Science.gov

Sample records for petra iii beamlines

  1. The Generic Beamline Concept of the PETRA III Undulator Beamlines

    SciTech Connect

    Hahn, U.; Peters, H. B.; Roehlsberger, R.; Schulte-Schrepping, H.

    2007-01-19

    The conversion of the PETRA storage ring at DESY to a third generation synchrotron radiation light source poses a challenge to the design of the beam transport system. The total power in the white beam will be as high as 7.5kW in the case of the 5m long undulator at 100mA. The power density will be 476 W/mm2 at 20m from the source. Upgrades to a beam current of 200mA have to be accounted for in the design of the beamline components. For the beam transport between the undulator and the experimental hall, the design of a generic beamline is presented. It contains all elements which are needed to guide the beam to the experiment. This generic beamline consists of the estimated maximum of components for this purpose. Special experimental needs may reduce the number of proposed devices in the generic part and add special optical devices close to the experiment, e. g. strong focusing. The paper focuses on the girder concept for all major beam transport components and the collimating shutter system which has to deal with the high power density of the PETRA III undulators.

  2. The High Energy Materials Science Beamline (HEMS) at PETRA III

    NASA Astrophysics Data System (ADS)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, René; Kiehn, Rüdiger; Müller, Martin; Schreyer, Andreas

    2010-06-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  3. The holography endstation of beamline P10 at PETRA III

    SciTech Connect

    Kalbfleisch, S.; Osterhoff, M.; Giewekemeyer, K.; Neubauer, H.; Krueger, S. P.; Hartmann, B.; Bartels, M.; Salditt, T.; Sprung, M.; Leupold, O.; Siewert, F.

    2010-06-23

    We present the design and instrumentation of a novel holography endstation for the P10 coherence beamline at PETRA III at DESY. The experimental imaging scheme is based on a highly coherent and divergent (cone) beam illumination, achieved by fixed curvature focusing mirrors with additional spatial and coherence filtering by x-ray waveguides. The optical elements along the beam path and the instrument under construction are described. Preliminary results obtained in a similar setting under comparable parameters are given as a benchmark, and first simulations of one of the two mirrors are presented to study the effect of imperfections on the field distribution in the focal plane.

  4. P05 imaging beamline at PETRA III: first results

    NASA Astrophysics Data System (ADS)

    Greving, Imke; Wilde, Fabian; Ogurreck, Malte; Herzen, Julia; Hammel, Jörg U.; Hipp, Alexander; Friedrich, Frank; Lottermoser, Lars; Dose, Thomas; Burmester, Hilmar; Müller, Martin; Beckmann, Felix

    2014-09-01

    The imaging beamline (IBL/P05) operated by Helmholtz Zentrum Geesthacht (HZG) at the DESY PETRA III storage ring consists of two experimental stations: A micro tomography and a nano tomography end station. Here an overview of the experimental setups and the data acquisition will be given. In addition some first results out of the wide range of applications using the micro tomography station at P05 will be shown. Furthermore, we present first results of the nano tomography end station. These were obtained with an x-ray microscopy setup, which currently operates at energies of 17.4 and 30 keV using polymer compound refractive lenses (CRLs) and rolled prism lenses. Taken together these results clearly show the high potential of the newly built imaging beamline IBL.

  5. Capabilities of the Extreme Conditions Beamline at PETRA III, DESY

    NASA Astrophysics Data System (ADS)

    Liermann, Hanns-Peter; Konôpková, Zuzana; Morgenroth, Wolfgang; Rothkirch, Andre; Wittich, Eugen; Delitz, Jan-Torben; Ehnes, Anita

    2013-06-01

    At the end of 2010 the Extreme Conditions Beamline (ECB) at PETRA III received first beam and entered the commissioning phase. Since 2012 we are offering beamtime to general users to conduct a variety of different experiments such as powder and single diffraction in the laser/resistive heated and cryogenically cooled Diamond Anvil Cell (DAC). Particularly attractive has been our ability to conducted diffraction experiments at high energies of 60 and 77 keV for pair distribution function (PDF) studies as well as possibility to preform time resolved powder diffraction experiments at 26 and 43 keV with a maximum time resolution of 15 Hz. Within we present some of the current capabilities of the beamline as well as future plans to promote single crystal diffraction at high pressures and temperatures using both monochromatic and pink beam. Finally, we emphasis the present and future time resolved capabilities to conduct powder and single crystal diffraction experiments under dynamic compression and heating conditions in the DAC. Part of this project was funded by the ``Bundesministerium fuer Bildung und Forschung'' under contracts 05KS7RF1 and 05K10RFA ``Verbundprojekt: Messeinrichtungen fuer die Material- und Strukturforschung an PETRA III, 2: Laserheizung for ``ECB''.

  6. The nanotomography endstation at the PETRA III Imaging Beamline

    NASA Astrophysics Data System (ADS)

    Ogurreck, M.; Wilde, F.; Herzen, J.; Beckmann, F.; Nazmov, V.; Mohr, J.; Haibel, A.; Müller, M.; Schreyer, A.

    2013-03-01

    The Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at the newly refurbished DESY PETRA III storage ring is dedicated to radiography and tomography and provides two experimental endstations, one for micro tomography and one for nano tomography. The technical specifications aim for 3D imaging with a spatial resolution of below 100 nm. This nanometer resolution will be achieved by using different combinations of compound refractive lenses as X-ray optics. In addition, a microscopic optic for magnifying the images after the converting in visible light will be used, too. The overall setup is designed to be very flexible, which allows also the implementation of other optical elements (e.g. Fresnel zoneplates, KB mirrors) as well as the application of different magnifying techniques like cone-beam tomography or X-ray microscopy. The accessible energy range for the nano tomography is 10 - 30 keV but the beamline is designed for an energy range of 5 - 50 keV and we aim to allow the same energy range for the nano tomography in the long run.

  7. Layout and first results of the nanotomography endstation at the P05 beamline at PETRA III

    NASA Astrophysics Data System (ADS)

    Ogurreck, M.; Greving, I.; Marschall, F.; Vogt, H.; Last, A.; do Rosario, J. J.; Leib, E. W.; Beckmann, F.; Wilde, F.; Müller, M.

    2016-01-01

    The Helmholtz-Zentrum Geesthacht operates the P05 Imaging Beamline at the DESY storage ring PETRA III. This beamline is dedicated to micro- and nanotomography with two endstations. This paper will present the nanotomography endstation layout and first results obtained from commissioning and test experiments. First tests have been performed with CRLs as X-ray objectives and newly developed rolled X-ray prism lenses as condenser optics. This setup allows a resolution of 100 nm half period with an effective detector pixel size of 15nm. A first tomograph of a photonic glass sample was measured in early 2014.

  8. The sapphire backscattering monochromator at the Dynamics beamline P01 of PETRA III

    DOE PAGESBeta

    Alexeev, P.; Asadchikov, V.; Bessas, D.; Butashin, A.; Deryabin, A.; Dill, F. -U.; Ehnes, A.; Herlitschke, M.; Hermann, R. P.; Jafari, A.; et al

    2016-02-23

    Here, we report on a high resolution sapphire backscattering monochromator installed at the Dynamics beamline P01 of PETRA III. The device enables nuclear resonance scattering experiments on M ossbauer isotopes with transition energies between 20 and 60 keV with sub-meV to meV resolution. In a first performance test with 119Sn nuclear resonance at a X-ray energy of 23.88 keV an energy resolution of 1.34 meV was achieved. Moreover, the device extends the field of nuclear resonance scattering at the PETRA III synchrotron light source to many further isotopes like 151Eu, 149Sm, 161Dy, 125Te and 121Sb.

  9. The sapphire backscattering monochromator at the Dynamics beamline P01 of PETRA III

    SciTech Connect

    Alexeev, Pavel; Asadchikov, Victor E; Bessas, D.; Butashin, A. V.; Deryabin, A. N.; Dill, F.-U.; Ehnes, A.; Herlitschke, Marcus; Hermann, Raphael P; Jafari, Atefeh; Prokhorov, I A; Roshchin, boris s; Roehlsberger, Ralf; Schlage, Kai; Sergueev, I.; Siemens, A.; Wille, Hans Christian

    2016-01-01

    We report on a high resolution sapphire backscattering monochromator installed at the Dynamics beamline P01 of PETRA III. The device enables nuclear resonance scattering experiments on M ossbauer isotopes with transition energies between 20 and 60 keV with sub-meV to meV resolution. In a first performance test with 119Sn nuclear resonance at a X-ray energy of 23.88 keV an energy resolution of 1.34 meV was achieved. The device extends the field of nuclear resonance scattering at the PETRA III synchrotron light source to many further isotopes like 151Eu, 149Sm, 161Dy, 125Te and 121Sb.

  10. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III.

    PubMed

    Göries, D; Dicke, B; Roedig, P; Stübe, N; Meyer, J; Galler, A; Gawelda, W; Britz, A; Geßler, P; Sotoudi Namin, H; Beckmann, A; Schlie, M; Warmer, M; Naumova, M; Bressler, C; Rübhausen, M; Weckert, E; Meents, A

    2016-05-01

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM). PMID:27250401

  11. Double phase-retarder set-up at beamline P09 at PETRA III

    NASA Astrophysics Data System (ADS)

    Francoual, S.; Strempfer, J.; Reuther, D.; Shukla, D. K.; Skaugen, A.

    2013-03-01

    Beamline P09 at PETRA III, DESY, is designed for general diffraction and resonant X-ray scattering experiments at low temperatures and high magnetic fields. The dependence of the X-ray cross-sections (Thomson, non-resonant magnetic, resonant exchange scattering, ATS) on the polarization state of the incident X-rays is an important property that one might want to capitalize on in a diffraction experiment. To that purpose, P09 is equipped with a double phase-retarder and diamond phase-plates making for the production of linearly and circularly polarized X-rays in the energy range between 3.5 and 8.5 keV as yet. Here we describe the double phase-retarder setup at P09, its principles of operation and its performances with respect to the generation of linearly polarized incident X-rays rotated by a variable angle η around the X-ray beam using two quarter-wave plates in series or a single half-wave plate.

  12. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    SciTech Connect

    Rawolle, M.; Koerstgens, V.; Ruderer, M. A.; Metwalli, E.; Guo, S.; Mueller-Buschbaum, P.; Herzog, G.; Benecke, G.; Schwartzkopf, M.; Buffet, A.; Perlich, J.; Roth, S. V.

    2012-10-15

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scattered intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.

  13. The Extreme Conditions Beamline at PETRA III, DESY: Possibilities to conduct time resolved monochromatic diffraction experiments in dynamic and laser heated DAC

    NASA Astrophysics Data System (ADS)

    Liermann, H.-P.; Morgenroth, W.; Ehnes, A.; Berghäuser, A.; Winkler, B.; Franz, H.; Weckert, E.

    2010-03-01

    We present plans for the new Extreme Conditions Beamline at PETRA III, DESY, Germany. The beamline is being designed and built with the specific goal to explore time resolved high-pressure and -temperature x-ray diffraction experiments in the dynamic and laser heated diamond anvil cell. Within we discuss the conceptual design of the optical components and experimental setup to conduct monochromatic high-pressure powder diffraction experiments in the sub-second time regime.

  14. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  15. CVD diamond screens for photon beam imaging at PETRA III

    NASA Astrophysics Data System (ADS)

    Degenhardt, M.; Aprigliano, G.; Schulte-Schrepping, H.; Hahn, U.; Grabosch, H.-J.; Wörner, E.

    2013-03-01

    PETRA III, the most brilliant storage-ring-based synchrotron radiation source in the world, started its operation in 2009. It features 14 undulator beamlines and will be extended by further 10 beamlines in the PETRA III extension project. During the startup phase of the 14 PETRA III beamlines, fluorescence monitors based on CVD diamond screens have proven to be a very powerful tool for the monitoring of the attenuated undulator beams and for the commissioning of the optical components, e.g. slit systems and monochromators. They served as the essential instrument for the initial setup of the positron beam orbit to align the undulator photon beam along the beamline. The application of CVD diamond screens for the beam imaging at PETRA III beamlines is presented. Images taken during the beam adjustment and the beamline commissioning are shown.

  16. Time-resolved soft X-ray microscopy of magnetic nanostructures at the P04 beamline at PETRA III

    NASA Astrophysics Data System (ADS)

    Wessels, P.; Ewald, J.; Wieland, M.; Nisius, T.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Vogel, A.; Neumann, A.; Viefhaus, J.; Oepen, H. P.; Meier, G.; Wilhein, T.; Drescher, M.

    2014-04-01

    We present first time-resolved measurements of a new mobile full-field transmission microscope [1] obtained at the soft X-ray beamline P04 at the high brilliance synchrotron radiation source PETRA III. A nanostructured magnetic permalloy (Ni80Fe20) sample can be excited by the magnetic field of a 400 ps full width at half maximum (FWHM) long electric current pulse in a coplanar waveguide. The full-field soft X-ray microscope successively probes the time evolution of the sample magnetization via X-ray magnetic circular dichroism (XMCD) [2] spectromicroscopy in a pump-probe scheme by varying the delay between pump and probe pulses electronically. Static and transient magnetic fields of a permanent magnet and a coil are available in the sample plane to reset the system and to provide external offset fields. The microscope generates a flat-top illumination field of 20 μm diameter by using a grating condenser [3] and the sample plane is directly imaged by a micro zone plate with 60 nm resolution onto a 2D gateable X-ray detector to select the particular bunch in the storage ring that contains the dynamic information. The setup is built into a mobile endstation vacuum system with in-house developed three-axis piezo motorized stages for high accuracy positioning of all microscopy-components inside the chambers.

  17. Use of intermediate focus for grazing incidence small and wide angle x-ray scattering experiments at the beamline P03 of PETRA III, DESY

    SciTech Connect

    Santoro, G.; Buffet, A.; Döhrmann, R.; Yu, S.; Roth, S. V.; Körstgens, V.; Müller-Buschbaum, P.; Gedde, U.; Hedenqvist, M.

    2014-04-15

    We describe the new experimental possibilities of the micro- and nanofocus X-ray scattering beamline P03 of the synchrotron source PETRA III at DESY, Hamburg (Germany), which arise from experiments with smaller beam sizes in the micrometer range. This beamline has been upgraded recently to perform new kinds of experiments. The use of an intermediate focus allows for reducing the beam size of microfocused hard X-rays while preserving a large working distance between the focusing elements and the focus position. For the first time, this well-known methodology has been employed to grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS). As examples, we highlight the applications to in situ studies using microfluidic devices in GISAXS geometry as well as the investigation of the crystallinity of thin films in GIWAXS geometry.

  18. The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III.

    PubMed

    Liermann, H P; Konôpková, Z; Morgenroth, W; Glazyrin, K; Bednarčik, J; McBride, E E; Petitgirard, S; Delitz, J T; Wendt, M; Bican, Y; Ehnes, A; Schwark, I; Rothkirch, A; Tischer, M; Heuer, J; Schulte-Schrepping, H; Kracht, T; Franz, H

    2015-07-01

    A detailed description is presented of the Extreme Conditions Beamline P02.2 for micro X-ray diffraction studies of matter at simultaneous high pressure and high/low temperatures at PETRA III, in Hamburg, Germany. This includes performance of the X-ray optics and instrumental resolution as well as an overview of the different sample environments available for high-pressure studies in the diamond anvil cell. Particularly emphasized are the high-brilliance and high-energy X-ray diffraction capabilities of the beamline in conjunction with the use of fast area detectors to conduct time-resolved compression studies in the millisecond time regime. Finally, the current capability of the Extreme Conditions Science Infrastructure to support high-pressure research at the Extreme Conditions Beamline and other PETRA III beamlines is described. PMID:26134794

  19. Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY)

    PubMed Central

    Blanchet, Clement E.; Spilotros, Alessandro; Schwemmer, Frank; Graewert, Melissa A.; Kikhney, Alexey; Jeffries, Cy M.; Franke, Daniel; Mark, Daniel; Zengerle, Roland; Cipriani, Florent; Fiedler, Stefan; Roessle, Manfred; Svergun, Dmitri I.

    2015-01-01

    A high-brilliance synchrotron P12 beamline of the EMBL located at the PETRA III storage ring (DESY, Hamburg) is dedicated to biological small-angle X-ray scattering (SAXS) and has been designed and optimized for scattering experiments on macromolecular solutions. Scatterless slits reduce the parasitic scattering, a custom-designed miniature active beamstop ensures accurate data normalization and the photon-counting PILATUS 2M detector enables the background-free detection of weak scattering signals. The high flux and small beam size allow for rapid experiments with exposure time down to 30–50 ms covering the resolution range from about 300 to 0.5 nm. P12 possesses a versatile and flexible sample environment system that caters for the diverse experimental needs required to study macromolecular solutions. These include an in-vacuum capillary mode for standard batch sample analyses with robotic sample delivery and for continuous-flow in-line sample purification and characterization, as well as an in-air capillary time-resolved stopped-flow setup. A novel microfluidic centrifugal mixing device (SAXS disc) is developed for a high-throughput screening mode using sub-microlitre sample volumes. Automation is a key feature of P12; it is controlled by a beamline meta server, which coordinates and schedules experiments from either standard or nonstandard operational setups. The integrated SASFLOW pipeline automatically checks for consistency, and processes and analyses the data, providing near real-time assessments of overall parameters and the generation of low-resolution models within minutes of data collection. These advances, combined with a remote access option, allow for rapid high-throughput analysis, as well as time-resolved and screening experiments for novice and expert biological SAXS users. PMID:25844078

  20. Development of an in-vacuum x-ray microscope with cryogenic sample cooling for beamline P11 at PETRA III

    NASA Astrophysics Data System (ADS)

    Meents, Alke; Reime, Bernd; Stuebe, Nicolas; Fischer, Pontus; Warmer, Martin; Goeries, Dennis; Roever, Jan; Meyer, Jan; Fischer, Janine; Burkhardt, Anja; Vartiainen, Ismo; Karvinen, Petri; David, Christian

    2013-09-01

    Beamline P11 at PETRA III is dedicated to structural investigations of biological samples. It provides two experimental stations, one for macromolecular crystallography and one for X-ray microscopy. The microscope will provide full field Zernike phase contrast and scanning microscopy both in 2D and in tomographic mode. Full field microscopy with a field of view of 50 x 50 μm2 will allow to generate an overview of the sample and to select regions of interest for later inspection of the element distribution by X-ray fluorescence and diffraction in scanning mode. Central part of the microscope is an inhouse developed flexure based x,y,z scanner on top of a rotation stage. The scanner is operated in closed loop with piezo motors, has a travel range of 4 mm in horizontal and of 3 mm in vertical direction. With laser interferometers for closed loop operation a positioning accuracy of better than 5 nm is achieved in all directions. For precise sample rotation an in-vacuum air-bearing has been developed. An open bore in the center of the air-bearing allows cryogenic sample cooling by a cold He or N2 gas stream. Different optical elements such as beam defining pinholes, a condensor, zone plates, OSA, phase rings, etc. can be centered in the beam path by piezomotor driven x,y flexure elements mounted on a rail system which allows further positioning along the beam path. Different 2D detectors and two fluoresence detectors can be attached to the microscope.

  1. Single-crystal X-ray diffraction and resonant X-ray magnetic scattering at helium-3 temperatures in high magnetic fields at beamline P09 at PETRA III.

    PubMed

    Francoual, S; Strempfer, J; Warren, J; Liu, Y; Skaugen, A; Poli, S; Blume, J; Wolff-Fabris, F; Canfield, P C; Lograsso, T

    2015-09-01

    The resonant scattering and diffraction beamline P09 at PETRA III at DESY is equipped with a 14 T vertical field split-pair magnet. A helium-3 refrigerator is available that can be fitted inside the magnet's variable-temperature insert. Here the results of a series of experiments aimed at determining the beam conditions permitting operations with the He-3 insert are presented. By measuring the tetragonal-to-orthorhombic phase transition occurring at 2.1 K in the Jahn-Teller compound TmVO4, it is found that the photon flux at P09 must be attenuated down to 1.5 × 10(9) photons s(-1) for the sample to remain at temperatures below 800 mK. Despite such a reduction of the incident flux and the subsequent use of a Cu(111) analyzer, the resonant X-ray magnetic scattering signal at the Tm LIII absorption edge associated with the spin-density wave in TmNi2B2C below 1.5 K is intense enough to permit a complete study in magnetic field and at sub-Kelvin temperatures to be carried out. PMID:26289272

  2. Grating-based x-ray phase-contrast imaging at PETRA III

    NASA Astrophysics Data System (ADS)

    Hipp, A.; Beckmann, F.; Lytaev, P.; Greving, I.; Lottermoser, L.; Dose, T.; Kirchhof, R.; Burmester, H.; Schreyer, A.; Herzen, J.

    2014-09-01

    Conventional absorption-based imaging often lacks in good contrast at special applications like visualization of soft tissue or weak absorbing material in general. To overcome this limitation, several new X-ray phase-contrast imaging methods have been developed at synchrotron radiation facilities. Our aim was to establish the possibility of different phase-contrast imaging modalities at the Imaging Beamline (IBL, P05) and the High Energy Material Science beamline (HEMS, P07) at Petra III (DESY, Germany). Here we present the instrumentation and the status of the currently successfully established phase-contrast imaging techniques. First results from measurements of biomedical samples will be presented as demonstration.

  3. Radial X-Ray Diffraction at the Extreme Conditions Beamline of PETRA III: In-Situ Texture Analysis of a Mixture of Perovskite and Ferropericlase to 1100 K and 40 GPa

    NASA Astrophysics Data System (ADS)

    Miyagi, L. M.; Marquardt, H.; Speziale, S.; Liermann, H.

    2013-12-01

    Solid-state convection in the Earth interior is associated with the development of seismic anisotropy in many regions of the mantle. One of the main causes of observed seismic anisotropies is plastic deformation of the constituent minerals by dislocation glide, which produces lattice preferred orientation (LPO). If one has a sound understanding of the relationship between deformation and the development of anisotropy, observed anisotropies can be used to infer the dynamic state in the deep Earth. However, due to substantial experimental difficulties, direct in-situ determinations of LPO development at lower mantle conditions are extremely scarce in the literature and are typically limited to single phases. Thus little is known about the interactions between phases during deformation and questions remain as to what phase or phases control deformation and what phase or phases are responsible for observed anisotropies. This lack of information significantly limits our ability to interpret observations of seismic anisotropy in terms of mantle flow models. Substantial experimental progress is needed to investigate deformation of mixtures of lower mantle minerals at relevant pressures and temperatures. In order to extend our capability to deform complex multiphase mineral aggregates at simultaneous high pressures and temperatures exceeding 30 GPa at 1000 K a new experimental setup has been recently developed at the Extreme Conditions Beamline (ECB) P02.2 of PETRA III synchrotron in Hamburg. The new setup is dedicated to perform X-ray diffraction in radial geometry using a modified resistive-heated diamond anvil cell (RH-RDAC). The sample environment is heated by a graphite heater surrounding the sample assembly and diamonds. The DAC is enclosed in a dedicated vacuum vessel to preserve the diamonds and other sensitive components from oxidation at high temperature. Here we present in detail the features and the performance of this setup. We will also discuss results of

  4. The nuclear-resonance-scattering station at the PETRA II undulator beamline

    NASA Astrophysics Data System (ADS)

    Franz, H.; Hukelmann, B.; Schneider, J. R.

    2000-07-01

    PETRA II, a 12 GeV accelerator at DESY, Hamburg, is used to produce synchrotron radiation (SR) for experiments in the hard X-ray regime when it is not running as injector for HERA. The beam from an undulator is split by a diamond crystal in Laue geometry to feed two experimental stations, one of which is now dedicated for nuclear resonance experiments. The X-ray energy may be chosen in the range from 5 to 55 keV covering all isotopes already observed with SR and many interesting candidates for new resonances. Tuning may be performed by optimising the magnetic gap and the storage ring energy. In particular, the opportunities for timing experiments are unique due to a very flexible filling mode of the storage ring. The flux at the sample position is comparable to undulator beams at ESRF. The second beamline covers higher energies up to some 300 keV and may also be used for nuclear resonance experiments.

  5. Doublet III beamline: as-built

    SciTech Connect

    Harder, C.R.; Holland, M.M.; Parker, J.W.; Gunn, J.; Resnick, L.

    1980-03-01

    In order to fully exploit Doublet III capabilities and to study new plasma physics regimes, a Neutral Beam Injector System has been constructed. Initially, a two beamline system will supply 7 MW of heat to the plasma. The system is currently being expanded to inject approx. 20 MW of power (6 beamlines). Each beamline is equipped with two Lawrence Berkeley Laboratory type rectangular ion sources with 10 cm x 40 cm extraction grids. These sources will accelerate hydrogen ions to 80 keV, with extracted beam currents in excess of 80 A per source expected. The first completed source is currently being tested and conditioned on the High Voltage Test Stand at Lawrence Livermore Laboratory. This paper pictorially reviews the as-built Doublet III neutral beamline with emphasis on component relation and configuration relative to spatial and source imposed design constraints.

