Science.gov

Sample records for pet camera optimized

  1. Characterization of a PET Camera Optimized for ProstateImaging

    SciTech Connect

    Huber, Jennifer S.; Choong, Woon-Seng; Moses, William W.; Qi,Jinyi; Hu, Jicun; Wang, G.C.; Wilson, David; Oh, Sang; Huesman, RonaldH.; Derenzo, Stephen E.

    2005-11-11

    We present the characterization of a positron emission tomograph for prostate imaging that centers a patient between a pair of external curved detector banks (ellipse: 45 cm minor, 70 cm major axis). The distance between detector banks adjusts to allow patient access and to position the detectors as closely as possible for maximum sensitivity with patients of various sizes. Each bank is composed of two axial rows of 20 HR+ block detectors for a total of 80 detectors in the camera. The individual detectors are angled in the transaxial plane to point towards the prostate to reduce resolution degradation in that region. The detectors are read out by modified HRRT data acquisition electronics. Compared to a standard whole-body PET camera, our dedicated-prostate camera has the same sensitivity and resolution, less background (less randoms and lower scatter fraction) and a lower cost. We have completed construction of the camera. Characterization data and reconstructed images of several phantoms are shown. Sensitivity of a point source in the center is 946 cps/mu Ci. Spatial resolution is 4 mm FWHM in the central region.

  2. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  3. Performance of the Tachyon Time-of-Flight PET Camera

    PubMed Central

    Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon’s detector module is optimized for timing by coupling the 6.15 × 25 mm2 side of 6.15 × 6.15 × 25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/− ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3. PMID:26594057

  4. Performance of the Tachyon Time-of-Flight PET Camera

    DOE PAGESBeta

    Peng, Q.; Choong, W. -S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-23

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMAmore » NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.« less

  5. Performance of the Tachyon Time-of-Flight PET Camera

    SciTech Connect

    Peng, Q.; Choong, W. -S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-23

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

  6. Septa design for a prostate specific PET camera

    SciTech Connect

    Qi, Jinyi; Huber, Jennifer S.; Huesman, Ronald H.; Moses, William W.; Derenzo, Stephen E.; Budinger, Thomas F.

    2003-11-15

    The recent development of new prostate tracers has motivated us to build a low cost PET camera optimized to image the prostate. Coincidence imaging of positron emitters is achieved using a pair of external curved detector banks. The bottom bank is fixed below the patient bed, and the top bank moves upward for patient access and downward for maximum sensitivity. In this paper, we study the design of septa for the prostate camera using Monte Carlo simulations. The system performance is measured by the detectability of a prostate lesion. We have studied 17 septa configurations. The results show that the design of septa has a large impact on the lesion detection at a given activity concentration. Significant differences are also observed between the lesion detectability and the conventional noise equivalent count (NEC) performance, indicating that the NEC is not appropriate for the detection task.

  7. PET imaging using gamma camera systems: a review.

    PubMed

    Jarritt, P H; Acton, P D

    1996-09-01

    Optimized positron emission tomographs have begun to demonstrate an ever widening range of clinical applications for positron labelled pharmaceuticals. This potential has led to a renewed interest in the use of the more widely available Anger gamma camera detectors for imaging the 511 keV photons from the positron decay process. Two forms of detection can be considered: either the detection of the 511 keV photons as single events or the detection of coincidence events from the opposed pair annihilation photons. The widespread availability of dual, opposed-pair, large field-of-view detectors has promoted the development of coincidence detection without collimation. With detector rotation, positron emission tomography (PET) can be performed. An alternative and lower cost option has been the universal development of ultra high-energy collimators to perform single photon emission tomography (SPET) with 511 keV photons. This review outlines the currently available performance characteristics of these two approaches and compares them with those from two- and three-dimensional PET optimized systems. The limitations on the development of these systems is discussed through the analysis of the principles underlying both single photon and coincidence detection. Preliminary clinical experience indicates that limitations in the performance characteristics of these systems has implications for their potential role, although applications in cardiology and oncology are being pursued. PMID:8895903

  8. Advantages of improved timing accuracy in PET cameras using LSOscintillator

    SciTech Connect

    Moses, William W.

    2002-12-02

    PET scanners based on LSO have the potential forsignificantly better coincidence timing resolution than the 6 ns fwhmtypically achieved with BGO. This study analyzes the performanceenhancements made possible by improved timing as a function of thecoincidence time resolution. If 500 ps fwhm coincidence timing resolutioncan be achieved in a complete PET camera, the following four benefits canbe realized for whole-body FDG imaging: 1) The random event rate can bereduced by using a narrower coincidence timing window, increasing thepeak NECR by~;50 percent. 2) Using time-of-flight in the reconstructionalgorithm will reduce the noise variance by a factor of 5. 3) Emissionand transmission data can be acquired simultaneously, reducing the totalscan time. 4) Axial blurring can be reduced by using time-of-flight todetermine the correct axial plane that each event originated from. Whiletime-of-flight was extensively studied in the 1980's, practical factorslimited its effectiveness at that time and little attention has been paidto timing in PET since then. As these potential improvements aresubstantial and the advent of LSO PET cameras gives us the means toobtain them without other sacrifices, efforts to improve PET timingshould resume after their long dormancy.

  9. A practical block detector for a depth encoding PET camera

    SciTech Connect

    Rogers, J.G.; Moisan, C.; Hoskinson, E.M.; Andreaco, M.S.; Williams, C.W.; Nutt, A.

    1995-10-01

    The depth-of-interaction effect in block detectors degrades the image resolution in commercial PET cameras and impedes the natural evolution of smaller, less expensive cameras. A method for correcting the measured position of each detected gamma ray by measuring its depth-of-interaction was tested and found to recover 38% of the lost resolution in a table-top 50 cm diameter camera. To obtain the desired depth sensitivity, standard commercial detectors were modified by a simple and practical process, which is suitable for mass production of the detectors. The impact of the detector modifications on central image resolution and on the ability of the camera to correct for object scatter were also measured.

  10. New cardiac cameras: single-photon emission CT and PET.

    PubMed

    Slomka, Piotr J; Berman, Daniel S; Germano, Guido

    2014-07-01

    Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow

  11. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  12. Evaluation of a dual-panel PET camera design to breast cancer imaging.

    PubMed

    Zhang, Jin; Chinn, Gary; Foudray, Angela M K; Habte, Frezghi; Olcott, Peter; Levin, Craig S

    2006-01-01

    We are developing a novel, portable dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging. With a sensitive area of approximately 150 cm(2), this camera is based on arrays of lutetium oxyorthosilicate (LSO) crystals (1x1x3 mm(3)) coupled to 11x11-mm(2) position-sensitive avalanche photodiodes (PSAPD). GATE open source software was used to perform Monte Carlo simulations to optimize the parameters for the camera design. The noise equivalent counting (NEC) rate, together with the true, scatter, and random counting rates were simulated at different time and energy windows. Focal plane tomography (FPT) was used for visualizing the tumors at different depths between the two detector panels. Attenuation and uniformity corrections were applied to images. PMID:17646005

  13. Performance modeling of a wearable brain PET (BET) camera

    NASA Astrophysics Data System (ADS)

    Schmidtlein, C. R.; Turner, J. N.; Thompson, M. O.; Mandal, K. C.; Häggström, I.; Zhang, J.; Humm, J. L.; Feiglin, D. H.; Krol, A.

    2016-03-01

    Purpose: To explore, by means of analytical and Monte Carlo modeling, performance of a novel lightweight and low-cost wearable helmet-shaped Brain PET (BET) camera based on thin-film digital Geiger Avalanche Photo Diode (dGAPD) with LSO and LaBr3 scintillators for imaging in vivo human brain processes for freely moving and acting subjects responding to various stimuli in any environment. Methods: We performed analytical and Monte Carlo modeling PET performance of a spherical cap BET device and cylindrical brain PET (CYL) device, both with 25 cm diameter and the same total mass of LSO scintillator. Total mass of LSO in both the BET and CYL systems is about 32 kg for a 25 mm thick scintillator, and 13 kg for 10 mm thick scintillator (assuming an LSO density of 7.3 g/ml). We also investigated a similar system using an LaBr3 scintillator corresponding to 22 kg and 9 kg for the 25 mm and 10 mm thick systems (assuming an LaBr3 density of 5.08 g/ml). In addition, we considered a clinical whole body (WB) LSO PET/CT scanner with 82 cm ring diameter and 15.8 cm axial length to represent a reference system. BET consisted of distributed Autonomous Detector Arrays (ADAs) integrated into Intelligent Autonomous Detector Blocks (IADBs). The ADA comprised of an array of small LYSO scintillator volumes (voxels with base a×a: 1.0 <= a <= 2.0 mm and length c: 3.0 <= c <= 6.0 mm) with 5-65 μm thick reflective layers on its five sides and sixth side optically coupled to the matching array of dGAPDs and processing electronics with total thickness of 50 μm. Simulated energy resolution was 10.8% and 3.3% for LSO and LaBr3 respectively and the coincidence window was set at 2 ns. The brain was simulated as a sphere of uniform F-18 activity with diameter of 10 cm embedded in a center of water sphere with diameter of 10 cm. Results: Analytical and Monte Carlo models showed similar results for lower energy window values (458 keV versus 445 keV for LSO, and 492 keV versus 485 keV for LaBr3

  14. Positron camera using position-sensitive detectors: PENN-PET

    SciTech Connect

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    A single-slice positron camera has been developed with good spatial resolution and high count rate capability. The camera uses a hexagonal arrangement of six position-sensitive NaI(Tl) detectors. The count rate capability of NaI(Tl) was extended to 800k cps through the use of pulse shortening. In order to keep the detectors stationary, an iterative reconstruction algorithm was modified which ignores the missing data in the gaps between the six detectors and gives artifact-free images. The spatial resolution, as determined from the image of point sources in air, is 6.5 mm full width at half maximum. We have also imaged a brain phantom and dog hearts.

  15. Towards optimal imaging with PET: an in silico feasibility study

    NASA Astrophysics Data System (ADS)

    McNamara, A. L.; Toghyani, M.; Gillam, J. E.; Wu, K.; Kuncic, Z.

    2014-12-01

    The efficacy of Positron Emission Tomography (PET) imaging relies fundamentally on the ability of the system to accurately identify true coincidence events. With existing systems, this is currently accomplished with an energy acceptance criterion followed by correction techniques to remove suspected false coincidence events. These corrections generally result in signal and contrast loss and thus limit the PET system’s ability to achieve optimum image quality. A key property of annihilation radiation is that the photons are polarised with respect to each other. This polarisation correlation offers a potentially powerful discriminator, independent of energy, to accurately identify true events. In this proof of concept study, we investigate how photon polarisation information can be exploited in PET imaging by developing a method to discriminate true coincidences using the polarisation correlation of annihilation pairs. We implement this method using a Geant4 PET simulation of a GE Advance/Discovery LS system and demonstrate the potential advantages of the polarisation coincidence selection method over a standard energy criterion method. Current PET ring detectors are not capable of exploiting the polarisation correlation of the photon pairs. Compton PET systems, however are promising candidates for this application. We demonstrate the feasibility of a two-component Compton camera system in identifying true coincidences with Monte Carlo simulations. Our study demonstrates the potential of improving signal gain using polarisation, particularly for high photon emission rates. We also demonstrate the ability of the Compton camera at exploiting this polarisation correlation in PET.

  16. Full 3-D cluster-based iterative image reconstruction tool for a small animal PET camera

    NASA Astrophysics Data System (ADS)

    Valastyán, I.; Imrek, J.; Molnár, J.; Novák, D.; Balkay, L.; Emri, M.; Trón, L.; Bükki, T.; Kerek, A.

    2007-02-01

    Iterative reconstruction methods are commonly used to obtain images with high resolution and good signal-to-noise ratio in nuclear imaging. The aim of this work was to develop a scalable, fast, cluster based, fully 3-D iterative image reconstruction package for our small animal PET camera, the miniPET. The reconstruction package is developed to determine the 3-D radioactivity distribution from list mode type of data sets and it can also simulate noise-free projections of digital phantoms. We separated the system matrix generation and the fully 3-D iterative reconstruction process. As the detector geometry is fixed for a given camera, the system matrix describing this geometry is calculated only once and used for every image reconstruction, making the process much faster. The Poisson and the random noise sensitivity of the ML-EM iterative algorithm were studied for our small animal PET system with the help of the simulation and reconstruction tool. The reconstruction tool has also been tested with data collected by the miniPET from a line and a cylinder shaped phantom and also a rat.

  17. Detection of the optimal region of interest for camera oximetry.

    PubMed

    Karlen, Walter; Ansermino, J Mark; Dumont, Guy A; Scheffer, Cornie

    2013-01-01

    The estimation of heart rate and blood oxygen saturation with an imaging array on a mobile phone (camera oximetry) has great potential for mobile health applications as no additional hardware other than a camera and LED flash enabled phone are required. However, this approach is challenging as the configuration of the camera can negatively influence the estimation quality. Further, the number of photons recorded with the photo detector is largely dependent on the optical path length, resulting in a non-homogeneous image. In this paper we describe a novel method to automatically detect the optimal region of interest (ROI) for the captured image to extract a pulse waveform. We also present a study to select the optimal camera settings, notably the white balance. The experiments show that the incandescent white balance mode is the preferable setting for camera oximetry applications on the tested mobile phone (Samsung Galaxy Ace). Also, the ROI algorithm successfully identifies the frame regions which provide waveforms with the largest amplitudes. PMID:24110175

  18. Real-time optimizations for integrated smart network camera

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Lienard, Bruno; Meessen, Jerome; Delaigle, Jean-Francois

    2005-02-01

    We present an integrated real-time smart network camera. This system is composed of an image sensor, an embedded PC based electronic card for image processing and some network capabilities. The application detects events of interest in visual scenes, highlights alarms and computes statistics. The system also produces meta-data information that could be shared between other cameras in a network. We describe the requirements of such a system and then show how the design of the system is optimized to process and compress video in real-time. Indeed, typical video-surveillance algorithms as background differencing, tracking and event detection should be highly optimized and simplified to be used in this hardware. To have a good adequation between hardware and software in this light embedded system, the software management is written on top of the java based middle-ware specification established by the OSGi alliance. We can integrate easily software and hardware in complex environments thanks to the Java Real-Time specification for the virtual machine and some network and service oriented java specifications (like RMI and Jini). Finally, we will report some outcomes and typical case studies of such a camera like counter-flow detection.

  19. Tolerance optimization of a mobile phone camera lens system.

    PubMed

    Jung, Sangjin; Choi, Dong-Hoon; Choi, Byung-Lyul; Kim, Ju Ho

    2011-08-10

    In the manufacturing process for the lens system of a mobile phone camera, various types of assembly and manufacturing tolerances, such as tilt and decenter, should be appropriately allocated. Because these tolerances affect manufacturing cost and the expected optical performance, it is necessary to choose a systematic design methodology for determining optimal tolerances. In order to determine the tolerances that minimize production cost while satisfying the reliability constraints on important optical performance indices, we propose a tolerance design procedure for a lens system. A tolerance analysis is carried out using Latin hypercube sampling for evaluating the expected optical performance. The tolerance optimization is carried out using a function-based sequential approximate optimization technique that can reduce the computational burden and smooth numerical noise occurring in the optimization process. Using the proposed design approach, the optimal production cost was decreased by 28.3% compared to the initial cost while satisfying all the constraints on the expected optical performance. We believe that the tolerance analysis and design procedure presented in this study can be applied to the tolerance optimization of other systems. PMID:21833148

  20. PET image reconstruction: mean, variance, and optimal minimax criterion

    NASA Astrophysics Data System (ADS)

    Liu, Huafeng; Gao, Fei; Guo, Min; Xue, Liying; Nie, Jing; Shi, Pengcheng

    2015-04-01

    Given the noise nature of positron emission tomography (PET) measurements, it is critical to know the image quality and reliability as well as expected radioactivity map (mean image) for both qualitative interpretation and quantitative analysis. While existing efforts have often been devoted to providing only the reconstructed mean image, we present a unified framework for joint estimation of the mean and corresponding variance of the radioactivity map based on an efficient optimal min-max criterion. The proposed framework formulates the PET image reconstruction problem to be a transformation from system uncertainties to estimation errors, where the minimax criterion is adopted to minimize the estimation errors with possibly maximized system uncertainties. The estimation errors, in the form of a covariance matrix, express the measurement uncertainties in a complete way. The framework is then optimized by ∞-norm optimization and solved with the corresponding H∞ filter. Unlike conventional statistical reconstruction algorithms, that rely on the statistical modeling methods of the measurement data or noise, the proposed joint estimation stands from the point of view of signal energies and can handle from imperfect statistical assumptions to even no a priori statistical assumptions. The performance and accuracy of reconstructed mean and variance images are validated using Monte Carlo simulations. Experiments on phantom scans with a small animal PET scanner and real patient scans are also conducted for assessment of clinical potential.

  1. Implementing PET-guided biopsy: integrating functional imaging data with digital x-ray mammography cameras

    NASA Astrophysics Data System (ADS)

    Weinberg, Irving N.; Zawarzin, Valera; Pani, Roberto; Williams, Rodney C.; Freimanis, Rita L.; Lesko, Nadia M.; Levine, E. A.; Perrier, N.; Berg, Wendie A.; Adler, Lee P.

    2001-05-01

    Purpose: Phantom trials using the PET data for localization of hot spots have demonstrated positional accuracies in the millimeter range. We wanted to perform biopsy based on information from both anatomic and functional imaging modalities, however we had a communication challenge. Despite the digital nature of DSM stereotactic X-ray mammography devices, and the large number of such devices in Radiology Departments (approximately 1600 in the US alone), we are not aware of any methods of connecting stereo units to other computers in the Radiology department. Methods: We implemented a local network between an external IBM PC (running Linux) and the Lorad Stereotactic Digital Spot Mammography PC (running DOS). The application used IP protocol on the parallel port, and could be run in the background on the LORAD PC without disrupting important clinical activities such as image acquisition or archiving. With this software application, users of the external PC could pull x-ray images on demand form the Load DSM computer. Results: X-ray images took about a minute to ship to the external PC for analysis or forwarding to other computers on the University's network. Using image fusion techniques we were able to designate locations of functional imaging features as the additional targets on the anatomic x-rays. These pseudo-features could then potentially be used to guide biopsy using the stereotactic gun stage on the Lorad camera. New Work to be Presented: A method of transferring and processing stereotactic x-ray mammography images to a functional PET workstation for implementing image-guided biopsy.

  2. TU-A-18A-01: Basic Principles of PET/CT, Calibration Methods and Contrast Recovery Across Multiple Cameras

    SciTech Connect

    Kappadath, S; Nye, J

    2014-06-15

    This continuing education session will discuss the physical principles of PET/CT imaging and characterization of contrast recovery using accreditation phantoms. A detailed overview will be given on the physical principles of PET including positron decay physics, 2D and 3D data acquisition, time-of-flight, scatter correction, CT attenuation correction, and image reconstruction. Instrument quality control and calibration procedures will be discussed. Technical challenges, common image artifacts and strategies to mitigate these issues will also be discussed. Data will be presented on acquisition techniques and reconstruction parameters affecting contrast recovery. The discussion will emphasize the minimization of reconstruction differences in quantification metrics such as SUV and contrast recovery coefficients for the NEMA and ACR clinical trial phantoms. Data from new and older generation scanners will be shown including comparison of contrast recovery measurements to their analytical solutions. The goal of this session is to update attendees on the quality control and calibration of PET/CT scanners, on methods to establish a common calibration for PET/CT scanners to control for instrument variance across multiple sites. Learning Objectives: Review the physical principles of PET/CT, quality control and calibration Gain further understanding on how to apply techniques for improving quantitative agreement across multiple cameras Describe the differences between measured and expected contrast recovery for the NEMA and ACR PET phantoms.

  3. Ligand Specific Efficiency (LSE) Index for PET Tracer Optimization.

    PubMed

    Auberson, Yves P; Briard, Emmanuelle; Sykes, David; Reilly, John; Healy, Mark

    2016-07-01

    Ligand efficiency indices are widely used to guide chemical optimization in drug discovery, due to their predictive value in the early steps of optimization. At later stages, however, as more complex properties become critical for success, indices relying on calculated, rather than experimental, parameters become less informative. This problem is particularly acute when developing positron emission tomography (PET) imaging agents, for which nonspecific binding (NSB) to membranes and non-target proteins is a frequent cause of failure. NSB cannot be predicted using in silico parameters. To address this gap, we explored the use of the experimentally determined chromatographic hydrophobicity index on immobilized artificial membranes, CHI(IAM), to guide the optimization of NSB. The ligand specific efficiency (LSE) index was defined as the ratio between affinity (pIC50 or pKd ) and the logarithmic value of CHI(IAM). It allows for quantification of binding affinity to the target of interest, relative to NSB. Its use was illustrated by the optimization of PET tracer candidates for the prostacyclin receptor. PMID:27193393

  4. Data Acquisition and Image Reconstruction Systems from the miniPET Scanners to the CARDIOTOM Camera

    SciTech Connect

    Valastvan, I.; Imrek, J.; Hegyesi, G.; Molnar, J.; Novak, D.; Bone, D.; Kerek, A.

    2007-11-26

    Nuclear imaging devices play an important role in medical diagnosis as well as drug research. The first and second generation data acquisition systems and the image reconstruction library developed provide a unified hardware and software platform for the miniPET-I, miniPET-II small animal PET scanners and for the CARDIOTOM{sup TM}.

  5. Initial experience in primal-dual optimization reconstruction from sparse-PET patient data

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-03-01

    There exists interest in designing a PET system with reduced detectors due to cost concerns, while not significantly compromising the PET utility. Recently developed optimization-based algorithms, which have demonstrated the potential clinical utility in image reconstruction from sparse CT data, may be used for enabling such design of innovative PET systems. In this work, we investigate a PET configuration with reduced number of detectors, and carry out preliminary studies from patient data collected by use of such sparse-PET configuration. We consider an optimization problem combining Kullback-Leibler (KL) data fidelity with an image TV constraint, and solve it by using a primal-dual optimization algorithm developed by Chambolle and Pock. Results show that advanced algorithms may enable the design of innovative PET configurations with reduced number of detectors, while yielding potential practical PET utilities.

  6. Optimization of PET instrumentation for brain activation studies

    SciTech Connect

    Dahlbom, M.; Cherry, S.R.; Hoffman, E.J. . Dept. of Radiological Science); Eriksson, L. . Dept. of Clinical Neurophysiology); Wienhard, K. )

    1993-08-01

    By performing cerebral blood flow studies with positron emission tomography (PET), and comparing blood flow images of different states of activation, functional mapping of the brain is possible. The ability of current commercial instruments to perform such studies is investigated in this work, based on a comparison of noise equivalent count (NEC) rates. Differences in the NEC performance of the different scanners in conjunction with scanner design parameters, provide insights into the importance of block design (size, dead time, crystal thickness) and overall scanner design (sensitivity and scatter fraction) for optimizing data from activation studies. The newer scanners with removable septa, operating with 3-D acquisition, have much higher sensitivity, but require new methodology for optimized operation. Only by administering multiple low doses (fractionation) of the flow tracer can the high sensitivity be utilized.

  7. Performance evaluation and optimization of the MiniPET-II scanner

    NASA Astrophysics Data System (ADS)

    Lajtos, Imre; Emri, Miklos; Kis, Sandor A.; Opposits, Gabor; Potari, Norbert; Kiraly, Beata; Nagy, Ferenc; Tron, Lajos; Balkay, Laszlo

    2013-04-01

    This paper presents results of the performance of a small animal PET system (MiniPET-II) installed at our Institute. MiniPET-II is a full ring camera that includes 12 detector modules in a single ring comprised of 1.27×1.27×12 mm3 LYSO scintillator crystals. The axial field of view and the inner ring diameter are 48 mm and 211 mm, respectively. The goal of this study was to determine the NEMA-NU4 performance parameters of the scanner. In addition, we also investigated how the calculated parameters depend on the coincidence time window (τ=2, 3 and 4 ns) and the low threshold settings of the energy window (Elt=250, 350 and 450 keV). Independent measurements supported optimization of the effective system radius and the coincidence time window of the system. We found that the optimal coincidence time window and low threshold energy window are 3 ns and 350 keV, respectively. The spatial resolution was close to 1.2 mm in the center of the FOV with an increase of 17% at the radial edge. The maximum value of the absolute sensitivity was 1.37% for a point source. Count rate tests resulted in peak values for the noise equivalent count rate (NEC) curve and scatter fraction of 14.2 kcps (at 36 MBq) and 27.7%, respectively, using the rat phantom. Numerical values of the same parameters obtained for the mouse phantom were 55.1 kcps (at 38.8 MBq) and 12.3%, respectively. The recovery coefficients of the image quality phantom ranged from 0.1 to 0.87. Altering the τ and Elt resulted in substantial changes in the NEC peak and the sensitivity while the effect on the image quality was negligible. The spatial resolution proved to be, as expected, independent of the τ and Elt. The calculated optimal effective system radius (resulting in the best image quality) was 109 mm. Although the NEC peak parameters do not compare favorably with those of other small animal scanners, it can be concluded that under normal counting situations the MiniPET-II imaging capability assures remarkably

  8. Edge-Preserving PET Image Reconstruction Using Trust Optimization Transfer

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2014-01-01

    Iterative image reconstruction for positron emission tomography (PET) can improve image quality by using spatial regularization. The most commonly used quadratic penalty often over-smoothes sharp edges and fine features in reconstructed images, while non-quadratic penalties can preserve edges and achieve higher contrast recovery. Existing optimization algorithms such as the expectation maximization (EM) and preconditioned conjugate gradient (PCG) algorithms work well for the quadratic penalty, but are less efficient for high-curvature or non-smooth edge-preserving regularizations. This paper proposes a new algorithm to accelerate edge-preserving image reconstruction by using two strategies: trust surrogate and optimization transfer descent. Trust surrogate approximates the original penalty by a smoother function at each iteration, but guarantees the algorithm to descend monotonically; Optimization transfer descent accelerates a conventional optimization transfer algorithm by using conjugate gradient and line search. Results of computer simulations and real 3D data show that the proposed algorithm converges much faster than the conventional EM and PCG for smooth edge-preserving regularization and can also be more efficient than the current state-of-art algorithms for the non-smooth ℓ1 regularization. PMID:25438302

  9. A Sparse Representation-Based Deployment Method for Optimizing the Observation Quality of Camera Networks

    PubMed Central

    Wang, Chang; Qi, Fei; Shi, Guangming; Wang, Xiaotian

    2013-01-01

    Deployment is a critical issue affecting the quality of service of camera networks. The deployment aims at adopting the least number of cameras to cover the whole scene, which may have obstacles to occlude the line of sight, with expected observation quality. This is generally formulated as a non-convex optimization problem, which is hard to solve in polynomial time. In this paper, we propose an efficient convex solution for deployment optimizing the observation quality based on a novel anisotropic sensing model of cameras, which provides a reliable measurement of the observation quality. The deployment is formulated as the selection of a subset of nodes from a redundant initial deployment with numerous cameras, which is an ℓ0 minimization problem. Then, we relax this non-convex optimization to a convex ℓ1 minimization employing the sparse representation. Therefore, the high quality deployment is efficiently obtained via convex optimization. Simulation results confirm the effectiveness of the proposed camera deployment algorithms. PMID:23989826

  10. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-01

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.

  11. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET.

    PubMed

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E; Rose, Sean; Sidky, Emil Y; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-21

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications. PMID:27452653

  12. Comparison of Imaging Characteristics of 124I PET for Determination of Optimal Energy Window on the Siemens Inveon PET

    PubMed Central

    Yu, A Ram; Kim, Hee-Joung; Lim, Sang Moo; Kim, Jin Su

    2016-01-01

    Purpose. 124I has a half-life of 4.2 days, which makes it suitable for imaging over several days over its uptake and washout phases. However, it has a low positron branching ratio (23%), because of prompt gamma coincidence due to high-energy γ-photons (602 to 1,691 keV), which are emitted in cascade with positrons. Methods. In this study, we investigated the optimal PET energy window for 124I PET based on image characteristics of reconstructed PET. Image characteristics such as nonuniformities, recovery coefficients (RCs), and the spillover ratios (SORs) of 124I were measured as described in NEMA NU 4-2008 standards. Results. The maximum and minimum prompt gamma coincidence fraction (PGF) were 33% and 2% in 350~800 and 400~590 keV, respectively. The difference between best and worst uniformity in the various energy windows was less than 1%. The lowest SORs of 124I were obtained at 350~750 keV in nonradioactive water compartment. Conclusion. Optimal energy window should be determined based on image characteristics. Our developed correction method would be useful for the correction of high-energy prompt gamma photon in 124I PET. In terms of the image quality of 124I PET, our findings indicate that an energy window of 350~750 keV would be optimal. PMID:27127782

  13. HIGH-RESOLUTION L(Y)SO DETECTORS USING PMT-QUADRANT-SHARING FOR HUMAN & ANIMAL PET CAMERAS.

    PubMed

    Ramirez, Rocio A; Liu, Shitao; Liu, Jiguo; Zhang, Yuxuan; Kim, Soonseok; Baghaei, Hossain; Li, Hongdi; Wang, Yu; Wong, Wai-Hoi

    2008-06-01

    We developed high resolution L(Y)SO detectors for human and animal PET applications using Photomultiplier-quadrant-sharing (PQS) technology. The crystal sizes were 1.27 × 1.27 × 10 mm(3) for the animal PQS-blocks and 3.25 × 3.25 × 20 mm(3) for human ones. Polymer mirror film patterns (PMR) were placed between crystals as reflector. The blocks were assembled together using optical grease and wrapped by Teflon tape. The blocks were coupled to regular round PMT's of 19/51 mm in PQS configuration. List-mode data of Ga-68 source (511 KeV) were acquired with our high yield pileup-event recovery (HYPER) electronics and data acquisition software. The high voltage bias was 1100V. Crystal decoding maps and individual crystal energy resolutions were extracted from the data. To investigate the potential imaging resolution of the PET cameras with these blocks, we used GATE (Geant4 Application for Tomographic Emission) simulation package. GATE is a GEANT4 based software toolkit for realistic simulation of PET and SPECT systems. The packing fractions of these blocks were found to be 95.6% and 98.2%. From the decoding maps, all 196 and 225 crystals were clearly identified. The average energy resolutions were 14.0% and 15.6%. For small animal PET systems, the detector ring diameter was 16.5 cm with an axial field of view (AFOV) of 11.8 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 1.24 (1.25) mm near the center is potentially achievable. For the wholebody human PET systems, the detector ring diameter was 86 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 3.09(3.38) mm near the center is potentially achievable. From this study we can conclude that PQS design could achieve high spatial resolutions and excellent energy resolutions on human and animal PET systems with substantially lower production costs and inexpensive readout devices. PMID:19946463

  14. Resolution limitations and optimization of the LLNL streak camera focus

    SciTech Connect

    Lerche, R.A.; Griffith, R.L.

    1987-09-01

    The RCA C73435 image tube is biased at voltages far from its original design in the LLNL ultrafast (10 ps) streak camera. Its output resolution at streak camera operating potentials has been measured as a function of input slit width, incident-light wavelength, and focus-grid voltage. The temporal resolution is insensitive to focus-grid voltage for a narrow (100 ..mu..m) input slit, but is very sensitive to focus-grid voltage for a wide (2 mm) input slit. At the optimum wide-slit focus voltage, temporal resolution is insensitive to slit width. Spatial resolution is nearly independent of focus-grid voltage for values that give good temporal resolution. Both temporal and spatial resolution depend on the incident-light wavelength. Data for 1.06-..mu..m light show significantly better focusing than for 0.53-..mu..m light. Streak camera operation is simulated with a computer program that calculates photoelectron trajectories. Electron ray tracing describes all of the observed effects of slit width, incident-light wavelength, and focus-grid voltage on output resolution. 7 refs.

  15. A descriptive geometry based method for total and common cameras fields of view optimization

    NASA Astrophysics Data System (ADS)

    Salmane, H.; Ruichek, Y.; Khoudour, L.

    2011-07-01

    The presented work is conducted in the framework of the ANR-VTT PANsafer project (Towards a safer level crossing). One of the objectives of the project is to develop a video surveillance system that will be able to detect and recognize potential dangerous situation around level crossings. This paper addresses the problem of cameras positioning and orientation in order to view optimally monitored scenes. In general, adjusting cameras position and orientation is achieved experimentally and empirically by considering geometrical different configurations. This step requires a lot of time to adjust approximately the total and common fields of view of the cameras, especially when constrained environments, like level crossing environments, are considered. In order to simplify this task and to get more precise cameras positioning and orientation, we propose in this paper a method that optimizes automatically the total and common cameras fields with respect to the desired scene. Based on descriptive geometry, the method estimates the best cameras position and orientation by optimizing surfaces of 2D domains that are obtained by projecting/intersecting the field of view of each camera on/with horizontal and vertical planes. The proposed method is evaluated and tested to demonstrate its effectiveness.

  16. Optimization of microfluidic PET tracer synthesis with Cerenkov imaging.

    PubMed

    Dooraghi, Alex A; Keng, Pei Y; Chen, Supin; Javed, Muhammad R; Kim, Chang-Jin C J; Chatziioannou, Arion F; van Dam, R Michael

    2013-10-01

    Microfluidic technologies provide an attractive platform for the synthesis of radiolabeled compounds. Visualization of radioisotopes on chip is critical for synthesis optimization and technological development. With Cerenkov imaging, beta particle emitting isotopes can be localized with a sensitive CCD camera. In order for Cerenkov imaging to also serve as a quantitative tool, it is necessary to understand how material properties relevant to Cerenkov emission, namely, index of refraction and beta particle stopping power, affect Cerenkov light output. In this report, we investigate the fundamental physical characteristics of Cerenkov photon yield at different stages of [(18)F]FDG synthesis on the electrowetting on dielectric (EWOD) microfluidic platform. We also demonstrate how Cerenkov imaging has enabled synthesis optimization. Geant4, a Monte Carlo program applied extensively in high energy physics, is used to simulate Cerenkov photon yield from (18)F beta particles traversing materials of interest during [(18)F]FDG synthesis on chip. Our simulations show that the majority (approximately two-thirds) of the (18)F beta particle energy available to produce Cerenkov photons is deposited on the glass plates of the EWOD chip. This result suggests the possibility of using a single calibration factor to convert Cerenkov signal to radioactivity, independent of droplet composition. We validate our simulations with a controlled measurement examining varying ratios of [(18)O]H2O, dimethyl sulfoxide (DMSO), and acetonitrile (MeCN), and find a consistent calibration independent of solvent composition. However, the calibration factor may underestimate the radioactivity in actual synthesis due to discoloration of the droplet during certain steps of probe synthesis. In addition to the attractive quantitative potential of Cerenkov imaging, this imaging strategy provides indispensable qualitative data to guide synthesis optimization. We are able to use this imaging technique to

  17. Optimization of microfluidic PET tracer synthesis with Cerenkov imaging†

    PubMed Central

    Dooraghi, Alex A.; Keng, Pei Y.; Chen, Supin; Javed, Muhammad R.; Kim, Chang-Jin “CJ”; Chatziioannou, Arion F.; van Dam, R. Michael

    2013-01-01

    Microfluidic technologies provide an attractive platform for the synthesis of radiolabeled compounds. Visualization of radioisotopes on chip is critical for synthesis optimization and technological development. With Cerenkov imaging, beta particle emitting isotopes can be localized with a sensitive CCD camera. In order for Cerenkov imaging to also serve as a quantitative tool, it is necessary to understand how material properties relevant to Cerenkov emission, namely, index of refraction and beta particle stopping power, affect Cerenkov light output. In this report, we investigate the fundamental physical characteristics of Cerenkov photon yield at different stages of [18F]FDG synthesis on the electrowetting on dielectric (EWOD) microfluidic platform. We also demonstrate how Cerenkov imaging has enabled synthesis optimization. Geant4, a Monte Carlo program applied extensively in high energy physics, is used to simulate Cerenkov photon yield from 18F beta particles traversing materials of interest during [18F]FDG synthesis on chip. Our simulations show that the majority (approximately two-thirds) of the 18F beta particle energy available to produce Cerenkov photons is deposited on the glass plates of the EWOD chip. This result suggests the possibility of using a single calibration factor to convert Cerenkov signal to radioactivity, independent of droplet composition. We validate our simulations with a controlled measurement examining varying ratios of [18O]H2O, dimethyl sulfoxide (DMSO), and acetonitrile (MeCN), and find a consistent calibration independent of solvent composition. However, the calibration factor may underestimate the radioactivity in actual synthesis due to discoloration of the droplet during certain steps of probe synthesis. In addition to the attractive quantitative potential of Cerenkov imaging, this imaging strategy provides indispensable qualitative data to guide synthesis optimization. We are able to use this imaging technique to optimize the

  18. A novel optimization method of camera parameters used for vision measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Fuqiang; Cui, Yi; Peng, Bin; Wang, Yexin

    2012-09-01

    Camera calibration plays an important role in the field of machine vision applications. During the process of camera calibration, nonlinear optimization technique is crucial to obtain the best performance of camera parameters. Currently, the existing optimization method aims at minimizing the distance error between the detected image point and the calculated back-projected image point, based on 2D image pixels coordinate. However, the vision measurement process is conducted in 3D space while the optimization method generally adopted is carried out in 2D image plane. Moreover, the error criterion with respect to optimization and measurement is different. In other words, the equal pixel distance error in 2D image plane leads to diverse 3D metric distance error at different position before the camera. All the reasons mentioned above will cause accuracy decrease for 3D vision measurement. To solve the problem, a novel optimization method of camera parameters used for vision measurement is proposed. The presented method is devoted to minimizing the metric distance error between the calculated point and the real point in 3D measurement coordinate system. Comparatively, the initial camera parameters acquired through linear calibration are optimized through two different methods: one is the conventional method and the other is the novel method presented by this paper. Also, the calibration accuracy and measurement accuracy of the parameters obtained by the two methods are thoroughly analyzed and the choice of a suitable accuracy evaluation method is discussed. Simulative and real experiments to estimate the performance of the proposed method on test data are reported, and the results show that the proposed 3D optimization method is quite efficient to improve measurement accuracy compared with traditional method. It can meet the practical requirement of high precision in 3D vision metrology engineering.

  19. Optimal design of anger camera for bremsstrahlung imaging: monte carlo evaluation.

    PubMed

    Walrand, Stephan; Hesse, Michel; Wojcik, Randy; Lhommel, Renaud; Jamar, François

    2014-01-01

    A conventional Anger camera is not adapted to bremsstrahlung imaging and, as a result, even using a reduced energy acquisition window, geometric x-rays represent <15% of the recorded events. This increases noise, limits the contrast, and reduces the quantification accuracy. Monte Carlo (MC) simulations of energy spectra showed that a camera based on a 30-mm-thick BGO crystal and equipped with a high energy pinhole collimator is well-adapted to bremsstrahlung imaging. The total scatter contamination is reduced by a factor 10 versus a conventional NaI camera equipped with a high energy parallel hole collimator enabling acquisition using an extended energy window ranging from 50 to 350 keV. By using the recorded event energy in the reconstruction method, shorter acquisition time and reduced orbit range will be usable allowing the design of a simplified mobile gantry. This is more convenient for use in a busy catheterization room. After injecting a safe activity, a fast single photon emission computed tomography could be performed without moving the catheter tip in order to assess the liver dosimetry and estimate the additional safe activity that could still be injected. Further long running time MC simulations of realistic acquisitions will allow assessing the quantification capability of such system. Simultaneously, a dedicated bremsstrahlung prototype camera reusing PMT-BGO blocks coming from a retired PET system is currently under design for further evaluation. PMID:24982849

  20. Optimal Design of Anger Camera for Bremsstrahlung Imaging: Monte Carlo Evaluation

    PubMed Central

    Walrand, Stephan; Hesse, Michel; Wojcik, Randy; Lhommel, Renaud; Jamar, François

    2014-01-01

    A conventional Anger camera is not adapted to bremsstrahlung imaging and, as a result, even using a reduced energy acquisition window, geometric x-rays represent <15% of the recorded events. This increases noise, limits the contrast, and reduces the quantification accuracy. Monte Carlo (MC) simulations of energy spectra showed that a camera based on a 30-mm-thick BGO crystal and equipped with a high energy pinhole collimator is well-adapted to bremsstrahlung imaging. The total scatter contamination is reduced by a factor 10 versus a conventional NaI camera equipped with a high energy parallel hole collimator enabling acquisition using an extended energy window ranging from 50 to 350 keV. By using the recorded event energy in the reconstruction method, shorter acquisition time and reduced orbit range will be usable allowing the design of a simplified mobile gantry. This is more convenient for use in a busy catheterization room. After injecting a safe activity, a fast single photon emission computed tomography could be performed without moving the catheter tip in order to assess the liver dosimetry and estimate the additional safe activity that could still be injected. Further long running time MC simulations of realistic acquisitions will allow assessing the quantification capability of such system. Simultaneously, a dedicated bremsstrahlung prototype camera reusing PMT–BGO blocks coming from a retired PET system is currently under design for further evaluation. PMID:24982849

  1. A sinogram warping strategy for pre-reconstruction 4D PET optimization.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Kurz, Christopher; Parodi, Katia; Baroni, Guido

    2016-03-01

    A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction ("sinogram warping" strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET-CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET-CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to -26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction. PMID:26126871

  2. Vehicle occupancy detection camera position optimization using design of experiments and standard image references

    NASA Astrophysics Data System (ADS)

    Paul, Peter; Hoover, Martin; Rabbani, Mojgan

    2013-03-01

    Camera positioning and orientation is important to applications in domains such as transportation since the objects to be imaged vary greatly in shape and size. In a typical transportation application that requires capturing still images, inductive loops buried in the ground or laser trigger sensors are used when a vehicle reaches the image capture zone to trigger the image capture system. The camera in such a system is in a fixed position pointed at the roadway and at a fixed orientation. Thus the problem is to determine the optimal location and orientation of the camera when capturing images from a wide variety of vehicles. Methods from Design for Six Sigma, including identifying important parameters and noise sources and performing systematically designed experiments (DOE) can be used to determine an effective set of parameter settings for the camera position and orientation under these conditions. In the transportation application of high occupancy vehicle lane enforcement, the number of passengers in the vehicle is to be counted. Past work has described front seat vehicle occupant counting using a camera mounted on an overhead gantry looking through the front windshield in order to capture images of vehicle occupants. However, viewing rear seat passengers is more problematic due to obstructions including the vehicle body frame structures and seats. One approach is to view the rear seats through the side window. In this situation the problem of optimally positioning and orienting the camera to adequately capture the rear seats through the side window can be addressed through a designed experiment. In any automated traffic enforcement system it is necessary for humans to be able to review any automatically captured digital imagery in order to verify detected infractions. Thus for defining an output to be optimized for the designed experiment, a human defined standard image reference (SIR) was used to quantify the quality of the line-of-sight to the rear seats of

  3. Optimized dynamic framing for PET-based myocardial blood flow estimation

    NASA Astrophysics Data System (ADS)

    Kolthammer, Jeffrey A.; Muzic, Raymond F.

    2013-08-01

    An optimal experiment design methodology was developed to select the framing schedule to be used in dynamic positron emission tomography (PET) for estimation of myocardial blood flow using 82Rb. A compartment model and an arterial input function based on measured data were used to calculate a D-optimality criterion for a wide range of candidate framing schedules. To validate the optimality calculation, noisy time-activity curves were simulated, from which parameter values were estimated using an efficient and robust decomposition of the estimation problem. D-optimized schedules improved estimate precision compared to non-optimized schedules, including previously published schedules. To assess robustness, a range of physiologic conditions were simulated. Schedules that were optimal for one condition were nearly-optimal for others. The effect of infusion duration was investigated. Optimality was better for shorter than for longer tracer infusion durations, with the optimal schedule for the shortest infusion duration being nearly optimal for other durations. Together this suggests that a framing schedule optimized for one set of conditions will also work well for others and it is not necessary to use different schedules for different infusion durations or for rest and stress studies. The method for optimizing schedules is general and could be applied in other dynamic PET imaging studies.

