

  6. Protein markers for identification of Yersinia pestis and their variation related to culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunschel, David S.; Engelmann, Heather E.; Victry, Kristin D.

    2013-12-11

    The detection of high consequence pathogens, such as Yersinia pestis, is well established in biodefense laboratories for bioterror situations. Laboratory protocols are well established using specified culture media and a growth temperature of 37 °C for expression of specific antigens. Direct detection of Y. pestis protein markers, without prior culture, depends on their expression. Unfortunately protein expression can be impacted by the culture medium which cannot be predicted ahead of time. Furthermore, higher biomass yields are obtained at the optimal growth temperature (i.e. 28 °C–30 °C) and therefore are more likely to be used for bulk production. Analysis of Y.more » pestis grown on several types of media at 30 °C showed that several protein markers were found to be differentially detected in different media. Analysis of the identified proteins against a comprehensive database provided an additional level of organism identification. Peptides corresponding to variable regions of some proteins could separate large groups of strains and aid in organism identification. This work illustrates the need to understand variability of protein expression for detection targets. The potential for relating expression changes of known proteins to specific media factors, even in nutrient rich and chemically complex culture medium, may provide the opportunity to draw forensic information from protein profiles.« less

  7. Yersinia pestis strains of ancient phylogenetic branch 0.ANT are widely spread in the high-mountain plague foci of Kyrgyzstan

    PubMed Central

    Nosov, Nikita Yu; Krasnov, Yaroslav M.; Oglodin, Yevgeny G.; Kukleva, Lyubov M.; Guseva, Natalia P.; Kuznetsov, Alexander A.; Abdikarimov, Sabyrzhan T.; Dzhaparova, Aigul K.; Kutyrev, Vladimir V.

    2017-01-01

    Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.ANT2, 0.ANT3 and 0.ANT5 phylogenetic branches. From these, strains of 0.ANT2 and 0.ANT3 branches were earlier detected in China only, whereas 0.ANT5 phylogenetic branch was identified for Y. pestis phylogeny for the first time. According to the results of genome-wide SNP analysis, 0.ANT5 strains are ones of the most closely related to Y. pestis strain responsible for the Justinianic Plague. We have also found out that four of the studied strains belong to the phylogenetic branch 2.MED1, and ten strains from Talas high-mountain focus belong to the phylogenetic branch 0.PE4 (sub-branch 0.PE4t). Established diversity of Y. pestis strains and extensive dissemination of the strains pertaining to the 0.ANT branch confirm the antiquity of the mentioned above plague foci and suggest that strains of the 0.ANT branch, which serve as precursors for all highly virulent Y. pestis strains, had their origin in the Tien Shan mountains. PMID:29073248

  8. Yersinia pestis strains of ancient phylogenetic branch 0.ANT are widely spread in the high-mountain plague foci of Kyrgyzstan.

    PubMed

    Eroshenko, Galina A; Nosov, Nikita Yu; Krasnov, Yaroslav M; Oglodin, Yevgeny G; Kukleva, Lyubov M; Guseva, Natalia P; Kuznetsov, Alexander A; Abdikarimov, Sabyrzhan T; Dzhaparova, Aigul K; Kutyrev, Vladimir V

    2017-01-01

    Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.ANT2, 0.ANT3 and 0.ANT5 phylogenetic branches. From these, strains of 0.ANT2 and 0.ANT3 branches were earlier detected in China only, whereas 0.ANT5 phylogenetic branch was identified for Y. pestis phylogeny for the first time. According to the results of genome-wide SNP analysis, 0.ANT5 strains are ones of the most closely related to Y. pestis strain responsible for the Justinianic Plague. We have also found out that four of the studied strains belong to the phylogenetic branch 2.MED1, and ten strains from Talas high-mountain focus belong to the phylogenetic branch 0.PE4 (sub-branch 0.PE4t). Established diversity of Y. pestis strains and extensive dissemination of the strains pertaining to the 0.ANT branch confirm the antiquity of the mentioned above plague foci and suggest that strains of the 0.ANT branch, which serve as precursors for all highly virulent Y. pestis strains, had their origin in the Tien Shan mountains.

  9. Immunochemical cross-reactions between type III group B Streptococcus and type 14 Streptococcus pneumoniae.

    PubMed Central

    Crumrine, M H; Fischer, G W; Balk, M W

    1979-01-01

    Serological cross-reactions between certain streptococci and some serotypes of Streptococcus pneumoniae have been reported. These studies detail the serological cross-reactivity observed between hot HCl-extracted group b streptococcus type III (GBS III) antigens and S. pneumoniae type 14 (Pn 14) polysaccharide. Similar electrophoretic migration patterns of GBS III and Pn 14 were observed when either type-specific BGS III antisera or pneumococcal omniserum was utilized to precipitate these antigens. Both the GBS III antigen and the Pn 14 polysaccharide migrated toward the cathode, whereas all other pneumococcal polysaccharides migrated toward the anode. No cross-reactions were observed between GBS III antisera and the 11 other types of pneumococcal polysaccharides. Lines of identity were observed between type-specific GBS III antisera and monospecific Pn 14 antiserum with either GBS III antigens or purified Pn 14 polysaccharide. The cross-reacting antigens of GBS III and Pn 14 appear to be identical by immunodiffusion and immunoelectrophoresis. Images PMID:40876

  10. No evidence of persistent Yersina pestis infection at prairie dog colonies in north-central Montana.

    PubMed

    Holmes, Brian E; Foresman, Kerry R; Matchett, Marc R

    2006-01-01

    Sylvatic plague is a flea-borne zoonotic disease caused by the bacterium Yersinia pestis, which can cause extensive mortality among prairie dogs (Cynomys) in western North America. It is unclear whether the plague organism persists locally among resistant host species or elsewhere following epizootics. From June to August 2002 and 2003 we collected blood and flea samples from small mammals at prairie dog colonies with a history of plague, at prairie dog colonies with no history of plague, and from off-colony sites where plague history was unknown. Blood was screened for antibody to Y. pestis by means of enzyme-linked immunosorbent assay or passive hemagglutination assay and fleas were screened for Y. pestis DNA by polymerase chain reaction. All material was negative for Y. pestis including 156 blood samples and 553 fleas from colonies with a known history of plague. This and other studies provide evidence that Y. pestis may not persist at prairie dog colonies following an epizootic.

  11. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.

    PubMed

    de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre

    2003-04-01

    Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.

  12. Virulence markers of LCR plasmid in Indian isolates of Yersinia pestis.

    PubMed

    Khushiramani, Rekha; Tuteja, Urmil; Shukla, Jyoti; Panikkar, Anupama; Batra, Harsh Vardhan

    2006-01-01

    Presence of 10 important yop genes in Yersinia pestis isolates (18 in number) of Indian origin from 1994 plague outbreak regions of Maharashtra (6 Rattus rattus & Tetera indica rodents) and Gujarat (11 from human patients, 1 from R. rattus) and from plague endemic regions of the Deccan plateau (8 from T. indica) was located by PCR and specific enzyme immunoassay. PCRs were standardized for six effector yops (YopE, YopH, YopJ, YopM, YopO and YopT), three translocator yops (YopB, YopD and YopK) and a regulator LcrV gene. Amplification of all the 10 yop genes was observed in isolates recovered from pneumonic patients and in 5 of 7 rodents from outbreak regions. Among these, amplification of the yopD gene was absent in all eight isolates, and that of yopM in all except one (10R). One of the isolates from rodents of the Deccan plateau (24H) was consistently negative for all the yops. Cloning and expression of truncated yopM (780 bp), yopB (700 bp) and lcrV (796 bp) genes in pQE vectors with SG13009 host cells yielded recombinant proteins for generation of monoclonal antibodies for further use in enzyme immunoassay. Ten stable reactive clones for YopB, nine for YopM and six for LcrV were obtained, all of them exhibiting specific reactions only to Y. pestis. Testing of 26 Y. pestis isolates by monoclonal antibody dot-ELISA and Western blotting provided results identical to PCR, suggesting that the isolates that failed to show PCR amplification also had no expression of their respective proteins. The Y. pestis isolates of outbreak regions had their virulence factors intact in the LCR plasmid. Yersinia pestis isolates recovered from rodents of the Deccan plateau were relatively heterogeneous. It appears that a long residency of Y. pestis of nearly 100 years in the enzootic plague foci has resulted in shedding of virulence genes in the LCR plasmid region in a fairly large proportion of the organisms, possibly due to natural recombination.

  13. A draft genome of Yersinia pestis from victims of the Black Death.

    PubMed

    Bos, Kirsten I; Schuenemann, Verena J; Golding, G Brian; Burbano, Hernán A; Waglechner, Nicholas; Coombes, Brian K; McPhee, Joseph B; DeWitte, Sharon N; Meyer, Matthias; Schmedes, Sarah; Wood, James; Earn, David J D; Herring, D Ann; Bauer, Peter; Poinar, Hendrik N; Krause, Johannes

    2011-10-12

    Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.

  14. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis

    PubMed Central

    Andersson, Jourdan A.; Sha, Jian; Erova, Tatiana E.; Fitts, Eric C.; Ponnusamy, Duraisamy; Kozlova, Elena V.; Kirtley, Michelle L.; Chopra, Ashok K.

    2017-01-01

    Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55–100% protected upon subsequent re-challenge with wild-type CO92 in a

  15. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis.

    PubMed

    Andersson, Jourdan A; Sha, Jian; Erova, Tatiana E; Fitts, Eric C; Ponnusamy, Duraisamy; Kozlova, Elena V; Kirtley, Michelle L; Chopra, Ashok K

    2017-01-01

    Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA , which encodes an ATP-binding protein of ribose transport system, and vasK , an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE) , and ypo1119-1120 , identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884 -encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely Δ lpp Δ ypo0815 , Δ lpp Δ ypo2884 , Δ lpp Δ cyoABCDE , Δ vasK Δ hcp6 , and Δ ypo2720-2733 Δ hcp3 . We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with Δ lpp Δ cyoABCDE , Δ vasK Δ hcp6 , and Δ ypo2720-2733 Δ hcp3 mutant strains were 55-100% protected upon subsequent re

  16. Kinetics of Innate Immune Response to Yersinia pestis after Intradermal Infection in a Mouse Model

    PubMed Central

    Jarrett, Clayton O.; Gardner, Donald; Hinnebusch, B. Joseph

    2012-01-01

    A hallmark of Yersinia pestis infection is a delayed inflammatory response early in infection. In this study, we use an intradermal model of infection to study early innate immune cell recruitment. Mice were injected intradermally in the ear with wild-type (WT) or attenuated Y. pestis lacking the pYV virulence plasmid (pYV−). The inflammatory responses in ear and draining lymph node samples were evaluated by flow cytometry and immunohistochemistry. As measured by flow cytometry, total neutrophil and macrophage recruitment to the ear in WT-infected mice did not differ from phosphate-buffered saline (PBS) controls or mice infected with pYV−, except for a transient increase in macrophages at 6 h compared to the PBS control. Limited inflammation was apparent even in animals with high bacterial loads (105 to 106 CFU). In addition, activation of inflammatory cells was significantly reduced in WT-infected mice as measured by CD11b and major histocompatibility complex class II (MHC-II) expression. When mice infected with WT were injected 12 h later at the same intradermal site with purified LPS, Y. pestis did not prevent recruitment of neutrophils. However, significant reduction in neutrophil activation remained compared to that of PBS and pYV− controls. Immunohistochemistry revealed qualitative differences in neutrophil recruitment to the skin and draining lymph node, with WT-infected mice producing a diffuse inflammatory response. In contrast, focal sites of neutrophil recruitment were sustained through 48 h postinfection in pYV−-infected mice. Thus, an important feature of Y. pestis infection is reduced activation and organization of inflammatory cells that is at least partially dependent on the pYV virulence plasmid. PMID:22966041

  17. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  18. Hfq Regulates Biofilm Gut Blockage That Facilitates Flea-Borne Transmission of Yersinia pestis

    PubMed Central

    Rempe, Katherine A.; Hinz, Angela K.

    2012-01-01

    The plague bacillus Yersinia pestis can achieve transmission by biofilm blockage of the foregut proventriculus of its flea vector. Hfq is revealed to be essential for biofilm blockage formation and acquisition and fitness of Y. pestis during flea gut infection, consistent with posttranscriptional regulatory mechanisms in plague transmission. PMID:22328669

  19. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine.

    PubMed

    Erova, Tatiana E; Rosenzweig, Jason A; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C; Kirtley, Michelle L; van Lier, Christina J; Telepnev, Maxim V; Motin, Vladimir L; Chopra, Ashok K

    2013-02-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.

  20. Evaluation of Protective Potential of Yersinia pestis Outer Membrane Protein Antigens as Possible Candidates for a New-Generation Recombinant Plague Vaccine

    PubMed Central

    Erova, Tatiana E.; Rosenzweig, Jason A.; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C.; Kirtley, Michelle L.; van Lier, Christina J.; Telepnev, Maxim V.; Motin, Vladimir L.

    2013-01-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1− strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1− mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1− CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains. PMID:23239803

  1. Thrombin-activatable fibrinolysis inhibitor is degraded by Salmonella enterica and Yersinia pestis.

    PubMed

    Valls Serón, M; Haiko, J; DE Groot, P G; Korhonen, T K; Meijers, J C M

    2010-10-01

     Pathogenic bacteria modulate the host coagulation system to evade immune responses or to facilitate dissemination through extravascular tissues. In particular, the important bacterial pathogens Salmonella enterica and Yersinia pestis intervene with the plasminogen/fibrinolytic system. Thrombin-activatable fibrinolysis inhibitor (TAFI) has anti-fibrinolytic properties as the active enzyme (TAFIa) removes C-terminal lysine residues from fibrin, thereby attenuating accelerated plasmin formation.  Here, we demonstrate inactivation and cleavage of TAFI by homologous surface proteases, the omptins Pla of Y. pestis and PgtE of S. enterica. We show that omptin-expressing bacteria decrease TAFI activatability by thrombin-thrombomodulin and that the anti-fibrinolytic potential of TAFIa was reduced by recombinant Escherichia coli expressing Pla or PgtE. The functional impairment resulted from C-terminal cleavage of TAFI by the omptins.  Our results indicate that TAFI is degraded directly by the omptins PgtE of S. enterica and Pla of Y. pestis. This may contribute to the ability of PgtE and Pla to damage tissue barriers, such as fibrin, and thereby to enhance spread of S. enterica and Y. pestis during infection. © 2010 International Society on Thrombosis and Haemostasis.

  2. Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into Justinianic Plague.

    PubMed

    Harbeck, Michaela; Seifert, Lisa; Hänsch, Stephanie; Wagner, David M; Birdsell, Dawn; Parise, Katy L; Wiechmann, Ingrid; Grupe, Gisela; Thomas, Astrid; Keim, Paul; Zöller, Lothar; Bramanti, Barbara; Riehm, Julia M; Scholz, Holger C

    2013-01-01

    Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19(th) and 20(th) centuries, during which plague was spread around the world, and the second pandemic of the 14(th)-17(th) centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6(th)-8(th) centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics.

  3. Hereditary Hemochromatosis Restores the Virulence of Plague Vaccine Strains

    PubMed Central

    Quenee, Lauriane E.; Hermanas, Timothy M.; Ciletti, Nancy; Louvel, Helene; Miller, Nathan C.; Elli, Derek; Blaylock, Bill; Mitchell, Anthony; Schroeder, Jay; Krausz, Thomas; Kanabrocki, Joseph; Schneewind, Olaf

    2012-01-01

    Nonpigmented Yersinia pestis (pgm) strains are defective in scavenging host iron and have been used in live-attenuated vaccines to combat plague epidemics. Recently, a Y. pestis pgm strain was isolated from a researcher with hereditary hemochromatosis who died from laboratory-acquired plague. We used hemojuvelin-knockout (Hjv−/−) mice to examine whether iron-storage disease restores the virulence defects of nonpigmented Y. pestis. Unlike wild-type mice, Hjv−/− mice developed lethal plague when challenged with Y. pestis pgm strains. Immunization of Hjv−/− mice with a subunit vaccine that blocks Y. pestis type III secretion generated protection against plague. Thus, individuals with hereditary hemochromatosis may be protected with subunit vaccines but should not be exposed to live-attenuated plague vaccines. PMID:22896664

  4. Detections of Yersinia pestis East of the Known Distribution of Active Plague in the United States.

    PubMed

    Mize, Erica L; Britten, Hugh B

    2016-02-01

    We examined fleas collected from black-tailed prairie dog (Cynomys ludovicianus) burrows from 2009 through 2011 in five national park units east of the known distribution of active plague across the northern Great Plains for the presence of Yersinia pestis. Across all national park units, Oropsylla tuberculata and Oropsylla hirsuta were the most common fleas collected from prairie dog burrows, 42.4% and 56.9%, respectively, of the 3964 fleas collected from burrow swabbing. Using a nested PCR assay, we detected 200 Y. pestis-positive fleas from 3117 assays. In total, 6.4% of assayed fleas were Y. pestis positive and 13.9% of prairie dog burrows swabbed contained Y. pestis-positive fleas. Evidence of the presence of Y. pestis was observed at all national park units except Devils Tower National Monument in Wyoming. We detected the presence of Y. pestis without large die-offs, i.e., enzootic sylvatic plague, east of the known distribution of active plague and near the eastern edge of the present distribution of black-tailed prairie dogs. This study, in combination with previous work suggests that sylvatic plague likely occurs across the range of black-tailed prairie dogs and should now be treated as endemic across this range.

  5. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing.

    PubMed

    Sommers, Christopher H; Sheen, Shiowshuh

    2015-09-01

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharyngeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food and food contact surfaces was investigated. When a commercial UV-C conveyor was used (5 mW/cm(2)/s) 0.5 J/cm(2) inactivated >7 log of the Y. pestis cocktail on agar plates. At 0.5 J/cm(2), UV-C inactivated ca. 4 log of Y. pestis in beef, chicken, and catfish, exudates inoculated onto high density polypropylene or polyethylene, and stainless steel coupons, and >6 log was eliminated at 1 J/cm(2). Approximately 1 log was inactivated on chicken breast, beef steak, and catfish fillet surfaces at a UV-C dose of 1 J/cm(2). UV-C treatment prior to freezing of the foods did not increase the inactivation of Y. pestis over freezing alone. These results indicate that routine use of UV-C during food processing would provide workers and consumers some protection against Y. pestis. Published by Elsevier Ltd.

  6. A draft genome of Yersinia pestis from victims of the Black Death

    PubMed Central

    Bos, Kirsten I.; Schuenemann, Verena J.; Golding, G. Brian; Burbano, Hernán A.; Waglechner, Nicholas; Coombes, Brian K.; McPhee, Joseph B.; DeWitte, Sharon N.; Meyer, Matthias; Schmedes, Sarah; Wood, James; Earn, David J. D.; Herring, D. Ann; Bauer, Peter; Poinar, Hendrik N.; Krause, Johannes

    2013-01-01

    Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard1. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348–1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347–1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections. PMID:21993626

  7. Imaging of Bubonic Plague Dynamics by In Vivo Tracking of Bioluminescent Yersinia pestis

    PubMed Central

    Nham, Toan; Filali, Sofia; Danne, Camille; Derbise, Anne; Carniel, Elisabeth

    2012-01-01

    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response. PMID:22496846

  8. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis.

    PubMed

    Nham, Toan; Filali, Sofia; Danne, Camille; Derbise, Anne; Carniel, Elisabeth

    2012-01-01

    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response.

  9. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague.

    PubMed

    Sebbane, Florent; Lemaître, Nadine; Sturdevant, Daniel E; Rebeil, Roberto; Virtaneva, Kimmo; Porcella, Stephen F; Hinnebusch, B Joseph

    2006-08-01

    Yersinia pestis causes bubonic plague, characterized by an enlarged, painful lymph node, termed a bubo, that develops after bacterial dissemination from a fleabite site. In susceptible animals, the bacteria rapidly escape containment in the lymph node, spread systemically through the blood, and produce fatal sepsis. The fulminant progression of disease has been largely ascribed to the ability of Y. pestis to avoid phagocytosis and exposure to antimicrobial effectors of innate immunity. In vivo microarray analysis of Y. pestis gene expression, however, revealed an adaptive response to nitric oxide (NO)-derived reactive nitrogen species and to iron limitation in the extracellular environment of the bubo. Polymorphonuclear neutrophils recruited to the infected lymph node expressed abundant inducible NO synthase, and several Y. pestis homologs of genes involved in the protective response to reactive nitrogen species were up-regulated in the bubo. Mutation of one of these genes, which encodes the Hmp flavohemoglobin that detoxifies NO, attenuated virulence. Thus, the ability of Y. pestis to destroy immune cells and remain extracellular in the bubo appears to limit exposure to some but not all innate immune effectors. High NO levels induced during plague may also influence the developing adaptive immune response and contribute to septic shock.

  10. Comparative efficacies of candidate antibiotics against Yersinia pestis in an in vitro pharmacodynamic model.

    PubMed

    Louie, Arnold; Vanscoy, Brian; Liu, Weiguo; Kulawy, Robert; Brown, David; Heine, Henry S; Drusano, George L

    2011-06-01

    Yersinia pestis, the bacterium that causes plague, is a potential agent of bioterrorism. Streptomycin is the "gold standard" for the treatment of plague infections in humans, but the drug is not available in many countries, and resistance to this antibiotic occurs naturally and has been generated in the laboratory. Other antibiotics have been shown to be active against Y. pestis in vitro and in vivo. However, the relative efficacies of clinically prescribed regimens of these antibiotics with streptomycin and with each other for the killing of Yersinia pestis are unknown. The efficacies of simulated pharmacokinetic profiles for human 10-day clinical regimens of ampicillin, meropenem, moxifloxacin, ciprofloxacin, and gentamicin were compared with the gold standard, streptomycin, for killing of Yersinia pestis in an in vitro pharmacodynamic model. Resistance amplification with therapy was also assessed. Streptomycin killed the microbe in one trial but failed due to resistance amplification in the second trial. In two trials, the other antibiotics consistently reduced the bacterial densities within the pharmacodynamic systems from 10⁸ CFU/ml to undetectable levels (<10² CFU/ml) between 1 and 3 days of treatment. None of the comparator agents selected for resistance. The comparator antibiotics were superior to streptomycin against Y. pestis and deserve further evaluation.

  11. Cultural and morphological properties of the vaccine strain Yersinia pestis EV NIIEG bacteria after photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Lyapina, Anna M.; Khizhnyakova, Mariya A.; Laskavy, Vladislav N.; Feodorova, Valentina A.; Ulyanov, Sergey S.

    2015-03-01

    New method of photoinactivation of plague microbes (bacteria Yersinia pestis) has been suggested. Rate of growth of colonies of Y. pestis EV NIIEG at specific regimes of photo processing have been analyzed. Dependence of growth on exposure time and concentrations of photosensitizer (methylene blue) has been studied. Number of colony forming units of Y. pestis EV NIIEG bacteria as a function of intensity of light and concentration of methylene blue has been scrutinized.

  12. Inactivation of avirulent pgm+ and delta pgm Yersinia pestis by ultraviolet light (UV-C)

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis is the causative agent of bubonic plague. Though not considered a foodborne pathogen, Y. pestis can survive, and even grow, in some foods, and the foodborne route of transmission is not without precedent. As such, concerns exist over the possible intentional contamination of foods wi...

  13. Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis.

    PubMed

    Wagner, David M; Klunk, Jennifer; Harbeck, Michaela; Devault, Alison; Waglechner, Nicholas; Sahl, Jason W; Enk, Jacob; Birdsell, Dawn N; Kuch, Melanie; Lumibao, Candice; Poinar, Debi; Pearson, Talima; Fourment, Mathieu; Golding, Brian; Riehm, Julia M; Earn, David J D; Dewitte, Sharon; Rouillard, Jean-Marie; Grupe, Gisela; Wiechmann, Ingrid; Bliska, James B; Keim, Paul S; Scholz, Holger C; Holmes, Edward C; Poinar, Hendrik

    2014-04-01

    Yersinia pestis has caused at least three human plague pandemics. The second (Black Death, 14-17th centuries) and third (19-20th centuries) have been genetically characterised, but there is only a limited understanding of the first pandemic, the Plague of Justinian (6-8th centuries). To address this gap, we sequenced and analysed draft genomes of Y pestis obtained from two individuals who died in the first pandemic. Teeth were removed from two individuals (known as A120 and A76) from the early medieval Aschheim-Bajuwarenring cemetery (Aschheim, Bavaria, Germany). We isolated DNA from the teeth using a modified phenol-chloroform method. We screened DNA extracts for the presence of the Y pestis-specific pla gene on the pPCP1 plasmid using primers and standards from an established assay, enriched the DNA, and then sequenced it. We reconstructed draft genomes of the infectious Y pestis strains, compared them with a database of genomes from 131 Y pestis strains from the second and third pandemics, and constructed a maximum likelihood phylogenetic tree. Radiocarbon dating of both individuals (A120 to 533 AD [plus or minus 98 years]; A76 to 504 AD [plus or minus 61 years]) places them in the timeframe of the first pandemic. Our phylogeny contains a novel branch (100% bootstrap at all relevant nodes) leading to the two Justinian samples. This branch has no known contemporary representatives, and thus is either extinct or unsampled in wild rodent reservoirs. The Justinian branch is interleaved between two extant groups, 0.ANT1 and 0.ANT2, and is distant from strains associated with the second and third pandemics. We conclude that the Y pestis lineages that caused the Plague of Justinian and the Black Death 800 years later were independent emergences from rodents into human beings. These results show that rodent species worldwide represent important reservoirs for the repeated emergence of diverse lineages of Y pestis into human populations. McMaster University, Northern

  14. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    PubMed

    Sergueev, Kirill V; He, Yunxiu; Borschel, Richard H; Nikolich, Mikeljon P; Filippov, Andrey A

    2010-06-28

    Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  15. Effect of fat in ground beef on the growth and virulence plasmid (pYV) stability in Yersinia pestis

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the behavior of Yersinia pestis in food may be useful in the event Y. pestis is used in a bioterrorism attack on the food supply. However, there are no reports on the growth of plasmid-bearing (pYV) virulent Y. pestis in food. The growth of a conditionally virulent pYV-bearing Yersini...

  16. Oral findings in patients with mucolipidosis type III.

    PubMed

    Cavalcante, Weber Céo; Santos, Luciano Cincurá Silva; Dos Santos, Josiane Nascimento; de Vasconcellos, Sara Juliana de Abreu; de Azevedo, Roberto Almeida; Dos Santos, Jean Nunes

    2012-01-01

    Mucolipidosis type III is a rare, autosomal recessive disorder, which is part of a group of storage diseases as a result of inborn error of lysosomal enzyme metabolism. It is characterized by the gradual onset of signs and symptoms affecting the physical and mental development as well as visual changes, heart, skeletal and joint. Although oral findings associated with mucolipidosis type II have been extensively reported, there is a shortage of information on mucolipidosis type III. This paper presents radiological and histological findings of multiple radiolucent lesions associated with impacted teeth in the jaw of a 16 year-old youngster with mucolipidosis type III.

  17. [The use of the macrophage disappearance reaction for detecting delayed hypersensitivity to Yersinia pestis antigens].

    PubMed

    Vasil'eva, G I; Doroshenko, E P; Kiseleva, A K; Pustovalov, V L

    1990-12-01

    The possibility of using the reaction of macrophage disappearance (RMD) for the detection of delayed hypersensitivity (DH) to Y. pestis has been studied. As the result of these studies, RMD has been found suitable, in principle, for use in the quantitative evaluation of DH to Y. pestis. High sensitivity and specificity of this reaction have been established. The presence of DH in the process of the formation of immunity after immunization with Y. pestis antigen FIA has been shown. RMD can be observed during 28 days after immunization (the term of observation).

  18. Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route.

    PubMed

    Chouikha, Iman; Hinnebusch, B Joseph

    2014-12-30

    The arthropod-borne transmission route of Yersinia pestis, the bacterial agent of plague, is a recent evolutionary adaptation. Yersinia pseudotuberculosis, the closely related food-and water-borne enteric species from which Y. pestis diverged less than 6,400 y ago, exhibits significant oral toxicity to the flea vectors of plague, whereas Y. pestis does not. In this study, we identify the Yersinia urease enzyme as the responsible oral toxin. All Y. pestis strains, including those phylogenetically closest to the Y. pseudotuberculosis progenitor, contain a mutated ureD allele that eliminated urease activity. Restoration of a functional ureD was sufficient to make Y. pestis orally toxic to fleas. Conversely, deletion of the urease operon in Y. pseudotuberculosis rendered it nontoxic. Enzymatic activity was required for toxicity. Because urease-related mortality eliminates 30-40% of infective flea vectors, ureD mutation early in the evolution of Y. pestis was likely subject to strong positive selection because it significantly increased transmission potential.

  19. Silencing urease: A key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route

    PubMed Central

    Chouikha, Iman; Hinnebusch, B. Joseph

    2014-01-01

    The arthropod-borne transmission route of Yersinia pestis, the bacterial agent of plague, is a recent evolutionary adaptation. Yersinia pseudotuberculosis, the closely related food-and water-borne enteric species from which Y. pestis diverged less than 6,400 y ago, exhibits significant oral toxicity to the flea vectors of plague, whereas Y. pestis does not. In this study, we identify the Yersinia urease enzyme as the responsible oral toxin. All Y. pestis strains, including those phylogenetically closest to the Y. pseudotuberculosis progenitor, contain a mutated ureD allele that eliminated urease activity. Restoration of a functional ureD was sufficient to make Y. pestis orally toxic to fleas. Conversely, deletion of the urease operon in Y. pseudotuberculosis rendered it nontoxic. Enzymatic activity was required for toxicity. Because urease-related mortality eliminates 30–40% of infective flea vectors, ureD mutation early in the evolution of Y. pestis was likely subject to strong positive selection because it significantly increased transmission potential. PMID:25453069

  20. Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period

    PubMed Central

    2011-01-01

    Background Traditionally, efficient flea-borne transmission of Yersinia pestis, the causative agent of plague, was thought to be dependent on a process referred to as blockage in which biofilm-mediated growth of the bacteria physically blocks the flea gut, leading to the regurgitation of contaminated blood into the host. This process was previously shown to be temperature-regulated, with blockage failing at temperatures approaching 30°C; however, the abilities of fleas to transmit infections at different temperatures had not been adequately assessed. We infected colony-reared fleas of Xenopsylla cheopis with a wild type strain of Y. pestis and maintained them at 10, 23, 27, or 30°C. Naïve mice were exposed to groups of infected fleas beginning on day 7 post-infection (p.i.), and every 3-4 days thereafter until day 14 p.i. for fleas held at 10°C, or 28 days p.i. for fleas held at 23-30°C. Transmission was confirmed using Y. pestis-specific antigen or antibody detection assays on mouse tissues. Results Although no statistically significant differences in per flea transmission efficiencies were detected between 23 and 30°C, efficiencies were highest for fleas maintained at 23°C and they began to decline at 27 and 30°C by day 21 p.i. These declines coincided with declining median bacterial loads in fleas at 27 and 30°C. Survival and feeding rates of fleas also varied by temperature to suggest fleas at 27 and 30°C would be less likely to sustain transmission than fleas maintained at 23°C. Fleas held at 10°C transmitted Y. pestis infections, although flea survival was significantly reduced compared to that of uninfected fleas at this temperature. Median bacterial loads were significantly higher at 10°C than at the other temperatures. Conclusions Our results suggest that temperature does not significantly effect the per flea efficiency of Y. pestis transmission by X. cheopis, but that temperature is likely to influence the dynamics of Y. pestis flea

  1. Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period.

    PubMed

    Schotthoefer, Anna M; Bearden, Scott W; Holmes, Jennifer L; Vetter, Sara M; Montenieri, John A; Williams, Shanna K; Graham, Christine B; Woods, Michael E; Eisen, Rebecca J; Gage, Kenneth L

    2011-09-29

    Traditionally, efficient flea-borne transmission of Yersinia pestis, the causative agent of plague, was thought to be dependent on a process referred to as blockage in which biofilm-mediated growth of the bacteria physically blocks the flea gut, leading to the regurgitation of contaminated blood into the host. This process was previously shown to be temperature-regulated, with blockage failing at temperatures approaching 30°C; however, the abilities of fleas to transmit infections at different temperatures had not been adequately assessed. We infected colony-reared fleas of Xenopsylla cheopis with a wild type strain of Y. pestis and maintained them at 10, 23, 27, or 30°C. Naïve mice were exposed to groups of infected fleas beginning on day 7 post-infection (p.i.), and every 3-4 days thereafter until day 14 p.i. for fleas held at 10°C, or 28 days p.i. for fleas held at 23-30°C. Transmission was confirmed using Y. pestis-specific antigen or antibody detection assays on mouse tissues. Although no statistically significant differences in per flea transmission efficiencies were detected between 23 and 30°C, efficiencies were highest for fleas maintained at 23°C and they began to decline at 27 and 30°C by day 21 p.i. These declines coincided with declining median bacterial loads in fleas at 27 and 30°C. Survival and feeding rates of fleas also varied by temperature to suggest fleas at 27 and 30°C would be less likely to sustain transmission than fleas maintained at 23°C. Fleas held at 10°C transmitted Y. pestis infections, although flea survival was significantly reduced compared to that of uninfected fleas at this temperature. Median bacterial loads were significantly higher at 10°C than at the other temperatures. Our results suggest that temperature does not significantly effect the per flea efficiency of Y. pestis transmission by X. cheopis, but that temperature is likely to influence the dynamics of Y. pestis flea-borne transmission, perhaps by affecting

  2. Analysis of type II and type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Wijesekera, J. V.; Jayaratne, K. P. S. C.; Adassuriya, J.

    2018-04-01

    Solar radio burst is an arrangement of a frequency space that variation with time. Most of radio burst can be identified in low frequency range such as below 200 MHz and depending on frequencies. Solar radio bursts were the first phenomenon identified in the field of radio astronomy field. Solar radio frequency range is from 70 MHz to 2.2 GHz. Most of the radio burst can be identified in a low frequency range such as below 200 MHz. Properties of low-frequency radio were analyzed this research. There are two types of solar radio bursts were analyzed, named as type II and type III radio bursts. Exponential decay type could be seen in type II, and a linear could be indicated in type III solar radio bursts. The results of the drift rate graphs show the values of each chosen solar radio burst. High drift rate values can be seen in type III solar flares whereas low to medium drift rate values can be seen in type II solar flares. In the second part of the research the Newkirk model electron density model was used to estimate the drift velocities of the solar radio bursts. Although the special origin of the solar radio burst is not known clearly we assumed. The chosen solar radio bursts were originated within the solar radius of 0.9 - 1.3 range from the photosphere. We used power low in the form of (x) = A × 10‑bx were that the electron density related to the height of the solar atmosphere. The calculation of the plasma velocity of each solar radio burst was done using the electron density model and drift rates. Therefore velocity of chosen type II solar radio bursts indicates low velocities. The values are 233.2499 Km s‑1, 815.9522 Km s‑1 and 369.5425 Km s‑1. Velocity of chosen type III solar radio bursts were 1443.058 Km s‑1and 1205.05Km s ‑1.

  3. [Diagnostic values of serum type III procollagen N-terminal peptide in type IV gastric cancer].

    PubMed

    Akazawa, S; Fujiki, T; Kanda, Y; Kumai, R; Yoshida, S

    1985-04-01

    Since increased synthesis of collagen has been demonstrated in tissue of type IV gastric cancer, we attempted to distinguish type IV gastric cancer from other cancers by measuring serum levels of type III procollagen N-terminal peptide (type III-N-peptide). Mean serum levels in type IV gastric cancer patients without metastasis were found to be elevated above normal values and developed a tendency to be higher than those in types I, II and III gastric cancer patients without metastasis. Highly positive ratios were found in patients with liver diseases including hepatoma and colon cancer, biliary tract cancer, and esophageal cancer patients with liver, lung or bone metastasis, but only 2 out of 14 of these cancer patients without such metastasis showed positive serum levels of type III-N-peptide. Positive cases in patients with type IV gastric cancer were obtained not only in the group with clinical stage IV but also in the groups with clinical stages II and III. In addition, high serum levels of type III-N-peptide in patients with type IV gastric cancer were seen not only in the cases with liver, lung or bone metastasis but also in cases with disseminated peritoneal metastasis alone. These results suggest that if the serum level of type III-N-peptide is elevated above normal values, type IV gastric cancer should be suspected after ruling out liver diseases, myelofibrosis and liver, lung or bone metastasis.

  4. Blood groups and acute aortic dissection type III.

    PubMed

    Fatic, Nikola; Nikolic, Aleksandar; Vukmirovic, Mihailo; Radojevic, Nemanja; Zornic, Nenad; Banzic, Igor; Ilic, Nikola; Kostic, Dusan; Pajovic, Bogdan

    2017-04-01

    Acute aortic type III dissection is one of the most catastrophic events, with in-hospital mortality ranging between 10% and 12%. The majority of patients are treated medically, but complicated dissections, which represent 15% to 20% of cases, require surgical or thoracic endovascular aortic repair (TEVAR). For the best outcomes adequate blood transfusion support is required. Interest in the relationship between blood type and vascular disease has been established. The aim of our study is to evaluate distribution of blood groups among patients with acute aortic type III dissection and to identify any kind of relationship between blood type and patient's survival. From January 2005 to December 2014, 115 patients with acute aortic type III dissection were enrolled at the Clinic of Vascular and Endovascular Surgery in Belgrade, Serbia and retrospectively analyzed. Patients were separated into two groups. The examination group consisted of patients with a lethal outcome, and the control group consisted of patients who survived. The analysis of the blood groups and RhD typing between groups did not reveal a statistically significant difference ( p = 0.220). Our results indicated no difference between different blood groups and RhD typing with respect to in-hospital mortality of patients with acute aortic dissection type III.

  5. Role of the Yersinia pestis Ail Protein in Preventing a Protective Polymorphonuclear Leukocyte Response during Bubonic Plague▿

    PubMed Central

    Hinnebusch, B. Joseph; Jarrett, Clayton O.; Callison, Julie A.; Gardner, Donald; Buchanan, Susan K.; Plano, Gregory V.

    2011-01-01

    The ability of Yersinia pestis to forestall the mammalian innate immune response is a fundamental aspect of plague pathogenesis. In this study, we examined the effect of Ail, a 17-kDa outer membrane protein that protects Y. pestis against complement-mediated lysis, on bubonic plague pathogenesis in mice and rats. The Y. pestis ail mutant was attenuated for virulence in both rodent models. The attenuation was greater in rats than in mice, which correlates with the ability of normal rat serum, but not mouse serum, to kill ail-negative Y. pestis in vitro. Intradermal infection with the ail mutant resulted in an atypical, subacute form of bubonic plague associated with extensive recruitment of polymorphonuclear leukocytes (PMN or neutrophils) to the site of infection in the draining lymph node and the formation of large purulent abscesses that contained the bacteria. Systemic spread and mortality were greatly attenuated, however, and a productive adaptive immune response was generated after high-dose challenge, as evidenced by high serum antibody levels against Y. pestis F1 antigen. The Y. pestis Ail protein is an important bubonic plague virulence factor that inhibits the innate immune response, in particular the recruitment of a protective PMN response to the infected lymph node. PMID:21969002

  6. Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague.

    PubMed

    Hinnebusch, B Joseph; Jarrett, Clayton O; Callison, Julie A; Gardner, Donald; Buchanan, Susan K; Plano, Gregory V

    2011-12-01

    The ability of Yersinia pestis to forestall the mammalian innate immune response is a fundamental aspect of plague pathogenesis. In this study, we examined the effect of Ail, a 17-kDa outer membrane protein that protects Y. pestis against complement-mediated lysis, on bubonic plague pathogenesis in mice and rats. The Y. pestis ail mutant was attenuated for virulence in both rodent models. The attenuation was greater in rats than in mice, which correlates with the ability of normal rat serum, but not mouse serum, to kill ail-negative Y. pestis in vitro. Intradermal infection with the ail mutant resulted in an atypical, subacute form of bubonic plague associated with extensive recruitment of polymorphonuclear leukocytes (PMN or neutrophils) to the site of infection in the draining lymph node and the formation of large purulent abscesses that contained the bacteria. Systemic spread and mortality were greatly attenuated, however, and a productive adaptive immune response was generated after high-dose challenge, as evidenced by high serum antibody levels against Y. pestis F1 antigen. The Y. pestis Ail protein is an important bubonic plague virulence factor that inhibits the innate immune response, in particular the recruitment of a protective PMN response to the infected lymph node.

  7. The Role of Early-Phase Transmission in the Spread of Yersinia pestis

    PubMed Central

    EISEN, REBECCA J.; DENNIS, DAVID T.; GAGE, KENNETH L.

    2015-01-01

    Early-phase transmission (EPT) of Yersinia pestis by unblocked fleas is a well-documented, replicable phenomenon with poorly defined mechanisms. We review evidence demonstrating EPT and current knowledge on its biological and biomechanical processes. We discuss the importance of EPT in the epizootic spread of Y. pestis and its role in the maintenance of plague bacteria in nature. We further address the role of EPT in the epidemiology of plague. PMID:26336267

  8. Yersinia pestis CO92 delta yopH is a potent live, attenuated plague vaccine.

    PubMed

    Bubeck, Sarah S; Dube, Peter H

    2007-09-01

    An in-frame deletion of the yopH gene in Yersinia pestis CO92 attenuates virulence in both bubonic and pneumonic plague models. When it is used as a live, attenuated vaccine, CO92 delta yopH provides a high degree of protection from parental and respiratory challenge with Y. pestis CO92.

  9. Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice

    DTIC Science & Technology

    2011-09-28

    presented according to [51]. Kdo, 2- keto -3-deoxy-octulosonic acid; Ko, D-glycero-D-talo-oct-2-ulosonic acid; Hep, heptulose (ketoheptose); Glc, glucose...pestis. J Bacteriol 98: 1404–1406. 54. Jawetz E, Meyer KF (1943) Avirulent strains of Pasteurella pestis. J Infect Dis 73: 124– 143 . 55. Burrows TW

  10. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    PubMed

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  11. Method development for optimum recovery of Yersinia pestis ...

    EPA Pesticide Factsheets

    Report The primary goal of this project was to determine the best combination of sampling swab, pre-moistening agent, transport media, and extraction method for a high efficiency recovery of Y. pestis and F. tularensis vegetative cells.

  12. Fatal laboratory-acquired infection with an attenuated Yersinia pestis Strain--Chicago, Illinois, 2009.

    PubMed

    2011-02-25

    On September 18, 2009, the Chicago Department of Public Health (CDPH) was notified by a local hospital of a suspected case of fatal laboratory-acquired infection with Yersinia pestis, the causative agent of plague. The patient, a researcher in a university laboratory, had been working along with other members of the laboratory group with a pigmentation-negative (pgm-) attenuated Y. pestis strain (KIM D27). The strain had not been known to have caused laboratory-acquired infections or human fatalities. Other researchers in a separate university laboratory facility in the same building had contact with a virulent Y. pestis strain (CO92) that is considered a select biologic agent; however, the pgm- attenuated KIM D27 is excluded from the National Select Agent Registry. The university, CDPH, the Illinois Department of Public Health (IDPH), and CDC conducted an investigation to ascertain the cause of death. This report summarizes the results of that investigation, which determined that the cause of death likely was an unrecognized occupational exposure (route unknown) to Y. pestis, leading to septic shock. Y. pestis was isolated from premortem blood cultures. Polymerase chain reaction (PCR) identified the clinical isolate as a pgm- strain of Y. pestis. Postmortem examination revealed no evidence of pneumonic plague. A postmortem diagnosis of hereditary hemochromatosis was made on the basis of histopathologic, laboratory, and genetic testing. One possible explanation for the unexpected fatal outcome in this patient is that hemochromatosis-induced iron overload might have provided the infecting KIM D27 strain, which is attenuated as a result of defects in its ability to acquire iron, with sufficient iron to overcome its iron-acquisition defects and become virulent. Researchers should adhere to recommended biosafety practices when handling any live bacterial cultures, even attenuated strains, and institutional biosafety committees should implement and maintain effective

  13. Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague.

    PubMed

    Sun, Wei; Roland, Kenneth L; Kuang, Xiaoying; Branger, Christine G; Curtiss, Roy

    2010-03-01

    Two mutant strains of Yersinia pestis KIM5+, a Deltacrp mutant and a mutant with arabinose-dependent regulated delayed-shutoff crp expression (araC P(BAD) crp), were constructed, characterized in vitro, and evaluated for virulence, immunogenicity, and protective efficacy in mice. Both strains were highly attenuated by the subcutaneous (s.c.) route. The 50% lethal doses (LD(50)s) of the Deltacrp and araC P(BAD) crp mutants were approximately 1,000,000-fold and 10,000-fold higher than those of Y. pestis KIM5+, respectively, indicating that both strains were highly attenuated. Mice vaccinated s.c. with 3.8 x 10(7) CFU of the Deltacrp mutant developed high anti-Y. pestis and anti-LcrV serum IgG titers, both with a strong Th2 bias, and induced protective immunity against subcutaneous challenge with virulent Y. pestis (80% survival) but no protection against pulmonary challenge. Mice vaccinated with 3.0 x 10(4) CFU of the araC P(BAD) crp mutant also developed high anti-Y. pestis and anti-LcrV serum IgG titers but with a more balanced Th1/Th2 response. This strain induced complete protection against s.c. challenge and partial protection (70% survival) against pulmonary challenge. Our results demonstrate that arabinose-dependent regulated crp expression is an effective strategy to attenuate Y. pestis while retaining strong immunogenicity, leading to protection against the pneumonic and bubonic forms of plague.

  14. Molecular architectures of benzoic acid-specific type III polyketide synthases

    PubMed Central

    Stewart, Charles; Woods, Kate; Macias, Greg; Allan, Andrew C.; Noel, Joseph P.

    2017-01-01

    Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants. PMID:29199980

  15. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague.