  6. Characterization of the Support and Drive System of the PETRA III APPLE Undulator

    SciTech Connect

    Bahrdt, J.; Baecker, H.-J.; Frentrup, W.; Gaupp, A.; Gottschlich, S.; Kuhn, C.; Scheer, M.; Schulz, B.; Gast, M.; Englisch, U.; Schoeps, A.; Tischer, M.

    2010-06-23

    Helmholtzzentrum Berlin has built an APPLE II undulator for the storage ring PETRA III. The device has a total length of 5m and a minimum gap of 11mm. The high magnetic forces in particular in the inclined mode have been analyzed by means of finite element methods (FEM). Specific mechanic components such as flexible joints have been optimized to cope with the gap- and shift-dependent 3D-forces and a sophisticated control and drive system has been implemented. After completion of the device, detailed laser interferometer measurements for all operation modes have been performed. The data are compared to the FEM simulations.

  7. Characterization of the Support and Drive System of the PETRA III APPLE Undulator

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Bäcker, H.-J.; Frentrup, W.; Gaupp, A.; Gottschlich, S.; Kuhn, C.; Scheer, M.; Schulz, B.; Gast, M.; Englisch, U.; Schöps, A.; Tischer, M.

    2010-06-01

    Helmholtzzentrum Berlin has built an APPLE II undulator for the storage ring PETRA III. The device has a total length of 5m and a minimum gap of 11mm. The high magnetic forces in particular in the inclined mode have been analyzed by means of finite element methods (FEM). Specific mechanic components such as flexible joints have been optimized to cope with the gap- and shift-dependent 3D-forces and a sophisticated control and drive system has been implemented. After completion of the device, detailed laser interferometer measurements for all operation modes have been performed. The data are compared to the FEM simulations.

  8. Residual Gas X-ray Beam Position Monitor Development for PETRA III

    SciTech Connect

    Ilinski, P.; Hahn, U.; Schulte-Schrepping, H.; Degenhardt, M.

    2007-01-19

    The development effort is driven by the need for a new type of x-ray beam position monitor (XBPM), which will detect the centre of gravity of the undulator beam. XBPMs based on the ionization of a residual gas are considered being the candidate for this future ''white'' undulator beam XBPMs. A number of residual gas XBPM prototypes for the PETRA III storage ring were developed and tested. Tests were performed at DESY and the ESRF, resolution of beam position up to 5 {mu}m is reported. The further development of the RGXBPMs will be focused on improvements of resolution, readout speed and reliability.

  9. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    PubMed Central

    Kristiansen, Paw; Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim

    2015-01-01

    The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged. PMID:26134790

  10. ASAP3 - New Data Taking and Analysis Infrastructure for PETRA III

    NASA Astrophysics Data System (ADS)

    Strutz, M.; Gasthuber, M.; Aplin, S.; Dietrich, S.; Kuhn, M.; Ensslin, U.; Smirnov, G.; Lewendel, B.; Guelzow, V.

    2015-12-01

    Data taking and analysis infrastructures in HEP (High Energy Physics) have evolved during many years to a well known problem domain. In contrast to HEP, third generation synchrotron light sources, existing and upcoming free electron lasers are confronted with an explosion in data rates driven primarily by recent developments in 2D pixel array detectors. The next generation of detectors will produce data in the region upwards of 50 Gbytes per second. At synchrotrons, data was traditionally taken away by users following data taking using portable media. This will clearly not scale at all. We present first experiences of our new architecture and underlying services based on results taken from the resumption of data taking in April 2015. Technology choices were undertaking over a period of twelve month. The work involved a close collaboration between central IT, beamline controls, and beamline support staff. In addition a cooperation was established between DESY IT and IBM to include industrial research and development experience and skills. Our approach integrates HPC technologies for storage systems and protocols. In particular, our solution uses a single file-system instance with a multiple protocol access, while operating within a single namespace.

  11. Analysis of coupled-bunch instabilities for the NSLS-II storage ring with a 500 MHz 7-cell PETRA-III cavity

    NASA Astrophysics Data System (ADS)

    Bassi, G.; Blednykh, A.; Cheng, W.; Gao, F.; Rose, J.; Teytelman, D.

    2016-02-01

    The NSLS-II storage ring is designed to operate with superconducting RF-cavities with the aim to store an average current of 500 mA distributed in 1080 bunches, with a gap in the uniform filling for ion clearing. At the early stage of the commissioning (phase 1), characterized by a bare lattice without damping wigglers and without Landau cavities, a normal conducting 7-cell PETRA-III RF-cavity structure has been installed with the goal to store an average current of 25 mA. In this paper we discuss our analysis of coupled-bunch instabilities driven by the Higher Order Modes (HOMs) of the 7-cell PETRA-III RF-cavity. As a cure of the instabilities, we apply a well-known scheme based on a proper detuning of the HOMs frequencies based upon cavity temperature change, and the use of the beneficial effect of the slow head-tail damping at positive chromaticity to increase the transverse coupled-bunch instability thresholds. In addition, we discuss measurements of coupled-bunch instabilities observed during the phase 1 commissioning of the NSLS-II storage ring. In our analysis we rely, in the longitudinal case, on the theory of coupled-bunch instability for uniform fillings, while in the transverse case we complement our studies with numerical simulations with OASIS, a novel parallel particle tracking code for self-consistent simulations of collective effects driven by short and long-range wakefields.

  12. Development of a scanning transmission x-ray microscope for the beamline P04 at PETRA III DESY

    NASA Astrophysics Data System (ADS)

    Andrianov, Konstantin; Ewald, Johannes; Nisius, Thomas; Lühl, Lars; Malzer, Wolfgang; Kanngießer, Birgit; Wilhein, Thomas

    2016-01-01

    We present a scanning transmission x-ray microscope (STXM) built on top of our existing modular platform for high resolution imaging experiments. This platform consists of up to three separate vacuum chambers and custom designed piezo stages. These piezo stages are able to move precisely in x-, y- and z-direction, this makes it possible to adjust the components for different imaging modes. During recent experiments the endstation was operated mainly as a transmission x-ray microscope (TXM) [1, 2].

  13. PETRA Yearbook 1992-1993.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium).

    This yearbook of PETRA, the European Community's program for providing youths with vocational training and preparing them for adulthood and work, contains 14 articles: "PETRA's Added Value" (Welbers); "Beyond the Fallen Wall" (Hanf); "Project Report: A Flyweight Becomes a Bricklayer"; "PETRA's Southern Tip" (Kourkouta, Chatzipanagiotou);…

  14. Gradient-Modulated PETRA MRI

    PubMed Central

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J.; Garwood, Michael

    2015-01-01

    Image blurring due to off-resonance and fast T2* signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2* signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners. PMID:26771005

  15. Petra and the Nabataeans

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio; González-García, A. César

    The Nabataeans built several monuments in Petra and elsewhere displaying decoration with a certain preference for astronomical motifs. A statistical analysis of the orientation of their sacred monuments demonstrates that astronomical orientations were often part of an elaborate plan and possibly reflect traces of the astral nature of Nabataean religion. Petra and other monuments in the ancient Nabataean kingdom demonstrate the interaction between landscape features and astronomical events. Among other things, the famous Ad Deir has revealed a fascinating ensemble of light and shadow effects, perhaps connected with the bulk of Nabataean mythology, while a series of suggestive solstitial and equinoctial alignments emanate from the impressive Urn Tomb, which might have helped bring about its selection as the cathedral of the city.

  16. The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III

    PubMed Central

    Liermann, H.-P.; Konôpková, Z.; Morgenroth, W.; Glazyrin, K.; Bednarčik, J.; McBride, E. E.; Petitgirard, S.; Delitz, J. T.; Wendt, M.; Bican, Y.; Ehnes, A.; Schwark, I.; Rothkirch, A.; Tischer, M.; Heuer, J.; Schulte-Schrepping, H.; Kracht, T.; Franz, H.

    2015-01-01

    A detailed description is presented of the Extreme Conditions Beamline P02.2 for micro X-ray diffraction studies of matter at simultaneous high pressure and high/low temperatures at PETRA III, in Hamburg, Germany. This includes performance of the X-ray optics and instrumental resolution as well as an overview of the different sample environments available for high-pressure studies in the diamond anvil cell. Particularly emphasized are the high-brilliance and high-energy X-ray diffraction capabilities of the beamline in conjunction with the use of fast area detectors to conduct time-resolved compression studies in the millisecond time regime. Finally, the current capability of the Extreme Conditions Science Infrastructure to support high-pressure research at the Extreme Conditions Beamline and other PETRA III beamlines is described. PMID:26134794

  17. A compact and low-weight sputtering unit for in situ investigations of thin film growth at synchrotron radiation beamlines

    SciTech Connect

    Walter, P.; Dippel, A.-C.; Pflaum, K.; Wernecke, J.; Blume, J.; Hurk, J. van den; Klemradt, U.

    2015-05-15

    In this work, we report on a highly variable, compact, and light high-vacuum sputter deposition unit designed for in situ experiments using synchrotron radiation facilities. The chamber can be mounted at various synchrotron beamlines for scattering experiments in grazing incidence geometry. The sample position and the large exit window allow to perform x-ray experiments up to large q values. The sputtering unit is easy to mount on existing experimental setups and can be remote-controlled. In this paper, we describe in detail the design and the performance of the new sputtering chamber and present the installation of the apparatus at different 3rd generation light sources. Furthermore, we describe the different measurement options and present some selected results. The unit has been successfully commissioned and is now available for users at PETRA III at DESY.

  18. Jet physics at PEP and PETRA

    SciTech Connect

    Hofmann, W.

    1987-09-01

    Recent data on the fragmentation of quarks at PEP and PETRA energies is discussed in the context of phenomenological models of parton fragmentation. Emphasis is placed on the experimental evidence for parton showers as compared to a fixed order QCD treatment, on new data on inclusive hadron production and on detailed studies of baryon production in jets. 63 refs., 22 figs., 3 tabs.

  19. Hadron production at PEP/PETRA

    SciTech Connect

    Yamamoto, H.

    1985-12-01

    Recent results on hadron production in e/sup +/e/sup -/ annihilation at PEP and PETRA are summarized. The topics included are: (1) inclusive hadron production, (2) gluon vs quark jet, (3) analysis of 3 jet events and (4) p - anti p correlations. Experimental data are compared with predictions of several models to reveal underlying physics. 47 refs., 18 figs.

  20. An integrated pipeline for sample preparation and characterization at the EMBL@PETRA3 synchrotron facilities.

    PubMed

    Boivin, Stephane; Kozak, Sandra; Rasmussen, Gry; Nemtanu, Ioana Maria; Vieira, Vanessa; Meijers, Rob

    2016-02-15

    The characterization of macromolecular samples at synchrotrons has traditionally been restricted to direct exposure to X-rays, but beamline automation and diversification of the user community has led to the establishment of complementary characterization facilities off-line. The Sample Preparation and Characterization (SPC) facility at the EMBL@PETRA3 synchrotron provides synchrotron users access to a range of biophysical techniques for preliminary or parallel sample characterization, to optimize sample usage at the beamlines. Here we describe a sample pipeline from bench to beamline, to assist successful structural characterization using small angle X-ray scattering (SAXS) or macromolecular X-ray crystallography (MX). The SPC has developed a range of quality control protocols to assess incoming samples and to suggest optimization protocols. A high-throughput crystallization platform has been adapted to reach a broader user community, to include chemists and biologists that are not experts in structural biology. The SPC in combination with the beamline and computational facilities at EMBL Hamburg provide a full package of integrated facilities for structural biology and can serve as model for implementation of such resources for other infrastructures. PMID:26255961

  1. Recent results on baryon production at PETRA

    SciTech Connect

    Wu, S.L.

    1982-01-01

    One of the recent excitements at PETRA is the observation of the copious production of baryons. About a year ago, TASSO observed the inclusive production of protons and antiprotons. More recently JADE confirmed the inclusive antiproton spectrum to about 1 GeV/c and also observed the inclusive anti ..lambda.. spectrum to about 1.4 GeV/c, while TASSO obtained the ..lambda.. and anti-..lambda.. spectrum all the way up 10 GeV/c in momentum.

  2. e/sup +/e/sup -/ collisions: results from PETRA

    SciTech Connect

    Hilger, E.

    1982-01-01

    A selection of most recent results obtained by the five experiments CELLO, JADE, MARK J, PLUTO, and TASSO at PETRA is presented. The many interesting new results include, for example, the observation of effects of 2nd order QCD, details of inclusive hadron production, and the measurement of the forward-backward asymmetry in lepton pair production due to weak and electromagnetic interference.

  3. Hutch for CSX Beamlines

    SciTech Connect

    Ed Haas

    2012-12-12

    NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.

  4. G4beamline

    Energy Science and Technology Software Center (ESTSC)

    2011-05-24

    G4beamline is a single-particle-tracking simulation code based on the Geant4 toolkit. It is specifically optimized for the realistic evaluation of beam lines. It is especially useful for evaluating future muon facilities.

  5. Hutch for CSX Beamlines

    ScienceCinema

    Ed Haas

    2013-07-17

    NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.

  6. The SLS optics beamline

    SciTech Connect

    Flechsig, U.; Abela, R.; Betemps, R.; Blumer, H.; Frank, K.; Jaggi, A.; MacDowell A.A.; Padmore, H.A.; Schonherr, V.; Ulrich, J.; Walther, H.; Zelenika, S.; Zumbach, C.

    2006-05-20

    A multipurpose beamline for tests and developments in the field of x-ray optics and synchrotron radiation instrumentation in general is under construction at the Swiss Light Source (SLS) bending magnet X05DA. The beamline uses a newly developed UHV compatible, 100 mm thick, brazed CVD diamond vacuum window. The very compact cryogenically cooled channel cut Si(111) monochromator and bendable 1:1 toroidal focusing mirror at 7:75 m from the source point are installed inside the shielding tunnel. The beamline covers a photon energy range of about 6 to 17 keV.We expect 5x1011 photons=s within a 100 mu m spot and a resolving power of 1300. The monochromator and focusing mirror can be retracted independently for unfocused monochromatic and focused ''white'' light operation respectively.

  7. The SLS Optics Beamline

    SciTech Connect

    Flechsig, U.; Abela, R.; Betemps, R.; Blumer, H.; Jaggi, A.; Schoenherr, V.; Ulrich, J.; Walther, H.; Zumbach, C.; Frank, K.; MacDowell, A. A.; Padmore, H. A.; Zelenika, S.

    2007-01-19

    A multipurpose beamline for tests and developments in the field of x-ray optics and synchrotron radiation instrumentation in general is under construction at the Swiss Light Source (SLS) bending magnet X05DA. The beamline uses a newly developed UHV compatible, 100 {mu}m thick, brazed CVD diamond vacuum window. The very compact cryogenically cooled channel cut Si(111) monochromator and bendable 1:1 toroidal focusing mirror at 7.75m from the source point are installed inside the shielding tunnel. The beamline covers a photon energy range of about 6 to 17 keV. We expect 5 {center_dot} 1011 photons/s within a 100 {mu}m spot and a resolving power of 1300. The monochromator and focusing mirror can be retracted independently for unfocused monochromatic and focused ''white'' light operation respectively.

  8. Sun Cities: Thebes, Hattusha, and Petra: A Landscape Story

    NASA Astrophysics Data System (ADS)

    Belmonte, J. A.; González-García, A. C.

    2016-01-01

    The sky is a very important component of the landscape that has been lost in our modern, overcrowded, and excessively illuminated cities. However, this was not the case in the past. Astronomy played a highly relevant role in urban planning, especially in the organization of sacred spaces which were later surrounded by extensive civil urban areas. Today, archaeoastronomy approaches the minds of our ancestors studying the starry landscape and how it is printed in the terrain by the visualization and the orientation of sacred buildings. The sun was indeed the most important component of that celestial landscape and was the primary focus within a large set of unique cultures of great historical significance. In particular, we will study and compare the case of three sun cities: Thebes (Belmonte et al. 2009, Belmonte 2012), Hattusha (Gonzalez-Garcia & Belmonte 2011), and Petra (Belmonte et al. 2013), capitals of Egypt in the Middle and New Kingdoms, the Hittite Empire, and the Nabataean Kingdom, respectively. We will briefly discuss each of these cultures and will scrutinize their capital cities, showing how their strategic geographical position and orography were of key importance, but also how solar observation, and related hierophanies, played a relevant role in the orientation and location of some of their most significant monuments. In particular, we will focus on the great temple of Amun-Re in Karnak, Temple 1 in Hattusha (presumably devoted to the Solar Goddess of Arinna), and the “Monastery” at Petra.

  9. Ionic composition of wet precipitation in the Petra Region, Jordan

    NASA Astrophysics Data System (ADS)

    Al-Khashman, Omar A.

    2005-11-01

    The results of chemical analysis of precipitation samples collected in Petra between October 2002 and May 2004 are presented. All samples were analyzed for major cations (NH 4+, Na +, K +, Ca 2+ and Mg 2+), major anions (Cl -, NO 3-, HCO 3- and SO 42-), conductivity and pH. The daily sample pH values ranged from 5.71 to 8.15 with an average value of 6.85 ± 0.5. Rainwater quality is characterized by low salinity and neutralized pH. Generally, the pH is high due to dust in the atmosphere, which contains a large fraction of calcite. Factor analysis was used to identify the factors that affect the presence of ions in wet precipitation; these factors permitted the identification of three source groups, namely crustal dust, sea-salt spray and combustion products. In general, the results of the present study suggest that the atmospheric composition in the Petra region is strongly influenced by natural sources rather than anthropogenic sources.

  10. Automatic beamline calibration procedures

    SciTech Connect

    Corbett, W.J.; Lee, M.J.; Zambre, Y.

    1992-03-01

    Recent experience with the SLC and SPEAR accelerators have led to a well-defined set of procedures for calibration of the beamline model using the orbit fitting program, RESOLVE. Difference orbit analysis is used to calibrate quadrupole strengths, BPM sensitivities, corrector strengths, focusing effects from insertion devices, and to determine the source of dispersion and coupling errors. Absolute orbit analysis is used to locate quadrupole misalignments, BPM offsets, or beam loss. For light source applications, the photon beam source coordinates can be found. The result is an accurate model of the accelerator which can be used for machine control. In this paper, automatable beamline calibration procedures are outlined and illustrated with recent examples. 5 refs.

  11. PLS photoemission electron microscopy beamline

    NASA Astrophysics Data System (ADS)

    Kang, Tai-Hee; Kim, Ki-jeong; Hwang, C. C.; Rah, S.; Park, C. Y.; Kim, Bongsoo

    2001-07-01

    The performance of a recently commissioned beamline at the Pohang Light Source (PLS) is described. The beamline, which is located at 4B1 at PLS, is a Varied Line Spacing (VLS) Plane Grating Monochromator (PGM) beamline. VLS PGM has become very popular because of the simple scanning mechanism and the fixed exit slit. The beamline which takes 3 mrad horizontal beam fan from bending magnet, covers the energy range 200-1000 eV for Photoemission Electron Microscopy (PEEM), X-ray Photoelectron Spectroscopy (XPS) and Magnetic Circular Dichroism (MCD) experiments. Simplicity of the optics and high flux with medium resolution were the design goals for these applications. The beamline consists of a horizontal focusing mirror, a vertical focusing mirror, VLS plane grating and exit slit. The source of PLS could be used as a virtual entrance slit because of its small size and stability. The flux and the resolution of the beamline at the experimental station have been measured using an ion chamber and a calibrated photodiode. Test images of PEEM from a standard sample were taken to illustrate the further performance of the beamline and PEEM station.

  12. SRI CAT Section 1 bending magnet beamline description

    SciTech Connect

    Srajer, G.; Rodricks, B.; Assoufid, L.; Mills, D.M.

    1994-03-10

    This report discusses: APS bending magnet source; beamline layout; beamline optical components; beamline operation; time-resolved studies station; polarization studies station; and commissioning and operational schedule.

  13. Enemy Images, Developmental Psychology, And Peace Education. Peace Education Miniprints No. 29. Petra Hesse and the Project "Preparedness for Peace."

    ERIC Educational Resources Information Center

    Lund Univ. (Sweden). Malmo School of Education.

    An interview on peace education with Petra Hesse, of the Center for Psychological Studies in the Nuclear Age (Cambridge, Massachusetts), is presented. The Center for Psychological Studies in the Nuclear Age was founded out of a concern about children's fears of the future and the risks of nuclear war. Petra Hesse coordinates a research project on…

  14. SPring-8 Structural Biology Beamlines / Automatic Beamline Operation at RIKEN Structural Genomics Beamlines

    SciTech Connect

    Ueno, Go; Hasegawa, Kazuya; Okazaki, Nobuo; Sakai, Hisanobu; Kumasaka, Takashi; Yamamoto, Masaki

    2007-01-19

    RIKEN Structural Genomics Beamlines (BL26B1 and BL26B2) at SPring-8 have been constructed for high throughput protein crystallography. The beamline operation is automated cooperating with the sample changer robot. The operation software provides a centralized control utilizing the client and server architecture. The sample management system with the networked database has been implemented to accept dry-shipped crystals from distant users.

  15. Decay of sandstone monuments in Petra (Jordan): Gravity-induced stress as a stabilizing factor

    NASA Astrophysics Data System (ADS)

    Řihošek, Jaroslav; Bruthans, Jiří; Mašín, David; Filippi, Michal; Schweigstillova, Jana

    2016-04-01

    As demonstrated by physical experiments and numerical modeling the gravity-induced stress (stress in further text) in sandstone massive reduces weathering and erosion rate (Bruthans et al. 2014). This finding is in contrast to common view that stress threatens stability of man-made monuments carved to sandstone. Certain low- levels of gravity-induced stress can in fact stabilize and protect these forms against weathering and disintegration. The purpose of this investigation is to evaluate the effect of the stress on weathering of sandstone monuments at the Petra World Heritage Site in Jordan via field observations, salt weathering experiments, and physical and numerical modeling. Previous studies on weathering of Petra monuments have neglected the impact of stress, but the ubiquitous presence of stress-controlled landforms in Petra suggests that it has a substantial effect on weathering and erosion processes on man-made monuments and natural surfaces. Laboratory salt weathering experiments with cubes of Umm Ishrin sandstone from Petra demonstrated the inverse relationship between stress magnitude and decay rate. Physical modeling with Strelec locked sand from the Czech Republic was used to simulate weathering and decay of Petra monuments. Sharp forms subjected to water erosion decayed to rounded shapes strikingly similar to tombs in Petra subjected to more than 2000 years of weathering and erosion. The physical modeling results enabled visualization of the recession of monument surfaces in high spatial and temporal resolution and indicate that the recession rate of Petra monuments is far from constant both in space and time. Numerical modeling of stress fields confirms the physical modeling results. This novel approach to investigate weathering clearly demonstrates that increased stress decreases the decay rate of Petra monuments. To properly delineate the endangered zones of monuments, the potential damage caused by weathering agents should be combined with stress

  16. Fast fluorescence techniques for crystallography beamlines

    PubMed Central

    Stepanov, Sergey; Hilgart, Mark; Yoder, Derek W.; Makarov, Oleg; Becker, Michael; Sanishvili, Ruslan; Ogata, Craig M.; Venugopalan, Nagarajan; Aragão, David; Caffrey, Martin; Smith, Janet L.; Fischetti, Robert F.

    2011-01-01

    This paper reports on several developments of X-ray fluorescence techniques for macromolecular crystallography recently implemented at the National Institute of General Medical Sciences and National Cancer Institute beamlines at the Advanced Photon Source. These include (i) three-band on-the-fly energy scanning around absorption edges with adaptive positioning of the fine-step band calculated from a coarse pass; (ii) on-the-fly X-ray fluorescence rastering over rectangular domains for locating small and invisible crystals with a shuttle-scanning option for increased speed; (iii) fluorescence rastering over user-specified multi-segmented polygons; and (iv) automatic signal optimization for reduced radiation damage of samples. PMID:21808424

  17. Advanced beamline automation for biological crystallography experiments.

    PubMed

    Cork, Carl; O'Neill, James; Taylor, John; Earnest, Thomas

    2006-08-01

    An automated crystal-mounting/alignment system has been developed at Lawrence Berkeley National Laboratory and has been installed on three of the protein-crystallography experimental stations at the Advanced Light Source (ALS); it is currently being implemented at synchrotron crystallography beamlines at CHESS, NSLS and the APS. The benefits to using an automounter system include (i) optimization of the use of synchrotron beam time, (ii) facilitation of advanced data-collection techniques, (iii) collection of higher quality data, (iv) reduction of the risk to crystals and (v) exploration of systematic studies of experimental protocols. Developments on the next-generation automounter with improvements in robustness, automated alignment and sample tracking are under way, with an end-to-end data-flow process being developed to allow remote data collection and monitoring. PMID:16855300

  18. High power photon beamline elements in the LBL/SSRL/EXXON Beamline VI

    SciTech Connect

    Hoyer, E.