  4. Optimizing modelling in iterative image reconstruction for preclinical pinhole PET

    NASA Astrophysics Data System (ADS)

    Goorden, Marlies C.; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J.

    2016-05-01

    The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning 99mTc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes (‘multiple-pinhole paths’ (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging 18F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport.

  5. Optimizing modelling in iterative image reconstruction for preclinical pinhole PET.

    PubMed

    Goorden, Marlies C; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J

    2016-05-21

    The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning (99m)Tc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes ('multiple-pinhole paths' (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging (18)F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport. PMID:27082049

  6. Optimal feature selection for automated classification of FDG-PET in patients with suspected dementia

    NASA Astrophysics Data System (ADS)

    Serag, Ahmed; Wenzel, Fabian; Thiele, Frank; Buchert, Ralph; Young, Stewart

    2009-02-01

    FDG-PET is increasingly used for the evaluation of dementia patients, as major neurodegenerative disorders, such as Alzheimer's disease (AD), Lewy body dementia (LBD), and Frontotemporal dementia (FTD), have been shown to induce specific patterns of regional hypo-metabolism. However, the interpretation of FDG-PET images of patients with suspected dementia is not straightforward, since patients are imaged at different stages of progression of neurodegenerative disease, and the indications of reduced metabolism due to neurodegenerative disease appear slowly over time. Furthermore, different diseases can cause rather similar patterns of hypo-metabolism. Therefore, classification of FDG-PET images of patients with suspected dementia may lead to misdiagnosis. This work aims to find an optimal subset of features for automated classification, in order to improve classification accuracy of FDG-PET images in patients with suspected dementia. A novel feature selection method is proposed, and performance is compared to existing methods. The proposed approach adopts a combination of balanced class distributions and feature selection methods. This is demonstrated to provide high classification accuracy for classification of FDG-PET brain images of normal controls and dementia patients, comparable with alternative approaches, and provides a compact set of features selected.

  7. A neutron pinhole camera for PF-24 source: Conceptual design and optimization

    NASA Astrophysics Data System (ADS)

    Bielecki, J.; Wójcik-Gargula, A.; Wiacek, U.; Scholz, M.; Igielski, A.; Drozdowicz, K.; Woźnicka, U.

    2015-07-01

    A fast-neutron pinhole camera based on small-area (5mm × 5 mm) BCF-12 scintillation detectors with nanosecond time resolution has been designed. The pinhole camera is dedicated to the investigation of the spatial and temporal distributions of DD neutrons from the Plasma Focus (PF-24) source. The geometrical parameters of the camera have been optimized in terms of maximum neutron flux at the imaging plane by means of MCNP calculations. The detection system consists of four closely packed scintillation detectors coupled via long optical fibres to Hamamatsu H3164-10 photomultiplier tubes. The pinhole consists of specially designed 420 mm long copper collimator with an effective aperture of 1.7 mm mounted inside a cylindrical polyethylene tube. The performance of the presented detection system in the mixed (hard X-ray and neutron) radiation field of the PF-24 plasma focus device has been tested. The results of the tests showed that the small-area BCF-12 scintillation detectors can be successfully applied as the detection system of the neutron pinhole camera for the PF-24 device.

  8. Optimal scan time for evaluation of parathyroid adenoma with [18F]-fluorocholine PET/CT

    PubMed Central

    Rep, Sebastijan; Lezaic, Luka; Kocjan, Tomaz; Pfeifer, Marija; Sever, Mojca Jensterle; Simoncic, Urban; Tomse, Petra; Hocevar, Marko

    2015-01-01

    Background Parathyroid adenomas, the most common cause of primary hyperparathyroidism, are benign tumours which autonomously produce and secrete parathyroid hormone. [18F]-fluorocholine (FCH), PET marker of cellular proliferation, was recently demonstrated to accumulate in lesions representing enlarged parathyroid tissue; however, the optimal time to perform FCH PET/CT after FCH administration is not known. The aim of this study was to determine the optimal scan time of FCH PET/CT in patients with primary hyperparathyroidism. Patients and methods. 43 patients with primary hyperparathyroidism were enrolled in this study. A triple-phase PET/CT imaging was performed five minutes, one and two hours after the administration of FCH. Regions of interest (ROI) were placed in lesions representing enlarged parathyroid tissue and thyroid tissue. Standardized uptake value (SUVmean), retention index and lesion contrast for parathyroid and thyroid tissue were calculated. Results Accumulation of FCH was higher in lesions representing enlarged parathyroid tissue in comparison to the thyroid tissue with significantly higher SUVmean in the second and in the third phase (p < 0.0001). Average retention index decreased significantly between the first and the second phase and increased significantly between the second and the third phase in lesions representing enlarged parathyroid tissue and decreased significantly over all three phases in thyroid tissue (p< 0.0001). The lesion contrast of lesions representing enlarged parathyroid tissue and thyroid tissue was significantly better in the second and the third phase compared to the first phase (p < 0.05). Conclusions According to the results the optimal scan time of FCH PET/CT for localization of lesions representing enlarged parathyroid tissue is one hour after administration of the FCH. PMID:26834518

  9. Flow optimization study of a batch microfluidics PET tracer synthesizing device

    PubMed Central

    Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.

    2010-01-01

    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595

  10. Optimization algorithms and weighting factors for analysis of dynamic PET studies

    NASA Astrophysics Data System (ADS)

    Yaqub, Maqsood; Boellaard, Ronald; Kropholler, Marc A.; Lammertsma, Adriaan A.

    2006-09-01

    Positron emission tomography (PET) pharmacokinetic analysis involves fitting of measured PET data to a PET pharmacokinetic model. The fitted parameters may, however, suffer from bias or be unrealistic, especially in the case of noisy data. There are many optimization algorithms, each having different characteristics. The purpose of the present study was to evaluate (1) the performance of different optimization algorithms and (2) the effects of using incorrect weighting factors during optimization in terms of both accuracy and reproducibility of fitted PET pharmacokinetic parameters. In this study, the performance of commonly used optimization algorithms (i.e. interior-reflective Newton methods) and a simulated annealing (SA) method was evaluated. This SA algorithm, known as basin hopping, was modified for the present application. In addition, optimization was performed using various weighting factors. Algorithms and effects of using incorrect weighting factors were studied using both simulated and clinical time-activity curves (TACs). Input data, taken from [15O]H2O, [11C]flumazenil and [11C](R)-PK11195 studies, were used to simulate time-activity curves at various variance levels (0-15% COV). Clinical evaluation was based on studies with the same three tracers. SA was able to produce accurate results without the need for selecting appropriate starting values for (kinetic) parameters, in contrast to the interior-reflective Newton method. The latter gave biased results unless it was modified to allow for a range of starting values for the different parameters. For patient studies, where large variability is expected, both SA and the extended Newton method provided accurate results. Simulations and clinical assessment showed similar results for the evaluation of different weighting models in that small to intermediate mismatches between data variance and weighting factors did not significantly affect the outcome of the fits. Large errors were observed only when the

  11. SU-D-9A-01: Listmode-Driven Optimal Gating (OG) Respiratory Motion Management: Potential Impact On Quantitative PET Imaging

    SciTech Connect

    Lee, K; Hristov, D

    2014-06-01

    Purpose: To evaluate the potential impact of listmode-driven amplitude based optimal gating (OG) respiratory motion management technique on quantitative PET imaging. Methods: During the PET acquisitions, an optical camera tracked and recorded the motion of a tool placed on top of patients' torso. PET event data were utilized to detect and derive a motion signal that is directly coupled with a specific internal organ. A radioactivity-trace was generated from listmode data by accumulating all prompt counts in temporal bins matching the sampling rate of the external tracking device. Decay correction for 18F was performed. The image reconstructions using OG respiratory motion management technique that uses 35% of total radioactivity counts within limited motion amplitudes were performed with external motion and radioactivity traces separately with ordered subset expectation maximization (OSEM) with 2 iterations and 21 subsets. Standard uptake values (SUVs) in a tumor region were calculated to measure the effect of using radioactivity trace for motion compensation. Motion-blurred 3D static PET image was also reconstructed with all counts and the SUVs derived from OG images were compared with SUVs from 3D images. Results: A 5.7 % increase of the maximum SUV in the lesion was found for optimal gating image reconstruction with radioactivity trace when compared to a static 3D image. The mean and maximum SUVs on the image that was reconstructed with radioactivity trace were found comparable (0.4 % and 4.5 % increase, respectively) to the values derived from the image that was reconstructed with external trace. Conclusion: The image reconstructed using radioactivity trace showed that the blurring due to the motion was reduced with impact on derived SUVs. The resolution and contrast of the images reconstructed with radioactivity trace were comparable to the resolution and contrast of the images reconstructed with external respiratory traces. Research supported by Siemens.

  12. Trends in PET imaging

    SciTech Connect

    Moses, William W.

    2000-11-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT).

  13. An energy-optimized collimator design for a CZT-based SPECT camera

    NASA Astrophysics Data System (ADS)

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radiotracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which is independent of the photon energy, performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including 57Co, 99mTc, 123I and 111In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, and 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus commercial

  14. An energy-optimized collimator design for a CZT-based SPECT camera

    PubMed Central

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2015-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radio-tracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which independent of the photon energy performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including 57Co, 99mTc, 123I and 111In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus commercial collimators

  15. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  16. Sensitivity Optimization of Millimeter/Submillimeter MKID Camera Pixel Device Design

    NASA Astrophysics Data System (ADS)

    Schlaerth, J.; Golwala, S.; Zmuidzinas, J.; Vayonakis, A.; Gao, Js.; Czakon, N.; Day, P.; Glenn, J.; Hollister, M.; LeDuc, H.; Maloney, P.; Mazin, B.; Nguyen, H.; Sayers, J.; Vaillancourt, J.

    2009-12-01

    We are using Microwave Kinetic Inductance Detectors in a sub/millimeter camera for the Caltech Submillimeter Observatory. These detectors are microwave resonators that rely on submillimeter and millimeter-wave photons to break Cooper pairs, changing the surface impedance. This changes the resonator frequency and quality factor, Q, and is measured by probe signals sent through a feedline coupled to the detectors. The camera will be divided into 16 independent readout tiles, each of which will fit 144 resonators at different frequencies into 360 MHz of bandwidth. We discuss the effect of readout power and single pixel frequency responsivity on the NEP of the detectors. Finally, we consider the mapping speeds of a full tile as a function of Q, which is controlled through the detector volume. A lower Q at fixed optical power implies greater responsivity, while a higher Q decreases the collision probability—the likelihood that any two resonators will have close enough resonant frequencies for crosstalk to be unacceptably high. We find the optimal design based on these constraints, and the corresponding mapping speeds expected at the telescope.

  17. Optimized streak-camera system: wide excitation range and extended time scale for fluorescence lifetime measurement

    NASA Astrophysics Data System (ADS)

    Graf, Urs; Buehler, Christof; Betz, Michael; Zuber, Herbert; Anliker, M.

    1994-08-01

    A new versatile system for the measurement of time-resolved fluorescence emission spectra of biomolecules is presented. Frequency doubling and tripling of a Ti:Sapphire laser allows excitation over a wide wavelength range. The influence of increasing the spectral resolution on the time resolution has been investigated. System performance can be optimized for best resolution in the spectral or time domain, respectively. System performance can be optimized for best resolution in the spectral or time domain, respectively. The currently achieved temporal resolution is 6 psec, and the best spectral resolution is 3 nm. Long fluorescence decays can be resolved with optimal time resolution by way of taking into account the flyback of the streak camera. With the system described, the core complex ((alpha) (beta) )3APCLC8.9 of the phycobilisome from the photosynthetic cyanobacteria Mastigocladus laminosus has been analyzed. Lifetime analysis clearly demonstrated the influence of the linker polypeptide on the phycobiliprotein complex and the identity of native and reconstituted complex.

  18. Optimization of Rb-82 PET acquisition and reconstruction protocols for myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman; Lautamäki, Riikka; Lodge, Martin A.; Bengel, Frank M.; Tsui, Benjamin M. W.

    2009-05-01

    The purpose of this study is to optimize the dynamic Rb-82 cardiac PET acquisition and reconstruction protocols for maximum myocardial perfusion defect detection using realistic simulation data and task-based evaluation. Time activity curves (TACs) of different organs under both rest and stress conditions were extracted from dynamic Rb-82 PET images of five normal patients. Combined SimSET-GATE Monte Carlo simulation was used to generate nearly noise-free cardiac PET data from a time series of 3D NCAT phantoms with organ activities modeling different pre-scan delay times (PDTs) and total acquisition times (TATs). Poisson noise was added to the nearly noise-free projections and the OS-EM algorithm was applied to generate noisy reconstructed images. The channelized Hotelling observer (CHO) with 32× 32 spatial templates corresponding to four octave-wide frequency channels was used to evaluate the images. The area under the ROC curve (AUC) was calculated from the CHO rating data as an index for image quality in terms of myocardial perfusion defect detection. The 0.5 cycle cm-1 Butterworth post-filtering on OS-EM (with 21 subsets) reconstructed images generates the highest AUC values while those from iteration numbers 1 to 4 do not show different AUC values. The optimized PDTs for both rest and stress conditions are found to be close to the cross points of the left ventricular chamber and myocardium TACs, which may promote an individualized PDT for patient data processing and image reconstruction. Shortening the TATs for <~3 min from the clinically employed acquisition time does not affect the myocardial perfusion defect detection significantly for both rest and stress studies.

  19. Evaluation and optimization of occupational eye lens dosimetry during positron emission tomography (PET) procedures.

    PubMed

    Guiu-Souto, Jacobo; Sánchez-García, Manuel; Vázquez-Vázquez, Rubén; Otero, Carlos; Luna, Victor; Mosquera, Javier; Busto, Ramón Lobato; Aguiar, Pablo; Ruibal, Álvaro; Pardo-Montero, Juan; Pombar-Cameán, Miguel

    2016-06-01

    The last recommendations of the International Commission on Radiological Protection for eye lens dose suggest an important reduction on the radiation limits associated with early and late tissue reactions. The aim of this work is to quantify and optimize the eye lens dose associated to nurse staff during positron emission tomography (PET) procedures. PET is one of the most important diagnostic methods of oncological and neurological cancer disease involving an important number of workers exposed to the high energy isotope F-18. We characterize the relevant stages as preparation and administration of monodose syringes in terms of occupational dose. A direct reading silicon dosimeter was used to measure the lens dose to staff. The highest dose of radiation was observed during preparation of the fluorodesoxyglucose (FDG) syringes. By optimizing a suitable vials' distribution of FDG we find an important reduction in occupational doses. Extrapolation of our data to other clinical scenarios indicates that, depending on the work load and/or syringes activity, safety limits of the dose might be exceeded. PMID:27182832

  20. Controlling Small Fixed Wing UAVs to Optimize Image Quality from On-Board Cameras

    NASA Astrophysics Data System (ADS)

    Jackson, Stephen Phillip

    Small UAVs have shown great promise as tools for collecting aerial imagery both quickly and cheaply. Furthermore, using a team of small UAVs, as opposed to one large UAV, has shown promise as being a cheaper, faster and more robust method for collecting image data over a large area. Unfortunately, the autonomy of small UAVs has not yet reached the point where they can be relied upon to collect good aerial imagery without human intervention, or supervision. The work presented here intends to increase the level of autonomy of small UAVs so that they can independently, and reliably collect quality aerial imagery. The main contribution of this paper is a novel approach to controlling small fixed wing UAVs that optimizes the quality of the images captured by cameras on board the aircraft. This main contribution is built on three minor contributions: a kinodynamic motion model for small fixed wing UAVs, an iterative Gaussian sampling strategy for rapidly exploring random trees, and a receding horizon, nonlinear model predictive controller for controlling a UAV's sensor footprint. The kinodynamic motion model is built on the traditional unicycle model of an aircraft. In order to create dynamically feasible paths, the kinodynamic motion model augments the kinetic unicycle model by adding a first order estimate of the aircraft's roll dynamics. Experimental data is presented that not only validates this novel kinodynamic motion model, but also shows a 25% improvement over the traditional unicycle model. A novel Gaussian biased sampling strategy is presented for building a rapidly exploring random tree that quickly iterates to a near optimal path. This novel sampling strategy does not require a method for calculating the nearest node to a point, which means that it runs much faster than the traditional RRT algorithm, but it still results in a Gaussian distribution of nodes. Furthermore, because it uses the kinodynamic motion model, the near optimal path it generates is, by

  1. Optimal camera exposure for video surveillance systems by predictive control of shutter speed, aperture, and gain

    NASA Astrophysics Data System (ADS)

    Torres, Juan; Menéndez, José Manuel

    2015-02-01

    This paper establishes a real-time auto-exposure method to guarantee that surveillance cameras in uncontrolled light conditions take advantage of their whole dynamic range while provide neither under nor overexposed images. State-of-the-art auto-exposure methods base their control on the brightness of the image measured in a limited region where the foreground objects are mostly located. Unlike these methods, the proposed algorithm establishes a set of indicators based on the image histogram that defines its shape and position. Furthermore, the location of the objects to be inspected is likely unknown in surveillance applications. Thus, the whole image is monitored in this approach. To control the camera settings, we defined a parameters function (Ef ) that linearly depends on the shutter speed and the electronic gain; and is inversely proportional to the square of the lens aperture diameter. When the current acquired image is not overexposed, our algorithm computes the value of Ef that would move the histogram to the maximum value that does not overexpose the capture. When the current acquired image is overexposed, it computes the value of Ef that would move the histogram to a value that does not underexpose the capture and remains close to the overexposed region. If the image is under and overexposed, the whole dynamic range of the camera is therefore used, and a default value of the Ef that does not overexpose the capture is selected. This decision follows the idea that to get underexposed images is better than to get overexposed ones, because the noise produced in the lower regions of the histogram can be removed in a post-processing step while the saturated pixels of the higher regions cannot be recovered. The proposed algorithm was tested in a video surveillance camera placed at an outdoor parking lot surrounded by buildings and trees which produce moving shadows in the ground. During the daytime of seven days, the algorithm was running alternatively together

  2. Optimization of radiation doses received by personnel in PET uptake rooms.

    PubMed

    Perez, Maria E; Verde, José M; Montes, Carlos; Ramos, Julio A; García, Sofía; Hernandez, Jorge

    2014-11-01

    Reduction of dose to exposed personnel during positron emission tomography (PET) installation usually relies on physical shielding. While the major contribution of shielding is unquestioned, it is usually the only method applied. Other methods of reduction, such as working procedure optimization, the position of the furniture, and rooms are usually disregarded in these installations. This paper presents a design and work optimization procedure used in a particular institution. The influence on the dose received by personnel due to the positioning of injection chairs, injection room configuration, and working procedures is studied. Using this optimization strategy, it is possible to reduce the technician dose due to patients by a factor of 0.59. Injection room design is much more important for optimizing the received dose than is work-flow management. The influence of the order of patient entrance on received dose was the aspect that produced the smallest variation in received doses. It is recommended that the optimization be carried out for the installation proposed in the design phase, when no additional cost is required, because the position of the doors of the injection rooms depends on the where the injection chairs are situated. PMID:25272030

  3. Study and optimization of positioning algorithms for monolithic PET detectors blocks

    NASA Astrophysics Data System (ADS)

    Garcia de Acilu, P.; Sarasola, I.; Canadas, M.; Cuerdo, R.; Rato Mendes, P.; Romero, L.; Willmott, C.

    2012-06-01

    We are developing a PET insert for existing MRI equipment to be used in clinical PET/MR studies of the human brain. The proposed scanner is based on annihilation gamma detection with monolithic blocks of cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) coupled to magnetically-compatible avalanche photodiodes (APD) matrices. The light distribution generated on the LYSO:Ce block provides the impinging position of the 511 keV photons by means of a positioning algorithm. Several positioning methods, from the simplest Anger Logic to more sophisticate supervised-learning Neural Networks (NN), can be implemented to extract the incidence position of gammas directly from the APD signals. Finally, an optimal method based on a two-step Feed-Forward Neural Network has been selected. It allows us to reach a resolution at detector level of 2 mm, and acquire images of point sources using a first BrainPET prototype consisting of two monolithic blocks working in coincidence. Neural networks provide a straightforward positioning of the acquired data once they have been trained, however the training process is usually time-consuming. In order to obtain an efficient positioning method for the complete scanner it was necessary to find a training procedure that reduces the data acquisition and processing time without introducing a noticeable degradation of the spatial resolution. A grouping process and posterior selection of the training data have been done regarding the similitude of the light distribution of events which have one common incident coordinate (transversal or longitudinal). By doing this, the amount of training data can be reduced to about 5% of the initial number with a degradation of spatial resolution lower than 10%.

  4. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET

    PubMed Central

    Mikhaylova, E.; Kolstein, M.; De Lorenzo, G.; Chmeissani, M.

    2014-01-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm3) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics. PMID:25018777

  5. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET.

    PubMed

    Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M

    2014-07-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm(3)) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics. PMID:25018777

  6. SU-D-201-05: Phantom Study to Determine Optimal PET Reconstruction Parameters for PET/MR Imaging of Y-90 Microspheres Following Radioembolization

    SciTech Connect

    Maughan, N; Conti, M; Parikh, P; Faul, D; Laforest, R

    2015-06-15

    Purpose: Imaging Y-90 microspheres with PET/MRI following hepatic radioembolization has the potential for predicting treatment outcome and, in turn, improving patient care. The positron decay branching ratio, however, is very small (32 ppm), yielding images with poor statistics even when therapy doses are used. Our purpose is to find PET reconstruction parameters that maximize the PET recovery coefficients and minimize noise. Methods: An initial 7.5 GBq of Y-90 chloride solution was used to fill an ACR phantom for measurements with a PET/MRI scanner (Siemens Biograph mMR). Four hot cylinders and a warm background activity volume of the phantom were filled with a 10:1 ratio. Phantom attenuation maps were derived from scaled CT images of the phantom and included the MR phased array coil. The phantom was imaged at six time points between 7.5–1.0 GBq total activity over a period of eight days. PET images were reconstructed via OP-OSEM with 21 subsets and varying iteration number (1–5), post-reconstruction filter size (5–10 mm), and either absolute or relative scatter correction. Recovery coefficients, SNR, and noise were measured as well as total activity in the phantom. Results: For the 120 different reconstructions, recovery coefficients ranged from 0.1–0.6 and improved with increasing iteration number and reduced post-reconstruction filter size. SNR, however, improved substantially with lower iteration numbers and larger post-reconstruction filters. From the phantom data, we found that performing 2 iterations, 21 subsets, and applying a 5 mm Gaussian post-reconstruction filter provided optimal recovery coefficients at a moderate noise level for a wide range of activity levels. Conclusion: The choice of reconstruction parameters for Y-90 PET images greatly influences both the accuracy of measurements and image quality. We have found reconstruction parameters that provide optimal recovery coefficients with minimized noise. Future work will include the effects

  7. Dual-Modality PET/Ultrasound imaging of the Prostate

    SciTech Connect

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  8. Post-injection transmission scans in a PET camera operating without septa with simultaneous measurement of emission activity contamination

    SciTech Connect

    Smith, R.J.; Karp, J.S.

    1996-08-01

    The authors report here on methods developed to reliably perform attenuation correction by post-injection transmission in a volume imaging PET scanner. The method directly measures the emission contamination during the transmission study, using a virtual transmission source position offset by 20{degree} from the actual {sup 68}Ge transmission source. Events are recorded only if they meet a co-linearity requirement with either the real or virtual source position. The simultaneous measurements of the emission contamination and transmission data remove the need for complex corrections to the emission data and are not subject to activity redistributions between emission and transmission scans performed sequentially. Correction is necessary, however, for the extra deadtime that varies with the amount of emission activity in the FOV. The extra deadtime is determined from a lookup table of deadtime as a function of detector countrates, which are recorded during the study. The lookup table is based upon phantom measurements. Using patient and phantom data, with both pre- and post-injection transmission measurements, this method is shown to be reliable for attenuation correction in the body. In addition, it enables the calculation of Standardized Uptake Values for analyzing tumor activity.

  9. Optimization of fixed titanium dioxide film on PET bottles and visual indicator for water disinfection

    NASA Astrophysics Data System (ADS)

    Heredia-Munoz, Manuel Antonio

    Water is perhaps the most important resource that sustains human life. According to the World Health Organization (WHO), almost two billion people do not have access to the required water that is needed to satisfy their daily needs and one billion do not have access to clean sources of water for consumption, most of them living in isolated and poor areas around the globe. Poor quality water increases the risk of cholera, typhoid fever and dysentery, and other water-borne illness making this problem a real crisis that humankind is facing. Several water disinfection technologies have been proposed as solutions for this problem. Solar water disinfection using TiO2 coated PET bottles was the alternative that is studied in this work. This technology does not only inactivate bacteria but also disintegrates organic chemicals that can be present in water. The objectives of this work address the optimization of the TiO 2 coated PET bottles technologies. The improvement on the bottle coating process, using two coats of 10% W/V of TiO2 in a solution of vinegar and sodium bicarbonate to form the TiO2 film, the use of a different indigo carmine (1.25 X 10-1mg/pill) concentration in the pill indicator of contamination, the increase of the disinfection rate through shaking the bottles, degradation under intermittent UV radiation and the effect of bottle size on photocatalytic water disinfection were among the most important findings. A new mathematical model that describes better photocatalytic water disinfection in TiO2 coated bottles and simulates water disinfection under different working conditions was another important achievement. These results can now be used to design a strategy for disseminating this technology in areas where it is required and, in that way, generate the greatest positive impact on the people needing safe drinking water.

  10. Optimizing Data Recording for the NIF Core Diagnostic X-ray Streak Camera

    SciTech Connect

    Kalantar, D H; Bell, P M; Perry, T S; Sewall, N; Diamond, C; Piston, K

    2000-06-13

    The x-ray streak camera is an important instrument for recording a continuous time history of x-ray emitted from laser target experiments. X-ray streak cameras were used to diagnose experiments in inertially confined fusion and high energy density sciences on the Nova laser. These streak cameras are now used for similar experiments conducted at the OMEGA laser facility, and cameras of this type will be used for experiments on the National Ignition Facility (NIF). The Nova x-ray streak cameras (SSCs) used a sealed optical image intensifier coupled to film to record the streaked x-ray data. In order to develop the core x-ray streak camera for NIF (ref Kimbrough) using a CCD based recording system, we evaluate the performance of the SSCs under a variety of detector configurations. We performed laboratory bench characterization tests of the SSCs to measure the spatial resolution and to evaluate the dynamic range and signal to noise for different configurations of the SSC. We present results of these tests here.

  11. Proactive PTZ Camera Control

    NASA Astrophysics Data System (ADS)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  12. Development and validation of a variance model for dynamic PET: uses in fitting kinetic data and optimizing the injected activity

    NASA Astrophysics Data System (ADS)

    Walker, M. D.; Matthews, J. C.; Asselin, M.-C.; Watson, C. C.; Saleem, A.; Dickinson, C.; Charnley, N.; Julyan, P. J.; Price, P. M.; Jones, T.

    2010-11-01

    The precision of biological parameter estimates derived from dynamic PET data can be limited by the number of acquired coincidence events (prompts and randoms). These numbers are affected by the injected activity (A0). The benefits of optimizing A0 were assessed using a new model of data variance which is formulated as a function of A0. Seven cancer patients underwent dynamic [15O]H2O PET scans (32 scans) using a Biograph PET-CT scanner (Siemens), with A0 varied (142-839 MBq). These data were combined with simulations to (1) determine the accuracy of the new variance model, (2) estimate the improvements in parameter estimate precision gained by optimizing A0, and (3) examine changes in precision for different size regions of interest (ROIs). The new variance model provided a good estimate of the relative variance in dynamic PET data across a wide range of A0s and time frames for FBP reconstruction. Patient data showed that relative changes in estimate precision with A0 were in reasonable agreement with the changes predicted by the model: Pearson's correlation coefficients were 0.73 and 0.62 for perfusion (F) and the volume of distribution (VT), respectively. The between-scan variability in the parameter estimates agreed with the estimated precision for small ROIs (<5 mL). An A0 of 500-700 MBq was near optimal for estimating F and VT from abdominal [15O]H2O scans on this scanner. This optimization improved the precision of parameter estimates for small ROIs (<5 mL), with an injection of 600 MBq reducing the standard error on F by a factor of 1.13 as compared to the injection of 250 MBq, but by the more modest factor of 1.03 as compared to A0 = 400 MBq.

  13. Experimental task-based optimization of a four-camera variable-pinhole small-animal SPECT system

    NASA Astrophysics Data System (ADS)

    Hesterman, Jacob Y.; Kupinski, Matthew A.; Furenlid, Lars R.; Wilson, Donald W.

    2005-04-01

    We have previously utilized lumpy object models and simulated imaging systems in conjunction with the ideal observer to compute figures of merit for hardware optimization. In this paper, we describe the development of methods and phantoms necessary to validate or experimentally carry out these optimizations. Our study was conducted on a four-camera small-animal SPECT system that employs interchangeable pinhole plates to operate under a variety of pinhole configurations and magnifications (representing optimizable system parameters). We developed a small-animal phantom capable of producing random backgrounds for each image sequence. The task chosen for the study was the detection of a 2mm diameter sphere within the phantom-generated random background. A total of 138 projection images were used, half of which included the signal. As our observer, we employed the channelized Hotelling observer (CHO) with Laguerre-Gauss channels. The signal-to-noise (SNR) of this observer was used to compare different system configurations. Results indicate agreement between experimental and simulated data with higher detectability rates found for multiple-camera, multiple-pinhole, and high-magnification systems, although it was found that mixtures of magnifications often outperform systems employing a single magnification. This work will serve as a basis for future studies pertaining to system hardware optimization.

  14. Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging

    PubMed Central

    Wolfs, Esther; Holvoet, Bryan; Gijsbers, Rik; Casteels, Cindy; Roberts, Scott J.; Struys, Tom; Maris, Michael; Ibrahimi, Abdelilah; Debyser, Zeger; Van Laere, Koen; Verfaillie, Catherine M.; Deroose, Christophe M.

    2014-01-01

    Purpose The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters. Methods First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, 124I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using 99mTcO4− radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell's differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI. Results The expression of both imaging reporter genes was functional and specific. An elution of 99mTcO4− from the cells was observed, with 31% retention after 3 h. After labeling cells with 124I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using 124I small-animal PET, CLI and BLI. Conclusions This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications. PMID:24747914

  15. A risk-based coverage model for video surveillance camera control optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Hongzhou; Du, Zhiguo; Zhao, Xingtao; Li, Peiyue; Li, Dehua

    2015-12-01

    Visual surveillance system for law enforcement or police case investigation is different from traditional application, for it is designed to monitor pedestrians, vehicles or potential accidents. Visual surveillance risk is defined as uncertainty of visual information of targets and events monitored in present work and risk entropy is introduced to modeling the requirement of police surveillance task on quality and quantity of vide information. the prosed coverage model is applied to calculate the preset FoV position of PTZ camera.

  16. GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Staguhn, J.

    2007-01-01

    The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.

  17. Optimization of A Commercial PET Cyclotron For Increased 18F- Production

    SciTech Connect

    Bergstrom, Jan Olof; Eriksson, Tomas

    2003-08-26

    Commercial cyclotron systems used for 18F- production through 18O (p, n) 18F reaction face several conflicting requirements that include: reliability/uptime, quantity of consumables, safety, cost and yield. With commercialization of PET tracer distribution, higher yield has become one of the most important requirements. Maximizing yield for commercial cyclotrons require engineering trade-off amongst several requirements, and often, to be conservative, significant design margin is kept while field feedback is collected. With maturing of technology, substantial experience has been obtained for a commercial cyclotron (PETtrace, GE Medical Systems), which is in use for several years. In this paper, we describe key elements of PETtrace commercial cyclotron technology undergoing enhancements, and share our works-in-progress experiments in performing critical engineering trade-offs to improve 18F- yield. Three key parameters were tuned in this study within the design margin of the current equipment. First, we designed a second-generation target assembly with optimized 18O water volume for accepting increased beam currents while maintaining cooling performance. Second, we increased the beam current of the ion source. And finally, a new RF driver amplifier was designed to enhance the RF power ratings to enable higher beam currents. Initial tests performed in the factory indicate substantially higher yield performance (> 50%) reaching a peak yield of over 4 Ci per hour of bombardment in the new target. On dual targets, this extrapolates to 13.5 Ci/2hr of bombardment for a total target current of 120 {mu}A. A target current of 100 {mu}A is available in the existing design thus providing an 18F- production capacity exceeding 11 Ci/2hr. The preliminary experimental results are promising and illustrate successful exploitation of design margin to achieve increased yield for a commercial cyclotron. Long-term studies to assess impact on life of ion source are underway along with a

  18. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    SciTech Connect

    McKinsey, Daniel Nicholas

    2013-08-27

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have better energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid detectors for

  19. Optimizing process time of laser drilling processes in solar cell manufacturing by coaxial camera control

    NASA Astrophysics Data System (ADS)

    Jetter, Volker; Gutscher, Simon; Blug, Andreas; Knorz, Annerose; Ahrbeck, Christopher; Nekarda, Jan; Carl, Daniel

    2014-03-01

    In emitter wrap through (EWT) solar cells, laser drilling is used to increase the light sensitive area by removing emitter contacts from the front side of the cell. For a cell area of 156 x 156 mm2, about 24000 via-holes with a diameter of 60 μm have to be drilled into silicon wafers with a thickness of 200 μm. The processing time of 10 to 20 s is determined by the number of laser pulses required for safely opening every hole on the bottom side. Therefore, the largest wafer thickness occurring in a production line defines the processing time. However, wafer thickness varies by roughly +/-20 %. To reduce the processing time, a coaxial camera control system was integrated into the laser scanner. It observes the bottom breakthrough from the front side of the wafer by measuring the process emissions of every single laser pulse. To achieve the frame rates and latency times required by the repetition rate of the laser (10 kHz), a camera based on cellular neural networks (CNN) was used where the images are processed directly on the camera chip by 176 x 144 sensor-processor-elements. One image per laser pulse is processed within 36 μs corresponding to a maximum pulse rate of 25 kHz. The laser is stopped when all of the holes are open on the bottom side. The result is a quality control system in which the processing time of a production line is defined by average instead of maximum wafer thickness.

  20. Optimization of spectral sensitivities of mosaic five-band camera for estimating chromophore densities from skin images including shading and surface reflections

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Akaho, Rina; Maita, Chikashi; Sugawara, Mai; Tsumura, Norimichi

    2016-06-01

    In this paper, the spectral sensitivities of a mosaic five-band camera were optimized using a numerical skin phantom to perform the separation of chromophore densities, shading and surface reflection. To simulate the numerical skin phantom, the spectral reflectance of skin was first calculated by Monte Carlo simulation of photon migration for different concentrations of melanin, blood and oxygen saturation levels. The melanin and hemoglobin concentration distributions used in the numerical skin phantom were obtained from actual skin images by independent component analysis. The calculated components were assigned as concentration distributions. The spectral sensitivities of the camera were then optimized using a nonlinear technique to estimate the spectral reflectance for skin separation. In this optimization, the spectral sensitivities were assumed to be normally distributed, and the sensor arrangement was identical to that of a conventional mosaic five-band camera. Our findings demonstrated that spectral estimation could be significantly improved by optimizing the spectral sensitivities.

  1. Optimization of spectral sensitivities of mosaic five-band camera for estimating chromophore densities from skin images including shading and surface reflections

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Akaho, Rina; Maita, Chikashi; Sugawara, Mai; Tsumura, Norimichi

    2016-02-01

    In this paper, the spectral sensitivities of a mosaic five-band camera were optimized using a numerical skin phantom to perform the separation of chromophore densities, shading and surface reflection. To simulate the numerical skin phantom, the spectral reflectance of skin was first calculated by Monte Carlo simulation of photon migration for different concentrations of melanin, blood and oxygen saturation levels. The melanin and hemoglobin concentration distributions used in the numerical skin phantom were obtained from actual skin images by independent component analysis. The calculated components were assigned as concentration distributions. The spectral sensitivities of the camera were then optimized using a nonlinear technique to estimate the spectral reflectance for skin separation. In this optimization, the spectral sensitivities were assumed to be normally distributed, and the sensor arrangement was identical to that of a conventional mosaic five-band camera. Our findings demonstrated that spectral estimation could be significantly improved by optimizing the spectral sensitivities.

  2. TRIDENT: an Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions

    SciTech Connect

    Marois, C; Doyon, R; Nadeau, D; Racine, R; Riopel, M; Vallee, P; Lafreniere, D

    2005-04-08

    A near-infrared camera in use at the Canada-France-Hawaii Telescope (CFHT) and at the 1.6-m telescope of the Observatoire du Mont-Megantic is described. The camera is based on a Hawaii-1 1024 x 1024 HgCdTe array detector. Its main feature is to acquire three simultaneous images at three wavelengths across the methane absorption bandhead at 1.6 {micro}m, enabling, in theory, an accurate subtraction of the stellar point spread function (PSF) and the detection of faint close methanated companions. The instrument has no coronoagraph and features fast data acquisition, yielding high observing efficiency on bright stars. The performance of the instrument is described, and it is illustrated by laboratory tests and CFHT observations of the nearby stars GL526, {nu}-And and {chi}-And. TRIDENT can detect (6{sigma}) a methanated companion with {Delta}H = 9.5 at 0.5'' separation from the star in one hour of observing time. Non-common path aberrations and amplitude modulation differences between the three optical paths are likely to be the limiting factors preventing further PSF attenuation. Instrument rotation and reference star subtraction improve the detection limit by a factor of 2 and 4 respectively. A PSF noise attenuation model is presented to estimate the non-common path wavefront difference effect on PSF subtraction performance.

  3. Optimization of a Model Corrected Blood Input Function from Dynamic FDG-PET Images of Small Animal Heart In Vivo.

    PubMed

    Zhong, Min; Kundu, Bijoy K

    2013-10-01

    Quantitative evaluation of dynamic Positron Emission Tomography (PET) of mouse heart in vivo is challenging due to the small size of the heart and limited intrinsic spatial resolution of the PET scanner. Here, we optimized a compartment model which can simultaneously correct for spill over and partial volume effects for both blood pool and the myocardium, compute kinetic rate parameters and generate model corrected blood input function (MCBIF) from ordered subset expectation maximization - maximum a posteriori (OSEM-MAP) cardiac and respiratory gated (18)F-FDG PET images of mouse heart with attenuation correction in vivo, without any invasive blood sampling. Arterial blood samples were collected from a single mouse to indicate the feasibility of the proposed method. In order to establish statistical significance, venous blood samples from n=6 mice were obtained at 2 late time points, when SP contamination from the tissue to the blood is maximum. We observed that correct bounds and initial guesses for the PV and SP coefficients accurately model the wash-in and wash-out dynamics of the tracer from mouse blood. The residual plot indicated an average difference of about 1.7% between the blood samples and MCBIF. The downstream rate of myocardial FDG influx constant, Ki (0.15±0.03 min(-1)), compared well with Ki obtained from arterial blood samples (P=0.716). In conclusion, the proposed methodology is not only quantitative but also reproducible. PMID:24741130

  4. PET optimization for improved assessment and accurate quantification of {sup 90}Y-microsphere biodistribution after radioembolization

    SciTech Connect

    Martí-Climent, Josep M. Prieto, Elena; Elosúa, César; Rodríguez-Fraile, Macarena; Domínguez-Prado, Inés; Vigil, Carmen; García-Velloso, María J.; Arbizu, Javier; Peñuelas, Iván; Richter, José A.

    2014-09-15

    Purpose: {sup 90}Y-microspheres are widely used for the radioembolization of metastatic liver cancer or hepatocellular carcinoma and there is a growing interest for imaging {sup 90}Y-microspheres with PET. The aim of this study is to evaluate the performance of a current generation PET/CT scanner for {sup 90}Y imaging and to optimize the PET protocol to improve the assessment and the quantification of {sup 90}Y-microsphere biodistribution after radioembolization. Methods: Data were acquired on a Biograph mCT-TrueV scanner with time of flight (TOF) and point spread function (PSF) modeling. Spatial resolution was measured with a{sup 90}Y point source. Sensitivity was evaluated using the NEMA 70 cm line source filled with {sup 90}Y. To evaluate the count rate performance, {sup 90}Y vials with activity ranging from 3.64 to 0.035 GBq were measured in the center of the field of view (CFOV). The energy spectrum was evaluated. Image quality with different reconstructions was studied using the Jaszczak phantom containing six hollow spheres (diameters: 31.3, 28.1, 21.8, 16.1, 13.3, and 10.5 mm), filled with a 207 kBq/ml {sup 90}Y concentration and a 5:1 sphere-to-background ratio. Acquisition time was adjusted to simulate the quality of a realistic clinical PET acquisition of a patient treated with SIR-Spheres{sup ®}. The developed methodology was applied to ten patients after SIR-Spheres{sup ®} treatment acquiring a 10 min per bed PET. Results: The energy spectrum showed the{sup 90}Y bremsstrahlung radiation. The {sup 90}Y transverse resolution, with filtered backprojection reconstruction, was 4.5 mm in the CFOV and degraded to 5.0 mm at 10 cm off-axis. {sup 90}Y absolute sensitivity was 0.40 kcps/MBq in the center of the field of view. Tendency of true and random rates as a function of the {sup 90}Y activity could be accurately described using linear and quadratic models, respectively. Phantom studies demonstrated that, due to low count statistics in {sup 90}Y PET

  5. Calibration of laser scanner and camera fusion system for intelligent vehicles using Nelder-Mead optimization

    NASA Astrophysics Data System (ADS)

    Osgood, Thomas J.; Huang, Yingping

    2013-03-01

    A novel method is presented here for the calibration of a sensor fusion system for intelligent vehicles. In this example, the sensors are a camera and a laser scanner which observe the same scene from different viewpoints. The method employs the Nelder-Mead direct search algorithm to minimize the sum of squared errors between the image coordinates and the re-projected laser data by iteratively adjusting and improving the calibration parameters. The method is applied to a real set of data collected from a test vehicle. Using only 11 well-spaced target points observable by each sensor, 12 intrinsic and extrinsic parameters indicating the position relationship between the sensors can be estimated to give an accurate projection. Experiments show that the method can project the laser points onto the image plane with an average error of 1.01 pixels (1.51 pixels worst case).

  6. TRIDENT: An Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions

    NASA Astrophysics Data System (ADS)

    Marois, Christian; Doyon, René; Nadeau, Daniel; Racine, René; Riopel, Martin; Vallée, Philippe; Lafrenière, David

    2005-07-01

    We describe a near-infrared camera in use at the Canada-France-Hawaii Telescope (CFHT) and at the 1.6 m telescope of the Observatoire du mont Mégantic (OMM). The camera is based on a Hawaii-1 1024 × 1024 HgCdTe array detector. Its main feature is the acquisition of three simultaneous images at three wavelengths across the methane absorption bandhead at 1.6 μm, enabling, in theory, an accurate subtraction of the stellar point-spread function (PSF) and the detection of faint close, methanated companions. The instrument has no coronagraph and features fast data acquisition, yielding high observing efficiency on bright stars. The performance of the instrument is described, and it is illustrated by laboratory tests and CFHT observations of the nearby stars GL 526, υ And, and χ And. TRIDENT can detect (6 σ) a methanated companion with ΔH=9.5 at 0.5" separation from the star in 1 hr of observing time. Non-common-path aberrations and amplitude modulation differences between the three optical paths are likely to be the limiting factors preventing further PSF attenuation. Instrument rotation and reference-star subtraction improve the detection limit by a factor of 2 and 4, respectively. A PSF noise attenuation model is presented to estimate the non-common-path wave-front difference effect on PSF subtraction performance. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  7. Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens).