    PubMed

    Spyrou, Maria A; Tukhbatova, Rezeda I; Wang, Chuan-Chao; Valtueña, Aida Andrades; Lankapalli, Aditya K; Kondrashin, Vitaly V; Tsybin, Victor A; Khokhlov, Aleksandr; Kühnert, Denise; Herbig, Alexander; Bos, Kirsten I; Krause, Johannes

    2018-06-08

    The origin of Yersinia pestis and the early stages of its evolution are fundamental subjects of investigation given its high virulence and mortality that resulted from past pandemics. Although the earliest evidence of Y. pestis infections in humans has been identified in Late Neolithic/Bronze Age Eurasia (LNBA 5000-3500y BP), these strains lack key genetic components required for flea adaptation, thus making their mode of transmission and disease presentation in humans unclear. Here, we reconstruct ancient Y. pestis genomes from individuals associated with the Late Bronze Age period (~3800 BP) in the Samara region of modern-day Russia. We show clear distinctions between our new strains and the LNBA lineage, and suggest that the full ability for flea-mediated transmission causing bubonic plague evolved more than 1000 years earlier than previously suggested. Finally, we propose that several Y. pestis lineages were established during the Bronze Age, some of which persist to the present day.

  16. Electrophoretic characterisation of the outer membrane proteins of Yersinia pestis isolated in north-east Brazil.

    PubMed Central

    Abath, F. G.; Almeida, A. M.; Ferreira, L. C.

    1989-01-01

    The outer membrane proteins of 38 Yersinia pestis isolates from all known plague foci of north-east Brazil were analysed by SDS-PAGE. Approximately 20 bands were consistently found in all strains analysed and 11 were selected for comparative studies. Although qualitative differences among the electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates were not observed, quantitative alterations were clearly noted for most of these proteins. No particular quantitative alteration of the electrophoretic profile of outer membrane proteins could be associated with the period of isolation and geographic origin of the isolates. The 64 kDa outer membrane protein was significantly expressed in higher amounts among Y. pestis strains isolated from a recent plague outbreak. The possible use of electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates as a tool for epidemiological studies and for the analysis of virulence determinants is discussed. Images Fig. 2 PMID:2606164

  17. Antigenic profiling of Yersinia pestis infection in the Wyoming coyote (Canis latrans)

    USGS Publications Warehouse

    Vernati, G.; Edwards, W.H.; Rocke, T.E.; Little, S.F.; Andrews, G.P.

    2011-01-01

    Although Yersinia pestis is classified as a "high-virulence" pathogen, some host species are variably susceptible to disease. Coyotes (Canis latrans) exhibit mild, if any, symptoms during infection, but antibody production occurs postinfection. This immune response has been reported to be against the F1 capsule, although little subsequent characterization has been conducted. To further define the nature of coyote humoral immunity to plague, qualitative serology was conducted to assess the antiplague antibody repertoire. Humoral responses to six plasmid-encoded Y. pestis virulence factors were first examined. Of 20 individual immune coyotes, 90% were reactive to at least one other antigen in the panel other than F1. The frequency of reactivity to low calcium response plasmid (pLcr)-encoded Yersinia protein kinase A (YpkA) and Yersinia outer protein D (YopD) was significantly greater than that previously observed in a murine model for plague. Additionally, both V antigen and plasminogen activator were reactive with over half of the serum samples tested. Reactivity to F1 was markedly less frequent in coyotes (35%). Twenty previously tested antibody-negative samples were also examined. While the majority were negative across the panel, 15% were positive for 1-3 non-F1 antigens. In vivo-induced antigen technology employed to identify novel chromosomal genes of Y. pestis that are up-regulated during infection resulted in the identification of five proteins, including a flagellar component (FliP) that was uniquely reactive with the coyote serum compared with immune serum from two other host species. Collectively, these data suggest that humoral immunity to pLcr-encoded antigens and the pesticin plasmid (pPst)-encoded Pla antigen may be relevant to plague resistance in coyotes. The serologic profile of Y. pestis chromosomal antigens up-regulated in vivo specific to C. latrans may provide insight into the differences in the pathogen-host responses during Y. pestis infection.

  18. Development of In Vitro Correlate Assays of Immunity to Infection with Yersinia Pestis

    DTIC Science & Technology

    2007-05-01

    cynomolgus macaques (CM) and African green (Chlorocebus aethiops) monkeys (AGM) vaccinated s.c. three times at 4-week intervals with the F1-V fusion...Yersinia pestis in African green monkeys . Arch. Pathol. Lab. Med. 120:156–163. 15. Faure, K., J. Fujimoto, D. W. Shimabukuro, T. Ajayi, N. Shime, K...A. Kuwae, C. Sasakawa, and S. Imajoh-Ohmi. 1999. Shigella flexneri YSH6000 induces two types of cell death, apoptosis and oncosis, in the

  19. Proteomic Characterization of Host Response to Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chromy, B; Perkins, J; Heidbrink, J

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct formore » the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.« less

  20. Forensic Signature Detection of Yersinia Pestis Culturing Practices Across Institutions Using a Bayesian Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann

    The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict themore » production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.« less

  1. Vaccination with F1-V Fusion Protein Protects Black-Footed Ferrets (Mustela Nigripes) Against Plague Upon Oral Challenge with Yersinia Pestis

    DTIC Science & Technology

    2008-01-01

    study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse , a probable...boost by feeding each one a Y. pestis-infected mouse . All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days...survived an initial SC challenge with Y. pestis were com- pletely resistant to a secondary exposure via consumption of a Y. pestis-infected mouse (Rocke et

  2. Yersinia type III effectors perturb host innate immune responses

    PubMed Central

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  3. Cranial mononeuropathy III - diabetic type

    MedlinePlus

    ... diabetic type of cranial mononeuropathy III is a complication of diabetes . It causes double vision and eyelid drooping . ... Cooper ME, Vinik AI, Plutzky J, Boulton AJM. Complications of diabetes mellitus. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg ...

  4. Sample collection of virulent and non-virulent B. anthracis and Y. pestis for bioforensics analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong-geller, Elizabeth; Valdez, Yolanda E; Shou, Yulin

    2009-01-01

    Validated sample collection methods are needed for recovery of microbial evidence in the event of accidental or intentional release of biological agents into the environment. To address this need, we evaluated the sample recovery efficiencies of two collection methods -- swabs and wipes -- for both non-virulent and virulent strains of B. anthracis and Y. pestis from four types of non-porous surfaces: two hydrophilic surfaces, stainless steel and glass, and two hydrophobic surfaces, vinyl and plastic. Sample recovery was quantified using Real-time qPCR to assay for intact DNA signatures. We found no consistent difference in collection efficiency between swabs ormore » wipes. Furthermore, collection efficiency was more surface-dependent for virulent strains than non-virulent strains. For the two non-virulent strains, B. anthracis Sterne and Y. pestis A1122, collection efficiency was approximately 100% and 1 %, respectively, from all four surfaces. In contrast, recovery of B. anthracis Ames spores and Y. pestis C092 from vinyl and plastic was generally lower compared to collection from glass or stainless steel, suggesting that surface hydrophobicity may playa role in the strength of pathogen adhesion. The surface-dependent collection efficiencies observed with the virulent strains may arise from strain-specific expression of capsular material or other cell surface receptors that alter cell adhesion to specific surfaces. These findings contribute to validation of standard bioforensics procedures and emphasize the importance of specific strain and surface interactions in pathogen detection.« less

  5. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague.

    PubMed

    Sebbane, Florent; Jarrett, Clayton; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph

    2010-12-17

    Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt) siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that Ybt would be an essential virulence factor for flea-borne plague. Here, using a flea-to-mouse transmission model, we show that a Y. pestis strain lacking the Ybt system causes fatal plague at low incidence when transmitted by fleas. Bacteriology and histology analyses revealed that a Ybt-negative strain caused only primary septicemic plague and atypical bubonic plague instead of the typical bubonic form of disease. The results provide new evidence that primary septicemic plague is a distinct clinical entity and suggest that unusual forms of plague may be caused by atypical Y. pestis strains.

  6. Yersinia pestis Biofilm in the Flea Vector and Its Role in the Transmission of Plague

    PubMed Central

    Erickson, D. L.

    2013-01-01

    Transmission by fleabite is a relatively recent evolutionary adaptation of Yersinia pestis, the bacterial agent of bubonic plague. To produce a transmissible infection, Y. pestis grows as an attached biofilm in the foregut of the flea vector. Biofilm formation both in the flea foregut and in vitro is dependent on an extracellular matrix (ECM) synthesized by the Yersinia hms gene products. The hms genes are similar to the pga and ica genes of Escherichia coli and Staphylococcus epidermidis, respectively, that act to synthesize a poly-β-1,6-N-acetyl-d-glucosamine ECM required for biofilm formation. As with extracellular polysaccharide production in many other bacteria, synthesis of the Hms-dependent ECM is controlled by intracellular levels of cyclic-di-GMP. Yersinia pseudotuberculosis, the food- and water-borne enteric pathogen from which Y. pestis evolved recently, possesses identical hms genes and can form biofilm in vitro but not in the flea. The genetic changes in Y. pestis that resulted in adapting biofilm-forming capability to the flea gut environment, a critical step in the evolution of vector-borne transmission, have yet to be identified. During a flea bite, Y. pestis is regurgitated into the dermis in a unique biofilm phenotype, and this has implications for the initial interaction with the mammalian innate immune response. PMID:18453279

  7. Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis.

    PubMed

    Anderson, G W; Leary, S E; Williamson, E D; Titball, R W; Welkos, S L; Worsham, P L; Friedlander, A M

    1996-11-01

    The purified recombinant V antigen from Yersinia pestis, expressed in Escherichia coli and adsorbed to aluminum hydroxide, an adjuvant approved for human use, was used to immunize outbred Hsd:ND4 mice subcutaneously. Immunization protected mice from lethal bubonic and pneumonic plague caused by CO92, a wild-type F1+ strain, or by the isogenic F1- strain C12. This work demonstrates that a subunit plague vaccine formulated for human use provides significant protection against bubonic plague caused by an F1- strain (C12) or against substantial aerosol challenges from either F1+ (CO92) or F1-(C12) Y. pestis.

  8. [Diagnostic values of type III Procollagen N-terminal peptide and combination assay of type III procollagen N-terminal peptide with CEA and CA 19-9 in gastric cancer].

    PubMed

    Akazawa, S; Harada, A; Futatsuki, K

    1984-07-01

    It is known that interstitial collagens are initially synthesized as precursors (procollagen), which possess extra peptide segments at both ends of the molecules. The authors attempted to detect the aminoterminal peptide of type III procollagen (type III-N-peptide) and also to measure the carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9) together in sera of patients with gastric cancer. The results showed that: (1) mean serum levels and positive ratios of the type III-N-peptide increased as the clinical stage of the patients with gastric cancer advanced; (2) serum levels of the type III-N-peptide were not correlated either with those of CEA or CA 19-9; (3) positive ratios of type III-N-peptide, CEA and CA 19-9 were 51.7%, 44.8% and 48.3%, respectively: (4) positive ratio in combination of the type III-N-peptide with CEA was 69.3% and that in combination of the type III-N-peptide with CEA and CA 19-9 was 72.4%. These results suggest that type III-N-peptide is available for diagnosis of gastric cancer and, that the combination assay of type III-N-peptide with CEA and CA 19-9 is more effective than a single assay for diagnosis.

  9. A Rapid and Simple Integrated Extraction Amplification and Detection Device for Y. pestis

    DTIC Science & Technology

    2000-10-01

    Yersinia pestis is transmitted by fleas. Three virulence plasmids are characteristic in Y pestis. These vary in different strains by size and...WIP# 330440), dTTP(BD WIP# 330572) and dCsTP(BD WIP# 330546). Additional SDA reagents Additional components: Bovine serum albumin (BSA) (BD WIP# 360653...in a thermocycler, with addition of enzyme following the denaturation step. Efforts to block the effect by prior exposure of the plastic to bovine

  10. Temporal phylogeography of Yersinia pestis in Madagascar: Insights into the long-term maintenance of plague

    PubMed Central

    Vogler, Amy J.; Andrianaivoarimanana, Voahangy; Telfer, Sandra; Hall, Carina M.; Sahl, Jason W.; Hepp, Crystal M.; Centner, Heather; Andersen, Genevieve; Birdsell, Dawn N.; Rahalison, Lila; Nottingham, Roxanne; Keim, Paul; Rajerison, Minoarisoa

    2017-01-01

    Background Yersinia pestis appears to be maintained in multiple, geographically separate, and phylogenetically distinct subpopulations within the highlands of Madagascar. However, the dynamics of these locally differentiated subpopulations through time are mostly unknown. To address that gap and further inform our understanding of plague epidemiology, we investigated the phylogeography of Y. pestis in Madagascar over an 18 year period. Methodology/Principal findings We generated whole genome sequences for 31 strains and discovered new SNPs that we used in conjunction with previously identified SNPs and variable-number tandem repeats (VNTRs) to genotype 773 Malagasy Y. pestis samples from 1995 to 2012. We mapped the locations where samples were obtained on a fine geographic scale to examine phylogeographic patterns through time. We identified 18 geographically separate and phylogenetically distinct subpopulations that display spatial and temporal stability, persisting in the same locations over a period of almost two decades. We found that geographic areas with higher levels of topographical relief are associated with greater levels of phylogenetic diversity and that sampling frequency can vary considerably among subpopulations and from year to year. We also found evidence of various Y. pestis dispersal events, including over long distances, but no evidence that any dispersal events resulted in successful establishment of a transferred genotype in a new location during the examined time period. Conclusions/Significance Our analysis suggests that persistent endemic cycles of Y. pestis transmission within local areas are responsible for the long term maintenance of plague in Madagascar, rather than repeated episodes of wide scale epidemic spread. Landscape likely plays a role in maintaining Y. pestis subpopulations in Madagascar, with increased topographical relief associated with increased levels of localized differentiation. Local ecological factors likely affect

  11. Temporal phylogeography of Yersinia pestis in Madagascar: Insights into the long-term maintenance of plague.

    PubMed

    Vogler, Amy J; Andrianaivoarimanana, Voahangy; Telfer, Sandra; Hall, Carina M; Sahl, Jason W; Hepp, Crystal M; Centner, Heather; Andersen, Genevieve; Birdsell, Dawn N; Rahalison, Lila; Nottingham, Roxanne; Keim, Paul; Wagner, David M; Rajerison, Minoarisoa

    2017-09-01

    Yersinia pestis appears to be maintained in multiple, geographically separate, and phylogenetically distinct subpopulations within the highlands of Madagascar. However, the dynamics of these locally differentiated subpopulations through time are mostly unknown. To address that gap and further inform our understanding of plague epidemiology, we investigated the phylogeography of Y. pestis in Madagascar over an 18 year period. We generated whole genome sequences for 31 strains and discovered new SNPs that we used in conjunction with previously identified SNPs and variable-number tandem repeats (VNTRs) to genotype 773 Malagasy Y. pestis samples from 1995 to 2012. We mapped the locations where samples were obtained on a fine geographic scale to examine phylogeographic patterns through time. We identified 18 geographically separate and phylogenetically distinct subpopulations that display spatial and temporal stability, persisting in the same locations over a period of almost two decades. We found that geographic areas with higher levels of topographical relief are associated with greater levels of phylogenetic diversity and that sampling frequency can vary considerably among subpopulations and from year to year. We also found evidence of various Y. pestis dispersal events, including over long distances, but no evidence that any dispersal events resulted in successful establishment of a transferred genotype in a new location during the examined time period. Our analysis suggests that persistent endemic cycles of Y. pestis transmission within local areas are responsible for the long term maintenance of plague in Madagascar, rather than repeated episodes of wide scale epidemic spread. Landscape likely plays a role in maintaining Y. pestis subpopulations in Madagascar, with increased topographical relief associated with increased levels of localized differentiation. Local ecological factors likely affect the dynamics of individual subpopulations and the associated

  12. Susceptibility of the Siberian polecat to subcutaneous and oral Yersinia pestis exposure.

    PubMed

    Castle, K T; Biggins, D; Carter, L G; Chu, M; Innes, K; Wimsatt, J

    2001-10-01

    To determine if the Siberian polecat (Mustela eversmannii) represents a suitable model for the study of plague pathogenesis and prevention in the black-footed ferret (Mustela nigripes), polecats were exposed to 10(3), 10(7), or 10(10) Yersinia pestis organisms by subcutaneous injection; an additional group was exposed to Y. pestis via ingestion of a plague-killed mouse. Plague killed 88% of polecats exposed to Y. pestis (71% mortality in the 10(3) group, 100% mortality in the 10(7) and 10(10) groups, and 83% mortality in the mouse-fed group). Within the challenged group, mean day of death post-challenge ranged from 3.6 to 7.6 days; all polecats died on or before day 12 post-challenge. Animals receiving the lowest parenteral dose survived significantly longer than those receiving higher parenteral doses. Within challenged animals, mean survival time was lower in those presenting with significant weight loss by day 3, lethargy, and low fecal output; time to onset of lethargy and other signs was also related to risk of dying and/or plague dose. Six polecats developed serum antibody titers to the Y. pestis F1 protein. Three seropositive polecats survived the initial challenge and a subsequent exposure to a plague-killed mouse, while two seropositive animals later died. This study confirms that the Siberian polecat is susceptible to plague and suggests that this species will offer an appropriate surrogate for black-footed ferrets in future plague studies and related vaccine trials.

  13. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharangeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food an...

  14. [Origin of the plague microbe Yersinia pestis: structure of the process of speciation].

    PubMed

    Suntsov, V V

    2012-01-01

    The origin and evolution of the plague microbe Yersinia pestis are considered in the context of propositions of modern Darwinism. It was shown that the plague pathogen diverged from the pseudotuberculous microbe Yersinia pseudotuberculosis O:1b in the mountain steppe landscapes of Central Asia in the Sartan: 22000-15000 years ago. Speciation occurred in the tarbagan (Marmota sibirica)--flea (Oropsylla silantiewi) parasitic system. The structure of the speciation process included six stages: isolation, genetic drift, enhancement of intrapopulational polymorphism, the beginning of pesticin synthesis (genetic conflict and emergence of hiatus), specialization (stabilization of characteristics), and adaptive irradiation (transformation of the monotypic species Y. pestis tarbagani into a polytypic species). The scenario opens up wide prospects for construction of the molecular phylogeny of the plague microbe Y. pestis and for investigation of the biochemical and molecular-genetic aspects of "Darwinian" evolution of pathogens from many other nature-focal infections.

  15. Ambient stable quantitative PCR reagents for the detection of Yersinia pestis.

    PubMed

    Qu, Shi; Shi, Qinghai; Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-03-09

    Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37 degrees C. TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37 degrees C for at least 49 days for a lower concentration of template DNA (10 copies/microl), and up to 79 days for higher concentrations (> or =10(2) copies/microl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5x10(4) CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37 degrees C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance.

  16. Type III restriction-modification enzymes: a historical perspective.

    PubMed

    Rao, Desirazu N; Dryden, David T F; Bheemanaik, Shivakumara

    2014-01-01

    Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.

  17. Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods

    PubMed Central

    Eisen, Rebecca J.; Gage, Kenneth L.

    2009-01-01

    Plague is a flea-borne zoonotic bacterial disease caused by Yersinia pestis. It has caused three historical pandemics, including the Black Death which killed nearly a third of Europe's population in the 14th century. In modern times, plague epizootics can extirpate entire susceptible wildlife populations and then disappear for long time periods. Understanding how Y. pestis is maintained during inter-epizootic periods and the factors responsible for transitioning to epizootics is important for preventing and controlling pathogen transmission and ultimately reducing the burden of human disease. In this review, we focus primarily on plague in North American foci and discuss the potential adaptive strategies Y. pestis might employ to ensure not only its survival during inter-epizootic periods but also the rapid epizootic spread and invasion of new territories that are so characteristic of plague and have resulted in major pandemics and establishment of plague foci throughout much of the world. PMID:18803931

  18. Retracing the Evolutionary Path that Led to Flea-borne Transmission of Yersinia pestis

    PubMed Central

    Sun, Yi-Cheng; Jarrett, Clayton O.; Bosio, Christopher F.; Hinnebusch, B. Joseph

    2014-01-01

    Summary Yersinia pestis is an arthropod-borne bacterial pathogen that evolved recently from Yersinia pseudotuberculosis, an enteric pathogen transmitted via the fecal-oral route. This radical ecological transition can be attributed to a few discrete genetic changes from a still-extant recent ancestor, thus providing a tractable case study in pathogen evolution and emergence. Here, we determined the precise genetic and mechanistic basis of the evolutionary adaptation of Y. pestis to flea-borne transmission. Remarkably, only four minor changes in the bacterial progenitor, representing one gene gain and three gene losses, enabled transmission by flea vectors. All three loss-of-function mutations enhanced c-di-GMP-mediated bacterial biofilm formation in the flea foregut that greatly increased transmissibility. Our results suggest a step-wise evolutionary model in which Y. pestis emerged as a flea-borne clone, with each genetic change incrementally reinforcing the transmission cycle. The model conforms well to the ecological theory of adaptive radiation. PMID:24832452

  19. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis.

    PubMed

    Sun, Yi-Cheng; Jarrett, Clayton O; Bosio, Christopher F; Hinnebusch, B Joseph

    2014-05-14

    Yersinia pestis is an arthropod-borne bacterial pathogen that evolved recently from Yersinia pseudotuberculosis, an enteric pathogen transmitted via the fecal-oral route. This radical ecological transition can be attributed to a few discrete genetic changes from a still-extant recent ancestor, thus providing a tractable case study in pathogen evolution and emergence. Here, we determined the genetic and mechanistic basis of the evolutionary adaptation of Y. pestis to flea-borne transmission. Remarkably, only four minor changes in the bacterial progenitor, representing one gene gain and three gene losses, enabled transmission by flea vectors. All three loss-of-function mutations enhanced cyclic-di-GMP-mediated bacterial biofilm formation in the flea foregut, which greatly increased transmissibility. Our results suggest a step-wise evolutionary model in which Y. pestis emerged as a flea-borne clone, with each genetic change incrementally reinforcing the transmission cycle. The model conforms well to the ecological theory of adaptive radiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis.

    PubMed

    Bozue, Joel; Mou, Sherry; Moody, Krishna L; Cote, Christopher K; Trevino, Sylvia; Fritz, David; Worsham, Patricia

    2011-06-01

    At the genomic level, Yersinia pestis and Yersinia pseudotuberculosis are nearly identical but cause very different diseases. Y. pestis is the etiologic agent of plague; whereas Y. pseudotuberculosis causes a gastrointestinal infection primarily after the consumption of contaminated food. In many gram-negative pathogenic bacteria, PhoP is part of a two-component global regulatory system in which PhoQ serves as the sensor kinase, and PhoP is the response regulator. PhoP is known to activate a number of genes in many bacteria related to virulence. To determine the role of the PhoPQ proteins in Yersinia infections, primarily using aerosol challenge models, the phoP gene was deleted from the chromosome of the CO92 strain of Y. pestis and the IP32953 strain of Y. pseudotuberculosis, leading to a polar mutation of the phoPQ operon. We demonstrated that loss of phoPQ from both strains leads to a defect in intracellular growth and/or survival within macrophages. These in vitro data would suggest that the phoPQ mutants would be attenuated in vivo. However, the LD(50) for the Y. pestis mutant did not differ from the calculated LD(50) for the wild-type CO92 strain for either the bubonic or pneumonic murine models of infection. In contrast, mice challenged by aerosol with the Y. pseudotuberculosis mutant had a LD(50) value 40× higher than the wild-type strain. These results demonstrate that phoPQ are necessary for full virulence by aerosol infection with the IP32953 strain of Y. pseudotuberculosis. However, the PhoPQ proteins do not play a significant role in infection with a fully virulent strain of Y. pestis. Published by Elsevier India Pvt Ltd.

  1. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Effect of serotonin on the expression of antigens and DNA levels in Yersinia pestis cells with different plasmid content

    NASA Astrophysics Data System (ADS)

    Klueva, Svetlana N.; Korsukov, Vladimir N.; Schukovskaya, Tatyana N.; Kravtsov, Alexander L.

    2004-08-01

    Using flow cytometry (FCM) the influence of exogenous serotonin on culture growth, DNA content and fluorescence intensity of cells binding FITC-labelled plague polyclonal immunoglobulins was studied in Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-), Yersinia pestis KM 216 (pFra-, pCad-, pPst+). The results have been obtained by FCM showed serotonin accelerated Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-) culture growth during cultivation in Hottinger broth pH 7.2 at 28°C at concentration of 10-5 M. The presence of 10-5 M serotonin in nutrient broth could modulate DNA content in 37°C growing population of plague microbe independently of their plasmid content. Serotonin have been an impact on the distribution pattern of the cells according to their phenotypical characteristics, which was reflected in the levels of population heterogeneity in the intensity of specific immunofluorescence determined by FMC.

  3. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.

    PubMed

    Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C; Fire, Andrew Z; Sánchez-Amat, Antonio

    2017-08-17

    CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea . One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an 'arms race' in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems.

  4. Susceptibility of the Siberian polecat to subcutaneous and oral Yersinia pestis exposure

    USGS Publications Warehouse

    Castle, K.T.; Biggins, D.; Carter, L.G.; Chu, M.; Innes, Kim; Wimsatt, J.

    2001-01-01

    To determine if the Siberian polecat (Mustela eversmannii) represents a suitable model for the study of plague pathogenesis and prevention in the black-footed ferret (Mustela nigripes), polecats were exposed to 103, 107, or 1010 Yersinia pestis organisms by subcutaneous injection; an additional group was exposed to Y. pestis via ingestion of a plague-killed mouse. Plague killed 88% of polecats exposed to Y. pestis (71% mortality in the 103 group, 100% mortality in the 107 and 1010 groups, and 83% mortality in the mouse-fed group). Within the challenged group, mean day of death post-challenge ranged from 3.6 to 7.6 days; all polecats died on or before day 12 post-challenge. Animals receiving the lowest parenteral dose survived significantly longer than those receiving higher parenteral doses. Within challenged animals, mean survival time was lower in those presenting with significant weight loss by day 3, lethargy, and low fecal output; time to onset of lethargy and other signs was also related to risk of dying and/or plague dose. Six polecats developed serum antibody titers to the Y. pestis F1 protein. Three seropositive polecats survived the initial challenge and a subsequent exposure to a plague-killed mouse, while two seropositive animals later died. This study confirms that the Siberian polecat is susceptible to plague and suggests that this species will offer an appropriate surrogate for black-footed ferrets in future plague studies and related vaccine trials.

  5. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice.

    PubMed

    Anisimov, Andrey P; Bakhteeva, Irina V; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Kravchenko, Tat'yana B; Platonov, Mikhail E; Titareva, Galina M; Kombarova, Tat'yana I; Ivanov, Sergey A; Rakin, Alexander V; Amoako, Kingsley K; Dentovskaya, Svetlana V

    2009-01-01

    Two isogenic sets of Yersinia pestis strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6(-) mutants with deletions in the psaA gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the psa operon and subsequent complementation in trans. It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence Y. pestis virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.

  6. A procedure for maintenance of the virulence plasmid (pYV) in Yersinia pestis under culture conditions

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of Yersinia pestis depends on the presence of a virulence plasmid (pYV). The unstable nature of pYV in Y. pestis leads to the eventual outgrowth of pYV less cells due to its higher growth rate. Thus, it was necessary to develop procedures to monitor the presence of the plasmid du...

  7. The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation

    PubMed Central

    O'Connor, Lauren; Fetherston, Jacqueline D.; Perry, Robert D.

    2017-01-01

    The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake. PMID:28785546

  8. Usher syndrome type III can mimic other types of Usher syndrome.

    PubMed

    Pennings, Ronald J E; Fields, Randall R; Huygen, Patrick L M; Deutman, August F; Kimberling, William J; Cremers, Cor W R J

    2003-06-01

    Clinical and genetic characteristics are presented of 2 patients from a Dutch Usher syndrome type III family who have a new homozygous USH3 gene mutation: 149-152delCAGG + insTGTCCAAT. One individual (IV:1) is profoundly hearing impaired and has normal vestibular function and retinitis punctata albescens (RPA). The other individual is also profoundly hearing impaired, but has well-developed speech, vestibular areflexia, and retinitis pigmentosa sine pigmento (RPSP). These findings suggest that Usher syndrome type III can be clinically misdiagnosed as either Usher type I or II; that Usher syndrome patients who are profoundly hearing impaired and have normal vestibular function should be tested for USH3 mutations; and that RPA and RPSP can occur as fundoscopic manifestations of pigmentary retinopathy in Usher syndrome.

  9. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death.

    PubMed

    Schuenemann, Verena J; Bos, Kirsten; DeWitte, Sharon; Schmedes, Sarah; Jamieson, Joslyn; Mittnik, Alissa; Forrest, Stephen; Coombes, Brian K; Wood, James W; Earn, David J D; White, William; Krause, Johannes; Poinar, Hendrik N

    2011-09-20

    Although investigations of medieval plague victims have identified Yersinia pestis as the putative etiologic agent of the pandemic, methodological limitations have prevented large-scale genomic investigations to evaluate changes in the pathogen's virulence over time. We screened over 100 skeletal remains from Black Death victims of the East Smithfield mass burial site (1348-1350, London, England). Recent methods of DNA enrichment coupled with high-throughput DNA sequencing subsequently permitted reconstruction of ten full human mitochondrial genomes (16 kb each) and the full pPCP1 (9.6 kb) virulence-associated plasmid at high coverage. Comparisons of molecular damage profiles between endogenous human and Y. pestis DNA confirmed its authenticity as an ancient pathogen, thus representing the longest contiguous genomic sequence for an ancient pathogen to date. Comparison of our reconstructed plasmid against modern Y. pestis shows identity with several isolates matching the Medievalis biovar; however, our chromosomal sequences indicate the victims were infected with a Y. pestis variant that has not been previously reported. Our data reveal that the Black Death in medieval Europe was caused by a variant of Y. pestis that may no longer exist, and genetic data carried on its pPCP1 plasmid were not responsible for the purported epidemiological differences between ancient and modern forms of Y. pestis infections.

  10. Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis

    PubMed Central

    Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-01-01

    Background Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37°C. Methods/Principal Findings TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37°C for at least 49 days for a lower concentration of template DNA (10 copies/µl), and up to 79 days for higher concentrations (≥102 copies/µl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5×104 CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. Conclusions/Significance The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37°C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance. PMID:20231881

  11. Transmission efficiency of the plague pathogen (Y. pestis) by the flea, Xenopsylla skrjabini, to mice and great gerbils.

    PubMed

    Zhang, Yujiang; Dai, Xiang; Wang, Qiguo; Chen, Hongjian; Meng, Weiwei; Wu, Kemei; Luo, Tao; Wang, Xinhui; Rehemu, Azhati; Guo, Rong; Yu, Xiaotao; Yang, Ruifu; Cao, Hanli; Song, Yajun

    2015-05-01

    Plague, a zoonotic disease caused by Yersinia pestis, is characterized by its ability to persist in the plague natural foci. Junggar Basin plague focus was recently identified in China, with Rhombomys opimus (great gerbils) and Xenopsylla skrjabini as the main reservoir and vector for plague. No transmission efficiency data of X. skrjabini for Y. pestis is available till now. In this study, we estimated the median infectious dose (ID50) and the blockage rates of X. skrjabini with Y. pestis, by using artificial feeders. We then evaluated the flea transmission ability of Y. pestis to the mice and great gerbils via artificial bloodmeal feeding. Finally, we investigated the transmission of Y. pestis to mice with fleas fed by infected great gerbils. ID50 of Y. pestis to X. skrjabini was estimated as 2.04 × 10(5) CFU (95% CI, 1.45 × 10(5) - 3.18 × 10(5) CFU), around 40 times higher than that of X. cheopis. Although fleas fed by higher bacteremia bloodmeal had higher infection rates for Y. pestis, they lived significantly shorter than their counterparts. X. skrjabini could get fully blocked as early as day 3 post of infection (7.1%, 3/42 fleas), and the overall blockage rate of X. cheopis was estimated as 14.9% (82/550 fleas) during the 14 days of investigation. For the fleas infected by artificial feeders, they seemed to transmit plague more efficiently to great gerbils than mice. Our single flea transmission experiments also revealed that, the transmission capacity of naturally infected fleas (fed by infected great gerbils) was significantly higher than that of artificially infected ones (fed by artificial feeders). Our results indicated that ID50 of Y. pestis to X. skrjabini was higher than other fleas like X. cheopis, and its transmission efficiency to mice might be lower than other flea vectors in the artificial feeding modes. We also found different transmission potentials in the artificially infected fleas and the naturally infected ones. Further studies are

  12. Mutations, mutation rates, and evolution at the hypervariable VNTR loci of Yersinia pestis.

    PubMed

    Vogler, Amy J; Keys, Christine E; Allender, Christopher; Bailey, Ira; Girard, Jessica; Pearson, Talima; Smith, Kimothy L; Wagner, David M; Keim, Paul

    2007-03-01

    VNTRs are able to discriminate among closely related isolates of recently emerged clonal pathogens, including Yersinia pestis the etiologic agent of plague, because of their great diversity. Diversity is driven largely by mutation but little is known about VNTR mutation rates, factors affecting mutation rates, or the mutational mechanisms. The molecular epidemiological utility of VNTRs will be greatly enhanced when this foundational knowledge is available. Here, we measure mutation rates for 43 VNTR loci in Y. pestis using an in vitro generated population encompassing approximately 96,000 generations. We estimate the combined 43-locus rate and individual rates for 14 loci. A comparison of Y. pestis and Escherichia coli O157:H7 VNTR mutation rates and products revealed a similar relationship between diversity and mutation rate in these two species. Likewise, the relationship between repeat copy number and mutation rate is nearly identical between these species, suggesting a generalized relationship that may be applicable to other species. The single- versus multiple-repeat mutation ratios and the insertion versus deletion mutation ratios were also similar, providing support for a general model for the mutations associated with VNTRs. Finally, we use two small sets of Y. pestis isolates to show how this general model and our estimated mutation rates can be used to compare alternate phylogenies, and to evaluate the significance of genotype matches, near-matches, and mismatches found in empirical comparisons with a reference database.

  13. Ribosomal vaccines. I. Immunogenicity of ribosomal fractions isolated from Salmonella typhimurium and Yersinia pestis.

    PubMed

    Johnson, W

    1972-06-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein.

  14. Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence.

    PubMed

    Felek, Suleyman; Jeong, Jenny J; Runco, Lisa M; Murray, Susan; Thanassi, David G; Krukonis, Eric S

    2011-03-01

    Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δfim Escherichia coli strain AAEC185 to test the assembled Y. pestis surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection. However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.

  15. Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence

    PubMed Central

    Felek, Suleyman; Jeong, Jenny J.; Runco, Lisa M.; Murray, Susan; Thanassi, David G.; Krukonis, Eric S.

    2011-01-01

    Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δfim Escherichia coli strain AAEC185 to test the assembled Y. pestis surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection. However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such as cell adhesion and biofilm formation. PMID:21088108

  16. Evaluation of Bacillus anthracis and Yersinia pestis sample collection from nonporous surfaces by quantitative real-time PCR.

    PubMed

    Hong-Geller, E; Valdez, Y E; Shou, Y; Yoshida, T M; Marrone, B L; Dunbar, J M

    2010-04-01

    We will validate sample collection methods for recovery of microbial evidence in the event of accidental or intentional release of biological agents into the environment. We evaluated the sample recovery efficiencies of two collection methods - swabs and wipes - for both nonvirulent and virulent strains of Bacillus anthracis and Yersinia pestis from four types of nonporous surfaces: two hydrophilic surfaces, stainless steel and glass, and two hydrophobic surfaces, vinyl and plastic. Sample recovery was quantified using real-time qPCR to assay for intact DNA signatures. We found no consistent difference in collection efficiency between swabs or wipes. Furthermore, collection efficiency was more surface-dependent for virulent strains than nonvirulent strains. For the two nonvirulent strains, collection efficiency was similar between all four surfaces, albeit B. anthracis Sterne exhibited higher levels of recovery compared to Y. pestis A1122. In contrast, recovery of B. anthracis Ames spores and Y. pestis CO92 from the hydrophilic glass or stainless steel surfaces was generally more efficient compared to collection from the hydrophobic vinyl and plastic surfaces. Our results suggest that surface hydrophobicity may play a role in the strength of pathogen adhesion. The surface-dependent collection efficiencies observed with the virulent strains may arise from strain-specific expression of capsular material or other cell surface receptors that alter cell adhesion to specific surfaces. These findings contribute to the validation of standard bioforensics procedures and emphasize the importance of specific strain and surface interactions in pathogen detection.

  17. A novel post-exposure medical countermeasure L-97-1 improves survival and acute lung injury following intratracheal infection with Yersinia pestis

    PubMed Central

    Wilson, Constance N; Vance, Constance O; Doyle, Timothy M; Brink, David S; Matuschak, George M; Lechner, Andrew J

    2012-01-01

    Yersinia pestis, a Gram-negative bacillus causing plague and Centers for Disease Control and Prevention (CDC) classified Category A pathogen, has high potential as a bioweapon. Lipopolysaccharide, a virulence factor for Y. pestis, binds to and activates A1 adenosine receptor (AR)s and, in animals, A1AR antagonists block induced acute lung injury (ALI) and increase survival following cecal ligation and perforation. In this study, rats were infected intratracheally with viable Y. pestis [CO99 (pCD1+/Δpgm) 1 × 108 CFU/animal] and treated daily for 3 d with ciprofloxacin (cipro), the A1AR antagonist L-97-1, or cipro plus L-97-1 starting at 0, 6, 24, 48, or 72 h post-Y. pestis. At 72 h post-Y. pestis, cipro plus L-97-1 significantly improved 6-d survival to 60–70% vs 28% for cipro plus H2O and 33% for untreated Y. pestis controls (P = 0.02, logrank test). Lung edema, hemorrhage and leukocyte infiltration index (LII) were evaluated histologically to produce ALI scores. Cipro plus L-97-1 significantly reduced lung edema, as well as aggregate lung injury scores vs controls or cipro plus H2O, and LII vs controls (P < 0.05, Student's unpaired t test). These results support efficacy for L-97-1 as a post-exposure medical countermeasure, adjunctive therapy to antibiotics for Y. pestis. PMID:21862597

  18. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems

    PubMed Central

    Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C

    2017-01-01

    CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea. One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an ‘arms race’ in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems. PMID:28826484

  19. Evaluation of Commercial Off-the-Shelf Solutions for Supporting Viability Retention of Yersinia Pestis Cells

    DTIC Science & Technology

    2017-11-01

    either trade or manufacturers ’ names in this report does not constitute an official endorsement of any commercial products. The report may not be cited...were not the result of residual environmental contamination . Major threat agents such as Bacillus anthracis, Yersinia pestis, and Burkholderia...presence of Y. pestis and B. anthracis, even though no deliberate contamination was verified (Afshinnekoo et al., 2015). In fact, as of 2015, there have

  20. A bibliography of literature pertaining to plague (Yersinia pestis)

    USGS Publications Warehouse

    Ellison, Laura E.; Frank, Megan K. Eberhardt

    2011-01-01

    Plague is an acute and often fatal zoonotic disease caused by the bacterium Yersinia pestis. Y. pestis mainly cycles between small mammals and their fleas; however, it has the potential to infect humans and frequently causes fatalities if left untreated. It is often considered a disease of the past; however, since the late 1800s, plagueis geographic range has expanded greatly, posing new threats in previously unaffected regions of the world, including the Western United States. A literature search was conducted using Internet resources and databases. The keywords chosen for the searches included plague, Yersinia pestis, management, control, wildlife, prairie dogs, fleas, North America, and mammals. Keywords were used alone or in combination with the other terms. Although this search pertains mostly to North America, citations were included from the international research community, as well. Databases and search engines used included Google (http://www.google.com), Google Scholar (http://scholar.google.com), SciVerse Scopus (http://www.scopus.com), ISI Web of Knowledge (http://apps.isiknowledge.com), and the USGS Library's Digital Desktop (http://library.usgs.gov). The literature-cited sections of manuscripts obtained from keyword searches were cross-referenced to identify additional citations or gray literature that was missed by the Internet search engines. This Open-File Report, published as an Internet-accessible bibliography, is intended to be periodically updated with new citations or older references that may have been missed during this compilation. Hence, the authors would be grateful to receive notice of any new or old papers that the audience (users) think need to be included.

  1. TNFα and IFNγ but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection.

    PubMed

    Szaba, Frank M; Kummer, Lawrence W; Duso, Debra K; Koroleva, Ekaterina P; Tumanov, Alexei V; Cooper, Andrea M; Bliska, James B; Smiley, Stephen T; Lin, Jr-Shiuan

    2014-05-01

    Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69-77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69-77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69-77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69-77-mediated protection. In contrast, YopE69-77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.

  2. Affinity Maturation of an Anti-V Antigen IgG Expressed In Situ Via Adenovirus Gene Delivery Confers Enhanced Protection Against Yersinia pestis Challenge

    PubMed Central

    Van Blarcom, Thomas J.; Sofer-Podesta, Carolina; Ang, John; Boyer, Julie L.; Crystal, Ronald G.; Georgiou, George

    2013-01-01

    Genetic transfer of neutralizing antibodies has been shown to confer strong and persistent protection against bacterial and viral infectious agents. While it is well established that for many exogenous neutralizing antibodies increased antigen affinity correlates with protection, the effect of antigen affinity on antibodies produced in situ following adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal antibody 2C12.4 recognizes the Yersinia pestis Type III secretion apparatus protein LcrV (V antigen) and confers protection in mice when administered as an IgG intraperitoneally or, following genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad) 1. 2C12.4 was expressed as a scFv fragment in E. coli and was shown to display a KD=3.5 nM by surface plasmon resonance (SPR) analysis. The 2C12.4 scFv was subjected to random mutagenesis and variants with increased affinity were isolated by flow cytometry using the Anchored Periplasmic Expression (APEx) bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower KD values (H8, KD=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdαV giving rise to AdαV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen antibodies 3 days post-immunization with 109, 1010 or 1011 particle units. Following intranasal challenge with 363 LD50Y. pestis CO92, 54% of the mice immunized with 1010 pu of AdαV.H8 survived at the 14 day end point compared to only 15% survivors for the group immunized with AdαV expressing the lower affinity 2C12.4 (P<0.04, AdαV versus AdαV.H8). These results indicate that affinity maturation of a neutralizing antibody delivered by genetic transfer may confer increased protection not only for Y. pestis challenge but possibly for other pathogens. PMID:20393511

  3. Cethromycin-mediated protection against the plague pathogen Yersinia pestis in a rat model of infection and comparison with levofloxacin.

    PubMed

    Rosenzweig, Jason A; Brackman, Sheri M; Kirtley, Michelle L; Sha, Jian; Erova, Tatiana E; Yeager, Linsey A; Peterson, Johnny W; Xu, Ze-Qi; Chopra, Ashok K

    2011-11-01

    The Gram-negative plague bacterium, Yersinia pestis, has historically been regarded as one of the deadliest pathogens known to mankind, having caused three major pandemics. After being transmitted by the bite of an infected flea arthropod vector, Y. pestis can cause three forms of human plague: bubonic, septicemic, and pneumonic, with the latter two having very high mortality rates. With increased threats of bioterrorism, it is likely that a multidrug-resistant Y. pestis strain would be employed, and, as such, conventional antibiotics typically used to treat Y. pestis (e.g., streptomycin, tetracycline, and gentamicin) would be ineffective. In this study, cethromycin (a ketolide antibiotic which inhibits bacterial protein synthesis and is currently in clinical trials for respiratory tract infections) was evaluated for antiplague activity in a rat model of pneumonic infection and compared with levofloxacin, which operates via inhibition of bacterial topoisomerase and DNA gyrase. Following a respiratory challenge of 24 to 30 times the 50% lethal dose of the highly virulent Y. pestis CO92 strain, 70 mg of cethromycin per kg of body weight (orally administered twice daily 24 h postinfection for a period of 7 days) provided complete protection to animals against mortality without any toxic effects. Further, no detectable plague bacilli were cultured from infected animals' blood and spleens following cethromycin treatment. The antibiotic was most effective when administered to rats 24 h postinfection, as the animals succumbed to infection if treatment was further delayed. All cethromycin-treated survivors tolerated 2 subsequent exposures to even higher lethal Y. pestis doses without further antibiotic treatment, which was related, in part, to the development of specific antibodies to the capsular and low-calcium-response V antigens of Y. pestis. These data demonstrate that cethromycin is a potent antiplague drug that can be used to treat pneumonic plague.

  4. Single-Nucleotide Polymorphisms Reveal Spatial Diversity Among Clones of Yersinia pestis During Plague Outbreaks in Colorado and the Western United States.

    PubMed

    Lowell, Jennifer L; Antolin, Michael F; Andersen, Gary L; Hu, Ping; Stokowski, Renee P; Gage, Kenneth L

    2015-05-01

    In western North America, plague epizootics caused by Yersinia pestis appear to sweep across landscapes, primarily infecting and killing rodents, especially ground squirrels and prairie dogs. During these epizootics, the risk of Y. pestis transmission to humans is highest. While empirical models that include climatic conditions and densities of rodent hosts and fleas can predict when epizootics are triggered, bacterial transmission patterns across landscapes, and the scale at which Y. pestis is maintained in nature during inter-epizootic periods, are poorly defined. Elucidating the spatial extent of Y. pestis clones during epizootics can determine whether bacteria are propagated across landscapes or arise independently from local inter-epizootic maintenance reservoirs. We used DNA microarray technology to identify single-nucleotide polymorphisms (SNPs) in 34 Y. pestis isolates collected in the western United States from 1980 to 2006, 21 of which were collected during plague epizootics in Colorado. Phylogenetic comparisons were used to elucidate the hypothesized spread of Y. pestis between the mountainous Front Range and the eastern plains of northern Colorado during epizootics. Isolates collected from across the western United States were included for regional comparisons. By identifying SNPs that mark individual clones, our results strongly suggest that Y. pestis is maintained locally and that widespread epizootic activity is caused by multiple clones arising independently at small geographic scales. This is in contrast to propagation of individual clones being transported widely across landscapes. Regionally, our data are consistent with the notion that Y. pestis diversifies at relatively local scales following long-range translocation events. We recommend that surveillance and prediction by public health and wildlife management professionals focus more on models of local or regional weather patterns and ecological factors that may increase risk of widespread

  5. Ribosomal Vaccines I. Immunogenicity of Ribosomal Fractions Isolated from Salmonella typhimurium and Yersinia pestis

    PubMed Central

    Johnson, William

    1972-01-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein. Images PMID:4564407

  6. Comparative Ability of Oropsylla montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms

    PubMed Central

    Bland, David M.; Bosio, Christopher F.; Jarrett, Clayton O.

