Science.gov

Sample records for petrochemical effluents industries

  1. Toxic impact of effluents from petrochemical industry.

    PubMed

    Nikunen, E

    1985-02-01

    The toxicity of effluents from a petrochemical industry center in southern Finland was tested by conducting bioassays on organisms from three different trophic levels. In fish tests, rainbow trout (Salmo gairdneri) were caged at the discharge site and simultaneously at a reference area. The only clear differences, among the measurements of 25 metabolic parameters, were observed in fish liver where activities of two detoxication enzymes were significantly increased in the exposed group. The water flea (Daphnia magna) was used both in acute (EC50) and long-term reproduction tests. No acute lethal toxicity was detected in any of the wastewater samples investigated. A combined effluent, however, caused a reduction in the reproduction rate with an EC50 of 3%. No mutagenic activity was observed with the Ames test (Salmonella typhimurium, strains TA 97, TA 98, and TA 100) in concentrated effluents, in sediment samples, or in liver samples from predator fish caught from the discharge site. PMID:3921341

  2. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    PubMed

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams. PMID:17396408

  3. The international petrochemical industry

    SciTech Connect

    Chapman, K.

    1991-01-01

    The petrochemical industry occupies a crucial place in economic, strategic and political terms in the twentieth century. The author explains its growth and international distribution from the 1920s tot he present, relating the particular experience of petrochemicals to the processes that have shaped the long-term evolution of industry in general. The geographical coverage of this book extends from the regional to international scale, and its historical scope embraces one hundred years from the laboratory origins of polymer science and petrochemistry to the massive operations of modern industry. It represents the result of twenty years of research, and reflects the author's privileged access to company sources in both the U.S. and Europe.

  4. Utilization of short chain monocarboxylic acids in an effluent of petrochemical industry by Acinetobacter calcoaceticus

    SciTech Connect

    Du Preez, J.C.; Toerien, D.F.

    1985-02-01

    The aqueous effluent generated by the Fischer-Tropsch process, containing a total of 13 g/L C/sub 2/-C/sub 5/ monocarboxylic acids, was investigated as a potential substrate for the production of single-cell protein (SCP). A bacterial isolate, Acinetobacter calcoaceticus, could utilize all the acids in the effluent simultaneously in chemostat cultures, and no residual acids were detected in the culture below a dilution rate of 0.78 h/sup -1/. The critical dilution rate was 1.04 h/sup -1/. The maintenance energy requirement of the cells growing on the monocarboxylic acid mixture was considerably lower than that of cells growing on acetate as the sole carbon source. Enrichment of the effluent with ethanol to increase the biomass concentration was successful and still allowed the simultaneous and efficient utilization of all the carbon sources, but resulted in a decrease of the critical dilution rate by ca. 20%.

  5. Pollution control for the petrochemicals industry

    SciTech Connect

    Borup, B.; Middlebrooks, E.J.

    1986-01-01

    This book examines pollution control in the petrochemicals industry. Solutions to water, air, solid and hazardous wastes problems are summarized. Energy use and conservation are also discussed. Concerns and precautions necessary for development of petrochemicals plants in developing countries are an added feature. CONTENTS-The Industry - Processes and Waste Streams - Management Philosophy - Summary - 2. Air Pollution - 3. Water pollution - Wastewater Streams and Characteristics - Treatment Methods - Process Modification, Conservation and Treatment - Case Histories - Economics - 4. Solid Wastes Management - Types of Solid Wastes - Disposal Techniques - 5. Disposal of Hazardous Wastes - 6. Petrochemicals Industry in Developing Countries - 7. Energy Considerations in Pollution Control - 8. Summary of Pollution Control in Petrochemicals Industry, including industry growth and management philosophy. APPENDIXES: A. Air Emissions from Various Petrochemicals Processing Plants B. Alternative Hazardous Waste Treatment Processes C. Conversion Factors.

  6. China`s petrochemical industry

    SciTech Connect

    Takeda, Makoto; Tamura, Kazuhisa

    1996-01-01

    It is clear from the trade press that American, European, and Japanese chemical companies are making major capital investment commitments in China. They are also developing strategies to participate in the country`s growth. Many people wonder how long the window of opportunity will remain open. Some questions one may ask include: What are the driving forces for such intense activity? What role is the Chinese government playing in implementing growth plans? What are the classes of chemical products receiving priority attention? To what degree is China integrating upstream into energy and basic feedstocks? What are the long-term implications for Asia and the rest of the world with respect to foreign trade? To answer these and other questions, Martech, Inc., a subsidiary of Mitsubishi Chemical Corporation, recently completed a comprehensive report on China`s petrochemical industry. This article is adapted from the executive summary of that report.

  7. Petrochemicals

    SciTech Connect

    Reeves, T.S.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of wastewater related to the petrochemicals industry. Topics covered include: wastewater characterization; treatment technologies; and water reuse and pollution prevention. 19 refs.

  8. [Source identification of toxic wastewaters in a petrochemical industrial park].

    PubMed

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park. PMID:25826928

  9. Study of different pretreatments for reverse osmosis reclamation of a petrochemical secondary effluent.

    PubMed

    Benito-Alczar, C; Vincent-Vela, M C; Gozlvez-Zafrilla, J M; Lora-Garca, J

    2010-06-15

    Conventionally treated petrochemical wastewaters contain substantial quantities of hazardous pollutants. In addition, wastewater reuse is being enhanced as a consequence of the shortage of fresh water. Advanced petrochemical wastewater treatment for water reuse will reduce hazardous pollutants discharges as well as water consumption. Reverse osmosis is a suitable technology to obtain pure water. This work studies the adequacy of different pretreatments applied to a petrochemical secondary effluent to produce a suitable feeding for reverse osmosis treatment. The permeate obtained can be used in the petrochemical industry for different processes. In this work, several experiments (granulated activated carbon filtration, ultrafiltration, nanofiltration and granulated activated carbon filtration coupled with nanofiltration) were performed to improve the conventional pretreatment. Total organic carbon, chemical oxygen demand, turbidity and silt density index were used to evaluate water quality for reverse osmosis feeding. In granulated activated carbon filtration, all the measured parameters but silt density index indicated a good filtrate quality to feed reverse osmosis membranes. Although the ultrafiltration permeate obtained was suitable for reverse osmosis, nanofiltration and granulated activated carbon filtration coupled with NF provided a better effluent quality for reverse osmosis than the other pretreatments studied. PMID:20207074

  10. [Treatment of Petrochemical Treatment Plant Secondary Effluent by Fenton Oxidation].

    PubMed

    Wang, Yi; Wu, Chang-yong; Zhou, Yue-xi; Zhang, Xue; Dong, Bo; Chen, Xue-min

    2015-07-01

    Fenton oxidation was applied to treat the petrochemical treatment plant secondary effluent by the continuous flow configuration. The effect of Fenton agent dosage on the COD and phosphorus removal and the variation of the dissolved organic matter characteristics during the treatment process were investigated. The results showed the average COD and PO(4)3- -P concentrations were 64.8 mg.L-1 and 0. 79 mg.L-1, respectively. When the dosage of H2O (30%), FeSO4.7H2O and PAM were 0. 4 mL.L-1, 0. 8 mg.L-1 and 0. 9 mg.L-1 and the residence time was 30 min, the average removal rate of COD and PO(4)3- -P were 24. 3% and 95. 5% respectively. The effluent COD was lower than 50 mg.L-1. The percentage of dissolved organic matters with molecular weight less than 1 x 10(3) was 80. 4% in the raw wastewater, however, the percentage increased to 95. 6% when treated by Fenton oxidation. Three-dimensional fluorescence analysis showed that the Fenton oxidation can effectively remove protein and phenols. GC-MS results showed that there were about 117 kinds of organic matters detected in the secondary effluent, while the number reduced to 27 after oxidation by Fenton. The organics containing unsaturated bond had a better removal than those of other types of organics. Fenton oxidation can be used in the advanced treatment of petrochemical secondary effluent. PMID:26489330

  11. Tantalum coatings for the petrochemical industry

    SciTech Connect

    Hays, C.; Watson, J.L. Sr.; Walker, J.P. Jr.

    1995-12-31

    Tantalum coatings have never been a cost attractive item for the petrochemical industry but corrosion-resistant tantalum coatings have been and continue to be a very cost effective solution for many complex metallurgical applications. There are certain environments where thermally-sprayed tantalum has little or no competition from all other corrosion-resistant-alloy-coatings (CRAC). This paper reviews tantalum technology in terms of the relevant petrochemical needs and priorities. Selected properties of both tantalum (Ta) and Ta{sub 2}O{sub 5} are given along with a brief history of tantalum and Ta coatings. Some important discussion is also given about the very difficult development path that tantalum has been forced to overcome. This characterization study involves 2 different applicators and two competitive processes; i.e., plasma and high velocity oxygen flame (HVOF) spraying. Test coupons from this cooperative effort by Watson and Gartner are evaluated in terms of structure, properties and composition. Electron and optical metallography are both used with microhardness and associated methods of characterization for thermal spray coatings.

  12. Removal of nitrogen from secondary effluent of a petrochemical industrial park by a hybrid biofilm-carrier reactor with one-stage ANAMMOX.

    PubMed

    Lin, Han-Lin; Tsao, Hsiang-Wei; Huang, Yu-Wen; Wang, Yi-Chuan; Yang, Keng-Hao; Yang, Ya-Fei; Wang, Wei-Chiang; Wen, Chun-Kuei; Chen, Sheng-Kun; Cheng, Sheng-Shung

    2014-01-01

    A laboratory study was undertaken to explore the capability of one-stage ANAMMOX in a hybrid biofilm-carrier reactor (HBCR) fed with petrochemical wastewater. Under favorable operating conditions in continuous-flow operations (at the dissolved oxygen level of 0.5-1.0 mg L(-1)), the average total nitrogen (TN) removal efficiency reached 62-67% and approximately 90% of TN can be removed by ANAMMOX. In batch operations of the hybrid biofilm-carrier reactor (without adding carbon substrate), the specific TN removal rate of the reactor in which both Kaldnes and nonwoven carriers were kept was two-fold higher than that of the reactor in which only nonwoven carriers were kept. This indicated that the microbial activity of thinner biofilms (Kaldnes carriers) was remarkably higher than that of thicker biofilms (nonwoven carriers). Finally, based on the 16S rRNA clone library, a cluster of ANAMMOX Candidatus Kuenenia stuttgartiensis was identified. PMID:24960017

  13. China`s refining/petrochemical industry continues expansion

    SciTech Connect

    1995-10-09

    China`s downstream petroleum industry decreased refinery throughput and increased petrochemical production in 1994, compared to 1993 data. A report titled ``China Petroleum Industry `94,`` issued by China Petroleum Newsletter, a publication of China Petroleum Information Institute, summarized China`s refined products and petrochemical production figures for 1994. The report also listed important construction projects at China`s downstream plants. This paper presents data from this report.

  14. Pollution control in the petrochemicals industry

    SciTech Connect

    Borup, M.B.; Middlebrooks, E.J.

    1987-01-01

    This book of fundamentals is intended to provide a base on which to build a pollution control program for petrochemicals plants. Though not exhaustive, it provides data for the establishment of intelligent, environmentally sound approaches to pollution prevention, treatment, and control. Guidelines for the proper selection of pollution control equipment are presented throughout the book, with specific attention to performance and cost-effectiveness.

  15. Regional Industry Workforce Development: The Gulf Coast Petrochemical Information Network

    ERIC Educational Resources Information Center

    Hodgin, Johnette; Muha, Susan

    2008-01-01

    The Gulf Coast Petrochemical Information Network (GC-PIN) is a workforce development partnership among industry businesses and area institutions of higher education in the four-county Gulf Coast region. GC-PIN partners develop new industry-specific curricula, foster industry career awareness, and retrain existing employees in new technologies.

  16. [HYGIENIC ASSESSMENT OF WORKING CONDITIONS IN MODERN PETROCHEMICAL INDUSTRY].

    PubMed

    Badamshina, G G; Karimova, L K; Timasheva, G V

    2015-01-01

    In the paper there are reported the results of the performance of hygiene assessment of working conditions in petrochemical industry. The studies have shown that workers' body is exposed to a complex of hazardous occupational factors including a chemical factor, noise, the severity and intensity of the working process. An overall assessment of working conditions corresponds to Class 3.3. PMID:26302562

  17. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents.

    PubMed

    Ajayan, K V; Selvaraju, M; Thirugnanamoorthy, K

    2011-08-15

    Microalgae exhibit a number of heavy metal uptake process by different metabolism. In this study, the ability of microalgae for removal of heavy metal from wastewater was studied. Growth and biochemical contents of microalgae were determined by spectrophotometer. Heavy metal analysis of wastewater effluents were performed by atomic absorption spectrophotometer before and after treatment at laboratory scale. The growth of Scenedesmus bijuga and Oscillatoria quadripunctulata in sewage wastewater was higher than those grown in synthetic medium. Whereas, the growth of S. bijuga and O. quadripunctulata in sterilized petrochemical effluents was slightly lower than that grown in the standard synthetic medium. The chlorophyll, carotenoid and protein content of S. bijuga and O. quadripunctulata grown in sterilized sewage wastewater were higher than those grown in the standard medium. Similarly S. bijuga and O. quadripunctulata grown in sterilized petrochemical effluents showed lower contents of pigments and protein than those grown in sewage and synthetic medium. Heavy metals copper, cobalt, lead and zinc were removed by 37-50, 20.3-33.3, 34.6-100 and 32.1-100%, respectively from sewage wastewater and petrochemical effluent using Ocillatoria culture. The metal absorption by S. bijuga were (Cu, Co, Pb, Zn) 60-50, 29.6-66, 15.4-25 and 42.9-50%, respectively from sewage and petrochemical effluents. Both species showed high level of heavy metal removal efficiency and metal sorption efficiency of both microalgae depended on the type of biosorbent, the physiological status of the cells, availability of heavy metal, concentration of heavy metal and chemical composition of wastewater. PMID:22545355

  18. A demonstration of biofiltration for VOC removal in petrochemical industries.

    PubMed

    Zhao, Lan; Huang, Shaobin; Wei, Zongmin

    2014-05-01

    A biotrickling filter demo has been set up in a petrochemical factory in Sinopec Group for about 10 months with a maximum inlet gas flow rate of 3000 m3 h(-1). The purpose of this project is to assess the ability of the biotrickling filter to remove hardly biodegradable VOCs such as benzene, toluene and xylene which are recalcitrant and poorly water soluble and commonly found in petrochemical factories. Light-weight hollow ceramic balls (Φ 5-8 cm) were used as the packing media treated with large amounts of circulating water (2.4 m3 m(-2) h(-1)) added with bacterial species. The controlled empty bed retention time (EBRT) of 240 s is a key parameter for reaching a removal efficiency of 95% for benzene, toluene, xylene, and 90% for total hydrocarbons. The demo has been successfully adopted and practically applied in waste air treatments in many petrochemical industries for about two years. The net inlet concentrations of benzene, toluene and xylene were varied from 0.5 to 3 g m(-3). The biofiltration process is highly efficient for the removal of hydrophobic and recalcitrant VOCs with various concentrations from the petrochemical factories. The SEM analysis of the bacterial community in the BTF during VOC removal showed that Pseudomonas putida and Klebsiella sp. phylum were dominant and shutdown periods could play a role in forming the community structural differences and leading to the changes of removal efficiencies. PMID:24569855

  19. Industrial Energy in Transition: A Petrochemical Perspective

    ERIC Educational Resources Information Center

    Wishart, Ronald S.

    1978-01-01

    An industrial development involves the conversion of biomass, through fermentation, to useful chemical products and the gasification of municiple wastes to produce steam for electricity generation. These gases may also serve as chemical feedstocks. (Author/MA)

  20. Chemometric analysis of ecological toxicants in petrochemical and industrial environments.

    PubMed

    Olawoyin, Richard; Heidrich, Brenden; Oyewole, Samuel; Okareh, Oladapo T; McGlothlin, Charles W

    2014-10-01

    The application of chemometrics in the assessment of toxicants, such as heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) potentially derived from petrochemical activities in the microenvironment, is vital in providing safeguards for human health of children and adults residing around petrochemical industrial regions. Several multivariate statistical methods are used in geosciences and environmental protection studies to classify, identify and group prevalent pollutants with regard to exhibited trends. Chemometrics can be applied for toxicant source identification, estimation of contaminants contributions to the toxicity of sites of interest, the assessment of the integral risk index of an area and provision of mitigating measures that limit or eliminate the contaminants identified. In this study, the principal component analysis (PCA) was used for dimensionality reduction of both organic and inorganic substances data in the environment, which are potentially hazardous. The high molecular weight (HMW) PAHs correlated positively with stronger impact on the model than the lower molecular weight (LMW) PAHs, the total petroleum hydrocarbons (TPHs), PAHs and BTEX correlate positively in the F1 vs F2 plot indicating similar source contributions of these pollutants in the environmental material. Cu, Cr, Cd, Fe, Zn and Pb all show positive correlation in the same space indicating similar source of contamination. Analytical processes involving environmental assessment data obtained in the Niger Delta area of Nigeria, confirmed the usefulness of chemometrics for comprehensive ecological evaluation. PMID:25048896

  1. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  2. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  3. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  4. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  5. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  6. Environmental considerations relating to the petrochemicals industry. Sectoral Working Paper Series, No. 40

    SciTech Connect

    Not Available

    1985-11-01

    Petrochemicals include a wide variety of compounds. The following six industries are considered in this paper: synthetic rubbers, synthetic fibers, organic petrochemicals, plastics, carbon black, and surfactants. Contents include: Introduction; Environmental considerations; Air pollution control; Wastewater treatment and disposal; Solid-waste management; Hazardous-wastes control; Energy use; Industrial growth; Management philosophy; Responses.

  7. Laboratory scale and pilot plant study on treatment of toxic wastewater from the petrochemical industry by UASB reactors.