    PubMed

    Robert, Charlotte; Montémont, Guillaume; Rebuffel, Véronique; Buvat, Irène; Guérin, Lucie; Verger, Loïck

    2010-05-01

    A new gamma-camera architecture named HiSens is presented and evaluated. It consists of a parallel hole collimator, a pixelated CdZnTe (CZT) detector associated with specific electronics for 3D localization and dedicated reconstruction algorithms. To gain in efficiency, a high aperture collimator is used. The spatial resolution is preserved thanks to accurate 3D localization of the interactions inside the detector based on a fine sampling of the CZT detector and on the depth of interaction information. The performance of this architecture is characterized using Monte Carlo simulations in both planar and tomographic modes. Detective quantum efficiency (DQE) computations are then used to optimize the collimator aperture. In planar mode, the simulations show that the fine CZT detector pixelization increases the system sensitivity by 2 compared to a standard Anger camera without loss in spatial resolution. These results are then validated against experimental data. In SPECT, Monte Carlo simulations confirm the merits of the HiSens architecture observed in planar imaging. PMID:20400808

  8. Using Microsoft Excel as a pre-processor for CODE V optimization of air spaces when building camera lenses

    NASA Astrophysics Data System (ADS)

    Stephenson, Dave

    2013-09-01

    When building high-performance camera lenses, it is often preferable to tailor element-to-element air spaces instead of tightening the fabrication tolerances sufficiently so that random assembly is possible. A tailored air space solution is usually unique for each serial number camera lens and results in nearly nominal performance. When these air spaces are computed based on measured radii, thickness, and refractive indices, this can put a strain on the design engineering department to deal with all the data in a timely fashion. Excel† may be used by the assembly technician as a preprocessor tool to facilitate data entry and organization, and to perform the optimization using CODE V‡ (or equivalent) without any training or experience in using lens design software. This makes it unnecessary to involve design engineering for each lens serial number, sometimes waiting in their work queue. In addition, Excel can be programmed to run CODE V in such a way that discrete shim thicknesses result. This makes it possible for each tailored air space solution to be achieved using a finite number of shims that differ in thickness by a reasonable amount. It is generally not necessary to tailor the air spaces in each lens to the micron level to achieve nearly nominal performance.

  9. Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens)

    NASA Astrophysics Data System (ADS)

    Robert, Charlotte; Montémont, Guillaume; Rebuffel, Véronique; Buvat, Irène; Guérin, Lucie; Verger, Loïck

    2010-05-01

    A new gamma-camera architecture named HiSens is presented and evaluated. It consists of a parallel hole collimator, a pixelated CdZnTe (CZT) detector associated with specific electronics for 3D localization and dedicated reconstruction algorithms. To gain in efficiency, a high aperture collimator is used. The spatial resolution is preserved thanks to accurate 3D localization of the interactions inside the detector based on a fine sampling of the CZT detector and on the depth of interaction information. The performance of this architecture is characterized using Monte Carlo simulations in both planar and tomographic modes. Detective quantum efficiency (DQE) computations are then used to optimize the collimator aperture. In planar mode, the simulations show that the fine CZT detector pixelization increases the system sensitivity by 2 compared to a standard Anger camera without loss in spatial resolution. These results are then validated against experimental data. In SPECT, Monte Carlo simulations confirm the merits of the HiSens architecture observed in planar imaging.

  10. Optimization of the Energy Window for PETbox4, a Preclinical PET Tomograph With a Small Inner Diameter

    PubMed Central

    Gu, Z.; Bao, Q.; Taschereau, R.; Wang, H.; Bai, B.; Chatziioannou, A. F.

    2015-01-01

    Small animal positron emission tomography (PET) systems are often designed by employing close geometry configurations. Due to the different characteristics caused by geometrical factors, these tomographs require data acquisition protocols that differ from those optimized for conventional large diameter ring systems. In this work we optimized the energy window for data acquisitions with PETbox4, a 50 mm detector separation (box-like geometry) pre-clinical PET scanner, using the Geant4 Application for Tomographic Emission (GATE). The fractions of different types of events were estimated using a voxelized phantom including a mouse as well as its supporting chamber, mimicking a realistic mouse imaging environment. Separate code was developed to extract additional information about the gamma interactions for more accurate event type classification. Three types of detector backscatter events were identified in addition to the trues, phantom scatters and randoms. The energy window was optimized based on the noise equivalent count rate (NECR) and scatter fraction (SF) with lower-level discriminators (LLD) corresponding to energies from 150 keV to 450 keV. The results were validated based on the calculated image uniformity, spillover ratio (SOR) and recovery coefficient (RC) from physical measurements using the National Electrical Manufacturers Association (NEMA) NU-4 image quality phantom. These results indicate that when PETbox4 is operated with a more narrow energy window (350-650 keV), detector backscatter rejection is unnecessary. For the NEMA NU-4 image quality phantom, the SOR for the water chamber decreases by about 45% from 15.1% to 8.3%, and the SOR for the air chamber decreases by 31% from 12.0% to 8.3% at the LLDs of 150 and 350 keV, without obvious change in uniformity, further supporting the simulation based optimization. The optimization described in this work is not limited to PETbox4, but also applicable or helpful to other small inner diameter geometry

  11. Designing of High-Volume PET/CT Facility with Optimal Reduction of Radiation Exposure to the Staff: Implementation and Optimization in a Tertiary Health Care Facility in India.

    PubMed

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Mithun, Sneha; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu C; Shetye, Bhakti; Rangarajan, Venkatesh

    2015-01-01

    Positron emission tomography (PET) has been in use for a few decades but with its fusion with computed tomography (CT) in 2001, the new PET/CT integrated system has become very popular and is now a key influential modality for patient management in oncology. However, along with its growing popularity, a growing concern of radiation safety among the radiation professionals has become evident. We have judiciously developed a PET/CT facility with optimal shielding, along with an efficient workflow to perform high volume procedures and minimize the radiation exposure to the staff and the general public by reducing unnecessary patient proximity to the staff and general public. PMID:26420990

  12. Designing of High-Volume PET/CT Facility with Optimal Reduction of Radiation Exposure to the Staff: Implementation and Optimization in a Tertiary Health Care Facility in India

    PubMed Central

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Mithun, Sneha; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu C.; Shetye, Bhakti; Rangarajan, Venkatesh

    2015-01-01

    Positron emission tomography (PET) has been in use for a few decades but with its fusion with computed tomography (CT) in 2001, the new PET/CT integrated system has become very popular and is now a key influential modality for patient management in oncology. However, along with its growing popularity, a growing concern of radiation safety among the radiation professionals has become evident. We have judiciously developed a PET/CT facility with optimal shielding, along with an efficient workflow to perform high volume procedures and minimize the radiation exposure to the staff and the general public by reducing unnecessary patient proximity to the staff and general public. PMID:26420990

  13. SU-C-9A-01: Parameter Optimization in Adaptive Region-Growing for Tumor Segmentation in PET

    SciTech Connect

    Tan, S; Xue, M; Chen, W; D'Souza, W; Lu, W; Li, H

    2014-06-01

    Purpose: To design a reliable method to determine the optimal parameter in the adaptive region-growing (ARG) algorithm for tumor segmentation in PET. Methods: The ARG uses an adaptive similarity criterion m - fσ ≤ I-PET ≤ m + fσ, so that a neighboring voxel is appended to the region based on its similarity to the current region. When increasing the relaxing factor f (f ≥ 0), the resulting volumes monotonically increased with a sharp increase when the region just grew into the background. The optimal f that separates the tumor from the background is defined as the first point with the local maximum curvature on an Error function fitted to the f-volume curve. The ARG was tested on a tumor segmentation Benchmark that includes ten lung cancer patients with 3D pathologic tumor volume as ground truth. For comparison, the widely used 42% and 50% SUVmax thresholding, Otsu optimal thresholding, Active Contours (AC), Geodesic Active Contours (GAC), and Graph Cuts (GC) methods were tested. The dice similarity index (DSI), volume error (VE), and maximum axis length error (MALE) were calculated to evaluate the segmentation accuracy. Results: The ARG provided the highest accuracy among all tested methods. Specifically, the ARG has an average DSI, VE, and MALE of 0.71, 0.29, and 0.16, respectively, better than the absolute 42% thresholding (DSI=0.67, VE= 0.57, and MALE=0.23), the relative 42% thresholding (DSI=0.62, VE= 0.41, and MALE=0.23), the absolute 50% thresholding (DSI=0.62, VE=0.48, and MALE=0.21), the relative 50% thresholding (DSI=0.48, VE=0.54, and MALE=0.26), OTSU (DSI=0.44, VE=0.63, and MALE=0.30), AC (DSI=0.46, VE= 0.85, and MALE=0.47), GAC (DSI=0.40, VE= 0.85, and MALE=0.46) and GC (DSI=0.66, VE= 0.54, and MALE=0.21) methods. Conclusions: The results suggest that the proposed method reliably identified the optimal relaxing factor in ARG for tumor segmentation in PET. This work was supported in part by National Cancer Institute Grant R01 CA172638; The

  14. The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity.

    PubMed

    Weber, S; Terstegge, A; Herzog, H; Reinartz, R; Reinhart, P; Rongen, F; Müller-Gärtner, H W; Halling, H

    1997-10-01

    We present the design of a positron emission tomograph (PET) with flexible geometry dedicated to in vivo studies of small animals (TierPET). The scanner uses two pairs of detectors. Each detector consists of 400 small individual yttrium aluminum perovskite (YAP) scintillator crystals of dimensions 2 x 2 x 15 mm3, optically isolated and glued together, which are coupled to position-sensitive photomultiplier tubes (PSPMT's). The detector modules can be moved in a radial direction so that the detector-to-detector spacing can be varied. Special hardware has been built for coincidence detection, position detection, and real-time data acquisition, which is performed by a PC. The single-event data are transferred to workstations where the radioactivity distribution is reconstructed. The dimensions of the crystals and the detector layout are the result of extensive simulations which are described in this report, taking into account sensitivity, spatial resolution and additional parameters like parallax error or scatter effects. For the three-dimensional (3-D) reconstruction a genuine 3-D expectation-maximization (EM)-algorithm which can include the characteristics of the detector system has been implemented. The reconstruction software is flexible and matches the different detector configurations. The main advantage of the proposed animal PET scanner is its high flexibility, allowing the realization of various detector-system configurations. By changing the detector-to-detector spacing, the system is capable of either providing good spatial resolution or high sensitivity for dynamic studies of pharmacokinetics. PMID:9368124

  15. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting

    PubMed Central

    Perani, Daniela; Della Rosa, Pasquale Anthony; Cerami, Chiara; Gallivanone, Francesca; Fallanca, Federico; Vanoli, Emilia Giovanna; Panzacchi, Andrea; Nobili, Flavio; Pappatà, Sabina; Marcone, Alessandra; Garibotto, Valentina; Castiglioni, Isabella; Magnani, Giuseppe; Cappa, Stefano F.; Gianolli, Luigi

    2014-01-01

    Diagnostic accuracy in FDG-PET imaging highly depends on the operating procedures. In this clinical study on dementia, we compared the diagnostic accuracy at a single-subject level of a) Clinical Scenarios, b) Standard FDG Images and c) Statistical Parametrical (SPM) Maps generated via a new optimized SPM procedure. We evaluated the added value of FDG-PET, either Standard FDG Images or SPM Maps, to Clinical Scenarios. In 88 patients with neurodegenerative diseases (Alzheimer's Disease—AD, Frontotemporal Lobar Degeneration—FTLD, Dementia with Lewy bodies—DLB and Mild Cognitive Impairment—MCI), 9 neuroimaging experts made a forced diagnostic decision on the basis of the evaluation of the three types of information. There was also the possibility of a decision of normality on the FDG-PET images. The clinical diagnosis confirmed at a long-term follow-up was used as the gold standard. SPM Maps showed higher sensitivity and specificity (96% and 84%), and better diagnostic positive (6.8) and negative (0.05) likelihood ratios compared to Clinical Scenarios and Standard FDG Images. SPM Maps increased diagnostic accuracy for differential diagnosis (AD vs. FTD; beta 1.414, p = 0.019). The AUC of the ROC curve was 0.67 for SPM Maps, 0.57 for Clinical Scenarios and 0.50 for Standard FDG Images. In the MCI group, SPM Maps showed the highest predictive prognostic value (mean LOC = 2.46), by identifying either normal brain metabolism (exclusionary role) or hypometabolic patterns typical of different neurodegenerative conditions. PMID:25389519

  16. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer.

    PubMed

    Liolios, C; Schäfer, M; Haberkorn, U; Eder, M; Kopka, K

    2016-03-16

    A new series of bispecific radioligands (BRLs) targeting prostate-specific membrane antigen (PSMA) and gastrin releasing peptide receptor (GRPr), both expressed on prostate cancer cells, was developed. Their design was based on the bombesin (BN) analogue, H2N-PEG2-[d-Tyr(6),β-Ala(11),Thi(13),Nle(14)]BN(6-14), which binds to GRPr with high affinity and specificity, and the peptidomimetic urea-based pseudoirreversible inhibitor of PSMA, Glu-ureido-Lys. The two pharmacophores were coupled through copper(I)-catalyzed azide-alkyne cycloaddition to the bis(tetrafluorophenyl) ester of the chelating agent HBED-CC via amino acid linkers made of positively charged His (H) and negatively charged Glu (E): -(HE)n- (n = 0-3). The BRLs were labeled with (68)Ga, and their preliminary pharmacological properties were evaluated in vitro (competitive and time kinetic binding assays) on prostate cancer (PC-3, LNCaP) and rat pancreatic (AR42J) cell lines and in vivo by biodistribution and small animal PET imaging studies in both normal and tumor-bearing mice. The IC50/Ki values determined for all BRLs essentially matched those of the respective monomers. The maximal cellular uptake of the BLRs was observed between 20 and 30 min. The BRLs showed a synergistic ability in vivo by targeting both PSMA (LNCaP) and GRPr (PC-3) positive tumors, whereas the charged -(HE)n- (n = 1-3) linkers significantly reduced the kidney and spleen uptake. The bispecific (PSMA and GRPr) targeting ability and optimized pharmacokinetics of the compounds developed in this study could lead to their future application in clinical practice as more sensitive radiotracers for noninvasive imaging of prostate cancer (PCa) by PET/CT and PET/MRI. PMID:26726823

  17. Analogs of JHU75528, a PET ligand for imaging of cerebral cannabinoid receptors (CB1): development of ligands with optimized lipophilicity and binding affinity

    PubMed Central

    Fan, Hong; Kotsikorou, Evangelia; Hoffman, Alexander F.; Ravert, Hayden T.; Holt, Daniel; Hurst, Dow P.; Lupica, Carl R.; Reggio, Patricia H.; Dannals, Robert F.; Horti, Andrew G.

    2009-01-01

    Cyano analogs of Rimonabant with high binding affinity for the cerebral cannabinoid receptor (CB1) and with optimized lipophilicity have been synthesized as potential positron emission tomography (PET) ligands. The best ligands of the series are optimal targets for the future radiolabeling with PET isotopes and in vivo evaluation as radioligands with enhanced properties for PET imaging of CB1 receptors in human subjects. Extracellular electrophysiological recordings in rodent brain slices demonstrated that JHU75528, 4, the lead compound of the new series, has functional CB antagonist properties that are consistent with its structural relationship to Rimonabant. Molecular modeling analysis revealed an important role of the binding of the cyano-group with the CB1 binding pocket. PMID:18511157

  18. Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers.

    PubMed

    Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S

    2014-12-01

    The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die. PMID:25365502

  19. Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Marcinkowski, R.; España, S.; Van Holen, R.; Vandenberghe, S.

    2014-12-01

    The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15  ×  15 2  ×  2 × 22 mm3 pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4  ×  4 LYSO matrix of 1.9  ×  1.9  ×  22 mm3 crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.

  20. Optimizing Detection Rate and Characterization of Subtle Paroxysmal Neonatal Abnormal Facial Movements with Multi-Camera Video-Electroencephalogram Recordings.

    PubMed

    Pisani, Francesco; Pavlidis, Elena; Cattani, Luca; Ferrari, Gianluigi; Raheli, Riccardo; Spagnoli, Carlotta

    2016-06-01

    Objectives We retrospectively analyze the diagnostic accuracy for paroxysmal abnormal facial movements, comparing one camera versus multi-camera approach. Background Polygraphic video-electroencephalogram (vEEG) recording is the current gold standard for brain monitoring in high-risk newborns, especially when neonatal seizures are suspected. One camera synchronized with the EEG is commonly used. Methods Since mid-June 2012, we have started using multiple cameras, one of which point toward newborns' faces. We evaluated vEEGs recorded in newborns in the study period between mid-June 2012 and the end of September 2014 and compared, for each recording, the diagnostic accuracies obtained with one-camera and multi-camera approaches. Results We recorded 147 vEEGs from 87 newborns and found 73 episodes of paroxysmal facial abnormal movements in 18 vEEGs of 11 newborns with the multi-camera approach. By using the single-camera approach, only 28.8% of these events were identified (21/73). Ten positive vEEGs with multicamera with 52 paroxysmal facial abnormal movements (52/73, 71.2%) would have been considered as negative with the single-camera approach. Conclusions The use of one additional facial camera can significantly increase the diagnostic accuracy of vEEGs in the detection of paroxysmal abnormal facial movements in the newborns. PMID:27111027

  1. Clinical NECR in 18F-FDG PET scans: optimization of injected activity and variable acquisition time. Relationship with SNR

    NASA Astrophysics Data System (ADS)

    Carlier, T.; Ferrer, L.; Necib, H.; Bodet-Milin, C.; Rousseau, C.; Kraeber-Bodéré, F.

    2014-10-01

    The injected activity and the acquisition time per bed position for 18F-FDG PET scans are usually optimized by using metrics obtained from phantom experiments. However, optimal activity and time duration can significantly vary from a phantom set-up and from patient to patient. An approach using a patient-specific noise equivalent count rate (NECR) modelling has been previously proposed for optimizing clinical scanning protocols. We propose using the clinical NECR on a large population as a function of the body mass index (BMI) for deriving the optimal injected activity and acquisition duration per bed position. The relationship between the NEC and the signal-to-noise ratio (SNR) was assessed both in a phantom and in a clinical setting. 491 consecutive patients were retrospectively evaluated and divided into 4 BMI subgroups. Two criteria were used to optimize the injected activity and the time per bed position was adjusted using the NECR value while keeping the total acquisition time constant. Finally, the relationship between NEC and SNR was investigated using an anthropomorphic phantom and a population of 507 other patients. While the first dose regimen suggested a unique injected activity (665 MBq) regardless of the BMI, the second dose regimen proposed a variable activity and a total acquisition time according to the BMI. The NEC improvement was around 35% as compared with the local current injection rule. Variable time per bed position was derived according to BMI and anatomical region. NEC and number of true events were found to be highly correlated with SNR for the phantom set-up and partially confirmed in the patient study for the BMI subgroup under 28 kg m-2 suggesting that for the scanner, the nonlinear reconstruction algorithm used in this study and BMI < 28 kg m-2, NEC, or the number of true events linearly correlated with SNR2.

  2. Instrumentation optimization for positron emission mammography

    SciTech Connect

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  3. Optimization of the spatial resolution for the GE discovery PET/CT 710 by using NEMA NU 2-2007 standards

    NASA Astrophysics Data System (ADS)

    Yoon, Hyun Jin; Jeong, Young Jin; Son, Hye Joo; Kang, Do-Young; Hyun, Kyung-Yae; Lee, Min-Kyung

    2015-01-01

    The spatial resolution in positron emission tomography (PET) is fundamentally limited by the geometry of the detector element, the positron's recombination range with electrons, the acollinearity of the positron, the crystal decoding error, the penetration into the detector ring, and the reconstruction algorithms. In this paper, optimized parameters are suggested to produce high-resolution PET images by using an iterative reconstruction algorithm. A phantom with three point sources structured with three capillary tubes was prepared with an axial extension of less than 1 mm and was filled with 18F-fluorodeoxyglucose (18F-FDG) with concentrations above 200 MBq/cc. The performance measures of all the PET images were acquired according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standards procedures. The parameters for the iterative reconstruction were adjusted around the values recommended by General Electric GE, and the optimized values of the spatial resolution and the full width at half maximum (FWHM) or the full width at tenth of maximum (FWTM) values were found for the best PET resolution. The axial and the transverse spatial resolutions, according to the filtered back-projection (FBP) at 1 cm off-axis, were 4.81 and 4.48 mm, respectively. The axial and the transaxial spatial resolutions at 10 cm off-axis were 5.63 mm and 5.08 mm, respectively, and the trans-axial resolution at 10 cm was evaluated as the average of the radial and the tangential measurements. The recommended optimized parameters of the spatial resolution according to the NEMA phantom for the number of subsets, the number of iterations, and the Gaussian post-filter are 12, 3, and 3 mm for the iterative reconstruction VUE Point HD without the SharpIR algorithm (HD), and 12, 12, and 5.2 mm with SharpIR (HD.S), respectively, according to the Advantage Workstation Volume Share 5 (AW4.6). The performance measurements for the GE Discovery PET/CT 710 using the NEMA NU 2

  4. Monte Carlo optimization of depth-of-interaction resolution in PET crystals

    SciTech Connect

    DeVol, T.A. . Dept. of Nuclear Engineering); Moses, W.W.; Derenzo, S.E. )

    1991-11-01

    The light distribution along one edge of a PET scintillation crystal was investigated with a Monte Carlo simulation. This position-dependent light can be used to measure the 511 keV photon interaction position in the crystal on an event by event basis, thus reducing radial elongation. The expected full width at half maximum (FWHM) of the light distribution on the 3 {times} 30 mm{sup 2} surface of a 3 {times} 10 {times} 30 mm{sup 3} bismuth germanate (BGO) crystal surrounded by a diffuse reflector was determined to be 3.0 mm. This light distribution does not change as the width (originally 3 mm) is varied from 1 to 6 mm, but decreases monotonically from 3.0 to 1.8 mm FWHM as the height (originally 10 mm) is reduced to 3 mm. Other geometrical modifications were simulated, including numerous corner reflectors on the opposing 3 {times} 30 mm{sup 2} surface, which reduced the FWHM to 2.4 mm. The response of a dual wedge photodiode combined with the predicted light distribution for the 3 {times} 10 {times} 30 mm{sup 3} BGO simulation crystal results in an expected depth of interaction resolution of 7.5 mm FWHM.

  5. LSST Camera Optics Design

    SciTech Connect

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  6. Ringfield lithographic camera

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  7. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging

    PubMed Central

    Maute, Roy L.; Gordon, Sydney R.; Mayer, Aaron T.; McCracken, Melissa N.; Natarajan, Arutselvan; Ring, Nan Guo; Kimura, Richard; Tsai, Jonathan M.; Manglik, Aashish; Kruse, Andrew C.; Gambhir, Sanjiv S.; Weissman, Irving L.; Ring, Aaron M.

    2015-01-01

    Signaling through the immune checkpoint programmed cell death protein-1 (PD-1) enables tumor progression by dampening antitumor immune responses. Therapeutic blockade of the signaling axis between PD-1 and its ligand programmed cell death ligand-1 (PD-L1) with monoclonal antibodies has shown remarkable clinical success in the treatment of cancer. However, antibodies have inherent limitations that can curtail their efficacy in this setting, including poor tissue/tumor penetrance and detrimental Fc-effector functions that deplete immune cells. To determine if PD-1:PD-L1–directed immunotherapy could be improved with smaller, nonantibody therapeutics, we used directed evolution by yeast-surface display to engineer the PD-1 ectodomain as a high-affinity (110 pM) competitive antagonist of PD-L1. In contrast to anti–PD-L1 monoclonal antibodies, high-affinity PD-1 demonstrated superior tumor penetration without inducing depletion of peripheral effector T cells. Consistent with these advantages, in syngeneic CT26 tumor models, high-affinity PD-1 was effective in treating both small (50 mm3) and large tumors (150 mm3), whereas the activity of anti–PD-L1 antibodies was completely abrogated against large tumors. Furthermore, we found that high-affinity PD-1 could be radiolabeled and applied as a PET imaging tracer to efficiently distinguish between PD-L1–positive and PD-L1–negative tumors in living mice, providing an alternative to invasive biopsy and histological analysis. These results thus highlight the favorable pharmacology of small, nonantibody therapeutics for enhanced cancer immunotherapy and immune diagnostics. PMID:26604307

  8. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  9. Cardiac applications of PET.

    PubMed

    Sarikaya, Ismet

    2015-10-01

    Routine use of cardiac positron emission tomography (PET) applications has been increasing but has not replaced cardiac single-photon emission computerized tomography (SPECT) studies yet. The majority of cardiac PET tracers, with the exception of fluorine-18 fluorodeoxyglucose (18F-FDG), are not widely available, as they require either an onsite cyclotron or a costly generator for their production. 18F-FDG PET imaging has high sensitivity for the detection of hibernating/viable myocardium and has replaced Tl-201 SPECT imaging in centers equipped with a PET/CT camera. PET myocardial perfusion imaging with various tracers such as Rb-82, N-13 ammonia, and O-15 H2O has higher sensitivity and specificity than myocardial perfusion SPECT for the detection of coronary artery disease (CAD). In particular, quantitative PET measurements of myocardial perfusion help identify subclinical coronary stenosis, better define the extent and severity of CAD, and detect ischemia when there is balanced reduction in myocardial perfusion due to three-vessel or main stem CAD. Fusion images of PET perfusion and CT coronary artery calcium scoring or CT coronary angiography provide additional complementary information and improve the detection of CAD. PET studies with novel 18F-labeled perfusion tracers such as 18F-flurpiridaz and 18F-FBnTP have yielded high sensitivity and specificity in the diagnosis of CAD. These tracers are still being tested in humans, and, if approved for clinical use, they will be commercially and widely available. In addition to viability studies, 18F-FDG PET can also be utilized to detect inflammation/infection in various conditions such as endocarditis, sarcoidosis, and atherosclerosis. Some recent series have obtained encouraging results for the detection of endocarditis in patients with intracardiac devices and prosthetic valves. PET tracers for cardiac neuronal imaging, such as C-11 HED, help assess the severity of heart failure and post-transplant cardiac

  10. Optical engineering application of modeled photosynthetically active radiation (PAR) for high-speed digital camera dynamic range optimization

    NASA Astrophysics Data System (ADS)

    Alves, James; Gueymard, Christian A.

    2009-08-01

    As efforts to create accurate yet computationally efficient estimation models for clear-sky photosynthetically active solar radiation (PAR) have succeeded, the range of practical engineering applications where these models can be successfully applied has increased. This paper describes a novel application of the REST2 radiative model (developed by the second author) in optical engineering. The PAR predictions in this application are used to predict the possible range of instantaneous irradiances that could impinge on the image plane of a stationary video camera designed to image license plates on moving vehicles. The overall spectral response of the camera (including lens and optical filters) is similar to the 400-700 nm PAR range, thereby making PAR irradiance (rather than luminance) predictions most suitable for this application. The accuracy of the REST2 irradiance predictions for horizontal surfaces, coupled with another radiative model to obtain irradiances on vertical surfaces, and to standard optical image formation models, enable setting the dynamic range controls of the camera to ensure that the license plate images are legible (unsaturated with adequate contrast) regardless of the time of day, sky condition, or vehicle speed. A brief description of how these radiative models are utilized as part of the camera control algorithm is provided. Several comparisons of the irradiance predictions derived from the radiative model versus actual PAR measurements under varying sky conditions with three Licor sensors (one horizontal and two vertical) have been made and showed good agreement. Various camera-to-plate geometries and compass headings have been considered in these comparisons. Time-lapse sequences of license plate images taken with the camera under various sky conditions over a 30-day period are also analyzed. They demonstrate the success of the approach at creating legible plate images under highly variable lighting, which is the main goal of this

  11. Radiolabeling optimization and characterization of (68)Ga labeled DOTA-polyamido-amine dendrimer conjugate - Animal biodistribution and PET imaging results.

    PubMed

    Ghai, Aanchal; Singh, Baljinder; Panwar Hazari, Puja; Schultz, Michael K; Parmar, Ambika; Kumar, Pardeep; Sharma, Sarika; Dhawan, Devinder; Kumar Mishra, Anil

    2015-11-01

    The present study describes the optimization of (68)Ga radiolabeling with PAMAM dendrimer-DOTA conjugate. A conjugate (PAMAM-DOTA) concentration of 11.69µM, provided best radiolabeling efficiency of more than 93.0% at pH 4.0, incubation time of 30.0min and reaction temperature ranging between 90 and 100°C. The decay corrected radiochemical yield was found to be 79.4±0.01%. The radiolabeled preparation ([(68)Ga]-DOTA-PAMAM-D) remained stable (radiolabeling efficiency of 96.0%) at room temperature and in serum for up to 4-h. The plasma protein binding was observed to be 21.0%. After intravenous administration, 50.0% of the tracer cleared from the blood circulation by 30-min and less than 1.0% of the injected activity remained in blood by 1.0h. The animal biodistribution studies demonstrated that the tracer excretes through the kidneys and about 0.33% of the %ID/g accumulated in the tumor at 1h post injection. The animal organ's biodistribution data was supported by animal PET imaging showing good 'non-specific' tracer uptake in tumor and excretion is primarily through kidneys. Additionally, DOTA-PAMAM-D conjugation with αVβ3 receptors targeting peptides and drug loading on the dendrimers may improve the specificity of the (68)Ga labeled product for imaging and treating angiogenesis respectively. PMID:26232562

  12. MO-G-BRF-02: Enhancement of Texture-Based Metastasis Prediction Models Via the Optimization of PET/MRI Acquisition Protocols

    SciTech Connect

    Vallieres, M; Laberge, S; Levesque I, R; El Naqa, I

    2014-06-15

    Purpose: We have previously identified a prediction model of lung metastases at diagnosis of soft-tissue sarcomas (STS) that is composed of two textural features extracted from FDG-PET and T1-weighted (T1w) MRI scans. The goal of this study is to evaluate whether the optimization in FDGPET and MRI acquisition parameters would enhance the prediction performance of texture-based models. Methods: Ten FDG-PET and T1w- MRI digitized tumor models were generated from imaging data of STS patients who underwent pre-treatment clinical scans between 2005 and 2011. Five of ten patients eventually developed lung metastases. Numerically simulated MR images were produced using echo times (TE) of 2 and 4 times the nominal clinical parameter (TEc), and repetition times (TR) of 0.5, 0.67, 1.5 and 2 times the nominal clinical parameter (TRc) found in the DICOM headers (TEc range: 9–13 ms, TRc range: 410-667 ms). PET 2D images were simulated using Monte-Carlo and were reconstructed using an ordered-subsets expectation maximization (OSEM) algorithm with 1 to 32 iterations and a post-reconstruction Gaussian filter of 0, 2, 4 or 6 mm width. For all possible combinations of PET and MRI acquisition parameters, the prediction model was constructed using logistic regression with new coefficients, and its associated prediction performance for lung metastases was evaluated using the area under the ROC curve (AUC). Results: The prediction performance over all simulations yielded AUCs ranging from 0.7 to 1. Notably, TR values below or equal to TRc and higher PET post-reconstruction filter widths yielded higher prediction performance. The best results were obtained with a combination of 4*TEc, TRc, 30 OSEM iterations and 2mm filter width. Conclusion: This work indicates that texture-based metastasis prediction models could be improved using optimized choices of FDG-PET and MRI acquisition protocols. This principle could be generalized to other texture-based models.

  13. Experimental Demonstration of Extended Depth-of-Field F/1.2 Visible High Definition Camera with Jointly Optimized Phase Mask and Real-Time Digital Processing

    NASA Astrophysics Data System (ADS)

    Burcklen, M.-A.; Diaz, F.; Lepretre, F.; Rollin, J.; Delboulbé, A.; Lee, M.-S. L.; Loiseaux, B.; Koudoli, A.; Denel, S.; Millet, P.; Duhem, F.; Lemonnier, F.; Sauer, H.; Goudail, F.

    2015-10-01

    Increasing the depth of field (DOF) of compact visible high resolution cameras while maintaining high imaging performance in the DOF range is crucial for such applications as night vision goggles or industrial inspection. In this paper, we present the end-to-end design and experimental validation of an extended depth-of-field visible High Definition camera with a very small f-number, combining a six-ring pyramidal phase mask in the aperture stop of the lens with a digital deconvolution. The phase mask and the deconvolution algorithm are jointly optimized during the design step so as to maximize the quality of the deconvolved image over the DOF range. The deconvolution processing is implemented in real-time on a Field-Programmable Gate Array and we show that it requires very low power consumption. By mean of MTF measurements and imaging experiments we experimentally characterize the performance of both cameras with and without phase mask and thereby demonstrate a significant increase in depth of field of a factor 2.5, as it was expected in the design step.

  14. Optimizing the input and output transmission lines that gate the microchannel plate in a high-speed framing camera

    NASA Astrophysics Data System (ADS)

    Lugten, John B.; Brown, Charles G.; Piston, Kenneth W.; Beeman, Bart V.; Allen, Fred V.; Boyle, Dustin T.; Brown, Christopher G.; Cruz, Jason G.; Kittle, Douglas R.; Lumbard, Alexander A.; Torres, Peter; Hargrove, Dana R.; Benedetti, Laura R.; Bell, Perry M.

    2015-08-01

    We present new designs for the launch and receiver boards used in a high speed x-ray framing camera at the National Ignition Facility. The new launch board uses a Klopfenstein taper to match the 50 ohm input impedance to the ~10 ohm microchannel plate. The new receiver board incorporates design changes resulting in an output monitor pulse shape that more accurately represents the pulse shape at the input and across the microchannel plate; this is valuable for assessing and monitoring the electrical performance of the assembled framing camera head. The launch and receiver boards maximize power coupling to the microchannel plate, minimize cross talk between channels, and minimize reflections. We discuss some of the design tradeoffs we explored, and present modeling results and measured performance. We also present our methods for dealing with the non-ideal behavior of coupling capacitors and terminating resistors. We compare the performance of these new designs to that of some earlier designs.

  15. Ringfield lithographic camera

    DOEpatents

    Sweatt, W.C.

    1998-09-08

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.

  16. Comparison of {sup 18}F-Fluorothymidine and {sup 18}F-Fluorodeoxyglucose PET/CT in Delineating Gross Tumor Volume by Optimal Threshold in Patients With Squamous Cell Carcinoma of Thoracic Esophagus

    SciTech Connect

    Han Dali; Yu Jinming; Yu Yonghua; Zhang Guifang; Zhong Xiaojun; Lu Jie; Yin Yong; Fu Zheng; Mu Dianbin; Zhang Baijiang; He Wei; Huo Zhijun; Liu Xijun; Kong Lei; Zhao Shuqiang; Sun Xiangyu

    2010-03-15

    Purpose: To determine the optimal method of using {sup 18}F-fluorothymidine (FLT) positron emission tomography (PET)/computed tomography (CT) simulation to delineate the gross tumor volume (GTV) in esophageal squamous cell carcinoma verified by pathologic examination and compare the results with those using {sup 18}F-fluorodeoxyglucose (FDG) PET/CT. Methods and Materials: A total of 22 patients were enrolled and underwent both FLT and FDG PET/CT. The GTVs with biologic information were delineated using seven different methods in FLT PET/CT and three different methods in FDG PET/CT. The results were compared with the pathologic gross tumor length, and the optimal threshold was obtained. Next, we compared the simulation plans using the optimal threshold of FLT and FDG PET/CT. The radiation dose was prescribed as 60 Gy in 30 fractions with a precise radiotherapy technique. Results: The mean +- standard deviation pathologic gross tumor length was 4.94 +- 2.21 cm. On FLT PET/CT, the length of the standardized uptake value 1.4 was 4.91 +- 2.43 cm. On FDG PET/CT, the length of the standardized uptake value 2.5 was 5.10 +- 2.18 cm, both of which seemed more approximate to the pathologic gross tumor length. The differences in the bilateral lung volume receiving >=20 Gy, heart volume receiving >=40 Gy, and the maximal dose received by spinal cord between FLT and FDG were not significant. However, the values for mean lung dose, bilateral lung volume receiving >=5, >=10, >=30, >=40, and >=50 Gy, mean heart dose, and heart volume receiving >=30 Gy using FLT PET/CT-based planning were significant lower than those using FDG PET/CT. Conclusion: A standardized uptake value cutoff of 1.4 on FLT PET/CT and one of 2.5 on FDG PET/CT provided the closest estimation of GTV length. Finally, FLT PET/CT-based treatment planning provided potential benefits to the lungs and heart.

  17. Professor Pet.

    ERIC Educational Resources Information Center

    Pet Information Bureau, New York, NY.

    This manual outlines ways in which observation and care of classroom pet animals may be used to enrich the education of elementary school children. Part one deals with the benefits of having pets in the classroom. Part two illustrates ways in which pets can serve as valuable teaching tools and gives examples of lessons in which the use of pets can…

  18. Optimizing geometric accuracy of four-dimensional CT scans acquired using the wall- and couch-mounted Varian® Real-time Position Management™ camera systems

    PubMed Central

    Irvine, D M; Cole, A J; Hanna, G G; McGarry, C K

    2015-01-01

    Objective: The aim of this study was to identify sources of anatomical misrepresentation owing to the location of camera mounting, tumour motion velocity and image processing artefacts in order to optimize the four-dimensional CT (4DCT) scan protocol and improve geometrical–temporal accuracy. Methods: A phantom with an imaging insert was driven with a sinusoidal superior–inferior motion of varying amplitude and period for 4DCT scanning. The length of a high-density cube within the insert was measured using treatment planning software to determine the accuracy of its spatial representation. Scan parameters were varied, including the tube rotation period and the cine time between reconstructed images. A CT image quality phantom was used to measure various image quality signatures under the scan parameters tested. Results: No significant difference in spatial accuracy was found for 4DCT scans carried out using the wall- or couch-mounted camera for sinusoidal target motion. Greater spatial accuracy was found for 4DCT scans carried out using a tube rotation speed of 0.5 s rather than 1.0 s. The reduction in image quality when using a faster rotation speed was not enough to require an increase in patient dose. Conclusion: The 4DCT accuracy may be increased by optimizing scan parameters, including choosing faster tube rotation speeds. Peak misidentification in the recorded breathing trace may lead to spatial artefacts, and this risk can be reduced by using a couch-mounted infrared camera. Advances in knowledge: This study explicitly shows that 4DCT scan accuracy is improved by scanning with a faster CT tube rotation speed. PMID:25470359

  19. Optimization of methods for quantification of rCBF using high-resolution [15O]H2O PET images

    NASA Astrophysics Data System (ADS)

    Walker, M. D.; Feldmann, M.; Matthews, J. C.; Anton-Rodriguez, J. M.; Wang, S.; Koepp, M. J.; Asselin, M.-C.

    2012-04-01

    This study aimed to derive accurate estimates of regional cerebral blood flow (rCBF) from noisy dynamic [15O]H2O PET images acquired on the high-resolution research tomograph, while retaining as much as possible the high spatial resolution of this brain scanner (2-3 mm) in parametric maps of rCBF. The PET autoradiographic method and generalized linear least-squares (GLLS), with fixed or extended to include spatially variable estimates of the dispersion of the measured input function, were compared to nonlinear least-squares (NLLS) for rCBF estimation. Six healthy volunteers underwent two [15O]H2O PET scans with continuous arterial blood sampling. rCBF estimates were obtained from three image reconstruction methods (one analytic and two iterative, of which one includes a resolution model) to which a range of post-reconstruction filters (3D Gaussian: 2, 4 and 6 mm FWHM) were applied. The optimal injected activity was estimated to be around 11 MBq kg-1 (800 MBq) by extrapolation of patient-specific noise equivalent count rates. Whole-brain rCBF values were found to be relatively insensitive to the method of reconstruction and rCBF quantification. The grey and white matter rCBF for analytic reconstruction and NLLS were 0.44 ± 0.03 and 0.15 ± 0.03 mL min-1 cm-3, respectively, in agreement with literature values. Similar values were obtained from the other methods. For generation of parametric images using GLLS or the autoradiographic method, a filter of ⩾4 mm was required in order to suppress noise in the PET images which otherwise produced large biases in the rCBF estimates.

  20. [Microeconomics of introduction of a PET system based on the revised Japanese National Insurance reimbursement system].

    PubMed

    Abe, Katsumi; Kosuda, Shigeru; Kusano, Shoichi; Nagata, Masayoshi

    2003-11-01

    It is crucial to evaluate an annual balance before-hand when an institution installs a PET system because the revised Japanese national insurance reimbursement system set the cost of a FDG PET study as 75,000 yen. A break-even point was calculated in an 8-hour or a 24-hour operation of a PET system, based on the total costs reported. The break-even points were as follows: 13.4, 17.7, 22.1 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in an ordinary PET system operation of 8 hours. The break-even points were 19.9, 25.5, 31.2 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in a full PET system operation of 24 hours. The results indicate no profit would accrue in an ordinary PET system operation of 8 hours. The annual profit and break-even point for the total cost including the initial investment would be respectively 530 million yen and 2.8 years in a 24-hour operation with 1 cyclotron-3 PET cameras system. PMID:14733110

  1. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging

    NASA Astrophysics Data System (ADS)

    Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.

    2015-10-01

    The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.

  2. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging.

    PubMed

    Ladefoged, Claes N; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E; Andersen, Flemming L

    2015-10-21

    The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [(18)F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R(*)2 values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers. PMID:26422177

  3. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    NASA Astrophysics Data System (ADS)

    Surti, S.; Werner, M. E.; Karp, J. S.

    2013-06-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with >22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and noise equivalent counts (NEC), as well as image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 L of LSO and 17.1 L of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC cm-1 in a 35 cm diameter ×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm, while for LaBr3 scanners, the highest NEC cm-1 is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show that the best lesion detection performance is achieved in scanners with long AFOV (≥36 cm) and using thin crystals (≤10 mm of LSO and ≤20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion

  4. Gallium-68 EDTA PET/CT for Renal Imaging.

    PubMed

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of

  5. Pet Health

    MedlinePlus

    ... Before getting a pet, think carefully about which animal is best for your family. What is each ... Does anyone have pet allergies? What type of animal suits your lifestyle and budget? Once you own ...

  6. Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics.