    2017-01-01

    Background Transmission of Yersinia pestis by flea bite can occur by two mechanisms. After taking a blood meal from a bacteremic mammal, fleas have the potential to transmit the very next time they feed. This early-phase transmission resembles mechanical transmission in some respects, but the mechanism is unknown. Thereafter, transmission occurs after Yersinia pestis forms a biofilm in the proventricular valve in the flea foregut. The biofilm can impede and sometimes completely block the ingestion of blood, resulting in regurgitative transmission of bacteria into the bite site. In this study, we compared the relative efficiency of the two modes of transmission for Xenopsylla cheopis, a flea known to become completely blocked at a high rate, and Oropsylla montana, a flea that has been considered to rarely develop proventricular blockage. Methodology/Principal findings Fleas that took an infectious blood meal containing Y. pestis were maintained and monitored for four weeks for infection and proventricular blockage. The number of Y. pestis transmitted by groups of fleas by the two modes of transmission was also determined. O. montana readily developed complete proventricular blockage, and large numbers of Y. pestis were transmitted by that mechanism both by it and by X. cheopis, a flea known to block at a high rate. In contrast, few bacteria were transmitted in the early phase by either species. Conclusions A model system incorporating standardized experimental conditions and viability controls was developed to more reliably compare the infection, proventricular blockage and transmission dynamics of different flea vectors, and was used to resolve a long-standing uncertainty concerning the vector competence of O. montana. Both X. cheopis and O. montana are fully capable of transmitting Y. pestis by the proventricular biofilm-dependent mechanism. PMID:28081130

  7. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay

    PubMed Central

    Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul

    2016-01-01

    ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have

  8. A tiny event producing an interplanetary type III burst

    NASA Astrophysics Data System (ADS)

    Alissandrakis, C. E.; Nindos, A.; Patsourakos, S.; Kontogeorgos, A.; Tsitsipis, P.

    2015-10-01

    Aims: We investigate the conditions under which small-scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. Methods: We analyzed observations of three tiny events, detected by the Nançay Radio Heliograph (NRH), two of which produced IP type III bursts. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated extreme-UV (EUV) emissions. We measured positions and time profiles of the metric and EUV sources. Results: We found that the EUV events that produced IP type III bursts were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case, the radio emission at the highest frequency (435 MHz) was displaced by ~55'' with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images, we derived the electron beam velocity as well as the height, ambient plasma temperature, and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images, we found that the first evidence of energy release was at the footpoints, and this was followed by the development of flaring loops and subsequent cooling. Conclusions: Even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation. The movie is available in electronic form at http://www.aanda.org

  9. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  10. The Effects of Low-Shear Mechanical Stress on Yersinia pestis Virulence

    NASA Astrophysics Data System (ADS)

    Lawal, Abidat; Jejelowo, Olufisayo A.; Rosenzweig, Jason A.

    2010-11-01

    Manned space exploration has created a need to evaluate the effects of spacelike stress on pathogenic and opportunistic microbes astronauts could carry with them to the International Space Station and beyond. Yersinia pestis (YP) causes bubonic, septicemic, and pneumonic plague and is capable of killing infected patients within 3-7 days. In this study, low-shear modeled microgravity (LSMMG), a spacelike stress, was used to physically stress YP; and its effects on proliferation, cold growth, and type III secretion system (T3SS) function were evaluated. YP was grown to saturation in either LSMMG or normal gravity (NG) conditions prior to being used for RAW 246.7 cell infections, HeLa cell infections, and Yop secretion assays. A mutant strain of YP (ΔyopB) that lacks the ability to inject Yersinia outer membrane proteins (Yops) into the host cell was used as a negative control in cell infection experiments. Our experimental results indicate that YP cultivated under LSMMG resulted in reduced YopM production and secretion compared to its NG-grown counterpart. Similarly, NG-grown YP induced more cell rounding in HeLa cells than did the LSMMG-grown YP, which suggests that LSMMG somehow impairs T3SS optimum function. Also, LSMMG-grown YP used to infect cultured RAW 246.7 cells showed a similar pattern of dysfunction in that it proliferated less than did its NG-grown counterpart during an 8-hour infection period. This study suggests that LSMMG can attenuate bacterial virulence contrary to previously published data that have demonstrated LSMMG-induced hypervirulence of other Gram-negative enterics.

  11. The effects of low-shear mechanical stress on Yersinia pestis virulence.

    PubMed

    Lawal, Abidat; Jejelowo, Olufisayo A; Rosenzweig, Jason A

    2010-11-01

    Manned space exploration has created a need to evaluate the effects of spacelike stress on pathogenic and opportunistic microbes astronauts could carry with them to the International Space Station and beyond. Yersinia pestis (YP) causes bubonic, septicemic, and pneumonic plague and is capable of killing infected patients within 3-7 days. In this study, low-shear modeled microgravity (LSMMG), a spacelike stress, was used to physically stress YP; and its effects on proliferation, cold growth, and type III secretion system (T3SS) function were evaluated. YP was grown to saturation in either LSMMG or normal gravity (NG) conditions prior to being used for RAW 246.7 cell infections, HeLa cell infections, and Yop secretion assays. A mutant strain of YP (ΔyopB) that lacks the ability to inject Yersinia outer membrane proteins (Yops) into the host cell was used as a negative control in cell infection experiments. Our experimental results indicate that YP cultivated under LSMMG resulted in reduced YopM production and secretion compared to its NG-grown counterpart. Similarly, NG-grown YP induced more cell rounding in HeLa cells than did the LSMMG-grown YP, which suggests that LSMMG somehow impairs T3SS optimum function. Also, LSMMG-grown YP used to infect cultured RAW 246.7 cells showed a similar pattern of dysfunction in that it proliferated less than did its NG-grown counterpart during an 8-hour infection period. This study suggests that LSMMG can attenuate bacterial virulence contrary to previously published data that have demonstrated LSMMG-induced hypervirulence of other Gram-negative enterics.

  12. Substrains of 129 Mice Are Resistant to Yersinia pestis KIM5: Implications for Interleukin-10-Deficient Mice▿

    PubMed Central

    Turner, Joshua K.; Xu, John L.; Tapping, Richard I.

    2009-01-01

    Interleukin-10 (IL-10)-deficient mice are resistant to several pathogens, including Yersinia pestis. Surprisingly, we observed that heterozygous IL-10+/− mice also survive high-dose intravenous infection with Y. pestis KIM5 (Pgm−). Analysis of commercial IL-10−/− mice revealed that at least 30 cM of genomic DNA from the original 129 strain remains, including a functional Slc11a1 (Nramp1) gene. Interestingly, two substrains of 129 mice were resistant to high-dose Y. pestis KIM5. Resistance does not appear to be recessive, as F1 mice (C57BL/6J × 129) also survived a high-dose challenge. A QTL-based genetic scan of chromosome 1 with 35 infected F1 backcrossed mice revealed that resistance to KIM5 maps to a region near IL-10. Two novel IL-10+/+ mouse strains which each possess most of the original 30-cM stretch of 129 DNA maintained resistance to high-dose infection with Y. pestis KIM5 even in a heterozygous state. Conversely, a novel IL-10−/− mouse strain in which most of the 129 DNA has been crossed out exhibited intermediate resistance to KIM5, while the corresponding IL-10+/− strain was completely susceptible. Taken together, these results demonstrate that 129-derived genomic DNA near IL-10 confers resistance to Yersinia pestis KIM5 and contributes to the observed resistance of IL-10−/− mice. PMID:18955473

  13. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response.

    PubMed

    Derbise, Anne; Pierre, François; Merchez, Maud; Pradel, Elizabeth; Laouami, Sabrina; Ricard, Isabelle; Sirard, Jean-Claude; Fritz, Jill; Lemaître, Nadine; Akinbi, Henry; Boneca, Ivo G; Sebbane, Florent

    2013-05-15

    Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.

  14. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus.

    PubMed

    Bos, Kirsten I; Herbig, Alexander; Sahl, Jason; Waglechner, Nicholas; Fourment, Mathieu; Forrest, Stephen A; Klunk, Jennifer; Schuenemann, Verena J; Poinar, Debi; Kuch, Melanie; Golding, G Brian; Dutour, Olivier; Keim, Paul; Wagner, David M; Holmes, Edward C; Krause, Johannes; Poinar, Hendrik N

    2016-01-21

    The 14th-18th century pandemic of Yersinia pestis caused devastating disease outbreaks in Europe for almost 400 years. The reasons for plague's persistence and abrupt disappearance in Europe are poorly understood, but could have been due to either the presence of now-extinct plague foci in Europe itself, or successive disease introductions from other locations. Here we present five Y. pestis genomes from one of the last European outbreaks of plague, from 1722 in Marseille, France. The lineage identified has not been found in any extant Y. pestis foci sampled to date, and has its ancestry in strains obtained from victims of the 14th century Black Death. These data suggest the existence of a previously uncharacterized historical plague focus that persisted for at least three centuries. We propose that this disease source may have been responsible for the many resurgences of plague in Europe following the Black Death.

  15. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis

    PubMed Central

    Bland, David M.; Hinnebusch, B. Joseph

    2016-01-01

    Background The cat flea, Ctenocephalides felis, is prevalent worldwide, will parasitize animal reservoirs of plague, and is associated with human habitations in known plague foci. Despite its pervasiveness, limited information is available about the cat flea’s competence as a vector for Yersinia pestis. It is generally considered to be a poor vector, based on studies examining early-phase transmission during the first week after infection, but transmission potential by the biofilm-dependent proventricular-blocking mechanism has never been systematically evaluated. In this study, we assessed the vector competence of cat fleas by both mechanisms. Because the feeding behavior of cat fleas differs markedly from important rat flea vectors, we also examined the influence of feeding behavior on transmission dynamics. Methodology/Principal Findings Groups of cat fleas were infected with Y. pestis and subsequently provided access to sterile blood meals twice-weekly, 5 times per week, or daily for 4 weeks and monitored for infection, the development of proventricular biofilm and blockage, mortality, and the ability to transmit. In cat fleas allowed prolonged, daily access to blood meals, mimicking their natural feeding behavior, Y. pestis did not efficiently colonize the digestive tract and could only be transmitted during the first week after infection. In contrast, cat fleas that were fed intermittently, mimicking the feeding behavior of the efficient vector Xenopsylla cheopis, could become blocked and regularly transmitted Y. pestis for 3–4 weeks by the biofilm-mediated mechanism, but early-phase transmission was not detected. Conclusions The normal feeding behavior of C. felis, more than an intrinsic resistance to infection or blockage by Y. pestis, limits its vector competence. Rapid turnover of midgut contents results in bacterial clearance and disruption of biofilm accumulation in the proventriculus. Anatomical features of the cat flea foregut may also restrict

  16. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis.

    PubMed

    Bland, David M; Hinnebusch, B Joseph

    2016-02-01

    The cat flea, Ctenocephalides felis, is prevalent worldwide, will parasitize animal reservoirs of plague, and is associated with human habitations in known plague foci. Despite its pervasiveness, limited information is available about the cat flea's competence as a vector for Yersinia pestis. It is generally considered to be a poor vector, based on studies examining early-phase transmission during the first week after infection, but transmission potential by the biofilm-dependent proventricular-blocking mechanism has never been systematically evaluated. In this study, we assessed the vector competence of cat fleas by both mechanisms. Because the feeding behavior of cat fleas differs markedly from important rat flea vectors, we also examined the influence of feeding behavior on transmission dynamics. Groups of cat fleas were infected with Y. pestis and subsequently provided access to sterile blood meals twice-weekly, 5 times per week, or daily for 4 weeks and monitored for infection, the development of proventricular biofilm and blockage, mortality, and the ability to transmit. In cat fleas allowed prolonged, daily access to blood meals, mimicking their natural feeding behavior, Y. pestis did not efficiently colonize the digestive tract and could only be transmitted during the first week after infection. In contrast, cat fleas that were fed intermittently, mimicking the feeding behavior of the efficient vector Xenopsylla cheopis, could become blocked and regularly transmitted Y. pestis for 3-4 weeks by the biofilm-mediated mechanism, but early-phase transmission was not detected. The normal feeding behavior of C. felis, more than an intrinsic resistance to infection or blockage by Y. pestis, limits its vector competence. Rapid turnover of midgut contents results in bacterial clearance and disruption of biofilm accumulation in the proventriculus. Anatomical features of the cat flea foregut may also restrict transmission by both early-phase and proventricular biofilm

  17. Human Anti-Plague Monoclonal Antibodies Protect Mice from Yersinia pestis in a Bubonic Plague Model

    PubMed Central

    Xiao, Xiaodong; Zhu, Zhongyu; Dankmeyer, Jennifer L.; Wormald, Michael M.; Fast, Randy L.; Worsham, Patricia L.; Cote, Christopher K.; Amemiya, Kei; Dimitrov, Dimiter S.

    2010-01-01

    Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr) V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs) against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252) and two anti-V-specific human mAb (m253, m254) by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans. PMID:20976274

  18. Histopathological observation of immunized rhesus macaques with plague vaccines after subcutaneous infection of Yersinia pestis.

    PubMed

    Tian, Guang; Qiu, Yefeng; Qi, Zhizhen; Wu, Xiaohong; Zhang, Qingwen; Bi, Yujing; Yang, Yonghai; Li, Yuchuan; Yang, Xiaoyan; Xin, Youquan; Li, Cunxiang; Cui, Baizhong; Wang, Zuyun; Wang, Hu; Yang, Ruifu; Wang, Xiaoyi

    2011-04-29

    In our previous study, complete protection was observed in Chinese-origin rhesus macaques immunized with SV1 (20 µg F1 and 10 µg rV270) and SV2 (200 µg F1 and 100 µg rV270) subunit vaccines and with EV76 live attenuated vaccine against subcutaneous challenge with 6×10(6) CFU of Y. pestis. In the present study, we investigated whether the vaccines can effectively protect immunized animals from any pathologic changes using histological and immunohistochemical techniques. In addition, the glomerular basement membranes (GBMs) of the immunized animals and control animals were checked by electron microscopy. The results show no signs of histopathological lesions in the lungs, livers, kidneys, lymph nodes, spleens and hearts of the immunized animals at Day 14 after the challenge, whereas pathological alterations were seen in the corresponding tissues of the control animals. Giemsa staining, ultrastructural examination, and immunohistochemical staining revealed bacteria in some of the organs of the control animals, whereas no bacterium was observed among the immunized animals. Ultrastructural observation revealed that no glomerular immune deposits on the GBM. These observations suggest that the vaccines can effectively protect animals from any pathologic changes and eliminate Y. pestis from the immunized animals. The control animals died from multi-organ lesions specifically caused by the Y. pestis infection. We also found that subcutaneous infection of animals with Y. pestis results in bubonic plague, followed by pneumonic and septicemic plagues. The histopathologic features of plague in rhesus macaques closely resemble those of rodent and human plagues. Thus, Chinese-origin rhesus macaques serve as useful models in studying Y. pestis pathogenesis, host response and the efficacy of new medical countermeasures against plague.

  19. Human anti-plague monoclonal antibodies protect mice from Yersinia pestis in a bubonic plague model.

    PubMed

    Xiao, Xiaodong; Zhu, Zhongyu; Dankmeyer, Jennifer L; Wormald, Michael M; Fast, Randy L; Worsham, Patricia L; Cote, Christopher K; Amemiya, Kei; Dimitrov, Dimiter S

    2010-10-13

    Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr) V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs) against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252) and two anti-V-specific human mAb (m253, m254) by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.

  20. Discerning Viable from Nonviable Yersinia pestis pgm- and Bacillus anthracis Sterne using Propidium Monoazide in the Presence of White Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Becky M.; Kaiser, Brooke LD; Sydor, Michael A.

    ABSTRACT Aims To develop and optimize an assay to determine viability status of Bacillus anthracis Sterne and Yersinia pestis pgm- strains in the presence of white powders by coupling propidium monoazide (PMA) treatment with real-time PCR (qPCR) analysis. Methods and Results PMA selectively enters nonviable cells and binds DNA, thereby increasing qPCR assay cycle threshold (CT) values compared to untreated samples. Dye concentration, cell number and fitness, incubation time, inactivation methods, and assay buffer were optimized for B. anthracis Sterne and Y. pestis pgm-. Differences in CT values in nonviable cells compared to untreated samples were consistently > 9 formore » both B. anthracis Sterne vegetative cells and Y. pestis pgm- in the presence and absence of three different white powders. Our method eliminates the need for a DNA extraction step prior to detection by qPCR. Conclusions The developed assay enables simultaneous identification and viability assessment for B. anthracis Sterne and Y. pestis pgm- under laboratory conditions, even in the presence of white powders. Eliminating the DNA extraction step that is typically used reduces total assay time and labor requirements for sample analysis. Significance and Impact of the Study The method developed for simultaneous detection and viability assessment for B. anthracis and Y. pestis can be employed in forming decisions about the severity of a biothreat event or the safety of food. Keywords Bacillus anthracis, Yersinia pestis, Propidium Monoazide, qPCR, White Powders, Rapid Viability Detection« less

  1. Plant-bacterial pathogen interactions mediated by type III effectors.

    PubMed

    Feng, Feng; Zhou, Jian-Min

    2012-08-01

    Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Neutrophils are important in early control of lung infection by Yersinia pestis.

    PubMed

    Laws, Thomas R; Davey, Martin S; Titball, Richard W; Lukaszewski, Roman

    2010-04-01

    In this paper we evaluate the role of neutrophils in pneumonic plague. Splenic neutrophils from naïve BALB/c mice were found to reduce numbers of culturable Yersinia pestis strain GB in suspension. A murine, BALB/c, intranasal model of pneumonic plague was used in conjunction with in vivo neutrophil ablation, using the GR-1 antibody. This treatment reduced neutrophil numbers without affecting other leukocyte numbers. Neutrophil ablated mice exhibited increased bacterial colonisation of the lung 24h post infection. Furthermore, exposure of Y. pestis to human neutrophils resulted in a 5-fold reduction in the number of viable bacterial cells, whereas, PBMCs had no effect. Crown Copyright 2010. Published by Elsevier SAS. All rights reserved.

  3. A procedure for monitoring the presence of the virulence plasmid (pYV) in Yersinia pestis under culture conditions

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of Yersinia pestis depends on the presence of a virulence plasmid (pYV). The unstable nature of pYV in Y. pestis leads to the eventual outgrowth of pYV less cells due its higher growth rate. Thus, it was necessary to develop procedures to monitor the presence of the plasmid durin...

  4. Type-III and IV interacting Weyl points

    NASA Astrophysics Data System (ADS)

    Nissinen, J.; Volovik, G. E.

    2017-04-01

    3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green's functions parametrized by a 16-element matrix e α μ in an expansion around the Weyl point. The matrix e α μ can be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g 00 and g 00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g 00 > 0 and, respectively, g 00 > 0 or g 00 < 0, we find additional "type-III" and "type-IV" Weyl fermions with instabilities (complex frequencies) for g 00 < 0 and g 00 > 0 or g 00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g 00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.

  5. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  6. Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis)

    USGS Publications Warehouse

    Rocke, Tonie E.; Iams, Keith P.; Dawe, S.; Smith, Susan; Williamson, Judy L.; Heisey, Dennis M.; Osorio, Jorge E.

    2009-01-01

    In previous studies, we demonstrated protection against plague in mice and prairie dogs using a raccoon pox (RCN) virus-vectored vaccine that expressed the F1 capsular antigen of Yersinia pestis. In order to improve vaccine efficacy, we have now constructed additional RCN-plague vaccines containing two different forms of the lcrV (V) gene, including full-length (Vfull) and a truncated form (V307). Mouse challenge studies with Y. pestis strain CO92 showed that vaccination with a combination of RCN-F1 and the truncated V construct (RCN-V307) provided the greatest improvement (P = 0.01) in protection against plague over vaccination with RCN-F1 alone. This effect was mediated primarily by anti-F1 and anti-V antibodies and both contributed independently to increased survival of vaccinated mice.

  7. Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis).

    PubMed

    Rocke, Tonie E; Iams, Keith P; Dawe, Sandra; Smith, Susan R; Williamson, Judy L; Heisey, Dennis M; Osorio, Jorge E

    2009-12-11

    In previous studies, we demonstrated protection against plague in mice and prairie dogs using a raccoon pox (RCN) virus-vectored vaccine that expressed the F1 capsular antigen of Yersinia pestis. In order to improve vaccine efficacy, we have now constructed additional RCN-plague vaccines containing two different forms of the lcrV (V) gene, including full-length (Vfull) and a truncated form (V307). Mouse challenge studies with Y. pestis strain CO92 showed that vaccination with a combination of RCN-F1 and the truncated V construct (RCN-V307) provided the greatest improvement (P=0.01) in protection against plague over vaccination with RCN-F1 alone. This effect was mediated primarily by anti-F1 and anti-V antibodies and both contributed independently to increased survival of vaccinated mice.

  8. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    PubMed

    Nanson, Jeffrey D; Forwood, Jade K

    2015-01-01

    Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.

  9. Effects of temperature on early-phase transmission of Yersina pestis by the flea, Xenopsylla cheopis.

    PubMed

    Schotthoefer, Anna M; Bearden, Scott W; Vetter, Sara M; Holmes, Jennifer; Montenieri, John A; Graham, Christine B; Woods, Michael E; Eisen, Rebecca J; Gage, Kenneth L

    2011-03-01

    Sharp declines in human and animal cases of plague, caused by the bacterium Yersinia pestis (Yersin), have been observed when outbreaks coincide with hot weather. Failure of biofilm production, or blockage, to occur in the flea, as temperatures reach 30 degrees C has been suggested as an explanation for these declines. Recent work demonstrating efficient flea transmission during the first few days after fleas have taken an infectious blood meal, in the absence of blockage (e.g., early-phase transmission), however, has called this hypothesis into question. To explore the potential effects of temperature on early-phase transmission, we infected colony-reared Xenopsylla cheopis (Rothchild) fleas with a wild-type strain of plague bacteria using an artificial feeding system, and held groups of fleas at 10, 23, 27, and 30 degrees C. Naive Swiss Webster mice were exposed to fleas from each of these temperatures on days 1-4 postinfection, and monitored for signs of infection for 21 d. Temperature did not significantly influence the rates of transmission observed for fleas held at 23, 27, and 30 degrees C. Estimated per flea transmission efficiencies for these higher temperatures ranged from 2.32 to 4.96% (95% confidence interval [CI]: 0.96-8.74). In contrast, no transmission was observed in mice challenged by fleas held at 10 degrees C (per flea transmission efficiency estimates, 0-1.68%). These results suggest that declines in human and animal cases during hot weather are not related to changes in the abilities of X. cheopis fleas to transmit Y. pestis infections during the early-phase period. By contrast, transmission may be delayed or inhibited at low temperatures, indicating that epizootic spread of Y. pestis by X. cheopis via early-phase transmission is unlikely during colder periods of the year.

  10. A High-Coverage Yersinia pestis Genome from a Sixth-Century Justinianic Plague Victim

    PubMed Central

    Feldman, Michal; Harbeck, Michaela; Keller, Marcel; Spyrou, Maria A.; Rott, Andreas; Trautmann, Bernd; Scholz, Holger C.; Päffgen, Bernd; Peters, Joris; McCormick, Michael; Bos, Kirsten; Herbig, Alexander; Krause, Johannes

    2016-01-01

    The Justinianic Plague, which started in the sixth century and lasted to the mid eighth century, is thought to be the first of three historically documented plague pandemics causing massive casualties. Historical accounts and molecular data suggest the bacterium Yersinia pestis as its etiological agent. Here we present a new high-coverage (17.9-fold) Y. pestis genome obtained from a sixth-century skeleton recovered from a southern German burial site close to Munich. The reconstructed genome enabled the detection of 30 unique substitutions as well as structural differences that have not been previously described. We report indels affecting a lacl family transcription regulator gene as well as nonsynonymous substitutions in the nrdE, fadJ, and pcp genes, that have been suggested as plague virulence determinants or have been shown to be upregulated in different models of plague infection. In addition, we identify 19 false positive substitutions in a previously published lower-coverage Y. pestis genome from another archaeological site of the same time period and geographical region that is otherwise genetically identical to the high-coverage genome sequence reported here, suggesting low-genetic diversity of the plague during the sixth century in rural southern Germany. PMID:27578768

  11. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus

    PubMed Central

    Bos, Kirsten I; Herbig, Alexander; Sahl, Jason; Waglechner, Nicholas; Fourment, Mathieu; Forrest, Stephen A; Klunk, Jennifer; Schuenemann, Verena J; Poinar, Debi; Kuch, Melanie; Golding, G Brian; Dutour, Olivier; Keim, Paul; Wagner, David M; Holmes, Edward C; Krause, Johannes; Poinar, Hendrik N

    2016-01-01

    The 14th–18th century pandemic of Yersinia pestis caused devastating disease outbreaks in Europe for almost 400 years. The reasons for plague’s persistence and abrupt disappearance in Europe are poorly understood, but could have been due to either the presence of now-extinct plague foci in Europe itself, or successive disease introductions from other locations. Here we present five Y. pestis genomes from one of the last European outbreaks of plague, from 1722 in Marseille, France. The lineage identified has not been found in any extant Y. pestis foci sampled to date, and has its ancestry in strains obtained from victims of the 14th century Black Death. These data suggest the existence of a previously uncharacterized historical plague focus that persisted for at least three centuries. We propose that this disease source may have been responsible for the many resurgences of plague in Europe following the Black Death. DOI: http://dx.doi.org/10.7554/eLife.12994.001 PMID:26795402

  12. Attenuated enzootic (pestoides) isolates of Yersinia pestis express active aspartase.

    PubMed

    Bearden, Scott W; Sexton, Christopher; Pare, Joshua; Fowler, Janet M; Arvidson, Cindy G; Yerman, Lyudmyla; Viola, Ronald E; Brubaker, Robert R

    2009-01-01

    It is established that Yersinia pestis, the causative agent of bubonic plague, recently evolved from enteropathogenic Yersinia pseudotuberculosis by undergoing chromosomal degeneration while acquiring two unique plasmids that facilitate tissue invasion (pPCP) and dissemination by fleabite (pMT). Thereafter, plague bacilli spread from central Asia to sylvatic foci throughout the world. These epidemic isolates exhibit a broad host range including man as opposed to enzootic (pestoides) variants that remain in ancient reservoirs where infection is limited to muroid rodents. Cells of Y. pseudotuberculosis are known to express glucose-6-phosphate dehydrogenase (Zwf) and aspartase (AspA); these activities are not detectable in epidemic Y. pestis due to missense mutations (substitution of proline for serine at amino position 155 of Zwf and leucine for valine at position 363 of AspA). In this study, functional Zwf was found in pestoides strains E, F and G but not seven other enzootic isolates; enzymic activity was associated with retention of serine at amino acid position 155. Essentially, full AspA activity occurred in pestoides isolates where valine (pestoides A, B, C and D) or serine (pestoides E, F, G and I) occupied position 363. Reduced activity occurred in strains Angola and A16, which contained phenylalanine at this position. The kcat but not Km of purified AspA from strain Angola was significantly reduced. In this context, aspA of the recently described attenuated enzootic microtus biovar encodes active valine at position 363, further indicating that functional AspA is a biomarker for avirulence of Y. pestis in man.

  13. Entry of Yersinia pestis into the viable but nonculturable state in a low-temperature tap water microcosm.

    PubMed

    Pawlowski, David R; Metzger, Daniel J; Raslawsky, Amy; Howlett, Amy; Siebert, Gretchen; Karalus, Richard J; Garrett, Stephanie; Whitehouse, Chris A

    2011-03-16

    Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism.

  14. Entry of Yersinia pestis into the Viable but Nonculturable State in a Low-Temperature Tap Water Microcosm

    PubMed Central

    Pawlowski, David R.; Metzger, Daniel J.; Raslawsky, Amy; Howlett, Amy; Siebert, Gretchen; Karalus, Richard J.; Garrett, Stephanie; Whitehouse, Chris A.

    2011-01-01

    Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism. PMID:21436885

  15. Serological and PCR investigation of Yersinia pestis in potential reservoir hosts from a plague outbreak focus in Zambia.

    PubMed

    Nyirenda, S S; Hang'ombe, B M; Mulenga, E; Kilonzo, B S

    2017-07-28

    Plague is a bacterial zoonotic disease, caused by Yersinia pestis. Rodents are the natural hosts with fleas as the vehicle of disease transmission. Domestic and wild dogs and cats have also been identified as possible disease hosts. In Zambia, plague outbreaks have been reported in the Southern and Eastern regions in the last 20 years. Based on these observations, Y. pestis could possibly be endemically present in the area. To substantiate such possibility, sera samples were collected from rodents, shrews, dogs and cats for detection of antibodies against Fraction 1 gene (Fra1) of Y. pestis while organs from rodents and shrews, and fleas from both dogs and rodents were collected to investigate plasminogen activator gene (pla gene) of Y. pestis using ELISA and PCR respectively. A total of 369 blood samples were collected from domestic carnivores, shrews and domestic and peri-domestic rodents while 199 organs were collected from the rodents and shrews. Blood samples were tested for antibodies against Fra1 antigen using ELISA and 3% (5/165) (95% CI 0.99-6.93%) dogs were positive while all cats were negative. Of 199 sera from rodents and shrews, 12.6% (95% CI 8.30-17.98%) were positive for antibodies against Fra1 using anti-rat IgG secondary antibody while using anti-mouse IgG secondary antibody, 17.6% (95% CI 12.57-23.60%) were positive. PCR was run on the organs and 2.5% (95% CI 0.82-5.77%) were positive for plasminogen activator gene of Y. pestis and the amplicons were sequenced and showed 99% identity with Y. pestis reference sequences. All 82 fleas collected from animals subjected to PCR, were negative for pla gene. The specific rat-flea and dog-flea indices were 0.19 and 0.27 respectively, which were lower than the level required to enhance chances of the disease outbreak. We concluded that plague was still endemic in the area and the disease may infect human beings if contact is enhanced between reservoir hosts and flea vectors. The lower specific rodent

  16. Yersinia pestis YopE contains a dominant CD8 T cell epitope that confers protection in a mouse model of pneumonic plague.

    PubMed

    Lin, Jr-Shiuan; Szaba, Frank M; Kummer, Lawrence W; Chromy, Brett A; Smiley, Stephen T

    2011-07-15

    Septic bacterial pneumonias are a major cause of death worldwide. Several of the highest priority bioterror concerns, including anthrax, tularemia, and plague, are caused by bacteria that acutely infect the lung. Bacterial resistance to multiple antibiotics is increasingly common. Although vaccines may be our best defense against antibiotic-resistant bacteria, there has been little progress in the development of safe and effective vaccines for pulmonary bacterial pathogens. The Gram-negative bacterium Yersinia pestis causes pneumonic plague, an acutely lethal septic pneumonia. Historic pandemics of plague caused millions of deaths, and the plague bacilli's potential for weaponization sustains an ongoing quest for effective countermeasures. Subunit vaccines have failed, to date, to fully protect nonhuman primates. In mice, they induce the production of Abs that act in concert with type 1 cytokines to deliver high-level protection; however, the Y. pestis Ags recognized by cytokine-producing T cells have yet to be defined. In this study, we report that Y. pestis YopE is a dominant Ag recognized by CD8 T cells in C57BL/6 mice. After vaccinating with live attenuated Y. pestis and challenging intranasally with virulent plague, nearly 20% of pulmonary CD8 T cells recognize this single, highly conserved Ag. Moreover, immunizing mice with a single peptide, YopE(69-77), suffices to confer significant protection from lethal pulmonary challenge. These findings suggest YopE could be a valuable addition to subunit plague vaccines and provide a new animal model in which sensitive, pathogen-specific assays can be used to study CD8 T cell-mediated defense against acutely lethal bacterial infections of the lung.

  17. Use of an in vitro pharmacodynamic model to derive a moxifloxacin regimen that optimizes kill of Yersinia pestis and prevents emergence of resistance.

    PubMed

    Louie, A; Heine, H S; VanScoy, B; Eichas, A; Files, K; Fikes, S; Brown, D L; Liu, W; Kinzig-Schippers, M; Sörgel, F; Drusano, G L

    2011-02-01

    Yersinia pestis, the causative agent of bubonic, septicemic, and pneumonic plague, is classified as a CDC category A bioterrorism pathogen. Streptomycin and doxycycline are the "gold standards" for the treatment of plague. However, streptomycin is not available in many countries, and Y. pestis isolates resistant to streptomycin and doxycycline occur naturally and have been generated in laboratories. Moxifloxacin is a fluoroquinolone antibiotic that demonstrates potent activity against Y. pestis in in vitro and animal infection models. However, the dose and frequency of administration of moxifloxacin that would be predicted to optimize treatment efficacy in humans while preventing the emergence of resistance are unknown. Therefore, dose range and dose fractionation studies for moxifloxacin were conducted for Y. pestis in an in vitro pharmacodynamic model in which the half-lives of moxifloxacin in human serum were simulated so as to identify the lowest drug exposure and the schedule of administration that are linked with killing of Y. pestis and with the suppression of resistance. In the dose range studies, simulated moxifloxacin regimens of ≥175 mg/day killed drug-susceptible bacteria without resistance amplification. Dose fractionation studies demonstrated that the AUC (area under the concentration-time curve)/MIC ratio predicted kill of drug-susceptible Y. pestis, while the C(max) (maximum concentration of the drug in serum)/MIC ratio was linked to resistance prevention. Monte Carlo simulations predicted that moxifloxacin at 400 mg/day would successfully treat human infection due to Y. pestis in 99.8% of subjects and would prevent resistance amplification. We conclude that in an in vitro pharmacodynamic model, the clinically prescribed moxifloxacin regimen of 400 mg/day is predicted to be highly effective for the treatment of Y. pestis infections in humans. Studies of moxifloxacin in animal models of plague are warranted.

  18. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    PubMed

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  19. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.

    2015-09-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.

  20. Structure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems.

    PubMed

    Goeders, Nathalie; Chai, Ray; Chen, Bihe; Day, Andrew; Salmond, George P C

    2016-09-28

    Toxin-antitoxin (TA) systems are small genetic modules that encode a toxin (that targets an essential cellular process) and an antitoxin that neutralises or suppresses the deleterious effect of the toxin. Based on the molecular nature of the toxin and antitoxin components, TA systems are categorised into different types. Type III TA systems, the focus of this review, are composed of a toxic endoribonuclease neutralised by a non-coding RNA antitoxin in a pseudoknotted configuration. Bioinformatic analysis shows that the Type III systems can be classified into subtypes. These TA systems were originally discovered through a phage resistance phenotype arising due to a process akin to an altruistic suicide; the phenomenon of abortive infection. Some Type III TA systems are bifunctional and can stabilise plasmids during vegetative growth and sporulation. Features particular to Type III systems are explored here, emphasising some of the characteristics of the RNA antitoxin and how these may affect the co-evolutionary relationship between toxins and cognate antitoxins in their quaternary structures. Finally, an updated analysis of the distribution and diversity of these systems are presented and discussed.

  1. Isolation of Francisella tularensis and Yersinia pestis from Blood Cultures by Plasma Purification and Immunomagnetic Separation Accelerates Antibiotic Susceptibility Determination

    PubMed Central

    Aloni-Grinstein, Ronit; Schuster, Ofir; Yitzhaki, Shmuel; Aftalion, Moshe; Maoz, Sharon; Steinberger-Levy, Ida; Ber, Raphael

    2017-01-01

    The early symptoms of tularemia and plague, which are caused by Francisella tularensis and Yersinia pestis infection, respectively, are common to other illnesses, resulting in a low index of suspicion among clinicians. Moreover, because these diseases can be treated only with antibiotics, rapid isolation of the bacteria and antibiotic susceptibility testing (AST) are preferable. Blood cultures of patients may serve as a source for bacteria isolation. However, due to the slow growth rates of F. tularensis and Y. pestis on solid media, isolation by plating blood culture samples on proper agar plates may require several days. Thus, improving the isolation procedure prior to antibiotic susceptibility determination is a major clinically relevant need. In this study, we developed a rapid, selective procedure for the isolation of F. tularensis and Y. pestis from blood cultures. We examined drop-plating and plasma purification followed by immunomagnetic separation (IMS) as alternative isolation methods. We determined that replacing the classical isolation method with drop-plating is advantageous with respect to time at the expense of specificity. Hence, we also examined isolation by IMS. Sub-localization of F. tularensis within blood cultures of infected mice has revealed that the majority of the bacteria are located within the extracellular fraction, in the plasma. Y. pestis also resides within the plasma. Therefore, the plasma fraction was isolated from blood cultures and subjected to an IMS procedure using polyclonal anti-F. tularensis live vaccine strain (LVS) or anti-Y. pestis antibodies conjugated to 50-nm nano-beads. The time required to reach an inoculum of sufficient bacteria for AST was shortest when using the plasma and IMSs for both bacteria, saving up to 2 days of incubation for F. tularensis and 1 day for Y. pestis. Our isolation procedure provides a proof of concept for the clinical relevance of rapid isolation for AST from F. tularensis- and Y. pestis

  2. Novel Yersinia Pestis Toxin that Resembles Bacillus Anthracis Edema Factor: Study of Activity and Structural Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motin, V; Garcia, E; Barsky, D

    2003-02-05

    The goal of this project was to begin both experimental and computational studies of the novel plague toxin to establish its biological properties and create its 3D-model. The project was divided into two parts. (1) Experimental--This part was devoted to determine distribution of the genes encoding novel plague toxin among different isolates of Y.pestis. If the EF-like activity is important for Y.pestis pathogenicity, it is anticipated that all highly virulent strains will contain the toxin genes. Also, they proposed to initiate research to investigate the functionality of the novel Y.pestis toxin that they hypothesize is likely to significantly contribute tomore » the virulence of this dangerous microbe. this research design consisted of amplification, cloning and expression in E.coli the toxin genes followed by affinity purification of the recombinant protein that can be further used for testing of enzymatic activity. (2) Computational--The structural modeling of the putative EF of Y.pestis was based on multiple sequence alignments, secondary structure predictions, and comparison with 3D models of the EF of B. anthracis. The x-ray structure of the last has been recently published [Nature. 2002. 415(Jan):396-402]. The final model was selected after detailed analysis to determine if the structure is consistent with the biological function.« less

  3. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay.

    PubMed

    Gut, Ian M; Bartlett, Ryan A; Yeager, John J; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul; Karaolis, David K R

    2016-05-01

    Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies,Yersinia pestis persistence as a function of surface type at 21 °C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid

  4. Humoral and cellular immune response of mice challenged with Yersinia pestis antigenic preparations.

    PubMed

    Leal, Elida A; Moreira, Josimar D; Nunes, Fernanda F; Souza, Larissa R; Martins, Janaina M; Toledo, Vicente P C; Almeida, Alzira M P; Guimarães, Tania M P

    The plague, which is an infectious disease caused by Yersinia pestis, still threatens many populations in several countries. The worldwide increase in human plague cases and the potential use of the bacteria as a biological weapon reinforce the need to study the immunity that is induced by potential vaccine candidates. To determine the immunogenicity of antigenic preparations based on the F1 protein and the total extract from Y. pestis, we assessed the role of these antigens in inducing an immune response. The immunogenicity of antigenic preparations based on the Y. pestis (YP) total extract and the Y. pestis fraction 1 capsular antigen protein (F1) was determined in Swiss-Webster mice immunized with 40μg or 20μg for each preparation. Immunophenotyping was performed by flow cytometry. Animals immunized with the YP total extract did not elicit detectable anti-F1 antibodies (Ab) in the hemaglutination/inhibition (HA/HI) test. Animals immunized with 40μg or 20μg of the F1 protein produced anti-F1 Abs, with titres ranging from 1/16 to 1/8132. The average of CD3 + -CD4 + and CD3 + -CD8 + T cells did not differ significantly between the groups. Neither YP total extract nor F1 protein induced a significant expression of IFN-γ and IL-10 in CD4 + T lymphocytes. In addition, F1 failed to induce IFN-γ expression in CD8 + T cells, unlike the YP total extract. The results showed that F1 protein is not an immunogenic T cell antigen, although the YP total extract (40μg dose) favoured CD8 + T cell-mediated cellular immunity. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis.

    PubMed

    Pouillot, Flavie; Fayolle, Corinne; Carniel, Elisabeth

    2008-10-01

    The transformation of the enteropathogenic bacterium Yersinia pseudotuberculosis into the plague bacillus, Yersinia pestis, has been accompanied by extensive genetic loss. This study focused on chromosomal regions conserved in Y. pseudotuberculosis and lost during its transformation into Y. pestis. An extensive PCR screening of 78 strains of the two species identified five regions (R1 to R5) and four open reading frames (ORFs; orf1 to orf4) that were conserved in Y. pseudotuberculosis and absent from Y. pestis. Their conservation in Y. pseudotuberculosis suggests a positive selective pressure and a role during the life cycle of this species. Attempts to delete two ORFs (orf3 and orf4) from the chromosome of strain IP32953 were unsuccessful, indicating that they are essential for its viability. The seven remaining loci were individually deleted from the IP32953 chromosome, and the ability of each mutant to grow in vitro and to kill mice upon intragastric infection was evaluated. Four loci (orf1, R2, R4, and R5) were not required for optimal growth or virulence of Y. pseudotuberculosis. In contrast, orf2, encoding a putative pseudouridylate synthase involved in RNA stability, was necessary for the optimal growth of IP32953 at 37 degrees C in a chemically defined medium (M63S). Deletion of R1, a region predicted to encode the methionine salvage pathway, altered the mutant pathogenicity, suggesting that the availability of free methionine is severely restricted in vivo. R3, a region composed mostly of genes of unknown functions, was necessary for both optimal growth of Y. pseudotuberculosis at 37 degrees C in M63S and for virulence. Therefore, despite their loss in Y. pestis, five of the nine Y. pseudotuberculosis-specific chromosomal loci studied play a role in the survival, growth, or virulence of this species.

  6. Genome-Wide Mutant Fitness Profiling Identifies Nutritional Requirements for Optimal Growth of Yersinia pestis in Deep Tissue

    PubMed Central

    Palace, Samantha G.; Proulx, Megan K.; Lu, Shan; Baker, Richard E.

    2014-01-01

    ABSTRACT Rapid growth in deep tissue is essential to the high virulence of Yersinia pestis, causative agent of plague. To better understand the mechanisms underlying this unusual ability, we used transposon mutagenesis and high-throughput sequencing (Tn-seq) to systematically probe the Y. pestis genome for elements contributing to fitness during infection. More than a million independent insertion mutants representing nearly 200,000 unique genotypes were generated in fully virulent Y. pestis. Each mutant in the library was assayed for its ability to proliferate in vitro on rich medium and in mice following intravenous injection. Virtually all genes previously established to contribute to virulence following intravenous infection showed significant fitness defects, with the exception of genes for yersiniabactin biosynthesis, which were masked by strong intercellular complementation effects. We also identified more than 30 genes with roles in nutrient acquisition and metabolism as experiencing strong selection during infection. Many of these genes had not previously been implicated in Y. pestis virulence. We further examined the fitness defects of strains carrying mutations in two such genes—encoding a branched-chain amino acid importer (brnQ) and a glucose importer (ptsG)—both in vivo and in a novel defined synthetic growth medium with nutrient concentrations matching those in serum. Our findings suggest that diverse nutrient limitations in deep tissue play a more important role in controlling bacterial infection than has heretofore been appreciated. Because much is known about Y. pestis pathogenesis, this study also serves as a test case that assesses the ability of Tn-seq to detect virulence genes. PMID:25139902

  7. Extrapyramidal Symptoms and Medication Use in Mucopolysaccharidosis Type III

    ERIC Educational Resources Information Center

    Tchan, Michel C.; Sillence, David

    2009-01-01

    Background: We report the case of a 16-year-old male with Mucopolysaccharidosis III type A (Sanfilippo syndrome) who was commenced on risperidone for behaviour management. He rapidly developed extrapyramidal symptoms that have not resolved. Method: The medication histories of 20 patients with Mucopolysaccharidosis III seen at a Lysosomal Storage…

  8. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis.

    PubMed

    Ren, Gai-Xian; Fan, Sai; Guo, Xiao-Peng; Chen, Shiyun; Sun, Yi-Cheng

    2016-01-01

    Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  9. Behind the lines–actions of bacterial type III effector proteins in plant cells

    PubMed Central

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715

  10. Oral immunisation with live aroA attenuated Salmonella enterica serovar Typhimurium expressing the Yersinia pestis V antigen protects mice against plague.