    1992-09-01

    Beamline VI is a wiggler-based, multi-kilowatt, intense synchrotron radiation beamline installed SPEAR. The thermal design parameters for this beamline are presented and then design considerations and construction descriptions are given for many of the high-power photon beamline elements.

  19. Particle searches in e/sup +/e/sup -/ experiments at PEP and PETRA

    SciTech Connect

    Lau, K.H.

    1982-10-01

    This talk reviews recent results in new particle searches performed by experiments at the high energy e/sup +/e/sup -/ storage rings PEP and PETRA. It concentrates on recent searches for: hadrons with a new quark flavor, spin-1/2 charged heavy leptons, spin-0 charged leptons, spin-0 point-like scalars or pseudoscalars, and neutral heavy leptons.

  20. ALS beamline design requirements: A guide for beamline designers

    SciTech Connect

    1996-06-01

    This manual is written as a guide for researchers in designing beamlines and endstations acceptable for use at the ALS. It contains guidelines and policies related to personnel safety and equipment and vacuum protection. All equipment and procedures must ultimately satisfy the safety requirements set aside in the Lawrence Berkeley National Laboratory (LBNL) Health and Safety Manual (PUB-3000) which is available from the ALS User Office or on the World WideWeb from the LBNL Homepage (http:// www.lbl.gov).

  1. After three decades of research, is the Nabataean city of Petra still under threat?

    NASA Astrophysics Data System (ADS)

    Gomez-Heras, M.; Lopez-Arce, P.; Bala'awi, F.; Ishakat, F.; Alvarez de Buergo, M.; Fort, R.; Wedekind, W.

    2012-04-01

    The year 2012 marks the 200th anniversary of the rediscovering of the Nabataean city of Petra (Jordan) by Swiss archaeologist Johann Ludwig Burckhardt. The city of Petra is one of the most singular built-heritage monumental sets in the world because of the size of the built structures, the extension in which these structures appear and the intricate relation between natural and built environment in the site. These are part of the reasons of its uniqueness that conducted to its inscription as a UNESCO World Heritage Site in 1985. However, the conservation and management of such a large archaeological site can be very challenging due to the diverse decay processes and agents operating on the site. As a result, the site conservation has been heavily hindered in the past and Petra was included in 1998, 2000 and 2002 in the former World Monuments Fund list of the one hundred most endangered sites (now World Monuments Watch). It also was described as one of the most endangered world heritage sites in the ICOMOS reports "Heritage at risk". Many studies on the decay processes that operate in Petra have been carried out from the point of view of earth sciences, from the first studies carried out in the 80's by many researchers from several countries, funded by very different funding schemes; sometimes working on different specific topics within the high variability of existing problems in Petra, but sometimes, working in parallel without communication. In addition to this, many of the studies carried out locally have not been published internationally and therefore neither have not reached the wider scientific community nor the local decision makers. Petra is, therefore, a good example of how a complex and large site may favour a research environment in which scientific results are fragmentary and synergies are not generated, moreover when it should be approached under inter and multidisciplinary teams. These synergies could be of great benefit, not only to the scientific

  2. Beamline 10: A multipole wiggler beamline at SSRL

    SciTech Connect

    Karpenko, V.; Kinney, J. H.; Kulkarni, S.; Neufeld, K.; Poppe, C.; Tirsell, K. G.; Wong, J.; Cerino, J.; Troxel, T.; Yang, J.; and others

    1989-07-01

    A beamline has been constructed at Stanford Synchrotron Radiation Laboratory (SSRL) whose radiation source is a multipole permanent magnet wiggler installed in a straight section of the SPEAR 3--3.5 GeV electron storage ring. The wiggler is a hybrid design that utilizes Nd--Fe alloy magnet material combined with Vanadium Permendur poles. It is approximately 2 m long and has 15 full wiggler periods. Its field is regulated by varying its gap height. It has a peak operating field, limited by the electron beam vacuum chamber vertical aperture, of 1.4 T. The beamline consists of vacuum, safety, and optical components capable of transporting photons to one hard x-ray (3--30 keV) end station, with provisions for implementing up to two additional branch lines. The existing hard x-ray branch can be focused by a Pt-coated toroidal mirror with a cutoff energy of approximately 22 keV. The experimental end station is serviced by a Hower--Brown type double crystal monochromator. The wiggler and beamline construction was completed in the fall of 1987 and was operated for a brief period for characterization and experimental use. We present design details and results of the initial characterization studies.

  3. Beamline 10: A multipole wiggler beamline at SSRL (invited)

    NASA Astrophysics Data System (ADS)

    Karpenko, V.; Kinney, J. H.; Kulkarni, S.; Neufeld, K.; Poppe, C.; Tirsell, K. G.; Wong, J.; Cerino, J.; Troxel, T.; Yang, J.; Hoyer, E.; Green, M.; Humphries, D.; Marks, S.; Plate, D.

    1989-07-01

    A beamline has been constructed at Stanford Synchrotron Radiation Laboratory (SSRL) whose radiation source is a multipole permanent magnet wiggler installed in a straight section of the SPEAR 3-3.5 GeV electron storage ring. The wiggler is a hybrid design that utilizes Nd-Fe alloy magnet material combined with Vanadium Permendur poles. It is approximately 2 m long and has 15 full wiggler periods. Its field is regulated by varying its gap height. It has a peak operating field, limited by the electron beam vacuum chamber vertical aperture, of 1.4 T. The beamline consists of vacuum, safety, and optical components capable of transporting photons to one hard x-ray (3-30 keV) end station, with provisions for implementing up to two additional branch lines. The existing hard x-ray branch can be focused by a Pt-coated toroidal mirror with a cutoff energy of approximately 22 keV. The experimental end station is serviced by a Hower-Brown type double crystal monochromator. The wiggler and beamline construction was completed in the fall of 1987 and was operated for a brief period for characterization and experimental use. We present design details and results of the initial characterization studies.

  4. Design of the LBNE Beamline

    SciTech Connect

    Papadimitriou, Vaia; Andrews, Richard; Hylen, James; Kobilarcik, Thomas; Marchionni, Alberto; Moore, Craig D.; Schlabach, Phil; Tariq, Salman

    2015-02-05

    The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab’s Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are sign selected and subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay mostly into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW; however, the facility is designed to be upgradeable for 2.3 MW operation. We discuss here the status of the design and the associated challenges.

  5. SPring-8 beamline control system.

    PubMed

    Ohata, T; Konishi, H; Kimura, H; Furukawa, Y; Tamasaku, K; Nakatani, T; Tanabe, T; Matsumoto, N; Ishii, M; Ishikawa, T

    1998-05-01

    The SPring-8 beamline control system is now taking part in the control of the insertion device (ID), front end, beam transportation channel and all interlock systems of the beamline: it will supply a highly standardized environment of apparatus control for collaborative researchers. In particular, ID operation is very important in a third-generation synchrotron light source facility. It is also very important to consider the security system because the ID is part of the storage ring and is therefore governed by the synchrotron ring control system. The progress of computer networking systems and the technology of security control require the development of a highly flexible control system. An interlock system that is independent of the control system has increased the reliability. For the beamline control system the so-called standard model concept has been adopted. VME-bus (VME) is used as the front-end control system and a UNIX workstation as the operator console. CPU boards of the VME-bus are RISC processor-based board computers operated by a LynxOS-based HP-RT real-time operating system. The workstation and the VME are linked to each other by a network, and form the distributed system. The HP 9000/700 series with HP-UX and the HP 9000/743rt series with HP-RT are used. All the controllable apparatus may be operated from any workstation. PMID:15263588

  6. Design of the LBNF Beamline

    SciTech Connect

    Papadimitriou, V.; Andrews, R.; Hylen, J.; Kobilarcik, T.; Krafczyk, G.; Marchinonni, A.; Moore, C. D.; Schlabach, P.; Tariq, S.

    2015-08-30

    The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band neutrino beam toward underground detectors placed at the SURF Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab’s Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are subsequently focused by magnetic horns into a 204 m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial proton beam power is expected to be 1.2 MW; however, the facility is designed to be upgradeable to 2.4 MW. We discuss here the design status and the associated challenges as well as plans for improvements before baselining the facility.

  7. Decontamination, Dismantling and Refurbishing of the PETRA Glove Box at the Tritium Laboratory, Karlsruhe

    SciTech Connect

    Caldwell-Nichols, C.J.; Glugla, M.; Doerr, L.; Berndt, U.

    2005-07-15

    The PETRA facility at the Tritium Laboratory Karlsruhe (TLK) has finished its useful life and the glove box and auxiliary systems are being refurbished. During the lifetime of PETRA the glove box became contaminated with a small amount of tritium but the source has not been positively identified. Removing large redundant components would be hazardous as this would require removing the glove box panels and thus exposing the inner surfaces to moist air which would release tritium. Over several months defined amounts of water have been introduced into the glove box daily which has liberated significant quantities of tritium which has subsequently been absorbed by the in-built tritium retention system. This technique has slowly reduced the tritium liberated at each step. The large components, such as a getter bed, catalyst bed and a permeator, have been detritiated as far as possible in-situ in readiness for disposal once it is safe to remove them from the glove box.

  8. Dismantling of the PETRA glove box: tritium contamination and inventory assessment

    SciTech Connect

    Wagner, R.

    2015-03-15

    The PETRA facility is the first installation in which experiments with tritium were carried out at the Tritium Laboratory Karlsruhe. After completion of two main experimental programs, the decommissioning of PETRA was initiated with the aim to reuse the glove box and its main still valuable components. A decommissioning plan was engaged to: -) identify the source of tritium release in the glove box, -) clarify the status of the main components, -) assess residual tritium inventories, and -) de-tritiate the components to be disposed of as waste. Several analytical techniques - calorimetry on small solid samples, wipe test followed by liquid scintillation counting for surface contamination assessment, gas chromatography on gaseous samples - were deployed and cross-checked to assess the remaining tritium inventories and initiate the decommissioning process. The methodology and the main outcomes of the numerous different tritium measurements are presented and discussed. (authors)

  9. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Heimann, P.A.; Mossessian, D.

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  10. An artistic and mythological study of a Nabatean female Sphinx from Petra, Jordan.

    NASA Astrophysics Data System (ADS)

    Almasri, Eyad R.; Al-Ajlouny, Fardous K.; Alghazawi, Raed Y.

    In 1967 the Group of Sculptures was discovered in Petra during clearance works organized by the Department of Antiquities in Jordan in the Temenos of Qasr el Bint around the Temenos Gate. One of these sculptures was a high relief statue of a female sphinx. Due to the paucity of information about this statue, this paper has been written to answer a number of questions: What was its original site or monument? When was it made? Who was the deity or deities it represented? Could there be another interpretation of its existence? The answers to the above provide enlightenment of Nabataean styles of carvings and an insight into their religious thoughts. Rgarding the interpretation of the Female Sphinx. Three ideas have been suggested. First, it can be the main Nabataean goddess Allat, "the mother of the gods". Second, it is an image of Petra as a goddess. Third, it is carved on the Temenos Gate as a guardian of Petra city in general and its holy monuments like temples and tombs in particular.

  11. Status of the crystallography beamlines at SSRF

    NASA Astrophysics Data System (ADS)

    He, Jianhua; Gao, Xingyu

    2015-02-01

    The Shanghai Synchrotron Radiation Facility (SSRF), an advanced intermediate-energy third-generation light source in China, was completed with seven phase-I beamlines opening to users in May 2009. Among these beamlines, there are two dedicated crystallography beamlines, one for macromolecular crystallography and one for crystallography in materials science, condensed matter physics and other relevant fields. The macromolecular crystallography beamline BL17U1, based on an in-vacuum undulator, has achieved very high brightness at the sample position with its flux of 4.1 × 1012 photons/s at 12 keV and focused beam size of FWHM (H × V) 67 × 23 μm2 in a small beam divergence over an energy range of 5-18 keV. Nowadays, there are about 200 user groups at this beamline with more than 330 structures solved each year. In the past, lots of significant results have been obtained at this beamline, such as the structural determination of important membrane proteins and proteins of viruses. In addition, three new macromolecular crystallography beamlines of different features have just been constructed and will soon open to users. To meet the rapidly growing user demands and the important scientific challenges, a few more dedicated crystallography beamlines have been proposed in the Phase-II Beamlines Project.

  12. Performance Measurements at the SLS Spectroscopy Beamline

    SciTech Connect

    Flechsig, U.; Patthey, L.; Schmidt, T.

    2004-05-12

    The Surfaces and Interfaces Spectroscopy beamline (SIS) started user operation in spring 2002 as one of the first beamlines at SLS. It is optimized for high resolution photo electron spectroscopy. The beamline concept with two helical undulators plus a plane grating monochromator with grazing- and normal incidence optics is very flexible and offers a well balanced performance from 10 eV to 800 eV. We report on beamline features and performance measurements. The final characterization is still in progress since not all options have been commissioned so far.

  13. 76 FR 54468 - Petra Pet, Inc. (a/k/a Petrapport) v. Panda Logistics Limited; Panda Logistics Co., Ltd. (f/k/a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Petra Pet, Inc. (a/k/a Petrapport) v. Panda Logistics Limited; Panda Logistics Co., Ltd. (f/k/a panda... Petra Pet, Inc. (a/k/a Petrapport), hereinafter ``Complainant,'' against Respondents Panda Logistics Limited, Panda Logistics Co., Ltd. (f/k/a Panda Int'l Transportation Co., Ltd), and RDM Solutions...

  14. BNL ATF II beamlines design

    SciTech Connect

    Fedurin, M.; Jing, Y.; Stratakis, D.; Swinson, C.

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  15. Innovations in the design of mechanical components for a beamline -- The SRl`95 Workshop 2 summary

    SciTech Connect

    Kuzay, T.M.; Warwick, T.

    1995-12-31

    The Synchrotron Radiation Instrumentation 1995 Conference (SRI`95) was hosted by the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Of the many workshops within the conference, the SRI`95 Workshop 2 was ``Innovations in the Design of Mechanical Components of a Beamline``. The workshop was attended well with over 140 registrants. The following topics were discussed. Industry`s perspective on the status and future was provided by Huber Diffrationtechnik, Oxford Instruments, and Kohzu Seiko Ltd. on goniometers/diffractometers, advanced manufacturing technique of high heat load components, such as the APS photon shutter, and the specialties of monochromators provided to the third-generation synchrotrons, respectively. This was followed by a description of the engineering of a dual function monochromator design for water-cooled diamond or cryogenically cooled silicon monochromators by CMC CAT/APS. Another category was the nagging problem of sensitivity of the photon beam position monitors (XBPM) to bending magnet radiation (``BM contamination``) and the undulator magnet gap changes. Problem descriptions and suggested solutions were provided by both the Advanced Light Source (ALS) and the APS. Other innovative ideas were the cooling schemes (enhanced cooling of beamline components using metallic porous meshes including cryo-cooled applications); Glidcop photon shutter design using microchannels at the ALS; and window/filter design, manufacture and operational experiences at CHESS and PETRA/HASYLAB. Additional discussions were held on designing for micromotions and precision in the optical support systems and smart user filter schemes. This is a summary of the presentations at the Workshop. 5 refs., 5 figs.

  16. Diagnostic X-Multi-Axis Beamline

    SciTech Connect

    Paul, A C

    2000-04-05

    Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by about 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45 degrees. An upgrade can later be made

  17. Status of the crystallography beamlines at Elettra

    NASA Astrophysics Data System (ADS)

    Lausi, A.; Polentarutti, M.; Onesti, S.; Plaisier, J. R.; Busetto, E.; Bais, G.; Barba, L.; Cassetta, A.; Campi, G.; Lamba, D.; Pifferi, A.; Mande, S. C.; Sarma, D. D.; Sharma, S. M.; Paolucci, G.

    2015-03-01

    Elettra is one of the first 3rd-generation storage rings, recently upgraded to routinely operate in top-up mode at both 2.0 and 2.4 GeV. The facility hosts four dedicated beamlines for crystallography, two open to the users and two under construction, and expected to be ready for public use in 2015. In service since 1994, XRD1 is a general-purpose diffraction beamline. The light source for this wide (4-21 keV) energy range beamline is a permanent magnet wiggler. XRD1 covers experiments ranging from grazing incidence X-ray diffraction to macromolecular crystallography, from industrial applications of powder diffraction to X-ray phasing with long wavelengths. The bending magnet powder diffraction beamline MCX has been open to users since 2009, with a focus on microstructural investigations and studies under non-ambient conditions. A superconducting wiggler delivers a high photon flux to a new fully automated beamline dedicated to macromolecular crystallography and to a branch beamline hosting a high-pressure powder X-ray diffraction station (both currently under construction). Users of the latter experimental station will have access to a specialized sample preparation laboratory, shared with the SISSI infrared beamline. A high throughput crystallization platform equipped with an imaging system for the remote viewing, evaluation and scoring of the macromolecular crystallization experiments has also been established and is open to the user community.

  18. A Dedicated THz Beamline At BESSY

    NASA Astrophysics Data System (ADS)

    Holldack, K.; Ponwitz, D.

    2007-01-01

    A special beamline dedicated to the Far Infrared (THz) region was successfully commissioned at BESSY for the spectral range between 50 GHz and 4.5 THz. The beamline accepts synchrotron radiation from a bend magnet source close to the interaction region of a femtosecond laser with the electron bunch. Either edge radiation as well as the regular bend magnet fan can be accepted. The beamline was tailored for diagnostics and experiments employing coherent synchrotron radiation (CSR) from regular and compressed bunches as well as from a laser-induced fs density modulation on the electron bunch. Besides a technical description of the beamlinethe the sources are compared using Fourier Transform Spectroscopy (FTIR).

  19. Real Beamline Optics from a Synthetic Beam

    SciTech Connect

    Ryan Bodenstein,Michael Tiefenback,Yves Roblin

    2010-05-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab can be described as a series of concatenated beamlines. Methods used to measure the Twiss parameters in closed orbit machines are not applicable in such open ended systems. We are using properly selected sets of real orbits in the accelerator, as one would for numerical analysis. The evolution of these trajectories along the beamline models the behavior of a synthetic beam which deterministically supplements beam profile-based Twiss parameter measurements and optimizes the efficiency of beamline tuning. Examples will be presented alongside a description of the process.

  20. Microspectroscopy At Beamline 73 MAX-lab

    SciTech Connect

    Engdahl, Anders

    2010-02-03

    Presentation of some projects at the infrared microspectroscopy experimental station at beamline 73 MAX-lab. Among the subjects are found identification of organic residues in fossil material and examination of the chemistry in an old oak wood wreck.

  1. Modeling of X-ray beamlines and devices

    SciTech Connect

    Ice, G.E.

    1996-12-31

    X-ray beamlines on synchrotron sources are similar in size and complexity to beamlines at state-of-the-art neutron sources. The design principles, tools, and optimization strategies for synchrotron beamlines are also similar to those of neutron beamlines. The authors describe existing design tools for modeling synchrotron radiation beamlines and describe how these tools have evolved over the last two decades. The development of increasingly powerful modeling tools has been driven by the escalating cost and sophistication of state-of-the-art beamlines and by a world-wide race to exploit advanced synchrotron radiation sources.

  2. Ring beamlines and instrumentation for industrial applications

    NASA Astrophysics Data System (ADS)

    Pearce, W. Jorge; Trippe, Anthony P.

    1994-08-01

    Many recently constructed storage rings are catering to the needs of industrial applications in addition to providing the traditional services required for synchrotron radiation research. The Center for Advanced Microstructures and Devices (CAMD) was established by Louisiana State University to pioneer development of microfabrication while supporting research in basic science. Maxwell Laboratories designed, built, and successfully commissioned the 1.2 GeV, 400 mA light source for CAMD. Maxwell Laboratories has completed one X-ray lithography beamline at CAMD, and two more are now being manufactured. The completed beamline system, designed for thin resists, delivers photons up to 2 keV. The two beamlines currently under construction deliver photons up to 6 keV for thick (> 50 μm) resists, which play a role in the fabrication of 3-D nanostructures. One of the thick-resist beamlines includes an aspheric mirror that collimates the synchrotron-radiation beam in the horizontal plane while focusing it in the vertical direction - creating a sharp, uniform line image at the workpiece. The other thick-resist beamline has conventional planar optics. Beam position monitors (BPMs) developed for the CAMD beamlines provide a precise vertical profile of the beam by measuring differential photocurrents generated in the BPM probes. Beam power measurements are accomplished with a fixed-aperture calorimeter. Since each calorimeter is precisely calibrated before shipment, its thermal response in the beam is an accurate means to determine beam power for setting lithography exposure times or for computing beamline energy balance.

  3. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    SciTech Connect

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

  4. New SRC APPLE II variable polarization beamline

    NASA Astrophysics Data System (ADS)

    Severson, M.; Bissen, M.; Fisher, M. V.; Rogers, G.; Reininger, R.; Green, M.; Eisert, D.; Tredinnick, B.

    2011-09-01

    SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings at the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 μm exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10 12 (photons/s/200 mA) range, and a spot size of 400 μm horizontal by 30 μm vertical.

  5. New SRC APPLE ll Variable Polarization Beamline

    SciTech Connect

    M Severson; M Bissen; M Fisher; G Rogers; R Reininger; M Green; D Eisert; B Tredinnick

    2011-12-31

    SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings at the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 {mu}m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10{sup 12} (photons/s/200 mA) range, and a spot size of 400 {mu}m horizontal by 30 {mu}m vertical.

  6. Status of the Dortmund TGM3-Beamline

    SciTech Connect

    Berges, U.; Westphal, C.; Dreiner, S.; Krause, M.

    2004-05-12

    The former TGM3 beamline at BESSYI was rebuilt at the DELTA storage ring, University of Dortmund, Germany. The beamline uses synchrotron radiation from a dipole bending magnet. The previous design of the beamline had to be adapted to an operation at DELTA. This included a motorized rotation of the first mirror, since that mirror is located within the radiation shield wall at DELTA. Also, further minor components had to be modified, adapted, or replaced. During the set-up at DELTA, previously known operation problems due to mechanical vibrations were eliminated by a complete new mounting of the optical components. The measured performance parameters at BESSYI are compared with calculated results for an operation at DELTA. The first commissioning experiments are currently carried out.

  7. IR beamline at the Swiss Light Source

    NASA Astrophysics Data System (ADS)

    Ph, Lerch; L, Quaroni; J, Wambach; J, Schneider; B, Armstrong D.; D, Rossetti; L, Mueller F.; P, Peier; V, Schlott; L, Carroll; P, Friedli; H, Sigg; S, Stutz; M, Tran

    2012-05-01

    The infrared beamline at the Swiss light source uses dipole radiation and is designed to transport light to four experimental stations, A, B, C, D. Branch A is dedicated to far IR work in vacuum; branch B is a micro-spectrometer; branch C is dedicated to high resolution spectroscopy in the gas phase; branch D is a pump and probe set-up. This contribution describes the optical layout and provides a brief survey of currently available experimental stations. The beamline is in regular user operation since 2009.

  8. The First Group of CANDLE Beamlines

    SciTech Connect

    Aghasyan, M.; Grigoryan, A.; Mikaelyan, R.

    2004-05-12

    The Center for the Advancement of Natural Discoveries using Light Emission (CANDLE) is a 3 GeV intermediate energy light source project in Armenia. The paper presents the study and design futures of the first group of beamlines that are planed to run among with the facility operation scheduled for year 2007. Presented beamlines will cover the experimental researches based on diffraction and powder diffraction, XAS, Soft X-ray spectroscopy and microscopy, Small angle X-ray scattering, X-ray Imaging techniques and LIGA.

  9. Innovations in the design of mechanical components for a beamline-The SRI'95 Workshop 2 Summary (invited)

    NASA Astrophysics Data System (ADS)

    Kuzay, T. M.; Warwick, T.

    1996-09-01

    The Synchrotron Radiation Instrumentation 1995 Conference (SRI'95) was hosted by the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Of the many workshops within the conference, the SRI'95 Workshop 2 was ``Innovations in the Design of Mechanical Components of a Beamline.'' The workshop was well attended with over 140 registrants. The following topics were discussed. Industry's perspective on the status and future was provided by Huber Diffraktionstechnik GMBH on goniometers/diffractometers, Oxford Instruments on advanced manufacturing technique of high heat load components, such as the APS photon shutter, and Kohzu Seiki Co. Ltd. on the specialties of monochromators provided to the third-generation synchrotrons. This was followed by a description of the engineering of a dual function monochromator design for water-cooled diamond or cryogenically cooled silicon monochromators by CMC CAT/APS. Another category was the nagging problem of sensitivity of the photon beam position monitors (XBPM) to bending magnet radiation (``BM contamination'') and the undulator magnet gap changes. Problem descriptions and suggested solutions were provided by both the Advanced Light Source (ALS) and the APS. Other innovative ideas were the cooling schemes (enhanced cooling of beamline components using metallic porous meshes including cryo-cooled applications); Glidcop photon shutter design using microchannels at the ALS; and window/filter design, manufacture and operational experiences at CHESS and PETRA/HASYLAB. Additional discussions were held on designing for micromotions and precision in the optical support systems and smart user filter schemes. This is a summary of the presentations at the Workshop.