    PubMed

    Stergar, V; Zagorc-Koncan, J; Zgajnar-Gotvanj, A

    2003-01-01

    This research concentrates on the development of an integrated approach to evaluate the possibility of treating very concentrated (COD = 15-20 g/l) and toxic wastewater (nitro-organic effluent) from the petrochemical industry in UASB reactors. A newly developed method utilising a modified Micro-Oxymax respirometer was used to (1) evaluate the inhibitory effects of varying concentrations of nitro-organic effluent on anaerobic granular sludge and (2) to make the proposal of operational parameters for the start up of the continuous process. Subsequently, the continuous tests were undertaken using laboratory scale upflow anaerobic sludge bed reactors to test gradual adaptation of anaerobic biomass to nitro-organic effluent. Practical application of the experimental results of the laboratory-scale continuous tests was evaluated by running the UASB pilot plant. Acceptable COD removal efficiencies were obtained when nitro-organic effluent was diluted with a readily biodegradable substrate up to 80 vol % of nitro-organic effluent in the inlet. The COD removal was 90% and the methane production rate was 4.5 l/d. Wastewater was detoxified and no acute toxicity of the treated wastewater to the anaerobic biomass was detected. This research indicates that anaerobic digestion of the undiluted nitro-organic effluent was not feasible. However, it is possible to blend the nitro-organic effluent with another effluent stream and co-treat these effluents. PMID:14682575

  8. Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater.

    PubMed

    Wang, Lin-Chi; Wang, I-Ching; Chang, Juu-En; Lai, Soon-Onn; Chang-Chien, Guo-Ping

    2007-09-01

    This study investigated the emission of polycyclic aromatic hydrocarbons (PAHs) from stack flue gas and air pollution control device (APCD) effluent of the liquid injection incinerator (LII) disposing the petrochemical industrial wastewater, and PAH removal efficiencies of wet electrostatic precipitator (WESP) and wet scrubber (WSB). The PAH carcinogenic potency were investigated with the benzo(a)pyrene equivalent concentration (BaP(eq)). The remarkably high total-BaP(eq) concentration (220 microgNm(-3)) in the stack flue gas was much higher than those of several published emission sources, and indicated the possible influence on its surrounding environment. The total-PAH emission factors of the WESP, WSB and stack flue gas were 78.9, 95.7 and 30,900 microgL(-1) wastewater, respectively. The removal efficiencies of total-PAHs were 0.254, 0.309 and 0.563% for WESP, WSB and overall, respectively, suggesting that the use of both WESP and WSB shows insignificant PAH removal efficiencies, and 99.4% of total-PAHs was directly emitted to the ambient air through the stack flue gas. This finding suggested that the better incineration efficiencies, and APCD removal efficiencies for disposing the petrochemical industrial wastewater are necessary in future. PMID:17368715

  9. Long term effects of irrigation with petrochemical industry wastewater

    SciTech Connect

    Aziz, O.; Inam, A.; Samiullah; Siddiqi, R.H.

    1996-11-01

    Split plot designed field trials were conducted during 1988-1995 to study the long term effects of petrochemical industry wastewater on six crops and agricultural soils. It was observed that wastewater irrigation resulted in increased seed yield of all the crops selected, viz. wheat, triticale, chickpea, lentil and pigeonpea, except summer moong which showed a decrease in seed yield. Soil receiving the wastewater showed no significant changes in pH, total organic carbon, electrical conductivity, cation exchange capacity, micro- and macro-nutrients and SAR. Thus, it may be concluded that treated refinery wastewater met the irrigational quality requirements as its physico-chemical characteristics were within the permissible limits. The same could be said for the accumulation of heavy metals in the soil as well as in the grains making the latter safe for human consumption. 28 refs., 5 figs., 2 tabs.

  10. NPRA meeting checks the pulse of the petrochemical industry

    SciTech Connect

    Hunter, D.; Young, I.; Wood, A.

    1992-04-08

    The Globalization of Petrochemicals was the rather hackneyed theme of last week`s National Petroleum Refiners Association (NPRA) international petrochemical conference in San Antonio. But though petrochemicals may be taking on a more global character, the mood of delegates from different parts of the world was sharply different. There was a perceptible feeling of confidence among US delegates, that the current beginnings of an uptick in the economy will bolster the petrochemical business. Producers report that volumes are up during the first quarter and inventories are tightening, providing the backdrop for price initiatives during the second quarter that might this time have a chance of sticking.

  11. Industry sector analysis, China: Petrochemical industry in east China. Export trade information

    SciTech Connect

    Not Available

    1993-01-01

    The market survey covers the petrochemical equipment and technology market in East China. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Chinese consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

  12. Quality of effluents from Hattar Industrial Estate

    PubMed Central

    Sial, R.A.; Chaudhary, M.F.; Abbas, S.T.; Latif, M.I.; Khan, A.G.

    2006-01-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry. These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine if these effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH, electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were higher than NEQS. BOD and COD values of all the industries are also above the NEQS. On the whole, these effluents cannot be used for irrigation without proper treatment otherwise that may cause toxicity to soil, plants and animals as well add to the problems of salinity and sododicity. Similarly, these effluents cannot be used for fish farming. PMID:17111466

  13. Quality of effluents from Hattar Industrial Estate.

    PubMed

    Sial, R A; Chaudhary, M F; Abbas, S T; Latif, M I; Khan, A G

    2006-12-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry. These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine if these effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH, electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were higher than NEQS. BOD and COD values of all the industries are also above the NEQS. On the whole, these effluents cannot be used for irrigation without proper treatment otherwise that may cause toxicity to soil, plants and animals as well add to the problems of salinity and sododicity. Similarly, these effluents cannot be used for fish farming. PMID:17111466

  14. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  15. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  16. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  17. Petrochemical industry in the Middle East: current status, uncertainties, global impact

    SciTech Connect

    Not Available

    1983-01-01

    The situation and perspective of the petrochemical industry in Saudi Arabia, Qatar, IR Iran, Iraq, Kuwait, Bahrain, the UAE, SP Libyan AJ, Algeria, and Egypt are reviewed. Special attention is given to the budgetary constraints, foreign partners, the costs, the markets, and the impact of falling oil prices.

  18. Economic viability of the Saudi Arabian petrochemical industry: methanol as a case study

    SciTech Connect

    Al-Salem, A.M.

    1987-01-01

    In the pursuit of the diversification strategy, Saudi planners invested a sizable amount of oil surplus in export-oriented petrochemical projects at Jubail and Yanbu. For this strategy to be realized, the projects must be economically viable. Economic viability entails the presence of petrochemical plants that are self-sustaining and self-perpetuating in the long run without state subsidies. In view of the projects, heavy reliance on state subsidies along with their location in a remote area, far from the source of demand, it is hypothesized that, barring a significant shift in the development strategy, a dynamic industrial sector focusing on the development of the petrochemical industry is unlikely to emerge in Saudi Arabia and that the export-led growth strategy that accords it a key role in the nation's development is not likely to prove viable. In verifying the hypothesis, a comparative cost analysis was conducted comparing the cost structure at the Ibn-Sina methanol plant to a similar plant in Alberta, Canada. According to the authors forecast of methanol revenues and costs, the Saudi petrochemical industry exemplified by the methanol project emerges to be as a net absorber of rather than contributor to the nation's financial resources and in this regard appears to impede the process of capital formation and economic growth.

  19. Trends in high performance compressors for petrochemical and natural gas industry in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  20. [Early signs of the influence of harmful industrial factors on workers at present-day petrochemical plants].

    PubMed

    Karimova, L K; Gizatullina, D F

    2012-01-01

    The working conditions and health status were studied in workers from different petrochemical plants. The leading industrial factors that conferred moderate and high risks of health impairments as early signs of the combined action of harmful substances and industrial noise, as well as mild occupational diseases were identified in the workers of essential trades at the petrochemical plants. According to the results of the investigation, the authors have elaborated a package of measures to promote the health status of workers at the petrochemical plants. PMID:22834264

  1. The effect of petrochemical effluent on the water quality of Ubeji Creek in Niger Delta of Nigeria.

    PubMed

    Achudume, A C

    2009-09-01

    Water samples containing petrochemical effluents were evaluated for elemental contaminants along a kilometer distance in Ubeji Creek, a tributary of the Ubeji River in the Niger Delta of Nigeria. Twenty water samples were collected from six sites at various times. The water samples were analyzed for several physico-chemical parameters. Results showed wide varieties in temperature, pH, BOD, COD, dissolved and suspended solids as well as conductivity. The entire environment starting from the end-of-pipe source point was coated with black oily residue. Water quality parameters were very poor. The absence of fish and other aquatic lives, the high levels of Zn (2.4), Cr (0.24), Fe (63.44), Hg (4.24), Mn (2.49), and Pb (0.76) level (microg/L) confirm the toxic nature of Ubeji Creek. At the lower reaches, the mixing of effluent with brackish waters was not enough to support aquatic life, partly because of diminishing oxygen and toxic shock. Nevertheless, the study provides evidence to suggest that the water in Ubeji Creek is toxic. It also provides graphic data to suggest point source where effluents could be held for treatment or neutralization before being discharged into the aquatic environment. PMID:19448963

  2. New petrochemical compositions for use in the coal industry

    SciTech Connect

    D.O. Safieva; E.V. Surov; O.G. Safiev

    2008-12-15

    Various aspects of the use of antifreezing agents in the coal industry are considered. It has been found that, unlike previously proposed compositions, these agents can be prepared based on the products of a single process, the vacuum distillation of fuel oil.

  3. [Evolution of technology and occupational exposures in petrochemical industry and in petroleum refining].

    PubMed

    Cottica, Danilo; Grignani, Elena

    2013-01-01

    The industry of oil refining and petrochemical play an important role in terms of number of employees in the Italian production. Often the terms "petroleum refining" and "petrochemical" are used interchangeably to define processes that occur in complex plants, which grow outdoors on large surfaces and a visual impact is not irrelevant. In reality, the two areas involve potential exposure to different chemical agents, related to raw materials processed and the specific products. The petrochemical uses as raw materials, the oil fractions, obtained by distillation in the refinery, or natural gas; petrochemical products are, usually, single compounds with a specific degree of purity, used as basic raw materials for the entire industry of organic chemistry, from the production of plastics to pharmaceuticals. The oil refining, that is the topic of this paper, processes mainly oil to obtain mixtures of hydrocarbon compounds, the products of which are specified on the basis of aptitude for use. For example gasolines, are obtained by mixing of fractions of the first distillation, reforming products, antiknock. The paper illustrates, necessarily broadly due to the complexity of the productive sectors, the technological and organizational changes that have led to a significant reduction of occupational exposure to chemical agents, the results of environmental monitoring carried out in some refineries both during routine conditions that during scheduled maintenance activities with plant shutdown and a store of petroleum products. The chemical agents measured are typical for presence, physico-chemical properties and toxicological characteristics of the manufacturing processes of petroleum products like benzene, toluene, xylenes, ethyl benzene, n-hexane, Volatile Hydrocarbons belonging to gasoline, kerosene, diesel fuel. Data related to both personal sampling and fixed positions. PMID:24303703

  4. Characteristics of Occupational Exposure to Benzene during Turnaround in the Petrochemical Industries

    PubMed Central

    Shin, Jung-Ah; Lee, Byung-Kyu; Kwon, Jiwoon; Lee, Naroo; Chung, Kwang-Jae; Lee, Jong-Han; Lee, In-Seop; Kang, Seong-Kyu; Jang, Jae-Kil

    2010-01-01

    Objectives The level of benzene exposure in the petrochemical industry during regular operation has been well established, but not in turnaround (TA), where high exposure may occur. In this study, the characteristics of occupational exposure to benzene during TA in the petrochemical companies were investigated in order to determine the best management strategies and improve the working environment. This was accomplished by evaluating the exposure level for the workers working in environments where benzene was being produced or used as an ingredient during the unit process. Methods From 2003 to 2008, a total of 705 workers in three petrochemical companies in Korea were studied. Long- and short-term (< 1 hr) samples were taken during TAs. TA was classified into three stages: shut-down, maintenance and start-up. All works were classified into 12 occupation categories. Results The long-term geometric mean (GM) benzene exposure level was 0.025 (5.82) ppm (0.005-42.120 ppm) and the short-term exposure concentration during TA was 0.020 (17.42) ppm (0.005-61.855 ppm). The proportions of TA samples exceeding the time-weighted average, occupational exposure level (TWA-OEL in Korea, 1 ppm) and the short-term exposure limit (STEL-OEL, 5 ppm) were 4.1% (20 samples of 488) and 6.0% (13 samples of 217), respectively. The results for the benzene exposure levels and the rates of exceeding the OEL were both statistically significant (p < 0.05). Among the 12 job categories of petrochemical workers, mechanical engineers, plumbers, welders, fieldman and scaffolding workers exhibited long-term samples that exceeded the OEL of benzene, and the rate of exceeding the OEL was statistically significant for the first two occupations (p < 0.05). Conclusion These findings suggest that the periodic work environment must be assessed during non-routine works such as TA. PMID:22953163

  5. Pulp and Paper Industry Effluent Management.

    ERIC Educational Resources Information Center

    Gove, George W.

    1978-01-01

    Presents a literature review of wastes from pulp and paper industry, covering publications of 1976-77. This review focuses on: (1) receiving water, toxicity, and effluent characterization; (2) pulping liquor disposal and recovery; and (3) physicochemical and biological treatment. A list of 238 references is also presented. (HM)

  6. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan

    PubMed Central

    Hanai, Yoshimichi; Masunaga, Shigeki

    2009-01-01

    Urban ambient air concentrations of 39 aromatic (including benzene, toluene, and xylenes) and aliphatic volatile organic compounds (VOCs) were measured in Yokohama city, Japan. Yokohama city was selected as a case study to assess the amount of VOC released from Industrial area to characterize the ambient air quality with respect to VOC as well as to know the impact of petrochemical storage facilities on local air quality. For this purpose, ambient air samples were collected (from June 2007 to November 2008) at six selected locations which are designated as industrial, residential, or commercial areas. To find out the diurnal variations of VOC, hourly nighttime sampling was carried out for three nights at one of the industrial locations (Shiohama). Samples were analyzed using gas chromatographic system (GC-FID). Results show strong variation between day and nighttime concentrations and among the seasons. Aliphatic fractions were most abundant, suggesting petrochemical storage facilities as the major source of atmospheric hydrocarbons. High concentrations of benzene, toluene, ethyl benzene, and xylene (BTEX) were observed at industrial locations. BTEX showed strong diurnal variation which is attributed to change in meteorology. During our campaign, low ambient VOC concentrations were observed at the residential site. PMID:20495606

  7. A comparison of new and existing light sources for the petrochemical industry

    SciTech Connect

    Borton, J.A.; Daley, K.A.

    1995-12-31

    This paper will compare current light sources with new research available for the Petrochemical Industry in the 1990`s. High lumen output, by today`s standards, is not necessarily the correct criterion for selection of light sources in process and work areas. This paper will demonstrate how the human eye reacts to various light sources both photopically (day vision) and scotopically (night vision). This comparison of light sources with the new research may change the thinking of users and designers in their selection of light sources.

  8. Annoyance and Worry in a Petrochemical Industrial Area—Prevalence, Time Trends and Risk Indicators

    PubMed Central

    Axelsson, Gösta; Stockfelt, Leo; Andersson, Eva; Gidlof-Gunnarsson, Anita; Sallsten, Gerd; Barregard, Lars

    2013-01-01

    In 1992, 1998, and 2006, questionnaires were sent to stratified samples of residents aged 18–75 years living near petrochemical industries (n = 600–800 people on each occasion) and in a control area (n = 200–1,000). The aims were to estimate the long-term prevalence and change over time of annoyance caused by industrial odour, industrial noise, and worries about possible health effects, and to identify risk indicators. In 2006, 20% were annoyed by industrial odour, 27% by industrial noise (1–4% in the control area), and 40–50% were worried about health effects or industrial accidents (10–20% in the control area). Multiple logistic regression analyses revealed significantly lower prevalence of odour annoyance in 1998 and 2006 than in 1992, while industrial noise annoyance increased significantly over time. The prevalence of worry remained constant. Risk of odour annoyance increased with female sex, worry of health effects, annoyance by motor vehicle exhausts and industrial noise. Industrial noise annoyance was associated with traffic noise annoyance and worry of health effects of traffic. Health-risk worry due to industrial air pollution was associated with female sex, having children, annoyance due to dust/soot in the air, and worry of traffic air pollution. PMID:23552810

  9. Petrochemical industry standards activity aimed at improving the mechanical integrity of process piping

    SciTech Connect

    Reynolds, J.T.

    1996-07-01

    This paper will cover numerous changes being made to existing standards and several new standards being created, all focusing on increasing mechanical integrity of petrochemical industry process piping. Those new standards include ones for (1) Risk-Based Inspection (2) Fitness for Service Analysis, (3) Positive Material Identification, and (4) In-service Inspection and Maintenance for Process Piping. A progress report is included for the Process Industry Practices (PIP) being created to consolidate individual company piping standards into one consistent industry set. And finally, recent initiatives toward standards cooperation/coordination between the American Petroleum Institute(API), American Society of Mechanical Engineers (ASME), International Standards Organization (ISO) and National Board are highlighted.

  10. Toxicity reduction in industrial effluents

    SciTech Connect

    Lankford, P.W.; Eckenfelder, W.W.

    1990-01-01

    The toxicity of manufacturing wastewaters to fish and other aquatic organisms is now being used by state and federal regulators to monitor and restrict industrial wastewater discharges. As a result, there is a great need for guidance on the subject of aquatic toxicity reduction in the field of industrial water pollution control. This book is a comprehensive reference source on the testing protocols, comparative data, and treatment techniques for effective toxicity reduction. Included in this book are detailed chapters covering various methods for toxicity reduction, such as the removal of metals, aerobic biological treatment, stripping of volatile organics, and management of sludges from toxic wastewater treatment. The book features: a complete overview of the subject, including background material for newcomers to the field; a basic summary and comparison of alternate treatment procedures; the latest methods for the identification of toxic components that readers can use for testing in their own laboratories; a description of applicable technologies for toxicity reduction; actual data from the use of processes that allow readers to compare technologies; solids management requirements including handling and disposal; useful economic comparisons of technologies; and illustrative case studies that demonstrate the application of the latest toxicity reduction technology and data to specific situations. Eleven chapters are processed separately in the appropriate data bases.

  11. Novel technology for flame and gas detection in the petrochemical industry

    NASA Astrophysics Data System (ADS)

    Spector, Yechiel; Jacobson, Esther

    1999-01-01

    A reliable and high performance novel method of flame and gas optical spectral analysis was developed to meet the specific flame and gas detection of the petrochemical industry. Petrochemical industries, especially the offshore and unmanned areas in onshore refineries, pose a major safety hazard with respect to potential explosions and fire events. Unwanted fuel spills or fugitive flammable vapor clouds, migrating along congested pipe lines and hot production areas may cause upon ignition significant loss or damage. To help prevents events like the catastrophic fire that destroyed the offshore oil platform Piper Alpha in July 1988, a reliable and fast gas and flame detection system can be used to trigger effective risk management actions. The present paper describes a patented method of Triple Optical Spectral Analysis employed for the detection of various gases in the air according to their unique 'spectral finger print' absorption characteristics of radiation, as well as for analysis of emission and absorption radiation from combustion processes for flame detection purpose. The method has been applied in the development of unique gas and flame monitoring system designed for 'high risk - harsh/extreme weather conditions continuous operation'. These systems have been recently installed on several offshore platforms and oil rigs as well as on 'floating production Storage and Offloading' - FPSO vessels. The systems advantages and limitations as well as several installations and test data are presented. Various atmospheric conditions as well as false alarm stimulus are discussed.