    PubMed

    Zeglis, Brian M; Brand, Christian; Abdel-Atti, Dalya; Carnazza, Kathryn E; Cook, Brendon E; Carlin, Sean; Reiner, Thomas; Lewis, Jason S

    2015-10-01

    Pretargeted PET imaging has emerged as an effective strategy for merging the exquisite selectivity of antibody-based targeting vectors with the rapid pharmacokinetics of radiolabeled small molecules. We previously reported the development of a strategy for the pretargeted PET imaging of colorectal cancer based on the bioorthogonal inverse electron demand Diels-Alder reaction between a tetrazine-bearing radioligand and a transcyclooctene-modified huA33 immunoconjugate. Although this method effectively delineated tumor tissue, its clinical potential was limited by the somewhat sluggish clearance of the radioligand through the gastrointestinal tract. Herein, we report the development and in vivo validation of a pretargeted strategy for the PET imaging of colorectal carcinoma with dramatically improved pharmacokinetics. Two novel tetrazine constructs, Tz-PEG7-NOTA and Tz-SarAr, were synthesized, characterized, and radiolabeled with (64)Cu in high yield (>90%) and radiochemical purity (>99%). PET imaging and biodistribution experiments in healthy mice revealed that although (64)Cu-Tz-PEG7-NOTA is cleared via both the gastrointestinal and urinary tracts, (64)Cu-Tz-SarAr is rapidly excreted by the renal system alone. On this basis, (64)Cu-Tz-SarAr was selected for further in vivo evaluation. To this end, mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts were administered huA33-TCO, and the immunoconjugate was given 24 h to accumulate at the tumor and clear from the blood, after which (64)Cu-Tz-SarAr was administered via intravenous tail vein injection. PET imaging and biodistribution experiments revealed specific uptake of the radiotracer in the tumor at early time points (5.6 ± 0.7 %ID/g at 1 h p.i.), high tumor-to-background activity ratios, and rapid elimination of unclicked radioligand. Importantly, experiments with longer antibody accumulation intervals (48 and 120 h) yielded slight decreases in tumoral uptake but also concomitant

  7. Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics

    PubMed Central

    Zeglis, Brian M.; Brand, Christian; Abdel-Atti, Dalya; Carnazza, Kathryn E.; Cook, Brendon E.; Carlin, Sean; Reiner, Thomas; Lewis, Jason S.

    2015-01-01

    Pretargeted PET imaging has emerged as an effective strategy for merging the exquisite selectivity of antibody-based targeting vectors with the rapid pharmacokinetics of radiolabeled small molecules. We previously reported the development of a strategy for the pretargeted PET imaging of colorectal cancer based on the bioorthogonal inverse electron demand Diels–Alder reaction between a tetrazine-bearing radioligand and a transcyclooctene-modified huA33 immunoconjugate. Although this method effectively delineated tumor tissue, its clinical potential was limited by the somewhat sluggish clearance of the radioligand through the gastrointestinal tract. Herein, we report the development and in vivo validation of a pretargeted strategy for the PET imaging of colorectal carcinoma with dramatically improved pharmacokinetics. Two novel tetrazine constructs, Tz-PEG7-NOTA and Tz-SarAr, were synthesized, characterized, and radiolabeled with 64Cu in high yield (>90%) and radiochemical purity (>99%). PET imaging and biodistribution experiments in healthy mice revealed that although 64Cu-Tz-PEG7-NOTA is cleared via both the gastrointestinal and urinary tracts, 64Cu-Tz-SarAr is rapidly excreted by the renal system alone. On this basis, 64Cu-Tz-SarAr was selected for further in vivo evaluation. To this end, mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts were administered huA33-TCO, and the immunoconjugate was given 24 h to accumulate at the tumor and clear from the blood, after which 64Cu-Tz-SarAr was administered via intravenous tail vein injection. PET imaging and biodistribution experiments revealed specific uptake of the radiotracer in the tumor at early time points (5.6 ± 0.7 %ID/g at 1 h p.i.), high tumor-to-background activity ratios, and rapid elimination of unclicked radioligand. Importantly, experiments with longer antibody accumulation intervals (48 and 120 h) yielded slight decreases in tumoral uptake but also concomitant increases in

  8. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    SciTech Connect

    Kotasidis, Fotis A.; Zaidi, Habib

    2014-06-15

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function

  9. Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk

    NASA Astrophysics Data System (ADS)

    Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry

    2014-09-01

    Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.

  10. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy

    PubMed Central

    Jørgensen, Jesper Tranekjær; Norregaard, Kamilla; Tian, Pengfei; Bendix, Poul Martin; Kjaer, Andreas; Oddershede, Lene B.

    2016-01-01

    Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption. In vivo, the heat generation of irradiated nanoparticles was evaluated in human tumor xenografts in mice using 2-deoxy-2-[F-18]fluoro-D-glucose (18F-FDG) PET imaging. To validate the use of this platform, we quantified the photothermal efficiency of near infrared resonant silica-gold nanoshells (AuNSs) and benchmarked this against the heating of colloidal spherical, solid gold nanoparticles (AuNPs). As expected, both in vitro and in vivo the heat generation of the resonant AuNSs performed superior compared to the non-resonant AuNPs. Furthermore, the results showed that PET imaging could be reliably used to monitor early treatment response of photothermal treatment. This multidisciplinary approach provides a much needed platform to benchmark the emerging plethora of novel plasmonic nanoparticles for their potential for photothermal cancer therapy. PMID:27481537

  11. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Jørgensen, Jesper Tranekjær; Norregaard, Kamilla; Tian, Pengfei; Bendix, Poul Martin; Kjaer, Andreas; Oddershede, Lene B.

    2016-08-01

    Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption. In vivo, the heat generation of irradiated nanoparticles was evaluated in human tumor xenografts in mice using 2-deoxy-2-[F-18]fluoro-D-glucose (18F-FDG) PET imaging. To validate the use of this platform, we quantified the photothermal efficiency of near infrared resonant silica-gold nanoshells (AuNSs) and benchmarked this against the heating of colloidal spherical, solid gold nanoparticles (AuNPs). As expected, both in vitro and in vivo the heat generation of the resonant AuNSs performed superior compared to the non-resonant AuNPs. Furthermore, the results showed that PET imaging could be reliably used to monitor early treatment response of photothermal treatment. This multidisciplinary approach provides a much needed platform to benchmark the emerging plethora of novel plasmonic nanoparticles for their potential for photothermal cancer therapy.

  12. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy.

    PubMed

    Jørgensen, Jesper Tranekjær; Norregaard, Kamilla; Tian, Pengfei; Bendix, Poul Martin; Kjaer, Andreas; Oddershede, Lene B

    2016-01-01

    Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption. In vivo, the heat generation of irradiated nanoparticles was evaluated in human tumor xenografts in mice using 2-deoxy-2-[F-18]fluoro-D-glucose ((18)F-FDG) PET imaging. To validate the use of this platform, we quantified the photothermal efficiency of near infrared resonant silica-gold nanoshells (AuNSs) and benchmarked this against the heating of colloidal spherical, solid gold nanoparticles (AuNPs). As expected, both in vitro and in vivo the heat generation of the resonant AuNSs performed superior compared to the non-resonant AuNPs. Furthermore, the results showed that PET imaging could be reliably used to monitor early treatment response of photothermal treatment. This multidisciplinary approach provides a much needed platform to benchmark the emerging plethora of novel plasmonic nanoparticles for their potential for photothermal cancer therapy. PMID:27481537

  13. Space Camera

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Nikon's F3 35mm camera was specially modified for use by Space Shuttle astronauts. The modification work produced a spinoff lubricant. Because lubricants in space have a tendency to migrate within the camera, Nikon conducted extensive development to produce nonmigratory lubricants; variations of these lubricants are used in the commercial F3, giving it better performance than conventional lubricants. Another spinoff is the coreless motor which allows the F3 to shoot 140 rolls of film on one set of batteries.

  14. Advances in Clinical PET/MRI Instrumentation.

    PubMed

    Herzog, Hans; Lerche, Christoph

    2016-04-01

    In 2010, the first whole-body PET/MRI scanners installed for clinical use were the sequential Philips PET/MRI with PMT-based, TOF-capable technology and the integrated simultaneous Siemens PET/MRI. Avalanche photodiodes as non-magneto-sensitive readout electronics allowed PET integrated within the MRI. The experiences with these scanners showed that improvements of software aspects, such as attenuation correction, were necessary and that efficient protocols combining optimally PET and MRI must be still developed. In 2014, General Electric issued an integrated PET/MRI with SiPM-based PET detectors, allowing TOF-PET. Looking at the MRI components of current PET/MR imaging systems, primary improvements come from sequences and new coils. PMID:26952724

  15. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  16. Clinical applications with the HIDAC positron camera

    NASA Astrophysics Data System (ADS)

    Frey, P.; Schaller, G.; Christin, A.; Townsend, D.; Tochon-Danguy, H.; Wensveen, M.; Donath, A.

    1988-06-01

    A high density avalanche chamber (HIDAC) positron camera has been used for positron emission tomographic (PET) imaging in three different human studies, including patients presenting with: (I) thyroid diseases (124 cases); (II) clinically suspected malignant tumours of the pharynx or larynx (ENT) region (23 cases); and (III) clinically suspected primary malignant and metastatic tumours of the liver (9 cases, 19 PET scans). The positron emitting radiopharmaceuticals used for the three studies were Na 124I (4.2 d half-life) for the thyroid, 55Co-bleomycin (17.5 h half-life) for the ENT-region and 68Ga-colloid (68 min half-life) for the liver. Tomographic imaging was performed: (I) 24 h after oral Na 124I administration to the thyroid patients, (II) 18 h after intraveneous administration of 55Co-bleomycin to the ENT patients and (III) 20 min following the intraveneous injection of 68Ga-colloid to the liver tumour patients. Three different imaging protocols were used with the HIDAC positron camera to perform appropriate tomographic imaging in each patient study. Promising results were obtained in all three studies, particularly in tomographic thyroid imaging, where a significant clinical contribution is made possible for diagnosis and therapy planning by the PET technique. In the other two PET studies encouraging results were obtained for the detection and precise localisation of malignant tumour disease including an estimate of the functional liver volume based on the reticulo-endothelial-system (RES) of the liver, obtained in vivo, and the three-dimensional display of liver PET data using shaded graphics techniques. The clinical significance of the overall results obtained in both the ENT and the liver PET study, however, is still uncertain and the respective role of PET as a new imaging modality in these applications is not yet clearly established. To appreciate the clinical impact made by PET in liver and ENT malignant tumour staging needs further investigation

  17. Optimizing light transport in scintillation crystals for time-of-flight PET: an experimental and optical Monte Carlo simulation study

    PubMed Central

    Berg, Eric; Roncali, Emilie; Cherry, Simon R.

    2015-01-01

    Achieving excellent timing resolution in gamma ray detectors is crucial in several applications such as medical imaging with time-of-flight positron emission tomography (TOF-PET). Although many factors impact the overall system timing resolution, the statistical nature of scintillation light, including photon production and transport in the crystal to the photodetector, is typically the limiting factor for modern scintillation detectors. In this study, we investigated the impact of surface treatment, in particular, roughening select areas of otherwise polished crystals, on light transport and timing resolution. A custom Monte Carlo photon tracking tool was used to gain insight into changes in light collection and timing resolution that were observed experimentally: select roughening configurations increased the light collection up to 25% and improved timing resolution by 15% compared to crystals with all polished surfaces. Simulations showed that partial surface roughening caused a greater number of photons to be reflected towards the photodetector and increased the initial rate of photoelectron production. This study provides a simple method to improve timing resolution and light collection in scintillator-based gamma ray detectors, a topic of high importance in the field of TOF-PET. Additionally, we demonstrated utility of our Monte Carlo simulation tool to accurately predict the effect of altering crystal surfaces on light collection and timing resolution. PMID:26114040

  18. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    SciTech Connect

    Hu, Lingzhi E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr. E-mail: raymond.muzic@case.edu

    2014-10-15

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in

  19. The CAMCAO infrared camera

    NASA Astrophysics Data System (ADS)

    Amorim, Antonio; Melo, Antonio; Alves, Joao; Rebordao, Jose; Pinhao, Jose; Bonfait, Gregoire; Lima, Jorge; Barros, Rui; Fernandes, Rui; Catarino, Isabel; Carvalho, Marta; Marques, Rui; Poncet, Jean-Marc; Duarte Santos, Filipe; Finger, Gert; Hubin, Norbert; Huster, Gotthard; Koch, Franz; Lizon, Jean-Louis; Marchetti, Enrico

    2004-09-01

    The CAMCAO instrument is a high resolution near infrared (NIR) camera conceived to operate together with the new ESO Multi-conjugate Adaptive optics Demonstrator (MAD) with the goal of evaluating the feasibility of Multi-Conjugate Adaptive Optics techniques (MCAO) on the sky. It is a high-resolution wide field of view (FoV) camera that is optimized to use the extended correction of the atmospheric turbulence provided by MCAO. While the first purpose of this camera is the sky observation, in the MAD setup, to validate the MCAO technology, in a second phase, the CAMCAO camera is planned to attach directly to the VLT for scientific astrophysical studies. The camera is based on the 2kx2k HAWAII2 infrared detector controlled by an ESO external IRACE system and includes standard IR band filters mounted on a positional filter wheel. The CAMCAO design requires that the optical components and the IR detector should be kept at low temperatures in order to avoid emitting radiation and lower detector noise in the region analysis. The cryogenic system inclues a LN2 tank and a sptially developed pulse tube cryocooler. Field and pupil cold stops are implemented to reduce the infrared background and the stray-light. The CAMCAO optics provide diffraction limited performance down to J Band, but the detector sampling fulfills the Nyquist criterion for the K band (2.2mm).

  20. Nikon Camera

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Nikon FM compact has simplification feature derived from cameras designed for easy, yet accurate use in a weightless environment. Innovation is a plastic-cushioned advance lever which advances the film and simultaneously switches on a built in light meter. With a turn of the lens aperture ring, a glowing signal in viewfinder confirms correct exposure.

  1. CCD Camera

    DOEpatents

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  2. CCD Camera

    DOEpatents

    Roth, R.R.

    1983-08-02

    A CCD camera capable of observing a moving object which has varying intensities of radiation emanating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other. 7 figs.

  3. Corrective Optics For Camera On Telescope

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Meinel, Aden B.

    1994-01-01

    Assembly of tilted, aspherical circularly symmetric mirrors used as corrective optical subsystem for camera mounted on telescope exhibiting both large spherical wave-front error and inherent off-axis astigmatism. Subsystem provides unobscured camera aperture and diffraction-limited camera performance, despite large telescope aberrations. Generic configuration applied in other optical systems in which aberations deliberately introduced into telescopes and corrected in associated cameras. Concept of corrective optical subsystem provides designer with additional degrees of freedom used to optimize optical system.

  4. PET scan

    MedlinePlus

    You may feel a sharp sting when the needle with the tracer is placed into your vein. A PET scan causes no pain. The table may be ... The amount of radiation used in a PET scan is about the same amount as used in most CT scans. These scans use ...

  5. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  6. Lung PET scan

    MedlinePlus

    ... emission tomography; PET - chest; PET - lung; PET - tumor imaging ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2015: ...

  7. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  8. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  9. LISS-4 camera for Resourcesat

    NASA Astrophysics Data System (ADS)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  10. Optimization of Automated Radiosynthesis of [18F]AV-45: A New PET Imaging Agent for Alzheimer’s Disease

    PubMed Central

    Liu, Yajing; Zhu, Lin; Plössl, Karl; Choi, Seok Rye; Qiao, Hongwen; Sun, Xiaotao; Li, Song; Zha, Zhihao; Kung, Hank F

    2010-01-01

    Introduction Accumulation of β-amyloid (Aβ) aggregates in the brain is linked to the pathogenesis of Alzheimer’s disease (AD). Imaging probes targeting these Aβ aggregates in the brain may provide a useful tool to facilitate the diagnosis of AD. Recently, [18F]AV-45 ([18F]5) demonstrated high binding to the Aβ aggregates in AD patients. To improve the availability of this agent for widespread clinical application, a rapid, fully automated high yield, cGMP-compliant radiosynthesis was necessary for production of this probe. We report herein an optimal [18F]fluorination, de-protection condition and fully automated radiosynthsis of [18F]AV-45 ([18F]5) on a radiosynthesis module (BNU F-A2). Methods The preparation of [18F]AV-45 ([18F]5) was evaluated under different conditions, specifically by employing different precursors (-OTs and -Br as the leaving group), reagents (K222/K2CO3 vs. tributylammonium bicarbonate) and de-protection in different acids. With optimized conditions from these experiments, the automated synthesis of [18F]AV-45 ([18F]5) was accomplished by using a computer-programmed, standard operating procedure, and was purified on an on-line solid-phase cartridge (Oasis HLB). Results The optimized reaction conditions were successfully implemented to an automated nucleophilic fluorination module. The radiochemical purity of [18F]AV-45 ([18F]5) was > 95%, and the automated synthesis yield was 33.6 ± 5.2% (no decay corrected, n = 4), 50.1 ± 7.9% (decay corrected) in 50 min at a quantity level of 10~100 mCi (370~3700 MBq). Autoradiography studies of [18F]AV-45 ([18F]5) using postmortem AD brain and Tg mouse brain sections in the presence of different concentration of “cold” AV-136 showed a relatively low inhibition of in vitro binding of [18F]AV-45 ([18F]5) to the Aβ plaques (IC50 = 1-4 μM, a concentration several order of magnitude higher than the expected pseudo carrier concentration in the brain). Conclusions Solid phase extraction (SPE

  11. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    SciTech Connect

    Kolb, A. Parl, C.; Liu, C. C.; Pichler, B. J.; Mantlik, F.; Lorenz, E.; Renker, D.

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  12. Sequential and simultaneous dual-isotope brain SPECT: Comparison with PET for estimation and discrimination tasks in early Parkinson disease

    PubMed Central

    Trott, Cathryn M.; El Fakhri, Georges

    2008-01-01

    Parkinson disease (PD) is the second most frequently occurring cerebral degenerative disease, after Alzheimer disease. Treatments are available, but their efficacy is diminished unless they are administered in the early stages. Therefore, early identification of PD is crucial. In addition to providing perfectly registered studies, simultaneous 99mTc∕123I imaging makes possible the assessment of pre- and postsynaptic neurotransmission functions under identical physiological conditions, while doubling the number of counts for the same total imaging time. These advantages are limited, however, by cross talk between the two radionuclides due to the close emission energies of 99mTc (140 keV) and 123I (159 keV). PET, on the other hand, provides good temporal and spatial resolution and sensitivity but usually requires the use of a single radionuclide. In the present work, the authors compared brain PET with sequential and simultaneous dual-isotope SPECT for the task of estimating striatal activity concentration and striatal size for a normal brain and two stages of early PD. Realistic Monte Carlo simulations of a time-of-flight PET scanner and gamma cameras were performed while modeling all interactions in the brain, collimator (gamma camera) and crystal (detector block in PET), as well as population biological variability of pre- and postsynaptic uptake. For SPECT imaging, we considered two values of system energy resolution and scanners with two and three camera heads. The authors used the Cramer–Rao bound, as a surrogate for the best theoretical performance, to optimize the SPECT acquisition energy windows and objectively compare PET and SPECT. The authors determined the discrimination performance between 500 simulated subjects in every disease stage as measured by the area under the ROC curve (AUC). The discrimination accuracy between a normal subject and a subject in the prodromal disease stage was AUC=0.924 with PET, compared to 0.863 and 0.831 with simultaneous

  13. Caught on Camera.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Describes the benefits of and rules to be followed when using surveillance cameras for school security. Discusses various camera models, including indoor and outdoor fixed position cameras, pan-tilt zoom cameras, and pinhole-lens cameras for covert surveillance. (EV)

  14. Current Status of Hybrid PET/MRI in Oncologic Imaging

    PubMed Central

    Rosenkrantz, Andrew B.; Friedman, Kent; Chandarana, Hersh; Melsaether, Amy; Moy, Linda; Ding, Yu-Shin; Jhaveri, Komal; Beltran, Luis; Jain, Rajan

    2016-01-01

    OBJECTIVE This review article explores recent advancements in PET/MRI for clinical oncologic imaging. CONCLUSION Radiologists should understand the technical considerations that have made PET/MRI feasible within clinical workflows, the role of PET tracers for imaging various molecular targets in oncology, and advantages of hybrid PET/MRI compared with PET/CT. To facilitate this understanding, we discuss clinical examples (including gliomas, breast cancer, bone metastases, prostate cancer, bladder cancer, gynecologic malignancy, and lymphoma) as well as future directions, challenges, and areas for continued technical optimization for PET/MRI. PMID:26491894

  15. Proceedings of the cardiac PET summit meeting 12 may 2014: Cardiac PET and SPECT instrumentation.

    PubMed

    Garcia, Ernest V

    2015-06-01

    Advances in PET and SPECT and imaging hardware and software are vastly improving the noninvasive evaluation of myocardial perfusion and function. PET perfusion imaging has benefitted from the introduction of novel detectors that now allow true 3D imaging, and precise attenuation correction (AC). These developments have also resulted in perfusion images with higher spatial and contrast resolution that may be acquired in shorter protocols and/or with less patient radiation exposure than traditional PET or SPECT studies. Hybrid PET/CT cameras utilize transmission computed tomographic (CT) scans for AC, and offer the additional clinical advantages of evaluating coronary calcium and myocardial anatomy but at a higher cost than PET scanners that use (68)Ge radioactive line sources. As cardiac PET systems continue to improve, dedicated cardiac SPECT systems are also undergoing a profound change in their design. The scintillation camera general purpose design is being replaced with systems with multiple detectors focused on the heart yielding 5 to 10 times the sensitivity of conventional SPECT. As a result, shorter acquisition times and/or lower tracer doses produce higher quality SPECT images than were possible before. This article reviews these concepts and compares the attributes of PET and SPECT instrumentation. PMID:25824018

  16. ImmunoPET In Cancer Models

    PubMed Central

    Reddy, Smitha; Robinson, Matthew

    2010-01-01

    Positron Emission Tomography (PET) is playing an increasingly important role in the diagnosis, staging, and monitoring response to treatment in a variety of cancers. Recent efforts have focused on ImmunoPET, which employs antibody-based radiotracers, to image tumors based on expression of tumor-associated antigens. It is postulated that the specificity afforded by antibody targeting should both improve tumor detection and provide phenotypic information related to primary and metastatic lesions that will guide therapy decisions. Advances in antibody-engineering are providing the tools to develop antibody-based molecules with pharmacokinetic properties optimized for use as immunoPET radiotracers. Coupled with technical advances in the design of PET scanners, immunoPET holds promise to improve diagnostic imaging and to guide the use of targeted therapies. An overview of the preclinical immunoPET studies in cancer models is reviewed here. PMID:20350627

  17. A slanting light-guide analog decoding high resolution detector for positron emission tomography camera

    SciTech Connect

    Wong, W.H.; Jing, M.; Bendriem, B.; Hartz, R.; Mullani, N.; Gould, K.L.; Michel, C.

    1987-02-01

    Current high resolution PET cameras require the scintillation crystals to be much narrower than the smallest available photomultipliers. In addition, the large number of photomultiplier channels constitutes the major component cost in the camera. Recent new designs use the Anger camera type of analog decoding method to obtain higher resolution and lower cost by using the relatively large photomultipliers. An alternative approach to improve the resolution and cost factors has been proposed, with a system of slanting light-guides between the scintillators and the photomultipliers. In the Anger camera schemes, the scintillation light is distributed to several neighboring photomultipliers which then determine the scintillation location. In the slanting light-guide design, the scintillation is metered and channeled to only two photomultipliers for the decision making. This paper presents the feasibility and performance achievable with the slanting light-guide detectors. With a crystal/photomultiplier ratio of 6/1, the intrinsic resolution was found to be 4.0 mm using the first non-optimized prototype light-guides on BGO crystals. The axial resolution will be about 5-6 mm.

  18. Pet Health

    MedlinePlus

    ... Know the signs of medical problems. Take your pet to the veterinarian if you notice: Loss of appetite Drinking a lot of water Gaining or losing a lot of weight quickly Strange behavior Being sluggish and tired Trouble getting up or down Strange lumps

  19. Using triple gamma coincidences with a pixelated semiconductor Compton-PET scanner: a simulation study

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.

  20. The virtual gamma camera room.

    PubMed

    Penrose, J M; Trowbridge, E A; Tindale, W B

    1996-05-01

    The installation of a gamma camera is time-consuming and costly and, once installed, the camera position is unlikely to be altered during its working life. Poor choice of camera position therefore has long-term consequences. Additional equipment such as collimators and carts, the operator's workstation and wall-mounted display monitors must also be situated to maximize access and ease of use. The layout of a gamma camera room can be optimized prior to installation by creating a virtual environment. Super-Scape VRT software running on an upgraded 486 PC microprocessor was used to create a 'virtual camera room'. The simulation included an operator's viewpoint and a controlled tour of the room. Equipment could be repositioned as required, allowing potential problems to be identified at the design stage. Access for bed-ridden patients, operator ergonomics, operator and patient visibility were addressed. The display can also be used for patient education. Creation of a virtual environment is a valuable tool which allows different camera systems to be compared interactively in terms of dimensions, extent of movement and use of a defined space. Such a system also has applications in radiopharmacy design and simulation. PMID:8736511

  1. 3D camera tracking from disparity images

    NASA Astrophysics Data System (ADS)

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  2. OSSI-PET: Open-Access Database of Simulated [(11)C]Raclopride Scans for the Inveon Preclinical PET Scanner: Application to the Optimization of Reconstruction Methods for Dynamic Studies.

    PubMed

    Garcia, Marie-Paule; Charil, Arnaud; Callaghan, Paul; Wimberley, Catriona; Busso, Florian; Gregoire, Marie-Claude; Bardies, Manuel; Reilhac, Anthonin

    2016-07-01

    A wide range of medical imaging applications benefits from the availability of realistic ground truth data. In the case of positron emission tomography (PET), ground truth data is crucial to validate processing algorithms and assessing their performances. The design of such ground truth data often relies on Monte-Carlo simulation techniques. Since the creation of a large dataset is not trivial both in terms of computing time and realism, we propose the OSSI-PET database containing 350 simulated [(11)C]Raclopride dynamic scans for rats, created specifically for the Inveon pre-clinical PET scanner. The originality of this database lies on the availability of several groups of scans with controlled biological variations in the striata. Besides, each group consists of a large number of realizations (i.e., noise replicates). We present the construction methodology of this database using rat pharmacokinetic and anatomical models. A first application using the OSSI-PET database is presented. Several commonly used reconstruction techniques were compared in terms of image quality, accuracy and variability of the activity estimates and of the computed kinetic parameters. The results showed that OP-OSEM3D iterative reconstruction method outperformed the other tested methods. Analytical methods such as FBP2D and 3DRP also produced satisfactory results. However, FORE followed by OSEM2D reconstructions should be avoided. Beyond the illustration of the potential of the database, this application will help scientists to understand the different sources of noise and bias that can occur at the different steps in the processing and will be very useful for choosing appropriate reconstruction methods and parameters. PMID:26863655

  3. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  4. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  5. CARTOGAM: a portable gamma camera

    NASA Astrophysics Data System (ADS)

    Gal, O.; Izac, C.; Lainé, F.; Nguyen, A.

    1997-02-01

    The gamma camera is devised to establish the cartography of radioactive sources against a visible background in quasi real time. This device is designed to spot sources from a distance during the preparation of interventions on active areas of nuclear installations. This implement will permit to optimize interventions especially on the dosimetric level. The camera consists of a double cone collimator, a scintillator and an intensified CCD camera. This chain of detection provides the formation of both gamma images and visible images. Even though it is wrapped in a denal shield, the camera is still portable (mass < 15 kg) and compact (external diameter = 8 cm). The angular resolution is of the order of one degree for gamma rays of 1 MeV. In a few minutes, the device is able to measure a dose rate of 10 μGy/h delivered for instance by a source of 60Co of 90 mCi located at 10 m from the detector. The first images recorded in the laboratory will be presented and will illustrate the performances obtained with this camera.

  6. Pet Problems at Home: Pet Problems in the Community.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  7. Pet Bonding and Pet Bereavement among Adolescents.

    ERIC Educational Resources Information Center

    Brown, Brenda H.; And Others

    1996-01-01

    Studied adolescent-pet bonding and bereavement following pet loss (n=55). Hypothesized that highly-bonded adolescents experience more intense grief when a pet dies than do those less bonded; degree of bonding is greater for girls than for boys; and intensity of bereavement is greater for girls than for boys. Results supported the hypotheses. (RB)

  8. Evaluating intensified camera systems

    SciTech Connect

    S. A. Baker

    2000-06-30

    This paper describes image evaluation techniques used to standardize camera system characterizations. The authors group is involved with building and fielding several types of camera systems. Camera types include gated intensified cameras, multi-frame cameras, and streak cameras. Applications range from X-ray radiography to visible and infrared imaging. Key areas of performance include sensitivity, noise, and resolution. This team has developed an analysis tool, in the form of image processing software, to aid an experimenter in measuring a set of performance metrics for their camera system. These performance parameters are used to identify a camera system's capabilities and limitations while establishing a means for camera system comparisons. The analysis tool is used to evaluate digital images normally recorded with CCD cameras. Electro-optical components provide fast shuttering and/or optical gain to camera systems. Camera systems incorporate a variety of electro-optical components such as microchannel plate (MCP) or proximity focused diode (PFD) image intensifiers; electro-static image tubes; or electron-bombarded (EB) CCDs. It is often valuable to evaluate the performance of an intensified camera in order to determine if a particular system meets experimental requirements.

  9. Graphic design of pinhole cameras

    NASA Technical Reports Server (NTRS)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  10. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  11. Novel fundus camera design

    NASA Astrophysics Data System (ADS)

    Dehoog, Edward A.

    A fundus camera a complex optical system that makes use of the principle of reflex free indirect ophthalmoscopy to image the retina. Despite being in existence as early as 1900's, little has changed in the design of a fundus camera and there is minimal information about the design principles utilized. Parameters and specifications involved in the design of fundus camera are determined and their affect on system performance are discussed. Fundus cameras incorporating different design methods are modeled and a performance evaluation based on design parameters is used to determine the effectiveness of each design strategy. By determining the design principles involved in the fundus camera, new cameras can be designed to include specific imaging modalities such as optical coherence tomography, imaging spectroscopy and imaging polarimetry to gather additional information about properties and structure of the retina. Design principles utilized to incorporate such modalities into fundus camera systems are discussed. Design, implementation and testing of a snapshot polarimeter fundus camera are demonstrated.

  12. Advanced camera for surveys

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Ford, Holland C.; Bartko, Frank; Bely, Pierre Y.; Broadhurst, Tom; Burrows, Christopher J.; Cheng, Edward S.; Crocker, James H.; Franx, Marijn; Feldman, Paul D.; Golimowski, David A.; Hartig, George F.; Illingworth, Garth; Kimble, Randy A.; Lesser, Michael P.; Miley, George H.; Postman, Marc; Rafal, Marc D.; Rosati, Piero; Sparks, William B.; Tsvetanov, Zlatan; White, Richard L.; Sullivan, Pamela; Volmer, Paul; LaJeunesse, Tom

    2000-07-01

    The Advanced Camera for Surveys (ACS) is a third generation instrument for the Hubble Space Telescope (HST). It is currently planned for installation in HST during the fourth servicing mission in Summer 2001. The ACS will have three cameras.

  13. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  14. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  15. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NASA Astrophysics Data System (ADS)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M.-J.; van der Graaf, E. R.; Brandenburg, S.

    2015-12-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of 10C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T1/2  =  11 ms) on carbon (9% of 11C), 29P (T1/2  =  4.1 s) on phosphorus (20% of 30P) and 38mK (T1/2  =  0.92 s) on calcium (113% of 38gK). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 12N dominates over 15O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, 12N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of 12N PET imaging is discussed.

  16. Nanosecond frame cameras

    SciTech Connect

    Frank, A M; Wilkins, P R

    2001-01-05

    The advent of CCD cameras and computerized data recording has spurred the development of several new cameras and techniques for recording nanosecond images. We have made a side by side comparison of three nanosecond frame cameras, examining them for both performance and operational characteristics. The cameras include; Micro-Channel Plate/CCD, Image Diode/CCD and Image Diode/Film; combinations of gating/data recording. The advantages and disadvantages of each device will be discussed.

  17. Digital Pinhole Camera

    ERIC Educational Resources Information Center

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  18. Evaluating intensified camera systems

    SciTech Connect

    S. A. Baker

    2000-07-01

    This paper describes image evaluation techniques used to standardize camera system characterizations. Key areas of performance include resolution, noise, and sensitivity. This team has developed a set of analysis tools, in the form of image processing software used to evaluate camera calibration data, to aid an experimenter in measuring a set of camera performance metrics. These performance metrics identify capabilities and limitations of the camera system, while establishing a means for comparing camera systems. Analysis software is used to evaluate digital camera images recorded with charge-coupled device (CCD) cameras. Several types of intensified camera systems are used in the high-speed imaging field. Electro-optical components are used to provide precise shuttering or optical gain for a camera system. These components including microchannel plate or proximity focused diode image intensifiers, electro-static image tubes, or electron-bombarded CCDs affect system performance. It is important to quantify camera system performance in order to qualify a system as meeting experimental requirements. The camera evaluation tool is designed to provide side-by-side camera comparison and system modeling information.

  19. Harpicon camera for HDTV

    NASA Astrophysics Data System (ADS)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  20. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  1. 7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. 6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  4. Automated Camera Calibration

    NASA Technical Reports Server (NTRS)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  5. Development of PhytoPET: A plant imaging PET system

    SciTech Connect

    Dong, H; Lee, S J; McKisson, J; Xi, W; Zorn, C; Howell, C R; Crowell, A S; Cumberbatch, L; Reid, C D; Smith, M F; Stolin, A

    2012-02-01

    The development and initial evaluation of a high-resolution positron emission tomography (PET) system to image the biodistribution of positron emitting tracers in live plants is underway. The positron emitting {sup 11}CO{sub 2} tracer is used in plant biology research investigating carbon sequestration in biomass, optimization of plant productivity and biofuel development. This PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single 5 cm x 5 cm Hamamatsu H8500 position sensitive photomultiplier tubes. Each H8500 is coupled to a LYSO:Ce scintillator array composed of 48 x 48 elements that are 10 mm thick arranged with a 1.0 mm pitch. An Ethernet based 12-bit flash analog to digital data acquisition system with onboard coincident matrix definition is under development to digitize the signals. The detector modules of the PhytoPET system can be arranged and stacked to accommodate various sized plants and plant structures.

  6. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  7. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  8. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  9. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  10. Analytical multicollimator camera calibration

    USGS Publications Warehouse

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  11. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  12. Heart PET scan

    MedlinePlus

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  13. Breast PET scan

    MedlinePlus

    ... medlineplus.gov/ency/article/007469.htm Breast PET scan To use the sharing features on this page, ... enable JavaScript. A breast positron emission tomography (PET) scan is an imaging test that uses a radioactive ...

  14. General purpose solid state camera for SERTS

    NASA Astrophysics Data System (ADS)

    Payne, Leslie J.; Haas, J. Patrick

    1996-11-01

    The Laboratory for Astronomy and Solar Physics at Goddard Space Flight Center uses a variety of CCD's and other solid state imaging sensors for its instrumentation programs. Traditionally, custom camera systems are built around the imaging device to optimize the circuitry for the particular sensor. This usually produces a camera that is small, uses little power and is elegant. Although these are desirable characteristics, this approach is also expensive and time consuming. An alternative approach is to design a `universal' camera that is easily customized to meet specific mission requirements. This is the approach our team used for SERTS. The camera design used to support the SERTS mission is a general purpose camera design that is derived from an existing camera on the SOHO spacecraft. This camera is designed to be rugged, modest in power requirements and flexible. The base design of the camera supports quadrant CCD devices with up to 4 phases. Imaging devices with simpler architectures are in general supportable. The basic camera is comprised of a main electronics box which performs all timing generation, voltage level control, data processing and compression. A second unit, placed close to the detector head, is responsible for driving the image device control electrodes and amplifying the multichannel detector video. Programmable high voltage units are used for the single stage MCP type intensifier. The detector head is customized for each sensor type supported. Auxiliary equipment includes a frame buffer that works either as a multi-frame storage unit or as a photon counting accumulation unit. This unit also performs interface buffering so that the camera may appear as a piece of GPIB instrumentation.

  15. AAPM Task Group 108: PET and PET/CT Shielding Requirements

    SciTech Connect

    Madsen, Mark T.; Anderson, Jon A.; Halama, James R.

    2006-01-15

    The shielding of positron emission tomography (PET) and PET/CT (computed tomography) facilities presents special challenges. The 0.511 MeV annihilation photons associated with positron decay are much higher energy than other diagnostic radiations. As a result, barrier shielding may be required in floors and ceilings as well as adjacent walls. Since the patient becomes the radioactive source after the radiopharmaceutical has been administered, one has to consider the entire time that the subject remains in the clinic. In this report we present methods for estimating the shielding requirements for PET and PET/CT facilities. Information about the physical properties of the most commonly used clinical PET radionuclides is summarized, although the report primarily refers to fluorine-18. Typical PET imaging protocols are reviewed and exposure rates from patients are estimated including self-attenuation by body tissues and physical decay of the radionuclide. Examples of barrier calculations are presented for controlled and noncontrolled areas. Shielding for adjacent rooms with scintillation cameras is also discussed. Tables and graphs of estimated transmission factors for lead, steel, and concrete at 0.511 MeV are also included. Meeting the regulatory limits for uncontrolled areas can be an expensive proposition. Careful planning with the equipment vendor, facility architect, and a qualified medical physicist is necessary to produce a cost effective design while maintaining radiation safety standards.

  16. AAPM Task Group 108: PET and PET/CT shielding requirements.

    PubMed

    Madsen, Mark T; Anderson, Jon A; Halama, James R; Kleck, Jeff; Simpkin, Douglas J; Votaw, John R; Wendt, Richard E; Williams, Lawrence E; Yester, Michael V

    2006-01-01

    The shielding of positron emission tomography (PET) and PET/CT (computed tomography) facilities presents special challenges. The 0.511 MeV annihilation photons associated with positron decay are much higher energy than other diagnostic radiations. As a result, barrier shielding may be required in floors and ceilings as well as adjacent walls. Since the patient becomes the radioactive source after the radiopharmaceutical has been administered, one has to consider the entire time that the subject remains in the clinic. In this report we present methods for estimating the shielding requirements for PET and PET/CT facilities. Information about the physical properties of the most commonly used clinical PET radionuclides is summarized, although the report primarily refers to fluorine-18. Typical PET imaging protocols are reviewed and exposure rates from patients are estimated including self-attenuation by body tissues and physical decay of the radionuclide. Examples of barrier calculations are presented for controlled and noncontrolled areas. Shielding for adjacent rooms with scintillation cameras is also discussed. Tables and graphs of estimated transmission factors for lead, steel, and concrete at 0.511 MeV are also included. Meeting the regulatory limits for uncontrolled areas can be an expensive proposition. Careful planning with the equipment vendor, facility architect, and a qualified medical physicist is necessary to produce a cost effective design while maintaining radiation safety standards. PMID:16485403

  17. PET imaging of adoptive progenitor cell therapies.

    SciTech Connect

    Gelovani, Juri G.

    2008-05-13

    stem cell imaging is proposed to circumvent the major limitation of in vitro radiolabeling – the eventual radiolabel decay. Stable transduction of stem cells in vitro would allow for the selection of high quality stem cells with optimal functional parameters of the transduced reporter systems. The use of a long-lived radioisotope 124I to label a highly specific reporter gene probe will allow for ex vivo labeling of stem cells and their imaging immediately after injection and during the following next week. The use of short-lived radioisotopes (i.e., 18F) to label highly specific reporter gene probes will allow repetitive PET imaging for the assessment of to stem cell migration, targeting, differentiation, and long-term viability of stem cell-derived tissues. Qualifications of the research team and resources. An established research team of experts in various disciplines has been assembled at MD Anderson Cancer Center (MDACC) over the past two years including the PI, senior co-investigators and collaborators. The participants of this team are recognized internationally to be among the leaders in their corresponding fields of research and clinical medicine. The resources at MDACC are exceptionally well developed and have been recently reinforced by the installation of a microPET and microSPECT/CT cameras, and a 7T MRI system for high resolution animal imaging; and by integrating a synthetic chemistry core for the development and production of precursors for radiolabeling.

  18. Birds Kept as Pets

    MedlinePlus

    ... restricts the importation of pet birds from certain countries and enforces a 30-day quarantine for all imported birds except those that come from Canada. People interested in importing pet birds should visit the USDA non-US Origin Pet Bird Importation website . Choosing a bird Match ...

  19. The Camera Cook Book.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    Intended for use with the photographic materials available from the Workshop for Learning Things, Inc., this "camera cookbook" describes procedures that have been tried in classrooms and workshops and proven to be the most functional and inexpensive. Explicit starting off instructions--directions for exploring and loading the camera and for taking…

  20. The DSLR Camera

    NASA Astrophysics Data System (ADS)

    Berkó, Ernő; Argyle, R. W.

    Cameras have developed significantly in the past decade; in particular, digital Single-Lens Reflex Cameras (DSLR) have appeared. As a consequence we can buy cameras of higher and higher pixel number, and mass production has resulted in the great reduction of prices. CMOS sensors used for imaging are increasingly sensitive, and the electronics in the cameras allows images to be taken with much less noise. The software background is developing in a similar way—intelligent programs are created for after-processing and other supplementary works. Nowadays we can find a digital camera in almost every household, most of these cameras are DSLR ones. These can be used very well for astronomical imaging, which is nicely demonstrated by the amount and quality of the spectacular astrophotos appearing in different publications. These examples also show how much post-processing software contributes to the rise in the standard of the pictures. To sum up, the DSLR camera serves as a cheap alternative for the CCD camera, with somewhat weaker technical characteristics. In the following, I will introduce how we can measure the main parameters (position angle and separation) of double stars, based on the methods, software and equipment I use. Others can easily apply these for their own circumstances.

  1. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  2. CCD Luminescence Camera

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  3. Camera Operator and Videographer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  4. Dry imaging cameras

    PubMed Central

    Indrajit, IK; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-01-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow. PMID:21799589

  5. Action selection for single-camera SLAM.

    PubMed

    Vidal-Calleja, Teresa A; Sanfeliu, Alberto; Andrade-Cetto, Juan

    2010-12-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionally, the system has been ported to a mobile robotic platform, thus closing the control-estimation loop. To show the viability of the approach, simulations and experiments are presented for the unconstrained motion of a handheld camera and for the motion of a mobile robot with nonholonomic constraints. When combined with a path planner, the technique safely drives to a marked goal while, at the same time, producing an optimal estimated map. PMID:20350845

  6. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging

    PubMed Central

    Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip

    2014-01-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. PMID:24028171

  7. 3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  8. 7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. Replacing 16 mm film cameras with high definition digital cameras

    SciTech Connect

    Balch, K.S.

    1995-12-31

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  10. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  11. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  12. Structured light camera calibration

    NASA Astrophysics Data System (ADS)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  13. Optimization of supervised cluster analysis for extracting reference tissue input curves in (R)-[11C]PK11195 brain PET studies

    PubMed Central

    Yaqub, Maqsood; van Berckel, Bart NM; Schuitemaker, Alie; Hinz, Rainer; Turkheimer, Federico E; Tomasi, Giampaolo; Lammertsma, Adriaan A; Boellaard, Ronald

    2012-01-01

    Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[11C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPMVb). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions (Vb) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18 kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of Vb in RPM improved both parametric images and binding potential contrast between groups. Incorporation of Vb within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R)-[11C]PK11195 neurodegeneration studies. PMID:22588187

  14. Targetless Camera Calibration

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Mussio, L.; Remondino, F.; Scaioni, M.

    2011-09-01

    In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  15. Miniature TV Camera

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Originally devised to observe Saturn stage separation during Apollo flights, Marshall Space Flight Center's Miniature Television Camera, measuring only 4 x 3 x 1 1/2 inches, quickly made its way to the commercial telecommunications market.

  16. The MKID Camera

    NASA Astrophysics Data System (ADS)

    Maloney, P. R.; Czakon, N. G.; Day, P. K.; Duan, R.; Gao, J.; Glenn, J.; Golwala, S.; Hollister, M.; LeDuc, H. G.; Mazin, B.; Noroozian, O.; Nguyen, H. T.; Sayers, J.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Wilson, P.; Zmuidzinas, J.