  10. ELECTROMAGNETIC FIELD MEASUREMENT OF FUNDAMENTAL AND HIGHER-ORDER MODES FOR 7-CELL CAVITY OF PETRA-II

    SciTech Connect

    Kawashima, Y.; Blednykh, A.; Cupolo, J.; Davidsaver, M.; Holub, B.; Ma, H.; Oliva, J.; Rose, J.; Sikora, R.; Yeddulla, M.

    2011-03-28

    The booster synchrotron for NSLS-II will include a 7-cell PETRA cavity, which was manufactured for the PETRA-II project at DESY. The cavity fundamental frequency operates at 500 MHz. In order to verify the impedances of the fundamental and higher-order modes (HOM), which were calculated by computer code, we measured the magnitude of the electromagnetic field of the fundamental acceleration mode and HOM using the bead-pull method. To keep the cavity body temperature constant, we used a chiller system to supply cooling water at 20 degrees C. The bead-pull measurement was automated with a computer. We encountered some issues during the measurement process due to the difficulty in measuring the electromagnetic field magnitude in a multi-cell cavity. We describe the method and apparatus for the field measurement, and the obtained results.

  11. Neutral beamline with improved ion energy recovery

    DOEpatents

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  12. Human factors design for the BMIT biomedical beamlines

    NASA Astrophysics Data System (ADS)

    Miller, C. Denise; Wysokinski, Tomasz W.; Belev, George; Chapman, L. Dean

    2013-03-01

    Operation of a biomedical beamline poses a unique set of operational and instrumentation challenges for a synchrotron facility. From proper handling and care of live animals and animal tissues, to a user community drawn primarily from the medical and veterinary realms, the work of a biomedical beamline is unique when compared to other beamlines. At the Biomedical Imaging and Therapy (BMIT) beamlines at Canadian Light Source (CLS), operation of the beamlines is geared towards our user community of medical personnel, in addition to basic science researchers. Human factors considerations have been incorporated wherever possible on BMIT, including in the design of software and hardware, as well as ease-of-use features of beamline control stations and experiment hutches. Feedback from users continues to drive usability improvements to beamline operations.

  13. Chemical and Mineralogical study of Nabataean painted pottery from Petra, Jordan.

    NASA Astrophysics Data System (ADS)

    Alawneh, Firas; Bala'awi, Fadi

    Nabataean pottery is distinguished by the thinness of its walls, which were sometimes only 1.5 mm thick. It was a pinkish/red color, often decorated by hand with dark brown flower and leaf designs. The typical (egg-shell) shallow open bowls productions were very difficult to make on the potter's wheel, demonstrating how skilled their craftsmen were Nabataean painted pottery from Petra Jordan were examined in order to determine the mineralogical characteristics of the raw pigment materials used for their production and to elucidate the ceramic manufacturing technologies employed. Optical microscopy, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM-EDS) were the analytical techniques used. The initial examination of the ceramic shreds in optical microscopy showed all samples to be identical in their paint and paste textures. The mineralogical composition of the paste (unpainted outer surface) is typical of a clay poor in calcium and fired at moderate-high temperature in an oxidizing atmosphere. The paste is composed of quartz, plagioclase, potassium feldspar, hematite, dolomite, and calcite. The latter two phases might be attributed to post-depositional contamination, since examination with both optical and scanning electron microscopes show fine carbonate particles deposited in the pores and cracks of the shred. The paint on the inner surface of the vessel, on the other hand is composed of hematite as a major phase with only some quartz and plagioclase.

  14. Recent results from the JADE collaboration at PETRA on e+e- annihilation to multihadrons

    SciTech Connect

    O'Neill, L.H. Jr.

    1981-01-01

    A search for production of a new quark flavor in multihadronic states from e+e- annihilation has been made up to an energy of 35.8 GeV in the center of mass. No evidence is seen for such production. A new statistical analysis by the JADE collaboration of the combined data of four PETRA experiments from a fine energy scan in the region 29.90 to 31.46 GeV in the center of mass sets new upper limits on the integrated cross section for a bound state consisting of a new flavor quark and antiquark. The ability of the JADE detector to measure dE/dx provides new upper bounds on the production of fractionally charged particles such as free quarks, or of heavy, integrally charged states such as long-lived B mesons. Finally the fractions of the final state energy carried by gamma rays and by neutral particles of all kinds are measured at center of mass energies from 12 to 35 GeV. The gamma ray and neutral energy fractions are approximately 26% and 38% respectively, while the fractional energy carried by neutrinos is less than 15%.

  15. 1993 CAT workshop on beamline optical designs

    SciTech Connect

    Not Available

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.

  16. Performance measurements at the SLS SIM beamline

    SciTech Connect

    Flechsig, U.; Nolting, F.; Fraile Rodriguez, A.; Krempasky, J.; Quitmann, C.; Schmidt, T.; Spielmann, S.; Zimoch, D.

    2010-06-23

    The Surface/Interface: Microscopy beamline of the Swiss Light Source started operation in 2001. In 2007 the beamline has been significantly upgraded with a second refocusing section and a blazed grating optimized for high photon flux. Two Apple II type undulators with a plane grating monochromator using the collimated light scheme deliver photons with an energy from 90eV to about 2keV with variable polarization for the photoemission electron microscope (PEEM) as the primary user station. We measured a focus of (45x60) {mu}m({nu}xh) and a photon flux > 10{sup 12} photon/s for all gratings. Polarization switching within a few seconds is realized with the small bandpass of the monochromator and a slight detuning of the undulator.

  17. Synchrotron beamlines for x-ray lithography

    NASA Astrophysics Data System (ADS)

    Trippe, Anthony P.; Pearce, W. J.

    1994-02-01

    Louisiana State University established the J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD). Designed and constructed by the Brobeck Division of Maxwell Laboratories, the CAMD synchrotron light source is the first electron storage ring to be built by a commercial company in the United States. The synchrotron x-ray radiation generated at CAMD is an extremely useful exposure source for both thin and thick film lithography. Passing through a beamline containing two plane mirrors, the synchrotron light is used to expose thin resists for lithography of patterns with feature sizes of 0.25 micron and smaller. Two thick-resist beamlines, one using a single aspheric (collimating) mirror and one using a plane mirror, provide the higher flux photons required for miniaturization in silicon to produce microscopic mechanical devices including gears, motors, filters, and valves.

  18. How good can our beamlines be?

    PubMed Central

    Liebschner, Dorothee; Dauter, Miroslawa; Rosenbaum, Gerold; Dauter, Zbigniew

    2012-01-01

    The accuracy of X-ray diffraction data depends on the properties of the crystalline sample and on the performance of the data-collection facility (synchrotron beamline elements, goniostat, detector etc.). However, it is difficult to evaluate the level of performance of the experimental setup from the quality of data sets collected in rotation mode, as various crystal properties such as mosaicity, non-uniformity and radiation damage affect the measured intensities. A multiple-image experiment, in which several analogous diffraction frames are recorded consecutively at the same crystal orientation, allows minimization of the influence of the sample properties. A series of 100 diffraction images of a thaumatin crystal were measured on the SBC beamline 19BM at the APS (Argonne National Laboratory). The obtained data were analyzed in the context of the performance of the data-collection facility. An objective way to estimate the uncertainties of individual reflections was achieved by analyzing the behavior of reflection intensities in the series of analogous diffraction images. The multiple-image experiment is found to be a simple and adequate method to decompose the random errors from the systematic errors in the data, which helps in judging the performance of a data-collection facility. In particular, displaying the intensity as a function of the frame number allows evaluation of the stability of the beam, the beamline elements and the detector with minimal influence of the crystal properties. Such an experiment permits evaluation of the highest possible data quality potentially achievable at the particular beamline. PMID:22993097

  19. Nomenclature of SLC Arc beamline components

    SciTech Connect

    Silva, J.; Weng, W.T.

    1986-04-10

    This note defines I and C formal names for beamline components in the Arc as specified in the TRANSPORT decks ARCN FINAL and ARCS FINAL of June 5, 1985. The formal name consists of three fields: the primary name, the zone and the unit number. The general principles and guidelines are explained in Reference 1. The rationale and the final resolutions of the naming conventions for the Arc are explained.

  20. An Updated AP2 Beamline TURTLE Model

    SciTech Connect

    Gormley, M.; O'Day, S.

    1991-08-23

    This note describes a TURTLE model of the AP2 beamline. This model was created by D. Johnson and improved by J. Hangst. The authors of this note have made additional improvements which reflect recent element and magnet setting changes. The magnet characteristics measurements and survey data compiled to update the model will be presented. A printout of the actual TURTLE deck may be found in appendix A.

  1. Beryllium window for an APS diagnostics beamline

    SciTech Connect

    Sheng, I.C.; Yang, B.X.; Sharma, Y.S.

    1997-09-01

    A beryllium (Be) window for an Advanced Photon Source (APS) diagnostics beamline has been designed and built. The window, which has a double concave axisymmetrical profile with a thickness of 0.5 mm at the center, receives 160 W/mm{sup 2} (7 GeV/100 mA stored beam) from an undulator beam. The window design as well as thermal and thermomechanical analyses, including thermal buckling of the Be window, are presented.

  2. How good can our beamlines be?

    SciTech Connect

    Liebschner, Dorothee; Dauter, Miroslawa; Rosenbaum, Gerold Dauter, Zbigniew

    2012-10-01

    A repetitive measurement of the same diffraction image allows to judge the performance of a data collection facility. The accuracy of X-ray diffraction data depends on the properties of the crystalline sample and on the performance of the data-collection facility (synchrotron beamline elements, goniostat, detector etc.). However, it is difficult to evaluate the level of performance of the experimental setup from the quality of data sets collected in rotation mode, as various crystal properties such as mosaicity, non-uniformity and radiation damage affect the measured intensities. A multiple-image experiment, in which several analogous diffraction frames are recorded consecutively at the same crystal orientation, allows minimization of the influence of the sample properties. A series of 100 diffraction images of a thaumatin crystal were measured on the SBC beamline 19BM at the APS (Argonne National Laboratory). The obtained data were analyzed in the context of the performance of the data-collection facility. An objective way to estimate the uncertainties of individual reflections was achieved by analyzing the behavior of reflection intensities in the series of analogous diffraction images. The multiple-image experiment is found to be a simple and adequate method to decompose the random errors from the systematic errors in the data, which helps in judging the performance of a data-collection facility. In particular, displaying the intensity as a function of the frame number allows evaluation of the stability of the beam, the beamline elements and the detector with minimal influence of the crystal properties. Such an experiment permits evaluation of the highest possible data quality potentially achievable at the particular beamline.

  3. Shielding Calculations for NSLS-II Beamlines.

    SciTech Connect

    Job,P.K.; Casey, W.R.

    2008-04-13

    Brookhaven National Laboratory is in the process of designing a new Electron Synchrotron for scientific research using synchrotron radiation. This facility, called the 'National Synchrotron Light Source II' (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster accelerator operating from 200 MeV to 3.0 GeV, the storage ring which stores 500 mA current of electrons at an energy of 3.0 GeV and 56 beamlines for experiments. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to < 1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 hours. Each of the 56 beamlines will be unique in terms of the source properties and configuration. The shielding designs for five representative beamlines are discussed in this paper.

  4. Undulator based beamline studies on U5

    NASA Astrophysics Data System (ADS)

    McDonnell, L.; Johnson, P.; Klaffky, R. W.; Smith, N. V.

    An undulator installed on beamline U5 at NSLS is expected to produce an intense flux of photons into a highly collimated beam. At normal operating energies (750 MeV) the FEL undulator is expected to have a fundamental harmonic at wavelength lambda = 300A for magnetic strength parameter K = 1. A simple beamline has been constructed to allow measurements of the absolute photon flux available from this device at wavelengths in the long wavelength tail of the fundamental. The central element of this beamline is a small monochromator based on the chromatic aberration properties of a LiF lens. This lens focuses different wavelengths at different points along the optical axis and monochromatization is achieved by moving the lens to focus different wavelengths onto a fixed 200 microns wide exit slit. Photoelectron spectroscopy was carried out with a CMA; photoelectrons being ejected from a freshly evaporated gold surface. Examination of a typical series of EDC's recorded on this system allows measurements of the bandwidth of the monochromator to be made. By measuring the total yield of electrons from the surface and comparing with previously published electron yield measurements from the same surface it is possible to obtain the total flux of photons from the undultor source.

  5. A new compact soft x-ray spectrometer for resonant inelastic x-ray scattering studies at PETRA III

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Peters, H. B.; Hahn, U.; Agâker, M.; Hage, A.; Reininger, R.; Siewert, F.; Nordgren, J.; Viefhaus, J.; Techert, S.

    2015-09-01

    We present a newly designed compact grating spectrometer for the energy range from 210 eV to 1250 eV, which would include the Kα1,2 emission lines of vital elements like C, N, and O. The spectrometer is based on a grazing incidence spherical varied line spacing grating with 2400 l/mm at its center and a radius of curvature of 58 542 mm. First, results show a resolving power of around 1000 at an energy of 550 eV and a working spectrometer for high vacuum (10-4 mbar) environment without losing photon intensity.

  6. A new compact soft x-ray spectrometer for resonant inelastic x-ray scattering studies at PETRA III

    SciTech Connect

    Yin, Z. E-mail: simone.techert@desy.de; Peters, H. B.; Hahn, U.; Viefhaus, J.; Agåker, M.; Nordgren, J.; Hage, A.; Reininger, R.; Siewert, F.; Techert, S. E-mail: simone.techert@desy.de

    2015-09-15

    We present a newly designed compact grating spectrometer for the energy range from 210 eV to 1250 eV, which would include the Kα{sub 1,2} emission lines of vital elements like C, N, and O. The spectrometer is based on a grazing incidence spherical varied line spacing grating with 2400 l/mm at its center and a radius of curvature of 58 542 mm. First, results show a resolving power of around 1000 at an energy of 550 eV and a working spectrometer for high vacuum (10{sup −4} mbar) environment without losing photon intensity.

  7. Beamline Performance Simulations for the Fundamental Neutron Physics Beamline at the Spallation Neutron Source

    PubMed Central

    Huffman, P. R.; Greene, G. L.; Allen, R. R.; Cianciolo, V.; Huerto, R. R.; Koehler, P.; Desai, D.; Mahurin, R.; Yue, A.; Palmquist, G. R.; Snow, W. M.

    2005-01-01

    Monte Carlo simulations are being performed to design and characterize the neutron optics components for the two fundamental neutron physics beamlines at the Spallation Neutron Source. Optimization of the cold beamline includes characterization of the guides and benders, the neutron transmission through the 0.89 nm monochromator, and the expected performance of the four time-of-flight choppers. The locations and opening angles of the choppers have been studied using a simple spreadsheet-based analysis that was developed for other SNS chopper instruments. The spreadsheet parameters are then optimized using Monte Carlo techniques to obtain the results presented in this paper. Optimization of the 0.89 nm beamline includes characterizing the double crystal monochromator and the downstream guides. The simulations continue to be refined as components are ordered and their exact size and performance specifications are determined.

  8. Macromolecular crystallography beamline X25 at the NSLS

    PubMed Central

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community. PMID:24763654

  9. Design of Beamline BL9 at Saga Light Source

    SciTech Connect

    Tanaka, Tooru; Ogawa, Hiroshi; Kamada, Masao; Nishio, Mitsuhiro; Guo, Qixin; Masuda, Masataka; Motooka, Teruaki; Kondo, Yuzi; Hayashida, Kazuki; Yoshimura, Daisuke; Setoyama, Hiroyuki; Okajima, Toshihiro

    2007-01-19

    Saga Light Source (SAGA-LS), which has been constructed at Tosu city in Saga prefecture, is a compact synchrotron light source with storage electron energy of 1.4 GeV. A new beamline for the development of advanced materials and processing has been designed, and is now under construction at BL9 of SAGA-LS. This beamline is one of the three bending magnet beamlines (BL9, BL12, and BL15) constructed by Saga Prefectural Government. In this paper, we describe the design and the expected optical performance of the beamline BL9 at SAGA-LS.

  10. Possibility of observing color-symmetry violation in the two-photon experiments of PLUTO at PETRA

    SciTech Connect

    Efremov, A.; Ivanov, S.

    1982-01-01

    The two-photon processes being studied by the PLUTO group at PETRA are discussed from the point of view of study of color symmetry. The reaction which is cleanest theoretically is the annihilation of two photons into two hadron jets with large transverse momentum. The PLUTO results for this process are compared with calculations using QCD and the calculations in the model of electrostrong interactions with violation of color symmetry. It is not clear whether the departure of the experimental results from QCD is due to an important role of higher twists or to the violation of color symmetry. (AIP)

  11. Protecting Unesco World Heritage PROPERTIES'S Integrity: the Role of Recording and Documentation in Risk Management for PETRA

    NASA Astrophysics Data System (ADS)

    Santana Quintero, M.; Cesaro, G.; Ishakat, F.; Vandesande, A.; Vileikis, O.; Vadafari, A.; Paolini, A.; Van Balen, K.; Fakhoury, L.

    2012-07-01

    Risk management - as it has been defined - involves the decision-making process following a risk assessment (Ball, Watt, 2003). It is the process that involves managing to minimize losses and impacts on the significant of historic structures and to reach the balance between gaining and losing opportunities. This contribution explains the "heritage information" platform developed using low-cost recording, documentation and information management tools to serve as container for assessments resulting from the application of a risk methodology at a pilot area of the Petra Archaeological Park, in particular those that permit digitally and cost effective to prepare an adequate baseline record to identify disturbances and threats. Furthermore, this paper will reflect on the issue of mapping the World Heritage property's boundaries by illustrating a methodology developed during the project and further research to overcome the lack of boundaries and buffer zone for the protection of the Petra World Heritage site, as identified in this project. This paper is based on on-going field project from a multidisciplinary team of experts from the Raymond Lemaire International Centre for Conservation (University of Leuven), UNESCO Amman, Petra Development Tourism and Region Authority (PDTRA), and Jordan's Department of Antiquities (DoA), as well as, experts from Jordan. The recording and documentation approach included in this contribution is part of an on-going effort to develop a methodology for mitigating (active and preventive) risks on the Petra Archaeological Park (Jordan). The risk assessment has been performed using non-intrusive techniques, which involve simple global navigation satellite system (GNSS), photography, and structured visual inspection, as well as, a heritage information framework based on Geographic Information Systems. The approach takes into consideration the comparison of vulnerability to sites with the value assessment to prioritize monuments at risk based

  12. Damage Assessment and Digital 2D-3D Documentation of PetraTreasury

    NASA Astrophysics Data System (ADS)

    Bala'awi, Fadi; Alshawabkeh, Yahya; Alawneh, Firas; Masri, Eyed al

    The treasury is the icon monument of the world heritage site of ancient Petra city. Unfortunately, this important part of the world's cultural heritage is gradually being diminished due to weathering and erosion problems. This give rise to the need to have a comprehensive study and full documentation of the monument in order to evaluate its status. In this research a comprehensive approach utilizing 2D-3D documentation of the structure using laser scanner and photogrammetry is carried parallel with a laboratory analysis and a correlation study of the salt content and the surface weathering forms. In addition, the research extends to evaluate a set of chemical and physical properties of the case study monument. Studies of stone texture and spatial distribution of soluble salts were carried out at the monument in order to explain the mechanism of the weathering problem. Then a series of field work investigations and laboratory work were undertaken to study the effect of relative humidity, temperature, and wind are the main factors in the salt damage process. The 3D modelling provides accurate geometric and radiometric properties of the damage shape. In order to support the visual quality of 3D surface details and cracks, a hybrid approach combining data from the laser scanner and the digital imagery was developed. Based on the findings, salt damage appears to be one of the main problems at this monument. Although, the total soluble salt content are quite low, but the salts contamination is all over the tested samples in all seasons, with higher concentrations at deep intervals. The thermodynamic calculations carried out by this research have also shown that salt damage could be minimised by controlling the surrounding relative humidity conditions. This measure is undoubtedly the most challenging of all, and its application, if deemed feasible, should be carried out in parallel with other conservation measures.

  13. Functional description of APS beamline front ends

    SciTech Connect

    Kuzay, T.

    1993-02-01

    Traditional synchrotron sources were designed to produce bending magnet radiation and have proven to be an essential scientific tool. Currently, a new generation of synchrotron sources is being built that will be able to accommodate a large number of insertion device (ID) and high quality bending magnet (BM) sources. One example is the 7-GeV Advanced Photon Source (APS) now under construction at Argonne National Laboratory. The research and development effort at the APS is designed to fully develop the potential of this new generation of synchrotron sources. Of the 40 straight sections in the APS storage ring, 34 will be available for IDs. The remaining six sections are reserved for the storage ring hardware and diagnostics. Although the ring incorporates 80 BMs, only 40 of them can be used to extract radiation. The accelerator hardware shadows five of these 40 bending magnets, so the maximum number of BM sources on the lattice is 35. Generally, a photon beamline consists of four functional sections. The first section is the ID or the BM, which provides the radiation source. The second section, which is immediately outside the storage ring but inside a concrete shielding tunnel, is the front end, which is designed to control, define, and/or confine the x-ray beam. In the case of the APS, the front ends are designed to confine the photon beam. The third section, just outside the concrete shielding tunnel and on the experimental floor, is the first optics enclosure, which contains optics to filter and monochromatize the photon beam. The fourth section of a beamline consists of beam transports, additional optics, and experiment stations to do the scientific investigations. This document describes only the front ends of the APS beamlines.

  14. The Dutch-Belgian beamline at the ESRF.

    PubMed

    Borsboom, M; Bras, W; Cerjak, I; Detollenaere, D; Glastra Van Loon, D; Goedtkindt, P; Konijnenburg, M; Lassing, P; Levine, Y K; Munneke, B; Oversluizen, M; Van Tol, R; Vlieg, E

    1998-05-01

    A brief description is given of the design principles and layout of the Dutch-Belgian beamline at the ESRF. This beamline optimizes the use of the available bending-magnet radiation fan by splitting the beam into two branches, each accommodating two experimental techniques. PMID:15263564

  15. G4beamline Particle Tracking in Matter Dominated Beam Lines

    SciTech Connect

    T.J. Roberts, K.B. Beard, S. Ahmed, D. Huang, D.M. Kaplan

    2011-03-01

    The G4beamline program is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available at http://g4beamline.muonsinc.com

  16. A Remote and Virtual Synchrotron Beamline

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Alp, E.; Sturhahn, W.

    2012-12-01

    National facilities offer one-of-a-kind opportunities to apply state-of-the-art experimental techniques to the pressing scientific problems of today. Yet, few students are able to experience research projects at national facilities due to limited accessibility caused in part by limited involvement in the local academic institution, constrained working areas at the experimental stations, and/or travel costs. We present a virtual and remote beam-line for Earth science studies using nuclear resonant and inelastic x-ray scattering methods at Sector 3 of the Advanced Photon Source at Argonne National Laboratory. Off-site students have the capability of controlling their measurements via secure internet connections and webcams. Students can access a 'view only mode' for ease of interaction and safety-control. More experienced users have exclusive control of the experiment and can remotely change variables within the experimental setup. Students may also access the virtual aspects these experiments by simulating certain conditions with our newly developed software. We evaluate such a tool by giving "before" and "after" assignments to students at different levels. These levels include high-school students from the Pasadena and greater Los Angeles area school districts, undergraduate students from Caltech's SURF/MURF program, and graduate students at Caltech. We specifically target underrepresented groups. Our results thus far show that the capabilities offered by our remote and virtual beamline show improved knowledge and understanding of applying experimental-based studies at the synchrotron to solve problems in the Earth sciences.

  17. The mammography project at the SYRMEP beamline.

    PubMed

    Dreossi, D; Abrami, A; Arfelli, F; Bregant, P; Casarin, K; Chenda, V; Cova, M A; Longo, R; Menk, R-H; Quai, E; Quaia, E; Rigon, L; Rokvic, T; Sanabor, D; Tonutti, M; Tromba, G; Vascotto, A; Zanconati, F; Castelli, E

    2008-12-01

    A clinical program for X-ray phase contrast (PhC) mammography with synchrotron radiation (SR) has been started in March 2006 at the SYRMEP beamline of Elettra, the SR facility in Trieste, Italy. The original beamline layout has been modified substantially and a clinical facility has been realized. In order to fulfill all security requirements, dedicated systems have been designed and implemented, following redundancy criteria and "fail safe" philosophy. Planar radiographic images are obtained by scanning simultaneously the patient and the detector through the stationary and laminar SR beam. In this first phase of the project a commercial screen-film system has been used as image receptor. Upon approval by the respective authorities, the mammography program is about half way to conclusion. Up to now about 50 patients have been examined. The patients are volunteers recruited by the radiologist after conventional examinations at the hospital resulted in an uncertain diagnosis. As an example one case of PhC SR mammography is shown and compared to conventional digital mammography. Preliminary analysis shows the high diagnostic quality of the PhC SR images that were acquired with equal or less delivered dose compared to the conventional ones. PMID:18617344

  18. Diagnostics Beamline for the SRF Gun Project

    SciTech Connect

    T. Kamps; V. Durr; K. Goldammer; D. Kramer; P. Kuske; J. Kuszynski; D. Lipka; F. Marhauser; T. Quast; D. Richter; U. Lehnert; P. Michel; J. Teichert; P. Evtushenko; I. Will

    2005-08-22

    A superconducting radio-frequency photo electron injector (SRF gun) is currently under construction by a collaboration of BESSY, DESY, FZR and MBI. The project aims at the design and setup of a CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies between 5 ps and 50 ps, two schemes using electro-optical sampling and Cherenkov radiation are detailed. The beam energy and energy spread is measured with a 180-degree spectrometer.