  12. Assessment of soil organic contamination in a typical petrochemical industry park in China.

    PubMed

    Teng, Yong; Zhou, Qixing; Miao, Xinyu; Chen, Yuming

    2015-07-01

    The concentrations of total petroleum hydrocarbons (TPH), n-alkanes (n-C8 through n-C40), and 16 polycyclic aromatic hydrocarbons (PAHs) in soils were determined to assess the level of organic contamination in soils from the Da-gang Petrochemical Industry Park with several big state-run enterprises, a recent rapid flourishing park in China. The results showed that the concentration of TPH in soil was high, up to 20 ng/g-12.8478%; in particular, the content in most sites ranged from 1 to 2%. Thus, it is clear that soil environment in the Da-gang Petrochemical Industry Park has been seriously polluted by TPH according to the Nemerow pollution index method. Furthermore, the average concentration of Σ(n-C>16 through n-C34) in 30 sampling sites was above the maximum limit set for F3 under all the conditions in the Canada-wide standards for petroleum hydrocarbons (PHC CWS) with 43.33-93.33% soil samples exceeding F3 standards, and n-alkanes possessing higher concentrations were proved much abundant alkanes in this study. Besides, the predominance of even n-alkanes and lower carbon preference index (CPI) demonstrated that n-alkanes in surface soils were mainly caused by anthropogenic inputs, while the concentration of Σ16-PAHs was in the range of 1652.5-8217.3 ng/g and the BaA/(BaA + Chr) and Flu/(Flu + Pyr) ratios indicated that pyrogenic PAHs may be the dominant PAHs in most soils with the contribution of petrogenic hydrocarbons in some sites. PMID:25697555

  13. Urinary cytology in workmen engaged in the petrochemical industry with reference to non-industrial risk factors.

    PubMed

    Adolphs, H D; Hildenbrand, G; Schwabe, H W; Vahlensieck, E W

    1985-01-01

    Urine cytology was evaluated in 8,406 male workers of 8 petrochemical factories in western and northern Germany during the routine medical check-up performed by the department of industrial medicine of the respective factory. All relevant data referring to possible private and occupational risk factors were registered and evaluated. Four percent (n = 358) of the 8,406 workers examined exhibited Pap 3/4 cytology. Urological examination did not reveal any bladder tumor in those workers with either a single Pap 4 or a repeated Pap 3 finding on cytology. Our study showed that deterioration of cell differentiation correlated significantly with age and cigarette smoking. Furthermore, a risk group (males above 40 years of age exposed to occupational chemicals, smokers, and coffee drinkers) differed from a non-risk group. Age and cigarette smoking seemed to be the determinant factors. No correlation could be adduced between any kind of industrial exposure and urine cytology. PMID:4012936

  14. Shell and Sabic (Saudi Basic Industries Corp. ) to construct Jubail petrochemical plant

    SciTech Connect

    Not Available

    1980-07-14

    Shell Oil Co.'s Pecten Arabian Ltd. affiliate and Saudi Basic Industries Corp. have agreed to build a $3 billion petrochemical complex at Jubail, Saudi Arabia; the final documents will be signed in late Sept. 1980. The partners will invest about $400 million each in the joint venture, with Saudi public investment funds and commercial banks providing the balance of the funding. Shell will have the right to purchase Saudi crude oil on a long-term basis, as well as some chemical raw materials; the volume of crude made available will be determined by a formula that the Saudis are now developing. One plan under discussion would offer firms options to buy 500 bbl/day of Saudi crude for each $1 million of their investment. The feed for the new plant will be methane and ethane from associated gas now being flared. Product exports are scheduled to begin in late 1985. Product capacities will include (in thousands of metric tons/yr): ethane, 656; chlorine, 333; caustic soda, 377; ethylene dichloride, 454; ethyl benzene, 327; styrene, 295; and crude industrial ethanol, 281. Ships, terminals, and other infrastructure facilities are included in the agreement.

  15. The effect of social trust on citizens health risk perception in the context of a petrochemical industrial complex.

    PubMed

    Lpez-Navarro, Miguel Angel; Llorens-Monzons, Jaume; Tortosa-Edo, Vicente

    2013-01-01

    Perceived risk of environmental threats often translates into psychological stress with a wide range of effects on health and well-being. Petrochemical industrial complexes constitute one of the sites that can cause considerable pollution and health problems. The uncertainty around emissions results in a perception of risk for citizens residing in neighboring areas, which translates into anxiety and physiological stress. In this context, social trust is a key factor in managing the perceived risk. In the case of industrial risks, it is essential to distinguish between trust in the companies that make up the industry, and trust in public institutions. In the context of a petrochemical industrial complex located in the port of Castelln (Spain), this paper primarily discusses how trust - both in the companies located in the petrochemical complex and in the public institutions - affects citizens' health risk perception. The research findings confirm that while the trust in companies negatively affects citizens' health risk perception, trust in public institutions does not exert a direct and significant effect. Analysis also revealed that trust in public institutions and health risk perception are essentially linked indirectly (through trust in companies). PMID:23337129

  16. The Effect of Social Trust on Citizens’ Health Risk Perception in the Context of a Petrochemical Industrial Complex

    PubMed Central

    López-Navarro, Miguel Ángel; Llorens-Monzonís, Jaume; Tortosa-Edo, Vicente

    2013-01-01

    Perceived risk of environmental threats often translates into psychological stress with a wide range of effects on health and well-being. Petrochemical industrial complexes constitute one of the sites that can cause considerable pollution and health problems. The uncertainty around emissions results in a perception of risk for citizens residing in neighboring areas, which translates into anxiety and physiological stress. In this context, social trust is a key factor in managing the perceived risk. In the case of industrial risks, it is essential to distinguish between trust in the companies that make up the industry, and trust in public institutions. In the context of a petrochemical industrial complex located in the port of Castellón (Spain), this paper primarily discusses how trust—both in the companies located in the petrochemical complex and in the public institutions—affects citizens’ health risk perception. The research findings confirm that while the trust in companies negatively affects citizens’ health risk perception, trust in public institutions does not exert a direct and significant effect. Analysis also revealed that trust in public institutions and health risk perception are essentially linked indirectly (through trust in companies). PMID:23337129

  17. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 5. BASIC PETROCHEMICALS INDUSTRY

    EPA Science Inventory

    The catalog was developed to aid in defining the environmental impacts of U.S. industrial activity. Entries for each industry are in consistent format and form separate chapters of the catalog. The basic petroleum industry includes companies that treat hydrocarbon streams from th...

  18. Overnight atmospheric transport and chemical processing of photochemically aged Houston urban and petrochemical industrial plume

    NASA Astrophysics Data System (ADS)

    Zaveri, Rahul A.; Voss, Paul B.; Berkowitz, Carl M.; Fortner, Edward; Zheng, Jun; Zhang, Renyi; Valente, Ralph J.; Tanner, Roger L.; Holcomb, Daniel; Hartley, Thomas P.; Baran, Leslie

    2010-12-01

    Overnight atmospheric transport and chemical evolution of photochemically aged Houston urban and petrochemical industrial plume were investigated in July 2005. We report here on the 26 July episode in which the aged plume was tagged 1.5 h before sunset with a pair of free-floating controlled meteorological balloons, which guided quasi-Lagrangian aircraft sampling in the plume as it was advected 300 km to the north over 8 h. The aged plume around sunset was well mixed within a 1600 m residual layer, and was characterized by enhanced levels of aerosol, O3, CO, olefins, acetaldehyde, total odd nitrogen compounds (NOy), and relatively small amounts (<1 ppbv) of NOx. The plume experienced appreciable shearing overnight due to the development of a low-altitude nocturnal jet between 300 and 500 m above mean sea level (MSL). However, the plume above 600 m MSL remained largely undiluted even after 8 h of transport due to lack of turbulent mixing above the jet. About 40-60% of the NOx present in the aged plume around sunset was found to be depleted over this 8 h period. A constrained plume modeling analysis of the quasi-Lagrangian aircraft observations suggested that by dawn this NOx was converted to nitric acid, organic nitrates, and peroxy acyl nitrates via reactions of NO3 radicals with enhanced levels of olefins and aldehydes in the plume. Sensitivity of NOx depletion to heterogeneous hydrolysis of N2O5 on aerosols was examined. These results have significant implications for the impacts of urban and industrial pollution on far downwind regions.

  19. Exposure to polycyclic aromatic hydrocarbons in petrochemical industries by measurement of urinary 1-hydroxypyrene.

    PubMed Central

    Boogaard, P J; van Sittert, N J

    1994-01-01

    Biological monitoring of exposure of workers to polycyclic aromatic hydrocarbons (PAHs) in petrochemical industries was performed by the measurement of urinary excretion of 1-hydroxypyrene. In 121 of the 462 workers studied (both smokers and non-smokers) who had had no recent occupational exposure to PAHs a median 1-hydroxypyrene concentration of 0.21 micrograms/g creatinine was found. The upper limit of the 95% confidence interval in these workers of 0.99 micrograms/g creatinine was used as the upper normal value for industrial workers. Urinary 1-hydroxypyrene concentrations were measured in workers involved in manufacture and maintenance operations in oil refineries (13 studies in eight different settings), in workers manufacturing or handling products containing PAHs in chemical plants (five studies in three settings) and laboratories (four studies), and in workers digging soil contaminated with PAHs (three studies). In most studies in oil refineries 1-hydroxypyrene concentrations were only marginally greater than the values measured in the 121 workers with no recent occupational exposure to PAHs. This was also the case in maintenance operations with higher potential exposure to PAHs, indicating that personal protection equipment was generally adequate to prevent excessive exposure. The studies in chemical plants also showed that exposure to PAHs is low. An exception was the workers engaged in the production of needle coke from ethylene cracker residue, where increased urinary 1-hydroxypyrene concentrations were measured. The excretion of 1-hydroxypyrene by the operators and maintenance workers of this plant was investigated in relation to potential methods of exposure to PAHs. Dermal and inhalatory exposure were both significant determinants of exposure to PAHs. PMID:8199667

  20. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: concentrations, congener profiles, and partitioning onto particulates and organic carbon.

    PubMed

    Balasubramani, Aparna; Howell, Nathan L; Rifai, Hanadi S

    2014-03-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log Koc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. PMID:24412916

  1. Barry Commoner Assails Petrochemicals

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses Commoner's ideas on the social value of the petrochemical industry and his suggestions for curtailment or elimination of its productive operation to produce a higher environmental quality for mankind at a relatively low loss in social benefit. (CC)

  2. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    PubMed

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district. PMID:20183498

  3. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city, however, vehicle emission was less important as compared with sources from petrochemical industries, as characterized by relatively higher ethane (C2H4)/ ethyne (acetylene) and propene (C3H6)/ethyne ratios which ruled out tailpipes emission as major contributors to the VOCs sources.

  4. SOURCE ASSESSMENT: NITROGEN FERTILIZER INDUSTRY WATER EFFLUENTS

    EPA Science Inventory

    The report describes a study of waterborne pollutants from the manufacture of nitrogen fertilizers. It includes an evaluation of the ammonia, ammonium nitrate, urea, and nitric acid manufacturing processes. Water effluents in a nitrogen fertilizer plant originate from a variety o...

  5. The feasibility of effluent trading in the energy industries

    SciTech Connect

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all point sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.

  6. The potential for effluent trading in the energy industries.

    SciTech Connect

    Veil, J. A.; Environmental Assessment

    1998-01-01

    In January 1996, the US Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades: point source/point source, point source/nonpoint source, pretreatment, intraplant and nonpoint source/nonpoint source. This paper evaluates the feasibility of implementing these types of effluent trading for facilities in the oil and gas, electric power and coal industries. This paper finds that the potential for effluent trading in these industries is limited because trades would generally need to involve toxic pollutants, which can only be traded under a narrow range of circumstances. However, good potential exists for other types of water-related trades that do not directly involve effluents (e.g. wetlands mitigation banking and voluntary environmental projects). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  7. Investment-planning model for the oil-refining and petrochemical industries in Korea. [Using GAMS computer language

    SciTech Connect

    Suh, J.S.

    1981-01-01

    The investment planning model presented here combines information from both the oil-refining industry and the petrochemical industry in order to consider how the Korean economy can best use limited availability of crude oil. The proposed model addresses two broad questions: (a) when is the best time to install new production capacity or to expand existing capacity in order to the future demand for finished products; and (b) what options are available to deal with increasingly strict government anti-pollution regulations. Two models are constructed, static and dynamic. The static model is useful not only as the base of the dynamic model, but also as a tool for analyzing the refinery operations. This study is therefore concerned both with day-to-day operations and with long-term investment planning. In building the linear-programming model, a special computer language called GAMS (General Algebraic Modeling System) is used. The results generated by models appear quite reasonable. Five general conclusions emerged from this study: (1) combining the oil-refining industry and the petrochemical industry into one model proved effective, as demonstrated by the large amount of inter-industry activities; (2) economies of scale play an important role, competing with transportation costs in determining the optimum program for production-capacity expansion; (3) anti-pollution regulations strongly affect the location and size of the expansions; (4) interplant shipments of intermediate products make possible substantially reduced total costs; in addition, such shipments also affect the location and size of the production-capacity expansions; and (5) national-security considerations had a strong effect on total costs and on the locatoin and size of the production-capacity expansions.

  8. Electromagnetic acoustic transducers for wall thickness applications in the petrochemical industry

    NASA Astrophysics Data System (ADS)

    Edwards, C.; Dixon, S.; Widdowson, A.; Palmer, S. B.

    2000-05-01

    Electromagnetic acoustic transducers (EMATs) are now becoming widely used in the field, for example for boiler tube wall thickness surveys in Power Generation plant. In general EMATs work efficiently on steel components with a surface oxide layer, where the oxides can be residual mill scale from the steel manufacturing process due to in-service growth in boilers or chemical processing plant. Very often these oxides have rough surfaces and have to be removed prior to conventional ultrasonic inspection. This can be both time consuming and costly, in addition the removal of the protective oxide layer accelerates the future wall lose rate of the pipe or vessel. As well as the Power Generation application, EMATs can also be used for ultrasonic inspection of petrochemical tubulars without having to remove oxides giving the same associated benefits. This paper presents results obtained from laboratory trials of EMAT thickness monitoring of petrochemical plant pipe samples and real EMAT surveys carried out on-site on refinery plant. In parallel with the practical application of EMATs we are studying the underlying physics of operation with the aim of predicting the EMAT performance for steels with and without oxide layers.

  9. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    PubMed

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the ozone formation in Beijing urban area through reducing the VOCs transport from the industrial area to the urban area. PMID:26013656

  10. Metabolic response of environmentally isolated microorganisms to industrial effluents: Use of a newly described cell culture assay

    NASA Technical Reports Server (NTRS)

    Ferebee, Robert N.

    1992-01-01

    An environmental application using a microtiter culture assay to measure the metabolic sensitivity of microorganisms to petrochemical effluents will be tested. The Biomedical Operations and Research Branch at NASA JSC has recently developed a rapid and nondestructive method to measure cell growth and metabolism. Using a colorimetric procedure the uniquely modified assay allows the metabolic kinetics of prokaryotic and eukaryotic cells to be measured. Use of such an assay if adapted for the routine monitoring of waste products, process effluents, and environmentally hazardous substances may prove to be invaluable to the industrial community. The microtiter method as described will be tested using microorganisms isolated from the Galveston Bay aquatic habitat. The microbial isolates will be identified prior to testing using the automated systems available at JSC. Sodium dodecyl sulfate (SDS), cadmium, and lead will provide control toxic chemicals. The toxicity of industrial effluent from two industrial sites will be tested. An effort will be made to test the efficacy of this assay for measuring toxicity in a mixed culture community.

  11. THE GENOTOXICITY OF INDUSTRIAL WASTES AND EFFLUENTS: A REVIEW

    EPA Science Inventory

    A review of the literature published on the genotoxicity of industrial wastes and effluents using short-term genetic bioassays is presented in this document. he importance of this task arises from the ubiquity of genotoxic compounds in the environment and the need to identify the...

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  13. Prevention of water pollution by waste waters of the petrochemical industry

    SciTech Connect

    Gyunter, L.I.; Shatalaev, I.F.

    1987-01-01

    The authors examine the problems of reception of waste waters of petrochemistry for biological treatment, improvement and introduction of new methods of toxicological control permitting active intervention, and management of the process of arrival of waste waters for biological treatment. In the investigations, they used activated sludge of the first stage of biological treatment of waste waters of a petrochemical plant adapted to organic compounds of various classes and salts of certain metals. Of the metals, it is shown that chromium, nickel, and zinc have a pronounced toxic effect on activated sludge; the toxicity of cobalt and barium is less. Shown is the design of experiments for investigating the joint toxic effect of components of waste waters of the syndet Progress, dibutyl-p-cresol, and synthetic fatty acids on activated sludge dehydrogenases.

  14. Determination of Phenols and Trimethylamine in Industrial Effluents

    NASA Technical Reports Server (NTRS)

    Levaggi, D. A.; Feldstein, M.

    1971-01-01

    For regulatory purposes to control certain odorous compounds the analysis of phenols and trimethylamines in industrial effluents is necessary. The Bay Area Air Pollution Control District laboratory has been determining these gases by gas chromatographic techniques. The procedures for sample collection, preparation for analysis and determination are described in detail. Typical data from various sources showing the effect of proposed regulations is shown. Extensive sampling and usage of these procedures has shown them to be accurate, reliable and suitable to all types of source effluents.