    2009-12-01

    The MKID Camera project is a collaborative effort of Caltech, JPL, the University of Colorado, and UC Santa Barbara to develop a large-format, multi-color millimeter and submillimeter-wavelength camera for astronomy using microwave kinetic inductance detectors (MKIDs). These are superconducting, micro-resonators fabricated from thin aluminum and niobium films. We couple the MKIDs to multi-slot antennas and measure the change in surface impedance produced by photon-induced breaking of Cooper pairs. The readout is almost entirely at room temperature and can be highly multiplexed; in principle hundreds or even thousands of resonators could be read out on a single feedline. The camera will have 576 spatial pixels that image simultaneously in four bands at 750, 850, 1100 and 1300 microns. It is scheduled for deployment at the Caltech Submillimeter Observatory in the summer of 2010. We present an overview of the camera design and readout and describe the current status of testing and fabrication.

  17. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  18. Advances in SPECT and PET Hardware.

    PubMed

    Slomka, Piotr J; Pan, Tinsu; Berman, Daniel S; Germano, Guido

    2015-01-01

    There have been significant recent advances in single photon emission computed tomography (SPECT) and positron emission tomography (PET) hardware. Novel collimator designs, such as multi-pinhole and locally focusing collimators arranged in geometries that are optimized for cardiac imaging have been implemented to reduce imaging time and radiation dose. These new collimators have been coupled with solid state photon detectors to further improve image quality and reduce scanner size. The new SPECT scanners demonstrate up to a 7-fold increase in photon sensitivity and up to 2 times improvement in image resolution. Although PET scanners are used primarily for oncological imaging, cardiac imaging can benefit from the improved PET sensitivity of 3D systems without inter-plane septa and implementation of the time-of-flight reconstruction. Additionally, resolution recovery techniques are now implemented by all major PET vendors. These new methods improve image contrast, image resolution, and reduce image noise. Simultaneous PET/magnetic resonance (MR) hybrid systems have been developed. Solid state detectors with avalanche photodiodes or digital silicon photomultipliers have also been utilized in PET. These new detectors allow improved image resolution, higher count rate, as well as a reduced sensitivity to electromagnetic MR fields. PMID:25721706

  19. Gamma ray camera

    SciTech Connect

    Robbins, C.D.; Wang, S.

    1980-09-09

    An anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the anger camera, the image intensifier tube having a negatively charged flat scintillator screen and a flat photocathode layer and a grounded, flat output phosphor display screen all of the same dimension (Unity image magnification) and all within a grounded metallic tube envelope and having a metallic, inwardly concaved input window between the scintillator screen and the collimator.

  20. Camera Edge Response

    NASA Astrophysics Data System (ADS)

    Zisk, Stanley H.; Wittels, Norman

    1988-02-01

    Edge location is an important machine vision task. Machine vision systems perform mathematical operations on rectangular arrays of numbers that are intended to faithfully represent the spatial distribution of scene luminance. The numbers are produced by periodic sampling and quantization of the camera's video output. This sequence can cause artifacts to appear in the data with a noise spectrum that is high in power at high spatial frequencies. This is a problem because most edge detection algorithms are preferentially sensitive to the high-frequency content in an image. Solid state cameras can introduce errors because of the spatial periodicity of their sensor elements. This can result in problems when image edges are aligned with camera pixel boundaries: (a) some cameras introduce transients into the video signal while switching between sensor elements; (b) most cameras use analog low-pass filters to minimize sampling artifacts and these introduce video phase delays that shift the locations of edges. The problems compound when the vision system samples asynchronously with the camera's pixel rate. Moire patterns (analogous to beat frequencies) can result. In this paper, we examine and model quantization effects in a machine vision system with particular emphasis on edge detection performance. We also compare our models with experimental measurements.

  1. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  2. Performance comparison of streak camera recording systems

    SciTech Connect

    Derzon, M.; Barber, T.

    1995-07-01

    Streak camera based diagnostics are vital to the inertial confinement fusion program at Sandia National Laboratories. Performance characteristics of various readout systems coupled to an EGG-AVO streak camera were analyzed and compared to scaling estimates. The purpose of the work was to determine the limits of the streak camera performance and the optimal fielding conditions for the Amador Valley Operations (AVO) streak camera systems. The authors measured streak camera limitations in spatial resolution and sensitivity. Streak camera limits on spatial resolution are greater than 18 lp/mm at 4% contrast. However, it will be difficult to make use of any resolution greater than this because of high spatial frequency variation in the photocathode sensitivity. They have measured a signal to noise of 3,000 with 0.3 mW/cm{sup 2} of 830 nm light at a 10 ns/mm sweep speed. They have compared lens coupling systems with and without micro-channel plate intensifiers and systems using film or charge coupled device (CCD) readout. There were no conditions where film was found to be an improvement over the CCD readout. Systems utilizing a CCD readout without an intensifier have comparable resolution, for these source sizes and at a nominal cost in signal to noise of 3, over those with an intensifier. Estimates of the signal-to-noise for different light coupling methods show how performance can be improved.

  3. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT

  4. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    PubMed Central

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  5. 9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ON RAILROAD TRACK AND FIXED CAMERA STATION 1400 (BUILDING NO. 42021) ABOVE, ADJACENT TO STATE HIGHWAY 39, LOOKING WEST, March 23, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  6. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  8. Uncooled radiometric camera performance

    NASA Astrophysics Data System (ADS)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  9. Performance measurements of a high-spatial-resolution YAP camera.

    PubMed

    Uzunov, N; Bello, M; Boccaccio, P; Moschini, G; Baldazzi, G; Bollini, D; de Notaristefani, F; Mazzi, U; Riondato, M

    2005-02-01

    Physical properties of a position-sensitive camera for the analysis of biodistributions of gamma- and beta-emitting radiopharmaceuticals in small animals have been studied, in order to achieve optimal operating conditions. The camera consisted of a highly segmented yttrium-aluminate perovskite (YAP) scintillator, coupled to a position-sensitive photomultiplier. The energy resolution, the detection efficiency, the spatial resolution, the spatial linearity and the count-rate linearity of the YAP camera have been determined. Images related to initial activity levels and successive biodistribution evolution in mice organs are presented as an illustration of the camera performance. PMID:15773730

  10. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface

    SciTech Connect

    Yamamoto, S.; Seki, C.; Kashikura, K.

    1996-12-31

    We have developed and tested a high resolution beta camera for a direct measurement of positron distribution on brain surface of animals. The beta camera consists of a thin CaF{sub 2}(Eu) scintillator, a tapered fiber optics plate (taper fiber) and a position sensitive photomultiplier tube (PSPMT). The taper fiber is the key component of the camera. We have developed two types of beta cameras. One is 20mm diameter field of view camera for imaging brain surface of cats. The other is 10mm diameter camera for that of rats. Spatial resolutions of beta camera for cats and rats were 0.8mm FWHM and 0.5mm FWHM, respectively. We confirmed that developed beta cameras may overcome the limitation of the spatial resolution of the positron emission tomography (PET).

  11. Future image acquisition trends for PET/MRI.

    PubMed

    Boss, Andreas; Weiger, Markus; Wiesinger, Florian

    2015-05-01

    Hybrid PET/MRI scanners have become commercially available in the past years but are not yet widely distributed. The combination of a state-of-the-art PET with a state-of-the-art MRI scanner provides numerous potential advantages compared with the established PET/CT hybrid systems, namely, increased soft tissue contrast; functional information from MRI such as diffusion, perfusion, and blood oxygenation level-dependent techniques; true multiplanar data acquisition; and reduced radiation exposure. On the contrary, current PET/MRI technology is hampered by several shortcomings compared with PET/CT, the most important issues being how to use MR data for PET attenuation correction and the low sensitivity of MRI for small-scale pulmonary pathologies compared with high-resolution CT. Moreover, the optimal choice for hybrid PET/MRI acquisition protocols needs to be defined providing the highest possible degree of sensitivity and specificity within the constraints of the available measurement time. A multitude of new acquisition strategies of PET and MRI not only offer to overcome current obstacles of hybrid PET/MRI but also provide deeper insights into the pathophysiology of oncological, inflammatory, or degenerative diseases from the combination of molecular and functional imaging techniques. PMID:25841275

  12. The Dark Energy Camera

    SciTech Connect

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  13. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  14. The Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Flaugher, B.; Diehl, H. T.; Honscheid, K.; Abbott, T. M. C.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Antonik, M.; Ballester, O.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Bonati, M.; Boprie, D.; Brooks, D.; Buckley-Geer, E. J.; Campa, J.; Cardiel-Sas, L.; Castander, F. J.; Castilla, J.; Cease, H.; Cela-Ruiz, J. M.; Chappa, S.; Chi, E.; Cooper, C.; da Costa, L. N.; Dede, E.; Derylo, G.; DePoy, D. L.; de Vicente, J.; Doel, P.; Drlica-Wagner, A.; Eiting, J.; Elliott, A. E.; Emes, J.; Estrada, J.; Fausti Neto, A.; Finley, D. A.; Flores, R.; Frieman, J.; Gerdes, D.; Gladders, M. D.; Gregory, B.; Gutierrez, G. R.; Hao, J.; Holland, S. E.; Holm, S.; Huffman, D.; Jackson, C.; James, D. J.; Jonas, M.; Karcher, A.; Karliner, I.; Kent, S.; Kessler, R.; Kozlovsky, M.; Kron, R. G.; Kubik, D.; Kuehn, K.; Kuhlmann, S.; Kuk, K.; Lahav, O.; Lathrop, A.; Lee, J.; Levi, M. E.; Lewis, P.; Li, T. S.; Mandrichenko, I.; Marshall, J. L.; Martinez, G.; Merritt, K. W.; Miquel, R.; Muñoz, F.; Neilsen, E. H.; Nichol, R. C.; Nord, B.; Ogando, R.; Olsen, J.; Palaio, N.; Patton, K.; Peoples, J.; Plazas, A. A.; Rauch, J.; Reil, K.; Rheault, J.-P.; Roe, N. A.; Rogers, H.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R. H.; Schmidt, R.; Schmitt, R.; Schubnell, M.; Schultz, K.; Schurter, P.; Scott, L.; Serrano, S.; Shaw, T. M.; Smith, R. C.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Suchyta, E.; Sypniewski, A.; Tarle, G.; Thaler, J.; Tighe, R.; Tran, C.; Tucker, D.; Walker, A. R.; Wang, G.; Watson, M.; Weaverdyck, C.; Wester, W.; Woods, R.; Yanny, B.; DES Collaboration

    2015-11-01

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel-1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  15. Satellite camera image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Savides, John (Inventor); Hanson, Charles W. (Inventor)

    1987-01-01

    Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50).

  16. Selective-imaging camera

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  17. Solid state television camera

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.

  18. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  19. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  20. Camera placement in integer lattices (extended abstract)

    NASA Astrophysics Data System (ADS)

    Pocchiola, Michel; Kranakis, Evangelos

    1990-09-01

    Techniques for studying an art gallery problem (the camera placement problem) in the infinite lattice (L sup d) of d tuples of integers are considered. A lattice point A is visible from a camera C positioned at a vertex of (L sup d) if A does not equal C and if the line segment joining A and C crosses no other lattice vertex. By using a combination of probabilistic, combinatorial optimization and algorithmic techniques the position they must occupy in the lattice (L sup d) in the order to maximize their visibility can be determined in polynomial time, for any given number s less than or equal to (5 sup d) of cameras. This improves previous results for s less than or equal to (3 sup d).

  1. Artificial human vision camera

    NASA Astrophysics Data System (ADS)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  2. Characterization and optimization of image quality as a function of reconstruction algorithms and parameter settings in a Siemens Inveon small-animal PET scanner using the NEMA NU 4-2008 standards

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Disselhorst, Jonathan A.; van Lier, Monique G. J. T. B.; Laverman, Peter; de Jong, Gabie M.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-02-01

    The image reconstruction algorithms provided with the Siemens Inveon small-animal PET scanner are filtered backprojection (FBP), 3-dimensional reprojection (3DRP), ordered subset expectation maximization in 2 or 3 dimensions (OSEM2D/3D) and maximum a posteriori (MAP) reconstruction. This study aimed at optimizing the reconstruction parameter settings with regard to image quality (IQ) as defined by the NEMA NU 4-2008 standards. The NEMA NU 4-2008 image quality phantom was used to determine image noise, expressed as percentage standard deviation in the uniform phantom region (%STD unif), activity recovery coefficients for the FDG-filled rods (RC rod), and spill-over ratios for the non-radioactive water- and air-filled phantom compartments (SOR wat and SOR air). Although not required by NEMA NU 4, we also determined a contrast-to-noise ratio for each rod (CNR rod), expressing the trade-off between activity recovery and image noise. For FBP and 3DRP the cut-off frequency of the applied filters, and for OSEM2D and OSEM3D, the number of iterations was varied. For MAP, the "smoothing parameter" β and the type of uniformity constraint (variance or resolution) were varied. Results of these analyses were demonstrated in images of an FDG-injected rat showing tumours in the liver, and of a mouse injected with an 18F-labeled peptide, showing a small subcutaneous tumour and the cortex structure of the kidneys. Optimum IQ in terms of CNR rod for the small-diameter rods was obtained using MAP with uniform variance and β=0.4. This setting led to RC rod,1 mm=0.21, RC rod,2 mm=0.57, %STD unif=1.38, SOR wat=0.0011, and SOR air=0.00086. However, the highest activity recovery for the smallest rods with still very small %STD unif was obtained using β=0.075, for which these IQ parameters were 0.31, 0.74, 2.67, 0.0041, and 0.0030, respectively. The different settings of reconstruction parameters were clearly reflected in the rat and mouse images as the trade-off between the recovery of

  3. Thoracic cancer imaging with PET/CT in radiation oncology

    NASA Astrophysics Data System (ADS)

    Chi, Pai-Chun Melinda

    Significance. Respiratory motion has been shown to cause artifacts in PET/CT imaging. This breathing artifact can have a significant impact on PET quantification and it can lead to large uncertainties when using PET for radiation therapy planning. We have demonstrated a promising solution to resolve the breathing artifact by acquiring respiration-averaged CT (ACT) for PET/CT. The purpose of this work was to optimize the ACT acquisition for clinical implementation and to evaluate the impact of ACT on PET/CT quantification. The hypothesis was that ACT is an effective method in removing the breathing artifact when compared to our current clinical protocol. Methods. Phase and cine approaches for acquiring ACT were investigated and the results of these two approaches were compared to the ACT generated from clinical 4DCT data sets (abbreviated as ACT10phs ). In the phase approach, ACT was generated based on combinations of selected respiratory phases; in the cine approach, ACT was generated based on cine images acquired over a fixed cine duration. The phase combination and cine duration that best approximated the ACT10phs were determined to be the optimized scanning parameters. 216 thoracic PET/CT patients were scanned with both current clinical and the ACT protocols. The effects of ACT on PET/CT quantification were assessed by comparing clinical PET/CT and ACT PET/CT using 3 metrics: PET/CT image alignment, maximum standardized uptake value (SUVmax), and threshold segmented gross tumor volume (GTV). Results. ACT10phs can be best approximated to within 2% of SUV variation by phase averaging based on 4 representative phases, and to within 3% by cine image averaging based on >3s of cine duration. We implemented the cine approach on the PET/CT scanners and acquired 216 patient data sets. 68% of patients had breathing artifacts in their clinical PET/CT and the artifacts were removed/reduced in all corresponding ACT PET/CT. PET/CT quantification for lesions <50 cm3 and

  4. Improving Instruction through PET.

    ERIC Educational Resources Information Center

    Evans, Pamela Roland

    1982-01-01

    Outlines the content and training methods used in the Program for Effective Teaching (PET), the successful staff development program of Newport News (Virginia). PET promotes application of five instructional skills: selecting learning objectives, teaching to the objectives, establishing learner focus, monitoring learner progress, and enhancing…

  5. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  6. Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System

    PubMed Central

    Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.

    2015-01-01

    Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591

  7. FDG-PET/CT in lymphoma

    PubMed Central

    D'souza, Maria M; Jaimini, Abhinav; Bansal, Abhishek; Tripathi, Madhavi; Sharma, Rajnish; Mondal, Anupam; Tripathi, Rajendra Prashad

    2013-01-01

    Lymphomas are a heterogeneous group of diseases that arise from the constituent cells of the immune system or from their precursors. 18F-fludeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is now the cornerstone of staging procedures in the state-of-the-art management of Hodgkin's disease and aggressive non-Hodgkin's lymphoma. It plays an important role in staging, restaging, prognostication, planning appropriate treatment strategies, monitoring therapy, and detecting recurrence. However, its role in indolent lymphomas is still unclear and calls for further investigational trials. The protean PET/CT manifestations of lymphoma necessitate a familiarity with the spectrum of imaging findings to enable accurate diagnosis. A meticulous evaluation of PET/CT findings, an understanding of its role in the management of lymphomas, and knowledge of its limitations are mandatory for the optimal utilization of this technique. PMID:24604942

  8. [Oncology PET imaging].

    PubMed

    Inubushi, Masayuki

    2014-01-01

    At the beginning of this article, likening medical images to "Where is Waldo?" I indicate the concept of diagnostic process of PET/CT imaging, so that medical physics specialists could understand the role of each imaging modality and infer our distress for image diagnosis. Then, I state the present situation of PET imaging and the basics (e.g. health insurance coverage, clinical significance, principle, protocol, and pitfall) of oncology FDG-PET imaging which accounts for more than 99% of all clinical PET examinations in Japan. Finally, I would like to give a wishful prospect of oncology PET that will expand to be more cancer-specific in order to assess therapeutic effects of emerging molecular targeted drugs targeting the "hallmarks of cancer". PMID:25199271

  9. Healthy pets, healthy people.

    PubMed

    Wong, S K; Feinstein, L H; Heidmann, P

    1999-08-01

    Zoonoses, diseases that can be transmitted from animals to humans, can pose serious health risks to immunocompromised people. Although pets can carry zoonoses, owning and caring for animals can benefit human health. Information exists about preventing transmission of zoonoses, but not all physicians and veterinarians provide adequate and accurate information to immunocompromised pet owners. This disease prevention/health promotion project provides physicians and veterinarians with information, created specifically to share with patients and clients, about the health risks and benefits of pet ownership. Further, "Healthy Pets, Healthy People" encourages communication between veterinarians, physicians, clients, and patients and can serve as a model program for a nation-wide effort to aid health professionals in making recommendations about pet ownership for immunocompromised people. PMID:10434969

  10. Illumination box and camera system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  11. Superconducting cameras for optical astronomy

    NASA Astrophysics Data System (ADS)

    Martin, D. D. E.; Verhoeve, P.; de Bruijne, J. H. J.; Reynolds, A. P.; van Dordrecht, A.; Verveer, J.; Page, J.; Rando, N.; Peacock, A.

    2002-05-01

    superconducting Tunnel junctions (STJs) have been extensively investigated it as photon detectors covering the range from near-infrared to x-ray energies. A 6× 6 array of Tantalum junctions has performed multiple astronomical observations of optical sources using the wiliam Herschel 4.2m telescope at La Palma. Following the success of this programme, we are now developing a second generation camera. The goals of this programme are to increase the field of view of the instrument from “4× 4” to “5×9”, to optimize IR rejection filters, possibly extending the `red' response to ~ lum and to increase the electronics readout speed. For these purposes, we are developing a new Superconducting Tunnel Junction Array consisting of 10× 12 Tantalum/Aluminium devices as well as an important readout system. In this paper, we review the instrument's architecture and describe the performance of the new detector

  12. Reading Challenging Barcodes with Cameras

    PubMed Central

    Gallo, Orazio; Manduchi, Roberto

    2010-01-01

    Current camera-based barcode readers do not work well when the image has low resolution, is out of focus, or is motion-blurred. One main reason is that virtually all existing algorithms perform some sort of binarization, either by gray scale thresholding or by finding the bar edges. We propose a new approach to barcode reading that never needs to binarize the image. Instead, we use deformable barcode digit models in a maximum likelihood setting. We show that the particular nature of these models enables efficient integration over the space of deformations. Global optimization over all digits is then performed using dynamic programming. Experiments with challenging UPC-A barcode images show substantial improvement over other state-of-the-art algorithms. PMID:20617113

  13. Development of a PET/Cerenkov-light hybrid imaging system

    SciTech Connect

    Yamamoto, Seiichi Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-09-15

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid

  14. Camera settings for UAV image acquisition

    NASA Astrophysics Data System (ADS)

    O'Connor, James; Smith, Mike J.; James, Mike R.

    2016-04-01

    The acquisition of aerial imagery has become more ubiquitous than ever in the geosciences due to the advent of consumer-grade UAVs capable of carrying imaging devices. These allow the collection of high spatial resolution data in a timely manner with little expertise. Conversely, the cameras/lenses used to acquire this imagery are often given less thought, and can be unfit for purpose. Given weight constraints which are frequently an issue with UAV flights, low-payload UAVs (<1 kg) limit the types of cameras/lenses which could potentially be used for specific surveys, and therefore the quality of imagery which can be acquired. This contribution discusses these constraints, which need to be considered when selecting a camera/lens for conducting a UAV survey and how they can best be optimized. These include balancing of the camera exposure triangle (ISO, Shutter speed, Aperture) to ensure sharp, well exposed imagery, and its interactions with other camera parameters (Sensor size, Focal length, Pixel pitch) as well as UAV flight parameters (height, velocity).

  15. Underwater camera with depth measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  16. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  17. Spas color camera

    NASA Technical Reports Server (NTRS)

    Toffales, C.

    1983-01-01

    The procedures to be followed in assessing the performance of the MOS color camera are defined. Aspects considered include: horizontal and vertical resolution; value of the video signal; gray scale rendition; environmental (vibration and temperature) tests; signal to noise ratios; and white balance correction.

  18. Imaging phoswich anger camera

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sood, R. K.

    1991-08-01

    High angular resolution and low background are the primary requisites for detectors for future astronomy experiments in the low energy gamma-ray region. Scintillation counters are still the only available large area detector for studies in this energy range. Preliminary details of a large area phoswich anger camera designed for coded aperture imaging is described and its background and position characteristics are discussed.

  19. Communities, Cameras, and Conservation

    ERIC Educational Resources Information Center

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  20. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  1. The LSST Camera Overview

    SciTech Connect

    Gilmore, Kirk; Kahn, Steven A.; Nordby, Martin; Burke, David; O'Connor, Paul; Oliver, John; Radeka, Veljko; Schalk, Terry; Schindler, Rafe; /SLAC

    2007-01-10

    The LSST camera is a wide-field optical (0.35-1um) imager designed to provide a 3.5 degree FOV with better than 0.2 arcsecond sampling. The detector format will be a circular mosaic providing approximately 3.2 Gigapixels per image. The camera includes a filter mechanism and, shuttering capability. It is positioned in the middle of the telescope where cross-sectional area is constrained by optical vignetting and heat dissipation must be controlled to limit thermal gradients in the optical beam. The fast, f/1.2 beam will require tight tolerances on the focal plane mechanical assembly. The focal plane array operates at a temperature of approximately -100 C to achieve desired detector performance. The focal plane array is contained within an evacuated cryostat, which incorporates detector front-end electronics and thermal control. The cryostat lens serves as an entrance window and vacuum seal for the cryostat. Similarly, the camera body lens serves as an entrance window and gas seal for the camera housing, which is filled with a suitable gas to provide the operating environment for the shutter and filter change mechanisms. The filter carousel can accommodate 5 filters, each 75 cm in diameter, for rapid exchange without external intervention.

  2. Jack & the Video Camera

    ERIC Educational Resources Information Center

    Charlan, Nathan

    2010-01-01

    This article narrates how the use of video camera has transformed the life of Jack Williams, a 10-year-old boy from Colorado Springs, Colorado, who has autism. The way autism affected Jack was unique. For the first nine years of his life, Jack remained in his world, alone. Functionally non-verbal and with motor skill problems that affected his…

  3. Anger Camera Firmware

    Energy Science and Technology Software Center (ESTSC)

    2010-11-19

    The firmware is responsible for the operation of Anger Camera Electronics, calculation of position, time of flight and digital communications. It provides a first stage analysis of 48 signals from 48 analog signals that have been converted to digital values using A/D convertors.

  4. Make a Pinhole Camera

    ERIC Educational Resources Information Center

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  5. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  6. Inter-subject MR-PET image registration and integration

    SciTech Connect

    Lin, K.P.; Chen, T.S.; Yao, W.F.

    1996-12-31

    A MR-PET inter-subject image integration technique is developed to provide more precise anatomical location based on a template MR image, and to examine the anatomical variation in sensory-motor stimulation or to obtain cross-subject signal averaging to enhance the delectability of focal brain activity detected by different subject PET images. In this study, a multimodality intrasubject image registration procedure is firstly applied to align MR and PET images of the same subject. The second procedure is to estimate an elastic image transformation that can nonlinearly deform each 3D brain MR image and map them to the template MR image. The estimation procedure of the elastic image transformation is based on a strategy that searches the best local image match to achieve an optimal global image match, iteratively. The final elastic image transformation estimated for each subject will then be used to deform the MR-PET registered PET image. After the nonlinear PET image deformation, MR-PET intersubject mapping, averaging, and fusing are simultaneously accomplished. The developed technique has been implemented to an UNIX based workstation with Motif window system. The software named Elastic-IRIS has few requirements of user interaction. The registered anatomical location of 10 different subjects has a standard deviation of {approximately}2mm. in the x, y, and z directions. The processing time for one MR-PET inter-subject registration ranged from 20 to 30 minutes on a SUN SPARC-20.

  7. The current state, challenges and perspectives of MR-PET.

    PubMed

    Herzog, Hans; Pietrzyk, Uwe; Shah, N Jon; Ziemons, Karl

    2010-02-01

    Following the success of PET/CT during the last decade and the recent increasing proliferation of SPECT/CT, another hybrid imaging instrument has been gaining more and more interest: MR-PET. First combined, simultaneous PET and MR studies carried out in small animals demonstrated the feasibility of the new approach. Concurrently, some prototypes of an MR-PET scanner for simultaneous human brain studies have been built, their performance is being tested and preliminary applications have already been shown. Through this pioneering work, it has become clear that advances in the detector design are necessary for further optimization. Recently, the different issues related to the present state and future prospects of MR-PET were presented and discussed during an international 2-day workshop at the Forschungszentrum Jülich, Germany, held after, and in conjunction with, the 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference in Dresden, Germany on October 27-28, 2008. The topics ranged from small animal MR-PET imaging to human MR-BrainPET imaging, new detector developments, challenges/opportunities for ultra-high field MR-PET imaging and considerations of possible future research and clinical applications. This report presents a critical summary of the contributions made to the workshop. PMID:19853045

  8. Methodology for Quantitative Rapid Multi-Tracer PET Tumor Characterizations

    PubMed Central

    Kadrmas, Dan J.; Hoffman, John M.

    2013-01-01

    Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted. PMID:24312149

  9. 15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL TO SLED TRACK. Looking west southwest down Camera Road. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  10. The ADNI PET Core

    PubMed Central

    Jagust, William J.; Bandy, Dan; Chen, Kewei; Foster, Norman L.; Landau, Susan M.; Mathis, Chester A.; Price, Julie C.; Reiman, Eric M.; Skovronsky, Daniel; Koeppe, Robert A.

    2010-01-01

    Background This is a progress report of the Alzheimer's Disease Neuroimaging Initiative (ADNI) PET Core. Methods The Core has supervised the acquisition, quality control, and analysis of longitudinal [18F]fluorodeoxyglucose PET (FDG-PET) data in approximately half of the ADNI cohort. In an “add on” study, approximately 100 subjects also underwent scanning with [11C]PIB-PET for amyloid imaging. The Core developed quality control procedures and standardized image acquisition by developing an imaging protocol that has been widely adopted in academic and pharmaceutical industry studies. Data processing provides users with scans that have identical orientation and resolution characteristics despite acquisition on multiple scanner models. The Core labs have used a number of different approaches to characterize differences between subject groups (AD, MCI, controls), to examine longitudinal change over time in glucose metabolism and amyloid deposition, and to assess the use of FDG-PET as a potential outcome measure in clinical trials. Results ADNI data indicate that FDG-PET increases statistical power over traditional cognitive measures, might aid subject selection, and could substantially reduce the sample size in a clinical trial. PIB-PET data showed expected group differences, and identified subjects with significant annual increases in amyloid load across the subject groups. The next activities of the PET core in ADNI will entail developing standardized protocols for amyloid imaging using the [18F]-labeled amyloid imaging agent AV45, which can be delivered to virtually all ADNI sites. Conclusions ADNI has demonstrated the feasibility and utility of multicenter PET studies and is helping to clarify the role of biomarkers in the study of aging and dementia. PMID:20451870

  11. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  12. Combustion pinhole camera system

    DOEpatents

    Witte, Arvel B.

    1984-02-21

    A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  13. Combustion pinhole camera system

    DOEpatents

    Witte, A.B.

    1984-02-21

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor. 2 figs.

  14. The NEAT Camera Project

    NASA Technical Reports Server (NTRS)

    Jr., Ray L. Newburn

    1995-01-01

    The NEAT (Near Earth Asteroid Tracking) camera system consists of a camera head with a 6.3 cm square 4096 x 4096 pixel CCD, fast electronics, and a Sun Sparc 20 data and control computer with dual CPUs, 256 Mbytes of memory, and 36 Gbytes of hard disk. The system was designed for optimum use with an Air Force GEODSS (Ground-based Electro-Optical Deep Space Surveillance) telescope. The GEODSS telescopes have 1 m f/2.15 objectives of the Ritchey-Chretian type, designed originally for satellite tracking. Installation of NEAT began July 25 at the Air Force Facility on Haleakala, a 3000 m peak on Maui in Hawaii.

  15. LSST Camera Optics

    SciTech Connect

    Olivier, S S; Seppala, L; Gilmore, K; Hale, L; Whistler, W

    2006-06-05

    The Large Synoptic Survey Telescope (LSST) is a unique, three-mirror, modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary feeding a camera system that includes corrector optics to produce a 3.5 degree field of view with excellent image quality (<0.3 arcsecond 80% encircled diffracted energy) over the entire field from blue to near infra-red wavelengths. We describe the design of the LSST camera optics, consisting of three refractive lenses with diameters of 1.6m, 1.0m and 0.7m, along with a set of interchangeable, broad-band, interference filters with diameters of 0.75m. We also describe current plans for fabricating, coating, mounting and testing these lenses and filters.

  16. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  17. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  18. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  19. Hemispherical Laue camera

    DOEpatents

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  20. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  1. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  2. Motion and Emotional Behavior Design for Pet Robot Dog

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Tai; Yang, Yu-Ting; Miao, Shih-Heng; Wong, Ching-Chang

    A pet robot dog with two ears, one mouth, one facial expression plane, and one vision system is designed and implemented so that it can do some emotional behaviors. Three processors (Inter® Pentium® M 1.0 GHz, an 8-bit processer 8051, and embedded soft-core processer NIOS) are used to control the robot. One camera, one power detector, four touch sensors, and one temperature detector are used to obtain the information of the environment. The designed robot with 20 DOF (degrees of freedom) is able to accomplish the walking motion. A behavior system is built on the implemented pet robot so that it is able to choose a suitable behavior for different environmental situation. From the practical test, we can see that the implemented pet robot dog can do some emotional interaction with the human.

  3. Attenuation Correction for Magnetic Resonance Coils in Combined PET/MR Imaging: A Review.

    PubMed

    Eldib, Mootaz; Bini, Jason; Faul, David D; Oesingmann, Niels; Tsoumpas, Charalampos; Fayad, Zahi A

    2016-04-01

    With the introduction of clinical PET/magnetic resonance (MR) systems, novel attenuation correction methods are needed, as there are no direct MR methods to measure the attenuation of the objects in the field of view (FOV). A unique challenge for PET/MR attenuation correction is that coils for MR data acquisition are located in the FOV of the PET camera and could induce significant quantitative errors. In this review, current methods and techniques to correct for the attenuation of a variety of coils are summarized and evaluated. PMID:26952728

  4. Lightweight, Compact, Long Range Camera Design

    NASA Astrophysics Data System (ADS)

    Shafer, Donald V.

    1983-08-01

    The model 700 camera is the latest in a 30-year series of LOROP cameras developed by McDonnell Douglas Astronautics Company (MDAC) and their predecessor companies. The design achieves minimum size and weight and is optimized for low-contrast performance. The optical system includes a 66-inch focal length, f/5.6, apochromatic lens and three folding mirrors imaging on a 4.5-inch square format. A three-axis active stabilization system provides the capability for long exposure time and, hence, fine grain films can be used. The optical path forms a figure "4" behind the lens. In front of the lens is a 45° pointing mirror. This folded configuration contributed greatly to the lightweight and compact design. This sequential autocycle frame camera has three modes of operation with one, two, and three step positions to provide a choice of swath widths within the range of lateral coverage. The magazine/shutter assembly rotates in relationship with the pointing mirror and aircraft drift angle to maintain film format alignment with the flight path. The entire camera is angular rate stabilized in roll, pitch, and yaw. It also employs a lightweight, electro-magnetically damped, low-natural-frequency spring suspension for passive isolation from aircraft vibration inputs. The combined film transport and forward motion compensation (FMC) mechanism, which is operated by a single motor, is contained in a magazine that can, depending on accessibility which is installation dependent, be changed in flight. The design also stresses thermal control, focus control, structural stiffness, and maintainability. The camera is operated from a remote control panel. This paper describes the leading particulars and features of the camera as related to weight and configuration.

  5. Heart PET scan

    MedlinePlus

    Heart nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Mann DL, ... A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, ...

  6. Healthy Pets and People

    MedlinePlus

    ... Pregnant women should avoid adopting or handling stray cats, especially kittens. They particularly should not clean litter ... may be sick. Many pets, such as dogs, cats, reptiles, rodents, and birds, carry germs that can ...

  7. Pets and Parasites

    MedlinePlus

    ... make me sick? Household pets such as dogs, cats, birds and reptiles can carry diseases or parasites ... might be used as litter boxes by neighborhood cats. Keep your children out of the dirt in ...

  8. Household Hazards to Pets

    MedlinePlus

    ... health by becoming aware of the most common health hazards found in many pet-owning households. Hazards in the Kitchen Foods Many foods are perfectly safe for humans, but could be harmful or potentially deadly to ...

  9. Brain PET scan

    MedlinePlus

    ... tests, such as magnetic resonance imaging ( MRI ) and computed tomography ( CT ) scans only reveal the structure of the ... a PET/CT. Alternative Names ... PT, Rijntjes M, Weiller C. Neuroimaging: Functional neuroimaging. In: Daroff RB, Fenichel GM, Jankovic ...

  10. PET studies in epilepsy

    PubMed Central

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex

  11. PET/CT Artifacts

    PubMed Central

    Blodgett, Todd M.; Mehta, Ajeet S.; Mehta, Amar S.; Laymon, Charles M.; Carney, Jonathan; Townsend, David W.

    2014-01-01

    There are several artifacts encountered in PET/CT imaging, including attenuation correction (AC) artifacts associated with using CT for attenuation correction. Several artifacts can mimic a 2-deoxy-2-[18F] fluoro-D-glucose (FDG) avid malignant lesions and therefore recognition of these artifacts is clinically relevant. Our goal was to identify and characterize these artifacts and also discuss some protocol variables that may affect image quality in PET/CT. PMID:21237418

  12. Pet-related infections.

    PubMed

    Rabinowitz, Peter M; Gordon, Zimra; Odofin, Lynda

    2007-11-01

    Human contact with cats, dogs, and other pets results in several million infections each year in the United States, ranging from self-limited skin conditions to life-threatening systemic illnesses. Toxoplasmosis is one of the most common pet-related parasitic infections. Although toxoplasmosis is usually asymptomatic or mild, it may cause serious congenital infection if a woman is exposed during pregnancy, particularly in the first trimester. Common pet-borne fungal infections include tinea corporis/capitis (ringworm); campylobacteriosis and salmonellosis are among the most common bacterial infections associated with pet ownership. Less commonly, pets can transmit arthropod-borne and viral illnesses (e.g., scabies, rabies). Infection in a pet can provide sentinel warning of local vectors and endemic conditions, such as Lyme disease risk. Treatment is infection-specific, although many infections are self-limited. Prevention involves common sense measures such as adequate hand washing, proper disposal of animal waste, and ensuring that infected animals are diagnosed and treated. Special precautions are indicated for immunocompromised persons. Increased communication between primary care physicians and veterinarians could improve treatment and prevention of these conditions. PMID:18019874

  13. Maximizing the Performance of Automated Low Cost All-sky Cameras

    NASA Technical Reports Server (NTRS)

    Bettonvil, F.

    2011-01-01

    Thanks to the wide spread of digital camera technology in the consumer market, a steady increase in the number of active All-sky camera has be noticed European wide. In this paper I look into the details of such All-sky systems and try to optimize the performance in terms of accuracy of the astrometry, the velocity determination and photometry. Having autonomous operation in mind, suggestions are done for the optimal low cost All-sky camera.

  14. Computational imaging for miniature cameras

    NASA Astrophysics Data System (ADS)

    Salahieh, Basel

    Miniature cameras play a key role in numerous imaging applications ranging from endoscopy and metrology inspection devices to smartphones and head-mount acquisition systems. However, due to the physical constraints, the imaging conditions, and the low quality of small optics, their imaging capabilities are limited in terms of the delivered resolution, the acquired depth of field, and the captured dynamic range. Computational imaging jointly addresses the imaging system and the reconstructing algorithms to bypass the traditional limits of optical systems and deliver better restorations for various applications. The scene is encoded into a set of efficient measurements which could then be computationally decoded to output a richer estimate of the scene as compared with the raw images captured by conventional imagers. In this dissertation, three task-based computational imaging techniques are developed to make low-quality miniature cameras capable of delivering realistic high-resolution reconstructions, providing full-focus imaging, and acquiring depth information for high dynamic range objects. For the superresolution task, a non-regularized direct superresolution algorithm is developed to achieve realistic restorations without being penalized by improper assumptions (e.g., optimizers, priors, and regularizers) made in the inverse problem. An adaptive frequency-based filtering scheme is introduced to upper bound the reconstruction errors while still producing more fine details as compared with previous methods under realistic imaging conditions. For the full-focus imaging task, a computational depth-based deconvolution technique is proposed to bring a scene captured by an ordinary fixed-focus camera to a full-focus based on a depth-variant point spread function prior. The ringing artifacts are suppressed on three levels: block tiling to eliminate boundary artifacts, adaptive reference maps to reduce ringing initiated by sharp edges, and block-wise deconvolution or

  15. A Digital Preclinical PET/MRI Insert and Initial Results.

    PubMed

    Weissler, Bjoern; Gebhardt, Pierre; Dueppenbecker, Peter M; Wehner, Jakob; Schug, David; Lerche, Christoph W; Goldschmidt, Benjamin; Salomon, Andre; Verel, Iris; Heijman, Edwin; Perkuhn, Michael; Heberling, Dirk; Botnar, Rene M; Kiessling, Fabian; Schulz, Volkmar

    2015-11-01

    Combining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners. With three exchangeable RF coils, the hybrid field of view has a maximum size of 160 mm × 96.6 mm (transaxial × axial). 0.1 ppm volume-root-mean-square B 0-homogeneity is kept within a spherical diameter of 96 mm (automatic volume shimming). Depending on the coil, MRI SNR is decreased by 13% or 5% by the PET system. PET count rates, energy resolution of 12.6% FWHM, and spatial resolution of 0.73 mm (3) (isometric volume resolution at isocenter) are not affected by applied MRI sequences. PET time resolution of 565 ps (FWHM) degraded by 6 ps during an EPI sequence. Timing-optimized settings yielded 260 ps time resolution. PET and MR images of a hot-rod phantom show no visible differences when the other modality was in operation and both resolve 0.8-mm rods. Versatility of the insert is shown by successfully combining multi-nuclei MRI ((1)H/(19)F) with simultaneously measured PET ((18)F-FDG). A longitudinal study of a tumor-bearing mouse verifies the operability, stability, and in vivo capabilities of the system. Cardiac- and respiratory-gated PET/MRI motion-capturing (CINE) images of the mouse heart demonstrate the advantage of simultaneous acquisition for temporal and spatial image registration. PMID:25935031

  16. [Technical Approaches for Quantitative Treatment Responses Using 18F-FDG PET].

    PubMed

    Miwa, Kenta; Miyaji, Noriaki; Umeda, Takuro; Murata, Taisuke; Wagatsuma, Kei; Sasaki, Masayuki

    2015-01-01

    Quantitative assessment of 18F-FDG PET can predict treatment responses or outcomes. Here, I briefly describe some world trends in standardizing PET images for image-based assessments of treatment responses, followed by present and future strategies for defining the optimal acquisition conditions for quantitative PET imaging. Finally, information is provided about new technical approaches to improving the quantitation of semi-quantitative indexes such as point spread function, time-of-flight and respiratory gating. PMID:26753394

  17. Digital Camera Control for Faster Inspection

    NASA Technical Reports Server (NTRS)

    Brown, Katharine; Siekierski, James D.; Mangieri, Mark L.; Dekome, Kent; Cobarruvias, John; Piplani, Perry J.; Busa, Joel

    2009-01-01

    Digital Camera Control Software (DCCS) is a computer program for controlling a boom and a boom-mounted camera used to inspect the external surface of a space shuttle in orbit around the Earth. Running in a laptop computer in the space-shuttle crew cabin, DCCS commands integrated displays and controls. By means of a simple one-button command, a crewmember can view low- resolution images to quickly spot problem areas and can then cause a rapid transition to high- resolution images. The crewmember can command that camera settings apply to a specific small area of interest within the field of view of the camera so as to maximize image quality within that area. DCCS also provides critical high-resolution images to a ground screening team, which analyzes the images to assess damage (if any); in so doing, DCCS enables the team to clear initially suspect areas more quickly than would otherwise be possible and further saves time by minimizing the probability of re-imaging of areas already inspected. On the basis of experience with a previous version (2.0) of the software, the present version (3.0) incorporates a number of advanced imaging features that optimize crewmember capability and efficiency.

  18. Novel computer-based endoscopic camera

    NASA Astrophysics Data System (ADS)

    Rabinovitz, R.; Hai, N.; Abraham, Martin D.; Adler, Doron; Nissani, M.; Fridental, Ron; Vitsnudel, Ilia

    1995-05-01

    We have introduced a computer-based endoscopic camera which includes (a) unique real-time digital image processing to optimize image visualization by reducing over exposed glared areas and brightening dark areas, and by accentuating sharpness and fine structures, and (b) patient data documentation and management. The image processing is based on i Sight's iSP1000TM digital video processor chip and Adaptive SensitivityTM patented scheme for capturing and displaying images with wide dynamic range of light, taking into account local neighborhood image conditions and global image statistics. It provides the medical user with the ability to view images under difficult lighting conditions, without losing details `in the dark' or in completely saturated areas. The patient data documentation and management allows storage of images (approximately 1 MB per image for a full 24 bit color image) to any storage device installed into the camera, or to an external host media via network. The patient data which is included with every image described essential information on the patient and procedure. The operator can assign custom data descriptors, and can search for the stored image/data by typing any image descriptor. The camera optics has extended zoom range of f equals 20 - 45 mm allowing control of the diameter of the field which is displayed on the monitor such that the complete field of view of the endoscope can be displayed on all the area of the screen. All these features provide versatile endoscopic camera with excellent image quality and documentation capabilities.

  19. Multimodal sensing-based camera applications

    NASA Astrophysics Data System (ADS)

    Bordallo López, Miguel; Hannuksela, Jari; Silvén, J. Olli; Vehviläinen, Markku

    2011-02-01

    The increased sensing and computing capabilities of mobile devices can provide for enhanced mobile user experience. Integrating the data from different sensors offers a way to improve application performance in camera-based applications. A key advantage of using cameras as an input modality is that it enables recognizing the context. Therefore, computer vision has been traditionally utilized in user interfaces to observe and automatically detect the user actions. The imaging applications can also make use of various sensors for improving the interactivity and the robustness of the system. In this context, two applications fusing the sensor data with the results obtained from video analysis have been implemented on a Nokia Nseries mobile device. The first solution is a real-time user interface that can be used for browsing large images. The solution enables the display to be controlled by the motion of the user's hand using the built-in sensors as complementary information. The second application is a real-time panorama builder that uses the device's accelerometers to improve the overall quality, providing also instructions during the capture. The experiments show that fusing the sensor data improves camera-based applications especially when the conditions are not optimal for approaches using camera data alone.