    PubMed

    Garmory, Helen S; Griffin, Kate F; Brown, Katherine A; Titball, Richard W

    2003-06-20

    Bubonic and pneumonic plague are caused by the bacterium Yersinia pestis. The V antigen of Y. pestis is a protective antigen against plague. In this study, an aroA attenuated strain of Salmonella enterica serovar Typhimurium (SL3261) has been used to deliver the Y. pestis V antigen as a candidate oral plague vaccine. SL3261 was transformed with the expression plasmid pTrc-LcrV, containing the lcrV gene encoding V antigen. Immunoblot analysis showed V antigen expression in SL3261 in vitro and intragastric immunisation of mice with the recombinant Salmonella resulted in the induction of V antigen-specific serum antibody responses and afforded protection against Y. pestis challenge. However, the antibody responses induced by the recombinant Salmonella did not correlate with the protection afforded, indicating that immune responses other than antibody may play a role in the protection afforded against plague by this candidate vaccine.

  11. Duration of plague (Yersinia pestis) outbreaks in black-tailed prairie dog (Cynomys ludovicianus) colonies of northern Colorado.

    PubMed

    St Romain, Krista; Tripp, Daniel W; Salkeld, Daniel J; Antolin, Michael F

    2013-09-01

    Plague, caused by the bacterium Yersinia pestis, triggers die-offs in colonies of black-tailed prairie dogs (Cynomys ludovicianus), but the time-frame of plague activity is not well understood. We document plague activity in fleas from prairie dogs and their burrows on three prairie dog colonies that suffered die-offs. We demonstrate that Y. pestis transmission occurs over periods from several months to over a year in prairie dog populations before observed die-offs.

  12. Discordance in the effects of Yersinia pestis on the dendritic cell functions manifested by induction of maturation and paralysis of migration.

    PubMed

    Velan, Baruch; Bar-Haim, Erez; Zauberman, Ayelet; Mamroud, Emanuelle; Shafferman, Avigdor; Cohen, Sara

    2006-11-01

    The encounter between invading microorganisms and dendritic cells (DC) triggers a series of events which include uptake and degradation of the microorganism, induction of a maturation process, and enhancement of DC migration to the draining lymph nodes. Various pathogens have developed strategies to counteract these events as a measure to evade the host defense. In the present study we found that interaction of the Yersinia pestis EV76 strain with DC has no effect on cell viability and is characterized by compliance with effective maturation, which is manifested by surface display of major histocompatibility complex class II, of costimulatory markers, and of the chemokine receptor CCR7. This is in contrast to maturation inhibition and cell death induction exerted by the related species Yersinia enterocolitica WA O:8. Y. pestis interactions with DC were found, however, to impair functions related to cytoskeleton rearrangement. DC pulsed with Y. pestis failed to adhere to solid surfaces and to migrate toward the chemokine CCL19 in an in vitro transmembrane assay. Both effects were dependent on the presence of the pCD1 virulence plasmid and on a bacterial growth shift to 37 degrees C prior to infection. Moreover, while instillation of a pCD1-cured Y. pestis strain into mouse airways triggered effective transport of alveolar DC to the mediastinal lymph node, instillation of Y. pestis harboring the plasmid failed to do so. Taken together, these results suggest that virulence plasmid-dependent impairment of DC migration is the major mechanism utilized by Y. pestis to subvert DC function.

  13. Spatial trends in Pearson Type III statistical parameters

    USGS Publications Warehouse

    Lichty, R.W.; Karlinger, M.R.

    1995-01-01

    Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors

  14. Experimental infection of domestic ferrets (Mustela putorius furo) and Siberian polecats (Mustela eversmanni) with Yersinia pestis.

    PubMed

    Williams, E S; Thorne, E T; Quan, T J; Anderson, S L

    1991-07-01

    Eight domestic ferrets (Mustela putorius furo) and two Siberian polecats (M. eversmanni) were inoculated subcutaneously with 12 to 1.2 x 10(7) Yersinia pestis originally isolated during an epizootic of plague in white-tailed prairie dogs (Cynomys leucurus) near Meeteetse, Park County, Wyoming (USA) in 1985. None of the ferrets or polecats developed clinical signs of disease which suggested that black-footed ferrets (M. nigripes), a congener, also would be resistant to plague. All animals receiving greater than or equal to 1.2 X 10(3) organisms produced serum antibodies detected by the passive hemagglutination test with titers peaking at 1:1,024 and remaining positive until at least 219 days postinoculation. Sera collected from 12 free-ranging black-footed ferrets near Meeteetse in 1984 and 1985 were negative for antibodies against Y. pestis. Prevalence of antibodies against Y. pestis was high in other carnivores collected from the same area in 1986.

  15. Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early-phase transmission of Yersinia pestis.

    PubMed

    Wilder, Aryn P; Eisen, Rebecca J; Bearden, Scott W; Montenieri, John A; Gage, Kenneth L; Antolin, Michael F

    2008-06-01

    Plague, caused by the bacterium Yersinia pestis, often leads to rapid decimation of black-tailed prairie dog colonies. Flea-borne transmission of Y. pestis has been thought to occur primarily via blocked fleas, and therefore studies of vector efficiency have focused on the period when blockage is expected to occur (> or =5 days post-infection [p.i.]). Oropsylla hirsuta, a prairie dog flea, rarely blocks and transmission is inefficient > or =5 days p.i.; thus, this flea has been considered incapable of explaining rapid dissemination of Y. pestis among prairie dogs. By infecting wild-caught fleas with Y. pestis and exposing naïve mice to groups of fleas at 24, 48, 72, and 96 h p.i., we examined the early-phase (1-4 days p.i.) efficiency of O. hirsuta to transmit Y. pestis to hosts and showed that O. hirsuta is a considerably more efficient vector at this largely overlooked stage (5.19% of fleas transmit Y. pestis at 24 h p.i.) than at later stages. Using a model of vectorial capacity, we suggest that this level of transmission can support plague at an enzootic level in a population when flea loads are within the average observed for black-tailed prairie dogs in nature. Shared burrows and sociality of prairie dogs could lead to accumulation of fleas when host population is reduced as a result of the disease, enabling epizootic spread of plague among prairie dogs.

  16. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    NASA Astrophysics Data System (ADS)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  17. The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague.

    PubMed

    Sebbane, Florent; Jarrett, Clayton; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph

    2009-03-01

    Plague is a zoonosis transmitted by fleas and caused by the gram-negative bacterium Yersinia pestis. During infection, the plasmidic caf1M1A1 operon that encodes the Y. pestis F1 protein capsule is highly expressed, and anti-F1 antibodies are protective. Surprisingly, the capsule is not required for virulence after injection of cultured bacteria, even though it is an antiphagocytic factor and capsule-deficient Y. pestis strains are rarely isolated. We found that a caf-negative Y. pestis mutant was not impaired in either flea colonization or virulence in mice after intradermal inoculation of cultured bacteria. In contrast, absence of the caf operon decreased bubonic plague incidence after a flea bite. Successful development of plague in mice infected by flea bite with the caf-negative mutant required a higher number of infective bites per challenge. In addition, the mutant displayed a highly autoaggregative phenotype in infected liver and spleen. The results suggest that acquisition of the caf locus via horizontal transfer by an ancestral Y. pestis strain increased transmissibility and the potential for epidemic spread. In addition, our data support a model in which atypical caf-negative strains could emerge during climatic conditions that favor a high flea burden. Human infection with such strains would not be diagnosed by the standard clinical tests that detect F1 antibody or antigen, suggesting that more comprehensive surveillance for atypical Y. pestis strains in plague foci may be necessary. The results also highlight the importance of studying Y. pestis pathogenesis in the natural context of arthropod-borne transmission.

  18. Structure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems

    PubMed Central

    Goeders, Nathalie; Chai, Ray; Chen, Bihe; Day, Andrew; Salmond, George P. C.

    2016-01-01

    Toxin-antitoxin (TA) systems are small genetic modules that encode a toxin (that targets an essential cellular process) and an antitoxin that neutralises or suppresses the deleterious effect of the toxin. Based on the molecular nature of the toxin and antitoxin components, TA systems are categorised into different types. Type III TA systems, the focus of this review, are composed of a toxic endoribonuclease neutralised by a non-coding RNA antitoxin in a pseudoknotted configuration. Bioinformatic analysis shows that the Type III systems can be classified into subtypes. These TA systems were originally discovered through a phage resistance phenotype arising due to a process akin to an altruistic suicide; the phenomenon of abortive infection. Some Type III TA systems are bifunctional and can stabilise plasmids during vegetative growth and sporulation. Features particular to Type III systems are explored here, emphasising some of the characteristics of the RNA antitoxin and how these may affect the co-evolutionary relationship between toxins and cognate antitoxins in their quaternary structures. Finally, an updated analysis of the distribution and diversity of these systems are presented and discussed. PMID:27690100

  19. Spectroscopic identification of type 2 quasars at z < 1 in SDSS-III/BOSS

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Strauss, Michael A.; Zakamska, Nadia L.

    2016-10-01

    The physics and demographics of type 2 quasars remain poorly understood, and new samples of such objects selected in a variety of ways can give insight into their physical properties, evolution, and relationship to their host galaxies. We present a sample of 2758 type 2 quasars at z ≲ 1 from the Sloan Digital Sky Survey-III (SDSS-III)/Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopic data base, selected on the basis of their emission-line properties. We probe the luminous end of the population by requiring the rest-frame equivalent width of [O III] to be >100 Å. We distinguish our objects from star-forming galaxies and type 1 quasars using line widths, standard emission line ratio diagnostic diagrams at z < 0.52 and detection of [Ne V]λ3426 Å at z > 0.52. The majority of our objects have [O III] luminosities in the range 1.2 × 1042-3.8 × 1043 erg s-1 and redshifts between 0.4 and 0.65. Our sample includes over 400 type 2 quasars with incorrectly measured redshifts in the BOSS data base; such objects often show kinematic substructure or outflows in the [O III] line. The majority of the sample has counterparts in the Wide-field Infrared Survey Explorer survey, with median infrared luminosity νLν[12 μm] = 4.2 × 1044 erg s- 1. Only 34 per cent of the newly identified type 2 quasars would be selected by infrared colour cuts designed to identify obscured active nuclei, highlighting the difficulty of identifying complete samples of type 2 quasars. We make public the multi-Gaussian decompositions of all [O III] profiles for the new sample and for 568 type 2 quasars from SDSS I/II, together with non-parametric measures of the [O III] line profile shapes. We also identify over 600 candidate double-peaked [O III] profiles.

  20. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence.

    PubMed

    Dentovskaya, Svetlana V; Platonov, Mikhail E; Svetoch, Tat'yana E; Kopylov, Pavel Kh; Kombarova, Tat'yana I; Ivanov, Sergey A; Shaikhutdinova, Rima Z; Kolombet, Lyubov' V; Chauhan, Sadhana; Ablamunits, Vitaly G; Motin, Vladimir L; Uversky, Vladimir N; Anisimov, Andrey P

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla-strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification

  1. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence

    PubMed Central

    Dentovskaya, Svetlana V.; Platonov, Mikhail E.; Svetoch, Tat’yana E.; Kopylov, Pavel Kh.; Kombarova, Tat’yana I.; Ivanov, Sergey A.; Shaikhutdinova, Rima Z.; Kolombet, Lyubov’ V.; Chauhan, Sadhana; Ablamunits, Vitaly G.; Motin, Vladimir L.; Uversky, Vladimir N.

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla−strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for

  2. The stimulation of auroral kilometric radiation by type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1981-01-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers.

  3. Subcellular proteomic analysis of host-pathogen interactions using human monocytes exposed to Yersinia pestis and Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C G; Gonzales, A D; Choi, M W

    2004-05-20

    Yersinia pestis, the etiological agent of plague, is of concern to human health both from an infectious disease and a civilian biodefense perspective. While Y. pestis and Y. pseudotuberculosis share more than 90% DNA homology, they have significantly different clinical manifestations. Plague is often fatal if untreated, yet Y. pseudotuberculosis causes severe intestinal distress and is rarely fatal. A better understanding of host response to these closely related pathogens may help explain the different mechanisms of virulence and pathogenesis that result in such different clinical outcomes. The aim of this study was to characterize host protein expression changes in humanmore » monocyte-like U937 cells after exposure to Y. pestis and Y. pseudotuberculosis. In order to gain global proteomic coverage of host response, proteins from cytoplasmic, nuclear and membrane fractions of host cells were studied by 2-dimensional differential gel electrophoresis (2-D DIGE) and relative protein expression differences were quantitated. Differentially expressed proteins, with at least 1.5 fold expression changes and p values of 0.01 or less, were identified by MALDI-MS or LC/MS/MS. With these criteria, differential expression was detected in 16 human proteins after Y. pestis exposure and 13 human proteins after Y. pseudotuberculosis exposure, of which only two of the differentially expressed proteins identified were shared between the two exposures. Proteins identified in this study are reported to be involved in a wide spectrum of cellular functions and host defense mechanisms including apoptosis, cytoskeletal rearrangement, protein synthesis and degradation, DNA replication and transcription, metabolism, protein folding, and cell signaling. Notably, the differential expression patterns observed can distinguish the two pathogen exposures from each other and from unexposed host cells. The functions of the differentially expressed proteins identified provide insight on the

  4. Aircraft evacuations through type-III exits II : effects of individual subject differences.

    DOT National Transportation Integrated Search

    1995-08-01

    Simulated emergency egress from Type III over-wing exits was studied to support regulatory action by the FAA. Passageway width from the aircraft center aisle to the Type-III exit was the major variable of interest; effects of individual subject attri...

  5. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    PubMed

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  6. Novel Plasmids and Resistance Phenotypes in Yersinia pestis: Unique Plasmid Inventory of Strain Java 9 Mediates High Levels of Arsenic Resistance

    PubMed Central

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L.

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium. PMID:22479347

  7. Purification and characterization of Yersinia enterocolitica and Yersinia pestis LcrV-cholera toxin A(2)/B chimeras.

    PubMed

    Tinker, Juliette K; Davis, Chadwick T; Arlian, Britni M

    2010-11-01

    Yersinia pestis is a virulent human pathogen and potential biological weapon. Despite a long history of research on this organism, there is no licensed vaccine to protect against pneumonic forms of Y. pestis disease. In the present study, plasmids were constructed to express cholera toxin A(2)/B chimeric molecules containing the LcrV protective antigen from Yersinia enterocolitica and Y. pestis. These chimeras were expressed and purified to high yields from the supernatant of transformed Escherichia coli. Western and GM(1) ELISA assays were used to characterize the composition, receptor-binding and relative stability of the LcrV-CTA(2)/B chimera in comparison to cholera toxin. In addition, we investigated the ability of the Y. pestis LcrV-CTA(2)/B chimera to bind to and internalize into cultured epithelial cells and macrophages by confocal microscopy. These studies indicate that the uptake and trafficking of the LcrV antigen from the chimera is comparable to the trafficking of native toxin. Together these findings report that stable, receptor-binding, non-toxic LcrV-cholera toxin A(2)/B chimeras can be expressed at high levels in E. coli and purified from the supernatant. In addition, the internalization of antigen in vitro reported here supports the development of these molecules as novel mucosal vaccine candidates. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Purification and characterization of Yersinia enterocolitica and Yersinia pestis LcrV–cholera toxin A2/B chimeras

    PubMed Central

    Davis, Chadwick T.; Arlian, Britni M.

    2010-01-01

    Yersinia pestis is a virulent human pathogen and potential biological weapon. Despite a long history of research on this organism, there is no licensed vaccine to protect against pneumonic forms of Y. pestis disease. In the present study, plasmids were constructed to express cholera toxin A2/B chimeric molecules containing the LcrV protective antigen from Y. enterocolitica and Y. pestis. These chimeras were expressed and purified to high yields from the supernatant of transformed E. coli. Western and GM1 ELISA assays were used to characterize the composition, receptor-binding and relative stability of the LcrV-CTA2/B chimera in comparison to cholera toxin. In addition, we investigated the ability of the Y. pestis LcrV-CTA2/B chimera to bind to and internalize into cultured epithelial cells and macrophages by confocal microscopy. These studies indicate that the uptake and trafficking of the LcrV antigen from the chimera is comparable to the trafficking of native toxin. Together these findings report that stable, receptor-binding, non-toxic LcrV-cholera toxin A2/B chimeras can be expressed at high levels in E. coli and purified from the supernatant. In addition, the internalization of antigen in vitro reported here supports the development of these molecules as novel mucosal vaccine candidates. PMID:20438844

  9. The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague.

    PubMed

    Fetherston, Jacqueline D; Mier, Ildefonso; Truszczynska, Helena; Perry, Robert D

    2012-11-01

    The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in strains capable of producing the siderophore yersiniabactin (Ybt) and the putative ferrous transporter FetMP. Both fetP and a downstream locus (flp for fet linked phenotype) were required for growth of a yfe feo ybt mutant under static, iron-limiting conditions. An feoB mutation alone had no effect on the virulence of Y. pestis in either bubonic or pneumonic plague models. An feo yfe double mutant was still fully virulent in a pneumonic plague model but had an ∼90-fold increase in the 50% lethal dose (LD(50)) relative to the Yfe(+) Feo(+) parent strain in a bubonic plague model. Thus, Yfe and Feo, in addition to Ybt, play an important role in the progression of bubonic plague. Finally, we examined the factors affecting the expression of the feo operon in Y. pestis. Under static growth conditions, the Y. pestis feo::lacZ fusion was repressed by iron in a Fur-dependent manner but not in cells grown aerobically. Mutations in feoC, fnr, arcA, oxyR, or rstAB had no significant effect on transcription of the Y. pestis feo promoter. Thus, the factor(s) that prevents repression by Fur under aerobic growth conditions remains to be identified.

  10. The Yfe and Feo Transporters Are Involved in Microaerobic Growth and Virulence of Yersinia pestis in Bubonic Plague

    PubMed Central

    Fetherston, Jacqueline D.; Mier, Ildefonso; Truszczynska, Helena

    2012-01-01

    The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in strains capable of producing the siderophore yersiniabactin (Ybt) and the putative ferrous transporter FetMP. Both fetP and a downstream locus (flp for fet linked phenotype) were required for growth of a yfe feo ybt mutant under static, iron-limiting conditions. An feoB mutation alone had no effect on the virulence of Y. pestis in either bubonic or pneumonic plague models. An feo yfe double mutant was still fully virulent in a pneumonic plague model but had an ∼90-fold increase in the 50% lethal dose (LD50) relative to the Yfe+ Feo+ parent strain in a bubonic plague model. Thus, Yfe and Feo, in addition to Ybt, play an important role in the progression of bubonic plague. Finally, we examined the factors affecting the expression of the feo operon in Y. pestis. Under static growth conditions, the Y. pestis feo::lacZ fusion was repressed by iron in a Fur-dependent manner but not in cells grown aerobically. Mutations in feoC, fnr, arcA, oxyR, or rstAB had no significant effect on transcription of the Y. pestis feo promoter. Thus, the factor(s) that prevents repression by Fur under aerobic growth conditions remains to be identified. PMID:22927049

  11. Unusual case of failure to thrive: Type III Bartter syndrome.

    PubMed

    Agrawal, S; Subedi, K; Ray, P; Rayamajhi, A

    2016-09-01

    Bartter syndrome Type III is a rare autosomal recessive disorder resulting from an inherited defect in the thick ascending limb of the loop of henle of the nephrons in kidney. The typical clinical manifestations in childhood are failure to thrive and recurrent episodes of vomiting. Typical laboratory findings which help in the diagnosis are hypokalemic metabolic alkalosis, hypomagnesemia and hypercalciuria. We report a case of Type III Bartter syndrome not responding to repeated conventional treatment of failure to thrive.

  12. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III

    PubMed Central

    Juric-Sekhar, Gordana; Kapur, Raj P.; Glass, Ian A.; Murray, Mitzi L.; Parnell, Shawn E.

    2011-01-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria–lissencephaly. PMID:20857301

  13. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III.

    PubMed

    Juric-Sekhar, Gordana; Kapur, Raj P; Glass, Ian A; Murray, Mitzi L; Parnell, Shawn E; Hevner, Robert F

    2011-04-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria-lissencephaly.

  14. Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague.

    PubMed

    Zvi, Anat; Rotem, Shahar; Zauberman, Ayelet; Elia, Uri; Aftalion, Moshe; Bar-Haim, Erez; Mamroud, Emanuelle; Cohen, Ofer

    2017-10-20

    The causative agent of Plague, Yersinia pestis, is a highly virulent pathogen and a potential bioweapon. Depending on the route of infection, two prevalent occurrences of the disease are known, bubonic and pneumonic. The latter has a high fatality rate. In the absence of a licensed vaccine, intense efforts to develop a safe and efficacious vaccine have been conducted, and humoral-driven subunit vaccines containing the F1 and LcrV antigens are currently under clinical trials. It is well known that a cellular immune response might have an essential additive value to immunity and protection against Y. pestis infection. Nevertheless, very few documented epitopes eliciting a protective T-cell response have been reported. Here, we present a combined high throughput computational and experimental effort towards identification of CD8 T-cell epitopes. All 4067 proteins of Y. pestis were analyzed with state-of-the-art recently developed prediction algorithms aimed at mapping potential MHC class I binders. A compilation of the results obtained from several prediction methods revealed a total of 238,000 peptide candidates, which necessitated downstream filtering criteria. Our previously established and proven approach for enrichment of true positive CTL epitopes, which relies on mapping clusters rich in tandem or overlapping predicted MHC binders ("hotspots"), was applied, as well as considerations of predicted binding affinity. A total of 1532 peptides were tested for their ability to elicit a specific T-cell response by following the production of IFNγ from splenocytes isolated from vaccinated mice. Altogether, the screen resulted in 178 positive responders (11.8%), all novel Y. pestis CTL epitopes. These epitopes span 113 Y. pestis proteins. Substantial enrichment of membrane-associated proteins was detected for epitopes selected from hotspots of predicted MHC binders. These results considerably expand the repertoire of known CTL epitopes in Y. pestis and pave the way to

  15. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis.

    PubMed

    Chen, Yuhuang; Duan, Ran; Li, Xu; Li, Kewei; Liang, Junrong; Liu, Chang; Qiu, Haiyan; Xiao, Yuchun; Jing, Huaiqi; Wang, Xin

    2015-12-01

    The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level and at the amino acid sequence level. The identity of ompA sequences for 262 Y. pestis strains, 134 Y. pseudotuberculosis strains and 219 pathogenic Y. enterocolitica strains are 100%, 98.8% and 97.7% similar. The main pattern of OmpA of pathogenic Yersinia are 86.2% and 88.8% identical at the nucleotide and amino acid sequence levels, respectively. Immunological analysis showed the immunogenicity of each OmpA and cross-immunogenicity of OmpA for pathogenic Yersinia where OmpA may be a vaccine candidate for Y. pestis and other pathogenic Yersinia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A High-Coverage Yersinia pestis Genome from a Sixth-Century Justinianic Plague Victim.

    PubMed

    Feldman, Michal; Harbeck, Michaela; Keller, Marcel; Spyrou, Maria A; Rott, Andreas; Trautmann, Bernd; Scholz, Holger C; Päffgen, Bernd; Peters, Joris; McCormick, Michael; Bos, Kirsten; Herbig, Alexander; Krause, Johannes

    2016-11-01

    The Justinianic Plague, which started in the sixth century and lasted to the mid eighth century, is thought to be the first of three historically documented plague pandemics causing massive casualties. Historical accounts and molecular data suggest the bacterium Yersinia pestis as its etiological agent. Here we present a new high-coverage (17.9-fold) Y. pestis genome obtained from a sixth-century skeleton recovered from a southern German burial site close to Munich. The reconstructed genome enabled the detection of 30 unique substitutions as well as structural differences that have not been previously described. We report indels affecting a lacl family transcription regulator gene as well as nonsynonymous substitutions in the nrdE, fadJ, and pcp genes, that have been suggested as plague virulence determinants or have been shown to be upregulated in different models of plague infection. In addition, we identify 19 false positive substitutions in a previously published lower-coverage Y. pestis genome from another archaeological site of the same time period and geographical region that is otherwise genetically identical to the high-coverage genome sequence reported here, suggesting low-genetic diversity of the plague during the sixth century in rural southern Germany. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Immunochemical characterization of the "native" type III polysaccharide of group B Streptococcus

    PubMed Central

    1976-01-01

    The type III polysaccharide of -roup B Streptococcus has been isolated and purified by a method that employs washing of intact cells at neutral pH. That the polysaccharide prepared by this procedure is the "native" type III antigen is suggested by its molecular size in excess of 10(6) daltons, its degradation by acid and heat treatment to a fragment with immunologic characteristics of the classical HCl antigen, and its type-specific serologic activity. The type III polysaccharide in native form contains sialic acid, galactose, glucose, glucosamine, heptose, and mannose. It is acidic in nature, is resistant to neuramindiase degradation, contains no O-acetyl groups, and does not share antigenic determinants with capsular type K1 antigen of Escherichia coli or Group B polysaccharide antigen of Neiserria meningitidis. PMID:55450

  18. Oral vaccination with different antigens from Yersinia pestis KIM delivered by live attenuated Salmonella typhimurium elicits a protective immune response against plague.

    PubMed

    Branger, Christine G; Fetherston, Jacqueline D; Perry, Robert D; Curtiss, Roy

    2007-01-01

    The use of live recombinant Salmonella attenuated vaccine (RASV) encoding Yersinia proteins is a promising new approach for the vaccination against Yersinia pestis. We have tested the efficacy of 2 proteins, Psn and a portion of LcrV in protecting mice against virulent Yersinia pestis challenge. To remove the immunosuppressive properties of LcrV protein, the lcrV gene, without the TLR2 receptor sequence, was cloned into a beta-lactamase secretion vector. Immunizations were performed with RSAV expressing LcrV or Psn. Challenge with a virulent Y. pestis strain was performed 4 weeks after the last immunization. Our results show that the truncated LcrV protein delivered by RASV is sufficient to afford a full protective immune response in a mouse model of bubonic plague and the Psn protein afforded partial protection in a non-optimized system. This finding should facilitate the design and development of a new generation of vaccines against Y. pestis.

  19. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    PubMed

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that

  20. Type III bursts in interplanetary space - Fundamental or harmonic?

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Steinberg, J. L.; Hoang, S.

    1984-01-01

    ISEE-3 spacecraft observation of 120 relatively simple, isolated bursts in the 30-1980 kHz range are the basis of the present study of Type III bursts in the solar wind. Several characteristics are identified for many of these bursts which imply that the mode of emission changes from predominantly fundamental plasma radiation during the rise phase to predominantly second harmonic during decay. The fundamental emission begins in time coincidence with the start of Langmuir waves, confirming the conventional belief in these waves' causation of Type III bursts. Attention is given to the characteristics of fundamental components, by comparison to harmonics, at km-wavelengths.

  1. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.

    PubMed

    Li, Guangyong; Froehlich, John E; Elowsky, Christian; Msanne, Joseph; Ostosh, Andrew C; Zhang, Chi; Awada, Tala; Alfano, James R

    2014-01-01

    The pathogen Pseudomonas syringae requires a type-III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type-III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector-triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP-triggered immune responses compared with wild-type plants. An N-terminal region of HopK1 shares similarity with the corresponding region in the well-studied type-III effector AvrRps4; however, their C-terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N-terminal regions of these type-III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4-induced HR did not. Our results suggest that a primary virulence target of these type-III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type-III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  2. Antiviral Type I and Type III Interferon Responses in the Central Nervous System

    PubMed Central

    Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas

    2013-01-01

    The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway. PMID:23503326

  3. Antiviral type I and type III interferon responses in the central nervous system.

    PubMed

    Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas

    2013-03-15

    The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.

  4. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Rodrigo; Lan, Benson; Latif, Yama

    2014-04-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NOmore » levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  5. Type III interferon is a critical regulator of innate antifungal immunity.

    PubMed

    Espinosa, Vanessa; Dutta, Orchi; McElrath, Constance; Du, Peicheng; Chang, Yun-Juan; Cicciarelli, Bryan; Pitler, Amy; Whitehead, Ian; Obar, Joshua J; Durbin, Joan E; Kotenko, Sergei V; Rivera, Amariliz

    2017-10-06

    Type III interferons (IFN-λs) are the most recently found members of the IFN cytokine family and engage IFNLR1 and IL10R2 receptor subunits to activate innate responses against viruses. We have identified IFN-λs as critical instructors of antifungal neutrophil responses. Using Aspergillus fumigatus ( Af ) as a model to study antifungal immune responses, we found that depletion of CCR2 + monocytes compromised the ability of neutrophils to control invasive fungal growth. Using an unbiased approach, we identified type I and III IFNs as critical regulators of the interplay between monocytes and neutrophils responding to Af We found that CCR2 + monocytes are an important early source of type I IFNs that prime optimal expression of IFN-λ. Type III IFNs act directly on neutrophils to activate their antifungal response, and mice with neutrophil-specific deletion of IFNLR1 succumb to invasive aspergillosis. Dysfunctional neutrophil responses in CCR2-depleted mice were rescued by adoptive transfer of pulmonary CCR2 + monocytes or by exogenous administration of IFN-α and IFN-λ. Thus, CCR2 + monocytes promote optimal activation of antifungal neutrophils by initiating a coordinated IFN response. We have identified type III IFNs as critical regulators of neutrophil activation and type I IFNs as early stimulators of IFN-λ expression. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Complete Genome Sequence of Yersinis pestis Strains Antiqua and Nepa1516: Evidence of Gene Reduction in an Emerging Pathogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chain, Patrick S; Hu, Ping; Malfatti, Stephanie

    2006-01-01

    Yersinia pestis, the causative agent of bubonic and pneumonic plagues, has undergone detailed study at the molecular level. To further investigate the genomic diversity among this group and to help characterize lineages of the plague organism that have no sequenced members, we present here the genomes of two isolates of the ''classical'' antiqua biovar, strains Antiqua and Nepal516. The genomes of Antiqua and Nepal516 are 4.7 Mb and 4.5 Mb and encode 4,138 and 3,956 open reading frames, respectively. Though both strains belong to one of the three classical biovars, they represent separate lineages defined by recent phylogenetic studies. Wemore » compare all five currently sequenced Y. pestis genomes and the corresponding features in Yersinia pseudotuberculosis. There are strain-specific rearrangements, insertions, deletions, single nucleotide polymorphisms, and a unique distribution of insertion sequences. We found 453 single nucleotide polymorphisms in protein-coding regions, which were used to assess the evolutionary relationships of these Y. pestis strains. Gene reduction analysis revealed that the gene deletion processes are under selective pressure, and many of the inactivations are probably related to the organism's interaction with its host environment. The results presented here clearly demonstrate the differences between the two biovar antiqua lineages and support the notion that grouping Y. pestis strains based strictly on the classical definition of biovars (predicated upon two biochemical assays) does not accurately reflect the phylogenetic relationships within this species. A comparison of four virulent Y. pestis strains with the human-avirulent strain 91001 provides further insight into the genetic basis of virulence to humans.« less

  7. Validation of inverse seasonal peak mortality in medieval plagues, including the Black Death, in comparison to modern Yersinia pestis-variant diseases.

    PubMed

    Welford, Mark R; Bossak, Brian H

    2009-12-22

    Recent studies have noted myriad qualitative and quantitative inconsistencies between the medieval Black Death (and subsequent "plagues") and modern empirical Y. pestis plague data, most of which is derived from the Indian and Chinese plague outbreaks of A.D. 1900+/-15 years. Previous works have noted apparent differences in seasonal mortality peaks during Black Death outbreaks versus peaks of bubonic and pneumonic plagues attributed to Y. pestis infection, but have not provided spatiotemporal statistical support. Our objective here was to validate individual observations of this seasonal discrepancy in peak mortality between historical epidemics and modern empirical data. We compiled and aggregated multiple daily, weekly and monthly datasets of both Y. pestis plague epidemics and suspected Black Death epidemics to compare seasonal differences in mortality peaks at a monthly resolution. Statistical and time series analyses of the epidemic data indicate that a seasonal inversion in peak mortality does exist between known Y. pestis plague and suspected Black Death epidemics. We provide possible explanations for this seasonal inversion. These results add further evidence of inconsistency between historical plagues, including the Black Death, and our current understanding of Y. pestis-variant disease. We expect that the line of inquiry into the disputed cause of the greatest recorded epidemic will continue to intensify. Given the rapid pace of environmental change in the modern world, it is crucial that we understand past lethal outbreaks as fully as possible in order to prepare for future deadly pandemics.

  8. An EGFR wild type-EGFRvIII-HB-EGF feed forward loop regulates the activation of EGFRvIII

    PubMed Central

    Li, Li; Chakraborty, Sharmistha; Yang, Chin-Rang; Hatanpaa, Kimmo J.; Cipher, Daisha J.; Puliyappadamba, Vineshkumar Thidil; Rehman, Alizeh; Jiwani, Ameena J.; Mickey, Bruce; Madden, Christopher; Raisanen, Jack; Burma, Sandeep; Saha, Debabrata; Wang, Zhixiang; Pingle, Sandeep C.; Kesari, Santosh; Boothman, David A.; Habib, Amyn A.

    2014-01-01

    EGFRvIII is a key oncogene in glioblastoma (GBM). EGFRvIII results from an in frame deletion in the extracellular domain of EGFR, does not bind ligand, and is thought to be constitutively active. While EGFRvIII dimerization is known to activate EGFRvIII, the factors that drive EGFRvIII dimerization and activation are not well understood. Here we present a new model of EGFRvIII activation and propose that oncogenic activation of EGFRvIII in glioma cells is driven by co-expressed activated EGFR wild type (EGFRwt). Increasing EGFRwt leads to a striking increase in EGFRvIII tyrosine phosphorylation and activation while silencing EGFRwt inhibits EGFRvIII activation. Both the dimerization arm and the kinase activity of EGFRwt are required for EGFRvIII activation. EGFRwt activates EGFRvIII by facilitating EGFRvIII dimerization. We have previously identified HB-EGF, a ligand for EGFRwt, as a gene induced specifically by EGFRvIII. In this study we show that HB-EGF, is induced by EGFRvIII only when EGFRwt is present. Remarkably, altering HB-EGF recapitulates the effect of EGFRwt on EGFRvIII activation. Thus, increasing HB-EGF leads to a striking increase in EGFRvIII tyrosine phosphorylation while silencing HB-EGF attenuates EGFRvIII phosphorylation, suggesting that an EGFRvIII-HB-EGF-EGFRwt feed forward loop regulates EGFRvIII activation. Silencing EGFRwt or HB-EGF leads to a striking inhibition of EGFRvIII induced tumorigenicity, while increasing EGFRwt or HB-EGF levels resulted in accelerated EGFRvIII mediated oncogenicity in an orthotopic mouse model. Furthermore, we demonstrate the existence of this loop in human GBM. Thus, our data demonstrate that oncogenic activation of EGFRvIII in GBM is likely maintained by a continuous EGFRwt-EGFRvIII-HBEGF loop, potentially an attractive target for therapeutic intervention. PMID:24077285

  9. Genome assemblies for 11 Yersinia pestis strains isolated in the Caucasus region

    DOE PAGES

    Zhgenti, Ekaterine; Johnson, Shannon L.; Davenport, Karen W.; ...

    2015-09-17

    Yersinia pestis, the causative agent of plague, is endemic to the Caucasus region but few reference strain genome sequences from that region are available. We present the improved draft or finished assembled genomes from 11 strains isolated in the nation of Georgia and surrounding countries.

  10. The type III secretion system is involved in Escherichia coli K1 interactions with Acanthamoeba.

    PubMed

    Siddiqui, Ruqaiyyah; Malik, Huma; Sagheer, Mehwish; Jung, Suk-Yul; Khan, Naveed Ahmed

    2011-08-01

    The type III secretion system among Gram-negative bacteria is known to deliver effectors into host cell to interfere with host cellular processes. The type III secretion system in Yersina, Pseudomonas and Enterohemorrhagic Escherichia coli have been well documented to be involved in the bacterial pathogenicity. The existence of type III secretion system has been demonstrated in neuropathogenic E. coli K1 strains. Here, it is observed that the deletion mutant of type III secretion system in E. coli strain EC10 exhibited defects in the invasion and intracellular survival in Acanthamoeba castellanii (a keratitis isolate) compared to its parent strain. Next, it was determined whether type III secretion system plays a role in E. coli K1 survival inside Acanthamoeba during the encystment process. Using encystment assays, our findings revealed that the type III secretion system-deletion mutant exhibited significantly reduced survival inside Acanthamoeba cysts compared with its parent strain, EC10 (P<0.01). This is the first demonstration that the type III secretion system plays an important role in E. coli interactions with Acanthamoeba. A complete understanding of how amoebae harbor bacterial pathogens will help design strategies against E. coli transmission to the susceptible hosts. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. [Comparison of efficacy of tests for differentiation of typical and atypical strains of Yersinia pestis and Yersinia pseudotuberculosis].

    PubMed

    Arsen'eva, T E; Lebedeva, S A; Trukhachev, A L; Vasil'eva, E A; Ivanova, V S; Bozhko, N V

    2010-01-01

    To characterize species specificity of officially recommended tests for differentiation of Yersiniapestis and Yersinia pseudotuberculosis and propose additional tests allowing for more accurate identification. Natural, laboratory and typical strains oftwo Yersinia species were studied using microbiological, molecular and biochemical methods. For PCR species-specific primers complementary to certain fragments of chromosomal DNA of each species as well as to several plasmid genes of Y. pestis were used. It was shown that such attributes of Y. pestis as form of colonies, fermentation ofrhamnose, melibiose and urea, susceptibility to diagnostic phages, nutritional requirements could be lost in pestis bacterial species or detected in pseudotuberculosis species. Such attribute as mobility as well as positive result of CoA-reaction on fraction V antigen are more reliable. Guaranteed differentiation of typical and changed according to differential tests strains is provided only by PCR-analysis with primers vlml2for/ISrev216 and JS respectively, which are homologous to certain chromosome fragments of one of two Yersinia species.

  12. Fuel of the Bacterial Flagellar Type III Protein Export Apparatus.

    PubMed

    Minamino, Tohru; Kinoshita, Miki; Namba, Keiichi

    2017-01-01

    The flagellar type III export apparatus utilizes ATP and proton motive force (PMF) across the cytoplasmic membrane as the energy sources and transports flagellar component proteins from the cytoplasm to the distal growing end of the growing structure to construct the bacterial flagellum beyond the cellular membranes. The flagellar type III export apparatus coordinates flagellar protein export with assembly by ordered export of substrates to parallel with their order of the assembly. The export apparatus is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. Since the ATPase complex is dispensable for flagellar protein export, PMF is the primary fuel for protein unfolding and translocation. Interestingly, the export gate complex can also use sodium motive force across the cytoplasmic membrane in addition to PMF when the ATPase complex does not work properly. Here, we describe experimental protocols, which have allowed us to identify the export substrate class and the primary fuel of the flagellar type III protein export apparatus in Salmonella enterica serovar Typhimurium.

  13. New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague.

    PubMed

    Pradel, Elizabeth; Lemaître, Nadine; Merchez, Maud; Ricard, Isabelle; Reboul, Angéline; Dewitte, Amélie; Sebbane, Florent

    2014-03-01

    Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, "per-pool" screening method that we have developed. Our data showed that in addition to genes involved in physiological adaptation and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site--probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability.

  14. New Insights into How Yersinia pestis Adapts to Its Mammalian Host during Bubonic Plague

    PubMed Central

    Pradel, Elizabeth; Lemaître, Nadine; Merchez, Maud; Ricard, Isabelle; Reboul, Angéline; Dewitte, Amélie; Sebbane, Florent

    2014-01-01

    Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, “per-pool” screening method that we have developed. Our data showed that in addition to genes involved in physiological adaption and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site – probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability. PMID:24675805

  15. Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient Yersinia pestis genomes

    PubMed Central

    Doerr, Daniel; Chauve, Cedric

    2017-01-01

    Yersinia pestis is the causative agent of the bubonic plague, a disease responsible for several dramatic historical pandemics. Progress in ancient DNA (aDNA) sequencing rendered possible the sequencing of whole genomes of important human pathogens, including the ancient Y. pestis strains responsible for outbreaks of the bubonic plague in London in the 14th century and in Marseille in the 18th century, among others. However, aDNA sequencing data are still characterized by short reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging and often prevents a detailed study of genome rearrangements. It has recently been shown that comparative scaffolding approaches can improve the assembly of ancient Y. pestis genomes at a chromosome level. In the present work, we address the last step of genome assembly, the gap-filling stage. We describe an optimization-based method AGapEs (ancestral gap estimation) to fill in inter-contig gaps using a combination of a template obtained from related extant genomes and aDNA reads. We show how this approach can be used to refine comparative scaffolding by selecting contig adjacencies supported by a mix of unassembled aDNA reads and comparative signal. We applied our method to two Y. pestis data sets from the London and Marseilles outbreaks, for which we obtained highly improved genome assemblies for both genomes, comprised of, respectively, five and six scaffolds with 95 % of the assemblies supported by ancient reads. We analysed the genome evolution between both ancient genomes in terms of genome rearrangements, and observed a high level of synteny conservation between these strains. PMID:29114402

  16. A Yersinia pestis YscN ATPase mutant functions as a live attenuated vaccine against bubonic plague in mice.

    PubMed

    Bozue, Joel; Cote, Christopher K; Webster, Wendy; Bassett, Anthony; Tobery, Steven; Little, Stephen; Swietnicki, Wieslaw

    2012-07-01

    Yersinia pestis is the causative agent responsible for bubonic and pneumonic plague. The bacterium uses the pLcr plasmid-encoded type III secretion system to deliver virulence factors into host cells. Delivery requires ATP hydrolysis by the YscN ATPase encoded by the yscN gene also on pLcr. A yscN mutant was constructed in the fully virulent CO92 strain containing a nonpolar, in-frame internal deletion within the gene. We demonstrate that CO92 with a yscN mutation was not able to secrete the LcrV protein (V-Antigen) and attenuated in a subcutaneous model of plague demonstrating that the YscN ATPase was essential for virulence. However, if the yscN mutant was complemented with a functional yscN gene in trans, virulence was restored. To evaluate the mutant as a live vaccine, Swiss-Webster mice were vaccinated twice with the ΔyscN mutant at varying doses and were protected against bubonic plague in a dose-dependent manner. Antibodies to F1 capsule but not to LcrV were detected in sera from the vaccinated mice. These preliminary results suggest a proof-of-concept for an attenuated, genetically engineered, live vaccine effective against bubonic plague. Published 2012. This article is a US Government work and is in the public domain in the USA.

  17. Historical Y. pestis Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics.

    PubMed

    Spyrou, Maria A; Tukhbatova, Rezeda I; Feldman, Michal; Drath, Joanna; Kacki, Sacha; Beltrán de Heredia, Julia; Arnold, Susanne; Sitdikov, Airat G; Castex, Dominique; Wahl, Joachim; Gazimzyanov, Ilgizar R; Nurgaliev, Danis K; Herbig, Alexander; Bos, Kirsten I; Krause, Johannes

    2016-06-08

    Ancient DNA analysis has revealed an involvement of the bacterial pathogen Yersinia pestis in several historical pandemics, including the second plague pandemic (Europe, mid-14(th) century Black Death until the mid-18(th) century AD). Here we present reconstructed Y. pestis genomes from plague victims of the Black Death and two subsequent historical outbreaks spanning Europe and its vicinity, namely Barcelona, Spain (1300-1420 cal AD), Bolgar City, Russia (1362-1400 AD), and Ellwangen, Germany (1485-1627 cal AD). Our results provide support for (1) a single entry of Y. pestis in Europe during the Black Death, (2) a wave of plague that traveled toward Asia to later become the source population for contemporary worldwide epidemics, and (3) the presence of an historical European plague focus involved in post-Black Death outbreaks that is now likely extinct. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Oral vaccination with salmonella simultaneously expressing Yersinia pestis F1 and V antigens protects against bubonic and pneumonic plague.

    PubMed

    Yang, Xinghong; Hinnebusch, B Joseph; Trunkle, Theresa; Bosio, Catharine M; Suo, Zhiyong; Tighe, Mike; Harmsen, Ann; Becker, Todd; Crist, Kathryn; Walters, Nancy; Avci, Recep; Pascual, David W

    2007-01-15

    The gut provides a large area for immunization enabling the development of mucosal and systemic Ab responses. To test whether the protective Ags to Yersinia pestis can be orally delivered, the Y. pestis caf1 operon, encoding the F1-Ag and virulence Ag (V-Ag) were cloned into attenuated Salmonella vaccine vectors. F1-Ag expression was controlled under a promoter from the caf1 operon; two different promoters (P), PtetA in pV3, PphoP in pV4, as well as a chimera of the two in pV55 were tested. F1-Ag was amply expressed; the chimera in the pV55 showed the best V-Ag expression. Oral immunization with Salmonella-F1 elicited elevated secretory (S)-IgA and serum IgG titers, and Salmonella-V-Ag(pV55) elicited much greater S-IgA and serum IgG Ab titers than Salmonella-V-Ag(pV3) or Salmonella-V-Ag(pV4). Hence, a new Salmonella vaccine, Salmonella-(F1+V)Ags, made with a single plasmid containing the caf1 operon and the chimeric promoter for V-Ag allowed the simultaneous expression of F1 capsule and V-Ag. Salmonella-(F1+V)Ags elicited elevated Ab titers similar to their monotypic derivatives. For bubonic plague, mice dosed with Salmonella-(F1+V)Ags and Salmonella-F1-Ag showed similar efficacy (>83% survival) against approximately 1000 LD(50) Y. pestis. For pneumonic plague, immunized mice required immunity to both F1- and V-Ags because the mice vaccinated with Salmonella-(F1+V)Ags protected against 100 LD(50) Y. pestis. These results show that a single Salmonella vaccine can deliver both F1- and V-Ags to effect both systemic and mucosal immune protection against Y. pestis.