  15. Biological treatments of textile industrial effluents in Lagos metropolis, Nigeria.

    PubMed

    Ugoji, E O; Aboaba, O O

    2004-10-01

    The assessment of the effluents from two textile industries in Ilupeju in Lagos metropolis, Nigeria showed that they were high in conductivity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS) and contained traces of heavy metals like Ca, Zn but high concentrations of Cr and Pb. These wastewaters are normally discharged into neighbouring water bodies. Five bacterial groups, namely Micrococcus sp., Enterobacter sp., Alcaligens sp., Bacillus sp. and Acinetobacter sp. were isolated from these effluents. They were used individually for biotreatment and found to be able to utilize the components of the wastewaters for growth, Bacillus sp. and Acinetobacter sp. being the most efficient utilizers as they were able to reduce BOD to zero. The total viable count (TVC) increased significantly depicting growth of the bacterial population. The pH was regulated from 3.4-6.80 for NSF effluent and 12.2-10.29 for STI effluent. The work emphasises the level of industrial pollution in our environment as wastes are indiscrimately dumped into surrounding water bodies in urban areas, the textile industry being a case study. The treatment of any form of waste before disposal into the environment is important and ensures safety of the populace. PMID:15907081

  16. INDUSTRIAL EFFLUENT TREATMENT USING IONIZING RADIATION COMBINED TO TITANIUM DIOXIDE

    SciTech Connect

    Duarte, C.L.; Oikawa, H.; Mori, M.N.; Sampa, M.H.O.

    2004-10-04

    The Advanced Oxidation Process (AOP) with OH radicals are the most efficient to mineralize organic compounds, and there are various methods to generate OH radicals as the use of ozone, hydrogen peroxide and ultra-violet radiation and ionizing radiation. The irradiation of aqueous solutions with high-energy electrons results in the excitation and ionizing of the molecules and rapid (10{sup -14} - 10{sup -9} s) formation of reactive intermediates. These reactive species will react with organic compounds present in industrial effluent inducing their decomposition. Titanium dioxide (TiO{sub 2}) catalyzed photoreaction is used to remove a wide range of pollutants in air and water media, combined to UV/VIS light, FeO{sub 2}, and H{sub 2}O{sub 2}, but as far as known there is no report on the combination with ionizing radiation. In some recent studies, the removal of organic pollutants in industrial effluent, such as Benzene, Toluene, and Xylene from petroleum production using ionizing radiation was investigated. It has been ob served that none of the methods can be used individually in wastewater treatment applications with good economics and high degree of energy efficiency. In the present work, the efficiency of ionizing radiation in presence of TiO{sub 2} to treat industrial effluent was evaluated. The main aim to combine these technologies is to improve the efficiency for very hard effluents and to reduce the processing cost for future implementation to large-scale design.

  17. Trace metals in PM10 and PM 2.5 samples collected in a highly industrialized chemical/petrochemical area and its urbanized surroundings.

    PubMed

    dos Anjos Paulino, Silvia; Oliveira, Rafael Lopes; Loyola, Josiane; Minho, Alan Silva; Arbilla, Graciela; Quiterio, Simone Lorena; Escaleira, Viviane

    2014-05-01

    The aim of this study was to determine the potential impact of a highly industrialized area on its urbanized surroundings. The area studied is home to a refinery, a thermoelectric plant and several petrochemical facilities industries. The concentrations of twelve elements were determined in PM10 and PM2.5 samples collected along a busy highway and near the petrochemical complex. Significantly higher concentrations of Ca, Mg, Mn, Fe, Cu and Al were observed in the petrochemical zone, but principal component analysis revealed similar patterns for both the highway site and a site approximately 1.5 km from the petrochemical complex, suggesting that the main pollution source in the area is vehicular flux. Higher concentrations in the industrial area may be attributed to intense diesel-powered truck and bus traffic movement, mainly due to the transport of supplies, fuel and gas. The observed concentrations of the elements Cr, Co, Ni, Cd and Pb were always lower than the detection limits of the technique used. PMID:24509656

  18. The birth and growth of the Grozny petroleum refining and petrochemical industry

    SciTech Connect

    Dorogochinskii, A.Z.

    1994-07-01

    The first oil gushers were struck in Grozny in 1893, the year that marks the start of rapid development of the Grozny petroleum refining industry. This report describes the operation and growth of the refining industry.

  19. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. PMID:26496844

  20. Safety Culture Assessment in Petrochemical Industry: A Comparative Study of Two Algerian Plants

    PubMed Central

    Boughaba, Assia; Hassane, Chabane; Roukia, Ouddai

    2014-01-01

    Background To elucidate the relationship between safety culture maturity and safety performance of a particular company. Methods To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of Fernández-Muñiz et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. Results The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. Conclusion The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance. PMID:25180135

  1. Laboratory studies of electrochemical treatment of industrial azo dye effluent.

    PubMed

    Vaghela, Sanjay S; Jethva, Ashok D; Mehta, Bhavesh B; Dave, Sunil P; Adimurthy, Subbarayappa; Ramachandraiah, Gadde

    2005-04-15

    Removal of color and reduction of chemical oxygen demand (COD) in an industrial azo dye effluent containing chiefly reactive dyes were investigated under single-pass conditions at a dimensionally stable anode (DSA) in a thin electrochemical flow reactor at different current densities, flow rates, and dilutions. With 50% diluted effluent, decolorization was achieved up to 85-99% at 10-40 mA/ cm2 at 5 mL/min flow rate and 50-88% at 30-40 mA/ cm2 at high (10-15 mL/min) flow rates. The COD reduction was maximum (81%) at 39.9 mA/cm2 or above when solution-electrode contact time (Ct) was as high as 21.7 s/cm2 and decreased as Ct declined at a given current density. Cyclic voltammetric studies suggesting an indirect oxidation of dye molecules over the anode surface were carried out at a glassy carbon electrode. The effect of pH on decolorization and COD reduction was determined. An electrochemical mechanism mediated by OCl- operating in the decolorization and COD reduction processes was suggested. The effluent was further treated with NaOCI. The oxidized products from the treated effluents were isolated and confirmed to be free from chlorine-substituted products by IR spectroscopy. From the apparent pseudo-first-order rate data, the second-order rate coefficients were evaluated to be 2.9 M(-1) s(-1) at 5 mL/ min, 76.2 M(-1) s(-1) at 10 mL/min, and 156.1 M(-1) s(-1) at 15 mL/ min for color removal, and 1.19 M(-1) s(-1) at 5 mL/min, 1.79 M(-1) s(-1) at 10 mL/min, and 3.57 M(-1) s(-1) at 15 mL/min for COD reduction. Field studies were also carried out with a pilot-scale cell at the source of effluent generation of different plants corresponding to the industry. Decolorization was achieved to about 94-99% with azo dye effluents at 0.7-1.0 L/min flow costing around Indian Rupees 0.02-0.04 per liter, and to about 54-75% in other related effluents at 0.3-1.0 L/min flow under single-pass conditions. PMID:15884385

  2. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  3. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  4. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    PubMed

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-05-13

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. PMID:24824168

  5. Conventional, microwave, and ultrasound sequential extractions for the fractionation of metals in sediments within the Petrochemical Industry, Serbia.

    PubMed

    Relić, Dubravka; Dorđević, Dragana; Sakan, Sanja; Anđelković, Ivan; Pantelić, Ana; Stanković, Ratomir; Popović, Aleksandar

    2013-09-01

    In this paper, the main objective was fractionation of Cd, Cu, Ni, Pb, Zn, Ca, Fe, and K in certificate material and sediment samples gathered from and around the Petrochemical Industry using the conventional, microwave and ultrasonic sequential extraction. Microwave oven and ultrasound bath were used as an energy source for achieving faster extraction. Additional heating and boiling of samples were avoided by using lower power and shorter time for microwave and ultrasound extraction. Precision and accuracy of procedure were evaluated by using certificate material (BCR701). Acceptable accuracy of metals (87.0-111.3 %) was achieved for all three-step sequential of conventional extraction protocol. An accuracy of the fourth step has been verified with two certificate materials: BCR143R and 146R. The range of total extracted metal concentrations from sediments was similar for all three extraction techniques. A significant high percentage of Cd, Cu, and Zn were obtained after extraction of the exchangeable and acid soluble sediment fraction. Principal component analysis of values obtained after determination of risk assessment code using conventional and ultrasound sequential extraction show similarity of these values. Accuracy, recovery, and risk assessment code values imply that ultrasound sequential extraction is a more suitable, accelerated sequential extraction procedure (30 min per extraction step) than microwave extraction in applied conditions. PMID:23420522

  6. Biological anoxic treatment of O₂-free VOC emissions from the petrochemical industry: a proof of concept study.

    PubMed

    Muñoz, Raúl; Souza, Theo S O; Glittmann, Lina; Pérez, Rebeca; Quijano, Guillermo

    2013-09-15

    An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O2 supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m(-3)h(-1) (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m(-3)h(-1). However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m(-3)h(-1), while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m(-3) (which entailed a loading rate increase from 3 to 6 g m(-3)h(-1)), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria. PMID:23811365

  7. Technical Training in the MNCs in Malaysia: A Case Study Analysis of the Petrochemical Industry

    ERIC Educational Resources Information Center

    Hooi, Lai Wan

    2010-01-01

    Purpose: The aim of this paper is to gain insight into some of the types of training and development practices that are carried out in the chemical industry for technical workers. A salient focus of the study is to make a comparative analysis of four MNCs, which were selected based on equity ownership, to ascertain whether T&D practices are…

  8. Fundamental studies of hydrogen attack in carbon-0.5molybdenum steel and weldments applied in petroelum and petrochemical industries

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one-sided hydrogen exposure assembly; hydrogen attack mechanism and hydrogen attack limit modeling.

  9. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    SciTech Connect

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  10. [Evaluation of treatment technology of odor pollution source in petrochemical industry].

    PubMed

    Mu, Gui-Qin; Sui, Li-Hua; Guo, Ya-Feng; Ma, Chuan-Jun; Yang, Wen-Yu; Gao, Yang

    2013-12-01

    Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil. PMID:24640922

  11. Healthy environment--indoor air quality of Brazilian elementary schools nearby petrochemical industry.

    PubMed

    Godoi, Ricardo H M; Godoi, Ana F L; Gonçalves Junior, Sérgio J; Paralovo, Sarah L; Borillo, Guilherme C; Gonçalves Gregório Barbosa, Cybelli; Arantes, Manoela G; Charello, Renata C; Rosário Filho, Nelson A; Grassi, Marco T; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Rotondo, Giuliana G; De Wael, Karolien; van Grieken, Rene

    2013-10-01

    The mitigation of pollution released to the environment originating from the industrial sector has been the aim of all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 2009-2011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO2; SO2; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GC-MS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of particles at extrathoracic, tracheobronchial and pulmonary levels. PMID:23838057

  12. Risk assessment relationships for evaluating effluents from coal industries.

    PubMed

    Cuddihy, R G

    1983-06-01

    Public awareness of the risks associated with traditional coal combustion and newer coal gasification and liquefaction industries is increasing. Assessing the health risks for people exposed to effluents from these industries generally involves four major steps: (1) characterizing the pollutant sources, (2) projecting the release and dispersion of toxic substances in workplaces and in the environment, (3) estimating their uptake by people through inhalation and ingestion and their contact with skin, and (4) evaluating their potential for causing health effects. Pollutants of special concern include toxic gases, carcinogenic organic compounds and trace metals. Relationships between the levels of pollutants released to the environment and the magnitudes of human exposures and methods of formulating exposure-dose-effect relationships for use in human risk assessment are discussed. PMID:6879166

  13. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    PubMed

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model. PMID:24640915

  14. Use of TIE techniques to characterize industrial effluents in the Pearl River Delta region.

    PubMed

    Fang, Yi-Xiang; Ying, Guang-Guo; Zhang, Li-Juan; Zhao, Jian-Liang; Su, Hao-Chang; Yang, Bin; Liu, Shan

    2012-02-01

    We investigated the acute toxicity of various industrial effluents in the Pearl River Delta region using lux bacteria, duckweed, green algae, crustaceans and zebrafish. The potential toxicants in the industrial effluents were identified and evaluated by lux bacteria bioassay and chemical analysis. The results show that green algae (Pseudokirchneriella subcapitata) and crustacean (Ceriodaphnia dubia) were more sensitive to the effluents from electronic and electroplate factories than other test species, while lux bacteria were more sensitive to all the other effluents. The toxicities of effluents from electronic and electroplate factories to the six test organisms were significantly higher than those of the other industrial effluents, and mainly caused by metals. Noticeably, organic pollutants were the main contributing factor to the toxicity of effluents from textile and dyeing plants, pulp and paper mills, fine chemical factories and municipal wastewater treatment plants. PMID:22019309

  15. Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats.

    PubMed

    Akhtar, Muhammad Furqan; Ashraf, Muhammad; Anjum, Aftab Ahmad; Javeed, Aqeel; Sharif, Ali; Saleem, Ammara; Akhtar, Bushra

    2016-01-01

    Exposure to complex mixtures like textile effluent poses risks to animal and human health such as mutations, genotoxicity and oxidative damage. Aim of the present study was to quantify metals in industrial effluent and to determine its mutagenic, genotoxic and cytotoxic potential and effects on oxidative stress biomarkers in effluent exposed rats. Metal analysis revealed presence of high amounts of zinc, copper, chromium, iron, arsenic and mercury in industrial effluent. Ames test with/without enzyme activation and MTT assay showed strong association of industrial effluent with mutagenicity and cytotoxicity respectively. In-vitro comet assay revealed evidence of high oxidative DNA damage. When Wistar rats were exposed to industrial effluent in different dilutions for 60 days, then activities of total superoxide dismutase and catalase and hydrogen peroxide concentration were found to be significantly lower in kidney, liver and blood/plasma of effluent exposed rats than control. Vitamin C in a dose of 50mg/kg/day significantly reduced oxidative effects of effluent in rats. On the basis of this study it is concluded that industrial effluent may cause mutagenicity, in-vitro oxidative stress-related DNA damage and cytotoxicity and may be associated with oxidative stress in rats. Vitamin C may have ameliorating effect when exposed to effluent. PMID:26710178

  16. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters. PMID:26547320

  17. Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents).

    PubMed

    Sponza, Delia Teresa

    2002-01-01

    Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents. PMID:11878628

  18. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1996-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Assessment of the impact of petroleum and petrochemical industries to the surrounding areas in Malaysia using mosses as bioindicator supported by multivariate analysis.

    PubMed

    Abdullah, Mohd Zahari Bin; Saat, Ahmad Bin; Hamzah, Zaini Bin

    2012-06-01

    Biomonitoring of multi-element atmospheric deposition using terrestrial moss is a well-established technique in Europe. Although the technique is widely known, there were very limited records of using this technique to study atmospheric air pollution in Malaysia. In this present study, the deposition of 11 trace metals surrounding the main petroleum refinery plant in Kerteh Terengganu (eastern part of peninsular Malaysia) has been evaluated using two local moss species, namely Hypnum plumaeforme and Taxithelium instratum as bioindicators. The study was also done by means of observing whether these metals are attributed to work related to oil exploration in this area. The moss samples have been collected at 30 sampling stations in the vicinity of the petrochemical industrial area covering up to 15 km to the south, north, and west in radius. The contents of heavy metal in moss samples were analyzed by energy dispersive x-ray fluorescence technique. Distribution of heavy metal content in all mosses is portrayed using Surfer software. Areas of the highest level of contaminations are highlighted. The results obtained using the principal components analysis revealed that the elements can be grouped into three different components that indirectly reflected three different sources namely anthropogenic factor, vegetation factor, and natural sources (soil dust or substrate) factor. Heavy metals deposited mostly in the distance after 9 km onward to the western part (the average direction of wind blow). V, Cr, Cu, and Hg are believed to have originated from local petrochemical-based industries operated around petroleum industrial area. PMID:21822578

  20. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Petrochemical... subpart are applicable to all discharges from any facility that produces petroleum products by the use...

  1. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Petrochemical... subpart are applicable to all discharges from any facility that produces petroleum products by the use...

  2. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Petrochemical... subpart are applicable to all discharges from any facility that produces petroleum products by the use...

  3. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Petrochemical... subpart are applicable to all discharges from any facility that produces petroleum products by the use...

  4. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    PubMed

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent. PMID:25944749

  5. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1995-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, color removal by ozonization and by treatment with manganese solid waste, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains a minimum of 244 citations and includes a subject term index and title list.)

  7. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains 250 citations and includes a subject term index and title list.)

  8. Biomanagement of petrochemical sludge using an exotic earthworm Eudrilus eugineae.

    PubMed

    Banu, J Rajesh; Esakkiraj, S; Nagendran, R; Logakanthi, S

    2005-01-01

    Petrochemical industry have severe problem in disposing effluent and semisolid sludge despite repeated recycling. It requires further treatment prior to disposal of sludge. In recent years biological treatment methods received much attention and considered as an efficient low-cost treatment. One such method is vermiculture treatment The end product of vermicompost is rich in essential micro and macronutrients along with microorganisms in a very simple form. Adding cast, not only improves the soil structure and fertility but also leads to improvement in overall plant growth and thus increase their yield. The present study was carried out to dispose the petrochemical sludge biologically using an exotic earthworm Eudrilus eugineae. The petrochemical sludge at various concentrations 25, 50 and 75% were subjected to vermicomposting treatment for a period of 60 days. During the period of study, data were collected on life form of earthworm and chemical analysis of the sludge before and after treatment. The microbial analysis was carried out fortnightly. The results indicate that 25 and 50% concentration of sludge was ideal for the vermicomposting, whereas the higher concentration inhibits the vermicomposting. PMID:16114460

  9. CHARACTERIZING THE GENOTOXICITY OF HAZARDOUS INDUSTRIAL WASTES AND EFFLUENTS USING SHORT-TERM BIOASSAYS

    EPA Science Inventory

    This chapter demonstrates that short-term bioassays can reliably and expeditiously measure the genotoxic potential of hazardous industrial wastes and effluents. etrochemical wastes have been studied in detail, especially discharges from chemical manufacturing plants and textile a...

  10. TOXICITY CHARACTERIZATION OF AN INDUSTRIAL AND A MUNICIPAL EFFLUENT DISCHARGING TO THE MARINE ENVIRONMENT

    EPA Science Inventory

    Toxicity Identification Evaluation (TIE) methods have proven very useful in characterizing, identifying and confirming toxicants in environmental samples. his report describes the characterization of toxicants present in two effluents, industrial and municipal, discharged into th...

  11. SABIC developing key role in petrochemical markets

    SciTech Connect

    Not Available

    1991-01-07

    This paper reports that Sabic, Saudi Arabia's state petrochemical company, has emerged as a major player in that industry. Sabic was created in 1976 mainly to add value to Saudi hydrocarbon resources by using associated gas, formerly mostly flared, as feedstock for basic petrochemical products. Its role expanded to include downstream petrochemical products, fertilizer, and metals, essentially creating an industrial base in Saudi Arabia. Since then, Sabic has developed with joint venture partners 15 companies, each representing a world scale industrial plant. The first 12 of those were on stream by yearend 1985. Total industrial output, mainly petrochemicals, has increased to more than 11 million metric tons in 1989 from almost 3 million tons in 1984.