  19. The Infrared Microspectroscopy Beamline at CAMD

    SciTech Connect

    Kizilkaya, O.; Singh, V.; Desta, Y.; Pease, M.; Roy, A.; Scott, J.; Goettert, J.; Morikawa, E.; Hormes, J.; Prange, A.

    2007-01-19

    The first infrared microspectroscopy beamline at the Louisiana State University, Center for Advanced Microstructures and Devices (LSU-CAMD) has been constructed and dedicated to investigation of samples from various disciplines including chemistry, geology, biology, and material sciences. The beamline comprises a simple optical configuration. A planar and toroidal mirror pair collects 50 and 15 mrad synchrotron radiation in horizontal and vertical directions, respectively, and focuses the beam through a diamond window located outside of the shielding wall. This focus acts as a new source point for the rest of the optical systems. The synchrotron beam spot size of 35 {mu}m and 12 {mu}m is measured in the x and y direction of the sample stage position of the microscope. This small beam spot has a superior brightness compared to conventional IR sources and allows spatially resolved measurements with very good signal/noise ratio. Compared to a conventional thermal source, synchrotron radiation provides 30 times better intensity and a two orders of magnitude greater signal/noise ratio when measuring with microscope aperture size of 15 x 15 {mu}m{sup 2}. The results of the studies on the fungus-plant interaction with its resultant effects on the healthy leaves, and bacterial growth process in the crystallization of gordaite, a mineral, are presented.

  20. Neutral beamline with improved ion energy recovery

    DOEpatents

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  1. A heat transfer study for beamline components in high-power wiggler and undulator beamlines. Part I. Beam stops

    SciTech Connect

    Bedzyk, M. J.; Keeffe, M. J.; Schildkamp, W.; Shen, Q.

    1989-07-01

    The heat transfer capabilities of beam stops in CHESS wiggler and undulator beamlines is described. The thermal analysis for the design of these crucial in-vacuum beamline components is based on the use of a finite element analysis computer calculation and experimental heat loading tests.

  2. The ACCM Beamlines For Bioscience Studies

    NASA Astrophysics Data System (ADS)

    Ma, C. I.; Chang, S. H.; Liu, C. Y.; Juang, J. M.; Chang, C. H.; Tsang, K. L.

    2007-01-01

    To meet the increasing demand of X-ray beamlines for bioscience research, we have designed two high-performance, side-branch, asymmetric-cut curved crystal monochromator (ACCM) beamlines to fully utilize the sideway output of the superconducting wiggler SW6 at NSRRC. Each of these two beamlines (BL13A and BL13C) collects 1 mrad of the radiation fan in the horizontal direction, one centered at 3 mrad and the other at 4 mrad away from the central line of the wiggler output. The newly designed ACCMs are capable of energy scanning from 12 keV to 14 keV and offer good performances in terms of flux, resolution and stability. The ACCMs are designed and built in-house, combining efficient cooling and bending mechanisms in a compact unit that allows precise adjustments on a goniometer assembly. The bender is specially designed with symmetrically driven piezo-actuators that minimize center displacement during bending. Both direct and indirect cooling methods were tested; the former using Ga/In directly under the beam footprint and the latter using both sides of the crystal clamping area for cooling. Performance of the beamlines employing both cooling methods has been measured. The indirect cooling method provides 4.9 × 1010 photons/sec through a pair of 100 μm slits (H × V) with energy resolution of 5.3 × 10-3 (ΔE/E) at 12.7 keV. Higher energy resolution in the 10-4 range can be achieved by adjusting the horizontal source fan or the crystal radius at the expense of flux. The direct cooling method provides 1.4 × 1010 photons/sec through a pair of 100 μm slits (H × V) with energy resolution of 1.2 × 10-3 (ΔE/E) at 12.7 keV. The FWHM of the focused beam profile in the indirect cooling mode is 800 × 109 μm (H × V), and 800 × 283 μm (H × V) in the direct cooling mode with some horizontal tail, the latter being larger due to influence of the Ga/In layer on the crystal shape. Cooling efficiency is excellent in the direct cooling mode, in which the performance

  3. Innovations in the design of mechanical components for a beamline{emdash}The SRI{close_quote}95 Workshop 2 Summary

    SciTech Connect

    Kuzay, T.; Warwick, T. |

    1996-09-01

    The Synchrotron Radiation Instrumentation 1995 Conference (SRI{close_quote}95) was hosted by the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Of the many workshops within the conference, the SRI{close_quote}95 Workshop 2 was {open_quote}{open_quote}Innovations in the Design of Mechanical Components of a Beamline.{close_quote}{close_quote} The workshop was well attended with over 140 registrants. The following topics were discussed. Industry{close_quote}s perspective on the status and future was provided by Huber Diffraktionstechnik GMBH on goniometers/diffractometers, Oxford Instruments on advanced manufacturing technique of high heat load components, such as the APS photon shutter, and Kohzu Seiki Co. Ltd. on the specialties of monochromators provided to the third-generation synchrotrons. This was followed by a description of the engineering of a dual function monochromator design for water-cooled diamond or cryogenically cooled silicon monochromators by CMC CAT/APS. Another category was the nagging problem of sensitivity of the photon beam position monitors (XBPM) to bending magnet radiation ({open_quote}{open_quote}BM contamination{close_quote}{close_quote}) and the undulator magnet gap changes. Problem descriptions and suggested solutions were provided by both the Advanced Light Source (ALS) and the APS. Other innovative ideas were the cooling schemes (enhanced cooling of beamline components using metallic porous meshes including cryo-cooled applications); Glidcop photon shutter design using microchannels at the ALS; and window/filter design, manufacture and operational experiences at CHESS and PETRA/HASYLAB. Additional discussions were held on designing for micromotions and precision in the optical support systems and smart user filter schemes. This is a summary of the presentations at the Workshop. {copyright} {ital 1996 American Institute of Physics.}

  4. Mirrors for synchrotron-radiation beamlines

    SciTech Connect

    Howells, M.R.

    1993-09-01

    The authors consider the role of mirrors in synchrotron-radiation beamlines and discuss the optical considerations involved in their design. They discuss toroidal, spherical, elliptical, and paraboloidal mirrors in detail with particular attention to their aberration properties. They give a treatment of the sine condition and describe its role in correcting the coma of axisymmetric systems. They show in detail how coma is inevitable in single-reflection, grazing-incidence systems but correctable in two-reflection systems such as those of the Wolter type. In an appendix, they give the theory of point aberrations of reflectors of a general shape and discuss the question of correct naming of aberrations. In particular, a strict definition of coma is required if attempts at correction are to be based on the sine condition.

  5. An approach to better understanding of salt weathering on stone monuments - the "petraSalt" research project

    NASA Astrophysics Data System (ADS)

    Heinrichs, K.; Azzam, R.

    2012-04-01

    Salt weathering is known as a major cause of damage on stone monuments. However, processes and mechanisms of salt weathering still can not be explained satisfactorily. From the expertś point of view, better understanding of salt weathering deserves further comprehensive in-situ investigation jointly addressing active salt weathering processes and controlling factors. The 'petraSalt' research project takes this approach. The rock-cut monuments of Petra / Jordan were selected for studies, since stone type and spectra of monument exposure regimes, environmental influences, salt loading and weathering damage are representative for many stone monuments worldwide. The project aims at real-time / real-scale weathering models that depict characteristic interdependencies between stone properties, monument exposure regimes, environmental influences, salt loading and salt weathering damage. These models are expected to allow reliable rating and interpretation of aggressiveness and damage potential of the salt weathering regimes considering their variability under range of lithology, monument exposure scenarios, environmental conditions and time. The methodological approach systematically combines assessment of weathering damage (type, extent, spatial distribution and progression of damage), assessment of monument exposure characteristics and environmental influences acting on the monuments (monument orientation / geometry, lithology, rain impact, water run-off, rising humidity, wind impact, insolation, heating-cooling and drying-wetting behaviour, etc.), engineering geological studies (structural discontinuities and related failure processes) and investigation of salt loading (type, concentration, spatial distribution and origin of salt, salt crystallization / dissolution, phase transitions, etc.). Besides established methods, very innovative technologies are applied in the course of investigation such as high-resolution 3D terrestrial laser scanning (TLS) and wireless

  6. Commissioning of a microprobe-XRF beamline (BL-16) on Indus-2 synchrotron source

    SciTech Connect

    Tiwari, M. K.; Gupta, P.; Sinha, A. K.; Garg, C. K.; Singh, A. K.; Kane, S. R.; Garg, S. R.; Lodha, G. S.

    2012-06-05

    We report commissioning of the microprobe-XRF beamline on Indus-2 synchrotron source. The beamline has been recently made operational and is now open for the user's experiments. The beamline comprises of Si(111) double crystal monochromator and Kirkpatrick-Baez focusing optics. The beamline covers wide photon energy range of 4 - 20 keV using both collimated and micro-focused beam modes. The design details and the first commissioning results obtained using this beamline are presented.

  7. Provenance of white marbles from the nabatean sites of Qase Al Bint and colonnaded street baths at Petra, Jordan

    NASA Astrophysics Data System (ADS)

    Abu-Jaber, Nizar; al-Saad, Ziad; Shiyyab, Adnan; Degryse, Patrick

    Intercultural relations and trade are important components of understanding of historical interrelationships between regions and cultures. One of the most interesting objects of trade is stone, because of the expense and difficulty of its transport. Thus, the source of marble used in the Nabatean city of Petra was investigated using established petrological, geochemical and isotopic analyses. Specifically, marble from Qasr al Bint and the Colonnaded Street baths were sampled and investigated. The results of these analyses show that the marbles came from sources in Asia Minora and Greece. The most likely sources of the marble are the quarries of Thasos, Penteli, Prokennesos and Dokimeion. The choice of marble followed the desired utilitarian and aesthetic function of the stone. These results show that active trade in stone was part of the cultural interaction of the period.

  8. Transport from the Recycler Ring to the Antiproton Source Beamlines

    SciTech Connect

    Xiao, M.; /Fermilab

    2012-05-14

    In the post-NOvA era, the protons are directly transported from the Booster ring to the Recycler ring rather than the Main Injector. For Mu2e and g-2 project, the Debuncher ring will be modified into a Delivery ring to deliver the protons to both Mu2e and g-2 experiments. Therefore, it requires the transport of protons from the Recycler Ring to the Delivery ring. A new transfer line from the Recycler ring to the P1 beamline will be constructed to transport proton beam from the Recycler Ring to existing Antiproton Source beamlines. This new beamline provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. This paper presents the Conceptual Design of this new beamline.

  9. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    SciTech Connect

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  10. New HMI hard X-ray Diffraction Beamlines at BESSY

    SciTech Connect

    Denks, I. A.; Genzel, C.; Dudzik, E.; Feyerherm, R.; Klaus, M.; Wagener, G.

    2007-01-19

    Since April 2005 the Hahn-Meitner-Institute is operating two new beamlines for energy dispersive diffraction experiments (EDDI) and for (resonant) magnetic scattering (MAGS) at BESSY. The source for both beamlines is a superconducting 7 T multipole wiggler which provides hard X-ray photons with energies between 4 and 150 keV. The EDDI beamline uses the white beam and is intended for residual stress measurements on small samples as well as heavy engineering parts. The MAGS beamline delivers a focussed monochromatic beam with photon fluxes in the 1012 (s 100 mA 0.1 % bandwidth)-1 range at energies from 4 to 30 keV. It is equipped for single crystal diffraction and resonant (magnetic) scattering experiments as well as for the study of thin films, micro-, and nanostructures in materials science.

  11. New HMI hard X-ray Diffraction Beamlines at BESSY

    NASA Astrophysics Data System (ADS)

    Denks, I. A.; Genzel, C.; Dudzik, E.; Feyerherm, R.; Klaus, M.; Wagener, G.

    2007-01-01

    Since April 2005 the Hahn-Meitner-Institute is operating two new beamlines for energy dispersive diffraction experiments (EDDI) and for (resonant) magnetic scattering (MAGS) at BESSY. The source for both beamlines is a superconducting 7 T multipole wiggler which provides hard X-ray photons with energies between 4 and 150 keV. The EDDI beamline uses the white beam and is intended for residual stress measurements on small samples as well as heavy engineering parts. The MAGS beamline delivers a focussed monochromatic beam with photon fluxes in the 1012 (s 100 mA 0.1 % bandwidth)-1 range at energies from 4 to 30 keV. It is equipped for single crystal diffraction and resonant (magnetic) scattering experiments as well as for the study of thin films, micro-, and nanostructures in materials science.

  12. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  13. A tunable wedge-shaped absorber for hard X-ray synchrotron applications.

    PubMed

    Krywka, C; Brix, M; Müller, M

    2014-07-01

    The concept of a concave aluminium wedge-shaped absorber for hard X-ray synchrotron beamlines is presented. Unlike the commonly used absorber types (fixed-thickness absorber sheets or binary exchangers of individual fixed absorbers), this concept allows a compact system, controlled with a single linear positioner, and provides a wide attenuation range as well as a precise tunability over a large energy range. Data were recorded at the Nanofocus Endstation of the MINAXS beamline, PETRA III, Hamburg, Germany. PMID:24971979

  14. New Large Volume Press Beamlines at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Hormes, J.; Lauterjung, J.; Secco, R.; Hallin, E.

    2013-12-01

    The Canadian Light Source, the German Research Centre for Geosciences and the Western University recently agreed to establish two new large volume press beamlines at the Canadian Lightsource. As the first step a 250 tons DIA-LVP will be installed at the IDEAS beamline in 2014. The further development is associated with the construction of a superconducting wiggler beamline at the Brockhouse sector. A 1750 tons DIA LVP will be installed there about 2 years later. Up to the completion of this wiggler beamline the big press will be used for offline high pressure high temperature experiments under simulated Earth's mantle conditions. In addition to X-ray diffraction, all up-to-date high pressure techniques as ultrasonic interferometry, deformation analyses by X-radiography, X-ray densitometry, falling sphere viscosimetry, multi-staging etc. will be available at both beamlines. After the required commissioning the beamlines will be open to the worldwide user community from Geosciences, general material sciences, physics, chemistry, biology etc. based on the evaluation and ranking of the submitted user proposals by an international review panel.

  15. D3, the new diffractometer for the macromolecular crystallography beamlines of the Swiss Light Source

    PubMed Central

    Fuchs, Martin R.; Pradervand, Claude; Thominet, Vincent; Schneider, Roman; Panepucci, Ezequiel; Grunder, Marcel; Gabadinho, Jose; Dworkowski, Florian S. N.; Tomizaki, Takashi; Schneider, Jörg; Mayer, Aline; Curtin, Adrian; Olieric, Vincent; Frommherz, Uli; Kotrle, Goran; Welte, Jörg; Wang, Xinyu; Maag, Stephan; Schulze-Briese, Clemens; Wang, Meitian

    2014-01-01

    A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. Building upon and critically extending previous developments realised for the high-resolution endstations of the two undulator beamlines X06SA and X10SA, as well as the super-bend dipole beamline X06DA, the new diffractometer was designed to the following core design goals. (i) Redesign of the goniometer to a sub-micrometer peak-to-peak cylinder of confusion for the horizontal single axis. Crystal sizes down to at least 5 µm and advanced sample-rastering and scanning modes are supported. In addition, it can accommodate the new multi-axis goniometer PRIGo (Parallel Robotics Inspired Goniometer). (ii) A rapid-change beam-shaping element system with aperture sizes down to a minimum of 10 µm for microcrystallography measurements. (iii) Integration of the on-axis microspectrophotometer MS3 for microscopic sample imaging with 1 µm image resolution. Its multi-mode optical spectroscopy module is always online and supports in situ UV/Vis absorption, fluorescence and Raman spectroscopy. (iv) High stability of the sample environment by a mineral cast support construction and by close containment of the cryo-stream. Further features are the support for in situ crystallization plate screening and a minimal achievable detector distance of 120 mm for the Pilatus 6M, 2M and the macromolecular crystallography group’s planned future area detector Eiger 16M. PMID:24562555

  16. ALS beamlines for independent investigators: A summary of the capabilities and characteristics of beamlines at the ALS

    SciTech Connect

    Not Available

    1992-08-01

    There are two mods of conducting research at the ALS: To work as a member of a participating research team (PRT). To work as a member of a participating research team (PRT); to work as an independent investigator; PRTs are responsible for building beamlines, end stations, and, in some cases, insertion devices. Thus, PRT members have privileged access to the ALS. Independent investigators will use beamline facilities made available by PRTs. The purpose of this handbook is to describe these facilities.

  17. Status of the LBNE Neutrino Beamline

    SciTech Connect

    Papadimitriou, Vaia; /Fermilab

    2011-12-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a beam of neutrinos toward a detector placed at the Homestake Mine in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector (60-120 GeV) hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined taking into account several factors including the physics goals, the Monte Carlo modeling of the facility, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be {approx}700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. We discuss here the status of the conceptual design and the associated challenges.

  18. Beamline Insertions Manager at Jefferson Lab

    SciTech Connect

    Johnson, Michael C.

    2015-09-01

    The beam viewer system at Jefferson Lab provides operators and beam physicists with qualitative and quantitative information on the transverse electron beam properties. There are over 140 beam viewers installed on the 12 GeV CEBAF accelerator. This paper describes an upgrade consisting of replacing the EPICS-based system tasked with managing all viewers with a mixed system utilizing EPICS and high-level software. Most devices, particularly the beam viewers, cannot be safely inserted into the beam line during high-current beam operations. Software is partly responsible for protecting the machine from untimely insertions. The multiplicity of beam-blocking and beam-vulnerable devices motivates us to try a data-driven approach. The beamline insertions application components are centrally managed and configured through an object-oriented software framework created for this purpose. A rules-based engine tracks the configuration and status of every device, along with the beam status of the machine segment containing the device. The application uses this information to decide on which device actions are allowed at any given time.

  19. Performance of Doublet III neutral beam injector cryopumping system

    SciTech Connect

    Langhorn, A.R.; Kim, J.; Tupper, M.L.; Williams, J.P.; Fasolo, J.

    1984-04-01

    The Doublet III neutral beam injector system is based on three beamlines; each beamline employs two 80 kV/80 A hydrogen ion sources. Two liquid helium (LHe) cooled cryopanel arrays were designed as an integral part of the beamline in order to provide high differential pumping of hydrogen gas along the beamline. The cryopanel arrays consist of a front (nearer to the torus) disk panel (3 m/sup 2/ each side) with liquid nitrogen (LN/sub 2/) cooled chevrons and a rear cylindrical panel of modified Santeler panels (8 m/sup 2/) which also employs LN/sub 2/ cooled surfaces shielding LHe cooled surfaces. These cryopanels are piped in series. The LHe delivery is based on a closed-loop, forced-flow scheme intended for variable panel temperatures (3.7 to 4.3 K). It uses small tubes for mechanical flexibility and thermal resiliency providing ease of economic defrosting. The cryogenic system consists of a liquefier (100 l/h), a large Dewar, a heat exchanger, and a liquid ring pump. Three beamlines are serviced simultaneously by the system. Pumping speeds measured locally at ionization gauges, were well in excess of the 1.4 x 10/sup 6/ l/s design goal.

  20. Diamond beamline I07: a beamline for surface and interface diffraction

    PubMed Central

    Nicklin, Chris; Arnold, Tom; Rawle, Jonathan; Warne, Adam

    2016-01-01

    Beamline I07 at Diamond Light Source is dedicated to the study of the structure of surfaces and interfaces for a wide range of sample types, from soft matter to ultrahigh vacuum. The beamline operates in the energy range 8–30 keV and has two endstations. The first houses a 2+3 diffractometer, which acts as a versatile platform for grazing-incidence techniques including surface X-ray diffraction, grazing-incidence small- (and wide-) angle X-ray scattering, X-ray reflectivity and grazing-incidence X-ray diffraction. A method for deflecting the X-rays (a double-crystal deflector) has been designed and incorporated into this endstation, extending the surfaces that can be studied to include structures formed on liquid surfaces or at liquid–liquid interfaces. The second experimental hutch contains a similar diffractometer with a large environmental chamber mounted on it, dedicated to in situ ultrahigh-vacuum studies. It houses a range of complementary surface science equipment including a scanning tunnelling microscope, low-energy electron diffraction and X-ray photoelectron spectroscopy ensuring that correlations between the different techniques can be performed on the same sample, in the same chamber. This endstation allows accurate determination of well ordered structures, measurement of growth behaviour during molecular beam epitaxy and has also been used to measure coherent X-ray diffraction from nanoparticles during alloying. PMID:27577783

  1. Diamond beamline I07: a beamline for surface and interface diffraction.

    PubMed

    Nicklin, Chris; Arnold, Tom; Rawle, Jonathan; Warne, Adam

    2016-09-01

    Beamline I07 at Diamond Light Source is dedicated to the study of the structure of surfaces and interfaces for a wide range of sample types, from soft matter to ultrahigh vacuum. The beamline operates in the energy range 8-30 keV and has two endstations. The first houses a 2+3 diffractometer, which acts as a versatile platform for grazing-incidence techniques including surface X-ray diffraction, grazing-incidence small- (and wide-) angle X-ray scattering, X-ray reflectivity and grazing-incidence X-ray diffraction. A method for deflecting the X-rays (a double-crystal deflector) has been designed and incorporated into this endstation, extending the surfaces that can be studied to include structures formed on liquid surfaces or at liquid-liquid interfaces. The second experimental hutch contains a similar diffractometer with a large environmental chamber mounted on it, dedicated to in situ ultrahigh-vacuum studies. It houses a range of complementary surface science equipment including a scanning tunnelling microscope, low-energy electron diffraction and X-ray photoelectron spectroscopy ensuring that correlations between the different techniques can be performed on the same sample, in the same chamber. This endstation allows accurate determination of well ordered structures, measurement of growth behaviour during molecular beam epitaxy and has also been used to measure coherent X-ray diffraction from nanoparticles during alloying. PMID:27577783

  2. ACRIM III

    Atmospheric Science Data Center

    2015-12-30

    ACRIM III Data and Information Active Cavity Radiometer Irradiance ... the ACRIMSAT spacecraft on December 20, 1999. ACRIM III data are reprocessed every 90 days to utilize instrument recalibration.   ... ACRIM III Instrument Team Page ACRIM II Data Sets SCAR-B Block:  SCAR-B Products ...

  3. True 3D kinematic analysis for slope instability assessment in the Siq of Petra (Jordan), from high resolution TLS

    NASA Astrophysics Data System (ADS)

    Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola

    2016-04-01

    Most classifications of mass movements in rock slopes use relatively simple, idealized geometries for the basal sliding surface, like planar sliding, wedge sliding, toppling or columnar failures. For small volumes, the real sliding surface can be often well described by such simple geometries. Extended and complex rock surfaces, however, can exhibit a large number of mass movements, also showing various kind of kinematisms. As a consequence, the real situation in large rock surfaces with a complicate geometry is generally very complex and a site depending analysis, such as fieldwork and compass, cannot be comprehensive of the real situation. Since the outstanding development of terrestrial laser scanner (TLS) in recent years, rock slopes can now be investigated and mapped through high resolution point clouds, reaching the resolution of few mm's and accuracy less than a cm in most advanced instruments, even from remote surveying. The availability of slope surface digital data can offer a unique chance to determine potential kinematisms in a wide distributed area for all the investigated geomorphological processes. More in detail the proposed method is based on the definition of least squares fitting planes on clusters of points extracted by moving a sampling cube on the point cloud. If the associated standard deviation is below a defined threshold, the cluster is considered valid. By applying geometric criteria it is possible to join all the clusters lying on the same surface; in this way discontinuity planes can be reconstructed, rock mass geometrical properties are calculated and, finally, potential kinematisms established. The Siq of Petra (Jordan), is a 1.2 km naturally formed gorge, with an irregular horizontal shape and a complex vertical slope, that represents the main entrance to Nabatean archaeological site. In the Siq, discontinuities of various type (bedding, joints, faults), mainly related to geomorphological evolution of the slope, lateral stress

  4. A beamline for macromolecular crystallography at the Advanced Light Source

    SciTech Connect

    Padmore, H.A.; Earnest, T.; Kim, S.H.; Thompson, A.C.; Robinson, A.L.