  20. Optical Design of the LSST Camera

    SciTech Connect

    Olivier, S S; Seppala, L; Gilmore, K

    2008-07-16

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary feeding a camera system that includes a set of broad-band filters and refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. Optical design of the camera lenses and filters is integrated with optical design of telescope mirrors to optimize performance, resulting in excellent image quality over the entire field from ultra-violet to near infra-red wavelengths. The LSST camera optics design consists of three refractive lenses with clear aperture diameters of 1.55 m, 1.10 m and 0.69 m and six interchangeable, broad-band, filters with clear aperture diameters of 0.75 m. We describe the methodology for fabricating, coating, mounting and testing these lenses and filters, and we present the results of detailed tolerance analyses, demonstrating that the camera optics will perform to the specifications required to meet their performance goals.

  1. DEVICE CONTROLLER, CAMERA CONTROL

    Energy Science and Technology Software Center (ESTSC)

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher),more » devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.« less

  2. Adaptive compressive sensing camera

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  3. Phoenix Robotic Arm Camera

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Goetz, W.; Hartwig, H.; Hviid, S. F.; Kramm, R.; Markiewicz, W. J.; Reynolds, R.; Shinohara, C.; Smith, P.; Tanner, R.; Woida, P.; Woida, R.; Bos, B. J.; Lemmon, M. T.

    2008-10-01

    The Phoenix Robotic Arm Camera (RAC) is a variable-focus color camera mounted to the Robotic Arm (RA) of the Phoenix Mars Lander. It is designed to acquire both close-up images of the Martian surface and microscopic images (down to a scale of 23 μm/pixel) of material collected in the RA scoop. The mounting position at the end of the Robotic Arm allows the RAC to be actively positioned for imaging of targets not easily seen by the Stereo Surface Imager (SSI), such as excavated trench walls and targets under the Lander structure. Color information is acquired by illuminating the target with red, green, and blue light-emitting diodes. Digital terrain models (DTM) can be generated from RAC images acquired from different view points. This can provide high-resolution stereo information about fine details of the trench walls. The large stereo baseline possible with the arm can also provide a far-field DTM. The primary science objectives of the RAC are the search for subsurface soil/ice layering at the landing site and the characterization of scoop samples prior to delivery to other instruments on board Phoenix. The RAC shall also provide low-resolution panoramas in support of SSI activities and acquire images of the Lander deck for instrument and Lander check out. The camera design was inherited from the unsuccessful Mars Polar Lander mission (1999) and further developed for the (canceled) Mars Surveyor 2001 Lander (MSL01). Extensive testing and partial recalibration qualified the MSL01 RAC flight model for integration into the Phoenix science payload.

  4. DEVICE CONTROLLER, CAMERA CONTROL

    SciTech Connect

    Perry, Marcia

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher), devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.

  5. Simultaneous {sup 68}Ga-DOTATOC-PET/MRI for IMRT Treatment Planning for Meningioma: First Experience

    SciTech Connect

    Thorwarth, Daniela; Henke, Guido; Mueller, Arndt-Christian; Reimold, Matthias; Beyer, Thomas; Boss, Andreas; Kolb, Armin; Pichler, Bernd; Pfannenberg, Christina

    2011-09-01

    Purpose: To evaluate intensity-modulated radiotherapy (IMRT) treatment planning based on simultaneous positron-emission tomography and magnetic resonance imaging (PET/MRI) of meningioma. Methods and Materials: A meningioma patient was examined prior to radiotherapy with dedicated planning computed tomography (CT), MRI, PET/CT with gallium-68-labeled DOTATOC ({sup 68}Ga-DOTATOC), and simultaneous {sup 68}Ga-DOTATOC-PET/MRI. The first gross target volume (GTV) was defined based on a combination of separate MR and {sup 68}Ga-DOTATOC-PET/CT imaging (GTV{sub PET/CT+MR}). Then, the simultaneous PET/MR images were used to delineate a second GTV (GTV{sub PET/MR}) by following exactly the same delineation strategy. After an isotropic expansion of those volumes by a 4-mm safety margin, the resulting planning target volumes (PTVs) were compared by calculating the intersection volume and the relative complements. A cross-evaluation of IMRT plans was performed, where the treatment plan created for the PTV{sub PET/CT+MR} was applied to the PET/MR-based PTV{sub PET/MR}. Results: Generally, target volumes for IMRT treatment planning did not differ between MRI plus {sup 68}Ga-DOTATOC-PET/CT and simultaneous PET/MR imaging. Only in certain regions of the GTV were differences observed. The overall volume of the PET/MR-based PTV was approximately the same as that obtained from PET/CT data. A small region of infiltrative tumor growth next to the main tumor mass was better visualized with combined PET/MR due to smaller PET voxel sizes and improved recovery. An IMRT treatment plan was optimized for the PTV{sub PET/CT+MR}. The evaluation of this plan with respect to the PTV{sub PET/MR} showed parts of the target volume that would not have received the full radiation dose after delineation of the tumor, based on simultaneous PET/MR. Conclusion: This case showed that differences in target volumes delineated on the basis of separate MR and PET/CT and simultaneous PET/MR may be observed that

  6. Repeatability of the Maximum Standard Uptake Value (SUVmax) in FDG PET

    PubMed Central

    Lindholm, Henry; Staaf, Johan; Jacobsson, Hans; Brolin, Fredrik; Hatherly, Robert; Sânchez-Crespo, Alejandro

    2014-01-01

    Objective: SUVmax is often calculated at FDG PET examinations in systematic studies as well as at clinical examinations. Since SUVmax represents a very small portion of a lesion it may be questioned how statistically reliable the figure is. This was studied by assessing the repeatability of SUVmax between two FDG acquisitions acquired immediately upon each other in patients with chest lesions. Methods: In 100 clinical patients with a known chest lesion, two identical 3 min PET registrations (PET1 and PET2, respectively) were initiated within 224±31 sec of each other. The difference in SUVmax between the lesion for the two PET scans (ΔSUVmax) was calculated and the uncertainty expressed as the coefficient of variation, CV (%). The correlation between ΔSUVmax and the lowest SUVmax from PET1 or PET2, the approximate metabolic lesion volume, the time from FDG injection to PET1 and the time between PET1 and PET2, respectively, was also assessed. Results: In 56 patients SUVmax increased at the second acquisition and in 44 patients it decreased. Mean of SUVmax was 7.8±6.1 and 7.8±6.2 for PET1 and PET2, respectively. The mean percentage difference was 0.9±7.8. The difference was not significant (p=0.20). CV gave an uncertainty of 4.3% between the two measurements which is a strong indicator of equivalence. There was no correlation between ΔSUVmax and any of the assessed four parameters. The difference between the acquisitions, 0.9%, was much lower compared to the 3 previous published similar, but more restricted studies where the difference was 2.5-8.2%. Conclusion: From camera and computational perspectives, SUVmax is a stable parameter Conflict of interest:None declared. PMID:24653930

  7. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  8. Simulation of triple coincidences in PET.

    PubMed

    Cal-González, J; Lage, E; Herranz, E; Vicente, E; Udias, J M; Moore, S C; Park, M-A; Dave, S R; Parot, V; Herraiz, J L

    2015-01-01

    Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (RT), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (β(+)γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner's energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For clinical

  9. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  10. The YAP camera: An accurate gamma camera particularly suitable for new radiopharmaceuticals research

    SciTech Connect

    Vittori, F.; Notaristefani, F. de; Malatesta, T.

    1997-02-01

    The YAP Camera represents a refined research instrument in nuclear medicine and pharmacology because of its overall detection efficiency comparable to an Anger Camera and its submillimeter intrinsic spatial resolution. The YAP Camera consists of a YAP : Ce multicrystal matrix, whose pillars dimensions are 0.6 mm x 0.6 mm x 10 mm, optically coupled with a position sensitive PMT Hamamatsu R2486 and furnished with a parallel hole lead collimator 20 mm thick with holes diameter of 0.5 mm and septa of 0.15 mm. At this stage it is a miniature camera, with a field of view (FOV) of 40 mm x 40 mm and a total spatial resolution of 1.0--1.2 mm, currently used for radiotracers studies on small biological specimens. A detailed analysis of the detector position linearity and energy responses are presented in this work. The intrinsic spatial resolution is studied with three different single hole collimators (1.0, 0.3, and 0.2 mm), and a theoretical equation is presented. Three different parallel hole collimators are tested to evaluate the optimal hole and septa dimensions. Finally, it is demonstrated that two correction procedures are capable of recovering the image spatial homogeneity and of removing the statistical noise. Some phantom images show the importance of the small-field YAP Camera in the radiopharmacological research.

  11. Stereoscopic camera design

    NASA Astrophysics Data System (ADS)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  12. NFC - Narrow Field Camera

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.

    2015-01-01

    We have been introducing a low-cost CCTV video system for faint meteor monitoring and here we describe the first results from 5 months of two-station operations. Our system called NFC (Narrow Field Camera) with a meteor limiting magnitude around +6.5mag allows research on trajectories of less massive meteoroids within individual parent meteor showers and the sporadic background. At present 4 stations (2 pairs with coordinated fields of view) of NFC system are operated in the frame of CEMeNt (Central European Meteor Network). The heart of each NFC station is a sensitive CCTV camera Watec 902 H2 and a fast cinematographic lens Meopta Meostigmat 1/50 - 52.5 mm (50 mm focal length and fixed aperture f/1.0). In this paper we present the first results based on 1595 individual meteors, 368 of which were recorded from two stations simultaneously. This data set allows the first empirical verification of theoretical assumptions for NFC system capabilities (stellar and meteor magnitude limit, meteor apparent brightness distribution and accuracy of single station measurements) and the first low mass meteoroid trajectory calculations. Our experimental data clearly showed the capabilities of the proposed system for low mass meteor registration and for calculations based on NFC data to lead to a significant refinement in the orbital elements for low mass meteoroids.

  13. Next generation PET data acquisition architectures

    SciTech Connect

    Jones, W.F.; Reed, J.H.; Everman, J.L.

    1996-12-31

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT{reg_sign} EXACT HR{sup ++} exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of-interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 M byte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512 x 512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.

  14. The ADNI PET Core: 2015

    PubMed Central

    Jagust, William J.; Landau, Susan M.; Koeppe, Robert A.; Reiman, Eric M.; Chen, Kewei; Mathis, Chester A.; Price, Julie C.; Foster, Norman L.; Wang, Angela Y.

    2015-01-01

    INTRODUCTION This paper reviews the work done in the ADNI PET core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI. METHODS The PET Core has utilized [18F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of FDG-PET in clinical trials, and relationships between different biomarkers and cognition. RESULTS Converging evidence from the PET Core has indicated that cross-sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale. CONCLUSION The PET Core has demonstrated a variety of methods for standardization of biomarkers such as florbetapir PET in a multicenter setting. PMID:26194311

  15. Pet Loss: Implications for Counselors.

    ERIC Educational Resources Information Center

    Sharkin, Bruce S.; Bahrick, Audrey S.

    1990-01-01

    Attempts to increase awareness of counselors about topic of pet loss. Discusses how counselors can be actively involved through practice, consultation, and research to help people deal with emotional impact of pet loss. (Author/NB)

  16. A novel SPECT camera for molecular imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  17. PET/CT imaging artifacts.

    PubMed

    Sureshbabu, Waheeda; Mawlawi, Osama

    2005-09-01

    The purpose of this paper is to introduce the principles of PET/CT imaging and describe the artifacts associated with it. PET/CT is a new imaging modality that integrates functional (PET) and structural (CT) information into a single scanning session, allowing excellent fusion of the PET and CT images and thus improving lesion localization and interpretation accuracy. Moreover, the CT data can also be used for attenuation correction, ultimately leading to high patient throughput. These combined advantages have rendered PET/CT a preferred imaging modality over dedicated PET. Although PET/CT imaging offers many advantages, this dual-modality imaging also poses some challenges. CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET emission images. For instance, the use of contrast medium and the presence of metallic implants can be associated with focal radiotracer uptake. Furthermore, the patient's breathing can introduce mismatches between the CT attenuation map and the PET emission data, and the discrepancy between the CT and PET fields of view can lead to truncation artifacts. After reading this article, the technologist should be able to describe the principles of PET/CT imaging, identify at least 3 types of image artifacts, and describe the differences between PET/CT artifacts of different causes: metallic implants, respiratory motion, contrast medium, and truncation. PMID:16145223

  18. Polarisation-based coincidence event discrimination: an in silico study towards a feasible scheme for Compton-PET

    NASA Astrophysics Data System (ADS)

    Toghyani, M.; Gillam, J. E.; McNamara, A. L.; Kuncic, Z.

    2016-08-01

    Current positron emission tomography (PET) systems use temporally localised coincidence events discriminated by energy and time-of-flight information. The two annihilation photons are in an entangled polarisation state and, in principle, additional information from the polarisation correlation of photon pairs could be used to improve the accuracy of coincidence classification. In a previous study, we demonstrated that in principle, the polarisation correlation information could be transferred to an angular correlation in the distribution of scattered photon pairs in a planar Compton camera system. In the present study, we model a source-phantom-detector system using Geant4 and we develop a coincidence classification scheme that exploits the angular correlation of scattered annihilation quanta to improve the accuracy of coincidence detection. We find a 22% image quality improvement in terms of the peak signal-to-noise ratio when scattered coincidence events are discriminated solely by their angular correlation, thus demonstrating the feasibility of this novel classification scheme. By integrating scatter events (both single-single and single-only) with unscattered coincidence events discriminated using conventional methods, our results suggest that Compton-PET may be a promising candidate for optimal emission tomographic imaging.

  19. Polarisation-based coincidence event discrimination: an in silico study towards a feasible scheme for Compton-PET.

    PubMed

    Toghyani, M; Gillam, J E; McNamara, A L; Kuncic, Z

    2016-08-01

    Current positron emission tomography (PET) systems use temporally localised coincidence events discriminated by energy and time-of-flight information. The two annihilation photons are in an entangled polarisation state and, in principle, additional information from the polarisation correlation of photon pairs could be used to improve the accuracy of coincidence classification. In a previous study, we demonstrated that in principle, the polarisation correlation information could be transferred to an angular correlation in the distribution of scattered photon pairs in a planar Compton camera system. In the present study, we model a source-phantom-detector system using Geant4 and we develop a coincidence classification scheme that exploits the angular correlation of scattered annihilation quanta to improve the accuracy of coincidence detection. We find a [Formula: see text] image quality improvement in terms of the peak signal-to-noise ratio when scattered coincidence events are discriminated solely by their angular correlation, thus demonstrating the feasibility of this novel classification scheme. By integrating scatter events (both single-single and single-only) with unscattered coincidence events discriminated using conventional methods, our results suggest that Compton-PET may be a promising candidate for optimal emission tomographic imaging. PMID:27405797

  20. Cloud Computing with Context Cameras

    NASA Astrophysics Data System (ADS)

    Pickles, A. J.; Rosing, W. E.

    2016-05-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every ˜2 minutes through BVr'i'z' filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of ˜0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-compare sites and equipment. When accurate calibrations of Target against Standard fields are required, monitoring measurements can be used to select truly photometric periods when accurate calibrations can be automatically scheduled and performed.

  1. Detector Technologies for Sub-500um High-Sensitivity PET Imaging via a Novel PET Insert Approach

    SciTech Connect

    Tai, Yuan-Chuan

    2011-12-21

    The objective of this project was to develop detector technologies that would enable an ultrahigh resolution Virtual Pinhole (VP) PET insert device to provide sub-500 um resolution high-sensitivity PET imaging of a mouse in the future. To achieve this goal, we proposed to develop and characterize finely pixellated cadmium zinc telluride (CZT) detectors and the associated readout electronics with the following specific aims: 1. Develop pixellated CZT detectors with 350um pitches using 2-5 mm substrates; characterize their spatial, energy and timing performance through experiments; and optimize the anode design with steering grid if found necessary. 2. Develop a high-bandwidth readout system using a novel ASIC that can be directly bonded to CZT detectors with 2048 anodes of 350um pitches; optimize its overall performance for VP-PET applications considering the tradeoffs between spatial resolution (in 3D), count rate capability, timing and energy resolutions. 3. Evaluate the performance of a VP-PET insert based on the proposed detector technology through Monte Carlo simulation and experimental validation. Overall, we have completed all three specific aims and demonstrated that pixelated CZT detectors of 350um pitches, combined with VP-PET geometry, can provide PET image resolution of ~460 um FWHM for small animal imaging applications.

  2. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  3. A Motionless Camera

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Omniview, a motionless, noiseless, exceptionally versatile camera was developed for NASA as a receiving device for guiding space robots. The system can see in one direction and provide as many as four views simultaneously. Developed by Omniview, Inc. (formerly TRI) under a NASA Small Business Innovation Research (SBIR) grant, the system's image transformation electronics produce a real-time image from anywhere within a hemispherical field. Lens distortion is removed, and a corrected "flat" view appears on a monitor. Key elements are a high resolution charge coupled device (CCD), image correction circuitry and a microcomputer for image processing. The system can be adapted to existing installations. Applications include security and surveillance, teleconferencing, imaging, virtual reality, broadcast video and military operations. Omniview technology is now called IPIX. The company was founded in 1986 as TeleRobotics International, became Omniview in 1995, and changed its name to Interactive Pictures Corporation in 1997.

  4. PET in Cerebrovascular Disease

    PubMed Central

    Powers, William J.; Zazulia, Allyson R.

    2010-01-01

    SYNOPSIS Investigation of the interplay between the cerebral circulation and brain cellular function is fundamental to understanding both the pathophysiology and treatment of stroke. Currently, PET is the only technique that provides accurate, quantitative in vivo regional measurements of both cerebral circulation and cellular metabolism in human subjects. We review normal human cerebral blood flow and metabolism and human PET studies of ischemic stroke, carotid artery disease, vascular dementia, intracerebral hemorrhage and aneurysmal subarachnoid hemorrhage and discuss how these studies have added to our understanding of the pathophysiology of human cerebrovascular disease. PMID:20543975

  5. Predictive and prognostic value of FDG-PET

    PubMed Central

    Oyen, Wim J.G.

    2008-01-01

    Abstract The predictive and prognostic value of fluorodeoxyglucose (FDG)-positron emission tomography (PET) in non-small-cell lung carcinoma, colorectal carcinoma and lymphoma is discussed. The degree of FDG uptake is of prognostic value at initial presentation, after induction treatment prior to resection and in the case of relapse of non-small cell lung cancer (NSCLC). In locally advanced and advanced stages of NSCLC, FDG-PET has been shown to be predictive for clinical outcome at an early stage of treatment. In colorectal carcinoma, limited studies are available on the prognostic value of FDG-PET, however, the technique appears to have great potential in monitoring the success of local ablative therapies soon after intervention and in the prediction and evaluation of response to radiotherapy, systemic therapy, and combinations thereof. The prognostic value of end-of treatment FDG-PET for FDG-avid lymphomas has been established, and the next step is to define how to use this information to optimize patient outcome. In Hodgkin's lymphoma, FDG-PET has a high negative predictive value, however, histological confirmation of positive findings should be sought where possible. For non-Hodgkin's lymphoma, the opposite applies. The newly published standardized guidelines for interpretation formulates specific criteria for visual interpretation and for defining PET positivity in the liver, spleen, lung, bone marrow and small residual lesions. The introduction of these guidelines should reduce variability among studies. Interim PET offers a reliable method for early prediction of long-term remission, however it should only be performed in prospective randomized controlled trials. Many of the diagnostic and management questions considered in this review are relevant to other tumour types. Further research in this field is of great importance, since it may lead to a change in the therapeutic concept of cancer. The preliminary findings call for systematic inclusion of FDG-PET

  6. Camera Calibration for Uav Application Using Sensor of Mobile Camera

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Chikatsu, H.

    2015-05-01

    Recently, 3D measurements using small unmanned aerial vehicles (UAVs) have increased in Japan, because small type UAVs is easily available at low cost and the analysis software can be created the easily 3D models. However, small type UAVs have a problem: they have very short flight times and a small payload. In particular, as the payload of a small type UAV increases, its flight time decreases. Therefore, it is advantageous to use lightweight sensors in small type UAVs. A mobile camera is lightweight and has many sensors such as an accelerometer, a magnetic field, and a gyroscope. Moreover, these sensors can be used simultaneously. Therefore, the authors think that the problems of small UAVs can be solved using the mobile camera. The authors executed camera calibration using a test target for evaluating sensor values measured using a mobile camera. Consequently, the authors confirmed the same accuracy with normal camera calibration.

  7. The underwater camera calibration based on virtual camera lens distortion

    NASA Astrophysics Data System (ADS)

    Qin, Dahui; Mao, Ting; Cheng, Peng; Zhang, Zhiliang

    2011-08-01

    The machine view is becoming more and more popular in underwater. It is a challenge to calibrate the camera underwater because of the complicated light ray path in underwater and air environment. In this paper we firstly analyzed characteristic of the camera when light transported from air to water. Then we proposed a new method that takes the high-level camera distortion model to compensate the deviation of the light refraction when light ray come through the water and air media. In the end experience result shows the high-level distortion model can simulate the effect made by the underwater light refraction which also makes effect on the camera's image in the process of the camera underwater calibration.

  8. A cooperative control algorithm for camera based observational systems.

    SciTech Connect

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  9. [Pets, veterinarians, and multicultural society].

    PubMed

    Klumpers, M; Endenburg, N

    2009-01-15

    Dutch society comprises a growing percentage of non-Western ethnic minority groups. Little is known about pet ownership among these groups. This study explores some aspects of pet ownership, and the position of veterinarians, among the four largest non-Western ethnic minority groups in the Netherlands. Information was gathered through street interviews with people from a Moroccan, Turkish, Surinamese, or Antillean (including Aruban) background. Five hundred people where interviewed, including 41 pet owners. Results showed that people from non-Western ethnic minorities kept pets less often than Dutch people, with fish and birds being the most frequently kept pets. The number of visits to the veterinary clinic was comparable to that of Dutch pet owners; however, reasons given for the last visit were different. People from non-Western ethnic minorities mostly visited a veterinarian if their pet was ill whereas Dutch people visited the veterinarian if their pet needed to be vaccinated. People from non-Western ethnic minorities were positive about veterinarians, considering that they had sufficient knowledge about and concern for their pets. Moreover, veterinarians were trusted and provided understandable information--the respondents felt that they could go to their veterinarian with any question or problem regarding their pets. Although most respondents considered a visit to the veterinarian expensive, they were more than willing to invest in their pet's health. PMID:19235301

  10. Accurate camera calibration method specialized for virtual studios

    NASA Astrophysics Data System (ADS)

    Okubo, Hidehiko; Yamanouchi, Yuko; Mitsumine, Hideki; Fukaya, Takashi; Inoue, Seiki

    2008-02-01

    Virtual studio is a popular technology for TV programs, that makes possible to synchronize computer graphics (CG) to realshot image in camera motion. Normally, the geometrical matching accuracy between CG and realshot image is not expected so much on real-time system, we sometimes compromise on directions, not to come out the problem. So we developed the hybrid camera calibration method and CG generating system to achieve the accurate geometrical matching of CG and realshot on virtual studio. Our calibration method is intended for the camera system on platform and tripod with rotary encoder, that can measure pan/tilt angles. To solve the camera model and initial pose, we enhanced the bundle adjustment algorithm to fit the camera model, using pan/tilt data as known parameters, and optimizing all other parameters invariant against pan/tilt value. This initialization yields high accurate camera position and orientation consistent with any pan/tilt values. Also we created CG generator implemented the lens distortion function with GPU programming. By applying the lens distortion parameters obtained by camera calibration process, we could get fair compositing results.

  11. Digital Cameras for Student Use.

    ERIC Educational Resources Information Center

    Simpson, Carol

    1997-01-01

    Describes the features, equipment and operations of digital cameras and compares three different digital cameras for use in education. Price, technology requirements, features, transfer software, and accessories for the Kodak DC25, Olympus D-200L and Casio QV-100 are presented in a comparison table. (AEF)

  12. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites. Meteorites have great…

  13. Radiation camera motion correction system

    DOEpatents

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  14. SEOS frame camera applications study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research and development satellite is discussed which will provide opportunities for observation of transient phenomena that fall within the fixed viewing circle of the spacecraft. The evaluation of possible applications for frame cameras, for SEOS, are studied. The computed lens characteristics for each camera are listed.

  15. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  16. Multi-PSPMT scintillation camera

    SciTech Connect

    Pani, R.; Pellegrini, R.; Trotta, G.; Scopinaro, F.; Soluri, A.; Vincentis, G. de; Scafe, R.; Pergola, A.

    1999-06-01

    Gamma ray imaging is usually accomplished by the use of a relatively large scintillating crystal coupled to either a number of photomultipliers (PMTs) (Anger Camera) or to a single large Position Sensitive PMT (PSPMT). Recently the development of new diagnostic techniques, such as scintimammography and radio-guided surgery, have highlighted a number of significant limitations of the Anger camera in such imaging procedures. In this paper a dedicated gamma camera is proposed for clinical applications with the aim of improving image quality by utilizing detectors with an appropriate size and shape for the part of the body under examination. This novel scintillation camera is based upon an array of PSPMTs (Hamamatsu R5900-C8). The basic concept of this camera is identical to the Anger Camera with the exception of the substitution of PSPMTs for the PMTs. In this configuration it is possible to use the high resolution of the PSPMTs and still correctly position events lying between PSPMTs. In this work the test configuration is a 2 by 2 array of PSPMTs. Some advantages of this camera are: spatial resolution less than 2 mm FWHM, good linearity, thickness less than 3 cm, light weight, lower cost than equivalent area PSPMT, large detection area when coupled to scintillating arrays, small dead boundary zone (< 3 mm) and flexibility in the shape of the camera.

  17. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F., III; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  18. Whole blood glucose analysis based on smartphone camera module

    NASA Astrophysics Data System (ADS)

    Devadhasan, Jasmine Pramila; Oh, Hyunhee; Choi, Cheol Soo; Kim, Sanghyo

    2015-11-01

    Complementary metal oxide semiconductor (CMOS) image sensors have received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) chip was developed to carry out the enzyme kinetic reaction at various concentrations (110-586 mg/dL) of mouse blood glucose. In this technique, assay reagent is immobilized onto amine functionalized silica (AFSiO2) nanoparticles as an electrostatic attraction in order to achieve glucose oxidation on the chip. The assay reagent immobilized AFSiO2 nanoparticles develop a semi-transparent reaction platform, which is technically a suitable chip to analyze by a camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique; the photon number decreases when the glucose concentration increases. The combination of these components, the CMOS image sensor and enzyme immobilized PET film chip, constitute a compact, accurate, inexpensive, precise, digital, highly sensitive, specific, and optical glucose-sensing approach for POC diagnosis.

  19. Whole blood glucose analysis based on smartphone camera module.

    PubMed

    Devadhasan, Jasmine Pramila; Oh, Hyunhee; Choi, Cheol Soo; Kim, Sanghyo

    2015-11-01

    Complementary metal oxide semiconductor (CMOS) image sensors have received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) chip was developed to carry out the enzyme kinetic reaction at various concentrations (110–586 mg∕dL) of mouse blood glucose. In this technique, assay reagent is immobilized onto amine functionalized silica (AFSiO2) nanoparticles as an electrostatic attraction in order to achieve glucose oxidation on the chip. The assay reagent immobilized AFSiO2 nanoparticles develop a semi-transparent reaction platform, which is technically a suitable chip to analyze by a camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique; the photon number decreases when the glucose concentration increases. The combination of these components, the CMOS image sensor and enzyme immobilized PET film chip, constitute a compact, accurate, inexpensive, precise, digital, highly sensitive, specific, and optical glucose-sensing approach for POC diagnosis. PMID:26524683

  20. IMAX camera (12-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The IMAX camera system is used to record on-orbit activities of interest to the public. Because of the extremely high resolution of the IMAX camera, projector, and audio systems, the audience is afforded a motion picture experience unlike any other. IMAX and OMNIMAX motion picture systems were designed to create motion picture images of superior quality and audience impact. The IMAX camera is a 65 mm, single lens, reflex viewing design with a 15 perforation per frame horizontal pull across. The frame size is 2.06 x 2.77 inches. Film travels through the camera at a rate of 336 feet per minute when the camera is running at the standard 24 frames/sec.

  1. Coherent infrared imaging camera (CIRIC)

    SciTech Connect

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  2. Camera calibration based on the back projection process

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui

    2015-12-01

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.

  3. MR/PET or PET/MRI: does it matter?

    PubMed

    Beyer, Thomas; Moser, Ewald

    2013-02-01

    After the very successful clinical introduction of combined PET/CT imaging a decade ago, a hardware combination of PET and MR is following suit. Today, three different approaches towards integrated PET/MR have been proposed: (1) a triple-modality system with a 3T MRI and a time-of-flight PET/CT installed in adjacent rooms, (2) a tandem system with a 3T MRI and a time-of-flight PET/CT in a co-planar installation with a joint patient handling system, and (3) a fully-integrated system with a whole-body PET system mounted inside a 3T MRI system. This special issue of MAGMA brings together contributions from key experts in the field of PET/MR, PET/CT and CT. The various papers share the author's perspectives on the state-of-the-art PET/MR imaging with any of the three approaches mentioned above. In addition to several reviews discussing advantages and challenges of combining PET and MRI for clinical diagnostics, first clinical data are also presented. We expect this special issue to nurture future improvements in hardware, clinical protocols, and efficient post-processing strategies to further assess the diagnostic value of combined PET/MR imaging. It remains to be seen whether a so-called "killer application" for PET/MRI will surface. In that case PET/MR is likely to excel in pre-clinical and selected research applications for now. This special issue helps the readers to stay on track of this exciting development. PMID:23385880

  4. Toward standardising gamma camera quality control procedures

    NASA Astrophysics Data System (ADS)

    Alkhorayef, M. A.; Alnaaimi, M. A.; Alduaij, M. A.; Mohamed, M. O.; Ibahim, S. Y.; Alkandari, F. A.; Bradley, D. A.

    2015-11-01

    Attaining high standards of efficiency and reliability in the practice of nuclear medicine requires appropriate quality control (QC) programs. For instance, the regular evaluation and comparison of extrinsic and intrinsic flood-field uniformity enables the quick correction of many gamma camera problems. Whereas QC tests for uniformity are usually performed by exposing the gamma camera crystal to a uniform flux of gamma radiation from a source of known activity, such protocols can vary significantly. Thus, there is a need for optimization and standardization, in part to allow direct comparison between gamma cameras from different vendors. In the present study, intrinsic uniformity was examined as a function of source distance, source activity, source volume and number of counts. The extrinsic uniformity and spatial resolution were also examined. Proper standard QC procedures need to be implemented because of the continual development of nuclear medicine imaging technology and the rapid expansion and increasing complexity of hybrid imaging system data. The present work seeks to promote a set of standard testing procedures to contribute to the delivery of safe and effective nuclear medicine services.

  5. Proportional counter radiation camera

    DOEpatents

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  6. Cameras for digital microscopy.

    PubMed

    Spring, Kenneth R

    2013-01-01

    This chapter reviews the fundamental characteristics of charge-coupled devices (CCDs) and related detectors, outlines the relevant parameters for their use in microscopy, and considers promising recent developments in the technology of detectors. Electronic imaging with a CCD involves three stages--interaction of a photon with the photosensitive surface, storage of the liberated charge, and readout or measurement of the stored charge. The most demanding applications in fluorescence microscopy may require as much as four orders of greater magnitude sensitivity. The image in the present-day light microscope is usually acquired with a CCD camera. The CCD is composed of a large matrix of photosensitive elements (often referred to as "pixels" shorthand for picture elements, which simultaneously capture an image over the entire detector surface. The light-intensity information for each pixel is stored as electronic charge and is converted to an analog voltage by a readout amplifier. This analog voltage is subsequently converted to a numerical value by a digitizer situated on the CCD chip, or very close to it. Several (three to six) amplifiers are required for each pixel, and to date, uniform images with a homogeneous background have been a problem because of the inherent difficulties of balancing the gain in all of the amplifiers. Complementary metal oxide semiconductor sensors also exhibit relatively high noise associated with the requisite high-speed switching. Both of these deficiencies are being addressed, and sensor performance is nearing that required for scientific imaging. PMID:23931507

  7. Lights, Camera, Courtroom? Should Trials Be Televised?

    ERIC Educational Resources Information Center

    Kirtley, Jane E.; Brothers, Thomas W.; Veal, Harlan K.

    1999-01-01

    Presents three differing perspectives from American Bar Association members on whether television cameras should be allowed in the courtroom. Contends that cameras should be allowed with differing degrees of certainty: cameras truly open the courts to the public; cameras must be strategically placed; and cameras should be used only with the…

  8. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps

    PubMed Central

    Si, Xingfeng; Kays, Roland

    2014-01-01

    Camera traps is an important wildlife inventory tool for estimating species diversity at a site. Knowing what minimum trapping effort is needed to detect target species is also important to designing efficient studies, considering both the number of camera locations, and survey length. Here, we take advantage of a two-year camera trapping dataset from a small (24-ha) study plot in Gutianshan National Nature Reserve, eastern China to estimate the minimum trapping effort actually needed to sample the wildlife community. We also evaluated the relative value of adding new camera sites or running cameras for a longer period at one site. The full dataset includes 1727 independent photographs captured during 13,824 camera days, documenting 10 resident terrestrial species of birds and mammals. Our rarefaction analysis shows that a minimum of 931 camera days would be needed to detect the resident species sufficiently in the plot, and c. 8700 camera days to detect all 10 resident species. In terms of detecting a diversity of species, the optimal sampling period for one camera site was c. 40, or long enough to record about 20 independent photographs. Our analysis of evaluating the increasing number of additional camera sites shows that rotating cameras to new sites would be more efficient for measuring species richness than leaving cameras at fewer sites for a longer period. PMID:24868493

  9. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps.

    PubMed

    Si, Xingfeng; Kays, Roland; Ding, Ping

    2014-01-01

    Camera traps is an important wildlife inventory tool for estimating species diversity at a site. Knowing what minimum trapping effort is needed to detect target species is also important to designing efficient studies, considering both the number of camera locations, and survey length. Here, we take advantage of a two-year camera trapping dataset from a small (24-ha) study plot in Gutianshan National Nature Reserve, eastern China to estimate the minimum trapping effort actually needed to sample the wildlife community. We also evaluated the relative value of adding new camera sites or running cameras for a longer period at one site. The full dataset includes 1727 independent photographs captured during 13,824 camera days, documenting 10 resident terrestrial species of birds and mammals. Our rarefaction analysis shows that a minimum of 931 camera days would be needed to detect the resident species sufficiently in the plot, and c. 8700 camera days to detect all 10 resident species. In terms of detecting a diversity of species, the optimal sampling period for one camera site was c. 40, or long enough to record about 20 independent photographs. Our analysis of evaluating the increasing number of additional camera sites shows that rotating cameras to new sites would be more efficient for measuring species richness than leaving cameras at fewer sites for a longer period. PMID:24868493

  10. A Prototype Detector for a Novel High-Resolution PET System: BazookaPET

    PubMed Central

    Park, Ryeojin; Miller, Brian W.; Jha, Abhinav K.; Furenlid, Lars R.; Hunter, William C. J.; Barrett, Harrison H.

    2015-01-01

    We have designed and are developing a novel proof-of-concept PET system called BazookaPET. In order to complete the PET configuration, at least two detector elements are required to detect positron-electron annihilation events. Each detector element of the BazookaPET has two independent data acquisition channels. One side of the scintillation crystal is optically coupled to a 4×4 silicon photomultiplier (SiPM) array and the other side is a CCD-based gamma camera. Using these two separate channels, we can obtain data with high energy, temporal and spatial resolution data by associating the data outputs via several maximum-likelihood estimation (MLE) steps. In this work, we present the concept of the system and the prototype detector element. We focus on characterizing individual detector channels, and initial experimental calibration results are shown along with preliminary performance-evaluation results. We measured energy resolution and the integrated traces of the slit-beam images from both detector channel outputs. A photo-peak energy resolution of ~5.3% FWHM was obtained from the SiPM and ~48% FWHM from the CCD at 662 keV. We assumed SiPM signals follow Gaussian statistics and estimated the 2D interaction position using MLE. Based on our the calibration experiments, we computed the Cramér-Rao bound (CRB) for the SiPM detector channel and found that the CRB resolution is better than 1 mm in the center of the crystal. PMID:26316682

  11. 24 CFR 960.707 - Pet ownership.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in...

  12. 24 CFR 960.707 - Pet ownership.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in...

  13. Talking with Children about Furry Classroom Pets.

    ERIC Educational Resources Information Center

    Texas Child Care, 1994

    1994-01-01

    Notes that rodents and rabbits share many characteristics that make them suitable classroom pets and gives background information on rabbits, guinea pigs, hamsters, and gerbils. Offers advice on buying a classroom pet, the pet's home, feeding, helping the children handle the pet, and pet health and family planning. (TJQ)

  14. [The PET, Past and Future].

    PubMed

    Fujii, Hirofumi

    2015-01-01

    Positron emission tomography (PET) is a unique nuclear medicine test using positron emitters such as 18F and 11C. In PET tests, various kinds of functional aspects of human bodies can be evaluated by using compounds labeled by these positron emitters. Recently, combined scanners of PET and anatomical imaging modalities such as CT and MRI have been developed and functional information with anatomical location can be easily obtained, increasing the usefulness of PET tests. PET tests are now essential imaging tools to diagnose various kinds of disease with functional abnormalities. In the field of oncology, 18F-fluorodeoxy glucose PET tests are routinely used in clinical practice under health insurance. In the field of neurology, PET tests are actively used to investigate cerebral function by labeled neurotransmitters and so on. Currently, brain PET tests to detect beta-amyloid are applied to the diagnosis of dementia. In the field of cardiology, cardiac perfusion and myocardial metabolism are quantitatively measured by using PET and obtained results have successfully revealed the pathogenesis of intractable cardiac diseases. Future technical advances will enhance the usefulness of PET tests more and more. PMID:26753390

  15. FDG-PET Contributions to the Pathophysiology of Memory Impairment.

    PubMed

    Segobin, Shailendra; La Joie, Renaud; Ritz, Ludivine; Beaunieux, Hélène; Desgranges, Béatrice; Chételat, Gaël; Pitel, Anne Lise; Eustache, Francis

    2015-09-01

    Measurement of synaptic activity by Positron Emission Tomography (PET) and its relation to cognitive functions such as episodic memory, working memory and executive functions in healthy humans and patients with neurocognitive disorders have been well documented. In this review, we introduce the concept of PET imaging that allows the observation of a particular biological process in vivo through the use of radio-labelled compounds, its general use to the medical world and its contributions to the understanding of memory systems. We then focus on [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG-PET), the radiotracer that is used to measure local cerebral metabolic rate of glucose that is indicative of synaptic activity in the brain. FDG-PET at rest has been at the forefront of functional neuroimaging over the past 3 decades, contributing to the understanding of cognitive functions in healthy humans and how these functional patterns change with cognitive alterations. We discuss methodological considerations that are important for optimizing FDG-PET imaging data prior to analysis. We then highlight the contribution of FDG-PET to the understanding of the patterns of functional differences in non-degenerative pathologies, normal ageing, and age-related neurodegenerative disorders. Through reasonable temporal and spatial resolution, its ability to measure synaptic activity in the whole brain, independently of any specific network and disease, makes it ideal to observe regional functional changes associated with memory impairment. PMID:26319237

  16. VIRUS-P: camera design and performance

    NASA Astrophysics Data System (ADS)

    Tufts, Joseph R.; MacQueen, Phillip J.; Smith, Michael P.; Segura, Pedro R.; Hill, Gary J.; Edmonston, Robert D.

    2008-07-01

    We present the design and performance of the prototype Visible Integral-field Replicable Unit Spectrograph (VIRUS-P) camera. Commissioned in 2007, VIRUS-P is the prototype for 150+ identical fiber-fed integral field spectrographs for the Hobby-Eberly Telescope Dark Energy Experiment. With minimal complexity, the gimbal mounted, double-Schmidt design achieves high on-sky throughput, image quality, contrast, and stability with novel optics, coatings, baffling, and minimization of obscuration. The system corrector working for both the collimator and f / 1.33 vacuum Schmidt camera serves as the cryostat window while a 49 mm square aspheric field flattener sets the central obscuration. The mount, electronics, and cooling of the 2k × 2k, Fairchild Imaging CCD3041-BI fit in the field-flattener footprint. Ultra-black knife edge baffles at the corrector, spider, and adjustable mirror, and a detector mask, match the optical footprints at each location and help maximize the 94% contrast between 245 spectra. An optimally stiff and light symmetric four vane stainless steel spider supports the CCD which is thermally isolated with an equally stiff Ultem-1000 structure. The detector/field flattener spacing is maintained to 1 μm for all camera orientations and repeatably reassembled to 12 μm. Invar rods in tension hold the camera focus to +/-4 μm over a -5-25 °C temperature range. Delivering a read noise of 4.2 e- RMS, sCTE of 1-10-5 , and pCTE of 1-10-6 at 100 kpix/s, the McDonald V2 controller also helps to achieve a 38 hr hold time with 3 L of LN2 while maintaining the detector temperature setpoint to 150 μK (5σ RMS).

  17. The Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Clampin, M.; Ford, H. C.; Feldman, P.; Golimowski, D.; Tsvetanov, Z.; Bartko, F.; Brown, B.; Burrows, C.; Hartig, G.; Postman, M.; Rafal, M.; Sparks, B.; White, R.; Crocker, J.; Bely, P.; Cheng, E.; Krebs, C.; Kimble, R.; Neff, S.; Illingworth, G.; Lesser, M.; Broadhurst, T.; Miley, G.; Lajeunesse, T.; Woodruff, B.

    1998-01-01

    The Advanced Camera for Surveys (ACS) is to be installed in the Hubble Space Telescope (HST) during the third HST servicing mission in December 1999. The ACS comprises three cameras each designed to achieve specific goals. The first, the Wide Field Camera, will be a high throughput, wide field (200" x 204"), visible to nar-IR camera that is half critically sampled at 500 nm. The second, the High Resolution Camera (HRC), is critically sampled at 500 nm, and has a 26" x 29" field of view. The HRC optical path includes a coronagraph which will improve the HST's contrast near bright objects by a factor of 10. The third camera is a far ultraviolet, Solar-Blind Camera (SBC),with a field of 26" x 29". ACS will increase HST's capability for imaging surveys and discovery by at least a factor of 10. We give an overview of the ACS design and discuss image the quality of the optics and the performance of the CCD and MAMA detectors. The plans for the GTO science program are reviewed, and specific scientific capabilities of the instrument reviewed.

  18. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice.