  12. Effect of soda ash industry effluent on protein content of two green seaweeds.

    PubMed

    Jadeja, R N; Tewari, A

    2008-03-01

    The aim of the present study is to check the effect of soda ash industry effluent on the protein content of the seaweed Ulva faciata and Chaetomorpha antennina. Study shows that the effluent has positive effect on the protein content of the alga and thus these species can be used to reduce the effect of soda ash industry pollution because the rise of up to 35% of protein level is found in these species of alga due to uptake of polluted water. Thus, these seaweeds can be cultivated on a large scale in the effluent affected region and thus clean the environment while getting the proteinous food as by product. PMID:17662523

  13. Bioremediation of a Complex Industrial Effluent by Biosorbents Derived from Freshwater Macroalgae

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Hu, Yi; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent. PMID:24919058

  14. Decreased fish diversity found near marble industry effluents in River Barandu, Pakistan.

    PubMed

    Mulk, Shahi; Korai, Abdul Latif; Azizullah, Azizullah; Khattak, Muhammad Nasir Khan

    2016-01-01

    In a recently published study we observed that effluents from marble industry affected physicochemical characteristics of River Barandu in District Buner, Pakistan. These changes in water quality due to marble effluents may affect fish community. The present study was therefore conducted to evaluate the impacts of marble industry effluents on fish communities in River Barandu using abundance, richness, diversity and evenness of fish species as end point criteria. The fish samples were collected by local fishermen on monthly basis from three selected sites (upstream, effluents/industrial, and downstream sites). During the study period, a total of 18 fish species were found belonging to 4 orders, 5 families and 11 genera. The Cyprinidae was observed to be the dominant family at all the three selected sites. Lower abundance and species diversity was observed at the industrial (22%) and downstream sites (33%) as compared to the upstream site (45%). Effluents of marble industry were associated with lower abundance of species in River Barandu. It is recommended that industries should be shifted away from the vicinity of river and their effluents must be treated before discharging to prevent further loss of fish abundance and diversity in the River. PMID:26497021

  15. Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents.

    PubMed

    Vijayaraghavan, K; Palanivelu, K; Velan, M

    2005-03-17

    This paper discusses the possible application of a biosorption system with acid-washed crab shells in a packed bed up-flow column for the removal of nickel from electroplating industrial effluents. Between two nickel-bearing effluents, effluent-1 is characterized by considerable amount of light metals along with trace amounts of lead and copper. Effluent-2 is characterized by relatively low conductivity, total dissolved solids and total hardness compared to effluent-1. Crab shells exhibited uptakes of 15.08 and 20.04 mg Ni/g from effluent-1 and effluent-2, respectively. The crab shell bed was regenerated using 0.01 M EDTA (pH 9.8, aq. NH3) and reused for seven sorption-desorption cycles. The EDTA elution provided elution efficiencies up to 99% in all the seven cycles. This, together with the data from regeneration efficiencies for seven cycles, provided evidence that the reusability of crab shell in the treatment of nickel-bearing electroplating industrial effluents is viable. PMID:15752873

  16. Urinary 1-hydroxypyrene as biomarker of exposure to polycyclic aromatic hydrocarbons in workers in petrochemical industries: baseline values and dermal uptake.

    PubMed

    Boogaard, P J; van Sittert, N J

    1995-02-24

    The suitability of urinary 1-hydroxypyrene as a biomarker for the assessment of exposure to polycyclic aromatic hydrocarbons (PAH) in petrochemical industries was evaluated in 562 workers involved in various operations in petrochemical industries. The median 1-hydroxypyrene concentration in 121 of these workers (both smokers and non-smokers) who had had no recent occupational exposure to PAH was 0.11 mumol/mol creatinine. The upper limit of the 95% confidence interval was 0.51 mumol/mol creatinine. During activities with a low potential exposure to PAH, such as loading bitumen and the handling of clarified slurry oils and furfural extracts, 1-hydroxypyrene concentrations were only marginally increased compared with the values measured in the 121 workers with no recent occupational exposure to PAH. Despite the substantially higher potential exposure to PAH during clean-out operations of various oil refinery installations, the concentrations of 1-hydroxypyrene in the workers involved were in the same range. This suggests that personal protection equipment was generally adequate to prevent excessive exposure. However, in workers digging PAH-contaminated soil and workers engaged in the production of needle coke from ethylene cracker residue, significantly increased urinary 1-hydroxypyrene concentrations were measured. A major decrease in urinary 1-hydroxypyrene following the application of dermal protective equipment in the ground workers suggested that skin absorption plays a major role in occupational exposure to PAH. The excretion of 1-hydroxypyrene by the workers of the needle coke plant was investigated in relation to potential determinants of exposure to PAH. It was indeed found that not only inhalatory but also dermal exposure was a significant determinant of occupational exposure to PAH. PMID:7716500

  17. Electrocoagulation for the treatment of textile industry effluent--a review.

    PubMed

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. PMID:23892280

  18. Mutagenicity assessment of effluents from textile/dye industries of Sanganer, Jaipur (India): a case study.

    PubMed

    Mathur, Nupur; Bhatnagar, Pradeep; Nagar, Pankaj; Bijarnia, Mahendra Kumar

    2005-05-01

    Sanganer town, district Jaipur (Rajasthan, India), is famous worldwide for its dyeing and printing industries. There are about 400 industries involved in textile printing processes, which discharge effluents into nearby ponds and drains, without any treatment. These effluents contain highly toxic dyes, bleaching agents, salts, acids, and alkalis. Heavy metals like cadmium, copper, zinc, chromium, and iron are also found in the dye effluents. Textile workers are exposed to such waters with no control over the length and frequency of exposure. Further, as the untreated effluents are discharged into the environment they can cause severe contamination of surface and underground water. Environmental pollution caused by such textile effluents results in adverse effects on flora, fauna, and the general health of not only the textile workers, but also the residents of Sanganer town. Therefore, to assess the possible genotoxic health risk and environmental genotoxicity due to the textile industry effluents, this study was carried out using the Ames Salmonella/microsome mutagenicity assay. The results clearly indicate that the effluents and the surface water of Amani Shah drainage have high mutagenic activity. Further, the drainage water and the dry bed of the drainage (during summer months) are not fit for agricultural or other recreational purposes. A low level of mutagenicity in the underground water of Sanganer again emphasizes the grave pollution problem existing in the area. Multiple post hoc comparison tests (LSD, Tukey's) were used for comparison of sample site, dose, and length of exposure. Quadratic Model was found to adequately fit the observed data. PMID:15814316

  19. Pathogens Assessment in Reclaimed Effluent Used for Industrial Crops Irrigation

    PubMed Central

    Al-Sa’ed, R.

    2007-01-01

    Reuse of treated effluent is a highly valued water source in Palestine, however with limited success due to public health concerns. This paper assesses the potential pathogens in raw, treated and reclaimed wastewater at Albireh urban wastewater treatment facility, and provides scientific knowledge to update the Palestinian reuse guidelines. Laboratory analyses of collected samples over a period of 4 months have indicated that the raw wastewater from Albireh city contained high numbers of fecal coliforms and worm eggs while 31% of the samples were Salmonella positive. Treated effluent suitable for restricted irrigation demonstrated that the plant was efficient in removing indicator bacteria, where fecal coliforms and fecal streptococci removal averaged 99.64% and 93.44%, respectively. Although not disinfected, treated effluent was free of Salmonella and parasites, hence safe for restricted agricultural purposes. All samples of the reclaimed effluent and three samples of irrigated grass were devoid of microbial pathogens indicating a safe use in unrestricted agricultural utilization. Adequate operation of wastewater treatment facilities, scientific updating of reuse guidelines and launching public awareness campaigns are core factors for successful and sustainable large-scale wastewater reuse schemes in Palestine. PMID:17431318

  20. IDENTIFICATION OF ORGANIC COMPOUNDS IN INDUSTRIAL EFFLUENT DISCHARGES

    EPA Science Inventory

    Samples of 63 effluent and 22 intake waters were collected from a wide range of chemical manufacturers in areas across the United States. The samples were analyzed for organic compounds in an effort to identify previously unknown and potentially hazardous organic pollutants. Each...

  1. Assessment of industrial effluent and its impact on soil and plants.

    PubMed

    Barman, S C; Kisku, G C; Salve, P R; Misra, D; Sahu, R K; Ramteke, P W; Bhargava, S K

    2001-10-01

    The present study deals with the assessment of industrial water of an electronic component manufacturing unit with electroplating and its subsequent effects on soil and plants receiving the effluent. The physico-chemical parameters of the effluent samples showed higher value than that of ground water. The treated effluent was within the permissible limit. Microtox test was conducted and determined the degree of toxicity of untreated, treated effluents as well as the water sample collected at effluent discharge point of receiving river (confluence point). The physico- mechanical parameters of the soil samples were not changed due to irrigation of the treated effluent, but the concentration of metals were comparatively higher than the control soil. Higher accumulation of metals was found in the plant parts in naturally growing weeds and cultivated crop plant irrigated with treated effluent. Elevated accumulation of metals in Eichhornia crassipes and Marsilea sp. growing along the effluent channel has been identified as a potential source of biomonitoring of metals particularly for Cu and Ca and can be utilised for the removal of heavy metal from wastewater. PMID:12018593

  2. China petrochemical expansion progressing

    SciTech Connect

    Not Available

    1991-08-05

    This paper reports on China's petrochemical expansion surge which is picking up speed. A worldscale petrochemical complex is emerging at Shanghai with an eye to expanding China's petrochemical exports, possibly through joint ventures with foreign companies, China Features reported. In other action, Beijing and Henan province have approved plans for a $1.2 billion chemical fibers complex at the proposed Luoyang refinery, China Daily reported.

  3. Hazard zoning around electric substations of petrochemical industries by stimulation of extremely low-frequency magnetic fields.

    PubMed

    Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein

    2015-05-01

    Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations. PMID:25877640

  4. Integrated process for the removal of emulsified oils from effluents in the steel industry

    SciTech Connect

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  5. Advanced oxidation process by electron-beam-irradiation-induced decomposition of pollutants in industrial effluents

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Sampa, M. H. O.; Rela, P. R.; Oikawa, H.; Silveira, C. G.; Azevedo, A. L.

    2002-03-01

    Electron-beam irradiation considered on advanced oxidation process induces the decomposition of pollutants in industrial effluent. Experiments were conducted using a radiation dynamics electron beam accelerator with 1.5 MeV energy and 37 kW power. The effluent samples from an industrial complex were irradiated using the IPEN's liquid effluent irradiation pilot plant. The experiments were conducted using one sample from each of eight separate industrial units and five samples of a mixture of these units. The physical-chemical characterization of these samples is presented. The electron beam irradiation was efficient in destroying the organic compounds delivered in these effluents, mainly, chloroform, dichloroethane, methyl isobutyl ketone, toluene, xylene and phenol. The necessary dose to remove 90% of the most organic compounds from industry effluent was 20 kGy. The removal of organic compounds from this complex mixture was explained by the destruction G value (Gd) that was obtained for those compounds with different initial concentrations and was compared with literature.

  6. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    PubMed Central

    Ramamurthy, Dhandapani

    2014-01-01

    Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb) concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM) (specific algal medium) produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC) with oleic acid pure (98%) control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae. PMID:25247176

  7. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-11-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L-1, respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation.

  8. Dyeing industry effluent system as lipid production medium of Neochloris sp. for biodiesel feedstock preparation.

    PubMed

    Gopalakrishnan, Vidyadharani; Ramamurthy, Dhandapani

    2014-01-01

    Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb) concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM) (specific algal medium) produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC) with oleic acid pure (98%) control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae. PMID:25247176

  9. The feasibility of effluent trading in the oil and gas industry

    SciTech Connect

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades, for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  10. Incorporation of effluent trading in the city of Millville, NJ industrial pretreatment program

    SciTech Connect

    Taylor, S.T.; Dimino, M.A.; Tarasevich, A.

    1998-07-01

    The City of Millville, NJ recently updated its sewer use ordinance to incorporate technically defensible effluent limitations for industrial users of their POTW. These limitations were designed to protect the POTW from the potential inhibitory effects of pollutants in the waste stream, to protect the quality of the biosolids generated at the POTW, and to protect the quality of effluent discharged by the POTW. Along with these technically defensible limits, the City also developed a pollutant trading program which allows industries to set up agreements, under the City's supervision, which affect the allocation of pollutant loadings.

  11. A Petrochemical Primer.

    ERIC Educational Resources Information Center

    Martin, Amy

    1991-01-01

    Informs the reader of the pervasiveness of petrochemicals in everyday life. Discusses the petroleum-to-petrochemical transformation at the refinery and issues related to how petroleum products will be utilized for fuel or nonfuel needs such as lubricants, computers, and medicine in the future. (MDH)

  12. Biomass in a petrochemical world

    PubMed Central

    Roddy, Dermot J.

    2013-01-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted. PMID:24427511

  13. Listeria in effluents from the food-processing industry.

    PubMed

    Schönberg, A; Gerigk, K

    1991-09-01

    There is general agreement that listeriosis has a significant impact on Man as well as on animals. Listeria monocytogenes has been isolated from the faeces of healthy human and animal carriers and from various environmental sources. L. monocytogenes is the pathogenic species most responsible for abortion, septicaemia and meningitis in animals and Man. Listeria ivanovii is a primary cause of abortion in animals. Owing to a number of epidemics and single cases caused by food contaminated with L. monocytogenes, listeriosis has received more attention in the past ten years than ever before. Entry of the organism into food-processing plants is primarily caused by animals which excrete Listeria in their faeces. Other sources of entry are raw foods of animal origin and personnel in food establishment. Proliferation of Listeria is promoted by high humidity and nutrient waste in certain food production plants. Removal of Listeria is almost impossible by routine disinfection. Listeria-contaminated sites pose a serious risk of recontamination of food-processing equipment and processed foods. Moreover, such sites represent an inexhaustible source of entry for Listeria in plant effluents. There is no denying that effluents from food-processing plants increase the spread of Listeria in the environment. However, considering the existence of other sources of entry, such as human and animal husbandry wastes, and that circulation and recontamination within the environment itself are also possible, this may not be a particularly important risk. PMID:1782429

  14. Yanbu petrochemicals complex starts up

    SciTech Connect

    Not Available

    1985-01-01

    Ten years after initial planning began, the Yanbu petrochemicals complex in Saudi Arabia is in operation - on schedule and $600 million under its original $2.4 billion budget. The complex, a joint venture between Mobil and the Saudi Basic Industries Corporation (SABIC), has world-scale units with a total capacity to produce 700 million pounds of high and low-density polyethylene and 440 million pounds of ethylene glycol a year. Initial production of ethylene, the petrochemical intermediate, began in December, followed by initial polyethylene production in January. Remaining polyethylene lines and the ethylene glycol unit will go on stream in the next few months. The polyethylenes will be sold world-wide for manufacture of plastic film, pipe, bottles, and molded products. The glycol will also be sold worldwide and will be used to make automotive coolants and polyester fibers.

  15. Effects of sludge retention time and biosurfactant on the treatment of polyaromatic hydrocarbon (PAH) in a petrochemical industry wastewater.

    PubMed

    Sponza, D T; Gok, O

    2011-01-01

    A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of sludge retention time (SRT) on the removal of three polyaromatic hydrocarbons (PAHs) with low benzene rings [(acenaphthene (ACT), fluorene (FLN) and phenanthrene (PHE)] and six PAHs with high benzene rings [(benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP)] in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. This study showed that biosurfactants enhance the PAH biodegradation by increasing the biomass growth. RD exhibits a better performance than the other biosurfactants in the removal of the chemical oxygen demand (COD) and PAHs. At a RD concentration of 15 mg/L aerobic treatment for 25 days, SRT was enough to remove over 95% of total PAHs, and COD(dis). Under the same conditions 75% of COD originating from the inert organics (COD(inert)) and 96% of COD originating from the inert soluble microbial products (COD(imp)) were removed. At 25 days SRT and 15 mg/L RD concentration, about 88% of PAHs were biodegraded by the AASR system, 4% were accumulated in the system, 3% were released in the effluent, and 5% remained in the waste sludge. PMID:22156134

  16. Industrial effluents as a source of mercury contamination in terrestrial riparian vertebrates

    USGS Publications Warehouse

    Powell, G.V.N.

    1983-01-01

    Eight species of piscivorous and insectivorous birds and one species of bat collected along Virginia's North Fork of the Holston River contained elevated mercury residues. The ubiquitous occurrence of mercury in riparian insectivores implicates aquatic insects as a vehicle for spreading mercury contamination from one ecosystem to another and expands the ecological ramifications of mercury-contaminated industrial effluents.

  17. SURVEY ANALYSIS OF PHENOLIC COMPOUNDS IN INDUSTRIAL EFFLUENTS BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    Analyzing industrial effluents for phenolic compounds involves a number of problems both in the separation of these compounds from the aqueous medium and in the chromatography of the extracted compounds. Use of continuous liquid-liquid extractor improved the recovery of phenolic ...

  18. Application of toxicity identification evaluation procedure to toxic industrial effluent in South Korea.

    PubMed

    Ra, Jin-Sung; Jeong, Tae-Yong; Lee, Sun-Hong; Kim, Sang Don

    2016-01-01

    Toxicity identification evaluation (TIE) was applied to the effluent from a pharmaceutical industrial complex, following the US EPA TIE guidelines. The whole effluent toxicity (WET) test found toxicity greater than 16toxic units (TU) in the effluent. Dissolved non-polar organic compounds were identified as the major contributor to the observed toxicity in the TIE manipulations in phases I and II. Among the 48 organic compounds identified, three compounds (i.e., acetophenone, benzoimide, and benzothiazole) were related to the pharmaceutical production procedure; however, no contribution to toxicity was predicted in the compounds. The results of the ECOSAR model, which predicts toxicity, indicated that the alkane compounds caused significant toxicity in the effluent. The toxicity test and heavy metal analysis, which used IC and ICP/MS, identified that particulate and heavy metals, such as Cu and Zn, contributed to the remaining toxicity, except dissolved organics. The results showed the applicability of the TIE method for predicting regional effluents produced by the industrial pharmaceutical complex in this study. Although the location was assumed to be affected by discharge of pharmaceutical related compounds in the river, no correlations were observed in the study. Based on the results, advanced treatment processes, such as activated carbon adsorption, are recommended for the wastewater treatment process in this location. PMID:25997865

  19. On-Line Microbial Whole Effluent Toxicity Monitoring for Industrial Wastewater

    SciTech Connect

    Mathews, S; Hoppes, W; Mascetti, M; Campbell, C G

    2002-09-17

    In this study a respirometer is tested for its ability to act as an early upset warning device and whole effluent toxicity monitor for industrial discharge. Industrial discharge water quality is commonly evaluated by comparing measured chemical concentrations to target values or regulatory limits established by governmental agencies. Unless the regulatory values are based upon empirical data, the actual effect of the discharge on aquatic systems is unknown. At the same time assessing the environmental toxicology of wastewater discharges is complicated by synergistic relationships among chemical constituents producing greater total toxicity. For example, metals may be more toxic in waters with low total hardness or more soluble at lower pH. An alternative approach that we are investigating is whole effluent toxicity testing. This study investigates the measurement of whole effluent toxicity through an on-line respirometer that measures toxicity to microorganisms comprising activated sludge. In this approach the oxygen uptake rate is monitored and used as an indicator of microbial activity or health. This study investigates the use of an online whole effluent toxicity testing system to provide early upset warning and the consistency of measured response to low pH. Repeated exposure of the microorganisms to low pH results in reduced sensitivity of the microbial population. We investigate whether this reduction in sensitivity results from physiological acclimation or changes in species composition. We identify promising applications, where, with proper calibration, respirometry based toxicity monitoring appear to be well suited for relative comparisons of whole effluent toxicity.