    1994-08-01

    A beamline for macromolecular crystallography has been designed for the ALS. The source will be a 37-pole wiggler with a, 2-T on-axis peak field. The wiggler will illuminate three beamlines, each accepting 3 mrad of horizontal aperture. The central beamline will primarily be used for multiple-wavelength anomalous dispersion measurements in the wavelength range from 4 to 0.9 {angstrom}. The beamline optics will comprise a double-crystal monochromator with a collimating pre-mirror and a double-focusing mirror after the monochromator. The two side stations will be used for fixed-wavelength experiments within the wavelength range from 1.5 to 0.95 {angstrom}. The optics will consist of a conventional vertically focusing cylindrical mirror followed by an asymmetrically cut curved-crystal monochromator. This paper presents details of the optimization of the wiggler source for crystallography, gives a description of the beamline configuration, and discusses the reasons for the choices made.

  5. The Scanning Nanoprobe Beamline Nanoscopium at Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Kewish, C. M.; Polack, F.; Moreno, T.

    2011-09-01

    The Nanoscopium beamline at Synchrotron Soleil will offer advanced scanning-based hard x-ray imaging techniques in the 5- to 20-keV energy range, for user communities working in the earth, environmental, and life sciences. Two dedicated end stations will exploit x-ray coherence to produce images in which contrast is based on a range of physical processes. In the first experiment hutch, coherent scatter imaging techniques will produce images in which contrast arises from spatial variations in the complex refractive index, and orientation in the nanostructure of samples. In the second experiment hutch, elemental mapping will be carried out at the trace (ppm) level by scanning x-ray fluorescence, speciation mapping by XANES, and phase gradient mapping by scanning differential phase contrast imaging. The beamline aims to reach sub-micrometric, down to 30 nm, spatial resolution. This ˜155-meter-long beamline will share the straight section with a future tomography beamline by using canted undulators having 6.5-mrad separation angle. The optical design of Nanoscopium aims to reduce the effect of instabilities on the probing nanobeam by utilizing an all-horizontal geometry for the reflections of the primary beamline mirrors, which focus onto a slit, creating an over-filled secondary source. Kirkpatrick-Baez mirrors and Fresnel zone plates will be used as focusing devices in the experiment hutches. Nanoscopium is expected to commence user operation in 2013.

  6. An XAFS Beamline at the SAGA Light Source

    SciTech Connect

    Okajima, Toshihiro; Hara, Kazuhiro; Tabata, Masaaki; Setoyama, Hiroyuki; Yoshimura, Daisuke; Chikaura, Yoshinori

    2007-02-02

    A new hard X-ray beamline, BL15, has been designed and constructed at the SAGA-Light Source. The beamline is optimized for industrial applications of the synchrotron light. X-rays with photon energies from 2.1 keV to 14.2 keV are delivered to the experimental station passing a fixed-exit double-crystal Si(111) monochromator and a bent cylindrical mirror. Basic experimental equipments for XAFS measurement, high resolution diffractometry, various kinds of X-ray imaging and energy-dispersive diffractometry have been prepared for the station. From our initial commissioning and performance testing of the beamline, we show that BL15 can perform XAFS measurements.

  7. Upgrade of Saga-university beamline in SAGA-LS

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Imamura, M.; Yamamoto, I.; Azuma, J.; Ogawa, K.; Kamada, M.; Ohkuma, H.; Yamamoto, S.

    2013-03-01

    Saga-university beamline has been upgraded by installing a new planar-typ e undulator for advanced researches on nano-surfaces and interfaces in the soft X-ray region. The magnetic field of the undulator along the electron beam trajectory was measured at the magnetic gap width between 30 and 150 mm. After the installation of the undulator in a 2.7-m straight section of the Saga-LS storage ring, the performance of the beamline with varied line spacing plane grating monochromator was examined by measurements of peak energy, photon flux, and energy resolution. The beamline is opened for the experimental use in the energy region between 32 and 800 eV using fundamental and the higher harmonics.

  8. Status and evolution of the ESRF beamline ID19

    SciTech Connect

    Weitkamp, Timm; Tafforeau, Paul; Boller, Elodie; Cloetens, Peter; Valade, Jean-Paul; Bernard, Pascal; Baruchel, Jose; Peyrin, Francoise; Helfen, Lukas

    2010-04-06

    The ESRF synchrotron beamline ID19, dedicated to full-field parallel-beam imaging techniques such as phase-contrast and absorption microtomography and X-ray topography, is one of the most versatile instruments of its kind. This paper presents key characteristics of ID19 in its present form, names examples for research and development performed on the beamline, and outlines the plans for an upgrade on the beamline in coming years, to adapt to the growing needs of the user community. The technical goals envisioned include an increase in available beam size and maximum photon energy, and a substantial increase in flux density for applications using beams of small and intermediate size.

  9. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source

    PubMed Central

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed. PMID:27308112

  10. Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; May, Tim E.

    2014-06-01

    The far-infrared beamline at the Canadian Light Source is a state of the art user facility, which offers significantly more far-infrared brightness than conventional globar sources. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad2 port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm-1. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. This talk will provide an overview of the the beamline, and the capabilities available to users, recent and planned improvements including the addition of a Glow Discharge cell and advances in Coherent Synchrotron Radiation. Furthermore, the process of acquiring access to the facility will be covered.

  11. The Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant; May, Tim

    2009-06-01

    The far-infrared beamline at the Canadian Light Source. is a state of the art facility, which offers significantly more far-infrared brightness than conventional globar sources. While there is the potential to direct this advantage to many research areas, to date most of the effort has been directed toward high-resolution gas phase studies. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad^{2} port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm^{-1}. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. Data from the recently completed commissioning experiments will be presented along with a general overview of the beamline.

  12. Distributed control of protein crystallography beamline 5.0 using CORBA

    SciTech Connect

    Timossi, Chris

    1999-09-24

    The Protein Crystallography Beamline at Berkeley Lab's Advanced Light Source is a facility that is being used to solve the structure of proteins. The software that is being used to control this beamline uses Java for user interface applications which communicate via CORBA with workstations that control the beamline hardware. We describe the software architecture for the beamline and our experiences after two years of operation.

  13. Kinematic mounting systems for NSLS beamlines and experiments

    SciTech Connect

    Oversluizen, T.; Stoeber, W.; Johnson, E.D.

    1991-01-01

    Methods for kinematically mounting equipment are well established, but applications at synchrotron radiation facilities are subject to constraints not always encountered in more traditional laboratory settings. Independent position adjustment of beamline components can have significant benefits in terms of minimizing time spent aligning, and maximizing time spent acquiring data. In this paper, we use examples taken from beamlines at the NSLS to demonstrate approaches for optimization of the reproducibility, stability, excursion, and set-up time for various situations. From our experience, we extract general principles which we hope will be useful for workers at other synchrotron radiation facilities. 7 refs., 4 figs.

  14. APS beamline standard components handbook, Version 1. 3

    SciTech Connect

    Hahn, U.; Shu, D.; Kuzay, T.M.

    1993-02-01

    This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

  15. The Materials Science beamline upgrade at the Swiss Light Source.

    PubMed

    Willmott, P R; Meister, D; Leake, S J; Lange, M; Bergamaschi, A; Böge, M; Calvi, M; Cancellieri, C; Casati, N; Cervellino, A; Chen, Q; David, C; Flechsig, U; Gozzo, F; Henrich, B; Jäggi-Spielmann, S; Jakob, B; Kalichava, I; Karvinen, P; Krempasky, J; Lüdeke, A; Lüscher, R; Maag, S; Quitmann, C; Reinle-Schmitt, M L; Schmidt, T; Schmitt, B; Streun, A; Vartiainen, I; Vitins, M; Wang, X; Wullschleger, R

    2013-09-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs. PMID:23955029

  16. The Materials Science beamline upgrade at the Swiss Light Source

    PubMed Central

    Willmott, P. R.; Meister, D.; Leake, S. J.; Lange, M.; Bergamaschi, A.; Böge, M.; Calvi, M.; Cancellieri, C.; Casati, N.; Cervellino, A.; Chen, Q.; David, C.; Flechsig, U.; Gozzo, F.; Henrich, B.; Jäggi-Spielmann, S.; Jakob, B.; Kalichava, I.; Karvinen, P.; Krempasky, J.; Lüdeke, A.; Lüscher, R.; Maag, S.; Quitmann, C.; Reinle-Schmitt, M. L.; Schmidt, T.; Schmitt, B.; Streun, A.; Vartiainen, I.; Vitins, M.; Wang, X.; Wullschleger, R.

    2013-01-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs. PMID:23955029

  17. Upgrades to the Fermilab NuMI beamline

    SciTech Connect

    Martens, Michael A.; Childress, Sam; Grossman, Nancy; Hurh, Patrick; Hylen, James; Marchionni, Alberto; McCluskey, Elaine; Moore, Craig Damon; Reilly, Robert; Tariq, Salman; Wehmann, Alan; /Fermilab

    2007-06-01

    The NuMI beamline at Fermilab has been delivering high-intensity muon neutrino beams to the MINOS experiment since the spring of 2005. A total of 3.4 x 10{sup 20} protons has been delivered to the NuMI target and a maximum beam power of 320 kW has been achieved. An upgrade of the NuMI facility increasing the beam power capability to 700 kW is planned as part of the NOvA experiment. The plans for this upgrade are presented and the possibility of upgrading the NuMI beamline to handle 1.2 MW is considered.

  18. Front end for high-repetition rate thin disk-pumped OPCPA beamline at ELI-beamlines

    NASA Astrophysics Data System (ADS)

    Green, Jonathan T.; Novák, Jakub; Antipenkov, Roman; Batysta, František; Zervos, Charalampos; Naylon, Jack A.; Mazanec, TomáÅ.¡; Horáček, Martin; Bakule, Pavel; Rus, Bedřich

    2015-02-01

    The ELI-Beamlines facility, currently under construction in Prague, Czech Republic, will house multiple high power laser systems with varying pulse energies, pulse durations, and repetition rates. Here we present the status of a high repetition rate beamline currently under construction with target parameters of 20 fs pulse duration, 100 mJ pulse energy, and 1 kHz repetition rate. Specifically we present the Yb:YAG thin disk lasers which are intended to pump picosecond OPCPA, synchronization between pump and signal pulses in the OPCPA, and the first stages of OPCPA.

  19. SAGE III

    Atmospheric Science Data Center

    2016-06-15

    SAGE III Data and Information The Stratospheric Aerosol and Gas ... on the spacecraft. SAGE III produced L1 and L2 scientific data from 5/07/2002 until 12/31/2005. The flight of the second instrument is as ... Guide Documents:  Project Guide Data Products User's Guide  (PDF) Relevant Documents:  ...

  20. The Nanoscience Beamline (I06) at Diamond Light Source

    SciTech Connect

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-23

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A {approx}5 {mu}m ({sigma}) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  1. The Nanoscience Beamline (I06) at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-01

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A ˜5 μm (σ) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  2. Description and calibration beamline SEM/Ion Chamber Current Digitizer

    SciTech Connect

    Schoo, D.

    1994-05-01

    This report discusses the following on beamline SEM/ion chamber current digitizers: Module description; testing and calibration; common setup procedures; summary of fault indications and associated causes; summary of input and output connections; SEM conversion constant table; ion chamber conversion constant table; hexadecimal to decimal conversion table; and schematic diagram.

  3. Beamline Control and Instrumentation System using Industrial Interface Techniques

    NASA Astrophysics Data System (ADS)

    Enz, F.

    2010-06-01

    How should a beamline be designed, which satisfies the needs and requirements of scientists and is easy to build and operate? Today, most control and instrumentation systems for beamlines are based on scientific requirements. Scientific details of the beamline, e.g. vacuum and beam physics details; are usually extensively described. However, control system specifications are often reduced to few requirements, e.g. which beam-related device to use. Lots of these systems work perfectly from the physicist's point of view, but are hard to bring into service and operate and difficult to extend with additional equipment. To overcome this, the engineering company ENZ has developed components using industrial standard interfaces to guarantee high flexibility for equipment extension. Using special interface boards and galvanic isolation offers increased stability of motion control axes. This saves resources during commissioning and service. A control system was developed and installed at a Soft-X-ray beamline at ASP Melbourne. It is operated under EPICs on distributed embedded IOC's based on PC-hardware. Motion and vacuum systems, measurement devices, e.g. a Low-Current Monitor (LoCuM) for beam position monitoring, and parts of the equipment protection system were developed and most of them tested in cooperation with DELTA at the Technical University of Dortmund.

  4. Beamline Control and Instrumentation System using Industrial Interface Techniques

    SciTech Connect

    Enz, F.

    2010-06-23

    How should a beamline be designed, which satisfies the needs and requirements of scientists and is easy to build and operate? Today, most control and instrumentation systems for beamlines are based on scientific requirements. Scientific details of the beamline, e.g. vacuum and beam physics details; are usually extensively described. However, control system specifications are often reduced to few requirements, e.g. which beam-related device to use. Lots of these systems work perfectly from the physicist's point of view, but are hard to bring into service and operate and difficult to extend with additional equipment. To overcome this, the engineering company ENZ has developed components using industrial standard interfaces to guarantee high flexibility for equipment extension. Using special interface boards and galvanic isolation offers increased stability of motion control axes. This saves resources during commissioning and service. A control system was developed and installed at a Soft-X-ray beamline at ASP Melbourne. It is operated under EPICs on distributed embedded IOC's based on PC-hardware. Motion and vacuum systems, measurement devices, e.g. a Low-Current Monitor (LoCuM) for beam position monitoring, and parts of the equipment protection system were developed and most of them tested in cooperation with DELTA at the Technical University of Dortmund.

  5. Pulsed Magnetic Fields for an XAS Energy Dispersive Beamline

    SciTech Connect

    Linden, Peter van der; Mathon, Olivier; Neisius, Thomas

    2007-01-19

    Pulsed magnetic fields constitute an attractive alternative to superconducting magnets for many x-ray techniques. The ESRF ID24 energy dispersive beamline was used for pulsed magnetic field room temperature XMCD measurements on GdCo3. The signal has been measured up to a magnetic field of 5.5 Tesla without signs of deterioration.

  6. A synchrotron beamline for delivering high purity vacuum ultraviolet photons

    SciTech Connect

    Cavasso Filho, R. L.; Homen, M. G. P.; Fonseca, P. T.; Naves de Brito, A.

    2007-11-15

    We report on the current status and performance of the toroidal grating monochromator beamline at the Brazilian Synchrotron Light Laboratory (Laboratorio Nacional de Luz Sincrotron). This beamline provides photons in the vacuum ultraviolet and soft x-ray regions from 12 to 330 eV with three interchangeable gratings. We report on the improvement, which allows the possibility of choosing the light polarization degree from linear to almost circular. Here, we also describe the development of a new apparatus, namely, the mirror-inserted harmonic attenuator and calibrating-device with a long length (MIRHACLLE). All beamlines based on diffraction gratings suffer from the problem of high harmonics contaminations to some extent. The MIRHACLLE provides a way to efficiently suppress high harmonics from 25% to 1 ppm in a grazing incidence bending magnet beamline. Its principle of operation relays on the absorption of the high energy photons in a gas phase region. It allows negligible high harmonics contamination for photon energies ranging from 12 eV to the gas first ionization threshold, 21.6 eV, in the case of neon. We also demonstrate the possibility to use this device for energy calibration and resolution evaluation together with any experiment needing its filtering capabilities. The device is also very cost effective compared to other filters presented previously in the literature.

  7. Neutral beamline with improved ion-energy recovery

    SciTech Connect

    Dagenhart, W.K.; Haselton, H.H.; Stirling, W.L.; Whealton, J.H.

    1981-04-13

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  8. Aberration analysis calculations for synchrotron radiation beamline design

    SciTech Connect

    McKinney, W.R.; Howells, M.; Padmore, H.A.

    1997-09-01

    The application of ray deviation calculations based on aberration coefficients for a single optical surface for the design of beamline optical systems is reviewed. A systematic development is presented which allows insight into which aberration may be causing the rays to deviate from perfect focus. A new development allowing analytical calculation of line shape is presented.

  9. A modular optics design for the LBNE beamline

    SciTech Connect

    Johnstone, John A.; /Fermilab

    2010-10-01

    Protons extracted from the Main Injector (MI) in the MI-60 straight section are transported 84 m through quadrupole Q106 in the NuMI stub, at which point two 6-3-120 vertical switching magnets, followed by three EPB vertical dipoles, steer the beam into the main body of the LBNE beamline. From Q106 in NuMI the LBNE beamline transports these protons 722.0 m to the LBNE target, located 41.77 m (137.0 ft) below the MI beamline center (BLC) elevation, on a trajectory aimed towards DUSEL. Bending is provided (predominantly) by 34 long (6 m) MI-style IDA/IDB and 8 short (4 m) IDC/IDD dipoles [through 48.36{sup o} horizontally and -5.844{sup o} (net) vertically]. Optical properties are defined by 49 quadrupoles (grouped functionally into 44 focusing centers) of the proven MI beamline-style 3Q60/3Q120 series. All focusing centers are equipped with redesigned MI-style IDS orbit correctors and dual-plane beam position monitors (BPM's). Ample space is available in each arc cell to accommodate ion pumps and diagnostic instrumentation. Parameters of the main magnets are listed in a table.

  10. VESPERS: A Beamline for Combined XRF and XRD Measurements

    NASA Astrophysics Data System (ADS)

    Feng, Renfei; Gerson, Andrea; Ice, Gene; Reininger, Ruben; Yates, Brian; McIntyre, Stewart

    2007-01-01

    VESPERS (VEry Sensitive Elemental and Structural Probe Employing Radiation from a Synchrotron) is a bending magnet beamline that is just beginning construction at the Canadian Light Source. The beamline has several novel design elements that are intended to increase its operating flexibility and availability to users. First, there is a requirement to deliver a microscopic beam with a variable bandwidth, thus enabling the generation of Laue diffraction patterns and high yield X-ray fluorescence spectra from the same region preferably simultaneously. Thus, the bandpass of the VESPERS monochromator can be readily changed to focus radiation into the same 2-4 micron diameter area that is either polychromatic or having a bandwidth of 10%, 1.6% or 0.01%. This allows the user to change the diffraction pattern to suit the complexity of the crystal and the spectral signal to noise ratio to suit the detection sensitivity required. Second, the beamline is designed to have two branches capable of operating simultaneously and virtually independently using the same primary optics. These design features are accomplished using four separate beams originating at four pinholes at the entry to the Primary Optical Enclosure. The compound focus design uses spherical mirrors to focus both polychromatic and pre-monochromatic beams onto the intermediate slits. A pair of bendable K-B mirrors in the experimental hutch is used to demagnify the beam further down to micron size. The photon energy of this beamline is 6-30 keV.

  11. VESPERS: A Beamline for Combined XRF and XRD Measurements

    SciTech Connect

    Feng Renfei; Yates, Brian; Gerson, Andrea; Ice, Gene; Reininger, Ruben; McIntyre, Stewart

    2007-01-19

    VESPERS (VEry Sensitive Elemental and Structural Probe Employing Radiation from a Synchrotron) is a bending magnet beamline that is just beginning construction at the Canadian Light Source. The beamline has several novel design elements that are intended to increase its operating flexibility and availability to users. First, there is a requirement to deliver a microscopic beam with a variable bandwidth, thus enabling the generation of Laue diffraction patterns and high yield X-ray fluorescence spectra from the same region preferably simultaneously. Thus, the bandpass of the VESPERS monochromator can be readily changed to focus radiation into the same 2-4 micron diameter area that is either polychromatic or having a bandwidth of 10%, 1.6% or 0.01%. This allows the user to change the diffraction pattern to suit the complexity of the crystal and the spectral signal to noise ratio to suit the detection sensitivity required. Second, the beamline is designed to have two branches capable of operating simultaneously and virtually independently using the same primary optics. These design features are accomplished using four separate beams originating at four pinholes at the entry to the Primary Optical Enclosure. The compound focus design uses spherical mirrors to focus both polychromatic and pre-monochromatic beams onto the intermediate slits. A pair of bendable K-B mirrors in the experimental hutch is used to demagnify the beam further down to micron size. The photon energy of this beamline is 6-30 keV.

  12. The INE-Beamline for actinide science at ANKA

    NASA Astrophysics Data System (ADS)

    Rothe, J.; Butorin, S.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Löble, M.; Metz, V.; Seibert, A.; Steppert, M.; Vitova, T.; Walther, C.; Geckeis, H.

    2012-04-01

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R&D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 × 10+6 times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between ˜2.1 keV (P K-edge) and ˜25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  13. The INE-Beamline for actinide science at ANKA

    SciTech Connect

    Rothe, J.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Loeble, M.; Metz, V.; Steppert, M.; Vitova, T.; Geckeis, H.; Butorin, S.; Seibert, A.; Walther, C.

    2012-04-15

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R and D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 x 10{sup +6} times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between {approx}2.1 keV (P K-edge) and {approx}25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  14. Instrumentation and Experimental Developments for the Beamlines at the Synchrotron SOLEIL

    SciTech Connect

    Prigent, P.; Bac, S.; Blanchandin, S.; Cauchon, G.; David, G.; Fernandez Varela, P.; Kubsky, S.; Picca, F.

    2010-06-23

    This paper presents an overview of the instrumentation and experiments developed for the beamlines at Synchrotron SOLEIL in France. Currently fourteen beamlines are opened to users out of the twenty six scheduled. About half of the beamlines cover the soft x-rays region using spectroscopy and imagery techniques. The second half covers the hard x-rays field studying diffraction of matter. Some sample environments carried out for beamlines, for biology, chemistry and surface sciences are described. For the soft x-rays beamlines, carbon contamination of optics is a crucial issue. Different experiments are currently under study in order to reduce or even avoid this effect. Other studies relate to the improvement of metrological methods for beamline optics, to the reduction of vibrational effects for the microbeams and development of computer control for diffractometers. The various types of instruments and experiments will be presented both with an overview of the status of the beamlines in operation and under construction.

  15. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Howells, M.R.

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  16. The ID23-2 structural biology microfocus beamline at the ESRF

    PubMed Central

    Flot, David; Mairs, Trevor; Giraud, Thierry; Guijarro, Matias; Lesourd, Marc; Rey, Vicente; van Brussel, Denis; Morawe, Christian; Borel, Christine; Hignette, Olivier; Chavanne, Joel; Nurizzo, Didier; McSweeney, Sean; Mitchell, Edward

    2010-01-01

    The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick–Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation. PMID:20029119

  17. MONO: A program to calculate synchrotron beamline monochromator throughputs

    SciTech Connect

    Chapman, D.

    1989-01-01

    A set of Fortran programs have been developed to calculate the expected throughput of x-ray monochromators with a filtered synchrotron source and is applicable to bending magnet and wiggler beamlines. These programs calculate the normalized throughput and filtered synchrotron spectrum passed by multiple element, flat un- focussed monochromator crystals of the Bragg or Laue type as a function of incident beam divergence, energy and polarization. The reflected and transmitted beam of each crystal is calculated using the dynamical theory of diffraction. Multiple crystal arrangements in the dispersive and non-dispersive mode are allowed as well as crystal asymmetry and energy or angle offsets. Filters or windows of arbitrary elemental composition may be used to filter the incident synchrotron beam. This program should be useful to predict the intensities available from many beamline configurations as well as assist in the design of new monochromator and analyzer systems. 6 refs., 3 figs.

  18. Performance of Saga-University Beamline with Planer Undulator

    SciTech Connect

    Azuma, J.; Takahashi, K.; Kamada, M.; Ohkuma, H.; Yamamoto, S.

    2010-06-23

    A planer undulator consisted of 24 periods of an 85-mm length has been installed in a 2.7-m straight section of the SAGA-LS, in order to provide brilliant soft x-rays for advanced researches on nano-surfaces and interfaces at the Saga-university beamline BL13. The photon flux of 2x10{sup 11} photons/100 mA was obtained at 133 eV, and the available photon energy was beyond 800 eV using higher harmonics. The achieved resolving power of the varied-line-spacing (VLS) monochromator system was 8,670 at 130 eV with slits of 15 um. This agrees very well with the value of 8,790 expected from the ray-tracing calculation. The details in the performance tests will be reported, indicating the high performance of the beamline BL13 for photoelectron spectroscopy in the soft x-ray region.