    PubMed

    Bastawrous, Sarah; Bhargava, Puneet; Behnia, Fatemeh; Djang, David S W; Haseley, David R

    2014-01-01

    The skeleton is one of the most common sites for metastatic disease, particularly from breast and prostate cancer. Bone metastases are associated with considerable morbidity, and accurate imaging of the skeleton is important in determining the appropriate therapeutic plan. Sodium fluoride labeled with fluorine 18 (sodium fluoride F 18 [(18)F-NaF]) is a positron-emitting radiopharmaceutical first introduced several decades ago for skeletal imaging. (18)F-NaF was approved for clinical use as a positron emission tomographic (PET) agent by the U.S. Food and Drug Administration in 1972. The early use of this agent was limited, given the difficulties of imaging its high-energy photons on the available gamma cameras. For skeletal imaging, it was eventually replaced by technetium 99m ((99m)Tc)-labeled agents because of the technical limitations of (18)F-NaF. During the past several years, the widespread availability and implementation of hybrid PET and computed tomographic (CT) dual-modality systems (PET/CT) have encouraged a renewed interest in (18)F-NaF PET/CT for routine clinical use in bone imaging. Because current PET/CT systems offer high sensitivity and spatial resolution, the use of (18)F-NaF has been reevaluated for the detection of malignant and nonmalignant osseous disease. Growing evidence suggests that (18)F-NaF PET/CT provides increased sensitivity and specificity in the detection of bone metastases. Furthermore, the favorable pharmacokinetics of (18)F-NaF, combined with the superior imaging characteristics of PET/CT, supports the routine clinical use of (18)F-NaF PET/CT for oncologic imaging for skeletal metastases. In this article, a review of the indications, imaging appearances, and utility of (18)F-NaF PET/CT in the evaluation of skeletal disease is provided, with an emphasis on oncologic imaging. PMID:25208282

  19. Vision Sensors and Cameras

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.

  20. A liquid xenon radioisotope camera.

    NASA Technical Reports Server (NTRS)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  1. Dark energy survey and camera

    SciTech Connect

    William Wester

    2004-08-16

    The authors describe the Dark Energy Survey and Camera. The survey will image 5000 sq. deg. in the southern sky to collect 300 million galaxies, 30,000 galaxy clusters and 2000 Type Ia supernovae. They expect to derive a value for the dark energy equation of state parameters, w, to a precision of 5% by combining four distinct measurement techniques. They describe the mosaic camera that will consist of CCDs with enhanced sensitivity in the near infrared. The camera will be mounted at the prime focus of the 4m Blanco telescope.

  2. Three-dimensional Camera Phone

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2004-12-01

    An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.

  3. A detector head design for small-animal PET with silicon photomultipliers (SiPM)

    NASA Astrophysics Data System (ADS)

    Moehrs, Sascha; DelGuerra, Alberto; Herbert, Deborah J.; Mandelkern, Mark A.

    2006-03-01

    Small-animal PET systems are now striving for sub-millimetre resolution. Current systems based upon PSPMTs and finely pixellated scintillators can be pushed to higher resolution, but at the expense of other performance parameters and a rapidly escalating cost. Moreover, depth of interaction (DOI) information is usually difficult to assess in such systems, even though this information is highly desirable to reduce the parallax error, which is often the dominant error for such high-resolution systems. In this study we propose a high-resolution detector head for a small-animal PET imaging system with intrinsic DOI information. Instead of a pixellated scintillator, our design is based upon the classic Anger camera principle, i.e. the head is constructed of modular layers each consisting of a continuous slab of scintillator, viewed by a new type of compact silicon photodetector. The photodetector is the recently developed silicon photomultiplier (SiPM) that as well as being very compact has many other attractive properties: high gain at low bias voltage, excellent single-photoelectron resolution and fast timing. A detector head of about 4 × 4 cm2 in area is proposed, constructed from three modular layers of the type described above. We perform a simulation study, using the Monte Carlo simulation package Geant4. The simulation results are used to optimize the geometry of the detector head and characterize its performance. Additionally, hit estimation algorithms are studied to determine the interaction position of annihilation photons correctly over the whole detector surface. The resulting detector has a nearly uniform efficiency for 511 keV photons of ~70% and an intrinsic spatial resolution of less than ~0.4 mm full width at half maximum (fwhm).

  4. A detector head design for small-animal PET with silicon photomultipliers (SiPM).

    PubMed

    Moehrs, Sascha; Del Guerra, Alberto; Herbert, Deborah J; Mandelkern, Mark A

    2006-03-01

    Small-animal PET systems are now striving for sub-millimetre resolution. Current systems based upon PSPMTs and finely pixellated scintillators can be pushed to higher resolution, but at the expense of other performance parameters and a rapidly escalating cost. Moreover, depth of interaction (DOI) information is usually difficult to assess in such systems, even though this information is highly desirable to reduce the parallax error, which is often the dominant error for such high-resolution systems. In this study we propose a high-resolution detector head for a small-animal PET imaging system with intrinsic DOI information. Instead of a pixellated scintillator, our design is based upon the classic Anger camera principle, i.e. the head is constructed of modular layers each consisting of a continuous slab of scintillator, viewed by a new type of compact silicon photodetector. The photodetector is the recently developed silicon photomultiplier (SiPM) that as well as being very compact has many other attractive properties: high gain at low bias voltage, excellent single-photoelectron resolution and fast timing. A detector head of about 4 x 4 cm2 in area is proposed, constructed from three modular layers of the type described above. We perform a simulation study, using the Monte Carlo simulation package Geant4. The simulation results are used to optimize the geometry of the detector head and characterize its performance. Additionally, hit estimation algorithms are studied to determine the interaction position of annihilation photons correctly over the whole detector surface. The resulting detector has a nearly uniform efficiency for 511 keV photons of approximately 70% and an intrinsic spatial resolution of less than approximately 0.4 mm full width at half maximum (fwhm). PMID:16481681

  5. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  6. Multimodality tomographic scintimammography with PET, PECI, and SPECT: initial evaluation

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Feiglin, David H.; Thomas, Frank D.; Hellwig, Bradford J.; Gagne, George M.

    2002-04-01

    We compared tomographic scintimammography performed using single photon emission computed tomography (SPECT), positron emission coincidence imaging (PECI) and positron emission tomography (PET). A female thorax phantom was used. Activities of the myocardium, thorax and breasts were adjusted to emulate the count rate observed with patients. Hollow plastic spheres, imitating hot lesions (1.5-20ml), filled with radioactive saline were inserted in the center of each breast. Specific activities of internal organs were adjusted to emulate the count rate observed with patients. SPECT data were acquired with Tc-99m using gamma cameras with NaI(Tl) detectors. A modified FBP (CODE) reconstruction algorithm was used to render SPECT tomographic images. PECI (Siemens E.CAM with NaI(Tl)) and PET (GE Advance with BGO) data were acquired using F-18 FDG. Vendor supplied reconstruction algorithms were used. The reconstructed hot lesions contrast and resolution were investigated. Image quality obtained can be ranked as follows: (1) PET(BGO), (2) PECI(NaI), (3) SPECT(NaI) In conclusion, assuming comparable uptake values of Tc-99m-sestamibi and F-18 FDG, PET seems to be a superior methodology in visualization of breast lesion as compared to SPECT and PECI. All these tomographic methods appear to be promising adjunct to x-ray mammography in difficult to interpret cases.

  7. Progress reported in PET recycling

    SciTech Connect

    Not Available

    1989-06-01

    The Goodyear Polyester Division has demonstrated its ability to break down polyethylene terephthalate (PET) from recycled plastic soft drink bottles and remanufacture the material into PET suitable for containers. Most people are familiar with PET in the form of lightweight, shatter resistant beverage bottles. About 20 percent of these beverage containers currently are being recycled. The recycled PET is currently used in many applications such as carpeting, pillow stuffing, sleeping bag filling, insulation for water heaters and non-food containers. This is the first step of Goodyear's increased efforts to recycle PET from containers into a material suitable for food packing. The project is extremely complex, involving sophisticated understanding of the chemical reactions involved, PET production and the technology testing protocols necessary to design a process that addresses all the technical, safety, and regulatory concerns. The research conducted so far indicated that additional processing beyond simply cleaning the shredded material, called flake, will be required to assure a quality polymer.

  8. An Inexpensive Digital Infrared Camera

    ERIC Educational Resources Information Center

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  9. PET/CT imaging in neuroblastoma.

    PubMed

    Piccardo, A; Lopci, E; Conte, M; Foppiani, L; Garaventa, A; Cabria, M; Villavecchia, G; Fanti, S; Cistaro, A

    2013-03-01

    123Iodine-metaiodobenzylguanidine (123I-MIBG) scintigraphy is currently the tracer of choice for neuroblastoma (NB). It has high diagnostic accuracy and prognostic value for the assessment of patients after chemotherapy. A positive 123I-MIBG scan is also used for the basis of targeted radionuclide therapy with 131I-MIBG. I-123 MIBG scan however has some limitations which should be taken into account. Moreover the reasons for false negative MIBG results have not been entirely elucidated. Meticulous correlation with radiological examinations and recognition of the normal distribution pattern of 123I-MIBG in children is vital to obtain optimal results. With its technical superiorities, positron emission tomography/computed tomography (PET/CT) can be successfully introduced into the diagnostic workup of NB. Different PET tracers have been offered for imaging in patients with NB, and the efficacy of this modality has been compared with that of 123I-MIBG scan. Our review aims to analyze the present role of PET/CT imaging and radiopharmaceuticals in NB. PMID:23474633

  10. The future of consumer cameras

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  11. Solid State Television Camera (CID)

    NASA Technical Reports Server (NTRS)

    Steele, D. W.; Green, W. T.

    1976-01-01

    The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC.

  12. RPC PET: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Couceiro, M.; Blanco, A.; Ferreira, Nuno C.; Ferreira Marques, R.; Fonte, P.; Lopes, L.

    2007-10-01

    The status of the resistive plate chamber (RPC)-PET technology for small animals is briefly reviewed and its sensitivity performance for human PET studied through Monte-Carlo simulations. The cost-effectiveness of these detectors and their very good timing characteristics open the possibility to build affordable Time of Flight (TOF)-PET systems with very large fields of view. Simulations suggest that the sensitivity of such systems for human whole-body screening, under reasonable assumptions, may exceed the present crystal-based PET technology by a factor up to 20.

  13. Extended suicide with a pet.

    PubMed

    Cooke, Brian K

    2013-01-01

    The combination of the killing of a pet and a suicide is a perplexing scenario that is largely unexplored in the literature. Many forensic psychiatrists and psychologists may be unaccustomed to considering the significance of the killing of a pet. The subject is important, however, because many people regard their pets as members of their family. A case is presented of a woman who killed her pet dog and herself by carbon monoxide poisoning. The purpose of this article is to provide an initial exploration of the topic of extended suicide with a pet. Forensic mental health evaluations may have a role in understanding the etiology of this event and in opining as to the culpability of individuals who attempt to or successfully kill a pet and then commit suicide. Because the scientific literature is lacking, there is a need to understand this act from a variety of perspectives. First, a social and anthropological perspective will be presented that summarizes the history of the practice of killing of one's pet, with a focus on the ancient Egyptians. A clinical context will examine what relationship animals have to mental illness. A vast body of existing scientific data showing the relevance of human attachment to pets suggests that conclusions from the phenomena of homicide-suicide and filicide-suicide are applicable to extended suicide with a pet. Finally, recommendations will be proposed for both clinical and forensic psychiatrists faced with similar cases. PMID:24051598

  14. Fundus Camera Guided Photoacoustic Ophthalmoscopy

    PubMed Central

    Liu, Tan; Li, Hao; Song, Wei; Jiao, Shuliang; Zhang, Hao F.

    2014-01-01

    Purpose To demonstrate the feasibility of fundus camera guided photoacoustic ophthalmoscopy (PAOM) system and its multimodal imaging capabilities. Methods We integrated PAOM and a fundus camera consisting of a white-light illuminator and a high-sensitivity, high-speed CCD. The fundus camera captures both retinal anatomy and PAOM illumination at the same time to provide a real-time feedback when we position the PAOM illuminating light. We applied the integrated system to image rat eyes in vivo and used full-spectrum, visible (VIS), and near infrared (NIR) illuminations in fundus photography. Results Both albino and pigmented rat eyes were imaged in vivo. During alignment, different trajectories of PAOM laser scanning were successfully visualized by the fundus camera, which reduced the PAOM alignment time from several minutes to 30 s. In albino eyes, in addition to retinal vessels, main choroidal vessels were observed using VIS-illumination, which is similar to PAOM images. In pigmented eyes, the radial striations of retinal nerve fiber layer were visualized by fundus photography using full-spectrum illumination; meanwhile, PAOM imaged both retinal vessels and the retinal pigmented epithelium melanin distribution. Conclusions The results demonstrated that PAOM can be well-integrated with fundus camera without affecting its functionality. The fundus camera guidance is faster and easier comparing with our previous work. The integrated system also set the stage for the next-step verification between oximetry methods based on PAOM and fundus photography. PMID:24131226

  15. Wide Dynamic Range CCD Camera

    NASA Astrophysics Data System (ADS)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  16. A simple data loss model for positron camera systems

    SciTech Connect

    Eriksson, L. . Dept. of Clinical Neurophysiology); Wienhard, K. ); Dahlbom, M. . School of Medicine)

    1994-08-01

    A simple model to describe data losses in PET cameras is presented. The model is not intended to be used primarily for dead time corrections in existing scanners, although this is possible. Instead the model is intended to be used for data simulations in order to determine the figures of merit of future camera systems, based on data handling state-of-art solutions. The model assumes the data loss to be factorized into two components, one describing the detector or block-detector performance and the other the remaining data handling such as coincidence determinations, data transfer and data storage. Two modern positron camera systems have been investigated in terms of this model. These are the Siemens-CTI ECAT EXACT and ECAT EXACT HR systems, which both have an axial field-of-view (FOV) of about 15 cm. They both have retractable septa and can acquire data from the whole volume within the FOV and can reconstruct volume image data. An example is given how to use the model for live time calculation in a futuristic large axial FOV cylindrical system.

  17. Cardiac PET/Computed Tomography Applications and Cardiovascular Outcome.

    PubMed

    Schindler, Thomas Hellmut

    2015-07-01

    Cardiac PET/computed tomography (CT) in conjunction with different blood flow tracers is increasingly applied for the assessment of myocardial perfusion and myocardial flow reserve (MFR) in the detection of coronary artery disease (CAD). The ability of PET/CT to noninvasively determine regional myocardial blood flow at rest and during vasomotor stress allows the calculation of the MFR, which carries important prognostic information in patients with subclinical forms of cardiomyopathy. The measured MFR optimizes the identification and characterization of the extent and severity of CAD burden, and contributes to the flow-limiting effect of single lesions in multivessel CAD. PMID:26099678

  18. The MC and LFC cameras. [metric camera (MC); large format camera (LFC)

    NASA Technical Reports Server (NTRS)

    Norton, Clarice L.; Schroeder, Manfried; Mollberg, Bernard

    1986-01-01

    The characteristics of the shuttle-borne Large Format Camera are listed. The LFC focal plane format was 23 by 46 cm, double the usual size, thereby acquiring approximately double the ground area. Forward motion compensation was employed. With the stable platform (shuttle) it was possible to use the slow exposure, high resolution, Kodak aerial films; 3414 and 3412 black and white, SO-242 color, and SO-131 aerochrome infrared. The camera was designed to maintain stability during varying temperature extremes of space.

  19. Sub-Camera Calibration of a Penta-Camera

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  20. PET/CT: fundamental principles.

    PubMed

    Seemann, Marcus D

    2004-05-28

    Positron emission tomography (PET) facilitates the evaluation of metabolic and molecular characteristics of a wide variety of cancers, but is limited in its ability to visualize anatomical structures. Computed tomography (CT) facilitates the evaluation of anatomical structures of cancers, but can not visualize their metabolic and molecular aspects. Therefore, the combination of PET and CT provides the ability to accurately register metabolic and molecular aspects of disease with anatomical findings, adding further information to the diagnosis and staging of tumors. The recent generation of high performance PET/CT scanners combines a state of the art full-ring 3D PET scanner and a high-end 16-slice CT scanner. In PET/CT scanners, a CT examination is used for attenuation correction of PET images rather than standard transmission scanning using superset 68 Ge sources. This reduces the examination time, but metallic objects and contrast agents that alter the CT image quality and quantitative measurements of standardized uptake values (SUV) may lead to artifacts in the PET images. Hybrid PET/CT imaging will be very important in oncological applications in the decades to come, and possibly for use in cancer screening and cardiac imaging. PMID:15257877

  1. Get Set for a Pet.

    ERIC Educational Resources Information Center

    DeRosa, Bill

    1987-01-01

    Describes a game in which students deal with some of the factors involved in being a responsible pet owner. Includes a list of the materials needed for the game and provides the game board and the game pieces, along with a fold-out poster about neutering and spaying pets. (TW)

  2. Meet the Alpha-Pets.

    ERIC Educational Resources Information Center

    Zitlaw, Jo Ann Bruce; Frank, Cheryl Standish

    1985-01-01

    "Alpha-Pets" are the focal point of an integrated, multidisciplinary curriculum. Each pet is featured for a week in a vocabulary-rich story and introduces related activities beginning with the featured letter, such as the four food groups during Freddie Fish's week or universe during Ulysses Unicorn's week. (MT)

  3. Distributed consensus on camera pose.

    PubMed

    Jorstad, Anne; DeMenthon, Daniel; Wang, I-Jeng; Burlina, Philippe

    2010-09-01

    Our work addresses pose estimation in a distributed camera framework. We examine how processing cameras can best reach a consensus about the pose of an object when they are each given a model of the object, defined by a set of point coordinates in the object frame of reference. The cameras can only see a subset of the object feature points in the midst of background clutter points, not knowing which image points match with which object points, nor which points are object points or background points. The cameras individually recover a prediction of the object's pose using their knowledge of the model, and then exchange information with their neighbors, performing consensus updates locally to obtain a single estimate consistent across all cameras, without requiring a common centralized processor. Our main contributions are: 1) we present a novel algorithm performing consensus updates in 3-D world coordinates penalized by a 3-D model, and 2) we perform a thorough comparison of our method with other current consensus methods. Our method is consistently the most accurate, and we confirm that the existing consensus method based upon calculating the Karcher mean of rotations is also reliable and fast. Experiments on simulated and real imagery are reported. PMID:20363678

  4. The Clementine longwave infrared camera

    SciTech Connect

    Priest, R.E.; Lewis, I.T.; Sewall, N.R.; Park, H.S.; Shannon, M.J.; Ledebuhr, A.G.; Pleasance, L.D.; Massie, M.A.; Metschuleit, K.

    1995-04-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. The longwave-infrared (LWIR) camera supplemented the UV/Visible and near-infrared mapping cameras providing limited strip coverage of the moon, giving insight to the thermal properties of the soils. This camera provided {approximately}100 m spatial resolution at 400 km periselene, and a 7 km across-track swath. This 2.1 kg camera using a 128 x 128 Mercury-Cadmium-Telluride (MCT) FPA viewed thermal emission of the lunar surface and lunar horizon in the 8.0 to 9.5 {micro}m wavelength region. A description of this light-weight, low power LWIR camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights.

  5. Traditional gamma cameras are preferred.

    PubMed

    DePuey, E Gordon

    2016-08-01

    Although the new solid-state dedicated cardiac cameras provide excellent spatial and energy resolution and allow for markedly reduced SPECT acquisition times and/or injected radiopharmaceutical activity, they have some distinct disadvantages compared to traditional sodium iodide SPECT cameras. They are expensive. Attenuation correction is not available. Cardio-focused collimation, advantageous to increase depth-dependent resolution and myocardial count density, accentuates diaphragmatic attenuation and scatter from subdiaphragmatic structures. Although supplemental prone imaging is therefore routinely advised, many patients cannot tolerate it. Moreover, very large patients cannot be accommodated in the solid-state camera gantries. Since data are acquired simultaneously with an arc of solid-state detectors around the chest, no temporally dependent "rotating" projection images are obtained. Therefore, patient motion can be neither detected nor corrected. In contrast, traditional sodium iodide SPECT cameras provide rotating projection images to allow technologists and physicians to detect and correct patient motion and to accurately detect the position of soft tissue attenuators and to anticipate associated artifacts. Very large patients are easily accommodated. Low-dose x-ray attenuation correction is widely available. Also, relatively inexpensive low-count density software is provided by many vendors, allowing shorter SPECT acquisition times and reduced injected activity approaching that achievable with solid-state cameras. PMID:27072004

  6. Video camera use at nuclear power plants

    SciTech Connect

    Estabrook, M.L.; Langan, M.O.; Owen, D.E. )

    1990-08-01

    A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

  7. A simple and flexible calibration method of non-overlapping camera rig

    NASA Astrophysics Data System (ADS)

    Guan, Banglei; Shang, Yang; Yu, Qifeng; Lei, Zhihui; Zhang, Xiaohu

    2015-05-01

    A simple and flexible method for non-overlapping camera rig calibration that includes camera calibration and relative poses calibration is presented. The proposed algorithm gives the solutions of the cameras parameters and the relative poses simultaneously by using nonlinear optimization. Firstly, the intrinsic and extrinsic parameters of each camera in the rig are estimated individually. Then, a linear solution derived from hand-eye calibration scheme is proposed to compute an initial estimate of the relative poses inside the camera rig. Finally, combined non-linear refinement of all parameters is performed, which optimizes the intrinsic parameters, the extrinsic parameters and relative poses of the coupled camera at the same time. We develop and test a novel approach for calibrating the parameters of non-overlapping camera rig using camera calibration and hand-eye calibration method. The method is designed inter alia for the purpose of deformation measurement using the calibrated rig. Compared the camera calibration with hand-eye calibration separately, our joint calibration is more convenient in practice application. Experimental data shows our algorithm is feasible and effective.

  8. Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT.

    PubMed

    Blake, Michael A; Singh, Ajay; Setty, Bindu N; Slattery, James; Kalra, Mannudeep; Maher, Michael M; Sahani, Dushyant V; Fischman, Alan J; Mueller, Peter R

    2006-01-01

    The interpretation of images obtained in the abdomen and pelvis can be challenging, and the coregistration of positron emission tomographic (PET) and computed tomographic (CT) scans may be especially valuable in the evaluation of these anatomic areas. PET-CT represents a major technologic advance, consisting of generally complementary modalities whose combined strength tends to overcome their respective weaknesses. However, this combined functional-structural imaging approach raises a number of controversial questions and presents some unique interpretative challenges. Accurate PET-CT scan interpretation requires awareness of the various pitfalls associated with the imaging components, both individually and in combination. The results of recent PET-CT studies have been very encouraging, but larger prospective studies will be needed to establish optimal hybrid scanning protocols. Applying sound imaging principles, paying attention to detail, and staying abreast of advances in this exciting new modality are necessary for harnessing the full diagnostic power of abdominopelvic PET-CT. PMID:16973768

  9. Recent development in PET instrumentation.

    PubMed

    Peng, By Hao; Levin, Craig S

    2010-09-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr(3), and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  10. Towards the Implementation of an Autonomous Camera Algorithm on the da Vinci Platform.

    PubMed

    Eslamian, Shahab; Reisner, Luke A; King, Brady W; Pandya, Abhilash K

    2016-01-01

    Camera positioning is critical for all telerobotic surgical systems. Inadequate visualization of the remote site can lead to serious errors that can jeopardize the patient. An autonomous camera algorithm has been developed on a medical robot (da Vinci) simulator. It is found to be robust in key scenarios of operation. This system behaves with predictable and expected actions for the camera arm with respect to the tool positions. The implementation of this system is described herein. The simulation closely models the methodology needed to implement autonomous camera control in a real hardware system. The camera control algorithm follows three rules: (1) keep the view centered on the tools, (2) keep the zoom level optimized such that the tools never leave the field of view, and (3) avoid unnecessary movement of the camera that may distract/disorient the surgeon. Our future work will apply this algorithm to the real da Vinci hardware. PMID:27046563

  11. Passive auto-focus for digital still cameras and camera phones: Filter-switching and low-light techniques

    NASA Astrophysics Data System (ADS)

    Gamadia, Mark Noel

    In order to gain valuable market share in the growing consumer digital still camera and camera phone market, camera manufacturers have to continually add and improve existing features to their latest product offerings. Auto-focus (AF) is one such feature, whose aim is to enable consumers to quickly take sharply focused pictures with little or no manual intervention in adjusting the camera's focus lens. While AF has been a standard feature in digital still and cell-phone cameras, consumers often complain about their cameras' slow AF performance, which may lead to missed photographic opportunities, rendering valuable moments and events with undesired out-of-focus pictures. This dissertation addresses this critical issue to advance the state-of-the-art in the digital band-pass filter, passive AF method. This method is widely used to realize AF in the camera industry, where a focus actuator is adjusted via a search algorithm to locate the in-focus position by maximizing a sharpness measure extracted from a particular frequency band of the incoming image of the scene. There are no known systematic methods for automatically deriving the parameters such as the digital pass-bands or the search step-size increments used in existing passive AF schemes. Conventional methods require time consuming experimentation and tuning in order to arrive at a set of parameters which balance AF performance in terms of speed and accuracy ultimately causing a delay in product time-to-market. This dissertation presents a new framework for determining an optimal set of passive AF parameters, named Filter- Switching AF, providing an automatic approach to achieve superior AF performance, both in good and low lighting conditions based on the following performance measures (metrics): speed (total number of iterations), accuracy (offset from truth), power consumption (total distance moved), and user experience (in-focus position overrun). Performance results using three different prototype cameras

  12. Cameras for semiconductor process control

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  13. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  14. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  15. Dark Energy Camera for Blanco

    SciTech Connect

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  16. The GISMO-2 Bolometer Camera

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  17. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    NASA Astrophysics Data System (ADS)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  18. Bayesian PET image reconstruction incorporating anato-functional joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2009-12-01

    We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realistically simulated PET and MR human brain phantoms, the quantitative performance of the proposed algorithm was investigated. Incorporation of the anatomic information via this technique, after parameter optimization, was seen to dramatically improve the noise versus bias tradeoff in every region of interest, compared to the result from using conventional MAP reconstruction. In particular, hot lesions in the FDG PET image, which had no anatomical correspondence in the MR image, also had improved contrast versus noise tradeoff. Corrections were made to figures 3, 4 and 6, and to the second paragraph of section 3.1 on 13 November 2009. The corrected electronic version is identical to the print version.

  19. Microfluidics: a groundbreaking technology for PET tracer production?

    PubMed

    Rensch, Christian; Jackson, Alexander; Lindner, Simon; Salvamoser, Ruben; Samper, Victor; Riese, Stefan; Bartenstein, Peter; Wängler, Carmen; Wängler, Björn

    2013-01-01

    Application of microfluidics to Positron Emission Tomography (PET) tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed. PMID:23884128

  20. Geiger-mode ladar cameras

    NASA Astrophysics Data System (ADS)

    Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Boisvert, Joseph; McDonald, Paul; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison; Van Duyne, Stephen; Pauls, Greg; Gaalema, Stephen

    2011-06-01

    The performance of Geiger-mode LAser Detection and Ranging (LADAR) cameras is primarily defined by individual pixel attributes, such as dark count rate (DCR), photon detection efficiency (PDE), jitter, and crosstalk. However, for the expanding LADAR imaging applications, other factors, such as image uniformity, component tolerance, manufacturability, reliability, and operational features, have to be considered. Recently we have developed new 32×32 and 32×128 Read-Out Integrated Circuits (ROIC) for LADAR applications. With multiple filter and absorber structures, the 50-μm-pitch arrays demonstrate pixel crosstalk less than 100 ppm level, while maintaining a PDE greater than 40% at 4 V overbias. Besides the improved epitaxial and process uniformity of the APD arrays, the new ROICs implement a Non-uniform Bias (NUB) circuit providing 4-bit bias voltage tunability over a 2.5 V range to individually bias each pixel. All these features greatly increase the performance uniformity of the LADAR camera. Cameras based on these ROICs were integrated with a data acquisition system developed by Boeing DES. The 32×32 version has a range gate of up to 7 μs and can cover a range window of about 1 km with 14-bit and 0.5 ns timing resolution. The 32×128 camera can be operated at a frame rate of up to 20 kHz with 0.3 ns and 14-bit time resolution through a full CameraLink. The performance of the 32×32 LADAR camera has been demonstrated in a series of field tests on various vehicles.

  1. SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance

    NASA Technical Reports Server (NTRS)

    White, Joseph; Dutta, Soumyo; Striepe, Scott

    2015-01-01

    The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1.

  2. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their...

  3. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually...

  4. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to...

  5. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their...

  6. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their...

  7. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to...

  8. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to...

  9. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually...

  10. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually...

  11. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually...

  12. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to...

  13. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their...

  14. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their...

  15. Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer's disease

    PubMed Central

    Mattsson, Niklas; Insel, Philip S; Landau, Susan; Jagust, William; Donohue, Michael; Shaw, Leslie M; Trojanowski, John Q; Zetterberg, Henrik; Blennow, Kaj; Weiner, Michael

    2014-01-01

    Background Reduced cerebrospinal fluid (CSF) β-amyloid42 (Aβ42) and increased florbetapir positron emission tomography (PET) uptake reflects brain Aβ accumulation. These biomarkers are correlated with each other and altered in Alzheimer's disease (AD), but no study has directly compared their diagnostic performance. Methods We examined healthy controls (CN, N = 169) versus AD dementia patients (N = 118), and stable (sMCI; no dementia, followed up for at least 2 years, N = 165) versus progressive MCI (pMCI; conversion to AD dementia, N = 59). All subjects had florbetapir PET (global and regional; temporal, frontal, parietal, and cingulate) and CSF Aβ42 measurements at baseline. We compared area under the curve (AUC), sensitivity, and specificity (testing a priori and optimized cutoffs). Clinical diagnosis was the reference standard. Results CSF Aβ42 and (global or regional) PET florbetapir did not differ in AUC (CN vs. AD, CSF 84.4%; global PET 86.9%; difference [95% confidence interval] −6.7 to 1.5). CSF Aβ42 and global PET florbetapir did not differ in sensitivity, but PET had greater specificity than CSF in most comparisons. Sixteen CN progressed to MCI and AD (six Aβ negative, seven Aβ positive, and three PET positive but CSF negative). Interpretation The overall diagnostic accuracies of CSF Aβ42 and PET florbetapir were similar, but PET had greater specificity. This was because some CN and sMCI subjects appear pathological using CSF but not using PET, suggesting that low CSF Aβ42 not always translates to cognitive decline or brain Aβ accumulation. Other factors, including costs and side effects, may also be considered when determining the optimal modality for different applications. PMID:25356425

  16. Astronomical observations with an infrared array camera

    SciTech Connect

    Tresch-Fienberg, R.M.

    1985-01-01

    Astronomical observations with an infrared array camera demonstrate that arrays are excellent for high spatial resolution photometric mapping of celestial objects. The author describes a a 16 x 16 pixel array camera system based on a bismuth-doped silicon charge injection device optimized for use in the 8-13 micron atmospheric window. Observing techniques and image processing algorithms that are unique to the use of an array detector are also discussed. Multi-wavelength, 1-2 arcsec resolution images of three different celestial objects are presented. For the galactic center, maps of the infrared color temperature and emission optical depth are derived. The results are consistent with a model in which a low density region with a massive luminosity source at its center is encircled by a ring of gas and dust from which material may be infalling toward the nucleus. Multiple luminosity sources are not required to explain the infrared appearance of the galactic center. Images of Seyfert galaxy NGC 1068 are the first to resolve the infrared structure of the nucleus and show that it is similar to that at optical and radio wavelengths. Infrared emission extended northeast of the nucleus is identified with the radio jet. Combined with optical spectra and charge coupled device images, the new data imply a causal relationship between the Seyfert activity in the nucleus and the starburst in the disk.

  17. Real-time holographic camera system

    NASA Astrophysics Data System (ADS)

    Bazhenov, Mikhail Y.; Grabovski, Vitaly V.; Stolyarenko, Alexandr V.; Zahaykevich, George A.

    1997-04-01

    The holographic camera system for surface-relief hologram multiple reversible registration is presented. Photosensitive media is a single-layer photothermoplastic polymer on a glass substrate with conductive layer. This exclude a charges accumulation in the polymer volume and permits to realize an efficient enhancement of latent electrostatic image and its fast pulse heating development. The processes of charging, photogeneration, carriers transport, fast development and erasing, image enhancement were studied in detail and optimized. In order to improve some defects of photothermoplastic recording, originating from influences of circumstances and recording conditions, some new processes were developed: (1) fast charging with pulses corona in closed dielectric volume, (2) optoelectronic enhancement of electrostatic image, and (3) fast pulsed development with automatically controlled temperature rate. The dust-proof recording camera with built-in highvoltage power supply, thermo- and photosensors was designed to meet the needs of real-time or multiple- exposure interferometry, holographic training recording, holographic storage systems, correlation investigations and pattern recognition.

  18. A high count rate position decoding and energy measuring method for nuclear cameras using Anger logic detectors

    SciTech Connect

    Wong, W.H.; Li, H.; Uribe, J.

    1998-06-01

    A new method for processing signals from Anger position-sensitive detectors used in gamma cameras and PET is proposed for very high count-rate imaging where multiple-event pileups are the norm. This method is designed to sort out and recover every impinging event from multiple-event pileups while maximizing the collection of scintillation signal for every event to achieve optimal accuracy in the measurement of energy and position. For every detected event, this method cancels the remnant signals from previous events, and excludes the pileup of signals from following events. The remnant subtraction is exact even for multiple pileup events. A prototype circuit for energy recovery demonstrated that the maximum count rates can be increased by more than 10 times comparing to the pulse-shaping method, and the energy resolution is as good as pulse shaping (or fixed integration) at low count rates. At 2 {times} 10{sup 6} events/sec on NaI(Tl), the true counts acquired with this method is 3.3 times more than the delay-line clipping method (256 ns clipping) due to events recovered from pileups. Pulse-height spectra up to 3.5 {times} 10{sup 6} events/sec have been studied. Monte Carlo simulation studies have been performed for image-quality comparisons between different processing methods.

  19. FDG PET with contrast-enhanced CT: a critical imaging tool for laryngeal carcinoma.

    PubMed

    Chu, Mae Mae A Y; Kositwattanarerk, Arpakorn; Lee, David J; Makkar, Jasnit S; Genden, Eric M; Kao, Johnny; Packer, Stuart H; Som, Peter M; Kostakoglu, Lale

    2010-09-01

    Fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) has evolved to be an essential imaging modality in the evaluation of laryngeal carcinoma. Although the modality has limited utility in assessing the extent of the primary tumor, FDG PET has proved to be superior to anatomic modalities in the detection of lymph node and distant metastases. The role of FDG PET in the evaluation of patients with laryngeal tumors that are clinically classified as N0 has not shown consistent usefulness because of the innate resolution limitations of the camera. In the posttherapy setting, however, FDG PET has consistently demonstrated a high negative predictive value in the identification of recurrent disease, both during the course of therapy and during long-term follow-up. In addition, contrast material-enhanced computed tomography (CT) in conjunction with FDG PET has demonstrated a complementary role by allowing for superior anatomic coregistration and therefore more definitive diagnosis. There is sufficient evidence that with further advances in PET technology, this modality will likely become more useful in the detection of small lesions and occult nodal disease, as well as in guiding the management of laryngeal carcinoma. PMID:20833855

  20. Development of the LBNL positron emission mammography camera

    SciTech Connect

    Huber, Jennifer S.; Choong, Woon-Seng; Wang, Jimmy; Maltz, Jonathon S.; Qi, Jinyi; Mandelli, Emanuele; Moses, William W.

    2002-12-19

    We present the construction status of the LBNL Positron Emission Mammography (PEM) camera, which utilizes a PET detector module with depth of interaction measurement consisting of 64 LSO crystals (3x3x30 mm3) coupled on one end to a single photomultiplier tube (PMT) and on the opposite end to a 64 pixel array of silicon photodiodes (PDs). The PMT provides an accurate timing pulse, the PDs identify the crystal of interaction, the sum provides a total energy signal, and the PD/(PD+PMT) ratio determines the depth of interaction. We have completed construction of all 42 PEM detector modules. All data acquisition electronics have been completed, fully tested and loaded onto the gantry. We have demonstrated that all functions of the custom IC work using the production rigid-flex boards and data acquisition system. Preliminary detector module characterization and coincidence data have been taken using the production system, including initial images.

  1. NEMA NU 4-2008 validation and applications of the PET-SORTEO Monte Carlo simulations platform for the geometry of the Inveon PET preclinical scanner

    NASA Astrophysics Data System (ADS)

    Boisson, F.; Wimberley, C. J.; Lehnert, W.; Zahra, D.; Pham, T.; Perkins, G.; Hamze, H.; Gregoire, M.-C.; Reilhac, A.

    2013-10-01

    Monte Carlo-based simulation of positron emission tomography (PET) data plays a key role in the design and optimization of data correction and processing methods. Our first aim was to adapt and configure the PET-SORTEO Monte Carlo simulation program for the geometry of the widely distributed Inveon PET preclinical scanner manufactured by Siemens Preclinical Solutions. The validation was carried out against actual measurements performed on the Inveon PET scanner at the Australian Nuclear Science and Technology Organisation in Australia and at the Brain & Mind Research Institute and by strictly following the NEMA NU 4-2008 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction and count rates, image quality and Derenzo phantom studies. Results showed that PET-SORTEO reliably reproduces the performances of this Inveon preclinical system. In addition, imaging studies showed that the PET-SORTEO simulation program provides raw data for the Inveon scanner that can be fully corrected and reconstructed using the same programs as for the actual data. All correction techniques (attenuation, scatter, randoms, dead-time, and normalization) can be applied on the simulated data leading to fully quantitative reconstructed images. In the second part of the study, we demonstrated its ability to generate fast and realistic biological studies. PET-SORTEO is a workable and reliable tool that can be used, in a classical way, to validate and/or optimize a single PET data processing step such as a reconstruction method. However, we demonstrated that by combining a realistic simulated biological study ([11C]Raclopride here) involving different condition groups, simulation allows one also to assess and optimize the data correction, reconstruction and data processing line flow as a whole, specifically for each biological study, which is our ultimate intent.

  2. NEMA NU 4-2008 validation and applications of the PET-SORTEO Monte Carlo simulations platform for the geometry of the Inveon PET preclinical scanner.

    PubMed

    Boisson, F; Wimberley, C J; Lehnert, W; Zahra, D; Pham, T; Perkins, G; Hamze, H; Gregoire, M-C; Reilhac, A

    2013-10-01

    Monte Carlo-based simulation of positron emission tomography (PET) data plays a key role in the design and optimization of data correction and processing methods. Our first aim was to adapt and configure the PET-SORTEO Monte Carlo simulation program for the geometry of the widely distributed Inveon PET preclinical scanner manufactured by Siemens Preclinical Solutions. The validation was carried out against actual measurements performed on the Inveon PET scanner at the Australian Nuclear Science and Technology Organisation in Australia and at the Brain & Mind Research Institute and by strictly following the NEMA NU 4-2008 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction and count rates, image quality and Derenzo phantom studies. Results showed that PET-SORTEO reliably reproduces the performances of this Inveon preclinical system. In addition, imaging studies showed that the PET-SORTEO simulation program provides raw data for the Inveon scanner that can be fully corrected and reconstructed using the same programs as for the actual data. All correction techniques (attenuation, scatter, randoms, dead-time, and normalization) can be applied on the simulated data leading to fully quantitative reconstructed images. In the second part of the study, we demonstrated its ability to generate fast and realistic biological studies. PET-SORTEO is a workable and reliable tool that can be used, in a classical way, to validate and/or optimize a single PET data processing step such as a reconstruction method. However, we demonstrated that by combining a realistic simulated biological study ([(11)C]Raclopride here) involving different condition groups, simulation allows one also to assess and optimize the data correction, reconstruction and data processing line flow as a whole, specifically for each biological study, which is our ultimate intent. PMID:24018840

  3. Impact of Manual and Automated Interpretation of Fused PET/CT Data on Esophageal Target Definitions in Radiation Planning

    SciTech Connect

    Hong, Theodore S. Killoran, Joseph H.; Mamede, Marcelo; Mamon, Harvey J.

    2008-12-01

    Purpose: We compare CT-only based esophageal tumor definition with two PET/CT based methods: (1) manual contouring and (2) a semiautomated method based on specific thresholds. Methods and Materials: Patients with esophageal cancer treated at Brigham and Women's Hospital from 2003 to 2006 were identified. CT-based tumor volumes were compared with manual PET/CT-based volumes and semiautomated PET-based tumor volumes. Differences were scored as (1) minor if the superior or inferior extent of the primary tumor (or both) differed by 1-2 cm and (2) major if the difference was > 2 cm or if different noncontiguous nodal regions were identified as being grossly involved. Results: Comparing CT-based gross tumor volumes (GTVs) to manually defined PET/CT-based GTVs, use of PET changed volumes for 21 of 25 (84%) patients: 12 patients (48%) exhibited minor differences, whereas for 9 patients (36%), the differences were major. For 4 (16%) patients, the major difference was due to discrepancy in celiac or distant mediastinal lymph node involvement. Use of automated PET volumes changed the manual PET length in 14 patients (56%): 8 minor and 6 major. Conclusions: The use of PET/CT in treatment planning for esophageal cancer can affect target definition. Two PET-based techniques can also produce significantly different tumor volumes in a large percentage of patients. Further investigations to clarify the optimal use of PET/CT data in treatment planning are warranted.

  4. Understanding regulations affecting pet foods.

    PubMed

    Dzanis, David A

    2008-08-01

    In the United States, pet foods are subject to regulation at both the federal and the state levels. The US Food and Drug Administration has jurisdiction over all animal feeds (including pet foods, treats, chews, supplements, and ingredients) in interstate commerce, which includes imported products. Many states adopt and enforce at least in part the Association of American Feed Control Officials Model Bill and Model Regulations for Pet Food and Specialty Pet Food. Thus, all pet foods in multi-state distribution are subject to a host of labeling requirements covering aspects such as product names, ingredient lists, nutrient content guarantees, and nutritional adequacy statements. Ingredients must be GRAS (generally recognized as safe) substances, approved food additives, or defined by Association of American Feed Control Officials for their intended use. Pet food labels may not bear claims that are false or misleading or that state or imply use for the treatment or prevention of disease. Pet foods that are found to be adulterated or misbranded may be subject to seizure or other enforcement actions. PMID:18656837

  5. Retinal oximetry with a multiaperture camera

    NASA Astrophysics Data System (ADS)

    Lemaillet, Paul; Lompado, Art; Ibrahim, Mohamed; Nguyen, Quan Dong; Ramella-Roman, Jessica C.

    2010-02-01

    Oxygen saturation measurements in the retina is an essential measurement in monitoring eye health of diabetic patient. In this paper, preliminary result of oxygen saturation measurements for a healthy patient retina is presented. The retinal oximeter used is based on a regular fundus camera to which was added an optimized optical train designed to perform aperture division whereas a filter array help select the requested wavelengths. Hence, nine equivalent wavelength-dependent sub-images are taken in a snapshot which helps minimizing the effects of eye movements. The setup is calibrated by using a set of reflectance calibration phantoms and a lookuptable (LUT) is computed. An inverse model based on the LUT is presented to extract the optical properties of a patient fundus and further estimate the oxygen saturation in a retina vessel.

  6. Design, calibration and operation of Mars lander cameras

    NASA Astrophysics Data System (ADS)

    Bos, Brent Jon

    2002-09-01

    In the 45 years since the dawn of the space age, there have only been two Mars lander camera designs to successfully operate on the Martian surface. Therefore information on Mars imager design and operation issues is limited. In addition, good examples of Mars lander imager calibration work are almost non-existent. This work presents instrument calibration results for a Mars lander camera originally designed to fly as an instrument onboard the 2001 Mars Surveyor lander as a robotic arm camera (RAC). Test procedures and results are described as well as techniques for improving the accuracy of the calibration data. In addition we describe camera algorithms and operations research results for optimizing imager operations on the Martian surface. Finally, the lessons learned from the 2001 RAC are applied to the preliminary design of a new Mars camera for the Artemis Mars Scout mission. The design utilizes a Bayer color mosaic filter, white light LED's and includes an optical system operating at f/13 with a maximum resolution of 0.11 mrad/pixel. It is capable of imaging in several modes including: stereo, microscopic and panoramic at a mass of 0.3 kg. It will provide planetary geologists with an unprecedented view of the Martian surface.