  20. Effect of soda ash industry effluent on agarophytes, alginophytes and carrageenophyte of west coast of India.

    PubMed

    Jadeja, R N; Tewari, A

    2009-02-15

    This paper presents the results of a study on the impact of the effluent released by the soda ash industry on important red and brown macro algal species Gelidiella acerosa, Gracilaria corticata, Soleria robusta, Sargassum tenerrimum, Padina tetrastromatica in the tidal zone around Veraval, on the west coast of India, in the lowest low water tide of December 2003. The study examined the effect of effluent discharge on availability of biomass and percentage of phyco-colloids extraction such as agar, alginic acid and carrageen of these commercial seaweeds. PMID:18583039

  1. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    PubMed

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. PMID:25792030

  2. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry.

    PubMed

    Soares, Eduardo V; Soares, Helena M V M

    2013-08-01

    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed. PMID:23824444

  3. Use of ozone and/or UV in the treatment of effluents from board paper industry.

    PubMed

    Amat, A M; Arques, A; Miranda, M A; López, F

    2005-08-01

    The aim of this work has been to study the viability of ozone and/or UV in the treatment of cardboard industry effluents. Several model compounds have been chosen for the experiments: guaicol, eugenol, glucose, acetate and butyrate. Significant differences in the ozonisation rates are observed between phenolic products coming from lignin (eugenol and guaiacol) and aliphatic compounds. Reactions fit in all cases a pseudo-first order kinetics and are influenced by the pH of the solution. Real effluents have also been tested, and the COD decrease has been found to depend on the fatty acids/phenols ratio. Finally, respirometric studies have shown an increase in the BODst in effluents subjected to a mild oxidation, while under stronger conditions a BODst decrease is observed. PMID:15993159

  4. A comparative study on toxicity identification of industrial effluents using Daphnia magna.

    PubMed

    Yi, Xianliang; Kim, Eunhee; Jo, Hun-Je; Han, Taejun; Jung, Jinho

    2011-09-01

    In this study, acute toxicity monitoring and toxicity identification evaluation procedures were applied to identify causative toxicants in industrial effluents. Effluents from a metal plating factory and a rubber products factory were acutely toxic toward Daphnia magna and the toxicity varied over different sampling events (2.9-5.9 and 1.7-7.6 TU, respectively). For the rubber products effluent, it was confirmed that zinc (5.65-13.18 mg L(-1)) was found to be a major cause of toxicity, which is likely originated from zinc 2-mercaptobenzothiazole and zinc diethyldithiocarbamate used as vulcanization accelerators. For the metal plating effluent, it appeared that the presence of high concentrations of Cl(-) and SO(4)(2-) (8,539-11,400 and 3,588-4,850 mg L(-1), respectively) caused the observed toxicity. These toxicants likely originated from sodium bisulfate (NaHSO(3)) and sodium hypochlorite (NaOCl) used as reducing and oxidizing agents. Though copper was found to be present in levels much higher than the EC(50) (50% effective concentration) value, this was not attributable to the toxicity of metal plating effluent likely due to complexation with dissolved organic matter. PMID:21761172

  5. Comparative evaluation of analytical methods for bioconcentratable contaminants in petroleum industry effluents

    SciTech Connect

    Costa, H.J.; Rigatti, M.J.; Boehm, P.D.; Sauer, T.C.

    1994-12-31

    A series of analytical procedures were evaluated for extracting effluents, removing potential interfering compounds from effluent extracts, fractionating extracts to isolate bioconcentratable contaminants, and quantifying contaminants by gas chromatography/mass spectrometry (GC/MS). Extraction alternatives consisted of liquid-liquid extraction and solid-phase extraction using a C{sub 18} Empore{reg_sign} disk. Extract cleanup alternatives consisted of treatment with acid on a celite column, alumina prepartive chromatography, gel permeation chromatography (GPC) using automated high-performance liquid chromatography (HPLC), and alumina and GPC in series. Normal-phase and reverse-phase automated HPLC fractionation procedures were compared. A quantification procedure using multi-level calibration standards containing analytes representing important compound classes: n-alkanes, polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and chlorinated pesticides. Procedures were evaluated using actual industry effluent fortified with representative compounds. Results were evaluated based on recoveries of compounds spiked into the effluent. Recommendations are provided for an effluent method that is (1) quantitative with.respect to the targeted compound classes and (2) provides semi-quantitative screening for non-target bioconcentratable contaminants.

  6. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C., Jr.

    1981-01-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  7. Toxicity of mixtures of heavy metals and petrochemicals to Xenopus laevis

    SciTech Connect

    de Zwart, D.; Slooff, W.

    1987-02-01

    Environmental pollution situations usually deal with pollutants acting simultaneously. Although the need for the evaluation of joint toxicity was recognized half a century ago, most studies on the aquatic toxicity of chemicals refer to substances tested in isolation. Based on the information on joint toxicity, EIFAC suggested that when toxicant concentrations are reduced to their no-effect-levels, their potential for additivity will be also reduced. However, more recent studies indicate that this does not apply for mixtures of compounds with the same mode of action. Total additivity can also be observed in testing mixtures of non-related chemicals. Still further information is needed for the estimation of the potential environmental hazard of mixtures. Since effluents of petrochemical industries contain different groups of non-related organics, in this study special attention is given to petrochemical compounds. Furthermore, petrochemical industries are often located in the vicinity of large water bodies (e.g. River Rhine; Rotterdam) frequently polluted with substantial amounts of heavy metals. Acute tests on mixtures of alcohols, amines, hydrocarbons and halogenated hydrocarbons in combination with some heavy metals are described and discussed. Even in tests involving mixtures of chemicals with an assumed different mode of action at least partial additivity is expected.

  8. Investigating the differences between receptor and dispersion modeling for concentration prediction and health risk assessment of volatile organic compounds from petrochemical industrial complexes.

    PubMed

    Chen, Wei-Hsiang; Chen, Zheng-Bin; Yuan, Chung-Shin; Hung, Chung-Hsuang; Ning, Shu-Kuang

    2016-01-15

    Receptor and dispersion models both provide important information to help understand the emissions of volatile organic compounds (VOCs) and develop effective management strategies. In this study, differences between the predicted concentrations of two models and the associated impacts on the estimated health risks due to different theories behind two models were investigated. Two petrochemical industrial complexes in Kaohsiung city of southern Taiwan were selected as the sites for this comparison. Although the study compares the approaches by applying the methods to this specific area, the results are expected to be adopted for other areas or industries. Ninety-nine VOC concentrations at eight monitoring sites were analyzed, with the effects of diurnal temperature and seasonal humidity variations being considered. The Chemical Mass Balance (CMB) receptor model was used for source apportionment, while the Industrial Source Complex (ISC) dispersion model was used to predict the VOC concentrations at receptor sites. In the results of receptor modeling, 54% ± 11% and 49% ± 20% of the monitored concentrations were contributed by process emissions in two complexes, whereas the numbers increased to 78% ± 41% and 64% ± 44% in the results of dispersion modeling. Significant differences were observed between two model predictions (p < 0.05). The receptor model was more reproducible given the smaller variances of its results. The effect of seasonal humidity variation on two model predictions was not negligible. Similar findings were observed given that the cancer and non-cancer risks estimated by the receptor model were lower but more reproducible. The adverse health risks estimated by the dispersion model exceeded and were 75.3%-132.4% of the values estimated by using the monitored data, whereas the percentages were lowered to the range from 27.4% to 53.8% when the prediction was performed by using the receptor model. As the results of different models could be significantly different and affect the final health risk assessment, it is important to carefully choose an appropriate model for prediction and to evaluate by monitoring to avoid providing false information for appropriate management. PMID:26555100

  9. Removal of chromium from electroplating industry effluents by ion exchange resins.

    PubMed

    Cavaco, Sofia A; Fernandes, Sandra; Quina, Margarida M; Ferreira, Licínio M

    2007-06-18

    Effluent discharged from the chromium electroplating industry contains a large number of metals, including chromium, copper, nickel, zinc, manganese and lead. The ion exchange process is an alternative technique for application in the treatment of industrial wastewater containing heavy metals and indeed it has proven to be very promising in the removal and recovery of valuable species. The main objective of the present work is to evaluate the performance of commercial ion exchange resins for removing chromium trivalent from industrial effluents, and for this purpose two resins were tested: a chelating exchange resin (Diaion CR11) and a weak cationic resin (Amberlite IRC86). In order to evaluate the sorption capacity of the resins some equilibrium experiments were carried out, being the temperature and pH the main variables considered. The chromium solutions employed in the experiments were synthetic solutions and industrial effluents. In addition, a transient test was also performed as an attempt to understand the kinetic behaviour of the process. PMID:17336455

  10. Respirometric biomonitor for the control of industrial effluent toxicity

    NASA Astrophysics Data System (ADS)

    Campanella, Luigi; Favero, G.; Mastrofini, D.; Tomassetti, M.

    1995-10-01

    A yeast cell biosystem has been recently developed for the total toxicity testing of a sample that may contain a number of different polluting species. The method uses an amperometric gas diffusion oxygen sensor as indicating electrode and is based on the perturbation of the respiratory activity of the immobilized yeast Saccharomyces cerevisiae; glucose acts as substrate. Several toxic substances were tested: metal ions, phenol and cationic, anionic or nonionic surfactants. Some results of a monitoring program of an industrial wastewater are also reported and discussed.

  11. Thai petrochemical boom on track

    SciTech Connect

    Not Available

    1992-03-16

    This paper reports that Thailand continues to mark progress on the ambitious expansion of its petrochemical industry. Among recent developments: The outlook for Thailand's troubled worldscale aromatics project has improved with a major cut in its estimated cost. In addition, the project apparently has drawn the interest of other companies seeking a possible equity stake. Amoco Chemical Co., which lost a tender to build a worldscale purified terephathalic acid (PTA) complex in Thailand to Taiwan's Tuntex Co., is reviving its bid with a proposal similar to its earlier one. Amoco contends there will be enough demand to warrant a second PTA plant in Thailand. Tuntex is negotiating with several business groups to take part in its $333 million, 350,000 ton/year PTA project in Thailand. Tuntex is soliciting interest from a number of Thai companies, including Bangkok Bank and the Saha Union industrial conglomerate to acquire portions of the 51% interest in the project earmarked for Thai shareholders. The firm also is negotiating with a number of Japanese companies with whom it has long trade ties, including Mitsui and Co. and Marubeni Corp. to acquire part of the 49% foreign shareholding in the project. Thai Olefins Co. (TOC) marked further progress with feedstock contracts and financing arrangements for its proposed $720 million olefins plant, part of Thailand's second worldscale petrochemical complex (NPC II). Indian industrial giant Birla proposed a $20 million ethylene glycol (EG) project in Thailand.

  12. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    PubMed

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. PMID:26907593

  13. How best to promote industrial pollution prevention through the effluent guidelines process. Recommendations of the industrial pollution prevention project (IP3) focus group

    SciTech Connect

    Not Available

    1994-05-01

    The Industrial Pollution Prevention Project (IP3) Focus Group was requested by EPA to provide specific recommendations on how best to promote industrial pollution prevention through the effluent guidelines process. In response to that request, the Group makes the following recommendations to EPA: To promote more industrial pollution prevention, the effluent guidelines process must (1) be more flexible, (2) address all media, and (3) impart a pollution prevention mindset to everyone throughout the effluent guidelines process. To accomplish this, EPA should adopt a specific new approach to the development and achievement of Best Available Technology (BAT) limits.

  14. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    PubMed

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. PMID:25872732

  15. Toxicity of different industrial effluents in Taiwan: a comparison of the sensitivity of Daphnia similis and Microtox.

    PubMed

    Liu, M C; Chen, C M; Cheng, H Y; Chen, H Y; Su, Y C; Hung, T Y

    2002-01-01

    Industrial effluents are known to exhibit toxicity toward different aquatic organisms. In Taiwan management of these discharges still relies on chemical and physical and physical characteristics of water, although various standard method for assessing aquatic toxicity have been proposed by the Taiwan Environmental Protection Administration. In this study we examined the toxicity and compared the sensitivity of different types of industrial effluents using two proposed toxicity tests: the Daphnia similis acute toxicity test and the Microtox acute assay (Vibrio fischeri). Results showed that electroplating effluents were the most toxic of all the effluents tested, followed by acrylonitrile manufacturing, pulp/paper, and tannery effluents. The EC50 of an electroplating effluent for D. similis and V. fischeri (15 min) was as low as, respectively, 2.9% and 3.9% of the whole effluent. The other effluents were not acutely toxic to either organism tested. However, the tests exhibited different sensitivity toward various discharges. Only the electroplating and acrylonitrile manufacturing effluents had effects on both organisms. These results indicate the importance of the incorporation of aquatic toxicity tests into the management scheme for treated wastewaters. PMID:11979586

  16. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry: Part 5--Asbestos-caused cancers and exposure of workers in the oil refining industry

    SciTech Connect

    Mehlman, M.A. )

    1991-01-01

    In the oil refining and petrochemical industries exposure to cancer-causing asbestos particles, especially during equipment repair and maintenance, is very high. Up to 90% of workers in the oil refining industry had direct and/or indirect contact with asbestos, and more than half of this contact occurred without the use of any kind of precaution, thus these workers are in high risk of developing lung cancer and mesothelioma, both fatal diseases. The hazards include: inadequate health and safety training for both company personnel and workers, failure to inform about the dangers and diseases (cancers) resulting from exposure to asbestos; excessive use of large numbers of untrained and uninformed contract workers; lack of use of protective equipment; and archaeological approaches and responses to repairing asbestos breaks and replacement of asbestos in oil refining facilities. For a better understanding of practices and policies in the oil refining industry, refer to Rachel Scott's Muscle and Blood, in particular the chapter Oil (E.P. Dutton, New York, 1974), as well as to an editorial which appeared in the Oil and Gas Journal, April, 1968.

  17. Estimating genetic potential of biofuel forest hardwoods to withstand metal toxicity in industrial effluent under dry tropical conditions.

    PubMed

    Manzoor, S A; Mirza, S N; Zubair, M; Nouman, W; Hussain, S B; Mehmood, S; Irshad, A; Sarwar, N; Ammar, A; Iqbal, M F; Asim, A; Chattha, M U; Chattha, M B; Zafar, A; Abid, R

    2015-01-01

    Biofuel tree species are recognized as a promising alternative source of fuel to conventional forms. Additionally, these tree species are also effective in accumulating toxic heavy metals present in some industrial effluents. In developing countries such as Pakistan, the use of biofuel tree species is gaining popularity not only for harvesting economical and environmentally friendly biofuel, but also to sequester poisonous heavy metals from industrial wastewater. This study was aimed at evaluating the genetic potential of two biofuel species, namely, Jatropha curcas and Pongamia pinnata, to grow when irrigated with industrial effluent from the Pak-Arab Fertilizer Factory Multan, Southern Punjab, Pakistan. The growth performances of one-year-old seedlings of both species were compared in soil with adverse physiochemical properties. It was found that J. curcas was better able to withstand the toxicity of the heavy metals present in the fertilizer factory effluent. J. curcas showed maximum gain in height, diameter, and biomass production in soil irrigated with 75% concentrated industrial effluent. In contrast, P. pinnata showed a significant reduction in growth in soil irrigated with more than 50% concentrated industrial effluent, indicating that this species is less tolerant to higher toxicity levels of industrial effluent. This study identifies J. curcas as a promising biofuel tree species that can be grown using industrial wastewater. PMID:26345887

  18. USE OF TOXICITY IDENTIFICATION EVALUATION METHODS TO CHARACTERIZE IDENTIFY, AND CONFIRM HEXAVALENT CHROMIUM TOXICITY IN AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...

  19. An ecotoxicological approach to assessing the impact of tanning industry effluent on river health.

    PubMed

    Mwinyihija, Mwinyikione; Meharg, Andy; Dawson, Julian; Strachan, Norval J C; Killham, Ken

    2006-04-01

    A study was conducted to investigate the sediment health and water quality of the River Sagana, Kenya, as impacted by the local tanning industry. Chemical analysis identified the main chemical pollutants (pentachlorophenols and chromium) while a bioassay addressed pollutant bioavailability. The bioassay, exploiting the luminescence response of a lux marked bacterial biosensor, was coupled to a dehydrogenase and Dapnia magna test to determine toxicity effects on sediments. Results highlighted the toxicity of the tannery effluent to the sediments at the point of discharge (64% of control bioluminescence) with gradual improvement downstream. There was a significant increase in dehydrogenase downstream, with the enzyme activity attaining a peak at 600 m, also indicating a gradual reduction of toxicity. Biological oxygen demand (19.56 mg L(-1)) dissolved oxygen (3.97 mg L(-1)) and high lethal dose value (85%) of D. magna also confirmed an initial stress at the point of discharge and recovery downstream. Optical density of surface water demonstrated an increase in suspended particulates and colour after the discharge point, eventually decreasing beyond 400 m. In conclusion, the study highlighted the importance of understanding the biogeochemistry of river systems impacted by industries discharging effluent into them and the invaluable role of a biosensor-based ecotoxicological approach to address effluent hazards, particularly in relation to river sediments. PMID:16392017

  20. Petroleum industry effluents and other oxygen-demanding wastes in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Uwakwe, Augustine A

    2006-07-01

    In this article, we review the fundamental phenomenon of oxygenation within the overriding context of petroleum-industry effluents and the other oxygen demanding wastes in Niger Delta, Nigeria. Drill cuttings, drilling mud (fluids used to stimulate the production processes), and accidental discharges of crude petroleum constitute serious land and water pollution in the oil-bearing province. Effluents from other industrial establishments such as distilleries, pulp and paper mills, fertilizer plants, and breweries, as well as thermal effluents, plant nutrients (such as nitrates and phosphates), and eroded sediments have also contributed to the pollution of their surrounding environment. Since these wastes are oxygen-demanding in nature, their impact on the recipient environment can be reversed by the direct application of simple chemistry. The wastes can be reduced, particularly in natural bodies of water, by direct oxidation-reduction processes or simple chemical combinations, acid-base reactions, and solubility equilibria; these are pH- and temperature-dependent. A shift in pH and alkalinity affects the solubility equilibria of Na+, Cl-, SO(2-), NO3(-), HCO3(-), and PO4(3-), and other ions and compounds. PMID:17193303

  1. Economic analysis of effluent limitation guidelines and standards for the centralized waste treatment industry

    SciTech Connect

    Wheeler, W.