  19. The crystallography beamline I711 at MAX II.

    PubMed

    Cerenius, Y; Ståhl, K; Svensson, L A; Ursby, T; Oskarsson, A; Albertsson, J; Liljas, A

    2000-07-01

    A new X-ray crystallographic beamline is operational at the MAX II synchrotron in Lund. The beamline has been in regular use since August 1998 and is used both for macro- and small molecule diffraction as well as powder diffraction experiments. The radiation source is a 1.8 T multipole wiggler. The beam is focused vertically by a bendable mirror and horizontally by an asymmetrically cut Si(111) monochromator. The wavelength range is 0.8-1.55 A with a measured flux at 1 A of more than 10(11) photons s(-1) in 0.3 mm x 0.3 mm at the sample position. The station is currently equipped with a Mar345 imaging plate, a Bruker Smart 1000 area CCD detector and a Huber imaging-plate Guinier camera. An ADSC 210 area CCD detector is planned to be installed during 2000. PMID:16609196

  20. Simulations of proton beam characteristics for ELIMED Beamline

    NASA Astrophysics Data System (ADS)

    Psikal, Jan; Limpouch, Jiri; Klimo, Ondrej; Vyskocil, Jiri; Margarone, Daniele; Korn, Georg

    2016-03-01

    ELIMED Beamline should demonstrate the capability of laser-based particle accelerators for medical applications, mainly for proton radiotherapy of tumours which requires a sufficient number of accelerated protons with energy about 60 MeV at least. In this contribution, we study the acceleration of protons by laser pulse with parameters accessible for ELIMED Beamline (intensity ∼ 1022 W/cm2, pulse length ∼ 30 fs). In our two-dimensional particle-incell simulations, we observed higher energies of protons for linear than for circular polarization. Oblique incidence of the laser pulse on target does not seem to be favourable for proton acceleration at such high intensities as the accelerated protons are deflected from target normal axis and their energy and numbers are slightly decreased. The expected numbers of accelerated protons in the energy interval 60 MeV ± 5% are calculated between 109 and 1010 per laser shot with estimated proton beam divergence about 20° (FWHM).

  1. An Undulator-Wiggler Beamline for Spectromicroscopy at SRC

    NASA Astrophysics Data System (ADS)

    Reininger, R.; De Stasio, G.; Bissen, M.; Severson, M.

    2004-05-01

    A high-flux medium-energy-resolution beamline based on an existing insertion device is being constructed at SRC. The insertion device will be operated as an undulator up to ˜400 eV and as a wiggler at higher energies. The beamline will be dedicated mainly to X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) and will cover the energy range 75-2000 eV. The most relevant requirement for high-resolution and high-sensitivity X-PEEM is a high flux density on the sample surface. This will allow spatial resolutions on the order of a few nanometers, and a minimum detection limit on the order of 10 parts per million, using the already existing Spectromicroscope for PHotoelectron Imaging of Nanostructures with X-rays (SPHINX). To maximize the flux at the sample position, the beamline does not include an entrance slit and has only three optical elements on the beam path: an ellipsoidal mirror, a variable-line-spacing plane grating, and a re-focusing ellipsoidal mirror. The first ellipsoidal mirror provides the converging light to one of the three gratings needed to cover the beamline energy range. The position of the fixed exit slit is at the focus of the ellipsoidal mirror when the grating is tuned to zero order. The second ellipsoidal mirror demagnifies the beam at the exit slit plane by a factor of two. More than 1012 photons/s are expected at the sample position between 100 and 1200 eV onto a spot having a FWHM of 25 μm vertical and 70 μm horizontal at a resolving power of ˜1000.

  2. An Undulator-Wiggler Beamline for Spectromicroscopy at SRC

    SciTech Connect

    Reininger, R.; De Stasio, G.; Bissen, M.; Severson, M.

    2004-05-12

    A high-flux medium-energy-resolution beamline based on an existing insertion device is being constructed at SRC. The insertion device will be operated as an undulator up to {approx}400 eV and as a wiggler at higher energies. The beamline will be dedicated mainly to X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) and will cover the energy range 75-2000 eV. The most relevant requirement for high-resolution and high-sensitivity X-PEEM is a high flux density on the sample surface. This will allow spatial resolutions on the order of a few nanometers, and a minimum detection limit on the order of 10 parts per million, using the already existing Spectromicroscope for PHotoelectron Imaging of Nanostructures with X-rays (SPHINX). To maximize the flux at the sample position, the beamline does not include an entrance slit and has only three optical elements on the beam path: an ellipsoidal mirror, a variable-line-spacing plane grating, and a re-focusing ellipsoidal mirror. The first ellipsoidal mirror provides the converging light to one of the three gratings needed to cover the beamline energy range. The position of the fixed exit slit is at the focus of the ellipsoidal mirror when the grating is tuned to zero order. The second ellipsoidal mirror demagnifies the beam at the exit slit plane by a factor of two. More than 1012 photons/s are expected at the sample position between 100 and 1200 eV onto a spot having a FWHM of 25 {mu}m vertical and 70 {mu}m horizontal at a resolving power of {approx}1000.

  3. Attosecond beamline with actively stabilized and spatially separated beam paths

    NASA Astrophysics Data System (ADS)

    Huppert, M.; Jordan, I.; Wörner, H. J.

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  4. MERLIN - A meV Resolution Beamline at the ALS

    SciTech Connect

    Reininger, Ruben; Bozek, John; Chuang, Y.-D.; Howells, Malcolm; Kelez, Nicholas; Prestemon, Soren; Marks, Steve; Warwick, Tony; Hussain, Zahid; Jozwiak, Chris; Lanzara, Alessandra; Hasan, M. Zahid

    2007-01-19

    An ultra-high resolution beamline is being constructed at the Advanced Light Source (ALS) for the study of low energy excitations in strongly correlated systems with the use of high-resolution inelastic scattering and angle-resolved photoemission. This new beamline, given the acronym Merlin (for meV resolution line), will cover the energy range 10-150 eV. The monochromator has fixed entrance and exit slits and a plane mirror that can illuminate a spherical grating at the required angle of incidence (as in the SX-700 mechanism). The monochromator can be operated in two different modes. In the highest resolution mode, the energy scanning requires translating the monochromator chamber (total travel 1.1 m) as well as rotating the grating and the plane mirror in front of the grating. The resolution in this mode is practically determined by the slits width. In the second mode, the scanning requires rotating the grating and the plane mirror. This mode can be used to scan a few eV without a significant resolution loss. The source for the beamline is a 1.9 m long, 90 mm period quasi periodic EPU. The expected flux at the sample is higher than 1011 photons/s at a resolving power of 5 x 104 in the energy range 16-130 eV. A second set of gratings can be used to obtain higher flux at the expense of resolution.

  5. Design and Simulation of the nuSTORM Pion Beamline

    SciTech Connect

    Liu, A.; Neuffer, D.; Bross, A.

    2015-08-15

    The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses “stochastic injection”, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pions that decay within that straight section provide muons within the circulating acceptance of the ring. Furthermore, the design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. Our paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.

  6. Design and Simulation of the nuSTORM Pion Beamline

    DOE PAGESBeta

    Liu, A.; Neuffer, D.; Bross, A.

    2015-08-15

    The nuSTORM (neutrinos from STORed Muons) proposal presents a detailed design for a neutrino facility based on a muon storage ring, with muon decay in the production straight section of the ring providing well defined neutrino beams. The facility includes a primary high-energy proton beam line, a target station with pion production and collection, and a pion beamline for pion transportation and injection into a muon decay ring. The nuSTORM design uses “stochastic injection”, in which pions are directed by a chicane, referred to as the Orbit Combination Section (OCS), into the production straight section of the storage ring. Pionsmore » that decay within that straight section provide muons within the circulating acceptance of the ring. Furthermore, the design enables injection without kickers or a separate pion decay transport line. The beam line that the pions traverse before being extracted from the decay ring is referred to as the pion beamline. Our paper describes the design and simulation of the pion beamline, and includes full beam dynamics simulations of the system.« less

  7. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids. PMID:26724005

  8. ADLIB—A simple database framework for beamline codes

    NASA Astrophysics Data System (ADS)

    Mottershead, C. Thomas

    1993-12-01

    There are many well developed codes available for beamline design and analysis. A significant fraction of each of these codes is devoted to processing its own unique input language for describing the problem. None of these large, complex, and powerful codes does everything. Adding a new bit of specialized physics can be a difficult task whose successful completion makes the code even larger and more complex. This paper describes an attempt to move in the opposite direction, toward a family of small, simple, single purpose physics and utility modules, linked by an open, portable, public domain database framework. These small specialized physics codes begin with the beamline parameters already loaded in the database, and accessible via the handful of subroutines that constitute ADLIB. Such codes are easier to write, and inherently organized in a manner suitable for incorporation in model based control system algorithms. Examples include programs for analyzing beamline misalignment sensitivities, for simulating and fitting beam steering data, and for translating among MARYLIE, TRANSPORT, and TRACE3D formats.

  9. MARS, a new beamline for radioactive matter studies at SOLEIL

    NASA Astrophysics Data System (ADS)

    Solari, Pier Lorenzo; Schlutig, Sandrine; Hermange, Hervé; Sitaud, Bruno

    2009-11-01

    MARS (Multi Analyses on Radioactive Samples) beamline is the hard X-ray bending magnet beamline dedicated to the study of radioactive matter of the new French synchrotron SOLEIL. The beamline, which has been built thanks to a close partnership and support by the CEA, has been designed to provide X-rays in the energy range of 3.5 keV to 35 keV. This allows to encompass M and L absorption edges of actinides, as well as K edges of transition metals (that are present in alloys and fuel claddings) up to heavy halogens, rare gases and alkalis (fission products in nuclear fuels). The MARS project aims to extend the possibilities of synchrotron based X-ray characterizations towards a wider variety of radioactive elements and a wider variety of techniques than what is currently available at other facilities. Thus, its specific and innovative infrastructure has been optimized in order to carry out analyses on materials with activities up to 18.5 GBq per sample for α and β emitters and 2 GBq for γ and n emitters. So, today, more than 70 different elements and more than 350 different isotopes have been proposed for studies on the beamline by the involved user community. The arrangement of the different elements in the optics hutch is based on an original scheme which permits to have two alternative optical configurations (monochromatic or dispersive) depending on the nature of experiments to be performed. At least three main techniques are progressively being proposed on the three complementary end-stations located in the experimental hutch: transmission and high resolution powder diffraction (TXRD and HRXRD), standard and dispersive X-ray absorption spectroscopy (XAS and EDXAS) and X-ray fluorescence (XRF). In addition, by using the KB optics, a micro-focused beam will be available on the second station of the monochromatic branch. The beamline is currently under commissioning. The first two experimental stations, using the monochromatic branch, are scheduled to be

  10. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    SciTech Connect

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  11. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  12. LANDVIEW III

    EPA Science Inventory

    LandView III is a desktop mapping system that includes database extracts from the Environmental Protection Agency, the Bureau of the Census, The U.S. Geological Survey, the Nuclear Regulatory Commission, the Department of Transportation, and the Federal Emergency Management Agenc...

  13. The beamlines of ELETTRA and their application to structural biology.

    PubMed

    Zanini, F; Lausi, A; Savoia, A

    1999-01-01

    Protein crystallographers are nowadays regular users of synchrotron radiation (SR) facilities for several applications. The goal of majority of users is simply to extract more accurate, higher resolution data from existing crystals; they use monochromatic radiation and the rotation method, in order to get a complete survey of the reciprocal space in a short time. In fact the brilliance of SR is essential, due to the weak scattering power of the samples, and because of their sensibility to radiation damage. Over the last few years, however, a general increase of interest for measurements at multiple wavelengths, which exploit the anomalous dispersion for the phase problem (multiwavelength anomalous diffraction--MAD), has generated the need of intense tuneable sources. For these applications, the emphasis is on accurate measurements of the small differences between the intensities of Bragg reflections at various energies across the absorption edge of an element present in the sample. The macromolecular diffraction beamline at ELETTRA, which is now running routinely since spring 1995, has been designed to provide a high flux--highly collimated tuneable X-rays source in the spectral range between 4 and 25 keV. The radiation source is the 57-pole wiggler, which delivers a very intense radiation up to 25 keV, and is shared and used simultaneously with the small angle X-ray scattering (SAXS) beamline. The front-end filter system has a cut-off energy at about 4 keV. The beamline optics consists of a pseudo-channel-cut double-crystal monochromator followed by a double focusing toroidal mirror. The tunability and the stability of the monochromator allows the user to perform MAD experiments, and for this purpose, a fluorescence probe for the exact calibration of the absorption edge is available on-line. The experimental station is based on an imaging plate area detector from MarResearch, with a sensible area of 345 mm in diameter. A cooled N2-stream is available to cool the

  14. Further measurements of bremsstrahlung from the insertion device beamlines of the Advanced Photon Source.

    SciTech Connect

    Job, P. K.

    1998-09-16

    Bremsstrahlung is produced in the Advanced Photon Source (APS) storage ring when the positron beam interacts with the storage-ring components or with the residual gas molecules in the storage-ring vacuum. The interaction of the positrons with the gas molecules occurs continually during storage ring operation. Bremsstrahlung is important at the insertion device straight sections because the contribution from each interaction adds up to produce a narrow mono-directional beam that travel down the beamlines. At the APS, with long storage ring beam straight paths (15.38 meters), gas bremsstrahlung in the insertion device beamlines can be significant. The preliminary results of the bremsstrahlung measurements in the insertion device beamlines of the APS was presented at SATIF3. This paper presents the results of further measurements at the two insertion device (ID) beamlines with higher statistics in the data collection. The beam current and the vacuum normalized bremsstrahlung power is fairly constant in a beamline for a given storage ring fill pattern, but may vary from beamline to beamline. The average bremsstrahlung power is measured as 118 {+-} 9 GeV/s/nT/mA at beamline 11 ID and as 36 {+-} 2 GeV/s/nT/mA at beamline 6 ID. These results, along with the results from the four previous independent bremsstrahlung measurements, enabled us to conclude upon the various reasons causing this variation.

  15. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    PubMed

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity. PMID:26134801

  16. ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Anzalone, A.; Cirrone, G. A. P.; Carpinelli, M.; Cuttone, G.; Cutroneo, M.; De Martinis, C.; Giove, D.; Korn, G.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F. M.; Petrovic, I.; Pisciotta, P.; Renis, M.; Ristic-Fira, A.; Romano, F.; Romano, F. P.; Schettino, G.; Scuderi, V.; Torrisi, L.; Tramontana, A.; Tudisco, S.

    2014-04-01

    ELI-Beamlines is one of the pillars of the pan-European project ELI (Extreme Light Infrastructure). It will be an ultra high-intensity, high repetition-rate, femtosecond laser facility whose main goal is generation and applications of high-brightness X-ray sources and accelerated charged particles in different fields. Particular care will be devoted to the potential applicability of laser-driven ion beams for medical treatments of tumors. Indeed, such kind of beams show very interesting peculiarities and, moreover, laser-driven based accelerators can really represent a competitive alternative to conventional machines since they are expected to be more compact in size and less expensive. The ELIMED project was launched thanks to a collaboration established between FZU-ASCR (ELI-Beamlines) and INFN-LNS researchers. Several European institutes have already shown a great interest in the project aiming to explore the possibility to use laser-driven ion (mostly proton) beams for several applications with a particular regard for medical ones. To reach the project goal several tasks need to be fulfilled, starting from the optimization of laser-target interaction to dosimetric studies at the irradiation point at the end of a proper designed transport beam-line. Researchers from LNS have already developed and successfully tested a high-dispersive power Thomson Parabola Spectrometer, which is the first prototype of a more performing device to be used within the ELIMED project. Also a Magnetic Selection System able to produce a small pencil beam out of a wide energy distribution of ions produced in laser-target interaction has been realized and some preliminary work for its testing and characterization is in progress. In this contribution the status of the project will be reported together with a short description of the of the features of device recently developed.

  17. The BALDER Beamline at the MAX IV Laboratory

    NASA Astrophysics Data System (ADS)

    Klementiev, K.; Norén, K.; Carlson, S.; Sigfridsson Clauss, K. G. V.; Persson, I.

    2016-05-01

    X-ray absorption spectroscopy (XAS) includes well-established methods to study the local structure around the absorbing element - extended X-ray absorption fine structure (EXAFS), and the effective oxidation number or to quantitatively determine the speciation of an element in a complex matrix - X-ray absorption near-edge structure (XANES). The increased brilliance and intensities available at the new generation of synchrotron light sources makes it possible to study, in-situ and in-operando, much more dilute systems with relevance for natural systems, as well as the micro-scale variability and dynamics of chemical reactions on the millisecond time-scale. The design of the BALDER beamline at the MAX IV Laboratory 3 GeV ring has focused on a high flux of photons in a wide energy range, 2.4-40 keV, where the K-edge is covered for the elements S to La, and the L 3-edge for all elements heavier than Sb. The overall design of the beamline will allow large flexibility in energy range, beam size and data collection time. The other focus of the beamline design is the possibility to perform multi-technique analyses on samples. Development of sample environment requires focus on implementation of auxiliary methods in such a way that techniques like Fourier transform infrared (FTIR) spectroscopy, UV-Raman spectroscopy, X-ray diffraction and/or mass spectrometry can be performed simultaneously as the XAS study. It will be a flexible system where different instruments can be plugged in and out depending on the needs for the particular investigation. Many research areas will benefit from the properties of the wiggler based light source and the capabilities to perform in-situ and in-operando measurements, for example environmental and geochemical sciences, nuclear chemistry, catalysis, materials sciences, and cultural heritage.

  18. The performance of a cryogenically cooled monochromator for an in-vacuum undulator beamline.

    PubMed

    Zhang, Lin; Lee, Wah Keat; Wulff, Michael; Eybert, Laurent

    2003-07-01

    The channel-cut silicon monochromator on beamline ID09 at the European Synchrotron Radiation Facility is indirectly cooled from the sides by liquid nitrogen. The thermal slope error of the diffracting surface is calculated by finite-element analysis and the results are compared with experiments. The slope error is studied as a function of cooling coefficients, beam size, position of the footprint and power distribution. It is found that the slope error versus power curve can be divided into three regions: (i). The linear region: the thermal slope error is linearly proportional to the power. (ii). The transition region: the temperature of the Si crystal is close to 125 K; the thermal slope error is below the straight line extrapolated from the linear curve described above. (iii). The non-linear region: the temperature of the Si crystal is higher than 125 K and the thermal slope error increases much faster than the power. Heat-load tests were also performed and the measured rocking-curve widths are compared with those calculated by finite-element modeling. When the broadening from the intrinsic rocking-curve width and mounting strain are included, the calculated rocking-curve width versus heat load is in excellent agreement with experiment. PMID:12824931

  19. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  20. Implementation of the beamline controls at the Florence accelerator laboratory

    NASA Astrophysics Data System (ADS)

    Carraresi, L.; Mirto, F. A.

    2008-05-01

    The new Tandetron accelerator in Florence, with many different beamlines, has required a new organization of all the control signals of the used equipment (slow control). We present our solution, which allows us the control of all the employed instruments simultaneously from a number of different workplaces. All of our equipment has been designed to be Ethernet based and this is the key to accomplish two very important requirements: simultaneous remote control from many computers and electrical isolation to achieve a lower noise level. The control of the instruments requires only one Ethernet network and no particular interfaces or drivers on the computers.

  1. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10

  2. LISA: the Italian CRG beamline for x-ray Absorption Spectroscopy at ESRF

    NASA Astrophysics Data System (ADS)

    d'Acapito, F.; Trapananti, A.; Puri, A.

    2016-05-01

    LISA is the acronym of Linea Italiana per la Spettroscopia di Assorbimento di raggi X (Italian beamline for X-ray Absorption Spectroscopy) and is the upgrade of the former GILDA beamline installed on the BM08 bending magnet port of European Synchrotron Radiation Facility (ESRF). Within this contribution a full description of the project is provided.

  3. FINAL REPORT. CONSTRUCTION OF BENDING MAGNET BEAMLINE AT THE APS FOR ENVIRONMENTAL STUDIES

    EPA Science Inventory

    Design and construction of a bending magnet beamline at the Advanced Photon Source (APS) by the Pacific Northwest Consortium-Collaborative Access Team (PNC-CAT). The beamline will be optimized for x-ray absorption spectroscopy (XAS) studies with a major focus on environmental iss...

  4. Micro-Soft X-Ray Spectroscopy with the LUCIA Beamline

    SciTech Connect

    Lagarde, P.; Flank, A.-M.; Vantelon, D.; Janousch, M.

    2007-02-02

    With the development of new synchrotron radiation machines, which have seen, in the last ten years, the emittance of the beam decreased by several orders of magnitude, new beamlines have been developed which make full use of these improvements. We describe here the LUCIA beamline, which has been implemented at the Swiss Light Source in a collaboration between PSI, SOLEIL and the CNRS.

  5. The macromolecular crystallography beamline I911-3 at the MAX IV laboratory

    PubMed Central

    Ursby, Thomas; Unge, Johan; Appio, Roberto; Logan, Derek T.; Fredslund, Folmer; Svensson, Christer; Larsson, Krister; Labrador, Ana; Thunnissen, Marjolein M. G. M.

    2013-01-01

    The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010–2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines. PMID:23765310

  6. Present Status of the NIMS Contract Beamline BL15XU at SPring-8

    SciTech Connect

    Ueda, Shigenori; Tanaka, Masahiko; Yoshikawa, Hideki; Yamashita, Yoshiyuki; Matsushita, Yoshitaka; Kobayashi, Keisuke; Katsuya, Yoshio; Ishimaru, Satoshi

    2010-06-23

    The revolver undulator beamline BL15XU at SPring-8, which is the contract beamline of National Institute for Materials Science (NIMS), was established for materials science using soft-and-hard X-ray photoelectron spectroscopy (XPS) and high-resolution powder X-ray diffraction (XRD). We have performed beamline reconstruction for further developments of the experiments in the research field of materials science. The flat double-crystal monochromator (DCM) with liquid nitrogen cooling, X-ray total reflection double-mirror system with (+,-) geometry, and high-energy-resolution channel-cut monochromator have been installed into the beamline. The refined beamline provides monochromatic X-rays from 2 to 36 keV. The improvement of the photon flux density at the XRD and XPS experimental stations was confirmed. The photon flux was estimated to be several 10{sup 12} photons/sec with {Delta}E/E of {approx}10{sup -4}.

  7. The Protein Micro-Crystallography Beamlines for Targeted Protein Research Program

    NASA Astrophysics Data System (ADS)

    Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi

    In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented.

  8. Commissioning and first results of scanning type EXAFS beamline (BL-09) at INDUS-2 synchrotron source

    SciTech Connect

    Poswal, A. K. Agrawal, A. Yadav, A. K. Nayak, C. Basu, S. Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.; Kane, S. R.; Garg, C. K.

    2014-04-24

    An Energy Scanning X-ray Absorption Fine Structure spectroscopy beamline has recently been installed and commissioned at BL-09 bending magnet port of INDUS-2 synchrotron source, Indore. The beamline uses an UHV compatible fixed exit double crystal monochromator (DCM) with two Si (111) crystals. Two grazing incidence cylindrical mirrors are also used in this beamline; the pre-mirror is used as a collimating mirror while the post mirror is used for vertical focusing and higher harmonic rejection. In this beamline it is possible to carry out EXAFS measurements both in transmission and fluorescence mode on various types of samples, using Ionization chamber detectors and solid state drift detector respectively. In this paper, results from first experiments of the Energy Scanning EXAFS beamline are presented.

  9. Performance of beamline 9.3.1 at the ALS: Flux and resolution measurements

    SciTech Connect

    Uehara, Y.; Fischer, G.; Kring, J.; Perera, R.C.C.

    1997-04-01

    Beamline 9.3.1 at the ALS is a windowless beamline, covering the 1-6 keV photon-energy range. This beamline is the first monochromatic hard x-ray beamline in the ALS, and designed to achieve the goals of high energy resolution, and preservation of the high brightness from the ALS. It consists of a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator and two toroidal mirrors which are positioned before and after the monochromator. The construction of the beamline was completed in December of 1995, with imperfect mirrors. In this report, the authors describe the experimental results of absolute flux measurements and x-ray absorption measurements of gases and solid samples using the present set of mirrors.

  10. NSLS transvenous coronary angiography beamline upgrade and advanced technology initiatives

    SciTech Connect

    Gmuer, N.F.; Chapman, D.; Thomlinson, W. ); Thompson, A.C. ); Lavender, W.M. ); Scalia, K.; Malloy, N. ); Mangano, J.; Jacob, J. )

    1995-02-01

    Since October 1990, the coronary anatomies of a total of 16 patients (male and female) have been imaged at the National Synchrotron Light Source (NSLS) as part of the Dual Energy Digital Subtraction Transvenous Coronary Angiography research program. This program takes place in the Synchrotron Medical Research Facility (SMERF) on the X17B2 wiggler beamline. Encouraged by the success of the initial patient images, the NSLS has recently embarked on an ambitious upgrade effort. This effort covers all aspects of the X17B2 beamline and includes improved radiation shielding, a Laue monochromator assembly, a computer-controlled five motion patient scanning chair assembly, a fast low-noise image acquisition system, and a modularized patient safety system. These improvements will allow major advances in imaging patients based on ECG signal gating and multiple view imaging. Two advanced technology initiatives are underway with industrial collaborators. One will develop real-time image acquisition and display of the subtracted digital images. The second will develop a compact x-ray source of medical imaging. The source will be a linear electron accelerator creating characteristic radiation line emissions.

  11. NSLS transvenous coronary angiography beamline upgrade and advanced technology initiatives

    SciTech Connect

    Gmuer, N.F.; Chapman, D.; Thomlinson, W.; Thompson, A.C.; Lavender, W.M.; Scalia, K.; Malloy, N.; Mangano, J.; Jacob, J.