  19. Detection of Yersinia pestis using real-time PCR in patients with suspected bubonic plague.

    PubMed

    Riehm, Julia M; Rahalison, Lila; Scholz, Holger C; Thoma, Bryan; Pfeffer, Martin; Razanakoto, Léa Mamiharisoa; Al Dahouk, Sascha; Neubauer, Heinrich; Tomaso, Herbert

    2011-02-01

    Yersinia (Y.) pestis, the causative agent of plague, is endemic in natural foci of Asia, Africa, and America. Real-time PCR assays have been described as rapid diagnostic tools, but so far none has been validated for its clinical use. In a retrospective clinical study we evaluated three real-time PCR assays in two different assay formats, 5'-nuclease and hybridization probes assays. Lymph node aspirates from 149 patients from Madagascar with the clinical diagnosis of bubonic plague were investigated for the detection of Y. pestis DNA. Results of real-time PCR assays targeting the virulence plasmids pPCP1 (pla gene), and pMT1 (caf1, Ymt genes) were compared with an F1-antigen immunochromatographic test (ICT) and cultivation of the organism. Out of the 149 samples an infection with Y. pestis was confirmed by culture in 47 patients while ICT was positive in 88 including all culture proven cases. The best real-time PCR assay was the 5'-nuclease assay targeting pla which was positive in 120 cases. In conclusion, the 5'-nuclease assay targeting pla can be recommended as diagnostic tool for establishing a presumptive diagnosis when bubonic plague is clinically suspected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Receptosecretory nature of type III cells in the taste bud.

    PubMed

    Yoshie, Sumio

    2009-01-01

    Type III cells in taste buds form chemical synapses with intragemmal afferent nerve fibers and are characterized by the presence of membrane-bound vesicles in the cytoplasm. Although the vesicles differ in shape and size among species, they are primarily categorized into small clear (40 nm in diameter) and large dense-cored (90-200 nm) types. As such vesicles tend to be closely juxtaposed to the synaptic membrane of the cells, it is reasonable to consider that the vesicles include transmitter(s) towards the gustatory nerve. In the guinea-pig taste bud, stimulation with various taste substances (sucrose, sodium chloride, quinine hydrochloride, or monosodium L-glutamate) causes ultrastructural alterations of the type III cells. At the synapse, the presynaptic plasma membrane often displays invaginations of 90 nm in a mean diameter towards the cytoplasm, which indicates the dense-cored vesicles opening into the synaptic cleft by means of exocytosis. The vesicles are also exocytosed at the non-synaptic region into the intercellular space. These findings strongly suggest that the transmitters presumably contained in the vesicles are released to conduct the excitement of the type III cells to the nerves and also to exert their paracrine effects upon the surroundings, such as the Ebner's salivary gland, acting as local hormones.

  1. Validation of Inverse Seasonal Peak Mortality in Medieval Plagues, Including the Black Death, in Comparison to Modern Yersinia pestis-Variant Diseases

    PubMed Central

    Welford, Mark R.; Bossak, Brian H.

    2009-01-01

    Background Recent studies have noted myriad qualitative and quantitative inconsistencies between the medieval Black Death (and subsequent “plagues”) and modern empirical Y. pestis plague data, most of which is derived from the Indian and Chinese plague outbreaks of A.D. 1900±15 years. Previous works have noted apparent differences in seasonal mortality peaks during Black Death outbreaks versus peaks of bubonic and pneumonic plagues attributed to Y. pestis infection, but have not provided spatiotemporal statistical support. Our objective here was to validate individual observations of this seasonal discrepancy in peak mortality between historical epidemics and modern empirical data. Methodology/Principal Findings We compiled and aggregated multiple daily, weekly and monthly datasets of both Y. pestis plague epidemics and suspected Black Death epidemics to compare seasonal differences in mortality peaks at a monthly resolution. Statistical and time series analyses of the epidemic data indicate that a seasonal inversion in peak mortality does exist between known Y. pestis plague and suspected Black Death epidemics. We provide possible explanations for this seasonal inversion. Conclusions/Significance These results add further evidence of inconsistency between historical plagues, including the Black Death, and our current understanding of Y. pestis-variant disease. We expect that the line of inquiry into the disputed cause of the greatest recorded epidemic will continue to intensify. Given the rapid pace of environmental change in the modern world, it is crucial that we understand past lethal outbreaks as fully as possible in order to prepare for future deadly pandemics. PMID:20027294

  2. Crystallization and preliminary X-ray diffraction analysis of FabG from Yersinia pestis.

    PubMed

    Nanson, Jeffrey David; Forwood, Jade Kenneth

    2014-01-01

    The type II fatty-acid biosynthesis pathway of bacteria provides enormous potential for antibacterial drug development owing to the structural differences between this and the type I fatty-acid biosynthesis system found in mammals. β-Ketoacyl-ACP reductase (FabG) is responsible for the reduction of the β-ketoacyl group linked to acyl carrier protein (ACP), and is essential for the formation of fatty acids and bacterial survival. Here, the cloning, expression, purification, crystallization and diffraction of FabG from Yersinia pestis (ypFabG), the highly virulent causative agent of plague, are reported. Recombinant FabG was expressed, purified to homogeneity and crystallized via the hanging-drop vapour-diffusion technique. Diffraction data were collected at the Australian Synchrotron to 2.30 Å resolution. The crystal displayed P2(1)2(1)2(1) symmetry, with unit-cell parameters a = 68.22, b = 98.68, c = 169.84 Å, and four ypFabG molecules in the asymmetric unit.

  3. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague.

    PubMed

    Sha, Jian; Rosenzweig, Jason A; Kirtley, Michelle L; van Lier, Christina J; Fitts, Eric C; Kozlova, Elena V; Erova, Tatiana E; Tiner, Bethany L; Chopra, Ashok K

    2013-02-01

    The gold standard in microbiology for monitoring bacterial dissemination in infected animals has always been viable plate counts. This method, despite being quantitative, requires sacrificing the infected animals. Recently, however, an alternative method of in vivo imaging of bioluminescent bacteria (IVIBB) for monitoring microbial dissemination within the host has been employed. Yersinia pestis is a Gram-negative bacterium capable of causing bubonic, septicemic, and pneumonic plague. In this study, we compared the conventional counting of bacterial colony forming units (cfu) in the various infected tissues to IVIBB in monitoring Y. pestis dissemination in a mouse model of pneumonic plague. By using a transposon mutagenesis system harboring the luciferase (luc) gene, we screened approximately 4000 clones and obtained a fully virulent, luc-positive Y. pestis CO92 (Y. pestis-luc2) reporter strain in which transposition occurred within the largest pMT1 plasmid which possesses murine toxin and capsular antigen encoding genes. The aforementioned reporter strain and the wild-type CO92 exhibited similar growth curves, formed capsule based on immunofluorescence microscopy and flow cytometry, and had a similar LD(50). Intranasal infection of mice with 15 LD(50) of CO92-luc2 resulted in animal mortality by 72 h, and an increasing number of bioluminescent bacteria were observed in various mouse organs over a 24-72 h period when whole animals were imaged. However, following levofloxacin treatment (10 mg/kg/day) for 6 days 24 h post infection, no luminescence was observed after 72 h of infection, indicating that the tested antimicrobial killed bacteria preventing their detection in host peripheral tissues. Overall, we demonstrated that IVIBB is an effective and non-invasive way of monitoring bacterial dissemination in animals following pneumonic plague having strong correlation with cfu, and our reporter CO92-luc2 strain can be employed as a useful tool to monitor the efficacy

  4. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague

    PubMed Central

    Sha, Jian; Rosenzweig, Jason A.; Kirtley, Michelle L.; van Lier, Christina J.; Fitts, Eric C.; Kozlova, Elena V.; Erova, Tatiana E.; Tiner, Bethany L.; Chopra, Ashok K.

    2012-01-01

    The gold standard in microbiology for monitoring bacterial dissemination in infected animals has always been viable plate counts. This method, despite being quantitative, requires sacrificing the infected animals. Recently, however, an alternative method of in vivo imaging of bioluminescent bacteria (IVIBB) for monitoring microbial dissemination within the host has been employed. Yersina pestis is a Gram-negative bacterium capable of causing bubonic, septicemic, and pneumonic plague. In this study, we compared the conventional counting of bacterial colony forming units (cfu) in the various infected tissues to IVIBB in monitoring Y. pestis dissemination in a mouse model of pneumonic plague. By using a transposon mutagenesis system harboring the luciferase (luc) gene, we screened approximately 4000 clones and obtained a fully virulent, luc-positive Y. pestis CO92 (Y. pestis-luc2) reporter strain in which transposition occurred within the largest pMT1 plasmid which possesses murine toxin and capsular antigen encoding genes. The aforementioned reporter strain and the wild-type CO92 exhibited similar growth curves, formed capsule based on immunofluorescence microscopy and flow cytometry, and had a similar LD50. Intranasal infection of mice with 15 LD50 of CO92-luc2 resulted in animal mortality by 72 h, and an increasing number of bioluminescent bacteria were observed in various mouse organs over a 24–72 h period when whole animals were imaged. However, following levofloxacin treatment (10 mg/kg/day) for 6 days 24 h post infection, no luminescence was observed after 72 h of infection, indicating that the tested antimicrobial killed bacteria preventing their detection in host peripheral tissues. Overall, we demonstrated that IVIBB is an effective and non-invasive way of monitoring bacterial dissemination in animals following pneumonic plague having strong correlation with cfu, and our reporter CO92-luc2 strain can be employed as a useful tool to monitor the efficacy of

  5. Antiviral activity of bovine type III interferon against foot-and-mouth disease virus

    USDA-ARS?s Scientific Manuscript database

    Interferons (IFN) are the first line of defense against viral infections. Recently a new family of IFNs, type III, has been identified in humans, mice, swine and chickens. Here we report the identification and characterization of a member of the bovine type III IFN family, boIFN-lambda3, also known...

  6. Caspase-12 and the inflammatory response to Yersinia pestis.

    PubMed

    Ferwerda, Bart; McCall, Matthew B B; de Vries, Maaike C; Hopman, Joost; Maiga, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Daou, Modibo; de Jong, Dirk; Joosten, Leo A B; Tissingh, Rudi A; Reubsaet, Frans A G; Sauerwein, Robert; van der Meer, Jos W M; van der Ven, André J A M; Netea, Mihai G

    2009-09-01

    Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia and a significant proportion of individuals from African populations. In African-Americans, it has been shown that caspase-12 inhibits the pro-inflammatory cytokine production. We assessed whether similar mechanisms are present in African individuals, and whether evolutionary pressures due to plague may have led to the present caspase-12 genotype population frequencies. No difference in cytokine induction through the caspase-1 and/or NOD2/RIP2 pathways was observed in two independent African populations, among individuals with either an intact or absent caspase-12. In addition, stimulations with Yersinia pestis and two other species of Yersinia were preformed to investigate whether caspase-12 modulates the inflammatory reaction induced by Yersinia. We found that caspase-12 did not modulate cytokine production induced by Yersinia spp. Our experiments demonstrate for the first time the involvement of the NOD2/RIP2 pathway for recognition of Yersinia. However, caspase-12 does not modulate innate host defense against Y. pestis and alternative explanations for the geographical distribution of caspase-12 should be sought.

  7. Strategy for sensitive and specific detection of Yersinia pestis in skeletons of the black death pandemic.

    PubMed

    Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C; Riehm, Julia M

    2013-01-01

    Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14(th) century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study.

  8. [Sublethal microcephalic chondrodysplasia. Taybi-Linder syndrome, primordial microcephalic nanism types I and III].

    PubMed

    Maroteaux, P; Badoual, J

    1990-02-01

    The authors describe a case of microcephalic dwarfism observed in a newborn until 10 months of age and discuss the diagnostic challenge. They show that the Taybi-Linder syndrome and the primordial dwarfism type I and type III of Majewski are an identical recessive autosomal entity. The radiological evolution explains the initial separation of type I and type III. Because of the skeletal lesions, lacking in the Seckel syndrome, the name of sublethal microcephalic chondrodysplasia is proposed for this disease.

  9. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    USGS Publications Warehouse

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  10. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming.

    PubMed

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L; Cully, Jack F

    2008-07-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  11. The C. elegans PRMT-3 possesses a type III protein arginine methyltransferase activity.

    PubMed

    Takahashi, Yuta; Daitoku, Hiroaki; Yokoyama, Atsuko; Nakayama, Kimihiro; Kim, Jun-Dal; Fukamizu, Akiyoshi

    2011-04-01

    Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.

  12. YopP-expressing variant of Y. pestis activates a potent innate immune response affording cross-protection against yersiniosis and tularemia [corrected].

    PubMed

    Zauberman, Ayelet; Flashner, Yehuda; Levy, Yinon; Vagima, Yaron; Tidhar, Avital; Cohen, Ofer; Bar-Haim, Erez; Gur, David; Aftalion, Moshe; Halperin, Gideon; Shafferman, Avigdor; Mamroud, Emanuelle

    2013-01-01

    Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.

  13. The Effects of Non-Normality on Type III Error for Comparing Independent Means

    ERIC Educational Resources Information Center

    Mendes, Mehmet

    2007-01-01

    The major objective of this study was to investigate the effects of non-normality on Type III error rates for ANOVA F its three commonly recommended parametric counterparts namely Welch, Brown-Forsythe, and Alexander-Govern test. Therefore these tests were compared in terms of Type III error rates across the variety of population distributions,…

  14. Aircraft evacuations through type-III exits I : effects of seat placement at the exit.

    DOT National Transportation Integrated Search

    1995-07-01

    Simulated emergency egress from Type III over-wing exits was studied to support regulatory action by the FAA. Passageway width and seat encroachment distance adjacent to the Type-III exit were the major variables of interest. : Methods. Two subject g...

  15. Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    PubMed Central

    Hancock, Melissa L.; Canetta, Sarah E.; Role, Lorna W.; Talmage, David A.

    2008-01-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function. PMID:18458158

  16. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-05-05

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  17. Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-06-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  18. A Bivalent Anthrax–Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis

    PubMed Central

    Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen; Moayeri, Mahtab; Kirtley, Michelle L.; Fitts, Eric C.; Andersson, Jourdan A.; Lawrence, William S.; Leppla, Stephen H.; Chopra, Ashok K.; Rao, Venigalla B.

    2017-01-01

    Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis, in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis, demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis. This bivalent anthrax–plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats. PMID:28694806

  19. A Bivalent Anthrax-Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis.

    PubMed

    Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen; Moayeri, Mahtab; Kirtley, Michelle L; Fitts, Eric C; Andersson, Jourdan A; Lawrence, William S; Leppla, Stephen H; Chopra, Ashok K; Rao, Venigalla B

    2017-01-01

    Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis , the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis , in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel ® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis , demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis . This bivalent anthrax-plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats.

  20. Biomarker Candidate Identification in Yersinia Pestis Using Organism-Wide Semiquantitative Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hixson, Kim K.; Adkins, Joshua N.; Baker, Scott E.

    2006-11-03

    Yersinia pestis, the causative agent of plague, is listed by the CDC as a level A select pathogen. To better enable detection, intervention and treatment of Y. pestis infections, it is necessary to understand its protein expression under conditions that promote or inhibit virulence. To this end, we have utilized a novel combination of the accurate mass and time tag methodology of mass spectrometry and clustering analysis using OmniViz™ to compare the protein abundance changes of 992 identified proteins under four growth conditions. Temperature and Ca2+ concentration were used to trigger virulence associated protein expression fundamental to the low calciummore » response. High-resolution liquid chromatography and electrospray ionization mass spectrometry were utilized to determine protein identity and abundance on the genome-wide level. The cluster analyses revealed, in a rapid visual platform, the reproducibility of the current method as well as relevant protein abundance changes of expected and novel proteins relating to a specific growth condition and sub-cellular location. Using this method, 89 proteins were identified as having a similar abundance change profile to 29 known virulence associated proteins, providing additional biomarker candidates for future detection and vaccine development strategies.« less

  1. [Cannulated lag screw combined with lateral supporting plate for treatment of Hoffa fracture of Letenneur type I and type III].

    PubMed

    Lin, Tao; Yang, Shuhua; Xiao, Baojun; Fu, Dehao

    2013-09-01

    To investigate the effectiveness of cannulated lag screws combined with lateral supporting plates in the treatment of Hoffa fracture of Letenneur type I and type III. Between May 2004 and April 2011, 11 patients with Hoffa fracture of Letenneur type I and type III were treated, including 6 males and 5 females with an average age of 36 years (range, 25-47 years). Factures were caused by traffic accident in 8 cases, by falling in 2 cases, and by the other in 1 case. Fracture involved the left knee in 7 patients and the right knee in 4 patients. According Letenneur's classification criteria, there were 7 type I fractures (6 lateral condyle fractures and 1 medial condyle fracture) and 4 type III fractures (3 lateral condyle fractures and 1 medial condyle fracture). Of 11 fractures, 9 were fresh fractures and 2 were old fractures. Two 6.5 mm cannulated lag screws combined with lateral supporting plates were used to fix fractures by anterolateral or anteromedial incision. All incisions achieved primary healing with no early complication. All patients were followed up 12-26 months (mean, 15 months). X-ray films showed bone healing with an average healing time of 15 weeks (range, 10-18 weeks). No loosening or breaking of internal fixator was observed; the removal time of internal fixation was 9-15 months (mean, 12 months). Accoding to Letenneur's functional assessment system, the results were excellent in 7 cases, good in 3 cases, and poor in 1 case at last follow-up. Cannulated lag screws combined with lateral supporting plates fixation is effective in treatment of Hoffa fracture of Letenneur type I and type III with a high union rate; anterolateral or anteromedial approach is the first choice for Hoffa fracture of type I and type III, especially for complicating by tibial plateau fracture or patella fracture.

  2. The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi.

    PubMed

    Zhao, Xiangna; Wu, Weili; Qi, Zhizhen; Cui, Yujun; Yan, Yanfeng; Guo, Zhaobiao; Wang, Zuyun; Wang, Hu; Deng, Haijun; Xue, Yan; Chen, Weijun; Wang, Xiaoyi; Yang, Ruifu

    2011-01-01

    Yep-phi, a lytic phage of Yersinia pestis, was isolated in China and is routinely used as a diagnostic phage for the identification of the plague pathogen. Yep-phi has an isometric hexagonal head containing dsDNA and a short non-contractile conical tail. In this study, we sequenced the Yep-phi genome (GenBank accession no. HQ333270) and performed proteomics analysis. The genome consists of 38 ,616 bp of DNA, including direct terminal repeats of 222 bp, and is predicted to contain 45 ORFs. Most structural proteins were identified by proteomics analysis. Compared with the three available genome sequences of lytic phages for Y. pestis, the phages could be divided into two subgroups. Yep-phi displays marked homology to the bacteriophages Berlin (GenBank accession no. AM183667) and Yepe2 (GenBank accession no. EU734170), and these comprise one subgroup. The other subgroup is represented by bacteriophage ΦA1122 (GenBank accession no. AY247822). Potential recombination was detected among the Yep-phi subgroup.

  3. Transposon mutagenesis of type III group B Streptococcus: correlation of capsule expression with virulence.

    PubMed

    Rubens, C E; Wessels, M R; Heggen, L M; Kasper, D L

    1987-10-01

    The capsular polysaccharide of type III group B Streptococcus (GBS) is thought to be a major factor in the virulence of this organism. Transposon mutagenesis was used to obtain isogenic strains of a GBS serotype III clinical isolate (COH 31r/s) with site-specific mutations in the gene(s) responsible for capsule production. The self-conjugative transposon Tn916 was transferred to strain COH 31r/s during incubation with Streptococcus faecalis strain CG110 on membrane filters. Eleven transconjugant clones did not bind type III GBS antiserum by immunoblot. Immunofluorescence, competitive ELISA, and electron microscopy confirmed the absence of detectable GBS type III capsular polysaccharide in one of the transconjugants, COH 31-15. Southern hybridization analysis with a Tn916 probe confirmed the presence of the transposon sequence within each mutant. A 3.0-kilobase EcoRI fragment that flanked the Tn916 sequence was subcloned from mutant COH 31-15. This fragment shared homology with DNA from the other GBS serotypes, suggesting a common sequence for capsulation shared by organisms of different capsular types. Loss of capsule expression resulted in loss of virulence in a neonatal rat model. We conclude that a gene common to all capsular types of GBS is required for surface expression of the type III capsule and that inactivation of this gene by Tn916 results in the loss of virulence.

  4. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague

    PubMed Central

    Sebbane, Florent; Jarrett, Clayton O.; Gardner, Donald; Long, Daniel; Hinnebusch, B. Joseph

    2006-01-01

    Yersinia pestis is transmitted by fleas and causes bubonic plague, characterized by severe local lymphadenitis that progresses rapidly to systemic infection and life-threatening septicemia. Here, we show that although flea-borne transmission usually leads to bubonic plague in mice, it can also lead to primary septicemic plague. However, intradermal injection of Y. pestis, commonly used to mimic transmission by fleabite, leads only to bubonic plague. A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas. The results clarify a long-standing uncertainty about the etiology of primary septicemic plague and support an evolutionary scenario in which plague first emerged as a flea-borne septicemic disease of limited transmissibility. Subsequent acquisition of the plasminogen activator gene by horizontal transfer enabled the bubonic form of disease and increased the potential for epidemic spread. PMID:16567636

  5. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague.

    PubMed

    Sebbane, Florent; Jarrett, Clayton O; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph

    2006-04-04

    Yersinia pestis is transmitted by fleas and causes bubonic plague, characterized by severe local lymphadenitis that progresses rapidly to systemic infection and life-threatening septicemia. Here, we show that although flea-borne transmission usually leads to bubonic plague in mice, it can also lead to primary septicemic plague. However, intradermal injection of Y. pestis, commonly used to mimic transmission by fleabite, leads only to bubonic plague. A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas. The results clarify a long-standing uncertainty about the etiology of primary septicemic plague and support an evolutionary scenario in which plague first emerged as a flea-borne septicemic disease of limited transmissibility. Subsequent acquisition of the plasminogen activator gene by horizontal transfer enabled the bubonic form of disease and increased the potential for epidemic spread.

  6. The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells.

    PubMed

    Hares, Michelle C; Hinchliffe, Stewart J; Strong, Philippa C R; Eleftherianos, Ioannis; Dowling, Andrea J; ffrench-Constant, Richard H; Waterfield, Nick

    2008-11-01

    The toxin complex (Tc) genes were first identified in the insect pathogen Photorhabdus luminescens and encode approximately 1 MDa protein complexes which are toxic to insect pests. Subsequent genome sequencing projects have revealed the presence of tc orthologues in a range of bacterial pathogens known to be associated with insects. Interestingly, members of the mammalian-pathogenic yersiniae have also been shown to encode Tc orthologues. Studies in Yersinia enterocolitica have shown that divergent tc loci either encode insect-active toxins or play a role in colonization of the gut in gastroenteritis models of rats. So far little is known about the activity of the Tc proteins in the other mammalian-pathogenic yersiniae. Here we present work to suggest that Tc proteins in Yersinia pseudotuberculosis and Yersinia pestis are not insecticidal toxins but have evolved for mammalian pathogenicity. We show that Tc is secreted by Y. pseudotuberculosis strain IP32953 during growth in media at 28 degrees C and 37 degrees C. We also demonstrate that oral toxicity of strain IP32953 to Manduca sexta larvae is not due to Tc expression and that lysates of Escherichia coli BL21 expressing the Yersinia Tc proteins are not toxic to Sf9 insect cells but are toxic to cultured mammalian cell lines. Cell lysates of E. coli BL21 expressing the Y. pseudotuberculosis Tc proteins caused actin ruffles, vacuoles and multi-nucleation in cultured human gut cells (Caco-2); similar morphology was observed after application of a lysate of E. coli BL21 expressing the Y. pestis Tc proteins to mouse fibroblast NIH3T3 cells, but not Caco-2 cells. Finally, transient expression of the individual Tc proteins in Caco-2 and NIH3T3 cell lines reproduced the actin and nuclear rearrangement observed with the topical applications. Together these results add weight to the growing hypothesis that the Tc proteins in Y. pseudotuberculosis and Y. pestis have been adapted for mammalian pathogenicity. We further

  7. Comparing acquired angioedema with hereditary angioedema (types I/II): findings from the Icatibant Outcome Survey.

    PubMed

    Longhurst, H J; Zanichelli, A; Caballero, T; Bouillet, L; Aberer, W; Maurer, M; Fain, O; Fabien, V; Andresen, I

    2017-04-01

    Icatibant is used to treat acute hereditary angioedema with C1 inhibitor deficiency types I/II (C1-INH-HAE types I/II) and has shown promise in angioedema due to acquired C1 inhibitor deficiency (C1-INH-AAE). Data from the Icatibant Outcome Survey (IOS) were analysed to evaluate the effectiveness of icatibant in the treatment of patients with C1-INH-AAE and compare disease characteristics with those with C1-INH-HAE types I/II. Key medical history (including prior occurrence of attacks) was recorded upon IOS enrolment. Thereafter, data were recorded retrospectively at approximately 6-month intervals during patient follow-up visits. In the icatibant-treated population, 16 patients with C1-INH-AAE had 287 attacks and 415 patients with C1-INH-HAE types I/II had 2245 attacks. Patients with C1-INH-AAE versus C1-INH-HAE types I/II were more often male (69 versus 42%; P = 0·035) and had a significantly later mean (95% confidence interval) age of symptom onset [57·9 (51·33-64·53) versus 14·0 (12·70-15·26) years]. Time from symptom onset to diagnosis was significantly shorter in patients with C1-INH-AAE versus C1-INH-HAE types I/II (mean 12·3 months versus 118·1 months; P = 0·006). Patients with C1-INH-AAE showed a trend for higher occurrence of attacks involving the face (35 versus 21% of attacks; P = 0·064). Overall, angioedema attacks were more severe in patients with C1-INH-HAE types I/II versus C1-INH-AAE (61 versus 40% of attacks were classified as severe to very severe; P < 0·001). Median total attack duration was 5·0 h and 9·0 h for patients with C1-INH-AAE versus C1-INH-HAE types I/II, respectively. © 2016 British Society for Immunology.

  8. Proteolytic processing of the Yersinia pestis YapG autotransporter by the omptin protease Pla and the contribution of YapG to murine plague pathogenesis

    PubMed Central

    Lane, M. Chelsea; Lenz, Jonathan D.

    2013-01-01

    Autotransporter protein secretion represents one of the simplest forms of secretion across Gram-negative bacterial membranes. Once secreted, autotransporter proteins either remain tethered to the bacterial surface or are released following proteolytic cleavage. Autotransporters possess a diverse array of virulence-associated functions such as motility, cytotoxicity, adherence and autoaggregation. To better understand the role of autotransporters in disease, our research focused on the autotransporters of Yersinia pestis, the aetiological agent of plague. Y. pestis strain CO92 has nine functional conventional autotransporters, referred to as Yaps for Yersinia autotransporter proteins. Three Yaps have been directly implicated in virulence using established mouse models of plague infection (YapE, YapJ and YapK). Whilst previous studies from our laboratory have shown that most of the CO92 Yaps are cell associated, YapE and YapG are processed and released by the omptin protease Pla. In this study, we identified the Pla cleavage sites in YapG that result in many released forms of YapG in Y. pestis, but not in the evolutionarily related gastrointestinal pathogen, Yersinia pseudotuberculosis, which lacks Pla. Furthermore, we showed that YapG does not contribute to Y. pestis virulence in established mouse models of bubonic and pneumonic infection. As Y. pestis has a complex life cycle involving a wide range of mammalian hosts and a flea vector for transmission, it remains to be elucidated whether YapG has a measurable role in any other stage of plague disease. PMID:23657527

  9. Methods for enhancing P-type doping in III-V semiconductor films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  10. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  11. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by Use of Laser Light Scattering Technology.

    PubMed

    Bugrysheva, Julia V; Lascols, Christine; Sue, David; Weigel, Linda M

    2016-06-01

    Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials. Results were available in <4 h for B. anthracis and <6 h for Y. pestis and B. pseudomallei One exception was B. pseudomallei in the presence of ceftazidime, which required >10 h of incubation. Use of laser scattering technology decreased the time required to determine antimicrobial susceptibility by 50% to 75% for B. anthracis, Y. pestis, and B. pseudomallei compared to conventional methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics.

    PubMed

    Fujioka, Shinsuke; Sundal, Christina; Wszolek, Zbigniew K

    2013-01-18

    Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments.

  13. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics

    PubMed Central

    2013-01-01

    Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments. PMID:23331413

  14. Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus.

    PubMed

    Minamino, Tohru

    2018-06-01

    The bacterial flagellum is supramolecular motility machinery consisting of the basal body, the hook and the filament. Flagellar proteins are translocated across the cytoplasmic membrane via a type III protein export apparatus, diffuse down the central channel of the growing structure and assemble at the distal end. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. The completion of hook assembly is the most important morphological checkpoint of the sequential flagellar assembly process. When the hook reaches its mature length of about 55 nm in Salmonella enterica, the type III protein export apparatus switches export specificity from proteins required for the structure and assembly of the hook to those responsible for filament assembly, thereby terminating hook assembly and initiating filament assembly. Three flagellar proteins, namely FliK, FlhB and FlhA, are responsible for this substrate specificity switching. Upon completion of the switching event, interactions among FlhA, the cytoplasmic ATPase complex and flagellar type III export chaperones establish the assembly order of the filament at the hook tip. Here, we describe our current understanding of a hierarchical protein export mechanism used in flagellar type III protein export.

  15. A note on tilted Bianchi type VIh models: the type III bifurcation

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Hervik, S.

    2008-10-01

    In this note we complete the analysis of Hervik, van den Hoogen, Lim and Coley (2007 Class. Quantum Grav. 24 3859) of the late-time behaviour of tilted perfect fluid Bianchi type III models. We consider models with dust, and perfect fluids stiffer than dust, and eludicate the late-time behaviour by studying the centre manifold which dominates the behaviour of the model at late times. In the dust case, this centre manifold is three-dimensional and can be considered a double bifurcation as the two parameters (h and γ) of the type VIh model are varied. We therefore complete the analysis of the late-time behaviour of tilted ever-expanding Bianchi models of types I VIII.

  16. The cyclic AMP receptor protein, CRP, is required for both virulence and expression of the minimal CRP regulon in Yersinia pestis biovar microtus.

    PubMed

    Zhan, Lingjun; Han, Yanping; Yang, Lei; Geng, Jing; Li, Yingli; Gao, He; Guo, Zhaobiao; Fan, Wei; Li, Gang; Zhang, Lianfeng; Qin, Chuan; Zhou, Dongsheng; Yang, Ruifu

    2008-11-01

    The cyclic AMP receptor protein (CRP) is a bacterial regulator that controls more than 100 promoters, including those involved in catabolite repression. In the present study, a null deletion of the crp gene was constructed for Yersinia pestis bv. microtus strain 201. Microarray expression analysis disclosed that at least 6% of Y. pestis genes were affected by this mutation. Further reverse transcription-PCR and electrophoretic mobility shift assay analyses disclosed a set of 37 genes or putative operons to be the direct targets of CRP, and thus they constitute the minimal CRP regulon in Y. pestis. Subsequent primer extension and DNase I footprinting assays mapped transcriptional start sites, core promoter elements, and CRP binding sites within the DNA regions upstream of pla and pst, revealing positive and direct control of these two laterally acquired plasmid genes by CRP. The crp disruption affected both in vitro and in vivo growth of the mutant and led to a >15,000-fold loss of virulence after subcutaneous infection but a <40-fold increase in the 50% lethal dose by intravenous inoculation. Therefore, CRP is required for the virulence of Y. pestis and, particularly, is more important for infection by subcutaneous inoculation. It can further be concluded that the reduced in vivo growth phenotype of the crp mutant should contribute, at least partially, to its attenuation of virulence by both routes of infection. Consistent with a previous study of Y. pestis bv. medievalis, lacZ reporter fusion analysis indicated that the crp deletion resulted in the almost absolute loss of pla promoter activity. The plasminogen activator encoded by pla was previously shown to specifically promote Y. pestis dissemination from peripheral infection routes (subcutaneous infection [flea bite] or inhalation). The above evidence supports the notion that in addition to the reduced in vivo growth phenotype, the defect of pla expression in the crp mutant will greatly contribute to the huge

  17. Acquisition of Maternal Antibodies both from the Placenta and by Lactation Protects Mouse Offspring from Yersinia pestis Challenge

    PubMed Central

    Qi, Zhizhen; Zhao, Haihong; Zhang, Qingwen; Bi, Yujing; Ren, Lingling; Zhang, Xuecan; Yang, Hanqing; Yang, Xiaoyan; Wang, Qiong; Li, Cunxiang; Zhou, Jiyuan; Xin, Youquan; Yang, Yonghai; Yang, Huiying; Du, Zongmin; Tan, Yafang; Han, Yanping; Song, Yajun; Zhou, Lei; Zhang, Pingping; Cui, Yujun; Yan, Yanfeng; Zhou, Dongsheng

    2012-01-01

    Artificially passive immunization has been demonstrated to be effective against Yersinia pestis infection in animals. However, maternal antibodies' protective efficacy against plague has not yet been demonstrated. Here, we evaluated the kinetics, protective efficacy, and transmission modes of maternal antibodies, using mice immunized with plague subunit vaccine SV1 (20 μg of F1 and 10 μg of rV270). The results showed that the rV270- and F1-specific antibodies could be detected in the sera of newborn mice (NM) until 10 and 14 weeks of age, respectively. There was no antibody titer difference between the parturient mice immunized with SV1 (PM-S) and the caesarean-section newborns (CSN) from the PM-S or between the lactating mice immunized by SV1 (LM-S) and the cross-fostered mice (CFM) during 3 weeks of lactation. The NM had a 72% protection against 4,800 CFU Y. pestis strain 141 challenge at 6 weeks of age, whereas at 14 weeks of age, NM all succumbed to 5,700 CFU of Y. pestis challenge. After 7 weeks of age, CFM had an 84% protection against 5,000 CFU of Y. pestis challenge. These results indicated that maternal antibodies induced by the plague subunit vaccine in mother mice can be transferred to NM by both placenta and lactation. Passive antibodies from the immunized mothers could persist for 3 months and provide early protection for NM. The degree of early protection is dependent on levels of the passively acquired antibody. The results indicate that passive immunization should be an effective countermeasure against plague during its epidemics. PMID:22933398

  18. Selective thoracic surgery in the Lenke type 1A: King III and King IV type curves.

    PubMed

    Parisini, P; Di Silvestre, M; Lolli, F; Bakaloudis, G

    2009-06-01

    Pedicle screw fixation enables enhanced three-dimensional correction of spinal deformities and effectively shortens the distal fusion level. However, the choice of distal fusion level is still controversial in single thoracic idiopathic scoliosis with the lumbar compensatory curve not crossing the middle line (Lenke type 1 with modifier A or King type III and IV curves).The authors retrospectively analyzed 31 patients treated by segmental pedicular instrumentation alone, affected by a single thoracic adolescent idiopathic scoliosis with a compensatory lumbar curve not crossing the midline (Lenke 1A), with an average age of 16.3 years (range 10-22 years). The patients with regard to the King classification were also assessed. A statistical analysis was performed to determine whether the two groups (King III, King IV) presented differences concerning the level of the stable vertebra (SV), end vertebra (EV), and neutral vertebra (NV) and were also analyzed the results at follow-up regarding the relationships between the SV, EV, and lowest instrumented vertebra (LIV). The statistical analysis showed a significant difference between the two curve types. In the King III type curve the SV, EV, and NV appeared to be more proximal than those of the King IV type curve and the segments between the SV, EV, and NV appeared to be reduced in King III curves compared with King IV curves. At a follow-up of 3.2 years (range 2.2-5) the thoracic curve showed a correction of 58.4% (from 62.3 degrees to 26.6 degrees ) and compensatory lumbar curve an average spontaneous correction of 52.4% (from 38.1 degrees to 18.1 degrees ).The position of the LIV was shorter than the position of the SV in 30 patients (97%) with an average "salvage" of 2.1 (from 1 to 4) distal fusion levels. Four cases (13%), all affected by a King IV type curve, presented at follow-up an unsatisfactory results due to an "adding on" phenomenon. The statistical analysis confirmed that this phenomenon was correlated

  19. Infection Reduces Return-to-duty Rates for Soldiers with Type III Open Tibia Fractures

    DTIC Science & Technology

    2014-09-01

    Infection reduces return-to-duty rates for soldiers with Type III open tibia fractures Matthew A. Napierala, MD, Jessica C. Rivera, MD, Travis C... Type III open tibia fracture and tabulated the prevalence of infectious complications.We searched the Physical Evaluation Board database to determine...were not infected ( p 0.1407). Soldiers who experienced any type of infectious complication ( p 0.0470) and having osteomyelitis ( p 0.0335) had a lower

  20. Application of the flow cytometry for determination of the amount of DNA in Yersinia pestis cells under the influence of serotonin (5-hydroxytryptamine)

    NASA Astrophysics Data System (ADS)

    Korsukov, Vladimir N.; Shchukovskaya, Tatyana N.; Kravtsov, Alexander L.; Popov, Youri A.

    2002-07-01

    Using flow cytometry a low DNA content in inoculated Yersinia pestis EV cells have been shown at the beginning of culture in Hottinger broth pH 7.2. The dependence serotonin action of its concentration on DNA content have been demonstrated. Serotonin accelerated Yersinia pestis culture growth during cultivation in Hottinger broth pH 7.2 both at 28 degrees C and 37 degrees C at concentration of 10-5 M.

  1. Ultrastructural sinusoidal changes in extrahepatic cholestasis. Light and electron microscopic immunohistochemical localization of collagen type III and type IV.

    PubMed

    Gulubova, M V

    1996-07-01

    Extrahepatic cholestasis causes excessive extracellular matrix formation perisinusoidally. Ito cells, transitional and endothelial cells are considered to be a source of extracellular matrix proteins in experimental cholestasis. The localization of collagens type III and type IV in human liver in extrahepatic cholestasis was investigated immunohistochemically in the present study. Immersion fixation was used after modification to be applied to surgical biopsies with commercially available kits. Sinusoidal changes were observed that indicated excessive collagen and matrix formation. Light microscopically, increased immunostaining with the two collagen antibodies was found perisinusoidally and portally. Ultrastructurally, collagen type III positive fibres were found beneath basement membranes of vessels, in collagen bundles and as a fibrillar network in the space of Disse. Collagen type IV immunostaining was located in portal tracts and near hepatocyte microvilli. Intracellular staining with collagen type IV was detected in the rough endoplasmic reticulum of some transitional cells. Immunostaining was located around transitional cells, Ito cells or endothelial cells mainly. Our study indicates that Ito cells, transitional and endothelial cells are the main source of collagens type III and IV in the space of Disse in extrahepatic cholestasis in humans.

  2. Yersinia pestis requires the 2-component regulatory system OmpR-EnvZ to resist innate immunity during the early and late stages of plague.

    PubMed

    Reboul, Angéline; Lemaître, Nadine; Titecat, Marie; Merchez, Maud; Deloison, Gaspard; Ricard, Isabelle; Pradel, Elizabeth; Marceau, Michaël; Sebbane, Florent

    2014-11-01

    Plague is transmitted by fleas or contaminated aerosols. To successfully produce disease, the causal agent (Yersinia pestis) must rapidly sense and respond to rapid variations in its environment. Here, we investigated the role of 2-component regulatory systems (2CSs) in plague because the latter are known to be key players in bacterial adaptation to environmental change. Along with the previously studied PhoP-PhoQ system, OmpR-EnvZ was the only one of Y. pestis' 23 other 2CSs required for production of bubonic, septicemic, and pneumonic plague. In vitro, OmpR-EnvZ was needed to counter serum complement and leukocytes but was not required for the secretion of antiphagocyte exotoxins. In vivo, Y. pestis lacking OmpR-EnvZ did not induce an early immune response in the skin and was fully virulent in neutropenic mice. We conclude that, throughout the course of Y. pestis infection, OmpR-EnvZ is required to counter toxic effectors secreted by polymorphonuclear leukocytes in the tissues. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Strategy for Sensitive and Specific Detection of Yersinia pestis in Skeletons of the Black Death Pandemic

    PubMed Central

    Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C.; Riehm, Julia M.

    2013-01-01

    Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14th century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study. PMID:24069445

  4. Detection of Rickettsia felis, Rickettsia typhi, Bartonella Species and Yersinia pestis in Fleas (Siphonaptera) from Africa.

    PubMed

    Leulmi, Hamza; Socolovschi, Cristina; Laudisoit, Anne; Houemenou, Gualbert; Davoust, Bernard; Bitam, Idir; Raoult, Didier; Parola, Philippe

    2014-10-01

    Little is known about the presence/absence and prevalence of Rickettsia spp, Bartonella spp. and Yersinia pestis in domestic and urban flea populations in tropical and subtropical African countries. Fleas collected in Benin, the United Republic of Tanzania and the Democratic Republic of the Congo were investigated for the presence and identity of Rickettsia spp., Bartonella spp. and Yersinia pestis using two qPCR systems or qPCR and standard PCR. In Xenopsylla cheopis fleas collected from Cotonou (Benin), Rickettsia typhi was detected in 1% (2/199), and an uncultured Bartonella sp. was detected in 34.7% (69/199). In the Lushoto district (United Republic of Tanzania), R. typhi DNA was detected in 10% (2/20) of Xenopsylla brasiliensis, and Rickettsia felis was detected in 65% (13/20) of Ctenocephalides felis strongylus, 71.4% (5/7) of Ctenocephalides canis and 25% (5/20) of Ctenophthalmus calceatus calceatus. In the Democratic Republic of the Congo, R. felis was detected in 56.5% (13/23) of Ct. f. felis from Kinshasa, in 26.3% (10/38) of Ct. f. felis and 9% (1/11) of Leptopsylla aethiopica aethiopica from Ituri district and in 19.2% (5/26) of Ct. f. strongylus and 4.7% (1/21) of Echidnophaga gallinacea. Bartonella sp. was also detected in 36.3% (4/11) of L. a. aethiopica. Finally, in Ituri, Y. pestis DNA was detected in 3.8% (1/26) of Ct. f. strongylus and 10% (3/30) of Pulex irritans from the villages of Wanyale and Zaa. Most flea-borne infections are neglected diseases which should be monitored systematically in domestic rural and urban human populations to assess their epidemiological and clinical relevance. Finally, the presence of Y. pestis DNA in fleas captured in households was unexpected and raises a series of questions regarding the role of free fleas in the transmission of plague in rural Africa, especially in remote areas where the flea density in houses is high.

  5. Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R.; Bergamo, M.

    2012-01-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  6. Comparing acquired angioedema with hereditary angioedema (types I/II): findings from the Icatibant Outcome Survey

    PubMed Central

    Zanichelli, A.; Caballero, T.; Bouillet, L.; Aberer, W.; Maurer, M.; Fain, O.; Fabien, V.; Andresen, I.

    2017-01-01

    Summary Icatibant is used to treat acute hereditary angioedema with C1 inhibitor deficiency types I/II (C1‐INH‐HAE types I/II) and has shown promise in angioedema due to acquired C1 inhibitor deficiency (C1‐INH‐AAE). Data from the Icatibant Outcome Survey (IOS) were analysed to evaluate the effectiveness of icatibant in the treatment of patients with C1‐INH‐AAE and compare disease characteristics with those with C1‐INH‐HAE types I/II. Key medical history (including prior occurrence of attacks) was recorded upon IOS enrolment. Thereafter, data were recorded retrospectively at approximately 6‐month intervals during patient follow‐up visits. In the icatibant‐treated population, 16 patients with C1‐INH‐AAE had 287 attacks and 415 patients with C1‐INH‐HAE types I/II had 2245 attacks. Patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II were more often male (69 versus 42%; P = 0·035) and had a significantly later mean (95% confidence interval) age of symptom onset [57·9 (51·33–64·53) versus 14·0 (12·70–15·26) years]. Time from symptom onset to diagnosis was significantly shorter in patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II (mean 12·3 months versus 118·1 months; P = 0·006). Patients with C1‐INH‐AAE showed a trend for higher occurrence of attacks involving the face (35 versus 21% of attacks; P = 0·064). Overall, angioedema attacks were more severe in patients with C1‐INH‐HAE types I/II versus C1‐INH‐AAE (61 versus 40% of attacks were classified as severe to very severe; P < 0·001). Median total attack duration was 5·0 h and 9·0 h for patients with C1‐INH‐AAE versus C1‐INH‐HAE types I/II, respectively. PMID:27936514

  7. [Effect of Yersinia pestis EV 76 lypopolysaccharides with different levels of toxicity on dynamics of TNF-alpha and INF-gamma synthesis by human monocytes].

    PubMed

    Sokolova, E P; Demidova, G V; Ziuzina, V P; Alekseeva, L P; Bespalova, I A; Tynianova, V I

    2010-01-01

    AIM. To study dynamics of synthesis of TNF-alpha and INF-gamma by cell line U-937 human monocytes under the effect of Yersinia pestis EV 76 lypopolysaccharides (LPS) with different levels of toxicity: original LPS28 and LPS37 as well as their conformationally--changed variants with enhanced toxicity--complex of LPS with murine toxin (MT) of Y. pestis, and LPS modified by biologicall active compound (BAC) obtained from human erythrocytes. Using phenol method, LPS were obtained from Y. pestis EV 76 cells grown at 28 and 37 degrees C. Production of cytokines was measured by ELISA. It was shown that original and modified forms of LPS28 and LPS37 induce synthesis of both TNF-alpha and INF-gamma by human monocytes. Expression of genes for two ways of synthesis of these cytokines points to activation and transmission of signal induced by all studied forms of Y. pestis EV 76 LPS through TLR4. Levels of activity of MyD88-dependent and MyD88-independent signaling pathways are different and depend from chemical structure of LPS28 and LPS37, conformation of their modified forms and duration of their exposition with monocytes. Dynamics ofcytokine synthesis corresponds to response of synergized TLR on activation with profound agonistic/antagonistic effect. It was determined that conformational modifications of Y. pestis EV76 LPS occurring due to effect of MT and BAC accompanied by quantitative, qualitative and temporal changes of TNF-alpha and INF-gamma synthesis by human monocytes and correlate with increase of their toxic properties.