    1998-12-01

    This report estimates the economic and financial effects and the benefits of compliance with the proposed effluent limitations guidelines and standards for the Centralized Waste Treatment (CWT) industry. The Environmental Protection Agency (EPA) has measured these impacts in terms of changes in the profitability of waste treatment operations at CWT facilities, changes in market prices to CWT services, and changes in the quantities of waste management at CWT facilities in six geographic regions. EPA has also examined the impacts on companies owning CWT facilities (including impacts on small entities), on communities in which CWT facilities are located, and on environmental justice. EPA examined the benefits to society of the CWT effluent limitations guidelines and standards by examining cancer and non-cancer health effects of the regulation, recreational benefits, and cost savings to publicly owned treatment works (POTWs) to which indirect-discharging CWT facilities send their wastewater.

  2. Synergetic effect of metals of electroplating industry effluent on physiology of the fish, Oreochromis mossambicus

    NASA Astrophysics Data System (ADS)

    Navaraj, P. S.

    2003-05-01

    The electroplating industry effluent is discharged indiscriminately in to the environment with out proper treatment. This poses havoc to the water body, which could be seen in the physiology and biochemistry of the chosen fish, Oreochromis mossambicus. The metals strongly present in the electroplating effluent is chromium and nickel which is being tested individually and collectively to assess its toxic nature. The intensity of the toxicity of synergetic action of these metals is much stronger than individuai effect. The result is being noticed in feeding budget and respiratory physiology of the fish, Oreochromis mossambicus. Ail parameters of the feeding budget show a significant result in the synergetic effect of these metals. Subsequently the respiratory rate and oxygen consumption of the fish in the stress medium is highly affected by this combination. A serious threat is observed in the environment by these metals and a proper treatment is suggested before releasing into the environment.

  3. A modular success story the Saudi petrochemical project

    SciTech Connect

    Kirven, J.B.; Swenson, C.R.

    1986-01-01

    The Saudi Petrochemical Company is referred to within this paper as ''Sadaf''. Sadaf is the phonetic spelling of the Arabic word for seashell and is a joint venture of Saudi Basic Industries Corporation (SABIC) and Pecten Arabian Ltd., an affiliate of Shell Oil Comapny, U.S.A. SABIC is a joint stock corporation responsible for the development of basic industries in the Kingdom in the petrochemicals, metals and fertilizers field.

  4. Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan.

    PubMed

    Mulk, Shahi; Azizullah, Azizullah; Korai, Abdul Latif; Khattak, Muhammad Nasir Khan

    2015-02-01

    Industries play an important role in improving the living standard but at the same time cause several environmental problems. Therefore, it is necessary to evaluate the impact of industries on the quality of environment. In the present study, the impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan was evaluated. Water and sediment samples were collected at three different sampling sites (upstream, industrial, and downstream sites) from Barandu River and their physicochemical properties were inter-compared. In addition, different marble stones and mix water (wastewater) from marble industry were analyzed. The measured physicochemical parameters of river water including pH, electrical conductivity (EC), alkalinity, total hardness, Ca and Mg hardness, total dissolved solid (TDS), total suspended solids (TSS), sulfates (SO4 (2-)), sodium (Na(+)), potassium (K(+)), nitrites (NO2 (-)), nitrate (NO3 (-)), chloride (Cl(-)), calcium (Ca(2+)), and magnesium (Mg(2+)) were found to be significantly altered by effluent discharges of marble industries. Similarly, heavy metal concentrations in both water and sediments of the river were significantly increased by marble industry wastewater. It is concluded that large quantities of different pollutants are added to Barandu River due to direct disposal of marble industry effluents which degrades its quality. Therefore, it is recommended that direct disposal of marble industry wastewater should be banned and all effluents must be properly treated before discharging in the river water. PMID:25616784

  5. Economic analysis of final effluent limitations guidelines and standards for the pharmaceutical manufacturing industry

    SciTech Connect

    1998-07-01

    This economic analysis (EA) examines compliance costs and economic impacts resulting from the US Environmental Protection Agency`s (EPA`s) Final Effluent Limitations Guidelines and Standards for the Pharmaceutical Manufacturing Industry Point Source Category. It also investigates the costs and impacts associated with an air rule requiring Maximum Achievable Control Technology (MACT) to control air emissions, both separately and together with the Final Pharmaceutical Industry Effluent Guidelines. The EA estimates the economic effects of compliance with both final rules in terms of total aggregate annualized costs of compliance, facility closures, impacts on firms (likelihood of bankruptcy and effects on profit margins), and impacts on new sources. The EA also investigates secondary impacts on employment and communities, foreign trade, specific demographic groups, and environmental justice. This report includes a Final Regulatory Flexibility Analysis (FRFA) detailing the impacts on small businesses within the pharmaceutical industry to meet the requirements of the Regulatory Flexibility Act (RFA), as amended by the Small Business Regulatory Enforcement Fairness Act (SBREFA). Finally, the EA presents a cost-benefit analysis to meet the requirements of Executive Order 12866 and the Unfunded Mandates Reform Act.

  6. Industrial effluent induced chromosomal aberration in catfish from Ogun River, Lagos, Nigeria.

    PubMed

    Iji, O T; Adeogun, A O

    2014-05-01

    The aim of the study is to evaluate the cytotoxic effect of effluents at inducing chromosomal aberrations, using this as a biomarker tool in wild Clarias pachynema for assessing and monitoring pollution of the aquatic environment. A total of 60 live fish (30 each downstream and upstream) were obtained and subjected to chromosomal analysis. Chromosomal aberration in the fish samples from the downstream sector was recorded at a rate of 30%, while there were no aberrations in the samples collected upstream the effluent discharge point. Water sample analysis revealed a high concentration of Ammonia and Nitrates above permissible standards of Federal Environmental Protection Agency (FEPA) guidelines. Heavy metal analysis also revealed the presence of Cr (0.05), Cu (0.01), Pb (0.05), Zn (5.0) and Fe (0.3) above permissible standards from the downstream section of the river. This study shows clearly that the ever increasing discharge of effluents from the industry could increase chromosomal damage in the aquatic components. PMID:26031000

  7. Nutrient loadings to streams of the continental United States from municipal and industrial effluent?

    USGS Publications Warehouse

    Maupin, Molly A.; Ivahnenko, Tamara

    2011-01-01

    Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.

  8. Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent1

    PubMed Central

    Maupin, Molly A; Ivahnenko, Tamara

    2011-01-01

    Abstract Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using “typical pollutant concentrations” to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. PMID:22457577

  9. a Study for Remote Detection of Industrial Effluents' Effect on Rice Using Thermal Images

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Abkar, A. A.; Maghsoudi, Y.; Dehnavi, E.

    2015-12-01

    Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images) useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory's effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant's product and its f-cover value, also some changes in radiant temperature.

  10. Effect of Industrial Effluents of Zob-Ahan on Soil, Water and Vegetable Plants

    NASA Astrophysics Data System (ADS)

    Rahmani, Hamid Reza; Rezaei, Mosleheddin

    Monitoring harmful chemicals especially heavy metals in industrial effluent for prevention and degradation of natural resources are required. The Effluent Water (EW) of Zob-Ahan (steel industrial complex), were seasonally collected, three times during 48 h period. The soils, well-water and vegetable plant samples were collected in land irrigated with EW and soil in adjacent virgin lands. The EW EC, TDS, BOD, COD, sulfate, chloride, bicarbonate and N-NO3 and of Cd, Co and Cr were above permissible limit, wells-water for in the down side of evaporation ponds EC, TDS, N-NO3, sulfate, chloride, bicarbonate and concentration of Cu, Co, Fe and Cr were above permissible limit and the soils treated with EW Zn, Mn and Cd concentration were in critical range. Soils irrigated with EW had higher OC content and available concentration of Cd, Fe, Cu, Mn, Zn and Pb compared to control sample (adjacent virgin land). In vegetable plants, all measured heavy metals concentration (except Cu content in Taree Irani that was in critical rang) was in normal range. The heavy metals concentration in unwashed plant samples were higher than washed ones. The results showed that Zob-Ahan EW has limitation for application as irrigation water, discharge into surface and subsurface water. Therefore, the EW, should properly be treated before discharging into environment. The heavy metals in soil and well-water affected by EW and irrigated plants with EW should regularly and closely be monitored.

  11. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    PubMed

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. PMID:27112874

  12. Assessment of hormonal activities and genotoxicity of industrial effluents using in vitro bioassays combined with chemical analysis.

    PubMed

    Fang, Yi-Xiang; Ying, Guang-Guo; Zhao, Jian-Liang; Chen, Feng; Liu, Shan; Zhang, Li-Juan; Yang, Bin

    2012-06-01

    Wastewaters from various industries are a main source of the contaminants in aquatic environments. The authors evaluated the hormonal activities (estrogenic/anti-estrogenic activities, androgenic/anti-androgenic activities) and genotoxicity of various effluents from textile and dyeing plants, electronic and electroplate factories, pulp and paper mills, fine chemical factories, and municipal wastewater treatment plants in the Pearl River Delta region by using in vitro bioassays (yeast estrogen screen [YES]; yeast androgen screen [YAS]; and genotoxicity assay [umu/SOS]) combined with chemical analysis. The results demonstrated the presence of estrogenic, anti-estrogenic, and anti-androgenic activity in most industrial effluents, whereas no androgenic activities were detected in all of the effluents. The measured estrogenic activities expressed as estradiol equivalent concentrations (EEQs) ranged from below detection (3 of 26 samples) to 40.7 ng/L, with a mean of 7.33 ng/L in all effluents. A good linear relationship was found between the EEQs measured by YES bioassay and the EEQs calculated from chemical concentrations. These detected estrogenic compounds, such as 4-nonylphenol and estrone, were responsible for the estrogenic activities in the effluents. The genotoxic effects expressed as benzo[a]pyrene equivalent concentrations (BaP EQs) varied between below detection and 88.2 µg/L, with a mean of 8.76 µg/L in all effluents. The target polycyclic aromatic hydrocarbons were minor contributors to the genotoxicity in the effluents, and some nontarget compounds in the effluents were responsible for the measured genotoxicity. In terms of estrogenic activities and genotoxicity, discharge of these effluents could pose high risks to aquatic organisms in the receiving environments. PMID:22513893

  13. Chromium-tolerant bacteria isolated from industrial effluents and their use in detoxication of hexavalent chromium.

    PubMed

    Shakoori, A R; Tahseen, S; Haq, R U

    1999-01-01

    Three bacterial strains were isolated from effluents of leather (CMBL Cr13, CMBL Cr14) and steel (CMBL Cr15) industries for their possible use in chromium(VI) detoxication of industrial waste. CMBL Cr13 was found to tolerate chromium(VI) up to a concentration of 45 g/L in the medium, while CMBL Cr14 and CMBL Cr15 could tolerate up to 40 g/L. These bacteria were also checked for resistance to other metals. They resisted a lead concentration of 1 g/L and cadmium concentration of 550 mg/L in the medium. They showed optimum growth at pH 7.3-7.5 at a temperature of 35-37 degrees C. CrVI-reducing ability of the three strains ranged from 70 to 80% after 3 d of incubation. The possible use of these bacteria in environmental cleanup is discussed. PMID:10489694

  14. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    PubMed

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  15. 88. ARAIII. "Petrochem" heater is hoisted over south exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. ARA-III. "Petro-chem" heater is hoisted over south exterior wall of heater pit in GCRE reactor building (ARA-608). Printing on heater says, "Petro-chem iso-flow furnace; American industrial fabrications, inc." Camera facing north. January 7, 1959. Ineel photo no. 529-124. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  16. Acetylcholinesterase: a potential biochemical indicator for biomonitoring of fertilizer industry effluent toxicity in freshwater teleost, Channa striatus.

    PubMed

    Yadav, Archana; Gopesh, Anita; Pandey, Ravi S; Rai, Devendra K; Sharma, Bechan

    2009-04-01

    Monitoring of acetylcholinesterase (EC: 3.1.1.7, AChE) activity has been widely used in aquatic and terrestrial systems as an indicator of pollutant exposure. The reports regarding impact of fertilizer industry effluent on the level of AChE activity are very scanty. In this paper, an attempt has been made to investigate the in vitro impact of fertilizer industry effluent upon the levels of AChE activity and protein content in different tissues of non-target aquatic fish, Channa striatus (Bloch). The fish when exposed to three sublethal concentrations (3.5, 4.7, and 7.0%; v/v) of fertilizer industry effluent for short (96 h) and long (15 days) durations registered sharp reduction in the levels of AChE activity (15-75%) and protein (10-71%) in different fish organs. The highest effluent concentration treatment for short or long duration, the fish brain and gills registered significant (P < 0.001) inhibition (64-75%) in the activity of AChE whereas other organs such as muscles, liver, and heart exhibited slightly lower inhibition (40-59%) in enzyme activity. However, kidney of C. striatus was the only organ where very less effect (14-18%) of the effluent was observed on the activity of AChE when the fish were exposed to all the three concentrations of the effluent for both treatment durations. This effluent also induced alterations in the level of protein in different fish organs; in kidney the effect was pronounced only at higher concentrations at both treatment durations. The most affected organs were muscle and gills where in 60-71% reduction in the protein content was recorded due to highest effluent concentration treatment at short or long durations. The results of present study indicated that the fertilizer industry effluents might significantly influence the neurotransmission system and protein turnover in the non-target organisms after exposure even at very low concentrations. Further, the data suggested that the fish AChE could be used as a potential biochemical marker for fertilizer industry effluent pollution in aquatic systems. PMID:19067159

  17. Sabic details outlook for key petrochemicals

    SciTech Connect

    Not Available

    1991-01-28

    World methanol markets will tighten after 1991, Saudi Basic Industries Corp. (Sabic) predicts. Underpinning that tightness will be continuing strong growth for methanol derived methyl tertiary butyl ether. Meantime, the Saudi state owned petrochemical company expects environmental concerns and slower economic growth to keep polyethylene markets soft the next 2 years. In addition, Sabic foresees a return to stability for ethylene oxide/ethylene glycol markets after volatility in the latter 1980s.

  18. Wastewater Treatment Costs and Outlays in Organic Petrochemicals: Standards Versus Taxes With Methodology Suggestions for Marginal Cost Pricing and Analysis

    NASA Astrophysics Data System (ADS)

    Thompson, Russell G.; Singleton, F. D., Jr.

    1986-04-01

    With the methodology recommended by Baumol and Oates, comparable estimates of wastewater treatment costs and industry outlays are developed for effluent standard and effluent tax instruments for pollution abatement in five hypothetical organic petrochemicals (olefins) plants. The computational method uses a nonlinear simulation model for wastewater treatment to estimate the system state inputs for linear programming cost estimation, following a practice developed in a National Science Foundation (Research Applied to National Needs) study at the University of Houston and used to estimate Houston Ship Channel pollution abatement costs for the National Commission on Water Quality. Focusing on best practical and best available technology standards, with effluent taxes adjusted to give nearly equal pollution discharges, shows that average daily treatment costs (and the confidence intervals for treatment cost) would always be less for the effluent tax than for the effluent standard approach. However, industry's total outlay for these treatment costs, plus effluent taxes, would always be greater for the effluent tax approach than the total treatment costs would be for the effluent standard approach. Thus the practical necessity of showing smaller outlays as a prerequisite for a policy change toward efficiency dictates the need to link the economics at the microlevel with that at the macrolevel. Aggregation of the plants into a programming modeling basis for individual sectors and for the economy would provide a sound basis for effective policy reform, because the opportunity costs of the salient regulatory policies would be captured. Then, the government's policymakers would have the informational insights necessary to legislate more efficient environmental policies in light of the wealth distribution effects.

  19. Effect of soda ash industry effluent on bioaccumulation of metals by seaweeds of coastal region of Gujarat, India.

    PubMed

    Jadeja, R N; Tewari, A

    2007-08-17

    The bioaccumulation ability of five species of seaweeds to 15 metals was studied in the seawater polluted by the effluent of soda ash industry. The bioaccumulation of Al, Mn and Fe in these seaweeds increased continuously as distance increased from outfall. However, Padina tetrastromatica showed reverse trend. Quite a number of metals like Au, Co, Hg, Ni, Pb, Pt and Sn were not recorded from any species of seaweeds from all sampling stations. Cr was recorded in Gracillaria acerosa from control site only. Accumulation of Cu in Gracilaria corticata was maximum near effluent discharge point and least at control, whereas its accumulation in P. tetrastromatica was more at station with lower pollution (station-3) than higher polluted station (station-2). Seaweeds had different pattern of bioaccumulation to Cu and Ag under the influence of the effluent. The bioaccumulation of Cd in quite a number of species was in non-detectable range, however in case of red seaweed it was more under polluted condition and non-detectable in control. The biosequestering capacity of different seaweed to different metals and their suitability for bioremediation under the influence of effluent is discussed. Bioconcentration factor for different seaweed species from different distances from outfall has been computed and discussed. The undiluted soda ash industry effluent is characterized by very high pH, density, settleable solids, total dissolved solids, ammonia and nitrate. The specific gravity, density, total suspended solids and total dissolved solids decreased continuously from undiluted effluent to seawater affected up to 1 km. PMID:17258393

  20. Effect of marble industry effluent on seed germination, post germinative growth and productivity of Zea mays L.

    PubMed

    Akbar, Fazal; Hadi, Fazal; Ullah, Zakir; Zia, Muhammad Amir

    2007-11-15

    A green house study was conducted at the University of Malakand, NWFP, Pakistan to evaluate the effect of marble industry effluent on soil pH, germination, post germinative growth and productivity of maize. The experiment was conducted in triplicate form for each treatment and tape water was used as control (T0). Effluents were diluted with tap water at concentration of 20% (T1), 40% (T2), 60% (T3), 80% (T4) and also used 100% (T5) concentration in 4 kg soil pot(-1) and plants were grown for 90 days. Results showed that there was a linear increase in pH of soil with increase in effluent concentration while germination, root length and stem girth was enhanced and found maximum at 40% concentration of effluent applied. The shoot length and root dry biomass was depressed as compared to control. It is concluded from the present study that marble industry effluent can be used as a fertilizer in low concentration especially for highly acidic soil but there is still need to carry out series of greenhouse and field trials to ascertain the fertilizer potentials of this effluent for maize crop. PMID:19090297

  1. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  2. Identification of a new N-nitrosodimethylamine precursor in sewage containing industrial effluents.