  7. "Stereo Compton cameras" for the 3-D localization of radioisotopes

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Kishimoto, A.; Ohsuka, S.; Nakamura, S.; Adachi, S.; Hirayanagi, M.; Uchiyama, T.; Ishikawa, Y.; Kato, T.

    2014-11-01

    The Compton camera is a viable and convenient tool used to visualize the distribution of radioactive isotopes that emit gamma rays. After the nuclear disaster in Fukushima in 2011, there is a particularly urgent need to develop "gamma cameras", which can visualize the distribution of such radioisotopes. In response, we propose a portable Compton camera, which comprises 3-D position-sensitive GAGG scintillators coupled with thin monolithic MPPC arrays. The pulse-height ratio of two MPPC-arrays allocated at both ends of the scintillator block determines the depth of interaction (DOI), which dramatically improves the position resolution of the scintillation detectors. We report on the detailed optimization of the detector design, based on Geant4 simulation. The results indicate that detection efficiency reaches up to 0.54%, or more than 10 times that of other cameras being tested in Fukushima, along with a moderate angular resolution of 8.1° (FWHM). By applying the triangular surveying method, we also propose a new concept for the stereo measurement of gamma rays by using two Compton cameras, thus enabling the 3-D positional measurement of radioactive isotopes for the first time. From one point source simulation data, we ensured that the source position and the distance to the same could be determined typically to within 2 meters' accuracy and we also confirmed that more than two sources are clearly separated by the event selection from two point sources of simulation data.

  8. Visible camera imaging of plasmas in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Mosby, R.; Skeen, C.; Biewer, T. M.; Renfro, R.; Ray, H.; Shaw, G. C.

    2015-11-01

    The prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device being developed at Oak Ridge National Laboratory (ORNL). This machine plans to study plasma-material interaction (PMI) physics relevant to future fusion reactors. Measurements of plasma light emission will be made on Proto-MPEX using fast, visible framing cameras. The cameras utilize a global shutter, which allows a full frame image of the plasma to be captured and compared at multiple times during the plasma discharge. Typical exposure times are ~10-100 microseconds. The cameras are capable of capturing images at up to 18,000 frames per second (fps). However, the frame rate is strongly dependent on the size of the ``region of interest'' that is sampled. The maximum ROI corresponds to the full detector area, of ~1000x1000 pixels. The cameras have an internal gain, which controls the sensitivity of the 10-bit detector. The detector includes a Bayer filter, for ``true-color'' imaging of the plasma emission. This presentation will exmine the optimized camera settings for use on Proto-MPEX. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  9. Measuring Distances Using Digital Cameras

    ERIC Educational Resources Information Center

    Kendal, Dave

    2007-01-01

    This paper presents a generic method of calculating accurate horizontal and vertical object distances from digital images taken with any digital camera and lens combination, where the object plane is parallel to the image plane or tilted in the vertical plane. This method was developed for a project investigating the size, density and spatial…

  10. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  11. Camera assisted multimodal user interaction

    NASA Astrophysics Data System (ADS)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  12. Television Camera Operator. Student's Manual.

    ERIC Educational Resources Information Center

    Grimes, L. A., Jr.

    This student manual is one in a series of individualized instructional materials for use under the supervision of an instructor. The self-contained manual was developed for persons training to become television camera operators. Each assignment has all the information needed, including a list of objectives that should be met and exercise questions…

  13. The Camera Comes to Court.

    ERIC Educational Resources Information Center

    Floren, Leola

    After the Lindbergh kidnapping trial in 1935, the American Bar Association sought to eliminate electronic equipment from courtroom proceedings. Eventually, all but two states adopted regulations applying that ban to some extent, and a 1965 Supreme Court decision encouraged the banning of television cameras at trials as well. Currently, some states…

  14. Camera lens adapter magnifies image

    NASA Technical Reports Server (NTRS)

    Moffitt, F. L.

    1967-01-01

    Polaroid Land camera with an illuminated 7-power magnifier adapted to the lens, photographs weld flaws. The flaws are located by inspection with a 10-power magnifying glass and then photographed with this device, thus providing immediate pictorial data for use in remedial procedures.

  15. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1991-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.

  16. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1989-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.

  17. Full Stokes polarization imaging camera

    NASA Astrophysics Data System (ADS)

    Vedel, M.; Breugnot, S.; Lechocinski, N.

    2011-10-01

    Objective and background: We present a new version of Bossa Nova Technologies' passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of circular polarization. Dedicated software was developed to provide live images of any Stokes related parameters such as the Degree Of Linear Polarization (DOLP), the Degree Of Circular Polarization (DOCP), the Angle Of Polarization (AOP). Results: We first we give a brief description of the camera and its technology. It is a Division Of Time Polarimeter using a custom ferroelectric liquid crystal cell. A description of the method used to calculate Data Reduction Matrix (DRM)5,9 linking intensity measurements and the Stokes parameters is given. The calibration was developed in order to maximize the condition number of the DRM. It also allows very efficient post processing of the images acquired. Complete evaluation of the precision of standard polarization parameters is described. We further present the standard features of the dedicated software that was developed to operate the camera. It provides live images of the Stokes vector components and the usual associated parameters. Finally some tests already conducted are presented. It includes indoor laboratory and outdoor measurements. This new camera will be a useful tool for many applications such as biomedical, remote sensing, metrology, material studies, and others.

  18. Making Films without a Camera.

    ERIC Educational Resources Information Center

    Cox, Carole

    1980-01-01

    Describes draw-on filmmaking as an exciting way to introduce children to the plastic, fluid nature of the film medium, to develop their appreciation and understanding of divergent cinematic techniques and themes, and to invite them into the dream world of filmmaking without the need for a camera. (AEA)

  19. Stratoscope 2 integrating television camera

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development, construction, test and delivery of an integrating television camera for use as the primary data sensor on Flight 9 of Stratoscope 2 is described. The system block diagrams are presented along with the performance data, and definition of the interface of the telescope with the power, telemetry, and communication system.

  20. Single-Cell Tracking with PET using a Novel Trajectory Reconstruction Algorithm

    PubMed Central

    Lee, Keum Sil; Kim, Tae Jin

    2015-01-01

    Virtually all biomedical applications of positron emission tomography (PET) use images to represent the distribution of a radiotracer. However, PET is increasingly used in cell tracking applications, for which the “imaging” paradigm may not be optimal. Here we investigate an alternative approach, which consists in reconstructing the time-varying position of individual radiolabeled cells directly from PET measurements. As a proof of concept, we formulate a new algorithm for reconstructing the trajectory of one single moving cell directly from list-mode PET data. We model the trajectory as a 3D B-spline function of the temporal variable and use non-linear optimization to minimize the mean-square distance between the trajectory and the recorded list-mode coincidence events. Using Monte Carlo simulations (GATE), we show that this new algorithm can track a single source moving within a small-animal PET system with <3 mm accuracy provided that the activity of the cell [Bq] is greater than four times its velocity [mm/s]. The algorithm outperforms conventional ML-EM as well as the “minimum distance” method used for positron emission particle tracking (PEPT). The new method was also successfully validated using experimentally acquired PET data. In conclusion, we demonstrated the feasibility of a new method for tracking a single moving cell directly from PET list-mode data, at the whole-body level, for physiologically relevant activities and velocities. PMID:25423651

  1. Specific recommendations for accurate and direct use of PET-CT in PET guided radiotherapy for head and neck sites

    SciTech Connect

    Thomas, C. M. Convery, D. J.; Greener, A. G.; Pike, L. C.; Baker, S.; Woods, E.; Hartill, C. E.

    2014-04-15

    techniques, laser positioning may affect setup accuracy and couch deflection may be greater than scanners dedicated to radiotherapy. The full set of departmental commissioning and routine quality assurance tests applied to radiotherapy CT simulators must be carried out on the PET-CT scanner. CT image quality must be optimized for radiotherapy planning whilst understanding that the appearance will differ between scanners and may affect delineation. PET-CT quality assurance schedules will need to be added to and modified to incorporate radiotherapy quality assurance. Methods of working for radiotherapy and PET staff will change to take into account considerations of both parties. PET to CT alignment must be subject to quality control on a loaded and unloaded couch preferably using a suitable emission phantom, and tested throughout the whole data pathway. Data integrity must be tested throughout the whole pathway and a system included to verify that delineated structures are transferred correctly. Excellent multidisciplinary team communication and working is vital, and key staff members on both sides should be specifically dedicated to the project. Patient pathway should be clearly devised to optimize patient care and the resources of all departments. Recruitment of a cohort of patients into a methodology study is valuable to test the quality assurance methods and pathway.

  2. Recent advances in digital camera optics

    NASA Astrophysics Data System (ADS)

    Ishiguro, Keizo

    2012-10-01

    The digital camera market has extremely expanded in the last ten years. The zoom lens for digital camera is especially the key determining factor of the camera body size and image quality. Its technologies have been based on several analog technological progresses including the method of aspherical lens manufacturing and the mechanism of image stabilization. Panasonic is one of the pioneers of both technologies. I will introduce the previous trend in optics of zoom lens as well as original optical technologies of Panasonic digital camera "LUMIX", and in addition optics in 3D camera system. Besides, I would like to suppose the future trend in digital cameras.

  3. Evaluation and use of pet foods: general considerations in using pet foods for adult maintenance.

    PubMed

    Kallfelz, F A

    1989-05-01

    Questions regarding pet animal nutrition are probably among the most frequent queries encountered by companion animal veterinarians. Given the plethora of pet food products available and the amount of advertising used to promote them, it is not surprising that pet owners have concerns as to what they should feed their pets. This "practical" review of pet foods and feeding is designed to assist veterinarians in making nutritional recommendations to their clients, with respect to feeding normal adult pets at maintenance. PMID:2658281

  4. Maximum likelihood reconstruction in fully 3D PET via the SAGE algorithm

    SciTech Connect

    Ollinger, J.M.; Goggin, A.S.

    1996-12-31

    The SAGE and ordered subsets algorithms have been proposed as fast methods to compute penalized maximum likelihood estimates in PET. We have implemented both for use in fully 3D PET and completed a preliminary evaluation. The technique used to compute the transition matrix is fully described. The evaluation suggests that the ordered subsets algorithm converges much faster than SAGE, but that it stops short of the optimal solution.

  5. Veterinarians' role for pet owners facing pet loss

    PubMed Central

    Fernandez-Mehler, P.; Gloor, P.; Sager, E.; Lewis, F. I.; Glaus, T. M

    2013-01-01

    Owners' satisfaction with, and expectations from, their veterinarians around euthanasia, including questions on disposal of pet remains subject to animal species, clients' gender, age, family conditions, area of living and type of veterinary clinic visited were evaluated by questionnaire. Questionnaires were to be filled out by clients consecutively visiting the individual practices and hospitals for any kind of consultations. Of 2350 questionnaires distributed, 2008 were returned and available for analysis. Owner satisfaction concerning the procedure of euthanasia was high (92 per cent, 1173/1272). After the event of euthanasia, 14 per cent (170/1250) had changed their veterinarian, even though 75 per cent of these 170 had been satisfied with the procedure. Most owners (88 per cent) expected veterinarians to talk about their pet's final destination, and 38 per cent expected this to happen early in the pet's life. For 81 per cent clients, the veterinarian was the primary informant about the possibilities concerning the disposal of pet remains, and 33 per cent indicated their veterinarian as the contact person to talk about pet loss. Area of living, or veterinary specialisation, only marginally influenced the answers. Veterinarians play an important role to inform their clients concerning questions around euthanasia and the care of pet remains, and to support them during the process of mourning. PMID:23492929

  6. Replacing 16-mm film cameras with high-definition digital cameras

    NASA Astrophysics Data System (ADS)

    Balch, Kris S.

    1995-09-01

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  7. PET/CT in radiation oncology

    SciTech Connect

    Pan, Tinsu; Mawlawi, Osama

    2008-11-15

    PET/CT is an effective tool for the diagnosis, staging and restaging of cancer patients. It combines the complementary information of functional PET images and anatomical CT images in one imaging session. Conventional stand-alone PET has been replaced by PET/CT for improved patient comfort, patient throughput, and most importantly the proven clinical outcome of PET/CT over that of PET and that of separate PET and CT. There are over two thousand PET/CT scanners installed worldwide since 2001. Oncology is the main application for PET/CT. Fluorine-18 deoxyglucose is the choice of radiopharmaceutical in PET for imaging the glucose uptake in tissues, correlated with an increased rate of glycolysis in many tumor cells. New molecular targeted agents are being developed to improve the accuracy of targeting different disease states and assessing therapeutic response. Over 50% of cancer patients receive radiation therapy (RT) in the course of their disease treatment. Clinical data have demonstrated that the information provided by PET/CT often changes patient management of the patient and/or modifies the RT plan from conventional CT simulation. The application of PET/CT in RT is growing and will become increasingly important. Continuing improvement of PET/CT instrumentation will also make it easier for radiation oncologists to integrate PET/CT in RT. The purpose of this article is to provide a review of the current PET/CT technology, to project the future development of PET and CT for PET/CT, and to discuss some issues in adopting PET/CT in RT and potential improvements in PET/CT simulation of the thorax in radiation therapy.

  8. PET Pharmacokinetic Modelling

    NASA Astrophysics Data System (ADS)

    Müller-Schauenburg, Wolfgang; Reimold, Matthias

    Positron Emission Tomography is a well-established technique that allows imaging and quantification of tissue properties in-vivo. The goal of pharmacokinetic modelling is to estimate physiological parameters, e.g. perfusion or receptor density from the measured time course of a radiotracer. After a brief overview of clinical application of PET, we summarize the fundamentals of modelling: distribution volume, Fick's principle of local balancing, extraction and perfusion, and how to calculate equilibrium data from measurements after bolus injection. Three fundamental models are considered: (i) the 1-tissue compartment model, e.g. for regional cerebral blood flow (rCBF) with the short-lived tracer [15O]water, (ii) the 2-tissue compartment model accounting for trapping (one exponential + constant), e.g. for glucose metabolism with [18F]FDG, (iii) the reversible 2-tissue compartment model (two exponentials), e.g. for receptor binding. Arterial blood sampling is required for classical PET modelling, but can often be avoided by comparing regions with specific binding with so called reference regions with negligible specific uptake, e.g. in receptor imaging. To estimate the model parameters, non-linear least square fits are the standard. Various linearizations have been proposed for rapid parameter estimation, e.g. on a pixel-by-pixel basis, for the prize of a bias. Such linear approaches exist for all three models; e.g. the PATLAK-plot for trapping substances like FDG, and the LOGAN-plot to obtain distribution volumes for reversibly binding tracers. The description of receptor modelling is dedicated to the approaches of the subsequent lecture (chapter) of Millet, who works in the tradition of Delforge with multiple-injection investigations.

  9. Energy and coincidence time resolution measurements of CdTe detectors for PET

    PubMed Central

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J.G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-01-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at −8°C with an applied bias voltage of −1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration. PMID:23750177

  10. Should Immunocompromised Patients Have Pets?

    PubMed Central

    Steele, Russell W.

    2008-01-01

    Purpose: To evaluate the risks and benefits of pet ownership by immunodeficient patients, focusing primarily on organisms that colonize animals and are transmitted to humans. Those diseases that are known to be progressive or more severe in patients with altered immune function are emphasized. Methods: A review of the medical and veterinary literature pertaining to zoonoses transmitted by domestic animals was completed. Information pertaining to issues involving immunosuppressed patients including AIDS was carefully evaluated and summarized for inclusion. Results: There are significant clinical and psychosocial benefits to pet ownership. However, numerous diseases can be acquired from these animals which may be more severe in immunocompromised individuals. Conclusion: Simple guidelines for pet ownership by immunosuppressed patients can be implemented to reduce their risk of disease and allow them to safely interchange with their pets. PMID:21603465

  11. Pets and the immunocompromised person

    MedlinePlus

    ... Do not adopt wild or exotic animals. These animals are more likely to bite. They often carry rare but ... its feces because salmonella is easily passed from animal to human. Wear ... on pet-related infections, contact your veterinarian ...

  12. Take Care with Pet Reptiles

    MedlinePlus

    ... pets in households with young children. [775 KB] Animals and Health Check out two CDC websites with helpful resources. Gastrointestinal (Enteric) Diseases from Animals : Information about zoonotic outbreaks, prevention messages, and helpful ...

  13. 10 "Poison Pills" for Pets

    MedlinePlus

    ... left on the bedside table. Zolpidem may make cats wobbly and sleepy, but most pets become very ... very common pain killer found in most households. Cats are extremely sensitive to acetaminophen, but dogs can ...

  14. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    SciTech Connect

    Cui, Y; Bowsher, J; Yan, S; Cai, J; Das, S; Yin, F

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medical Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.

  15. Image-based camera motion estimation using prior probabilities

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Park, Sun Young; Spofford, Inbar; Vosburgh, Kirby

    2011-03-01

    Image-based camera motion estimation from video or still images is a difficult problem in the field of computer vision. Many algorithms have been proposed for estimating intrinsic camera parameters, detecting and matching features between images, calculating extrinsic camera parameters based on those features, and optimizing the recovered parameters with nonlinear methods. These steps in the camera motion inference process all face challenges in practical applications: locating distinctive features can be difficult in many types of scenes given the limited capabilities of current feature detectors, camera motion inference can easily fail in the presence of noise and outliers in the matched features, and the error surfaces in optimization typically contain many suboptimal local minima. The problems faced by these techniques are compounded when they are applied to medical video captured by an endoscope, which presents further challenges such as non-rigid scenery and severe barrel distortion of the images. In this paper, we study these problems and propose the use of prior probabilities to stabilize camera motion estimation for the application of computing endoscope motion sequences in colonoscopy. Colonoscopy presents a special case for camera motion estimation in which it is possible to characterize typical motion sequences of the endoscope. As the endoscope is restricted to move within a roughly tube-shaped structure, forward/backward motion is expected, with only small amounts of rotation and horizontal movement. We formulate a probabilistic model of endoscope motion by maneuvering an endoscope and attached magnetic tracker through a synthetic colon model and fitting a distribution to the observed motion of the magnetic tracker. This model enables us to estimate the probability of the current endoscope motion given previously observed motion in the sequence. We add these prior probabilities into the camera motion calculation as an additional penalty term in RANSAC

  16. Should pet owners be regulated?

    PubMed

    Mills, Georgina

    2013-12-21

    To own a television, you have to have a licence, and to drive a car, you have to pass a test. However, there are no such limitations on owning a pet. Should this be changed, and what can be done to encourage more responsible pet ownership? This topic was discussed at the BVA Congress at the London Vet Show on November 21. Georgina Mills reports. PMID:24362802

  17. Nutritional sustainability of pet foods.

    PubMed

    Swanson, Kelly S; Carter, Rebecca A; Yount, Tracy P; Aretz, Jan; Buff, Preston R

    2013-03-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system. PMID:23493530

  18. PET Imaging in Huntington's Disease.

    PubMed

    Roussakis, Andreas-Antonios; Piccini, Paola

    2015-01-01

    To date, little is known about how neurodegeneration and neuroinflammation propagate in Huntington's disease (HD). Unfortunately, no treatment is available to cure or reverse the progressive decline of function caused by the disease, thus considering HD a fatal disease. Mutation gene carriers typically remain asymptomatic for many years although alterations in the basal ganglia and cortex occur early on in mutant HD gene-carriers. Positron Emission Tomography (PET) is a functional imaging technique of nuclear medicine which enables in vivo visualization of numerous biological molecules expressed in several human tissues. Brain PET is most powerful to study in vivo neuronal and glial cells function as well as cerebral blood flow in a plethora of neurodegenerative disorders including Parkinson's disease, Alzheimer's and HD. In absence of HD-specific biomarkers for monitoring disease progression, previous PET studies in HD were merely focused on the study of dopaminergic terminals, cerebral blood flow and glucose metabolism in manifest and premanifest HD-gene carriers. More recently, research interest has been exploring novel PET targets in HD including the state of phosphodiesterse expression and the role of activated microglia. Hence, a better understanding of the HD pathogenesis mechanisms may lead to the development of targeted therapies. PET imaging follow-up studies with novel selective PET radiotracers such as 11C-IMA-107 and 11C-PBR28 may provide insight on disease progression and identify prognostic biomarkers, elucidate the underlying HD pathology and assess novel pharmaceutical agents and over time. PMID:26683130

  19. The wide field/planetary camera

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.; Baum, W. A.; Code, A. D.; Currie, D. G.; Danielson, G. E.; Gunn, J. E.; Kelsall, T. F.; Kristian, J. A.; Lynds, C. R.; Seidelmann, P. K.

    1982-01-01

    A wide site of potential astronomical and solar system scientific studies using the wide field planetary camera on space telescope are described. The expected performance of the camera as it approaches final assembly and testing is also detailed.

  20. Advanced camera for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Ford, Holland C.; Feldman, Paul D.; Golimowski, David A.; Tsvetanov, Zlatan; Bartko, Frank; Crocker, James H.; Bely, Pierre Y.; Brown, Robert A.; Burrows, Christopher J.; Clampin, Mark; Hartig, George F.; Postman, Marc; Rafal, Marc D.; Sparks, William B.; White, Richard L.; Broadhurst, Tom; Illingworth, Garth; Kelly, Tim; Woodruff, Robert A.; Cheng, Edward; Kimble, Randy A.; Krebs, Carolyn A.; Neff, Susan G.; Lesser, Michael P.; Miley, George

    1996-10-01

    The Advanced Camera for the Hubble Space Telescope will have three cameras. The first, the Wide Field Camera, will be a high throughput (45% at 700 nm, including the HST optical telescope assembly), wide field (200' X 204'), optical and I-band camera that is half critically sampled at 500 nm. The second, the High Resolution Camera (HRC), is critically sampled at 500 nm, and has a 26' X 29' field of view and 25% throughput at 600 nm. The HRC optical path will include a coronagraph which will improve the HST contrast near bright objects by a factor of approximately 10. The third camera is a far ultraviolet, Solar-Blind Camera that has a relatively high throughput (6% at 121.6 nm) over a 26' X 29' field of view. The Advanced Camera for Surveys will increase HST's capability for surveys and discovery by at least a factor of ten.

  1. Lytro camera technology: theory, algorithms, performance analysis

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  2. Towards improved hardware component attenuation correction in PET/MR hybrid imaging

    NASA Astrophysics Data System (ADS)

    Paulus, D. H.; Tellmann, L.; Quick, H. H.

    2013-11-01

    In positron emission tomography/computed tomography (PET/CT) hybrid imaging attenuation correction (AC) of the patient tissue and patient table is performed by converting the CT-based Hounsfield units (HU) to linear attenuation coefficients (LAC) of PET. When applied to the new field of hardware component AC in PET/magnetic resonance (MR) hybrid imaging, this conversion method may result in local overcorrection of PET activity values. The aim of this study thus was to optimize the conversion parameters for CT-based AC of hardware components in PET/MR. Systematic evaluation and optimization of the HU to LAC conversion parameters has been performed for the hardware component attenuation map (µ-map) of a flexible radiofrequency (RF) coil used in PET/MR imaging. Furthermore, spatial misregistration of this RF coil to its µ-map was simulated by shifting the µ-map in different directions and the effect on PET quantification was evaluated. Measurements of a PET NEMA standard emission phantom were performed on an integrated hybrid PET/MR system. Various CT parameters were used to calculate different µ-maps for the flexible RF coil and to evaluate the impact on the PET activity concentration. A 511 keV transmission scan of the local RF coil was used as standard of reference to adapt the slope of the conversion from HUs to LACs at 511 keV. The average underestimation of the PET activity concentration due to the non-attenuation corrected RF coil in place was calculated to be 5.0% in the overall phantom. When considering attenuation only in the upper volume of the phantom, the average difference to the reference scan without RF coil is 11.0%. When the PET/CT conversion is applied, an average overestimation of 3.1% (without extended CT scale) and 4.2% (with extended CT scale) is observed in the top volume of the NEMA phantom. Using the adapted conversion resulting from this study, the deviation in the top volume of the phantom is reduced to -0.5% and shows the lowest

  3. Electronographic cameras for space astronomy.

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1972-01-01

    Magnetically-focused electronographic cameras have been under development at the Naval Research Laboratory for use in far-ultraviolet imagery and spectrography, primarily in astronomical and optical-geophysical observations from sounding rockets and space vehicles. Most of this work has been with cameras incorporating internal optics of the Schmidt or wide-field all-reflecting types. More recently, we have begun development of electronographic spectrographs incorporating an internal concave grating, operating at normal or grazing incidence. We also are developing electronographic image tubes of the conventional end-window-photo-cathode type, for far-ultraviolet imagery at the focus of a large space telescope, with image formats up to 120 mm in diameter.

  4. Combustion pinhole-camera system

    DOEpatents

    Witte, A.B.

    1982-05-19

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  5. The Dark Energy Survey Camera

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  6. A 10-microm infrared camera.

    PubMed

    Arens, J F; Jernigan, J G; Peck, M C; Dobson, C A; Kilk, E; Lacy, J; Gaalema, S

    1987-09-15

    An IR camera has been built at the University of California at Berkeley for astronomical observations. The camera has been used primarily for high angular resolution imaging at mid-IR wavelengths. It has been tested at the University of Arizona 61- and 90-in. telescopes near Tucson and the NASA Infrared Telescope Facility on Mauna Kea, HI. In the observations the system has been used as an imager with interference coated and Fabry-Perot filters. These measurements have demonstrated a sensitivity consistent with photon shot noise, showing that the system is limited by the radiation from the telescope and atmosphere. Measurements of read noise, crosstalk, and hysteresis have been made in our laboratory. PMID:20490151

  7. Derivation of the scan time requirement for maintaining a consistent PET image quality

    NASA Astrophysics Data System (ADS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-05-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (FTS) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ṡ body weight0.3 and NECR = 421.36 (body weight)-0.84. The equation derived for FTS was 0.01ṡ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics.

  8. SPEIR: A Ge Compton Camera

    SciTech Connect

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  9. Coaxial fundus camera for opthalmology

    NASA Astrophysics Data System (ADS)

    de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.

    2015-09-01

    A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.

  10. Solid-state array cameras.

    PubMed

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  11. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  12. 21 CFR 886.1120 - Ophthalmic camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Ophthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  13. 21 CFR 886.1120 - Opthalmic camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  14. 21 CFR 886.1120 - Ophthalmic camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Ophthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  15. 21 CFR 886.1120 - Opthalmic camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  16. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  17. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  18. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  19. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  20. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  1. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image...

  2. The use of FDG-PET in diffuse large B cell lymphoma (DLBCL): predicting outcome following first line therapy.

    PubMed

    Coughlan, Monica; Elstrom, Rebecca

    2014-01-01

    Positron emission tomography (PET) using 18fluoro-2-deoxyglucose (FDG) has become a standard clinical tool for staging and response assessment in aggressive lymphomas. The use of PET scans in clinical trials is still under exploration, however. In this review, we examine current data regarding PET in DLBCL, and its potential applicability to development of a surrogate endpoint to expedite clinical trial conduct. Interim PET scanning in DLBCL shows mixed results, with qualitative assessment variably associated with outcome. Addition of quantitative assessment might improve predictive power of interim scans. Data from multiple retrospective studies support that PET-defined response at end of treatment correlates with outcome in DLBCL. Optimal technical criteria for standardization of acquisition and criteria for interpretation of scans require further study. Prospective studies to define the correlation of PET-defined response and time-dependent outcomes such as progression free survival (PFS) and overall survival (OS), critical for development of PET as a surrogate endpoint for clinical trials, are ongoing. In conclusion, evolving data regarding utility of PET in predictcing outcome of patients with DLBCL show promise to support the use of PET as a surrogate endpoint in clinical trials of DLBCL in the future. PMID:25608713

  3. Mini gamma camera, camera system and method of use

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  4. Passive Millimeter Wave Camera (PMMWC) at TRW

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Engineers at TRW, Redondo Beach, California, inspect the Passive Millimeter Wave Camera, a weather-piercing camera designed to 'see' through fog, clouds, smoke and dust. Operating in the millimeter wave portion of the electromagnetic spectrum, the camera creates visual-like video images of objects, people, runways, obstacles and the horizon. A demonstration camera (shown in photo) has been completed and is scheduled for checkout tests and flight demonstration. Engineer (left) holds a compact, lightweight circuit board containing 40 complete radiometers, including antenna, monolithic millimeter wave integrated circuit (MMIC) receivers and signal processing and readout electronics that forms the basis for the camera's 1040-element focal plane array.

  5. Passive Millimeter Wave Camera (PMMWC) at TRW

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Engineers at TRW, Redondo Beach, California, inspect the Passive Millimeter Wave Camera, a weather-piercing camera designed to see through fog, clouds, smoke and dust. Operating in the millimeter wave portion of the electromagnetic spectrum, the camera creates visual-like video images of objects, people, runways, obstacles and the horizon. A demonstration camera (shown in photo) has been completed and is scheduled for checkout tests and flight demonstration. Engineer (left) holds a compact, lightweight circuit board containing 40 complete radiometers, including antenna, monolithic millimeter wave integrated circuit (MMIC) receivers and signal processing and readout electronics that forms the basis for the camera's 1040-element focal plane array.

  6. HHEBBES! All sky camera system: status update

    NASA Astrophysics Data System (ADS)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  7. Parasites in pet reptiles

    PubMed Central

    2011-01-01

    Exotic reptiles originating from the wild can be carriers of many different pathogens and some of them can infect humans. Reptiles imported into Slovenia from 2000 to 2005, specimens of native species taken from the wild and captive bred species were investigated. A total of 949 reptiles (55 snakes, 331 lizards and 563 turtles), belonging to 68 different species, were examined for the presence of endoparasites and ectoparasites. Twelve different groups (Nematoda (5), Trematoda (1), Acanthocephala (1), Pentastomida (1) and Protozoa (4)) of endoparasites were determined in 26 (47.3%) of 55 examined snakes. In snakes two different species of ectoparasites were also found. Among the tested lizards eighteen different groups (Nematoda (8), Cestoda (1), Trematoda (1), Acanthocephala (1), Pentastomida (1) and Protozoa (6)) of endoparasites in 252 (76.1%) of 331 examined animals were found. One Trombiculid ectoparasite was determined. In 563 of examined turtles eight different groups (Nematoda (4), Cestoda (1), Trematoda (1) and Protozoa (2)) of endoparasites were determined in 498 (88.5%) animals. In examined turtles three different species of ectoparasites were seen. The established prevalence of various parasites in reptiles used as pet animals indicates the need for examination on specific pathogens prior to introduction to owners. PMID:21624124

  8. Quantitative PET imaging with the 3T MR-BrainPET

    NASA Astrophysics Data System (ADS)

    Weirich, C.; Scheins, J.; Lohmann, P.; Tellmann, L.; Byars, L.; Michel, C.; Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N. J.

    2013-02-01

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner.

  9. Characterization of the CCD and CMOS cameras for grating-based phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Lytaev, Pavel; Hipp, Alexander; Lottermoser, Lars; Herzen, Julia; Greving, Imke; Khokhriakov, Igor; Meyer-Loges, Stephan; Plewka, Jörn; Burmester, Jörg; Caselle, Michele; Vogelgesang, Matthias; Chilingaryan, Suren; Kopmann, Andreas; Balzer, Matthias; Schreyer, Andreas; Beckmann, Felix

    2014-09-01

    In this article we present the quantitative characterization of CCD and CMOS sensors which are used at the experiments for microtomography operated by HZG at PETRA III at DESY in Hamburg, Germany. A standard commercial CCD camera is compared to a camera based on a CMOS sensor. This CMOS camera is modified for grating-based differential phase-contrast tomography. The main goal of the project is to quantify and to optimize the statistical parameters of this camera system. These key performance parameters such as readout noise, conversion gain and full-well capacity are used to define an optimized measurement for grating-based phase-contrast. First results will be shown.

  10. Initial laboratory evaluation of color video cameras

    SciTech Connect

    Terry, P L

    1991-01-01

    Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than identify an intruder. Monochrome cameras are adequate for that application and were selected over color cameras because of their greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Color information is useful for identification purposes, and color camera technology is rapidly changing. Thus, Sandia National Laboratories established an ongoing program to evaluate color solid-state cameras. Phase one resulted in the publishing of a report titled, Initial Laboratory Evaluation of Color Video Cameras (SAND--91-2579).'' It gave a brief discussion of imager chips and color cameras and monitors, described the camera selection, detailed traditional test parameters and procedures, and gave the results of the evaluation of twelve cameras. In phase two six additional cameras were tested by the traditional methods and all eighteen cameras were tested by newly developed methods. This report details both the traditional and newly developed test parameters and procedures, and gives the results of both evaluations.

  11. Initial laboratory evaluation of color video cameras

    NASA Astrophysics Data System (ADS)

    Terry, P. L.

    1991-12-01

    Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than identify an intruder. Monochrome cameras are adequate for that application and were selected over color cameras because of their greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Color information is useful for identification purposes, and color camera technology is rapidly changing. Thus, Sandia National Laboratories established an ongoing program to evaluate color solid-state cameras. Phase one resulted in the publishing of a report titled, 'Initial Laboratory Evaluation of Color Video Cameras (SAND--91-2579).' It gave a brief discussion of imager chips and color cameras and monitors, described the camera selection, detailed traditional test parameters and procedures, and gave the results of the evaluation of twelve cameras. In phase two, six additional cameras were tested by the traditional methods and all eighteen cameras were tested by newly developed methods. This report details both the traditional and newly developed test parameters and procedures, and gives the results of both evaluations.

  12. Phenology cameras observing boreal ecosystems of Finland

    NASA Astrophysics Data System (ADS)

    Peltoniemi, Mikko; Böttcher, Kristin; Aurela, Mika; Kolari, Pasi; Tanis, Cemal Melih; Linkosalmi, Maiju; Loehr, John; Metsämäki, Sari; Nadir Arslan, Ali

    2016-04-01

    Cameras have become useful tools for monitoring seasonality of ecosystems. Low-cost cameras facilitate validation of other measurements and allow extracting some key ecological features and moments from image time series. We installed a network of phenology cameras at selected ecosystem research sites in Finland. Cameras were installed above, on the level, or/and below the canopies. Current network hosts cameras taking time lapse images in coniferous and deciduous forests as well as at open wetlands offering thus possibilities to monitor various phenological and time-associated events and elements. In this poster, we present our camera network and give examples of image series use for research. We will show results about the stability of camera derived color signals, and based on that discuss about the applicability of cameras in monitoring time-dependent phenomena. We will also present results from comparisons between camera-derived color signal time series and daily satellite-derived time series (NVDI, NDWI, and fractional snow cover) from the Moderate Resolution Imaging Spectrometer (MODIS) at selected spruce and pine forests and in a wetland. We will discuss the applicability of cameras in supporting phenological observations derived from satellites, by considering the possibility of cameras to monitor both above and below canopy phenology and snow.

  13. [Interest of FDG-PET for lung cancer radiotherapy].

    PubMed

    Thureau, S; Mezzani-Saillard, S; Modzelewski, R; Edet-Sanson, A; Dubray, B; Vera, P

    2011-10-01

    The recent advances in medical imaging have profoundly altered the radiotherapy of non-small cell lung cancers (NSCLC). A meta-analysis has confirmed the superiority of FDG PET-CT over CT for initial staging. FDG PET-CT improves the reproducibility of target volume delineation, especially close to the mediastinum or in the presence of atelectasia. Although not formally validated by a randomized trial, the reduction of the mediastinal target volume, by restricting the irradiation to FDG-avid nodes, is widely accepted. The optimal method of delineation still remains to be defined. The role of FDG PET-CT in monitoring tumor response during radiotherapy is under investigation, potentially opening the way to adapting the treatment modalities to tumor radiation sensitivity. Other tracers, such as F-miso (hypoxia), are also under clinical investigation. To avoid excessive delays, the integration of PET-CT in routine practice requires quick access to the imaging equipment, technical support (fusion and image processing) and multidisciplinary delineation of target volumes. PMID:21880535

  14. Pyroelectric midresolution camera TH74KB41A

    NASA Astrophysics Data System (ADS)

    Leconte, J.; Barbier, R.; Fillon, H.; Coutures, Jean-Louis

    1995-09-01

    The TH74KB41A camera is designed for the THOMSON-CSF Semiconducteurs Specifiques (TCS) TH7441A pyroelectric IR sensor, optimized for the wavelength range 8 to 14 micrometers. This monolithic area sensor is made of 128 by 128 pixels (85 micrometers by 85 micrometers) compatible with a one inch diameter optic, and operates at ambient temperature. The camera is optimized to operate with a short integration period -- 10 ms -- allowing 50 frames per second, then compatible with a wide range of applications, including real-time imaging. Three video outputs are available: one 10-bit unprocessed image output every 10 ms, one 8-bit processed image every 20 ms, and one composite analog video signal using a 128 by 128 zone of the display. Eight-bit and analog outputs are obtained by summing the two successive fields -- alternately positive and negative. The 10-bit output delivers successively these positive and negative fields, 10 ms each. It is possible to select an analog gain 3 or 6 and a digital gain of 1, half, quarter or an eighth. Offset may be adjusted to fit the temperature range to be viewed in accordance with the chosen gain. The camera also produces pixel, line, and frame pulses to ease synchronization of an optional frame grabber. Power consumption is as low as 12.5 W, including chopper power supply. The useful scene dynamic range is plus or minus 170 degrees around the ambient temperature. With an f/1 optic -- optics transmission is 0.8 -- the NETD is around 1.5 K and the recognition 0.75 K. The contrast transfer function at Nyquist frequency -- 5.9 line pairs per mm -- is 38%. The small size of this lightweight camera body (200 mm by 125 mm by 60 mm without lenses) together with its low power consumption allow easy use everywhere. This camera benefits from the pyroelectric area sensor and does not use any cooling. This camera, quite cheaper than a camera using a cooled detector, is well suited to a wide range of applications such as laser beam profile analysis

  15. Automatic calibration method for plenoptic camera

    NASA Astrophysics Data System (ADS)

    Luan, Yinsen; He, Xing; Xu, Bing; Yang, Ping; Tang, Guomao

    2016-04-01

    An automatic calibration method is proposed for a microlens-based plenoptic camera. First, all microlens images on the white image are searched and recognized automatically based on digital morphology. Then, the center points of microlens images are rearranged according to their relative position relationships. Consequently, the microlens images are located, i.e., the plenoptic camera is calibrated without the prior knowledge of camera parameters. Furthermore, this method is appropriate for all types of microlens-based plenoptic cameras, even the multifocus plenoptic camera, the plenoptic camera with arbitrarily arranged microlenses, or the plenoptic camera with different sizes of microlenses. Finally, we verify our method by the raw data of Lytro. The experiments show that our method has higher intelligence than the methods published before.

  16. Characterization of the Series 1000 Camera System

    SciTech Connect

    Kimbrough, J; Moody, J; Bell, P; Landen, O

    2004-04-07

    The National Ignition Facility requires a compact network addressable scientific grade CCD camera for use in diagnostics ranging from streak cameras to gated x-ray imaging cameras. Due to the limited space inside the diagnostic, an analog and digital input/output option in the camera controller permits control of both the camera and the diagnostic by a single Ethernet link. The system consists of a Spectral Instruments Series 1000 camera, a PC104+ controller, and power supply. The 4k by 4k CCD camera has a dynamic range of 70 dB with less than 14 electron read noise at a 1MHz readout rate. The PC104+ controller includes 16 analog inputs, 4 analog outputs and 16 digital input/output lines for interfacing to diagnostic instrumentation. A description of the system and performance characterization is reported.

  17. Children's drawings and attachment to pets.

    PubMed

    Kidd, A H; Kidd, R M

    1995-08-01

    To help confirm the concept that distances placed between the self and other figures in children's drawings represent emotional distances, 242 pet-owning and 35 nonpet-owning kindergartners through eighth graders drew pictures of themselves, a pet, and/or a family member. Owners drew pets significantly closer than family-figures although the younger the child, the greater the distance between self and pet. Older children drew themselves holding pets significantly more often, but younger children placed the family-figure between the self and the pet significantly more often. There were no significant gender differences in self-figure/pet-figure distances, but cats, dogs, caged animals, and farm animals were placed significantly closer to self-figures than were fish. Over-all, owners were clearly emotionally closer to pets than to family members, but nonowners were as close emotionally to family members as were owners. PMID:7501763

  18. Recent Understandings of Pet Allergies

    PubMed Central

    Ownby, Dennis; Johnson, Christine Cole

    2016-01-01

    Allergic reactions to pets have been recognized for at least a hundred years. Yet our understanding of the effects of all of the interactions between pet exposures and human immune responses continues to grow. Allergists, epidemiologists, and immunologists have spent years trying to better understand how exposures to pet allergens lead to allergic sensitization (the production of allergen-specific immunoglobulin class E [IgE] antibodies) and subsequent allergic disease. A major new development in this understanding is the recognition that pet exposures consist of not only allergen exposures but also changes in microbial exposures. Exposures to certain pet-associated microbes, especially in the neonatal period, appear to be able to dramatically alter how a child’s immune system develops and this in turn reduces the risk of allergic sensitization and disease. An exciting challenge in the next few years will be to see whether these changes can be developed into a realistic preventative strategy with the expectation of significantly reducing allergic disease, especially asthma. PMID:26918180

  19. [PET and SPECT in epilepsy].

    PubMed

    Setoain, X; Carreño, M; Pavía, J; Martí-Fuster, B; Campos, F; Lomeña, F

    2014-01-01

    Epilepsy is one of the most frequent chronic neurological disorders, affecting 1-2% of the population. Patients with complex partial drug resistant episodes may benefit from a surgical treatment consisting in the excision of the epileptogenic area. Localization of the epileptogenic area was classically performed with video-EEG and magnetic resonance (MR). Recently, functional neuroimaging studies of Nuclear Medicine, positron emission tomography (PET) and single photon emission tomography (SPECT) have demonstrated their utility in the localization of the epileptogenic area prior to surgery. Ictal SPECT with brain perfusion tracers show an increase in blood flow in the initial ictal focus, while PET with (18)FDG demonstrates a decrease of glucose metabolism in the interictal functional deficit zone. In this review, the basic principles and methodological characteristics of the SPECT and PET in epilepsy are described. The ictal SPECT injection mechanism, different patterns of perfusion based on the time of ictal, postictal or interictal injection are detailed and the different diagnostic sensitivities of each one of these SPECT are reviewed. Different methods of analysis of the images with substraction and fusion systems with the MR are described. Similarly, the injection methodology, quantification and evaluation of the images of the PET in epilepsy are described. Finally, the main clinical indications of SPECT and PET in temporal and extratemporal epilepsy are detailed. PMID:24565567

  20. Extrinsic Calibration of Camera Networks Using a Sphere

    PubMed Central

    Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; van Haerenborgh, Dirk; van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried

    2015-01-01

    In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied to jointly refine the extrinsic parameters for all cameras. Compared to existing sphere-based 3D position estimators which need to trace and analyse the outline of the sphere projection in the image, the proposed method requires only very simple image processing: estimating the area and the center of mass of the sphere projection. Our results demonstrate that we can get a more accurate estimate of the extrinsic parameters compared to other sphere-based methods. While existing state-of-the-art calibration methods use point like features and epipolar geometry, the proposed method uses the sphere-based 3D position estimate. This results in simpler computations and a more flexible and accurate calibration method. Experimental results show that the proposed approach is accurate, robust, flexible and easy to use. PMID:26247950