  8. Recent Findings Regarding Maintenance of Enzootic Variants of Yersinia pestis in Sylvatic Reservoirs and Their Significance in the Evolution of Epidemic Plague

    PubMed Central

    Brubaker, Robert R.

    2010-01-01

    Abstract Despite the widespread presence of bubonic plague in sylvatic reservoirs throughout the world, the causative agent (Yersinia pestis) evolved in its present form within the last 20,000 years from enteropathogenic Yersinia pseudotuberculosis. Comparison of the genomes from the two species revealed that Y. pestis possesses only a few unique plasmid-encoded genes that contribute to acute disease, whereas this organism has lost about 13% of the chromosomal genes that remain active in Y. pseudotuberculosis. These losses reflect readily detectable additions, deletions, transpositions, inversions, and acquisition of about 70 insertion sequence (IS) inserts, none of which are likely to promote increased virulence. In contrast, major enzymes of intermediary metabolism, including glucose 6-phosphate dehydrogenase (Zwf ) and aspartase, are present but not catalytically functional due to the presence of missense mutations. The latter are generally not detectable by the technology of bioinformatics and, in the case of Y. pestis, result in radical changes in the metabolic flow of carbon. As an important consequence, plague bacilli exhibit a stringent low-calcium response characterized by conversion of L-glutamate (and metabolically related amino acids) to L-aspartate with secretion of the latter into supernatant fluid at 37°C in culture media containing Na+ but lacking added Ca2+. This phenomenon also occurs in vivo and likely adversely affects the bioenergetics of host amino acid pools. Curiously, aspartase is functional in all tested enzootic (pestoides) strains of Y. pestis. These isolates are typically restricted to the ancient plague reservoirs of Central Asia and Africa and are fully virulent in members of the rodent Superfamily Muroidea but avirulent in guinea pigs and man. The implications of these findings for the distribution and ecology of Y. pestis could be significant. PMID:20158336

  9. Recent findings regarding maintenance of enzootic variants of Yersinia pestis in sylvatic reservoirs and their significance in the evolution of epidemic plague.

    PubMed

    Bearden, Scott W; Brubaker, Robert R

    2010-01-01

    Despite the widespread presence of bubonic plague in sylvatic reservoirs throughout the world, the causative agent (Yersinia pestis) evolved in its present form within the last 20,000 years from enteropathogenic Yersinia pseudotuberculosis. Comparison of the genomes from the two species revealed that Y. pestis possesses only a few unique plasmid-encoded genes that contribute to acute disease, whereas this organism has lost about 13% of the chromosomal genes that remain active in Y. pseudotuberculosis. These losses reflect readily detectable additions, deletions, transpositions, inversions, and acquisition of about 70 insertion sequence (IS) inserts, none of which are likely to promote increased virulence. In contrast, major enzymes of intermediary metabolism, including glucose 6-phosphate dehydrogenase (Zwf ) and aspartase, are present but not catalytically functional due to the presence of missense mutations. The latter are generally not detectable by the technology of bioinformatics and, in the case of Y. pestis, result in radical changes in the metabolic flow of carbon. As an important consequence, plague bacilli exhibit a stringent low-calcium response characterized by conversion of L-glutamate (and metabolically related amino acids) to L-aspartate with secretion of the latter into supernatant fluid at 37 degrees C in culture media containing Na(+) but lacking added Ca(2+). This phenomenon also occurs in vivo and likely adversely affects the bioenergetics of host amino acid pools. Curiously, aspartase is functional in all tested enzootic (pestoides) strains of Y. pestis. These isolates are typically restricted to the ancient plague reservoirs of Central Asia and Africa and are fully virulent in members of the rodent Superfamily Muroidea but avirulent in guinea pigs and man. The implications of these findings for the distribution and ecology of Y. pestis could be significant.

  10. Kernel based machine learning algorithm for the efficient prediction of type III polyketide synthase family of proteins.

    PubMed

    Mallika, V; Sivakumar, K C; Jaichand, S; Soniya, E V

    2010-07-13

    Type III Polyketide synthases (PKS) are family of proteins considered to have significant roles in the biosynthesis of various polyketides in plants, fungi and bacteria. As these proteins shows positive effects to human health, more researches are going on regarding this particular protein. Developing a tool to identify the probability of sequence being a type III polyketide synthase will minimize the time consumption and manpower efforts. In this approach, we have designed and implemented PKSIIIpred, a high performance prediction server for type III PKS where the classifier is Support Vector Machines (SVMs). Based on the limited training dataset, the tool efficiently predicts the type III PKS superfamily of proteins with high sensitivity and specificity. The PKSIIIpred is available at http://type3pks.in/prediction/. We expect that this tool may serve as a useful resource for type III PKS researchers. Currently work is being progressed for further betterment of prediction accuracy by including more sequence features in the training dataset.

  11. Amino acid residues 196-225 of LcrV represent a plague protective epitope.

    PubMed

    Quenee, Lauriane E; Berube, Bryan J; Segal, Joshua; Elli, Derek; Ciletti, Nancy A; Anderson, Deborah; Schneewind, Olaf

    2010-02-17

    LcrV, a protein that resides at the tip of the type III secretion needles of Yersinia pestis, is the single most important plague protective antigen. Earlier work reported monoclonal antibody MAb 7.3, which binds a conformational epitope of LcrV and protects experimental animals against lethal plague challenge. By screening monoclonal antibodies directed against LcrV for their ability to protect immunized mice against bubonic plague challenge, we examined here the possibility of additional protective epitopes. MAb BA5 protected animals against plague, neutralized the Y. pestis type III secretion pathway and promoted opsonophagocytic clearance of bacteria in blood. LcrV residues 196-225 were necessary and sufficient for MAb BA5 binding. Compared to full-length LcrV, a variant lacking its residues 196-225 retained the ability of eliciting plague protection. These results identify LcrV residues 196-225 as a linear epitope that is recognized by the murine immune system to confer plague protection. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Amino acid residues 196–225 of LcrV represent a plague protective epitope

    PubMed Central

    Quenee, Lauriane E.; Berube, Bryan J.; Segal, Joshua; Elli, Derek; Ciletti, Nancy A.; Anderson, Deborah; Schneewind, Olaf

    2010-01-01

    LcrV, a protein that resides at the tip of the type III secretion needles of Yersinia pestis, is the single most important plague protective antigen. Earlier work reported monoclonal antibody MAb 7.3, which binds a conformational epitope of LcrV and protects experimental animals against lethal plague challenge. By screening monoclonal antibodies directed against LcrV for their ability to protect immunized mice against bubonic plague challenge, we examined here the possibility of additional protective epitopes. MAb BA5 protected animals against plague, neutralized the Y. pestis type III secretion pathway and promoted opsonophagocytic clearance of bacteria in blood. LcrV residues 196–225 were necessary and sufficient for MAb-BA5 binding. Compared to full length LcrV, a variant lacking its residues 196–225 retained the ability of eliciting plague protection. These results identify LcrV residues 196–225 as a linear epitope that is recognized by the murine immune system to confer plague protection. PMID:20005318

  13. Type III Neuregulin-1 is required for normal sensorimotor gating, memory related behaviors and cortico-striatal circuit components

    PubMed Central

    Chen, Ying-Jiun J.; Johnson, Madeleine A.; Lieberman, Michael D.; Goodchild, Rose E.; Schobel, Scott; Lewandowski, Nicole; Rosoklija, Gorazd; Liu, Ruei-Che; Gingrich, Jay A.; Small, Scott; Moore, Holly; Dwork, Andrew J.; Talmage, David A.; Role, Lorna W.

    2008-01-01

    Neuregulin-1 (Nrg1)/erbB signaling regulates neuronal development, migration, myelination, and synaptic maintenance. The Nrg1 gene is a schizophrenia susceptibility gene. To understand the contribution of Nrg1 signaling to adult brain structure and behaviors, we have studied the regulation of Type III Nrg1 expression and evaluated the effect of decreased expression of the Type III Nrg1 isoforms. Type III Nrg1 is transcribed by a promoter distinct from those for other Nrg1 isoforms and, in the adult brain, is expressed in the medial prefrontal cortex, ventral hippocampus and ventral subiculum, regions involved in the regulation of sensorimotor gating and short term memory. Adult heterozygous mutant mice with a targeted disruption for Type III Nrg1 (Nrg1tm1.1Lwr+/-) have enlarged lateral ventricles and decreased dendritic spine density on subicular pyramidal neurons. MRI imaging of Type III Nrg1 heterozygous mice revealed hypo-function in the medial prefrontal cortex and the hippocampal CA1 and subiculum regions. Type III Nrg1 heterozygous mice also have impaired performance on delayed alternation memory tasks, and deficits in prepulse inhibition (PPI). Chronic nicotine treatment eliminated differences in PPI between Type III Nrg1 heterozygous mice and their wild type littermates. Our findings demonstrate a role of Type III Nrg1-signaling in the maintenance of cortico-striatal components, and in the neural circuits involved in sensorimotor gating and short term memory. PMID:18596162

  14. [Determination of genetic bases of auxotrophy in Yersinia pestis ssp. caucasica strains].

    PubMed

    Odinokov, G N; Eroshenko, G A; Kukleva, L M; Shavina, N Iu; Krasnov, Ia M; Kutyrev, V V

    2012-04-01

    Based on the results of computer analysis of nucleotide sequences in strains Yersinia pestis and Y. pseudotuberculosis recorded in the files of NCBI GenBank database, differences between genes argA, aroG, aroF, thiH, and thiG of strain Pestoides F (subspecies caucasica) were found, compared to other strains of plaque agent and pseudotuberculosis microbe. Using PCR with calculated primers and the method of sequence analysis, the structure of variable regions of these genes was studied in 96 natural Y. pestis and Y. pseudotuberculosis strains. It was shown that all examined strains of subspecies caucasica, unlike strains of plague-causing agent of other subspecies and pseudotubercolosis microbe, had identical mutations in genes argA (integration of the insertion sequence IS100), aroG (insertion of ten nucleotides), aroF (inserion of IS100), thiH (insertion of nucleotide T), and thiG (deletion of 13 nucleotides). These mutations are the reason for the absence in strains belonging to this subspecies of the ability to synthesize arginine, phenylalanine, tyrosine, and vitamin B1 (thiamine), and cause their auxotrophy for these growth factors.

  15. A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague.

    PubMed

    Spear, Abigail M; Rana, Rohini R; Jenner, Dominic C; Flick-Smith, Helen C; Oyston, Petra C F; Simpson, Peter; Matthews, Stephen J; Byrne, Bernadette; Atkins, Helen S

    2012-06-01

    The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria. Studies have subsequently shown that these proteins are able to modulate mammalian immune signalling pathways dependent on TIR interactions and that this may represent an evasion strategy for bacterial pathogens. Here, we investigate a TIR domain protein from the highly virulent bacterium Yersinia pestis, the causative agent of plague. When overexpressed in vitro this protein is able to downregulate IL-1β- and LPS-dependent signalling to NFκB and to interact with the TIR adaptor protein MyD88. This interaction is dependent on a single proline residue. However, a Y. pestis knockout mutant lacking the TIR domain protein was not attenuated in virulence in a mouse model of bubonic plague. Minor alterations in the host cytokine response to the mutant were indicated, suggesting a potential subtle role in pathogenesis. The Y. pestis mutant also showed increased auto-aggregation and reduced survival in high-salinity conditions, phenotypes which may contribute to pathogenesis or survival.

  16. Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence.

    PubMed

    Desrosiers, Daniel C; Bearden, Scott W; Mier, Ildefonso; Abney, Jennifer; Paulley, James T; Fetherston, Jacqueline D; Salazar, Juan C; Radolf, Justin D; Perry, Robert D

    2010-12-01

    Little is known about Zn homeostasis in Yersinia pestis, the plague bacillus. The Znu ABC transporter is essential for zinc (Zn) uptake and virulence in a number of bacterial pathogens. Bioinformatics analysis identified ZnuABC as the only apparent high-affinity Zn uptake system in Y. pestis. Mutation of znuACB caused a growth defect in Chelex-100-treated PMH2 growth medium, which was alleviated by supplementation with submicromolar concentrations of Zn. Use of transcriptional reporters confirmed that Zur mediated Zn-dependent repression and that it can repress gene expression in response to Zn even in the absence of Znu. Virulence testing in mouse models of bubonic and pneumonic plague found only a modest increase in survival in low-dose infections by the znuACB mutant. Previous studies of cluster 9 (C9) transporters suggested that Yfe, a well-characterized C9 importer for manganese (Mn) and iron in Y. pestis, might function as a second, high-affinity Zn uptake system. Isothermal titration calorimetry revealed that YfeA, the solute-binding protein component of Yfe, binds Mn and Zn with comparably high affinities (dissociation constants of 17.8 ± 4.4 nM and 6.6 ± 1.2 nM, respectively), although the complete Yfe transporter could not compensate for the loss of Znu in in vitro growth studies. Unexpectedly, overexpression of Yfe interfered with the znu mutant's ability to grow in low concentrations of Zn, while excess Zn interfered with the ability of Yfe to import iron at low concentrations; these results suggest that YfeA can bind Zn in the bacterial cell but that Yfe is incompetent for transport of the metal. In addition to Yfe, we have now eliminated MntH, FetMP, Efe, Feo, a substrate-binding protein, and a putative nickel transporter as the unidentified, secondary Zn transporter in Y. pestis. Unlike other bacterial pathogens, Y. pestis does not require Znu for high-level infectivity and virulence; instead, it appears to possess a novel class of transporter

  17. Protection of mice from fatal bubonic and pneumonic plague by passive immunization with monoclonal antibodies against the F1 protein of Yersinia pestis.

    PubMed

    Anderson, G W; Worsham, P L; Bolt, C R; Andrews, G P; Welkos, S L; Friedlander, A M; Burans, J P

    1997-04-01

    Monoclonal antibodies (MAbs) to the fraction 1 (F1) protein of Yersinia pestis protected mice against fatal pneumonic as well as bubonic plague from wild-type F1+ organisms. The rare isolation of a virulent F1- isolate from surviving animals supports earlier studies suggesting that improved vaccines should consist of immunogens to protect against F1- variants. The high degree of protection with IgG MAb suggests that secretory IgA is not required for protection from pneumonic plague.

  18. Hepatitis E virus persists in the presence of a type III interferon response.

    PubMed

    Yin, Xin; Li, Xinlei; Ambardekar, Charuta; Hu, Zhimin; Lhomme, Sébastien; Feng, Zongdi

    2017-05-01

    The RIG-I-like RNA helicase (RLR)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. The hepatitis A virus (HAV) and the hepatitis C virus (HCV) counter this response by encoding a viral protease that cleaves the mitochondria antiviral signaling protein (MAVS), a common signaling adaptor for RLRs. However, a third hepatotropic RNA virus, the hepatitis E virus (HEV), does not appear to encode a functional protease yet persists in infected cells. We investigated HEV-induced IFN responses in human hepatoma cells and primary human hepatocytes. HEV infection resulted in persistent virus replication despite poor spread. This was companied by a type III IFN response that upregulated multiple IFN-stimulated genes (ISGs), but type I IFNs were barely detected. Blocking type III IFN production or signaling resulted in reduced ISG expression and enhanced HEV replication. Unlike HAV and HCV, HEV did not cleave MAVS; MAVS protein size, mitochondrial localization, and function remained unaltered in HEV-replicating cells. Depletion of MAVS or MDA5, and to a less extent RIG-I, also diminished IFN production and increased HEV replication. Furthermore, persistent activation of the JAK/STAT signaling rendered infected cells refractory to exogenous IFN treatment, and depletion of MAVS or the receptor for type III IFNs restored the IFN responsiveness. Collectively, these results indicate that unlike other hepatotropic RNA viruses, HEV does not target MAVS and its persistence is associated with continuous production of type III IFNs.

  19. In vitro activities of 14 antibiotics against 100 human isolates of Yersinia pestis from a southern African plague focus.

    PubMed Central

    Frean, J A; Arntzen, L; Capper, T; Bryskier, A; Klugman, K P

    1996-01-01

    A limited repertoire of antimicrobial agents is currently in use for the treatment of plague. We investigated the in vitro activities of some newer antimicrobial agents against Yersinia pestis. Among the injectable agents tested, cefotaxime was the most active, and among the oral agents, both levofloxacin and ofloxacin were highly active, with MICs at which 90% of isolates are inhibited of < 0.03 microgram/ml. the susceptibilities to the ketolide RU004 and the penem faropenem warrant attention. The enhanced activities of quinolones against Y. pestis suggest that these agents should be further investigated for the treatment of human plague in the future. PMID:8913481

  20. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated.

    PubMed Central

    Hoe, N P; Goguen, J D

    1993-01-01

    The lcrF gene of Yersinia pestis encodes a transcription activator responsible for inducing expression of several virulence-related proteins in response to temperature. The mechanism of this thermoregulation was investigated. An lcrF clone was found to produce much lower levels of LcrF protein at 26 than at 37 degrees C in Y. pestis, although it was transcribed at similar levels at both temperatures. High-level T7 polymerase-directed transcription of the lcrF gene in Escherichia coli also resulted in temperature-dependent production of the LcrF protein. Pulse-chase experiments showed that the LcrF protein was stable at 26 and 37 degrees C, suggesting that translation rate or message degradation is thermally controlled. The lcrF mRNA appears to be highly unstable and could not be reliably detected in Y. pestis. Insertion of the lcrF gene into plasmid pET4a, which produces high levels of plasmid-length RNA, aided detection of lcrF-specific message in E. coli. Comparison of the amount of LcrF protein produced per unit of message at 26 and 37 degrees C indicated that the efficiency of translation of lcrF message increased with temperature. mRNA secondary structure predictions suggest that the lcrF Shine-Dalgarno sequence is sequestered in a stem-loop. A model in which decreased stability of this stem-loop with increasing temperature leads to increased efficiency of translation initiation of lcrF message is presented. Images PMID:7504666

  1. Genome sequencing and analysis of Yersina pestis KIM D27, an avirulent strain exempt from select agent regulation.

    PubMed

    Losada, Liliana; Varga, John J; Hostetler, Jessica; Radune, Diana; Kim, Maria; Durkin, Scott; Schneewind, Olaf; Nierman, William C

    2011-04-29

    Yersinia pestis is the causative agent of the plague. Y. pestis KIM 10+ strain was passaged and selected for loss of the 102 kb pgm locus, resulting in an attenuated strain, KIM D27. In this study, whole genome sequencing was performed on KIM D27 in order to identify any additional differences. Initial assemblies of 454 data were highly fragmented, and various bioinformatic tools detected between 15 and 465 SNPs and INDELs when comparing both strains, the vast majority associated with A or T homopolymer sequences. Consequently, Illumina sequencing was performed to improve the quality of the assembly. Hybrid sequence assemblies were performed and a total of 56 validated SNP/INDELs and 5 repeat differences were identified in the D27 strain relative to published KIM 10+ sequence. However, further analysis showed that 55 of these SNP/INDELs and 3 repeats were errors in the KIM 10+ reference sequence. We conclude that both 454 and Illumina sequencing were required to obtain the most accurate and rapid sequence results for Y. pestis KIMD27. SNP and INDELS calls were most accurate when both Newbler and CLC Genomics Workbench were employed. For purposes of obtaining high quality genome sequence differences between strains, any identified differences should be verified in both the new and reference genomes.

  2. Propolis Modifies Collagen Types I and III Accumulation in the Matrix of Burnt Tissue.

    PubMed

    Olczyk, Pawel; Wisowski, Grzegorz; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Olczyk, Monika; Kozma, Ewa M

    2013-01-01

    Wound healing represents an interactive process which requires highly organized activity of various cells, synthesizing cytokines, growth factors, and collagen. Collagen types I and III, serving as structural and regulatory molecules, play pivotal roles during wound healing. The aim of this study was to compare the propolis and silver sulfadiazine therapeutic efficacy throughout the quantitative and qualitative assessment of collagen types I and III accumulation in the matrix of burnt tissues. Burn wounds were inflicted on pigs, chosen for the evaluation of wound repair because of many similarities between pig and human skin. Isolated collagen types I and III were estimated by the surface plasmon resonance method with a subsequent collagenous quantification using electrophoretic and densitometric analyses. Propolis burn treatment led to enhanced collagens and its components expression, especially during the initial stage of the study. Less expressed changes were observed after silver sulfadiazine (AgSD) application. AgSD and, with a smaller intensity, propolis stimulated accumulation of collagenous degradation products. The assessed propolis therapeutic efficacy, throughout quantitatively and qualitatively analyses of collagen types I and III expression and degradation in wounds matrix, may indicate that apitherapeutic agent can generate favorable biochemical environment supporting reepithelization.

  3. Differential impact of lipopolysaccharide defects caused by loss of RfaH in Yersinia pseudotuberculosis and Yersinia pestis.

    PubMed

    Hoffman, Jared M; Sullivan, Shea; Wu, Erin; Wilson, Eric; Erickson, David L

    2017-09-07

    RfaH enhances transcription of a select group of operons controlling bacterial surface features such as lipopolysaccharide (LPS). Previous studies have suggested that rfaH may be required for Yersinia pseudotuberculosis resistance to antimicrobial chemokines and survival during mouse infections. In order to further investigate the role of RfaH in LPS synthesis, resistance to host defense peptides, and virulence of Yersinia, we constructed ΔrfaH mutants of Y. pseudotuberculosis IP32953 and Y. pestis KIM6+. Loss of rfaH affected LPS synthesis in both species, resulting in a shorter core oligosaccharide. Susceptibility to polymyxin and the antimicrobial chemokine CCL28 was increased by loss of rfaH in Y. pseudotuberculosis but not in Y. pestis. Transcription of genes in the ddhD-wzz O-antigen gene cluster, but not core oligosaccharide genes, was reduced in ΔrfaH mutants. In addition, mutants with disruptions in specific ddhD-wzz O-antigen cluster genes produced LPS that was indistinguishable from the ΔrfaH mutant. This suggests that both Y. pseudotuberculosis and Y. pestis produce an oligosaccharide core with a single O-antigen unit attached in an RfaH-dependent fashion. Despite enhanced sensitivity to host defense peptides, the Y. pseudotuberculosis ΔrfaH strain was not attenuated in mice, suggesting that rfaH is not required for acute infection.

  4. Closed reduction of a rare type III dislocation of the first metatarsophalangeal joint.

    PubMed

    Tondera, E K; Baker, C C

    1996-09-01

    To discuss a rare Type III dislocation of the first metatarsophalangeal (MP) joint, without fracture, that used a closed reduction technique for correction. A 43-yr-old man suffered from an acute severe dislocation of his great toe as the result of acute forceful motion applied to the toe as his foot was depressed onto a brake pedal to avoid a motor vehicle accident. Physical examination and X-rays revealed the dislocation, muscle spasm, edema and severely restricted range of motion. The dislocation was corrected using a closed reduction technique, in this case a chiropractic manipulation. Fourteen months after reduction, the joint was intact, muscle strength was graded +5 normal, ranges of motion were within normal limits and no crepitation was noted. X-rays revealed normal intact joint congruency. The patient experienced full weight bearing, range of motion and function of the joint. Although a Type III dislocation of the great toe has only once been cited briefly in the literature, this classification carries a recommended surgical treatment protocol for correction. No literature describes a closed reduction of a Type III dislocation as described in this case report. It is apparent that a closed reduction technique using a chiropractic manipulation may be considered a valid alternative correction technique for Type III dislocations of the great toe.

  5. A Novel Type III Endosome Transmembrane Protein, TEMP

    PubMed Central

    Aturaliya, Rajith N.; Kerr, Markus C.; Teasdale, Rohan D.

    2012-01-01

    As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP’s plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport. PMID:24710541

  6. Design and synthesis of type-III mimetics of ShK toxin

    NASA Astrophysics Data System (ADS)

    Baell, Jonathan B.; Harvey, Andrew J.; Norton, Raymond S.

    2002-04-01

    ShK toxin is a structurally defined, 35-residue polypeptide which blocks the voltage-gated Kv1.3 potassium channel in T-lymphocytes and has been identified as a possible immunosuppressant. Our interest lies in the rational design and synthesis of type-III mimetics of protein and polypeptide structure and function. ShK toxin is a challenging target for mimetic design as its binding epitope consists of relatively weakly binding residues, some of which are discontinuous. We discuss here our investigations into the design and synthesis of 1st generation, small molecule mimetics of ShK toxin and highlight any principles relevant to the generic design of type-III mimetics of continuous and discontinuous binding epitopes. We complement our approach with attempted pharmacophore-based database mining.

  7. LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion.

    PubMed

    Wulff-Strobel, Christine R; Williams, Andrew W; Straley, Susan C

    2002-01-01

    LcrQ is a regulatory protein unique to Yersinia. Previous study in Yersinia pseudotuberculosis and Yersinia enterocolitica prompted the model in which LcrQ negatively regulates the expression of a set of virulence proteins called Yops, and its secretion upon activation of the Yop secretion (Ysc) type III secretion system permits full induction of Yops expression. In this study, we tested the hypothesis that LcrQ's effects on Yops expression might be indirect. Excess LcrQ was found to exert an inhibitory effect specifically at the level of Yops secretion, independent of production, and a normal inner Ysc gate protein LcrG was required for this activity. However, overexpression of LcrQ did not prevent YopH secretion, suggesting that LcrQ's effects at the Ysc discriminate among the Yops. We tested this idea by determining the effects of deletion or overexpression of LcrQ, YopH and their common chaperone SycH on early Yop secretion through the Ysc. Together, our findings indicated that LcrQ is not a negative regulator directly, but it acts in partnership with SycH at the Ysc gate to control the entry of a set of Ysc secretion substrates. A hierarchy of YopH secretion before YopE appears to be imposed by SycH in conjunction with both LcrQ and YopH. LcrQ and SycH in addition influenced the deployment of LcrV, a component of the Yops delivery mechanism. Accordingly, LcrQ appears to be a central player in determining the substrate specificity of the Ysc.

  8. The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17.

    PubMed

    Turner, Joshua K; McAllister, Milton M; Xu, John L; Tapping, Richard I

    2008-09-01

    Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F(2) mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis.

  9. High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis.

    PubMed

    Willcocks, Samuel J; Stabler, Richard A; Atkins, Helen S; Oyston, Petra F; Wren, Brendan W

    2018-05-31

    Yersinia pseudotuberculosis is a zoonotic pathogen, causing mild gastrointestinal infection in humans. From this comparatively benign pathogenic species emerged the highly virulent plague bacillus, Yersinia pestis, which has experienced significant genetic divergence in a relatively short time span. Much of our knowledge of Yersinia spp. evolution stems from genomic comparison and gene expression studies. Here we apply transposon-directed insertion site sequencing (TraDIS) to describe the essential gene set of Y. pseudotuberculosis IP32953 in optimised in vitro growth conditions, and contrast these with the published essential genes of Y. pestis. The essential genes of an organism are the core genetic elements required for basic survival processes in a given growth condition, and are therefore attractive targets for antimicrobials. One such gene we identified is yptb3665, which encodes a peptide deformylase, and here we report for the first time, the sensitivity of Y. pseudotuberculosis to actinonin, a deformylase inhibitor. Comparison of the essential genes of Y. pseudotuberculosis with those of Y. pestis revealed the genes whose importance are shared by both species, as well as genes that were differentially required for growth. In particular, we find that the two species uniquely rely upon different iron acquisition and respiratory metabolic pathways under similar in vitro conditions. The discovery of uniquely essential genes between the closely related Yersinia spp. represent some of the fundamental, species-defining points of divergence that arose during the evolution of Y. pestis from its ancestor. Furthermore, the shared essential genes represent ideal candidates for the development of novel antimicrobials against both species.

  10. Prediction of type III secretion signals in genomes of gram-negative bacteria.

    PubMed

    Löwer, Martin; Schneider, Gisbert

    2009-06-15

    Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of effector proteins has been proposed in literature its exact characteristics remain unknown. In this study, we demonstrate that the signals encoded in the sequences of type III secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein effectors were compiled from the literature and sequence databases, and served as training data for artificial neural networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%). We present a signal prediction method together with comprehensive survey of potential type III secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed signal features are common across a wide range of species, and provides a substantial basis for the identification of exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible from our web server (www.modlab.org).

  11. Expression of adenylyl cyclase types III and VI in human hyperfunctioning thyroid nodules.

    PubMed

    Celano, M; Arturi, F; Presta, I; Bruno, R; Scarpelli, D; Calvagno, M G; Cristofaro, C; Bulotta, S; Giannasio, P; Sacco, R; Filetti, S; Russo, D

    2003-05-30

    Hyperfunctioning thyroid nodules are characterized by the presence of spontaneous somatic mutations responsible for constitutive activation of the cAMP pathway. However, alterations affecting other elements of the cAMP signaling system may counteract the effects of the mutations. In this study, the expression of the adenylyl cyclase (AC) types III and VI was investigated by Western blot in 18 hyperfunctioning thyroid nodules; in 12 samples, we also assessed the presence of TSH receptor (TSHR) or gsp mutations and levels of AC VI and III mRNA. We found that the expression of nodular AC VI (but not AC III) was significantly lower (85.1% of normal, P=0.014) than the expression of both adenylyl cycles types of perinodular tissue from the same patients. Slightly, but not significant differences were detected in nodules with or without mutations and AC protein levels generally showed correlation with the levels of the transcripts detected by RT-PCR. In addition, AC III and AC VI expression levels within a given nodule were characterized by a significant positive correlation. These findings indicate that a diminished expression of AC type VI may be part of the mechanisms occurring in the hyperfunctioning nodules, independently of the presence of TSHR or gsp mutations, which influence the resulting phenotype.

  12. Prevalence and abundance of fleas in black-tailed prairie dog burrows: implications for the transmission of plague (Yersinia pestis).

    PubMed

    Salkeld, Dan J; Stapp, Paul

    2008-06-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on North American wildlife. Epizootics, or die-offs, in prairie dogs (Cynomys ludovicianus) occur sporadically and fleas (Siphonaptera) are probably important in the disease's transmission and possibly as maintenance hosts of Y. pestis between epizootics. We monitored changes in flea abundance in prairie dog burrows in response to precipitation, temperature, and plague activity in shortgrass steppe in northern Colorado. Oropsylla hirsuta was the most commonly found flea, and it increased in abundance with temperature. In contrast, Oropsylla tuberculata cynomuris declined with rising temperature. During plague epizootics, flea abundance in burrows increased and then subsequently declined after the extirpation of their prairie dog hosts.

  13. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    PubMed

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.

  14. Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions.

    PubMed

    Cairns, I H; Lobzin, V V; Donea, A; Tingay, S J; McCauley, P I; Oberoi, D; Duffin, R T; Reiner, M J; Hurley-Walker, N; Kudryavtseva, N A; Melrose, D B; Harding, J C; Bernardi, G; Bowman, J D; Cappallo, R J; Corey, B E; Deshpande, A; Emrich, D; Goeke, R; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Ord, S M; Prabu, T; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Wayth, R B; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2018-01-26

    Type III solar radio bursts are the Sun's most intense and frequent nonthermal radio emissions. They involve two critical problems in astrophysics, plasma physics, and space physics: how collective processes produce nonthermal radiation and how magnetic reconnection occurs and changes magnetic energy into kinetic energy. Here magnetic reconnection events are identified definitively in Solar Dynamics Observatory UV-EUV data, with strong upward and downward pairs of jets, current sheets, and cusp-like geometries on top of time-varying magnetic loops, and strong outflows along pairs of open magnetic field lines. Type III bursts imaged by the Murchison Widefield Array and detected by the Learmonth radiospectrograph and STEREO B spacecraft are demonstrated to be in very good temporal and spatial coincidence with specific reconnection events and with bursts of X-rays detected by the RHESSI spacecraft. The reconnection sites are low, near heights of 5-10 Mm. These images and event timings provide the long-desired direct evidence that semi-relativistic electrons energized in magnetic reconnection regions produce type III radio bursts. Not all the observed reconnection events produce X-ray events or coronal or interplanetary type III bursts; thus different special conditions exist for electrons leaving reconnection regions to produce observable radio, EUV, UV, and X-ray bursts.

  15. Escherichia coli type III secretion system 2: a new kind of T3SS?

    PubMed

    Zhou, Mingxu; Guo, Zhiyan; Duan, Qiangde; Hardwidge, Philip R; Zhu, Guoqiang

    2014-03-19

    Type III secretion systems (T3SSs) are employed by Gram-negative bacteria to deliver effector proteins into the cytoplasm of infected host cells. Enteropathogenic Escherichia coli use a T3SS to deliver effector proteins that result in the creation of the attaching and effacing lesions. The genome sequence of the Escherichia coli pathotype O157:H7 revealed the existence of a gene cluster encoding components of a second type III secretion system, the E. coli type III secretion system 2 (ETT2). Researchers have revealed that, although ETT2 may not be a functional secretion system in most (or all) strains, it still plays an important role in bacterial virulence. This article summarizes current knowledge regarding the E. coli ETT2, including its genetic characteristics, prevalence, function, association with virulence, and prospects for future work.

  16. Adjunctive Corticosteroid Treatment Against Yersinia pestis Improves Bacterial Clearance, Immunopathology, and Survival in the Mouse Model of Bubonic Plague.

    PubMed

    Levy, Yinon; Vagima, Yaron; Tidhar, Avital; Zauberman, Ayelet; Aftalion, Moshe; Gur, David; Fogel, Itay; Chitlaru, Theodor; Flashner, Yehuda; Mamroud, Emanuelle

    2016-09-15

    Plague is initiated by Yersinia pestis, a highly virulent bacterial pathogen. In late stages of the infection, bacteria proliferate extensively in the internal organs despite the massive infiltration of neutrophils. The ineffective inflammatory response associated with tissue damage may contribute to the low efficacy of antiplague therapies during late stages of the infection. In the present study, we address the possibility of improving therapeutic efficacy by combining corticosteroid administration with antibody therapy in the mouse model of bubonic plague. Mice were subcutaneously infected with a fully virulent Y. pestis strain and treated at progressive stages of the disease with anti-Y. pestis antibodies alone or in combination with the corticosteroid methylprednisolone. The addition of methylprednisolone to antibody therapy correlated with improved mouse survival, a significant decrease in the amount of neutrophils and matrix metalloproteinase 9 in the tissues, and the mitigation of tissue damage. Interestingly, the combined treatment led to a decrease in the bacterial loads in infected organs. Corticosteroids induce an unexpectedly effective antibacterial response apart from their antiinflammatory properties, thereby improving treatment efficacy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. A refrigeration temperature of 4 degrees C does not prevent static growth of Yersinia pestis in heart infusion broth.

    PubMed

    Torosian, Stephen D; Regan, Patrick M; Doran, Tara; Taylor, Michael A; Margolin, Aaron

    2009-09-01

    Multiple barriers such as inspections, testing, and proper storage conditions are used to minimize the risk of contaminated food. Knowledge of which barriers, such as refrigeration, are effective in preventing pathogen growth and persistence, can help direct the focus of efforts during food sampling. In this study, the doubling times were evaluated for 10 strains of Yersinia pestis of different genetic background cultured in heart infusion broth (HIB) kept at 4 degrees C +/- 1 degrees C under static conditions. Nine out of the 10 strains were able to grow at 4 degrees C +/- 1 degrees C. Apparent doubling times for 7 of the strains ranged from 41 to 50 h. Strain Harbin and strain D1 had apparent doubling times of 65 and 35 h, respectively, and strain O19 Ca-6 did not grow at all. Analysis of variance showed that the averaged growth data (colony forming units per mL) between strains that grew were not significantly different. The data presented here demonstrate that refrigeration alone is not an effective barrier to prevent static growth of Y. pestis in HIB. These findings provide the preliminary impetus to investigate Y. pestis growth in a variety of food matrices that may provide a similar environment as HIB.

  18. Surgical versus conservative management of Type III acromioclavicular dislocation: a systematic review.

    PubMed

    Longo, Umile Giuseppe; Ciuffreda, Mauro; Rizzello, Giacomo; Mannering, Nicholas; Maffulli, Nicola; Denaro, Vincenzo

    2017-06-01

    The management of Type III acromioclavicular (AC) dislocations is still controversial. We wished to compare the rate of recurrence and outcome scores of operative versus non-operative treatment of patients with Type III AC dislocations. A systematic review of the literature was performed by applying the PRISMA guidelines according to the PRISMA checklist and algorithm. A search in Medline, PubMed, Cochrane and CINAHL was performed using combinations of the following keywords: 'dislocation', 'Rockwood', 'type three', 'treatment', 'acromioclavicular' and 'joint'. Fourteen studies were included, evaluating 646 shoulders. The rate of recurrence in the surgical group was 14%. No statistical significant differences were found between conservative and surgical approaches in terms of postoperative osteoarthritis and persistence of pain, although persistence of pain seemed to occur less frequently in patients undergoing a surgical treatment. Persistence of pain seemed to occur less frequently in patients undergoing surgery. Persistence of pain seems to occur less frequently in patients treated surgically for a Type III AC dislocation. There is insufficient evidence to establish the effects of surgical versus conservative treatment on functional outcome of patients with AC dislocation. High-quality randomized controlled clinical trials are needed to establish whether there is a difference in functional outcome. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eren, Elif; Murphy, Megan; Goguen, Jon

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changesmore » of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.« less

  20. Late Presentation of a Type III Axis Fracture with Spondyloptosis

    PubMed Central

    Jayakumar, Prakash; Choi, David; Casey, Adrian

    2008-01-01

    A 58-year-old man presented with an undiagnosed Effendi type III classification fracture and spondyloptosis of the axis with remarkably normal neurology. We discuss his surgery 4 years since the initial injury, and the presentation, features and management of fractures of the axis. PMID:18430325

  1. Genome Sequencing and Analysis of Yersina pestis KIM D27, an Avirulent Strain Exempt from Select Agent Regulation

    PubMed Central

    Losada, Liliana; Varga, John J.; Hostetler, Jessica; Radune, Diana; Kim, Maria; Durkin, Scott; Schneewind, Olaf; Nierman, William C.

    2011-01-01

    Yersinia pestis is the causative agent of the plague. Y. pestis KIM 10+ strain was passaged and selected for loss of the 102 kb pgm locus, resulting in an attenuated strain, KIM D27. In this study, whole genome sequencing was performed on KIM D27 in order to identify any additional differences. Initial assemblies of 454 data were highly fragmented, and various bioinformatic tools detected between 15 and 465 SNPs and INDELs when comparing both strains, the vast majority associated with A or T homopolymer sequences. Consequently, Illumina sequencing was performed to improve the quality of the assembly. Hybrid sequence assemblies were performed and a total of 56 validated SNP/INDELs and 5 repeat differences were identified in the D27 strain relative to published KIM 10+ sequence. However, further analysis showed that 55 of these SNP/INDELs and 3 repeats were errors in the KIM 10+ reference sequence. We conclude that both 454 and Illumina sequencing were required to obtain the most accurate and rapid sequence results for Y. pestis KIMD27. SNP and INDELS calls were most accurate when both Newbler and CLC Genomics Workbench were employed. For purposes of obtaining high quality genome sequence differences between strains, any identified differences should be verified in both the new and reference genomes. PMID:21559501

  2. Validation of cooking times and temperatures for thermal inactivation of Yersinia pestis strains KIM5 and CDC-A1122 in irradiated ground beef.

    PubMed

    Porto-Fett, Anna C S; Juneja, Vijay K; Tamplin, Mark L; Luchansky, John B

    2009-03-01

    Irradiated ground beef samples (ca. 3-g portions with ca. 25% fat) inoculated with Yersina pestis strain KIM5 (ca. 6.7 log CFU/g) were heated in a circulating water bath stabilized at 48.9, 50, 52.5, 55, 57.5, or 60 degrees C (120, 122, 126.5, 131, 135.5, and 140 degrees F, respectively). Average D-values were 192.17, 34.38, 17.11, 3.87, 1.32, and 0.56 min, respectively, with a corresponding z-value of 4.67 degrees C (8.41 degrees F). In related experiments, irradiated ground beef patties (ca. 95 g per patty with ca. 25% fat) were inoculated with Y. pestis strains KIMS or CDC-A1122 (ca. 6.0 log CFU/g) and cooked on an open-flame gas grill or on a clam-shell type electric grill to internal target temperatures of 48.9, 60, and 71.1 degrees C (120, 140, and 160 degrees F, respectively). For patties cooked on the gas grill, strain KIM5 populations decreased from ca. 6.24 to 4.32, 3.51, and < or = 0.7 log CFU/g at 48.9, 60, and 71.1 degrees C, respectively, and strain CDC-A1122 populations decreased to 3.46 log CFU/g at 48.9 degrees C and to < or = 0.7 log CFU/g at both 60 and 71.1 degrees C. For patties cooked on the clam-shell grill, strain KIM5 populations decreased from ca. 5.96 to 2.53 log CFU/g at 48.9 degrees C and to < or = 0.7 log CFU/g at 60 or 71.1 degrees C, and strain CDC-A1122 populations decreased from ca. 5.98 to < or = 0.7 log CFU/g at all three cooking temperatures. These data confirm that cooking ground beef on an open-flame gas grill or on a clam-shell type electric grill to the temperatures and times recommended by the U.S. Department of Agriculture and the U.S. Food and Drug Administration Food Code, appreciably lessens the likelihood, severity, and/or magnitude of consumer illness if the ground beef were purposefully contaminated even with relatively high levels of Y. pestis.

  3. Glycogen storage disease type III in Israel: presentation and long-term outcome.

    PubMed

    Hershkovitz, Eli; Forschner, Itay; Mandel, Hanna; Spiegel, Ronen; Lerman-Sagie, Tally; Anikster, Yair; Zeharia, A; Moses, Shimon

    2014-03-01

    Glycogen storage disease type III (GSD III) was found in the past with an unusual frequency among North African Jews in Israel. The aim of this study was to review the long-term clinical course of GSD III's patients in Israel. Relevant pediatric and adult clinical units of all Israeli hospitals were approached to report on their GSD III patients. 21 (14 M/7F) live patients were located. The average age of the patients was nearly twenty years. Eleven patients were older than 18 years of age. 76% of the patients were of Jewish North African origin, 14% of Jewish European origin, and 10% were Arab Muslims. The symptoms at presentation were fasting, hypoglycemia, hepatomegaly slight hypotonia in infancy and delayed growth. Although in most of the patients their signs and symptoms ameliorated after childhood, significant complications were observed in some 20% of the patients. Consequently, a life long follow up of GSD-III patients is required.

  4. Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2018-06-01

    Context. Solar type III radio bursts contain a wealth of information about the dynamics of electron beams in the solar corona and the inner heliosphere; this information is currently unobtainable through other means. However, the motion of different regions of an electron beam (front, middle, and back) have never been systematically analysed before. Aims: We characterise the type III burst frequency-time evolution using the enhanced resolution of LOFAR (LOw Frequency ARray) in the frequency range 30-70 MHz and use this to probe electron beam dynamics. Methods: The rise, peak, and decay times with a 0.2 MHz spectral resolution were defined for a collection of 31 type III bursts. The frequency evolution was used to ascertain the apparent velocities of the front, middle, and back of the type III sources, and the trends were interpreted using theoretical and numerical treatments. Results: The type III time profile was better approximated by an asymmetric Gaussian profile and not an exponential, as was used previously. Rise and decay times increased with decreasing frequency and showed a strong correlation. Durations were shorter than previously observed. Drift rates from the rise times were faster than from the decay times, corresponding to inferred mean electron beam speeds for the front, middle, and back of 0.2, 0.17, 0.15 c, respectively. Faster beam speeds correlate with shorter type III durations. We also find that the type III frequency bandwidth decreases as frequency decreases. Conclusions: The different speeds naturally explain the elongation of an electron beam in space as it propagates through the heliosphere. The expansion rate is proportional to the mean speed of the exciter; faster beams expand faster. Beam speeds are attributed to varying ensembles of electron energies at the front, middle, and back of the beam.

  5. Early prophylactic autogenous bone grafting in type III open tibial fractures.

    PubMed

    Kesemenli, Cumhur C; Kapukaya, Ahmet; Subaşi, Mehmet; Arslan, Huseyin; Necmioğlu, Serdar; Kayikçi, Cuma

    2004-08-01

    The authors report the results achieved in patients with type III open tibial fractures who underwent primary autogenous bone grafting at the time of debridement and skeletal stabilisation. Twenty patients with a mean age of 35.8 years (range, 24-55) were treated between 1996 and 1999. Eight fractures were type IIIA, 11 were type IIIB, and 1 was type IIIC. At the index procedure, wound debridement, external fixation and autogenous bone grafting with bone coverage were achieved. The mean follow-up period was 46 months (range, 34-55). The mean time to fixator removal was 21 weeks (range, 14-35), and the mean time to union was 28 weeks (range, 19-45). Skin coverage was achieved by a myocutaneous flap in 2 patients, late primary closure in 4, and split skin grafting in 14. One (5%) of the patients experienced delayed union, and 1 (5%) developed infection. In tibial type III open fractures, skin coverage may be delayed, using the surrounding soft tissue to cover any exposed bone after thorough débridement and wound cleansing. Primary prophylactic bone grafting performed at the same time reduces the rate of delayed union, shortens the time to union, and does not increase the infection rate.

  6. The Resistance of BALB/cJ Mice to Yersinia pestis Maps to the Major Histocompatibility Complex of Chromosome 17▿

    PubMed Central

    Turner, Joshua K.; McAllister, Milton M.; Xu, John L.; Tapping, Richard I.