    1994-11-01

    Since October 1990, the coronary anatomies of a total of 16 patients (male and female) have been imaged at the National Synchrotron Light Source (NSLS) as part of the Dual Energy Digital Subtraction Transvenous Coronary Angiography research program. This program takes place in the Synchrotron Medical Research Facility (SMERF) on the X17B2 wiggler beamline. Encouraged by the success of the initial patient images, the NSLS has recently embarked on an ambitious upgrade effort. This effort covers all aspects of the X17B2 beamline and includes improved radiation shielding, a Laue monochromator assembly, a computer-controlled 5 motion patient scanning chair assembly, a fast low-noise image acquisition system, and a modularized patient safety system. These improvements will allow major advances in imaging patients based on ECG signal gating and multiple view imaging. Two advanced technology initiatives are underway with industrial collaborators. One will develop real-time image acquisition and display of the subtracted digital images. The second will develop a compact x-ray source for medical imaging. The source will be a linear electron accelerator creating characteristic radiation line emissions.

  12. The Diamond Beamline I13L for Imaging and Coherence

    SciTech Connect

    Rau, C.; Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C.; Robinson, I. K.

    2010-06-23

    I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

  13. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    SciTech Connect

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose; Adzic, Radoslav; Bare, Simon R.; Hulbert, Steve L.; Karim, Ayman; Mullins, David R.; Overbury, Steve

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  14. High pressure experiments at the XAFS Beamline, INDUS-2

    NASA Astrophysics Data System (ADS)

    Ramanan, Nitya; Lahiri, Debdutta; Garg, Nandini; Bhattacharyya, D.; Jha, S. N.; Sahoo, N. K.; Sharma, Surinder M.

    2012-07-01

    The dispersive XAFS beamline BL-08 at the INDUS-2 synchrotron radiation source, RRCAT, Indore uses a bent Si (111) crystal as dispersive-cum-focusing element and a position sensitive CCD detector to enable instantaneous measurement of the whole XAFS spectrum around the absorption edge of interest. This beamline is ideal for characterisation of materials under high pressure using Diamond Anvil Cell with ~50 μm spot size. For this setup, the theoretically determined spot size (Horizontal × Vertical) varies between 17 × 137 μm and 37 × 142 μm for the x-ray energy range 5 keV-20 keV. To reduce the vertical spot size to <50 μm, we have designed an additional focusing mirror between the polychromator and sample position. The mirror, procured from SESO (France), will be installed shortly. Meanwhile, we have developed a dummy mirror bender setup at CDM (B ARC) and have carried out feasibility tests to confirm reduction in spot size using the same. We have also conducted preliminary XAFS experiments (at BL-08) on SrRuO3 at ~16 keV, under ambient conditions and inside diamond anvil cell, in order to assess the signal intensity and quality. We have obtained reasonably good signal.

  15. Design, Installation, and Initial Commissioning of the MTA Beamline

    SciTech Connect

    Moore, Craig; Anderson, John; Garcia, Fernanda; Gerardi, Michael; Johnstone, Carol; Kobilarcik, Thomas; Kucera, Michael; Kufer, Mathew; Newhart, Duane; Rakhno, Igor; Vogel, Gregory; /Fermilab

    2010-05-01

    A new experimental area designed to develop, test and verify muon ionization cooling apparatus using the 400-MeV Fermilab Linac proton beam has been fully installed and is presently being commissioned. Initially, this area was used for cryogenic tests of liquid-hydrogen absorbers for the MUCOOL R&D program and, now, for high-power beam tests of absorbers, high-gradient rf cavities in the presence of magnetic fields (including gas-filled cavities), and other prototype muon-cooling apparatus. The experimental scenarios being developed for muon facilities involve collection, capture, and cooling of large-emittance, high-intensity muon beams--{approx}10{sup 13} muons, so that conclusive tests of the apparatus require full Linac beam, which is 1.6 x 10{sup 13} p/pulse. To support the muon cooling facility, this new primary beamline extracts and transports beam directly from the Linac to the test facility. The design concept for the MuCool facility is taken from an earlier proposal [1], but modifications were necessary to accommodate high-intensity beam, cryogenics, and the increased scale of the cooling experiments. Further, the line incorporates a specialized section and utilizes a different mode of operation to provide precision measurements of Linac beam parameters. This paper reports on the technical details of the MuCool beamline for both modes.

  16. Microfocusing at the PG1 beamline at FLASH

    SciTech Connect

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; Mey, Tobias; Reininger, Ruben; Rübhausen, Michael; Siewert, Frank; Weigelt, Holger; Brenner, Günter

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm x 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines and limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.

  17. The BESSY wiggler/undulator-TGM-5 beamline

    SciTech Connect

    Peatman, W.; Carbone, C.; Gudat, W.; Heinen, W.; Kuske, P.; Pfluger, J.; Schafers, F.; Schroeter, T.

    1989-07-01

    In actual performance, the 35 pole wiggler/undulator (W/U) at BESSY has been shown to deliver 50 to 250 times more flux than a TGM with 10 mrad of dipole radiation under otherwise comparable conditions. The beamline, laid out for photon energies from 15 to 400 eV, has been calibrated and the resolution measured at several energies. Interactions of the W/U with the storage ring have been studied and, in part, corrected for: the working point does not change in either direction (/lt/10%) as the gap is varied and the electron beam position in the ring remains constant to within 10 /mu/m and the angle of emission of the SR from the ring to within 5 /mu/rad for /ital K//le/2.7. The reduction of the lifetime of the electron beam in the ring and the change in the vertical size of the beam as a function of the gap are typical of the problems associated with the interaction of such a device on a high brightness ring. The beamline has been in normal user operation for over a year.

  18. Parametric Optimization of Undulators for NSLS-II Project Beamlines

    NASA Astrophysics Data System (ADS)

    Chubar, O.; Bengtsson, J.; Berman, L.; Broadbent, A.; Cai, Y. Q.; Hulbert, S.; Shen, Q.; Tanabe, T.

    2010-06-01

    General optimization procedure, computation methods used, and the obtained optimal parameters of undulators for the NSLS-II project beamlines are reported. The optimization starts with high-accuracy calculation of undulator magnetic fields, using Radia magnetostatics code, for a large set of periods and vertical gaps of a given undulator type, given magnetic materials and a scalable magnet geometry. From the resulting magnetic fields, a sub-set of undulator periods and the corresponding vertical gaps, providing the required low-energy cut-off values of spectral harmonics for each particular beamline, is determined. In parallel, from the same Radia undulator models, angular magnetic kick maps are calculated, and the insertion device effect on electron beam is simulated using Tracy-2 tracking code based on symplectic integrator. After these simulations, magnet parameters are fine-tuned and the maximal acceptable undulator lengths are determined for different straight sections, as functions of minimal gap and with due regard for the electron beam vertical "stay clear" constraint in the case of in-vacuum undulators. Finally, the optimal undulator period and length are determined as the values providing maximal spectral flux among the pre-selected undulator cases, already satisfying the requirements concerning the harmonic cut-off values and the effect on electron beam.

  19. Microfocusing at the PG1 beamline at FLASH

    DOE PAGESBeta

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; Mey, Tobias; Reininger, Ruben; Rubhausen, Michael; Siewert, Frank; Weigelt, Holger; Brenner, Gunter

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines andmore » limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Lastly, aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.« less

  20. Microfocusing at the PG1 beamline at FLASH

    SciTech Connect

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; Mey, Tobias; Reininger, Ruben; Rubhausen, Michael; Siewert, Frank; Weigelt, Holger; Brenner, Gunter

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines and limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Lastly, aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.

  1. Shielding Design Aspects of SR Beamlines for 3-GeV And 8-GeV Class Synchrotron Radiation Facilities

    SciTech Connect

    Asano, Yoshihiro; Liu, James C.; Rokni, Sayed; /SLAC

    2007-09-24

    Differences in synchrotron radiation beamline shielding design between the facilities of 3 GeV class and 8 GeV class are discussed with regard to SLAC SSRL and SPring-8 beamlines. Requirements of beamline shielding as well as the accelerator shielding depend on the stored electron energy, and here some factors in beamline shielding depending on the stored energy in particular, are clarified, namely the effect of build up, the effect of double scattering of photons at branch beamlines, and the spread of gas bremsstrahlung.

  2. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Romano, F.; Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Scuderi, V.; Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G.; Giordanengo, S.; Guarachi, L. Fanola; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Pulvirenti, S.; Rizzo, D.; Sacchi, R.; Salamone, S.; Sedita, M.; Vignati, A.

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  3. Undulator beamline of the Brockhouse sector at the Canadian Light Source

    SciTech Connect

    Diaz, B. E-mail: skycia@uoguelph.ca; Gomez, A.; Duffy, A.; Hallin, E.; Meyer, B.; Kycia, S. E-mail: skycia@uoguelph.ca

    2014-08-15

    The Brockhouse project at the Canadian Light Source plans the construction of three beamlines, two wiggler beamlines, and one undulator beamline, that will be dedicated to x-ray diffraction and scattering. In this work, we will describe the undulator beamline main components and performance parameters, obtained from ray tracing using XOP-SHADOW codes. The undulator beamline will operate from 4.95 to 21 keV, using a 20 mm period hybrid undulator placed upstream of the wiggler in the same straight section. The beamline optics design was developed in cooperation with the Brazilian Synchrotron - LNLS. The beamline will have a double crystal monochromator with the options of Si(111) or Si(311) crystal pairs followed by two mirrors in the KB configuration to focus the beam at the sample position. The high brilliance of the undulator source will produce a very high flux of ∼10{sup 13} photons/s and high energy resolution into a small focus of 170 μm horizontal and 20-60 μm vertical, depending on the optical configuration and energy chosen. Two multi-axis goniometer experimental stations with area detectors and analyzers are foreseen to enable diffraction, resonant and inelastic scattering experiments, and SAXS/WAXS experiments with high resolution and time resolving capabilities.

  4. Optimized baffle and aperture placement in neutral beamlines

    NASA Astrophysics Data System (ADS)

    Stone, R.; Duffy, T.; Vetrovec, J.

    1983-11-01

    Most neutral beamlines contain an iron-core ion-bending magnet that requires shielding between the end of the neutralizer and this magnet. This shielding allows the gas pressure to drop prior to the beam entering the magnet and therefore reduces beam losses in this drift region. The beam losses are reduced even further by eliminating the iron-core magnet and the magnetic shielding altogether. The required bending field is supplied by current coils without the iron poles. In addition, placement of the baffles and apertures affects the cold gas entering the plasma region and the losses in the neutral beam due to re-ionization. The placement of the baffles which, determine the amount of pumping in each chamber, and the apertures, which determine the beam loss were varied. A baffler/aperture configuration is for either minimum cold gas into the plasma region or minimum beam losses, but not both.

  5. High heat flux mirror design for an undulator beamline

    NASA Astrophysics Data System (ADS)

    Tonnessen, Thomas W.; Fisher, Steven E.; Anthony, Frank M.; Lunt, David L.; Khounsary, Ali M.; Randall, Kevin J.; Gluskin, Efim S.; Yun, Wenbing

    1993-11-01

    A-high-heat-load, horizontally deflecting/focusing mirror is designed for installation on an APS undulator beamline. The main design objective has been to keep the total tangential RMS slope error, including the thermally induced component, to less than 2 (mu) rad with an absorbed beam power on the mirror of 2 kW and a peak flux of 3.2 W/mm2. Extensive examination of various design parameters and detailed thermal/structural analyses has resulted in a mirror design that meets the tight slope-error requirement. Design features include a silicon substrate, a tailored pin-post cooling scheme, a moderate coolant flow rate, primary and secondary cooling areas, a multi-strip coating on the reflecting surface, and inlet/outlet cooling manifolds through an attached Ni-Fe mounting structure.

  6. XAFS at the new materials science beamline 10 at the DELTA storage ring

    NASA Astrophysics Data System (ADS)

    Lützenkirchen-Hecht, D.; Wagner, R.; Frahm, R.

    2016-05-01

    The layout and the characteristics of the hard X-ray beamline BL 10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. Equipped with a stable and robust Si(111) channel-cut monochromator, this beamline is suited for XAFS studies in the spectral range from about 4 keV to ca. 16 keV photon energy. We will illustrate the performance of the beamline, and present EXAFS data obtained from several reference compounds. XANES data measured for dilute sample systems as well as surface sensitive grazing incidence EXAFS obtained from thin film samples will also be discussed.

  7. Progress of projection computed tomography by upgrading of the beamline 37XU of SPring-8

    NASA Astrophysics Data System (ADS)

    Terada, Yasuko; Suzuki, Yoshio; Uesugi, Kentaro; Miura, Keiko

    2016-01-01

    Beamline 37XU at SPring-8 has been upgraded for nano-focusing applications. The length of the beamline has been extended to 80 m. By utilizing this length, the beamline has advantages for experiments such as X-ray focusing, X-ray microscopic imaging and X-ray computed tomography. Projection computed tomography measurements were carried out at experimental hutch 3 located 80 m from the light source. CT images of a microcapsule have been successfully obtained with a wide X-ray energy range.

  8. Conceptual Design of the Small Angle Scattering Beamline at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Kirby, N.; Boldeman, J. W.; Gentle, I.; Cookson, D.

    2007-01-01

    A high performance small angle and wide angle x-ray scattering (SAXS/WAXS) beamline is one of the initial suite of beamlines to be built at the 3 GeV Australian Synchrotron. This beamline will be ready for use in 2008, for structural analysis across a wide range of research applications over length scales of ˜ 1 to greater than 5000 Å. The instrument is intended for advanced analysis capabilities only possible using synchrotron radiation, such as time, space and energy resolved analysis, and for weak scattering systems. Photon energies will be readily variable between 5.2 and 20 keV.

  9. First results from the high-brightness x-ray spectroscopy beamline at ALS

    SciTech Connect

    Perera, R.C.C.; Ng, W.; Jones, G.

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  10. Characterization of the new NSLS infrared microspectroscopy beamline U10B

    SciTech Connect

    Carr, G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  11. CHARACTERIZATION OF THE NEW NSLS INFARED MICROSPECTROSCOPY BEAMLINE U10B.

    SciTech Connect

    CARR,G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  12. Imaging in real and reciprocal space at the Diamond beamline I13

    NASA Astrophysics Data System (ADS)

    Rau, C.; Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; De Fanis, A.; Pešić, Z.

    2016-01-01

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction.

  13. Microfocusing at the PG1 beamline at FLASH

    PubMed Central

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; Mey, Tobias; Reininger, Ruben; Rübhausen, Michael; Siewert, Frank; Weigelt, Holger; Brenner, Günter

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines and limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented. PMID:26698054

  14. Microfocusing at the PG1 beamline at FLASH.

    PubMed

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; Mey, Tobias; Reininger, Ruben; Rübhausen, Michael; Siewert, Frank; Weigelt, Holger; Brenner, Günter

    2016-01-01

    The Kirkpatrick-Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines and limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented. PMID:26698054

  15. Development of a Niobium Bellow for Beamline Connections

    SciTech Connect

    Larry Turlington; John Brawley; Robert Manus; Stephen Manning; Samuel Morgan; Gary Slack; Peter Kneisel

    2003-09-01

    Superconducting cavities in an accelerator assembly are usually connected at the beampipes by stainless steel bellows. They operate at an intermediate temperature, compensating for alignment tolerances on the cavity beamlines and for thermal contraction during cooldown to cryogenic temperatures. This transition from one cavity to the next in a cavity string is typically of the order of 3/2 wavelength along with approximately half a wavelength taken up by the bellows. If one could incorporate a niobium bellows in the beam pipe, this distance could be reduced by half a wave length. In the case of a big accelerator such as TESLA the overall cavity length for the accelerator could be reduced by roughly 10% or 2000 m. In terms of cost savings this would amount to several million dollars. Based on this estimate we have begun to develop a niobium bellows to be used on a 2.75 inch diameter beamline. It is made from 0.3 mm thick niobium sheet, rolled into a tube and secured by a longitudinal full penetration electron beam weld; the weld is made with a high speed a narrow, focused beam reducing the heat affected zone, thus limiting the grain growth, which could affect the formability. Subsequently, two convolutions have been pressed into this tube in a 2-stage process, using an external die and a polyurethane internal expander. Niobium cuffs and flanges were electron beam welded to the formed bellows, which facilitated leak testing and allowed some measurements of compression/expansion and bending. In this contribution the fabrication process and the subsequent mechanical and vacuum tests with the bellows will be described.

  16. Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines

    SciTech Connect

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis; McKean, John P.; Trame, Christine; Dickert, Jeff; Rozales, Anthony; Dauz,Azer; Taylor, John; Zwart, Petrus; Duarte, Robert; Padmore, Howard; McDermott, Gerry; Adams, Paul

    2007-07-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which together formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller

  17. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  18. The Design and Performance of Beamline BL15 at SAGA Light Source

    SciTech Connect

    Okajima, T.; Chikaura, Y.; Suzuki, Y.; Tabata, M.; Soejima, Y.; Haruki, R.; Hara, K.; Nagata, K.; Hiramatsu, N.; Kohno, A.; Takumi, M.; Setoyama, H.; Yoshimura, D.

    2007-01-19

    A new X-ray beamline has been designed and constructed at SAGA Light Source. The beamline, named BL15, covers an energy range from 2.1 to 14.2 keV and is intended for the characterization of various materials developed for industrial purposes. The beamline has an experimental station for the performance of several experiments: e.g. X-ray absorption fine structure (XAFS) measurement; high resolution diffractometry; topographic imaging; energy-dispersive four-circle diffractometry. The photon flux passing through a receiving slit at XAFS measurement position is more than 1 x 1011 photons/sec with focusing mirror in the energy range of less than 8keV. The XANES spectra measurements of Cu and Ti K-edge show that the beamline has a good energy resolution.

  19. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    NASA Astrophysics Data System (ADS)

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-01

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 1012-109 photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  20. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    SciTech Connect

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

  1. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  2. New soft X-ray beamline BL07LSU at SPring-8

    PubMed Central

    Yamamoto, Susumu; Senba, Yasunori; Tanaka, Takashi; Ohashi, Haruhiko; Hirono, Toko; Kimura, Hiroaki; Fujisawa, Masami; Miyawaki, Jun; Harasawa, Ayumi; Seike, Takamitsu; Takahashi, Sunao; Nariyama, Nobuteru; Matsushita, Tomohiro; Takeuchi, Masao; Ohata, Toru; Furukawa, Yukito; Takeshita, Kunikazu; Goto, Shunji; Harada, Yoshihisa; Shin, Shik; Kitamura, Hideo; Kakizaki, Akito; Oshima, Masaharu; Matsuda, Iwao

    2014-01-01

    A new soft X-ray beamline, BL07LSU, has been constructed at SPring-8 to perform advanced soft X-ray spectroscopy for materials science. The beamline is designed to achieve high energy resolution (E/ΔE> 10000) and high photon flux [>1012 photons s−1 (0.01% bandwidth)−1] in the photon energy range 250–2000 eV with controllable polarization. To realise this state-of-the-art performance, a novel segmented cross undulator was developed and adopted as a light source. The details of the undulator light source and beamline monochromator design are described. The achieved performance of the beamline, such as the photon flux, energy resolution and the state of polarization, is reported. PMID:24562556

  3. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies

    SciTech Connect

    Reininger, R.; Hulbert, S. L.; Chubar, O.; Vescovo, E.; Johnson, P. D.; Valla, T.; Sadowski, J. T.; Starr, D. E.

    2012-02-15

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({mu}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {mu}m for ARPES and 0.5 {mu}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  4. An Extreme Flux Vacuum Ultraviolet/Ultraviolet Beamline For The Measurement Of Biological Circular Dichroism

    SciTech Connect

    Clarke, D.T.; Vasanthi, N.; Shaw, D.; Brown, A.; Todd, B.; Grant, A.F.; Flaherty, J.V.; Mullacrane, I.D.; Miller, M.J.; Bowler, M.A.; Jones, G.R.; Mythen, C.

    2004-05-12

    A new extreme flux vacuum ultraviolet bending magnet beamline (CD12) has been commission at the SRS, Daresbury. The beamline has met all of its designed performance parameters and these are detailed. The clear advantages of SRCD over CD undertaken on conventional instruments are discussed and examples of its capabilities in terms of measurement precision and enhanced signal-to-noise for both steady-state CD and time-resolved CD are given.

  5. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    DOE PAGESBeta

    Fomin, N.; Greene, G. L.; Allen, R. R.; Cianciolo, V.; Crawford, C.; Tito, T. M.; Huffman, P. R.; Iverson, E. B.; Mahurin, R.; Snow, W. M.

    2014-11-04

    In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  6. A modified post damping ring bunch compressor beamline for the TESLA linear collider

    SciTech Connect

    Philippe R.-G. Piot; Winfried Decking

    2004-03-23

    We propose a modified bunch compressor beamline, downstream of the damping ring, for the TESLA linear collider. This modified beamline uses a third harmonic radio-frequency section based on the 3.9 GHz superconducting cavity under development at Fermilab. In our design the beam deceleration is about {approx}50 MeV instead of {approx}450 MeV in the original design proposed.

  7. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning

    PubMed Central

    Svetina, Cristian; Grazioli, Cesare; Mahne, Nicola; Raimondi, Lorenzo; Fava, Claudio; Zangrando, Marco; Gerusina, Simone; Alagia, Michele; Avaldi, Lorenzo; Cautero, Giuseppe; de Simone, Monica; Devetta, Michele; Di Fraia, Michele; Drabbels, Marcel; Feyer, Vitaliy; Finetti, Paola; Katzy, Raphael; Kivimäki, Antti; Lyamayev, Viktor; Mazza, Tommaso; Moise, Angelica; Möller, Thomas; O’Keeffe, Patrick; Ovcharenko, Yevheniy; Piseri, Paolo; Plekan, Oksana; Prince, Kevin C.; Sergo, Rudi; Stienkemeier, Frank; Stranges, Stefano; Coreno, Marcello; Callegari, Carlo

    2015-01-01

    The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline. PMID:25931066

  8. Remote access to crystallography beamlines at SSRL: novel tools for training, education and collaboration

    PubMed Central

    Smith, Clyde A.; Card, Graeme L.; Cohen, Aina E.; Doukov, Tzanko I.; Eriksson, Thomas; Gonzalez, Ana M.; McPhillips, Scott E.; Dunten, Pete W.; Mathews, Irimpan I.; Song, Jinhu; Soltis, S. Michael

    2010-01-01

    For the past five years, the Structural Molecular Biology group at the Stanford Synchrotron Radiation Lightsource (SSRL) has provided general users of the facility with fully remote access to the macromolecular crystallography beamlines. This was made possible by implementing fully automated beamlines with a flexible control system and an intuitive user interface, and by the development of the robust and efficient Stanford automated mounting robotic sample-changing system. The ability to control a synchrotron beamline remotely from the comfort of the home laboratory has set a new paradigm for the collection of high-quality X-ray diffraction data and has fostered new collaborative research, whereby a number of remote users from different institutions can be connected at the same time to the SSRL beamlines. The use of remote access has revolutionized the way in which scientists interact with synchrotron beamlines and collect diffraction data, and has also triggered a shift in the way crystallography students are introduced to synchrotron data collection and trained in the best methods for collecting high-quality data. SSRL provides expert crystallographic and engineering staff, state-of-the-art crystallography beamlines, and a number of accessible tools to facilitate data collection and in-house remote training, and encourages the use of these facilities for education, training, outreach and collaborative research. PMID:22184477

  9. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments

    PubMed Central

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W.; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J.; Hall, David R.; Lavault, Bernard; McCarthy, Andrew A.; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B. G.; Thibault, Xavier; Walsh, Martin A.; Leonard, Gordon A.; McSweeney, Sean M.

    2010-01-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1. PMID:20724792

  10. Implementation of remote monitoring and diffraction evaluation systems at the Photon Factory macromolecular crystallography beamlines

    PubMed Central

    Yamada, Yusuke; pHonda, Nobuo; Matsugaki, Naohiro; Igarashi, Noriyuki; Hiraki, Masahiko; Wakatsuki, Soichi

    2008-01-01

    Owing to recent advances in high-throughput technology in macromolecular crystallography beamlines, such as high-brilliant X-ray sources, high-speed readout detectors and robotics, the number of samples that can be examined in a single visit to the beamline has increased dramatically. In order to make these experiments more efficient, two functions, remote monitoring and diffraction image evaluation, have been implemented in the macromolecular crystallography beamlines at the Photon Factory (PF). Remote monitoring allows scientists to participate in the experiment by watching from their laboratories, without having to come to the beamline. Diffraction image evaluation makes experiments easier, especially when using the sample exchange robot. To implement these two functions, two independent clients have been developed that work specifically for remote monitoring and diffraction image evaluation. In the macromolecular crystallography beamlines at PF, beamline control is performed using STARS (simple transmission and retrieval system). The system adopts a client–server style in which client programs communicate with each other through a server process using the STARS protocol. This is an advantage of the extension of the system; implementation of these new functions required few modifications of the existing system. PMID:18421163