    2008-01-01

    Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F2 mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis. PMID:18573896

  7. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis

    PubMed Central

    Quintard, Kévin; Dewitte, Amélie; Reboul, Angéline; Madec, Edwige; Bontemps-Gallo, Sébastien; Dondeyne, Jacqueline; Marceau, Michaël; Simonet, Michel

    2015-01-01

    The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary. PMID:26150539

  8. Fine Structures of Solar Radio Type III Bursts and Their Possible Relationship with Coronal Density Turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Xingyao; Kontar, Eduard P.; Yu, Sijie; Yan, Yihua; Huang, Jing; Tan, Baolin

    2018-03-01

    Solar radio type III bursts are believed to be the most sensitive signatures of near-relativistic electron beam propagation in the corona. A solar radio type IIIb-III pair burst with fine frequency structures, observed by the Low Frequency Array (LOFAR) with high temporal (∼10 ms) and spectral (12.5 kHz) resolutions at 30–80 MHz, is presented. The observations show that the type III burst consists of many striae, which have a frequency scale of about 0.1 MHz in both the fundamental (plasma) and the harmonic (double plasma) emission. We investigate the effects of background density fluctuations based on the observation of striae structure to estimate the density perturbation in the solar corona. It is found that the spectral index of the density fluctuation spectrum is about ‑1.7, and the characteristic spatial scale of the density perturbation is around 700 km. This spectral index is very close to a Kolmogorov turbulence spectral index of ‑5/3, consistent with a turbulent cascade. This fact indicates that the coronal turbulence may play the important role of modulating the time structures of solar radio type III bursts, and the fine structure of radio type III bursts could provide a useful and unique tool to diagnose the turbulence in the solar corona.

  9. Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model

    PubMed Central

    Martins, Carla; Hůlková, Helena; Dridi, Larbi; Dormoy-Raclet, Virginie; Grigoryeva, Lubov; Choi, Yoo; Langford-Smith, Alexander; Wilkinson, Fiona L.; Ohmi, Kazuhiro; DiCristo, Graziella; Hamel, Edith; Ausseil, Jerôme; Cheillan, David; Moreau, Alain; Svobodová, Eva; Hájková, Zuzana; Tesařová, Markéta; Hansíková, Hana; Bigger, Brian W.; Hrebícek, Martin

    2015-01-01

    Severe progressive neurological paediatric disease mucopolysaccharidosis III type C is caused by mutations in the HGSNAT gene leading to deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase involved in the lysosomal catabolism of heparan sulphate. To understand the pathophysiology of the disease we generated a mouse model of mucopolysaccharidosis III type C by germline inactivation of the Hgsnat gene. At 6–8 months mice showed hyperactivity, and reduced anxiety. Cognitive memory decline was detected at 10 months and at 12–13 months mice showed signs of unbalanced hesitant walk and urinary retention. Lysosomal accumulation of heparan sulphate was observed in hepatocytes, splenic sinus endothelium, cerebral microglia, liver Kupffer cells, fibroblasts and pericytes. Starting from 5 months, brain neurons showed enlarged, structurally abnormal mitochondria, impaired mitochondrial energy metabolism, and storage of densely packed autofluorescent material, gangliosides, lysozyme, phosphorylated tau, and amyloid-β. Taken together, our data demonstrate for the first time that deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase causes lysosomal accumulation of heparan sulphate in microglial cells followed by their activation and cytokine release. They also show mitochondrial dysfunction in the neurons and neuronal loss explaining why mucopolysaccharidosis III type C manifests primarily as a neurodegenerative disease. PMID:25567323

  10. Spatially distinct neutrophil responses within the inflammatory lesions of pneumonic plague.

    PubMed

    Stasulli, Nikolas M; Eichelberger, Kara R; Price, Paul A; Pechous, Roger D; Montgomery, Stephanie A; Parker, Joel S; Goldman, William E

    2015-10-13

    During pneumonic plague, the bacterium Yersinia pestis elicits the development of inflammatory lung lesions that continue to expand throughout infection. This lesion development and persistence are poorly understood. Here, we examine spatially distinct regions of lung lesions using laser capture microdissection and transcriptome sequencing (RNA-seq) analysis to identify transcriptional differences between lesion microenvironments. We show that cellular pathways involved in leukocyte migration and apoptosis are downregulated in the center of lung lesions compared to the periphery. Probing for the bacterial factor(s) important for the alteration in neutrophil survival, we show both in vitro and in vivo that Y. pestis increases neutrophil survival in a manner that is dependent on the type III secretion system effector YopM. This research explores the complexity of spatially distinct host-microbe interactions and emphasizes the importance of cell relevance in assays in order to fully understand Y. pestis virulence. Yersinia pestis is a high-priority pathogen and continues to cause outbreaks worldwide. The ability of Y. pestis to be transmitted via respiratory droplets and its history of weaponization has led to its classification as a select agent most likely to be used as a biological weapon. Unrestricted bacterial growth during the initial preinflammatory phase primes patients to be infectious once disease symptoms begin in the proinflammatory phase, and the rapid disease progression can lead to death before Y. pestis infection can be diagnosed and treated. Using in vivo analyses and focusing on relevant cell types during pneumonic plague infection, we can identify host pathways that may be manipulated to extend the treatment window for pneumonic plague patients. Copyright © 2015 Stasulli et al.

  11. Growth of a plasmid-bearing (pYV) Yersinia pestis KIM5 in retail raw ground pork

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis can cause oro-pharyngeal plague as a result of consumption or handling of meat from infected animals. Thus, food naturally or intentionally contaminated can have a role in the dissemination of human plague. The growth of a conditionally virulent plasmid (pYV)-bearing rifampicin-res...

  12. Impact of Type III Secretion Effectors and of Phenoxyacetamide Inhibitors of Type III Secretion on Abscess Formation in a Mouse Model of Pseudomonas aeruginosa Infection

    PubMed Central

    Berube, Bryan J.; Murphy, Katherine R.; Torhan, Matthew C.; Bowlin, Nicholas O.; Williams, John D.; Bowlin, Terry L.; Moir, Donald T.

    2017-01-01

    ABSTRACT Pseudomonas aeruginosa is a leading cause of intra-abdominal infections, wound infections, and community-acquired folliculitis, each of which may involve macro- or microabscess formation. The rising incidence of multidrug resistance among P. aeruginosa isolates has increased both the economic burden and the morbidity and mortality associated with P. aeruginosa disease and necessitates a search for novel therapeutics. Previous work from our group detailed novel phenoxyacetamide inhibitors that block type III secretion and injection into host cells in vitro. In this study, we used a mouse model of P. aeruginosa abscess formation to test the in vivo efficacy of these compounds against the P. aeruginosa type III secretion system (T3SS). Bacteria used the T3SS to intoxicate infiltrating neutrophils to establish abscesses. Despite this antagonism, sufficient numbers of functioning neutrophils remained for proper containment of the abscesses, as neutrophil depletion resulted in an increased abscess size, the formation of dermonecrotic lesions on the skin, and the dissemination of P. aeruginosa to internal organs. Consistent with the specificity of the T3SS-neutrophil interaction, P. aeruginosa bacteria lacking a functional T3SS were fully capable of causing abscesses in a neutropenic host. Phenoxyacetamide inhibitors attenuated abscess formation and aided in the immune clearance of the bacteria. Finally, a P. aeruginosa strain resistant to the phenoxyacetamide compound was fully capable of causing abscess formation even in the presence of the T3SS inhibitors. Together, our results further define the role of type III secretion in murine abscess formation and demonstrate the in vivo efficacy of phenoxyacetamide inhibitors in P. aeruginosa infection. PMID:28807906

  13. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis

    PubMed Central

    Perry, Robert D.; Fetherston, Jacqueline D.

    2011-01-01

    Yersiniabactin (Ybt) is a siderophore-dependent iron uptake system encoded on a pathogenicity island that is widespread among pathogenic bacteria including the Yersiniae. While biosynthesis of the siderophore has been elucidated, the secretion mechanism and a few components of the uptake/utilization pathway are unidentified. ybt genes are transcriptionally repressed by Fur but activated by YbtA, likely in combination with the siderophore itself. The Ybt system is essential for the ability of Y. pestis to cause bubonic plague and important in pneumonic plague as well. However, the ability to cause fatal septicemic plague is independent of Ybt. PMID:21609780

  14. Intestinal lymphangiectasia in a patient with autoimmune polyglandular syndrome type III.

    PubMed

    Choudhury, Bipul Kumar; Saiki, Uma Kaimal; Sarm, Dipti; Choudhury, Bikash Narayan; Choudhury, Sarojini Dutta; Saharia, Dhiren; Saikia, Mihir

    2011-11-01

    Autoimmune polyglandular syndromes (APS) comprise a wide clinical spectrum of autoimmune disorders. APS is divided into Type I, Type II, Type I and Type IV depending upon the pattern of disease combination. Ghronic diarrhoea is one of the many manifestations of APS and many aetiological factors have been suggested for it. Apart from the established aetiological factors, intestinal lymphangiectasia may be responsible for chronic diarrhea in some cases.Intestinal lymphangiectasia has been reported in Type I APS. We report a case of Type III APS with hypocalcaemia and hypothyroidism who had chronic diarrhea of long duration and was finally diagnosed to have intestinal lymphangiectasia.

  15. Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing

    PubMed Central

    Laukkanen-Ninios, Riikka; Didelot, Xavier; Jolley, Keith A.; Morelli, Giovanna; Sangal, Vartul; Kristo, Paula; Imori, Priscilla F. M.; Fukushima, Hiroshi; Siitonen, Anja; Tseneva, Galina; Voskressenskaya, Ekaterina; Falcao, Juliana P.; Korkeala, Hannu; Maiden, Martin C. J.; Mazzoni, Camila; Carniel, Elisabeth; Skurnik, Mikael; Achtman, Mark

    2014-01-01

    Summary Multilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y. pseudotuberculosis sensu stricto (s.s.), Yersinia pestis and Yersinia similis] and a fourth population, which we refer to as the Korean group, which may be in the process of speciation. We detected clear signs of recombination within Y. pseudotuberculosis s.s. as well as imports from Y. similis and the Korean group. The sources of genetic diversification within Y. pseudotuberculosis s.s. were approximately equally divided between recombination and mutation, whereas recombination has not yet been demonstrated in Y. pestis, which is also much more genetically monomorphic than is Y. pseudotuberculosis s.s. Most Y. pseudotuberculosis s.s. belong to a diffuse group of sequence types lacking clear population structure, although this species contains a melibiose-negative clade that is present globally in domesticated animals. Yersinia similis corresponds to the previously identified Y. pseudotuberculosis genetic type G4, which is probably not pathogenic because it lacks the virulence factors that are typical for Y. pseudotuberculosis s.s. In contrast, Y. pseudotuberculosis s.s., the Korean group and Y. pestis can all cause disease in humans. PMID:21951486

  16. Studying the evolution of a type III radio from the Sun up to 1 AU

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried; Breitling, Frank; Vocks, Christian; Fallows, Richard; Melnik, Valentin; Konovalenko, Alexander

    2017-04-01

    On March 16, 2016, a type III burst was observed with the ground-based radio telescopes LOFAR and URAN-2 as well as with the radiospectrometer aboard the spacecraft WIND.It started at 80 MHz at 06:37 UT and reached 50 kHz after 23 minutes. A type III burst are considered as the radio signature of an electron beam travelling from the corona into the interplanetary space. The energetic electrons carrying the beam excites Langmuir waves, which convert into radio waves by wave-particle interaction. The relationship between the drift rate and the frequency as derived from the dynamic radio spectra reveals that the velocity of the electrons generating the radio waves of the type III burst is increasing with increasing distance from the center of the Sun.

  17. Simultaneous and Rapid Detection of Salmonella typhi, Bacillus anthracis, and Yersinia pestis by Using Multiplex Polymerase Chain Reaction (PCR)

    PubMed Central

    Safari Foroshani, Nargess; Karami, Ali; Pourali, Fatemeh

    2013-01-01

    Background Salmonella typhi, Bacillus anthracis, and Yersinia pestis are some serious human pathogens, which their early diagnosis is of great importance. Salmonella typhi, Bacillus anthracis, and Yersinia pestis cause typhoid fever, anthrax, and plague respectively. These bacteria can be used to make biologic weapons. Objectives In this study, we designed a new and rapid diagnostic method based on Uniplex and Multiplex PCR method. Materials and Methods Uniplex and multiplex Polymerase Chain Reaction (PCR) were conducted on virulent genes of hp and invA of Salmonella typhimurium, Pa and chr of Bacillus anthracis, and pla of Yersinia pestis. A genome from other bacteria was used to study the specificity of the primer and the PCR test. Results Standard strains used in this study showed that primers were specific. As for sensitivity, it was shown that this method can diagnose 1-10 copies of the genome, or 1-10 Colony Forming Units (CFU) for each of the bacteria. All pieces except anthrax were sequenced in PCR to validate the product. DNA fragment resulted from Bacillus anthracis was confirmed by restriction enzyme digestions. Conclusion The designed methods are accurate, rapid, and inexpensive to find and differentiate these bacteria from similar bacteria. They can be applied for rapid diagnosis of these agents in different specimens, and bioterrorism cases. PMID:24719692

  18. Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies

    PubMed Central

    Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd

    2013-01-01

    Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH. PMID:22781098

  19. Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies.

    PubMed

    Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd

    2013-02-01

    Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH.

  20. Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A.

    PubMed

    Huber, A H; Wang, Y M; Bieber, A J; Bjorkman, P J

    1994-04-01

    We report the crystal structure of two adjacent fibronectin type III repeats from the Drosophila neural cell adhesion molecule neuroglian. Each domain consists of two antiparallel beta sheets and is folded topologically identically to single fibronectin type III domains from the extracellular matrix proteins tenascin and fibronectin. beta bulges and left-handed polyproline II helices disrupt the regular beta sheet structure of both neuroglian domains. The hydrophobic interdomain interface includes a metal-binding site, presumably involved in stabilizing the relative orientation between domains and predicted by sequence comparision to be present in the vertebrate homolog molecule L1. The neuroglian domains are related by a near perfect 2-fold screw axis along the longest molecular dimension. Using this relationship, a model for arrays of tandem fibronectin type III repeats in neuroglian and other molecules is proposed.

  1. Efficient n-type doping of zinc-blende III-V semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.

    2014-03-01

    We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.

  2. Distinct Effects of Type I and III Interferons on Enteric Viruses

    PubMed Central

    Peterson, Stefan T.

    2018-01-01

    Interferons (IFNs) are key host cytokines in the innate immune response to viral infection, and recent work has identified unique roles for IFN subtypes in regulating different aspects of infection. Currently emerging is a common theme that type III IFNs are critical in localized control of infection at mucosal barrier sites, while type I IFNs are important for broad systemic control of infections. The intestine is a particular site of interest for exploring these effects, as in addition to being the port of entry for a multitude of pathogens, it is a complex tissue with a variety of cell types as well as the presence of the intestinal microbiota. Here we focus on the roles of type I and III IFNs in control of enteric viruses, discussing what is known about signaling downstream from these cytokines, including induction of specific IFN-stimulated genes. We review viral strategies to evade IFN responses, effects of IFNs on the intestine, interactions between IFNs and the microbiota, and briefly discuss the role of IFNs in controlling viral infections at other barrier sites. Enhanced understanding of the coordinate roles of IFNs in control of viral infections may facilitate development of antiviral therapeutic strategies; here we highlight potential avenues for future exploration. PMID:29361691

  3. Induction of tumor necrosis factor alpha by the group- and type-specific polysaccharides from type III group B streptococci.

    PubMed Central

    Mancuso, G; Tomasello, F; von Hunolstein, C; Orefici, G; Teti, G

    1994-01-01

    Previous studies suggested that circulating tumor necrosis factor alpha (TNF-alpha) may have a pathophysiologic role in experimental neonatal sepsis induced by group B streptococci (GBS). This study was undertaken to investigate the ability of the type III and group-specific polysaccharides of GBS to induce TNF-alpha production and TNF-alpha-dependent lethality in neonatal rats. The cytokine was detected in plasma samples by the L929 cytotoxicity assay. Intracardiac injections of either polysaccharide induced dose-dependent, transient elevations in plasma TNF-alpha levels that returned to baseline values after 5 h. The group-specific antigen induced significantly higher mean peak TNF-alpha levels than the type III antigen (125 +/- 47 versus 44 +/- 15 U/ml with 70 mg/kg of body weight). Glycogen (70 mg/kg), used as a negative control, did not induce TNF-alpha. The lipopolysaccharide-neutralizing agent polymyxin B did not decrease TNF-alpha levels induced by either polysaccharide, ruling out contamination with endotoxin as a possible cause of TNF-alpha induction. Fifty percent lethal doses of the type III and group-specific antigens given as intracardiac injections were 105 and 16 mg/kg, respectively. Salmonella endotoxin, used as a positive control, had a 50% lethal dose of 0.1 mg/kg. The lethal activities of GBS polysaccharides, as well as endotoxin, were completely prevented by pretreatment of neonatal rats with the respective specific antibodies or anti-murine TNF-alpha serum. To assess the relative importance of the type-specific substance in TNF-alpha induction by whole bacteria, two unrelated GBS transposon mutants devoid of only the type-specific capsular polysaccharide (COH1-13 and COH31-15) were employed. Each of the heat-killed unencapsulated mutants was able to produce plasma TNF-alpha level elevations or TNF-alpha-dependent lethality but was significantly less efficient in these activities than the corresponding encapsulated wild-type strain. These data

  4. Evidence for Langmuir Envelope Solitons in Solar Type III Burst Source Regions

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; Goldstein, M. L.; MacDowall, R. J.; Papadopoulos, K.; Stone, R. G.

    1998-01-01

    We present observational evidence for the generation of Langmuir envelope solitons in the source regions of solar type III radio bursts. The solitons appear to be formed by electron beams which excite either the modulational instability or oscillating two-stream instability (OTSI). Millisecond data from the Ulysses Unified Radio and Plasma Wave Experiment (URAP) show that Langmuir waves associated with type III bursts occur as broad intense peaks with time scales ranging from 15 to 90 milliseconds (6 - 27 km). These broad field structures have the properties expected of Langmuir envelope solitons, viz.: the normalized peak energy densities, W(sub L)/n(sub e)T(sub e) approximately 10(exp -5), are well above the modulational instability threshold; the spatial scales, L, which range from 1 - 5 Langmuir wavelengths, show a high degree of inverse correlation with (W(sub L)/n(sub e)T(sub e))(sup 1/2); and the observed widths of these broad peaks agree well with the predicted widths of envelope solitons. We show that the orientation of the Langmuir field structures is random with respect to the ambient magnetic field, indicating that they are probably isotropic structures that have evolved from initially pancake-like solitons. These observations suggest that strong turbulence processes, such as the modulational instability or the OTSI, stabilize the electron beams that produce type III bursts.

  5. Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms

    PubMed Central

    Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.

    2016-01-01

    Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of

  6. On the theory of the type III burst exciter

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.

    1976-01-01

    In situ satellite observations of type III burst exciters at 1 AU show that the beam does not evolve into a plateau in velocity space, contrary to the prediction of quasilinear theory. The observations can be explained by a theory that includes mode coupling effects due to excitation of the parametric oscillating two-stream instability and its saturation by anomalous resistivity. The time evolution of the beam velocity distribution is included in the analysis.

  7. Vascular Ehlers-Danlos syndrome mutations in type III collagen differently stall the triple helical folding.

    PubMed

    Mizuno, Kazunori; Boudko, Sergei; Engel, Jürgen; Bächinger, Hans Peter

    2013-06-28

    Vascular Ehlers-Danlos syndrome (EDS) type IV is the most severe form of EDS. In many cases the disease is caused by a point mutation of Gly in type III collagen. A slower folding of the collagen helix is a potential cause for over-modifications. However, little is known about the rate of folding of type III collagen in patients with EDS. To understand the molecular mechanism of the effect of mutations, a system was developed for bacterial production of homotrimeric model polypeptides. The C-terminal quarter, 252 residues, of the natural human type III collagen was attached to (GPP)7 with the type XIX collagen trimerization domain (NC2). The natural collagen domain forms a triple helical structure without 4-hydroxylation of proline at a low temperature. At 33 °C, the natural collagenous part is denatured, but the C-terminal (GPP)7-NC2 remains intact. Switching to a low temperature triggers the folding of the type III collagen domain in a zipper-like fashion that resembles the natural process. We used this system for the two known EDS mutations (Gly-to-Val) in the middle at Gly-910 and at the C terminus at Gly-1018. In addition, wild-type and Gly-to-Ala mutants were made. The mutations significantly slow down the overall rate of triple helix formation. The effect of the Gly-to-Val mutation is much more severe compared with Gly-to-Ala. This is the first report on the folding of collagen with EDS mutations, which demonstrates local delays in the triple helix propagation around the mutated residue.

  8. Corrosion behavior of as-received and previously cast type III gold alloy.

    PubMed

    Ayad, Mohamed F; Ayad, Ghada M

    2010-04-01

    The rationale for using gold alloys is based largely upon their alleged ability to resist corrosion, but little information is available to determine the corrosion behavior of recast alloys. This study characterized the elemental composition of as-received and recast type III gold alloy and examined the in vitro corrosion behavior in two media using a potentiodynamic polarization technique. Seventy-eight disk-shaped specimens were prepared from a type III gold alloy under three casting protocols according to the proportion of as-received and recast gold alloy (n = 26). (1) Group as received (100% as-received metal), (2) group 50% to 50% (50% wt. new metal, 50% wt. once recast metal), and (3) group recast (100% once recast metal). The surface structures of 20 specimens from each group were examined under scanning electron microscopy, and their elemental compositions were determined using X-ray energy-dispersive spectroscopy. Further, the potentiodynamic cyclic polarization between -1000 and +1000 mV (SCE) were performed for six specimens from each casting protocol in 0.09% NaCl solution (n = 3) and Fusayama artificial saliva (n = 3) at 37 degrees C. Zero-current potential and corrosion current density were determined. The data were analyzed with 1-way ANOVA and the Ryan-Einot-Gabriel-Welsch multiple-range test t (alpha= 0.05). Elemental composition was significantly different among the casting groups (p < 0.001). The mean weight percentage values were 72.4 to 75.7% Au, 4.5 to 7.0% Pd, 10.7 to 11.1% Ag, 7.8 to 8.4% Cu, and 1.0 to 1.4% Zn. The mean values for Zero-current potential and corrosion current density for all casting protocols were not significant (p > 0.05); however, the difference between the electrolytes was significant (p < 0.001). Fusayama artificial saliva seemed to offer the most corrosive environment. Type III gold alloy in any casting protocol retained passivity under electrochemical conditions similar to the oral environment. Moreover, high

  9. Vaccination with F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against plague upon oral challenge with Yersinia pestis

    USGS Publications Warehouse

    Rocke, Tonie E.; Smith, Susan; Marinari, Paul E.; Kreeger, J.; Enama, J.T.; Powell, B.S.

    2008-01-01

    Previous studies have established that vaccination of black-footed ferrets (Mustela nigripes) with F1-V fusion protein by subcutaneous (SC) injection protects the animals against plague upon injection of the bacterium Yersinia pestis. This study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse, a probable route for natural infection. Eight black-footed ferret kits were vaccinated with F1-V protein by SC injection at approximately 60 days-of-age. A booster vaccination was administered 3 mo later via SC injection. Four additional ferret kits received placebos. The animals were challenged 6 wk after the boost by feeding each one a Y. pestis-infected mouse. All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days after exposure. To determine the duration of antibody postvaccination, 18 additional black-footed ferret kits were vaccinated and boosted with F1-V by SC injection at 60 and 120 days-of-age. High titers to both F1 and V (mean reciprocal titers of 18,552 and 99,862, respectively) were found in all vaccinates up to 2 yr postvaccination, whereas seven control animals remained antibody negative throughout the same time period.

  10. Vaccination with F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against plague upon oral challenge with Yersinia pestis.

    PubMed

    Rocke, Tonie E; Smith, Susan; Marinari, Paul; Kreeger, Julie; Enama, Jeffrey T; Powell, Bradford S

    2008-01-01

    Previous studies have established that vaccination of black-footed ferrets (Mustela nigripes) with F1-V fusion protein by subcutaneous (SC) injection protects the animals against plague upon injection of the bacterium Yersinia pestis. This study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse, a probable route for natural infection. Eight black-footed ferret kits were vaccinated with F1-V protein by SC injection at approximately 60 days-of-age. A booster vaccination was administered 3 mo later via SC injection. Four additional ferret kits received placebos. The animals were challenged 6 wk after the boost by feeding each one a Y. pestis-infected mouse. All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days after exposure. To determine the duration of antibody postvaccination, 18 additional black-footed ferret kits were vaccinated and boosted with F1-V by SC injection at 60 and 120 days-of-age. High titers to both F1 and V (mean reciprocal titers of 18,552 and 99,862, respectively) were found in all vaccinates up to 2 yr postvaccination, whereas seven control animals remained antibody negative throughout the same time period.

  11. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.

    2011-07-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacingmore » a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.« less

  12. Neutralization of Yersinia pestis-mediated macrophage cytotoxicity by anti-LcrV antibodies and its correlation with protective immunity in a mouse model of bubonic plague.

    PubMed

    Zauberman, Ayelet; Cohen, Sara; Levy, Yinon; Halperin, Gideon; Lazar, Shirley; Velan, Baruch; Shafferman, Avigdor; Flashner, Yehuda; Mamroud, Emanuelle

    2008-03-20

    Plague is a life-threatening disease caused by Yersinia pestis, for which effective-licensed vaccines and reliable predictors of in vivo immunity are lacking. V antigen (LcrV) is a major Y. pestis virulence factor that mediates translocation of the cytotoxic Yersinia protein effectors (Yops). It is a well-established protective antigen and a part of currently tested plague subunit vaccines. We have developed a highly sensitive in vitro macrophage cytotoxicity neutralization assay which is mediated by anti-LcrV antibodies; and studied the potential use of these neutralizing antibodies as an in vitro correlate of plague immunity in mice. The assay is based on a Y. pestis strain with enhanced cytotoxicity to macrophages in which endogenous yopJ was replaced by the more effectively translocated yopP of Y. enterocolitica O:8. Mice passively immunized with rabbit anti-LcrV IgG or actively immunized with recombinant LcrV were protected against lethal doses of a virulent Y. pestis strain, in a mouse model of bubonic plague. This protection significantly correlated with the in vitro neutralizing activity of the antisera but not with their corresponding ELISA titers. In actively immunized mice, a cutoff value for serum neutralizing activity, above which survival was assured with high degree of confidence, could be established for different vaccination regimes. The impact of overall findings on the potential use of serum neutralizing activity as a correlate of protective immunity is discussed.

  13. Satellite observations of type III solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1974-01-01

    Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 earth radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics, and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 earth radii to 1 AU.

  14. Macroscopic appearance of Type IV and giant Type III is a high risk for a poor prognosis in pathological stage II/III advanced gastric cancer with postoperative adjuvant chemotherapy

    PubMed Central

    Yamashita, Keishi; Ema, Akira; Hosoda, Kei; Mieno, Hiroaki; Moriya, Hiromitsu; Katada, Natsuya; Watanabe, Masahiko

    2017-01-01

    AIM To evaluate whether a high risk macroscopic appearance (Type IV and giant Type III) is associated with a dismal prognosis after curative surgery, because its prognostic relevance remains elusive in pathological stage II/III (pStage II/III) gastric cancer. METHODS One hundred and seventy-two advanced gastric cancer (defined as pT2 or beyond) patients with pStage II/III who underwent curative surgery plus adjuvant S1 chemotherapy were evaluated, and the prognostic relevance of a high-risk macroscopic appearance was examined. RESULTS Advanced gastric cancers with a high-risk macroscopic appearance were retrospectively identified by preoperative recorded images. A high-risk macroscopic appearance showed a significantly worse relapse free survival (RFS) (35.7%) and overall survival (OS) (34%) than an average risk appearance (P = 0.0003 and P < 0.0001, respectively). A high-risk macroscopic appearance was significantly associated with the 13th Japanese Gastric Cancer Association (JGCA) pT (P = 0.01), but not with the 13th JGCA pN. On univariate analysis for RFS and OS, prognostic factors included 13th JGCA pStage (P < 0.0001) and other clinicopathological factors including macroscopic appearance. A multivariate Cox proportional hazards model for univariate prognostic factors identified high-risk macroscopic appearance (P = 0.036, HR = 2.29 for RFS and P = 0.021, HR = 2.74 for OS) as an independent prognostic indicator. CONCLUSION A high-risk macroscopic appearance was associated with a poor prognosis, and it could be a prognostic factor independent of 13th JGCA stage in pStage II/III advanced gastric cancer. PMID:28451064

  15. Evaluation of Psn, HmuR and a modified LcrV protein delivered to mice by live attenuated Salmonella as a vaccine against bubonic and pneumonic Yersinia pestis challenge.

    PubMed

    Branger, Christine G; Sun, Wei; Torres-Escobar, Ascención; Perry, Robert; Roland, Kenneth L; Fetherston, Jacqueline; Curtiss, Roy

    2010-12-16

    We evaluated the ability of Yersinia pestis antigens HmuR, Psn and modified forms of LcrV delivered by live attenuated Salmonella strains to stimulate a protective immune response against subcutaneous or intranasal challenge with Y. pestis CO92. LcrV196 is a previously described truncated protein that includes aa 131-326 of LcrV and LcrV5214 has been modified to replace five key amino acids required for interaction with the TLR2 receptor. Psn is the outer membrane receptor for the siderophore, yersiniabactin, and the bacteriocin, pesticin. Mice immunized with Salmonella synthesizing Psn, LcrV196 or LcrV5214 developed serum IgG responses to the respective Yersinia antigen and were protected against pneumonic challenge with Y. pestis. Immunization with Salmonella synthesizing Psn or LcrV196 was sufficient to afford nearly full protection against bubonic challenge, while immunization with the strain synthesizing LcrV5214 was not protective. Immunization with Salmonella synthesizing HmuR, an outer membrane protein involved in heme acquisition in Y. pestis, was poorly immunogenic and did not elicit a protective response against either challenge route. These findings indicate that both Psn and LcrV196 delivered by Salmonella provide protection against both bubonic and pneumonic plague. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

    PubMed

    Douam, Florian; Soto Albrecht, Yentli E; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V; Ploss, Alexander

    2017-08-15

    Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR -/- ) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR -/- ) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR -/- λR -/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity. IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the

  17. Alterations in biosynthetic accumulation of collagen types I and III during growth and morphogenesis of embryonic mouse salivary glands

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    We examined the biosynthetic patterns of interstitial collagens in mouse embryonic submandibular and sublingual glands cultured in vitro. Rudiments explanted on day 13 of gestation and cultured for 24, 48, and 72 h all synthesized collagen types I, III, and V. However, while the total incorporation of label into collagenous proteins did not change over the three-day culture period, the rate of accumulation of newly synthesized types I and III did change. At 24 h, the ratio of newly synthesized collagen types I:III was approximately 2, whereas at 72 h, the ratio was approximately 5. These data suggest that collagen types I and III may be important in initiation of branching in this organ, but that type I may become dominant in the later stages of development and in maintenance of the adult organ.

  18. Using every trick in the book: the Pla surface protease of Yersinia pestis.

    PubMed

    Suomalainen, Marjo; Haiko, Johanna; Ramu, Päivi; Lobo, Leandro; Kukkonen, Maini; Westerlund-Wikström, Benita; Virkola, Ritva; Lähteenmäki, Kaarina; Korhonen, Timo K

    2007-01-01

    The Pla surface protease of Yersinia pestis, encoded by the Y. pestis-specific plasmid pPCP1, is a versatile virulence factor. In vivo studies have shown that Pla is essential in the establishment of bubonic plague, and in vitro studies have demonstrated various putative virulence functions for the Pla molecule. Pla is a surface protease of the omptin family, and its proteolytic targets include the abundant, circulating human zymogen plasminogen, which is activated by Pla to the serine protease plasmin. Plasmin is important in cell migration, and Pla also proteolytically inactivates the main circulating inhibitor of plasmin, alpha2-antiplasmin. Pla also is an adhesin with affinity for laminin, a major glycoprotein of mammalian basement membranes, which is degraded by plasmin but not by Pla. Together, these functions create uncontrolled plasmin proteolysis targeted at tissue barriers. Other proteolytic targets for Pla include complement proteins. Pla also mediates bacterial invasion into human endothelial cell lines; the adhesive and invasive charateristics of Pla can be genetically dissected from its proteolytic activity. Pla is a 10-stranded antiparallel beta-barrel with five surface-exposed short loops, where the catalytic residues are oriented inwards at the top of the beta-barrel. The sequence of Pla contains a three-dimensional motif for protein binding to lipid A of the lipopolysaccharide. Indeed, the proteolytic activity of Pla requires rough lipopolysaccharide but is sterically inhibited by the O antigen in smooth LPS, which may be the selective advantage of the loss of O antigen in Y. pestis. Members of the omptin family are highly similar in structure but differ in functions and virulence association. The catalytic residues of omptins are conserved, but the variable substrate specificities in proteolysis by Pla and other omptins are dictated by the amino acid sequences near or at the surface loops, and hence reflect differences in substrate binding. The

  19. Bartter syndrome type III and congenital anomalies of the kidney and urinary tract: an antenatal presentation.

    PubMed

    Westland, Rik; Hack, Wilfried W; van der Horst, Henricus J R; Uittenbogaard, Lukas B; van Hagen, Johanna M; van der Valk, Paul; Kamsteeg, Erik J; van den Heuvel, Lambert P; van Wijk, Joanna A E

    2012-12-01

    Bartter syndrome encompasses a variety of inheritable renal tubular transport disorders characterized by hypokalemia and hypochloremic metabolic alkalosis. Bartter syndrome Type III is caused by genetic alterations in the chloride channel kidney B (CLCNKB) gene and often presents in the first 2 years of life, known as classic Bartter syndrome. However, in rare cases Bartter syndrome Type III has an antenatal presentation with polyhydramnios, premature delivery and severe dehydration in the first weeks of life. Associations between congenital anomalies of the kidney and urinary tract and Bartter syndrome are extremely rare. This case report presents a girl with Bartter syndrome Type III due to a homozygous CLCNKB mutation and bilateral congenital anomalies of the kidney and urinary tract. In addition, we describe the antenatal presentation as well as its perinatal management.

  20. 33 CFR 159.12a - Certification of certain Type III devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Certification of certain Type III devices. 159.12a Section 159.12a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Certification Procedures § 159.12a Certification...

  1. Spatially Distinct Neutrophil Responses within the Inflammatory Lesions of Pneumonic Plague

    PubMed Central

    Stasulli, Nikolas M.; Eichelberger, Kara R.; Price, Paul A.; Pechous, Roger D.; Montgomery, Stephanie A.; Parker, Joel S.

    2015-01-01

    ABSTRACT During pneumonic plague, the bacterium Yersinia pestis elicits the development of inflammatory lung lesions that continue to expand throughout infection. This lesion development and persistence are poorly understood. Here, we examine spatially distinct regions of lung lesions using laser capture microdissection and transcriptome sequencing (RNA-seq) analysis to identify transcriptional differences between lesion microenvironments. We show that cellular pathways involved in leukocyte migration and apoptosis are downregulated in the center of lung lesions compared to the periphery. Probing for the bacterial factor(s) important for the alteration in neutrophil survival, we show both in vitro and in vivo that Y. pestis increases neutrophil survival in a manner that is dependent on the type III secretion system effector YopM. This research explores the complexity of spatially distinct host-microbe interactions and emphasizes the importance of cell relevance in assays in order to fully understand Y. pestis virulence. PMID:26463167

  2. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  3. A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and guinea pigs.

    PubMed

    Feodorova, V A; Pan'kina, L N; Savostina, E P; Sayapina, L V; Motin, V L; Dentovskaya, S V; Shaikhutdinova, R Z; Ivanov, S A; Lindner, B; Kondakova, A N; Bystrova, O V; Kocharova, N A; Senchenkova, S N; Holst, O; Pier, G B; Knirel, Y A; Anisimov, A P

    2007-11-01

    The lpxM mutant of the live vaccine Yersinia pestis EV NIIEG strain synthesising a less toxic penta-acylated lipopolysaccharide was found to be avirulent in mice and guinea pigs, notably showing no measurable virulence in Balb/c mice which do retain some susceptibility to the parental strain itself. Twenty-one days after a single injection of the lpxM-mutant, 85-100% protection was achieved in outbred mice and guinea pigs, whereas a 43% protection rate was achieved in Balb/c mice given single low doses (10(3) to 2.5 x 10(4) CFU) of this vaccine. A subcutaneous challenge with 2000 median lethal doses (equal to 20,000 CFU) of fully virulent Y. pestis 231 strain, is a 6-10-fold higher dose than that which the EV NIIEG itself can protect against.

  4. In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.

    2012-01-01

    The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.

  5. Identification of a high-virulence clone of type III Streptococcus agalactiae (group B Streptococcus) causing invasive neonatal disease.

    PubMed

    Musser, J M; Mattingly, S J; Quentin, R; Goudeau, A; Selander, R K

    1989-06-01

    Chromosomal genotypes of 128 isolates of six serotypes (Ia, Ib, Ic, II, Ic/II, and III) of Streptococcus agalactiae (group B Streptococcus) recovered predominantly from human infants in the United States were characterized by an analysis of electrophoretically demonstrable allelic profiles at 11 metabolic enzyme loci. Nineteen distinctive electrophoretic types (ETs), representing multilocus clonal genotypes, were identified. Mean genetic diversity per locus among ETs of isolates of the same serotype was, on average, nearly equal to that in all 19 ETs. Cluster analysis of the ETs revealed two primary phylogenetic divisions at a genetic distance of 0.65. A single clone (ET 1) represented by 40 isolates expressing type III antigen formed division I. Division II was composed of 18 ETs in three major lineages diverging from one another at distances greater than 0.35 and included strains of all six antigenic classes. The type III organisms in division I produce more extracellular neuraminidase and apparently are more virulent than the type III strains in division II, which are related to strains of other serotypes that cause disease much less frequently. The existence of this unusually virulent clone accounts, in major part, for the high morbidity and mortality associated with infection by type III organisms.

  6. Concomitant glenohumeral pathologies in high-grade acromioclavicular separation (type III - V).

    PubMed

    Markel, Jochen; Schwarting, Tim; Malcherczyk, Dominik; Peterlein, Christian-Dominik; Ruchholtz, Steffen; El-Zayat, Bilal Farouk

    2017-11-10

    Acromioclavicular joint (ACJ) dislocations are common injuries of the shoulder associated with physical activity. The diagnosis of concomitant injuries proves complicated due to the prominent clinical symptoms of acute ACJ dislocation. Because of increasing use of minimally invasive surgery techniques concomitant pathologies are diagnosed more often than with previous procedures. The aim of this study was to identify the incidence of concomitant intraarticular injuries in patients with high-grade acromioclavicular separation (Rockwood type III - V) as well as to reveal potential risk constellations. The concomitant pathologies were compiled during routine arthroscopically assisted treatment in altogether 163 patients (147 male; 16 female; mean age 36.8 years) with high-grade acromioclavicular separation (Rockwood type III: n = 60; Rockwood type IV: n = 6; Rockwood type V: n = 97). Acromioclavicular separation occurred less often in women than men (1:9). In patients under 35, the most common cause for ACJ dislocation was sporting activity (37.4%). Rockwood type V was observed significantly more often than the other types with 57.5% (Rockwood type III = 36.8%, Rockwood type IV 3.7%). Concomitant pathologies were diagnosed in 39.3% of the patients with that number rising to as much as 57.3% in patients above 35 years. Most common associated injuries were rotator cuff injuries (32.3%), chondral defects (30.6%) and SLAP-lesions (22.6%). Of all patients, 8.6% needed additional reconstructive surgery. Glenohumeral injuries are a much more common epiphenomenon during acromioclavicular separation than previously ascertained. High risk group for accompanying injuries are patients above 35 years with preexisting degenerative disease. The increasing use of minimally invasive techniques allows for an easier diagnosis and simultaneous treatment of the additional pathologies.

  7. Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells.

    PubMed

    Mori, Yusuke; Eguchi, Kohgaku; Yoshii, Kiyonori; Ohtubo, Yoshitaka

    2016-11-01

    Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca 2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca 2+ imaging, we supravitally labeled type II cells (phospholipase C β2 [PLCβ2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca 2+ in the bathing solution. The addition of 1 μM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 μM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca 2+ from intracellular stores. We also discuss the underlying mechanism of the Ca 2+ response and the role of M3 in type III cells.

  8. Symptoms of Autism Spectrum Disorder (ASD) in Individuals with Mucopolysaccharide Disease Type III (Sanfilippo Syndrome): A Systematic Review

    ERIC Educational Resources Information Center

    Wolfenden, C.; Wittkowski, A.; Hare, D. J.

    2017-01-01

    The prevalence of autism spectrum disorder (ASD) in many genetic disorders is well documented but not as yet in Mucopolysaccharidosis type III (MPS III). MPS III is a recessively inherited metabolic disorder and evidence suggests that symptoms of ASD present in MPS III. This systematic review examined the extant literature on the symptoms of ASD…

  9. Type III Nrg1 back signaling enhances functional TRPV1 along sensory axons contributing to basal and inflammatory thermal pain sensation.

    PubMed

    Canetta, Sarah E; Luca, Edlira; Pertot, Elyse; Role, Lorna W; Talmage, David A

    2011-01-01

    Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs). Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K, making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function.

  10. G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chang Lan; Shim, Myoung Sup; Chung, Jiyeol

    2006-10-06

    G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus ofmore » G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is First selenoprotein identified in the Golgi apparatus.« less

  11. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development

    PubMed Central

    Xiao, Fangming; Mark Goodwin, S; Xiao, Yanmei; Sun, Zhaoyu; Baker, Douglas; Tang, Xiaoyan; Jenks, Matthew A; Zhou, Jian-Min

    2004-01-01

    Pseudomonas syringae relies on type III secretion system to deliver effector proteins into the host cell for parasitism. Type III genes are induced in planta, but host factors affecting the induction are poorly understood. Here we report on the identification of an Arabidopsis mutant, att1 (for aberrant induction of type three genes), that greatly enhances the expression of bacterial type III genes avrPto and hrpL. att1 plants display enhanced disease severity to a virulent strain of P. syringae, suggesting a role of ATT1 in disease resistance. ATT1 encodes CYP86A2, a cytochrome P450 monooxygenase catalyzing fatty acid oxidation. The cutin content is reduced to 30% in att1, indicating that CYP86A2 plays a major role in the biosynthesis of extracellular lipids. att1 has a loose cuticle membrane ultrastructure and shows increased permeability to water vapor, demonstrating the importance of the cuticle membrane in controlling water loss. The enhanced avrPto-luc expression is specific to att1, but not another cuticle mutant, wax2. The results suggest that certain cutin-related fatty acids synthesized by CYP86A2 may repress bacterial type III gene expression in the intercellular spaces. PMID:15241470

  12. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria.

    PubMed

    Mendes, Carolina C P; Gomes, Dawidson A; Thompson, Mayerson; Souto, Natalia C; Goes, Tercio S; Goes, Alfredo M; Rodrigues, Michele A; Gomez, Marcus V; Nathanson, Michael H; Leite, M Fatima

    2005-12-09

    There are three isoforms of the inositol 1,4,5- trisphosphate receptor (InsP(3)R), each of which has a distinct effect on Ca(2+) signaling. However, it is not known whether each isoform similarly plays a distinct role in the activation of Ca(2+)-mediated events. To investigate this question, we examined the effects of each InsP(3)R isoform on transmission of Ca(2+) signals to mitochondria and induction of apoptosis. Each isoform was selectively silenced using isoform-specific small interfering RNA in Chinese hamster ovary cells, which express all three InsP(3)R isoforms. ATP-induced cytosolic Ca(2+) signaling patterns were altered, regardless of which isoform was silenced, but in a different fashion depending on the isoform. ATP also induced Ca(2+) signals in mitochondria, which were inhibited more effectively by silencing the type III InsP(3)R than by silencing either the type I or type II isoform. The type III isoform also co-localized most strongly with mitochondria. When apoptosis was induced by activation of either the extrinsic or intrinsic apoptotic pathway, induction was reduced most effectively by silencing the type III InsP(3)R. These findings provide evidence that the type III isoform of the InsP(3)R plays a special role in induction of apoptosis by preferentially transmitting Ca(2+) signals into mitochondria.

  13. Quantitative comparisons of type III radio burst intensity and fast electron flux at 1 AU

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Evans, L. G.; Lin, R. P.

    1976-01-01

    We compare the flux of fast solar electrons and the intensity of the type III radio emission generated by these particles at 1 AU. We find that there are two regimes in the generation of type III radiation: one where the radio intensity is linearly proportional to the electron flux, and the second regime, which occurs above a threshold electron flux, where the radio intensity is proportional to the approximately 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism.

  14. [Efficacy and safety of Longjintonglin Capsule for the treatment of type III prostatitis].

    PubMed

    Shang, Xue-Jun; Geng, Qiang; Duan, Jian-Min; Zheng, De-Quan; Xie, Lei; Guo, Jun

    2014-12-01

    To study the therapeutic effect and safety of Longjintonglin Capsule in the treatment of type III prostatitis (chronic prostatitis/chronic pelvic pain syndrome, CP/CPPS). We selected 240 patients with type III prostatitis according to the diagnostic standards of the American National Institute of Health (NIH) and treated them with Longjintonglin Capsule orally 3 capsules once tid for 12 weeks. Based on the NIH chronic prostatitis symptom index (NIH-CPSI), traditional Chinese medicine (TCM) syndrome score, and leukocyte count in the expressed prostatic secretion (EPS), we evaluated the results of treatment. Totally 238 patients completed the treatment, including 108 IIIA and 120 III B prostatitis cases. Before and after 4, 8, and 12 weeks of treatment, the total NIH-CPSI scores were 23.12 ± 6.99, 18.22 ± 6.39, 14.12 ± 5.88, and 12.36 ± 6.04 (P < 0.01) in the IIIA prostatitis patients and 22.01 ± 6.28, 17.56 ± 5.89, 13.67 ± 5.18, and 11.45 ± 5.22 in the III prostatitis patients (P < 0.01), the TCM syndrome scores were 52.12 ± 13.08, 48.13 ± 12.11, 43.05 ± 11.19, and 40.78 ± 10. 59 in the former (P < 0.01) and 53.02 ± 12.12, 49.32 ± 12.78, 44.01 ± 11.79, and 39.67 ± 10.26 in the latter (P < 0.01), and the leukocyte counts were 26.09 ± 21.55, 23.02 ± 18.61, 18.25 ± 17.79, and 15.36 ± 16.38 in the IIIA cases (P < 0.01). Neither abnormalities in liver and renal function nor obvious adverse events were observed during the experiment. Longjintonglin Capsule, with its advantages of safety, effectiveness, and no obvious adverse reactions in the treatment of type III prostatitis, deserves to be recommended for clinical application.

  15. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    PubMed

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The relationship between chronic type III acromioclavicular joint dislocation and cervical spine pain

    PubMed Central

    2009-01-01

    Background This study was aimed at evaluating whether or not patients with chronic type III acromioclavicular dislocation develop cervical spine pain and degenerative changes more frequently than normal subjects. Methods The cervical spine of 34 patients with chronic type III AC dislocation was radiographically evaluated. Osteophytosis presence was registered and the narrowing of the intervertebral disc and cervical lordosis were evaluated. Subjective cervical symptoms were investigated using the Northwick Park Neck Pain Questionnaire (NPQ). One-hundred healthy volunteers were recruited as a control group. Results The rate and distribution of osteophytosis and narrowed intervertebral disc were similar in both of the groups. Patients with chronic AC dislocation had a lower value of cervical lordosis. NPQ score was 17.3% in patients with AC separation (100% = the worst result) and 2.2% in the control group (p < 0.05). An inverse significant nonparametric correlation was found between the NPQ value and the lordosis degree in the AC dislocation group (p = 0.001) wheras results were not correlated (p = 0.27) in the control group. Conclusions Our study shows that chronic type III AC dislocation does not interfere with osteophytes formation or intervertebral disc narrowing, but that it may predispose cervical hypolordosis. The higher average NPQ values were observed in patients with chronic AC dislocation, especially in those that developed cervical hypolordosis. PMID:20015356

  17. Usher syndrome type III (USH3) linked to chromosome 3q in an Italian family.

    PubMed

    Gasparini, P; De Fazio, A; Croce, A I; Stanziale, P; Zelante, L

    1998-08-01

    We report an Italian family affected by Usher type III syndrome. Linkage study, performed using markers corresponding to the Usher loci already mapped, clearly showed linkage with markers on chromosome 3q24-25. Our data further support the presence of an Usher III locus on chromosome 3, as recently reported in a Finnish population.

  18. The YopJ superfamily of type III efforts in plant-associated bacteria

    USDA-ARS?s Scientific Manuscript database

    Bacterial pathogens employ the type III secretion system to secrete and translocate effector proteins into their hosts. The primary function of these effector proteins is believed to be the suppression of host defense responses or innate immunity. However, some effector proteins may be recognized by...

  19. Misidentification of Yersinia pestis by automated systems, resulting in delayed diagnoses of human plague infections--Oregon and New Mexico, 2010-2011.

    PubMed

    Tourdjman, Mathieu; Ibraheem, Mam; Brett, Meghan; Debess, Emilio; Progulske, Barbara; Ettestad, Paul; McGivern, Teresa; Petersen, Jeannine; Mead, Paul

    2012-10-01

    One human plague case was reported in Oregon in September 2010 and another in New Mexico in May 2011. Misidentification of Yersinia pestis by automated identification systems contributed to delayed diagnoses for both cases.

  20. Treatment of type II and type III open tibia fractures in children.

    PubMed

    Bartlett, C S; Weiner, L S; Yang, E C

    1997-07-01

    To determine whether severe open tibial fractures in children behave like similar fractures in adults. A combined retrospective and prospective review evaluated treatment protocol for type II and type III open tibial fractures in children over a ten-year period from 1984 to 1993. Twenty-three fractures were studied in children aged 3.5 to 14.5 (18 boys and 5 girls). There were six type II, eight type IIIA, and nine type IIIB fractures. Type I fractures were not included. Seven fractures were comminuted with significant butterfly fragments or segmental patterns. Treatment consisted of adequate debridement of soft tissues, closure of dead space, and stabilization with external fixation. Bone debridement only included contaminated devitalized bone or devitalized bone without soft tissue coverage. Bone that could be covered despite periosteal stripping was preserved. Clinical and roentgenographic examinations were used to determine time to union. All fractures in this series healed between eight and twenty-six weeks. Wound coverage included two flaps, three skin grafts, and two delayed primary closures. No bone grafts were required. There were no deep infections, growth arrests, or malunions. Follow-up has ranged from six months to four years. Open tibia fractures in children differ from similar fractures in adults in the following ways: soft tissues have excellent healing capacity, devitalized bone that is not contaminated or exposed can be saved and will become incorporated, and external fixation can be maintained until the fracture has healed. Periosteum in young children can form bone even in the face of bone loss.

  1. Type III Nrg1 Back Signaling Enhances Functional TRPV1 along Sensory Axons Contributing to Basal and Inflammatory Thermal Pain Sensation

    PubMed Central

    Canetta, Sarah E.; Luca, Edlira; Pertot, Elyse; Role, Lorna W.; Talmage, David A.

    2011-01-01

    Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs) [1]. Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons [2]. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions [3]. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K [4], [5], [6], making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function. PMID:21949864

  2. Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system

    PubMed Central

    Santi, Luca; Giritch, Anatoli; Roy, Chad J.; Marillonnet, Sylvestre; Klimyuk, Victor; Gleba, Yuri; Webb, Robert; Arntzen, Charles J.; Mason, Hugh S.

    2006-01-01

    Plague is still an endemic disease in different regions of the world. Increasing reports of incidence, the discovery of antibiotic resistance strains, and concern about a potential use of the causative bacteria Yersinia pestis as an agent of biological warfare have highlighted the need for a safe, efficacious, and rapidly producible vaccine. The use of F1 and V antigens and the derived protein fusion F1-V has shown great potential as a protective vaccine in animal studies. Plants have been extensively studied for the production of pharmaceutical proteins as an inexpensive and scalable alternative to common expression systems. In the current study the recombinant plague antigens F1, V, and fusion protein F1-V were produced by transient expression in Nicotiana benthamiana by using a deconstructed tobacco mosaic virus-based system that allowed very rapid and extremely high levels of expression. All of the plant-derived purified antigens, administered s.c. to guinea pigs, generated systemic immune responses and provided protection against an aerosol challenge of virulent Y. pestis. PMID:16410352

  3. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo

    PubMed Central

    Douam, Florian; Soto Albrecht, Yentli E.; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V.

    2017-01-01

    ABSTRACT Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR−/−) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR−/−) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR−/− λR−/− mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity. PMID:28811340

  4. Evidence of scattering effects on the sizes of interplanetary Type III radio bursts

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Hoang, S.; Dulk, G. A.

    1985-01-01

    An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.

  5. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*

    PubMed Central

    Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe

    2015-01-01

    Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121

  6. High-Throughput, Signature-Tagged Mutagenic Approach To Identify Novel Virulence Factors of Yersinia pestis CO92 in a Mouse Model of Infection

    PubMed Central

    Ponnusamy, Duraisamy; Fitts, Eric C.; Erova, Tatiana E.; Kozlova, Elena V.; Kirtley, Michelle L.; Tiner, Bethany L.; Andersson, Jourdan A.

    2015-01-01

    The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20

  7. High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection.

    PubMed

    Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Erova, Tatiana E; Kozlova, Elena V; Kirtley, Michelle L; Tiner, Bethany L; Andersson, Jourdan A; Chopra, Ashok K

    2015-05-01

    The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20

  8. What's the point of the type III secretion system needle?

    PubMed Central

    Blocker, Ariel J.; Deane, Janet E.; Veenendaal, Andreas K. J.; Roversi, Pietro; Hodgkinson, Julie L.; Johnson, Steven; Lea, Susan M.

    2008-01-01

    Recent work by several groups has significantly expanded our knowledge of the structure, regulation of assembly, and function of components of the extracellular portion of the type III secretion system (T3SS) of Gram-negative bacteria. This perspective presents a structure-informed analysis of functional data and discusses three nonmutually exclusive models of how a key aspect of T3SS biology, the sensing of host cells, may be performed. PMID:18458349

  9. Protective Immunity Against a Lethal Respiratory Yersinia pestis Challenge Induced by V Antigen or the F1 Capsular Antigen Incorporated into Adenovirus Capsid

    PubMed Central

    Boyer, Julie L.; Sofer-Podesta, Carolina; Ang, John; Hackett, Neil R.; Chiuchiolo, Maria J.; Senina, Svetlana; Perlin, David

    2010-01-01

    Abstract The aerosol form of the bacterium Yersinia pestis causes pneumonic plague, a rapidly fatal disease that is a biothreat if deliberately released. At present, no plague vaccines are available for use in the United States, but subunit vaccines based on the Y. pestis V antigen and F1 capsular protein show promise when administered with adjuvants. In the context that adenovirus (Ad) gene transfer vectors have a strong adjuvant potential related to the ability to directly infect dendritic cells, we hypothesized that modification of the Ad5 capsid to display either the Y. pestis V antigen or the F1 capsular antigen on the virion surface would elicit high V antigen- or F1-specific antibody titers, permit boosting with the same Ad serotype, and provide better protection against a lethal Y. pestis challenge than immunization with equivalent amounts of V or F1 recombinant protein plus conventional adjuvant. We constructed AdYFP-pIX/V and AdLacZ-pIX/F1, E1–, E3– serotype 5 Ad gene transfer vectors containing a fusion of the sequence for either the Y. pestis V antigen or the F1 capsular antigen to the carboxy-terminal sequence of pIX, a capsid protein that can accommodate the entire V antigen (37 kDa) or F1 protein (15 kDa) without disturbing Ad function. Immunization with AdYFP-pIX/V followed by a single repeat administration of the same vector at the same dose resulted in significantly better protection of immunized animals compared with immunization with a molar equivalent amount of purified recombinant V antigen plus Alhydrogel adjuvant. Similarly, immunization with AdLacZ-pIX/F1 in a prime–boost regimen resulted in significantly enhanced protection of immunized animals compared with immunization with a molar-equivalent amount of purified recombinant F1 protein plus adjuvant. These observations demonstrate that Ad vaccine vectors containing pathogen-specific antigens fused to the pIX capsid protein have strong adjuvant properties and stimulate more robust

  10. Counselling for deinfibulation among women with type III female genital mutilation: A systematic review.

    PubMed

    Bello, Segun; Ogugbue, Miriam; Chibuzor, Moriam; Okomo, Uduak; Meremikwu, Martin M

    2017-02-01

    Counselling is a routine practice done before deinfibulation in women with type III female genital mutilation (FGM). However, cultural and social pressures, in addition to maladaptation to the changes in the body post deinfibulation, cause some women to choose to be reinfibulated after being deinfibulated. To conduct a systematic review of the impact of counselling prior to deinfibulation on patient satisfaction, marital satisfaction, and rate of requests for reinfibulation among women living with type III FGM. The secondary aim was to assess the impact of male partner involvement in counselling on patient satisfaction, marital satisfaction, and rate of requests for reinfibulation. Major databases including Cochrane Central Register of Controlled Trials, Medline, SCOPUS, and ClinicalTrials.gov were searched until August 2015. Studies comparing women with type III FGM who received counselling before deinfibulation versus no counselling were included. Two team members independently screened and collected data. No eligible studies were identified. There is no evidence to conclude that counselling before deinfibulation influences patients' satisfaction with overall quality of care or rates of request for reinfibulation. CRD42015024675. © 2017 International Federation of Gynecology and Obstetrics. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  11. Parent-of-origin effects on schizophrenia-relevant behaviours of type III neuregulin 1 mutant mice.

    PubMed

    Shang, Kani; Talmage, David A; Karl, Tim

    2017-08-14

    A robust, disease-relevant phenotype is paramount to the validity of genetic mouse models, which are an important tool in understanding complex diseases. Recent evidence from genome-wide association studies suggests the genetic contribution of parents to offspring is not equivalent. Despite this, few studies to date have examined the potential impact of parent genotype (i.e. origin of mutation) on the offspring of disease-relevant genetic mouse models. To elucidate the potential impact of the sex of the mutant parent on offspring phenotype, we characterized male and female offspring of an established schizophrenia mouse model, which had been generated using two different breeding schemes, in a range of disease-relevant behaviours. We compared heterozygous type III neuregulin 1 mutant (type III Nrg1 +/- ) and wild type-like control (WT) offspring from mutant father x WT mother pairings with offspring from mutant mother x WT father pairings. Offspring were tested in schizophrenia-relevant paradigms including the elevated plus maze (EPM), fear conditioning (FC), prepulse inhibition (PPI), social interaction (SI), and open field (OF). We found type III Nrg1 +/- males from mutant fathers, but not mutant mothers, showed deficits in contextual fear-associated memory and exhibited increased social interaction, compared to their WT littermates. Type III Nrg1 +/- females across breeding colonies only exhibited a subtle change to their acoustic startle response and sensorimotor gating. These results suggest a paternal-dependent transmission of genetically induced behavioural characteristics. Though the mechanisms governing this phenomenon are unclear, our results show that parental origin of mutation can alter the behavioural phenotype of genetic mouse models. Thus, researchers should carefully consider their breeding scheme when dealing with genetic mouse models of diseases such as schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  12. Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks.

    PubMed

    Sha, Jian; Endsley, Janice J; Kirtley, Michelle L; Foltz, Sheri M; Huante, Matthew B; Erova, Tatiana E; Kozlova, Elena V; Popov, Vsevolod L; Yeager, Linsey A; Zudina, Irina V; Motin, Vladimir L; Peterson, Johnny W; DeBord, Kristin L; Chopra, Ashok K

    2011-05-01

    We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule. The growth rate of the Δcaf mutant generally was similar to that of the wild-type (WT) bacterium at both 26 and 37 °C, although the mutant's growth dropped slightly during the late phase at 37 °C. The Δcaf mutant was as virulent as WT CO92 in the pneumonic plague mouse model; however, it was attenuated in developing bubonic plague. Both dipsticks had similar sensitivities, requiring a minimum of 0.5 μg/ml of purified F1 antigen or 1 × 10(5) to 5 × 10(5) CFU/ml of WT CO92 for positive results, while the blood samples were negative for up to 1 × 10(8) CFU/ml of the Δcaf mutant. Our studies demonstrated the diagnostic potential of two plague dipsticks in detecting capsular-positive strains of Y. pestis in bubonic and pneumonic plague.

  13. Characterization of an F1 Deletion Mutant of Yersinia pestis CO92, Pathogenic Role of F1 Antigen in Bubonic and Pneumonic Plague, and Evaluation of Sensitivity and Specificity of F1 Antigen Capture-Based Dipsticks▿

    PubMed Central

    Sha, Jian; Endsley, Janice J.; Kirtley, Michelle L.; Foltz, Sheri M.; Huante, Matthew B.; Erova, Tatiana E.; Kozlova, Elena V.; Popov, Vsevolod L.; Yeager, Linsey A.; Zudina, Irina V.; Motin, Vladimir L.; Peterson, Johnny W.; DeBord, Kristin L.; Chopra, Ashok K.

    2011-01-01

    We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule. The growth rate of the Δcaf mutant generally was similar to that of the wild-type (WT) bacterium at both 26 and 37°C, although the mutant's growth dropped slightly during the late phase at 37°C. The Δcaf mutant was as virulent as WT CO92 in the pneumonic plague mouse model; however, it was attenuated in developing bubonic plague. Both dipsticks had similar sensitivities, requiring a minimum of 0.5 μg/ml of purified F1 antigen or 1 × 105 to 5 × 105 CFU/ml of WT CO92 for positive results, while the blood samples were negative for up to 1 × 108 CFU/ml of the Δcaf mutant. Our studies demonstrated the diagnostic potential of two plague dipsticks in detecting capsular-positive strains of Y. pestis in bubonic and pneumonic plague. PMID:21367990

  14. Bi-Exact Groups, Strongly Ergodic Actions and Group Measure Space Type III Factors with No Central Sequence

    NASA Astrophysics Data System (ADS)

    Houdayer, Cyril; Isono, Yusuke

    2016-12-01

    We investigate the asymptotic structure of (possibly type III) crossed product von Neumann algebras {M = B rtimes Γ} arising from arbitrary actions {Γ \\curvearrowright B} of bi-exact discrete groups (e.g. free groups) on amenable von Neumann algebras. We prove a spectral gap rigidity result for the central sequence algebra {N' \\cap M^ω} of any nonamenable von Neumann subalgebra with normal expectation {N subset M}. We use this result to show that for any strongly ergodic essentially free nonsingular action {Γ \\curvearrowright (X, μ)} of any bi-exact countable discrete group on a standard probability space, the corresponding group measure space factor {L^∞(X) rtimes Γ} has no nontrivial central sequence. Using recent results of Boutonnet et al. (Local spectral gap in simple Lie groups and applications, 2015), we construct, for every {0 < λ ≤ 1}, a type {III_λ} strongly ergodic essentially free nonsingular action {F_∞ \\curvearrowright (X_λ, μ_λ)} of the free group {{F}_∞} on a standard probability space so that the corresponding group measure space type {III_λ} factor {L^∞(X_λ, μ_λ) rtimes F_∞} has no nontrivial central sequence by our main result. In particular, we obtain the first examples of group measure space type {III} factors with no nontrivial central sequence.

  15. A Type III Protein Arginine Methyltransferase from the Protozoan Parasite Trypanosoma brucei*

    PubMed Central

    Fisk, John C.; Sayegh, Joyce; Zurita-Lopez, Cecilia; Menon, Sarita; Presnyak, Vladimir; Clarke, Steven G.; Read, Laurie K.

    2009-01-01

    Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle. PMID:19254949

  16. A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei.

    PubMed

    Fisk, John C; Sayegh, Joyce; Zurita-Lopez, Cecilia; Menon, Sarita; Presnyak, Vladimir; Clarke, Steven G; Read, Laurie K

    2009-04-24

    Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle.

  17. Biochemical, Structural and Molecular Dynamics Analyses of the Potential Virulence Factor RipA from Yersinia pestis

    PubMed Central

    Torres, Rodrigo; Swift, Robert V.; Chim, Nicholas; Wheatley, Nicole; Lan, Benson; Atwood, Brian R.; Pujol, Céline; Sankaran, Banu; Bliska, James B.; Amaro, Rommie E.; Goulding, Celia W.

    2011-01-01

    Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous study has shown that a novel rip (required for intracellular proliferation) operon (ripA, ripB and ripC) is essential for replication and survival of Y. pestis in postactivated macrophages, by playing a role in lowering macrophage-produced nitric oxide (NO) levels. A bioinformatics analysis indicates that the rip operon is conserved among a distally related subset of macrophage-residing pathogens, including Burkholderia and Salmonella species, and suggests that this previously uncharacterized pathway is also required for intracellular survival of these pathogens. The focus of this study is ripA, which encodes for a protein highly homologous to 4-hydroxybutyrate-CoA transferase; however, biochemical analysis suggests that RipA functions as a butyryl-CoA transferase. The 1.9 Å X-ray crystal structure reveals that RipA belongs to the class of Family I CoA transferases and exhibits a unique tetrameric state. Molecular dynamics simulations are consistent with RipA tetramer formation and suggest a possible gating mechanism for CoA binding mediated by Val227. Together, our structural characterization and molecular dynamic simulations offer insights into acyl-CoA specificity within the active site binding pocket, and support biochemical results that RipA is a butyryl-CoA transferase. We hypothesize that the end product of the rip operon is butyrate, a known anti-inflammatory, which has been shown to lower NO levels in macrophages. Thus, the results of this molecular study of Y. pestis RipA provide a structural platform for rational inhibitor design, which may lead to a greater understanding of the role of RipA in

  18. Characterization of Residual Medium Peptides from Yersinia pestis Cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clowers, Brian H.; Wunschel, David S.; Kreuzer, Helen W.

    2013-04-03

    Using a range of common microbial medium formulations (TSB, BHI, LB, and G-media), two attenuated strains of Y. pestis (KIM D27 (pgm-) and KIMD1 lcr-) were cultivated in triplicate. These cellular suspensions were used to develop a method of extracting residual medium peptides from the final microbial preparation to assess their relative abundance and identity. Across the conditions examined, which included additional cellular washing and different forms of microbial inactivation, residual medium peptides were detected. Despite the range of growth medium sources used and the associated manufacturing processes used in their production, a high degree of peptide similarity was observedmore » for a given medium recipe. These results demonstrate that residual medium peptides are retained using traditional microbial cultivation techniques and may be used to inform forensic investigations with respect to production deduction.« less

  19. A New Clade of African Body and Head Lice Infected by Bartonella quintana and Yersinia pestis-Democratic Republic of the Congo.

    PubMed

    Drali, Rezak; Shako, Jean-Christophe; Davoust, Bernard; Diatta, Georges; Raoult, Didier

    2015-11-01

    The human body louse is known as a vector for the transmission of three serious diseases-specifically, epidemic typhus, trench fever, and relapsing fever caused by Rickettsia prowazekii, Bartonella quintana, and Borrelia recurrentis, respectively-that have killed millions of people. It is also suspected in the transmission of a fourth pathogen, Yersinia pestis, which is the etiologic agent of plague. To date, human lice belonging to the genus Pediculus have been classified into three mitochondrial clades: A, B, and C. Here, we describe a fourth mitochondrial clade, Clade D, comprising head and body lice. Clade D may be a vector of B. quintana and Y. pestis, which is prevalent in a highly plague-endemic area near the Rethy Health District, Orientale Province, Democratic Republic of the Congo. © The American Society of Tropical Medicine and Hygiene.

  20. A model of high-affinity antibody binding to type III group B Streptococcus capsular polysaccharide.

    PubMed

    Wessels, M R; Muñoz, A; Kasper, D L

    1987-12-01

    We recently reported that the single repeating-unit pentasaccharide of type III group B Streptococcus (GBS) capsular polysaccharide is only weakly reactive with type III GBS antiserum. To further elucidate the relationship between antigen-chain length and antigenicity, tritiated oligosaccharides derived from type III capsular polysaccharide were used to generate detailed saturation binding curves with a fixed concentration of rabbit antiserum in a radioactive antigen-binding assay. A graded increase in affinity of antigen-antibody binding was seen as oligosaccharide size increased from 2.6 repeating units to 92 repeating units. These differences in affinity of antibody binding to oligosaccharides of different molecular size were confirmed by immunoprecipitation and competitive ELISA, two independent assays of antigen-antibody binding. Analysis of the saturation binding experiment indicated a difference of 300-fold in antibody-binding affinity for the largest versus the smallest tested oligosaccharides. Unexpectedly, the saturation binding values approached by the individual curves were inversely related to oligosaccharide chain length on a molar basis but equivalent on a weight basis. This observation is compatible with a model in which binding of an immunoglobulin molecule to an antigenic site on the polysaccharide facilitates subsequent binding of antibody to that antigen.

  1. Anti-freezing-protein type III strongly influences the expression of relevant genes in cryopreserved potato shoot tips.

    PubMed

    Seo, Ji Hyang; Naing, Aung Htay; Jeon, Su Min; Kim, Chang Kil

    2018-06-04

    AFP improved cryopreservation efficiency of potato (Solanum tuberosum cv. Superior) by regulating transcript levels of CBF1 and DHN1. However, the optimal AFP concentration required for strong induction of the genes was dependent on the type of vitrification solution to which the AFP was added: This finding suggests that AFP increased cryopreservation efficiency by transcriptional regulation of these genes, which might protect plant cell membranes from cold stress during cryopreservation. Despite the availability of many studies reporting the benefits of anti-freeze protein III (AFP III) as a cryoprotectant, the role of AFP III in this process has not been well demonstrated using molecular analysis. In addition, AFP III has not been exploited in the cryopreservation of potato thus far. Therefore, we studied the effects of AFP III on the cryopreservation of potato (Solanum tuberosum cv. Superior). We found that CBF1 and DHN1 genes are low temperature-inducible in potato leaves (S. tuberosum cv. Superior). Transcript levels of these genes expressed in shoot tips cryopreserved with AFP III were higher than those of the controls. However, the optimal AFP III concentration required for strong induction of the genes was dependent on the type of cryoprotection solution to which the AFP III was added: 500 ng/mL worked best for PVS2, while 1500 ng/mL was optimal for LS. Interestingly, the involvement of AFP III in the cryoprotection solutions improved cryopreservation efficiency as compared to the control, and expression levels of the detected genes were associated with cryopreservation efficiency. This finding suggests that AFP III increased cryopreservation efficiency by transcriptional regulation of these genes, which might protect plant cell membranes from cold stress during cryopreservation. Therefore, we expect that our findings will lead to the successful application of AFP III as a potent cryoprotectant in the cryopreservation of rare and commercially important

  2. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression.

    PubMed

    Bolen, Christopher R; Ding, Siyuan; Robek, Michael D; Kleinstein, Steven H

    2014-04-01

    Despite activating similar signaling cascades, the type I and type III interferons (IFNs) differ in their ability to antagonize virus replication. However, it is not clear whether these cytokines induce unique antiviral states, particularly in the liver, where the clinically important hepatitis B and C viruses cause persistent infection. Here, clustering and promoter analyses of microarray-based gene expression profiling were combined with mechanistic studies of signaling pathways to dynamically characterize the transcriptional responses induced by these cytokines in Huh7 hepatoma cells and primary human hepatocytes. Type I and III IFNs differed greatly in their level of interferon-stimulated gene (ISG) induction with a clearly detectable hierarchy (IFN-β > IFN-α > IFN-λ3 > IFN-λ1 > IFN-λ2). Notably, although the hierarchy identified varying numbers of differentially expressed genes when quantified using common statistical thresholds, further analysis of gene expression over multiple timepoints indicated that the individual IFNs do not in fact regulate unique sets of genes. The kinetic profiles of IFN-induced gene expression were also qualitatively similar with the important exception of IFN-α. While stimulation with either IFN-β or IFN-λs resulted in a similar long-lasting ISG induction, IFN-α signaling peaked early after stimulation then declined due to a negative feedback mechanism. The quantitative expression hierarchy and unique kinetics of IFN-α reveal potential specific roles for individual IFNs in the immune response, and elucidate the mechanism behind previously observed differences in IFN antiviral activity. While current clinical trials are focused on IFN-λ1 as a potential antiviral therapy, the finding that IFN-λ3 invariably possesses the highest activity among type III IFNs suggests that this cytokine may have superior clinical activity. © 2014 by the American Association for the Study of Liver Diseases.

  3. ON THE BRIGHTNESS AND WAITING-TIME DISTRIBUTIONS OF A TYPE III RADIO STORM OBSERVED BY STEREO/WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastwood, J. P.; Hudson, H. S.; Krucker, S.

    2010-01-10

    Type III solar radio storms, observed at frequencies below {approx}16 MHz by space-borne radio experiments, correspond to the quasi-continuous, bursty emission of electron beams onto open field lines above active regions. The mechanisms by which a storm can persist in some cases for more than a solar rotation whilst exhibiting considerable radio activity are poorly understood. To address this issue, the statistical properties of a type III storm observed by the STEREO/WAVES radio experiment are presented, examining both the brightness distribution and (for the first time) the waiting-time distribution (WTD). Single power-law behavior is observed in the number distribution asmore » a function of brightness; the power-law index is {approx}2.1 and is largely independent of frequency. The WTD is found to be consistent with a piecewise-constant Poisson process. This indicates that during the storm individual type III bursts occur independently and suggests that the storm dynamics are consistent with avalanche-type behavior in the underlying active region.« less

  4. Increased severity of type III supracondylar humerus fractures in the preteen population.

    PubMed

    Fletcher, Nicholas D; Schiller, Jonathan R; Garg, Sumeet; Weller, Amanda; Larson, A Noelle; Kwon, Michael; Browne, Richard; Copley, Lawson; Ho, Christine

    2012-09-01

    Supracondylar humerus fractures are the most common operative fractures in children; however, no studies describe the older child with this injury. The purpose of this study was to compare Gartland type III supracondylar humerus fractures in children older than 8 years of age with those in younger children than age 8. We hypothesized that there would be more complications in older children, reflecting a higher-energy injury mechanism. A retrospective chart review of supracondylar humerus fractures managed at a single level I pediatric trauma institution from 2004 to 2007 was performed. Patients with type III fractures were divided into groups based on age at presentation greater or less than 8. Baseline demographics, fracture characteristics, mechanism of injury, operative technique, and complications were analyzed. A consecutive series of 1297 pediatric patients with surgically treated supracondylar humerus fractures was retrospectively reviewed including 873 (67.3%) type III fractures. Of those, 160 (18.3%) patients were older than age 8 at time of injury. Older children were more likely to have fractures from high-energy mechanisms (45.1% vs. 28.7%, P<0.001) and more open fracture (3.8% vs. 1.3%, P=0.0097). There was no difference in preoperative or iatrogenic neuropraxias between groups. There was a shorter delay between presentation and surgery in older children (mean, 217 vs. 451 min, P<0.0001). Three or more pins were used more often in older patients (61.8% in older children vs. 43.6% in younger children, P<0.0001). Major complications including reoperation, loss of fixation, or compartment syndrome were rare in both groups (1.1% in younger group vs. 0.6% in older group, P=1.000). There was a trend toward more pin site infections in older children (3.75% vs. 1.56%, P=0.071). Physical therapy was required nearly 4 times more frequently in older children for management of residual stiffness (20.0% vs. 5.7%, P<0.0001). Children older than 8 years of age have a

  5. Properties of Decameter IIIb-III Pairs

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Brazhenko, A. I.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Rucker, H. O.

    2018-02-01

    A large number of Type IIIb-III pairs, in which the first component is a Type IIIb burst and the second one is a Type III burst, are often recorded during decameter Type III burst storms. From the beginning of their observation, the question of whether the components of these pairs are the first and the second harmonics of radio emission or not has remained open. We discuss properties of decameter IIIb-III pairs in detail to answer this question. The components of these pairs, Type IIIb bursts and Type III bursts, have essentially different durations and polarizations. At the same time their frequency drift rates are rather close, provided that the drift rates of Type IIIb bursts are a little larger those of Type III bursts at the same frequency. Frequency ratios of the bursts at the same moment are close to two. This points at a harmonic connection of the components in IIIb-III pairs. At the same time there was a serious difficulty, namely why the first harmonic had fine frequency structure in the form of striae and the second harmonic did not have it. Recently Loi, Cairns, and Li ( Astrophys. J. 790, 67, 2014) succeeded in solving this problem. The physical aspects of observational properties of decameter IIIb-III pairs are discussed and pros and cons of harmonic character of Type IIIb bursts and Type III bursts in IIIb-III pairs are presented. We conclude that practically all properties of the IIIb-III pair components can be understood in the framework of the harmonic relation of the components of the IIIb-III pairs.

  6. Tetracycline treatment of type III prostatitis nanobacteria infection of 100 cases report

    NASA Astrophysics Data System (ADS)

    Guo, Junyi; Li, Chongxian; Wu, Baisuo; Hao, Shaojun; Ming, Aimin; Zhang, Xinji; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To investigate the efficacy of tetracycline treatment of nanobacterial infection in 100 cases of type III prostatitis. randomly divided into treatment group and control group with double blind method, the treatment group was given Tetracycline Tablets 250mg, oral, 2 times a day; the control group were treated with Levofloxacin Tablets 0.lg, oral, 2 times a day; observation of curative effect of two groups of patients after 1 months of treatment. after the treatment group patients NIH-CPSI score and pain, urinary symptoms and quality of life scores were significantly lower than that of control group (P<0.01); after treatment, observation group lecithin corpuscle scale score was significantly higher than the control group (P<0.05). The treatment group and the control group patients after prostate fluid and cultured positive cases of nanobacterial numbers were 21 (21%) and 100 cases (100%), the positive rate of nanobacteria in observation group was significantly lower than the control group (P<0.05). There is a good effect Tetracycline Tablets treatment of nanobacterial infection of type III prostatitis.

  7. Resistance of Mice of the 129 Background to Yersinia pestis Maps to Multiple Loci on Chromosome 1

    PubMed Central

    Tencati, Michael

    2016-01-01

    Yersinia pestis is a Gram-negative bacterium that is the causative agent of bubonic and pneumonic plague. It is commonly acquired by mammals such as rodents and humans via the bite of an infected flea. We previously reported that multiple substrains of the 129 mouse background are resistant to pigmentation locus-negative (pgm−) Yersinia pestis and that this phenotype maps to a 30-centimorgan (cM) region located on chromosome 1. In this study, we have further delineated this plague resistance locus to a region of less than 20 cM through the creation and phenotyping of recombinant offspring arising from novel crossovers in this region. Furthermore, our experiments have revealed that there are at least two alleles in this initial locus, both of which are required for resistance on a susceptible C57BL/6 background. These two alleles work in trans since resistance is restored in offspring possessing one allele contributed by each parent. Our studies also indicated that the Slc11a1 gene (formerly known as Nramp1) located within the chromosome1 locus is not responsible for conferring resistance to 129 mice. PMID:27481241

  8. The ophthalmological course of Usher syndrome type III.

    PubMed

    Pakarinen, L; Tuppurainen, K; Laippala, P; Mäntyjärvi, M; Puhakka, H

    Usher syndrome is a recessive hereditary disease group with clinical and genetical heterogeneity leading to handicapped hearing and visual loss until middle age. It is the most common cause for deaf-blindness. Three distinct phenotypes and five distinct genotypes are already known. In Finland the distribution of known Usher types is different than elsewhere. Usher syndrome type III (USH3) is common in Finland and it is thought to include 40% of patients. Progressive hearing loss is characteristic of USH3. Elsewhere USH3 has been regarded as a rarity covering only several percent of the whole Usher population. The aim of this paper is to describe, for the first time, the course of visual handicap and typical refractive errors in USH3 and compare it with other USH types. From a total patient sample consisting of 229 Finnish USH patients, 200 patients' visual findings were analyzed in a multicenter retrospective follow-up study. The average progress rate during a 10-year follow-up period in different USH types was similar. The essential progress occurred below the age of 40 and was continuous up to that age. Visual acuity dropped below 0.05 (severely impaired) at the age of 37 and the visual fields were of tubular shape without any peripheric islands at the average age of 30. Clinically significant hypermetropia with astigmatism seems to be a pathognomonic clinical sign of USH3.

  9. Cochlear implantation using a custom guide catheter in fourteen patients with incomplete partition type III.

    PubMed

    Tian, Hao; Wang, Line; Gao, Fenqi; Liang, Wenqi; Peng, Kevin A

    2018-05-22

    Incomplete partition type III (IP-III), also termed X-linked deafness with stapes gusher, is a heterogeneous condition that predominantly affects males; however, females demonstrating the phenotype also exist. The absence of a bony partition between the fundus of the internal auditory canal (IAC) and cochlea predisposes these patients to cerebrospinal fluid leak or electrode passage into the IAC when performing cochlear implantation. We describe a surgeon-fabricated guide catheter, made intraoperatively from a 16-gauge intravenous catheter, that helps avoid electrode passage into the IAC during CI for patients with IP-III. Acceptable cochlear implant outcomes were attainable in IP-III patients, but these patients scored worse than matched CI patients with normal inner ear structures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. A live attenuated strain of Yersinia pestis ΔyscB provides protection against bubonic and pneumonic plagues in mouse model.

    PubMed

    Zhang, Xuecan; Qi, Zhizhen; Du, Zongmin; Bi, Yujing; Zhang, Qingwen; Tan, Yafang; Yang, Huiying; Xin, Youquan; Yang, Ruifu; Wang, Xiaoyi

    2013-05-24

    To develop a safe and effective live plague vaccine, the ΔyscB mutant was constructed based on Yersinia pestis biovar Microtus strain 201 that is avirulent to humans, but virulent to mice. The virulence, immunogenicity and protective efficacy of the ΔyscB mutant were evaluated in this study. The results showed that the ΔyscB mutant was severely attenuated, elicited a higher F1-specific antibody titer and provided protective efficacy against bubonic and pneumonic plague in mouse model. The ΔyscB mutant could induce the secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4 and IL-10). Taken together, the ΔyscB mutant represented a potential vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses and to provide good protection against both subcutaneous and intranasal Y. pestis challenge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Purification of preparative quantities of group B Streptococcus type III oligosaccharides.

    PubMed

    Paoletti, L C; Johnson, K D

    1995-06-30

    Many bacterial capsular polysaccharides are regularly repeating units of oligosaccharides. Bacterial oligosaccharides have been used in neoglycoconjugate vaccines and as reagents in the study of specific antibody binding. Unfortunately, separation methods have not been adequate for the purification of preparative quantities of bacterial oligosaccharides. Here we describe a size-exclusion procedure that resulted in the resolution of group B Streptococcus type III oligosaccharides composed of 4-25 sugars.

  12. Genome-scale reconstruction of the metabolic network in Yersinia pestis CO92

    NASA Astrophysics Data System (ADS)

    Navid, Ali; Almaas, Eivind

    2007-03-01

    The gram-negative bacterium Yersinia pestis is the causative agent of bubonic plague. Using publicly available genomic, biochemical and physiological data, we have developed a constraint-based flux balance model of metabolism in the CO92 strain (biovar Orientalis) of this organism. The metabolic reactions were appropriately compartmentalized, and the model accounts for the exchange of metabolites, as well as the import of nutrients and export of waste products. We have characterized the metabolic capabilities and phenotypes of this organism, after comparing the model predictions with available experimental observations to evaluate accuracy and completeness. We have also begun preliminary studies into how cellular metabolism affects virulence.

  13. Symptoms of Autism Spectrum Disorder (ASD) in Individuals with Mucopolysaccharide Disease Type III (Sanfilippo Syndrome): A Systematic Review.

    PubMed

    Wolfenden, C; Wittkowski, A; Hare, D J

    2017-11-01

    The prevalence of autism spectrum disorder (ASD) in many genetic disorders is well documented but not as yet in Mucopolysaccharidosis type III (MPS III). MPS III is a recessively inherited metabolic disorder and evidence suggests that symptoms of ASD present in MPS III. This systematic review examined the extant literature on the symptoms of ASD in MPS III and quality assessed a total of 16 studies. Results indicated that difficulties within speech, language and communication consistent with ASD were present in MPS III, whilst repetitive and restricted behaviours and interests were less widely reported. The presence of ASD-like symptoms can result in late diagnosis or misdiagnosis of MPS III and prevent opportunities for genetic counselling and the provision of treatments.

  14. Modified closed-loop double-endobutton technique for repair of rockwood type III acromioclavicular dislocation

    PubMed Central

    Zhang, Lei; Zhou, Xin; Qi, Ji; Zeng, Yan; Zhang, Shaoqun; Liu, Gang; Ping, Ruiyue; Li, Yikai; Fu, Shijie

    2018-01-01

    Acromioclavicular dislocation (ACD) is a common injury. According to the Rockwood classification, ACD is classified into six types (type I–VI); however, for type III injuries, it remains controversial whether or not operative treatment should be applied. Numerous studies have advocated early surgical treatment to ensure early rehabilitation activities. Thus, the present study aimed to investigate a modified closed-loop double-endobutton technique (MCDT), that may be used to repair Rockwood type III ACD. In the current study, 61 patients with Rockwood type III ACD were enrolled during a period of 5 years at the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University. Patients were divided into three groups according to the surgical method used, the MCDT group (n=20), the common closed-loop double-endobutton technique (CCDT) group (n=21), and the clavicular hook plate fixation (CHPF) group (n=20). Preoperative and intraoperative information were recorded. Furthermore, the functional scores of injured shoulder were evaluated prior to surgery and following surgery with a 1-year follow-up. Among the three groups, postoperative functional scores were significantly more improved compared with those prior to surgery (P<0.05), and no significant difference was observed regarding the coracoclavicular interval with the 1-year follow-up (P>0.05). Postoperative functional scores in the MCDT and CCDT groups were significantly more improved compared those in the CHPF group (P<0.05). In addition, the duration of surgery in the MCDT group was significantly shorter compared with that in the CCDT group (P<0.05). Furthermore, compared with the CHPF group, the incision length was significantly shorter with reduced hemorrhage in the MCDT group (P<0.05). In conclusion, the results of the current study suggest that MCDT is more simple, convenient and efficient compared with CCDT, and is worth popularizing. PMID:29399102

  15. Results of Operative and Nonoperative Treatment of Rockwood Types III and V Acromioclavicular Joint Dislocation

    PubMed Central

    Joukainen, Antti; Kröger, Heikki; Niemitukia, Lea; Mäkelä, E. Antero; Väätäinen, Urho

    2014-01-01

    Background: The optimal treatment of acute, complete dislocation of the acromioclavicular joint (ACJ) is still unresolved. Purpose: To determine the difference between operative and nonoperative treatment in acute Rockwood types III and V ACJ dislocation. Study Design: Randomized controlled trial; Level of evidence, 2. Methods: In the operative treatment group, the ACJ was reduced and fixed with 2 transarticular Kirschner wires and ACJ ligament suturing. The Kirschner wires were extracted after 6 weeks. Nonoperatively treated patients received a reduction splint for 4 weeks. At the 18- to 20-year follow-up, the Constant, University of California at Los Angeles Shoulder Rating Scale (UCLA), Larsen, and Simple Shoulder Test (SST) scores were obtained, and clinical and radiographic examinations of both shoulders were performed. Results: Twenty-five of 35 potential patients were examined at the 18- to 20-year follow-up. There were 11 patients with Rockwood type III and 14 with type V dislocations. Delayed surgical treatment for ACJ was used in 2 patients during follow-up: 1 in the operatively treated group and 1 in the nonoperatively treated group. Clinically, ACJs were statistically significantly less prominent or unstable in the operative group than in the nonoperative group (normal/prominent/unstable: 9/4/3 and 0/6/3, respectively; P = .02) and in the operative type III (P = .03) but not type V dislocation groups. In operatively and nonoperatively treated patients, the mean Constant scores were 83 and 85, UCLA scores 25 and 27, Larsen scores 11 and 11, and SST scores 11 and 12 at follow-up, respectively. There were no statistically significant differences in type III and type V dislocations. In the radiographic analysis, the ACJ was wider in the nonoperative than the operative group (8.3 vs 3.4 mm; P = .004), and in the type V dislocations (nonoperative vs operative: 8.5 vs 2.4 mm; P = .007). There was no statistically significant difference between study groups in

  16. Plasma apolipoprotein C-III levels, triglycerides, and coronary artery calcification in type 2 diabetics.

    PubMed

    Qamar, Arman; Khetarpal, Sumeet A; Khera, Amit V; Qasim, Atif; Rader, Daniel J; Reilly, Muredach P

    2015-08-01

    Triglyceride-rich lipoproteins have emerged as causal risk factors for developing coronary heart disease independent of low-density lipoprotein cholesterol levels. Apolipoprotein C-III (ApoC-III) modulates triglyceride-rich lipoprotein metabolism through inhibition of lipoprotein lipase and hepatic uptake of triglyceride-rich lipoproteins. Mutations causing loss-of-function of ApoC-III lower triglycerides and reduce coronary heart disease risk, suggestive of a causal role for ApoC-III. Little data exist about the relationship of ApoC-III, triglycerides, and atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Here, we examined the relationships between plasma ApoC-III, triglycerides, and coronary artery calcification in patients with T2DM. Plasma ApoC-III levels were measured in a cross-sectional study of 1422 subjects with T2DM but without clinically manifest coronary heart disease. ApoC-III levels were positively associated with total cholesterol (Spearman r=0.36), triglycerides (r=0.59), low-density lipoprotein cholesterol (r=0.16), fasting glucose (r=0.16), and glycosylated hemoglobin (r=0.12; P<0.0001 for all). In age, sex, and race-adjusted analysis, ApoC-III levels were positively associated with coronary artery calcification (Tobit regression ratio, 1.78; 95% confidence interval, 1.27-2.50 per SD increase in ApoC-III; P<0.001). As expected for an intermediate mediator, these findings were attenuated when adjusted for both triglycerides (Tobit regression ratio, 1.43; 95% confidence interval, 0.94-2.18; P=0.086) and separately for very low-density lipoprotein cholesterol (Tobit regression ratio, 1.14; 95% confidence interval, 0.75-1.71; P=0.53). In persons with T2DM, increased plasma ApoC-III is associated with higher triglycerides, less favorable cardiometabolic phenotypes, and higher coronary artery calcification, a measure of subclinical atherosclerosis. Therapeutic inhibition of ApoC-III may thus be a novel strategy for reducing plasma

  17. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    PubMed

    Bozue, Joel; Cote, Christopher K; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J; Kijek, Todd K; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  18. A Yersinia pestis tat Mutant Is Attenuated in Bubonic and Small-Aerosol Pneumonic Challenge Models of Infection but Not As Attenuated by Intranasal Challenge

    PubMed Central

    Bozue, Joel; Cote, Christopher K.; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J.; Kijek, Todd K.; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G.; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge. PMID:25101850

  19. Synergistic protection of mice against plague with monoclonal antibodies specific for the F1 and V antigens of Yersinia pestis.

    PubMed

    Hill, Jim; Copse, Catherine; Leary, Sophie; Stagg, Anthony J; Williamson, E Diane; Titball, Richard W

    2003-04-01

    Monoclonal antibodies specific for Yersinia pestis V antigen and F1 antigen, administered singly or in combination, protected mice in models of bubonic and pneumonic plague. Antibodies showed synergy when administered prophylactically and as a therapy 48 h postinfection. Monoclonal antibodies therefore have potential as a treatment for plague.

  20. Thirty-Two Complete Genome Assemblies of Nine Yersinia Species, Including Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica

    DOE PAGES

    Johnson, Shannon L.; Daligault, Hajnalka E.; Davenport, Karen W.; ...

    2015-04-30

    The genus Yersinia includes three human pathogens, of which Yersinia pestis is responsible for >2,000 illnesses each year. To aid in the development of detection assays as well as aid further phylogenetic elucidation, we sequenced and assembled the complete genomes of 32 strains (across 9 Yersinia species).