    PubMed

    Kosaka, Koji; Asami, Mari; Ohkubo, Keiko; Iwamoto, Takuji; Tanaka, Yasuo; Koshino, Hiroyuki; Echigo, Shinya; Akiba, Michihiro

    2014-10-01

    N-Nitrosodimethylamine (NDMA), a potential human carcinogen, is known to be a disinfection byproduct of chloramination and ozonation. NDMA is formed during ozonation at water purification plants in the Yodo River basin, a major drinking water source in western Japan. An NDMA precursor, 1,1,5,5-tetramethylcarbohydrazide (TMCH) was identified in sewage containing industrial effluents via ultrahigh performance liquid chromatography-tandem mass spectrometry, and ultrahigh performance liquid chromatography-time-of-flight mass spectrometry, as well as nuclear magnetic resonance spectroscopy. The mean of the NDMA molar formation yield of TMCH upon ozonation in four water matrices was 140%. TMCH removal was low during biological treatment processes at a sewage treatment plant. The mean TMCH contribution to total NDMA precursors upon ozonation of the primary, secondary, and final effluents of the sewage treatment plant in January and February of 2014 was 43-72%, 51-72%, and 42-60%, respectively, while the contributions of 4,4'-hexamethylenebis(1,1-dimethylsemicarbazide) and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide, two other known NDMA precursors, were limited to 0.6% and 6.9%, respectively. Thus, TMCH was identified as the primary precursor yielding NDMA upon ozonation in the Yodo River basin. PMID:25184404

  3. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  4. Remotion of organic compounds of actual industrial effluents by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Sampa, M. H. O.; Duarte, C. L.; Rela, P. R.; Somessari, E. S. R.; Silveira, C. G.; Azevedo, A. L.

    1998-06-01

    Organic compounds has been a great problem of environmental pollution, the traditional methods are not effecient on removing these compounds and most of them are deposited to ambient and stay there for long time causing problems to the environment. Ionizing radiation has been used with success to destroy organic molecules. Actual industrial effluents were irradiated using IPEN's electron beam wastewater pilot plant to study organic compounds degradation. The samples were irradiated with and without air mixture by different doses. Irradiation treatment efficiency was evaluated by the Cromatography Gas Analyses of the samples before and after irradiation. The studied organic compounds were: phenol, chloroform, tetrachloroethylene (PCE), carbon tetrachloride, trichloroethylene (TCE), 1,1-dichloroethane, dichloromethane, benzene, toluene and xilene. A degradation superior to 80% was achieved for the majority of the compounds with air addition and 2kGy delivered dose condition. For the samples that were irradiated without air addition the degradation was higher.

  5. Removal of chromium from tannery industry effluents with (activated carbon and fly ash) adsorbents.

    PubMed

    Rao, S; Lade, H S; Kadam, T A; Ramana, T V; Krishnamacharyulu, S K G; Deshmukh, S; Gyananath, G

    2007-10-01

    Adsorption is a strong choice for removal operations as it is very simple to recover a high quality product from waste sludge. The efficiency of adsorbents like fly ash and activated carbon are tested based on their performance to remove chrome at various pH values, bed heights, and concentration of adsorbents. The removal efficiency was also tested for wastewater characteristics in a pilot plant in addition to the use of adsorbents. The concentration of chromium was determined by atomic absorption spectrophotometer (Perkin Elmer). The results depicted that the efficiency of removal increased with increasing pH and bed height and decreased with increasing concentration. The removal efficiency with fly ash as an adsorbent was comparatively better than activatedcarbon. Thus, adsorbents can be used for chromium removal from tannery industry effluent. PMID:18476371

  6. Removal of nickel ions from industrial plating effluents using activated alumina as adsorbent.

    PubMed

    Revathi, M; Kavitha, B; Vasudevan, T

    2005-01-01

    Removal of nickel ions from industrial effluents has been studied using activated alumina prepared by the galvanic oxidation of aluminum metal at ambient temperature as the adsorbent. The effect of various factors, such as initial concentration of nickel, contact time, dose of adsorbent and pH of the solution has been investigated. Batch and column type of adsorption studies have been made. The results indicate that the adsorption process is favored at pH 9. The adsorption data were fitted with suitable adsorption isotherm. The optimum conditions for the best adsorption have been evaluated for the following factors: dosage, contact time, pH, initial concentration of nickel ions and temperature. The process of regeneration of the adsorbent has also been studied. PMID:16669327

  7. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface. PMID:27148721

  8. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.

    PubMed

    Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R

    2006-05-01

    This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon. PMID:16418891

  9. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark.

    PubMed

    Sarin, Vikrant; Singh, Tony Sarvinder; Pant, K K

    2006-11-01

    Studies were carried out on adsorption of Cr(VI) on an adsorbent made from eucalyptus bark. Results revealed that sorption of chromium on activated eucalyptus bark (AEB) was endothermic in nature. Thermodynamic parameters such as the entropy change, enthalpy change and Gibb's free energy change were found out to be 100.97 J mol(-1)K(-1), 33 kJ mol(-1) and -0.737 kJ mol(-1), respectively. Industrial chrome effluent of different chromium concentration at different pH was used as feedstock for the fixed bed adsorption studies. When effluent was fed to the column at low pH of 2, the breakthrough volume increased significantly compared to effluent at higher pH of 4.85. The surface properties of sorbent were characterized by the Scanning electron microscopy, X-ray diffraction technique and Infrared techniques. It was concluded that AEB sorbent column could be used effectively for removal of chromium from industrial effluents by reducing the pH of chrome effluent to two and at optimal column conditions. PMID:16311033

  10. Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents.

    PubMed

    Ganguli, A; Tripathi, A K

    1999-01-01

    The ability of a chromate-reducing Pseudomonas aeruginosa strain, isolated from tannery effluent, to survive and reduce chromate in the effluent of a tannery and an electroplating unit was evaluated. The test strain survived in the native tannery effluent but numbers fell sharply in the native electroplating effluent. Supplementation with a carbon (C), nitrogen (N) and phosphorus (P) source supported bacterial multiplication and chromate reduction in both types of effluents with almost equal efficiency. Chromate reduction, however, was not observed in the absence of C, N or P supplement, or in the chromate-reducing strain. PMID:10030037

  11. Sequential in situ hydrotalcite precipitation and biological denitrification for the treatment of high-nitrate industrial effluent.

    PubMed

    Cheng, Ka Yu; Kaksonen, Anna H; Douglas, Grant B

    2014-11-01

    A sequential process using hydrotalcite precipitation and biological denitrification was evaluated for the treatment of a magnesium nitrate (Mg(NO3)2)-rich effluent (17,000mgNO3(-)-N/L, 13,100mgMg/L) generated from an industrial nickel-mining process. The hydrotalcite precipitation removed 41% of the nitrate (7000mgNO3(-)-N/L) as an interlayer anion with an approximate formula of Mg5Al2(OH)14(NO3)2·6H2O. The resultant solute chemistry was a Na-NO3-Cl type with low trace element concentrations. The partially treated effluent was continuously fed (hydraulic retention time of 24h) into a biological fluidised bed reactor (FBR) with sodium acetate as a carbon source for 33days (1:1 v/v dilution). The FBR enabled >70% nitrate removal and a maximal NOx (nitrate+nitrite) removal rate of 97mg NOx-N/Lh under alkaline conditions (pH 9.3). Overall, this sequential process reduced the nitrate concentration of the industrial effluent by >90% and thus represents an efficient method to treat Mg(NO3)2-rich effluents on an industrial scale. PMID:25280045

  12. Transcriptional response of stress-regulated genes to industrial effluent exposure in the cockle Cerastoderma glaucum.

    PubMed

    Karray, Sahar; Tastard, Emmanuelle; Moreau, Brigitte; Delahaut, Laurence; Geffard, Alain; Guillon, Emmanuel; Denis, Françoise; Hamza-Chaffai, Amel; Chénais, Benoît; Marchand, Justine

    2015-11-01

    This study assessed the responses of molecular biomarkers and heavy metal levels in Cerastoderma glaucum exposed for 1 week to two industrial effluents (1%) discharged into the Tunisian coastal area, F1 and F2, produced by different units of production of a phosphate treatment plant. A significant uptake of metals (Cd, Cu, Zn, and Ni) was observed in exposed cockles compared to controls, with an uptake higher for F1 than for F2. A decrease in LT50 (stress on stress test) was also observed after an exposure to the effluent F1. Treatments resulted in different patterns of messenger RNA (mRNA) expression of the different genes tested in this report. Gene transcription monitoring performed on seven genes potentially involved in the tolerance to metal exposure showed that for both exposures, mechanisms are rapidly and synchronically settled down to prevent damage to cellular components, by (1) handling and exporting out metal ions through the up-regulation of ATP-binding cassette xenobiotic transporter (ABCB1) and metallothionein (MT), (2) increasing the mRNA expression of antioxidant enzymes (catalase (CAT), superoxide dismutases, CuZnSOD and MnSOD), (3) protecting and/or repairing proteins through the expression of heat shock protein 70 (HSP70) mRNAs, and (4) increasing ATP production (through the up-regulation of cytochrome c oxidase 1 (CO1)) to provide energy for cells to tolerate stress exposure. The tools developed may be useful both for future control strategies and for the use of the cockle C. glaucum as a sentinel species. PMID:25613800

  13. Removal of heavy metals from industrial effluent using Pinus roxburghii leaves as biosorbent: equilibrium modelling.

    PubMed

    Tewari, Hemlata

    2013-01-01

    In the present study, biosorption capability of pine (Pinus roxburghii) leaves for the removal Cr(6+), Cu(2+), Fe(2+) and Zn(2+) ions, present in brass and electroplating industry effluent, were investigated with respect to different adsorbent doses, contact time and pH. Heavy metals concentrations were estimated by atomic absorption spectrophotometry. Initial concentration of Cr(6+), Cu(2+), Fe(2+) and Zn(2+) ions in the effluent were found to be 2.741, 4.551, 8.820 and 5.529 mg/L respectively. Biosorption studies revealed that Cr(6+), Cu(2+), Fe(2+) and Zn(2+) showed maximum removal of 99.85, 94.54, 97.10 and 89% at pH 4, 4, 4 and 8, respectively, with 4 g pine leaves when shaken at 150 rpm for 60 min. The applicability of the three equilibrium isotherm models was investigated and the data obtained fitted the three investigated isothermal models in the order: Langmuir > Temkin > Freundlich for all the studied metal ions. The adsorption isotherm coefficients, Qmax, b, Kf, n, at, bt were also calculated. Very high regression correlation coefficients (R(2) > 0.9) were found for Cu(2+), Fe(2+) and Zn(2+); Cr(6+) (Temkin isotherm) when pH (2-8) was varied; Cr(6+), Cu(2+),Fe(2+) and Zn(2+) when contact time (15-60 min) was varied; Cu(2+) (Langmuir isotherm) Fe(2+) (Freundlich and Temkin isotherms) when adsorbent was varied from 2 to 5 g. Results also revealed that among all the studied ions Cr(6+) at varied pH and Fe(2+) at different adsorbent doses satisfy the Temkin and Freundlich isotherm models to describe the biosorption equilibrium by pine (Pinus roxburghii) adsorbent. PMID:23656930

  14. Remediation of lead from lead electroplating industrial effluent using sago waste.

    PubMed

    Jeyanthi, G P; Shanthi, G

    2007-01-01

    Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste. PMID:18472553

  15. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    PubMed Central

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-01-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  16. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    NASA Astrophysics Data System (ADS)

    Moraes, M. C. F.; Romanelli, M. F.; Sena, H. C.; Pasqualini da Silva, G.; Sampa, M. H. O.; Borrely, S. I.

    2004-09-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  17. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin.

    PubMed

    Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J

    2015-05-01

    The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced. PMID:26270209

  18. Environmental Geochemistry Of Kor River Sediments Near The Petrochemical Complex Of Shiraz, SW Iran

    NASA Astrophysics Data System (ADS)

    Moore, F.; Chahardahcherik, A.

    2009-04-01

    Heavy metal contamination in aquatic environments has received a good amount of attention due to toxicity, persistence, and subsequent accumulation in aquatic habitats. The Kor River is 280 Km long and, its drainage basin is situated North East of Shiraz. Nowadays, various industries exist in this region. Water quality problems mainly arise from effluents of a petrochemical complex. In this Study, concentration, occurrence and geochemical behavior of heavy metals, sediment contamination, and bioavailability of metals in river sediments are investigated. Water and sediment samples near the petrochemical complex were collected and analyzed. The results show that many of metals are accumulated in sediments, probably due to pH of the water above 8. Correlation coefficients show that most of the metals are positively correlated with manganese and negatively correlated with organic matter. Hence, organic matter has probably no important effect on the concentration of elements. Calculation of contamination degree indicates that sediments are uncontaminated or slightly contaminated. Cobalt and Cadmium Concentrations are high in bioavailable portions, in the form of iron and manganese oxides and hydroxides. However, low cation exchange capacities of sediments indicate that the Kor River sediments probably act as a sink for trace metals and are not effectively involved in exchanging them. Nevertheless, changes in the potential of the aquatic system may quickly remobilize most of the metals into the solution and present environmental contamination risks to the biological components of river system. Keywords: Kor River, Heavy Metals, Contamination Degree, Cation Exchange Capacity, Bioavailability.

  19. Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation.

    PubMed

    Cerqueira, Vanessa S; Hollenbach, Emanuel B; Maboni, Franciele; Camargo, Flávio A O; Peralba, Maria do Carmo R; Bento, Fátima M

    2012-03-01

    The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18-48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants. PMID:22805841

  20. Usefulness of sediment toxicity tests with estuarine plants and animals to indicate municipal and industrial effluent impact

    SciTech Connect

    Lewis, M.A.; Weber, D.E.

    1994-12-31

    The environmental impact of municipal and industrial effluents has been predicted from results from single species toxicity tests. The goal of these tests is to ensure that water quality criteria and the designated use of the waterbody is not impacted. Recently, the focus of some effluent toxicity evaluation has centered on determining the effluent impact on the sediment in the receiving water. This study evaluated the toxicities of several sediment samples collected above and below six outfalls to the Pensacola Bay system. Toxicities were determined using three macrophytic plants and four animal species. The sediments, with few exceptions, exhibited a low level of toxicity. The mysid shrimp was more sensitive than Ampelisca, Leptocheirus and the sheepshead minnow. The sensitivities of the plants, Echinochloa crusgalli, Scirpus robustus and Sesbania macrocarpa, were comparable to those of the animal species. The toxicity of time sediment, when compared to that of the effluent, determined using standard single species of plants and animals was less. Overall, the sediment toxicity tests were useful in providing insight on the impact of effluents. However, the application and usefulness of this assessment tool is highly dependent upon a variety of factors, including the geomorphological characteristics of the receiving waters.

  1. Chromium in tannery industry effluent and its effect on plant metabolism and growth.

    PubMed

    Nath, Kamlesh; Saini, Sonia; Sharma, Yogesh Kumar

    2005-04-01

    Different dilution levels of tannery treated effluent and their corresponding concentration of chromium (Cr6+) were studied in a petridish culture experiment on seed germination and seedling growth in radish (Raphanus sativus L). The different concentrations of Cr6+ (2, 5 and 10 ppm) and treated tannery effluent (10, 25 and 50%) showed reduction in seedling growth and related enzymatic activities with increase in concentration of Cr6+ in treatments and effluent both. The low concentration of chromium (2 ppm) and effluent dilution (10%) showed significant growth reduction separately. At this concentration of chromium and effluent dilution chlorophyll content, amylase, catalase and protein contents remained unchanged while with increase in Cr6+ concentration (>2ppm) and effluent dilution (> 10%) in treatments showed growth inhibitory effects. PMID:16161973

  2. Reduction in the estrogenic activity of a treated sewage effluent discharge to an English river as a result of a decrease in the concentration of industrially derived surfactants.

    PubMed

    Sheahan, David A; Brighty, Geoff C; Daniel, Mic; Jobling, Susan; Harries, Jule E; Hurst, Mark R; Kennedy, Joe; Kirby, Sonia J; Morris, Steven; Routledge, Edwin J; Sumpter, John P; Waldock, Michael J

    2002-03-01

    As a result of the introduction of tighter discharge limits and effluent treatment processes at source, the concentration of alkylphenol ethoxylates and nonylphenol present in the final effluent discharge from a sewage treatment works that treats trade effluent from the textiles industry was reduced. The estrogenic effects of the final effluent discharge to the Aire River were compared over a four-year period during which various treatment measures were introduced. Male rainbow trout exposed to the effluent on four occasions in consecutive years (1994-1997) showed a reduction in the level of induced vitellogenesis between 1994 and 1997. A marked decrease in gonadosomatic index (GSI) and increase in heptaosomatic index (HSI) was measured in fish exposed to the effluent in 1994. In successive years, these differences diminished, and in the case of the GSI no measurable difference was observed between fish exposed to the final effluent or those in the control group in 1997. However, an increase in HSI was still measurable in 1997 in fish exposed to the final effluent and at sites farther downstream. The reduction in the effects of the effluent paralleled the reduction in the concentration of nonylphenol as well as its mono- and diethoxylates, which have been demonstrated to produce estrogenic effects in trout exposed to these compounds in the laboratory. This study demonstrates that the setting of more restricted discharge limits for known estrogenic chemicals of industrial origin can lead to significant reductions in the estrogenic activity of the watercourses into which the effluents are discharged. PMID:11878464

  3. Recovery of zinc, copper and nickel from industrial effluents generated by the electroplating units using the ``3PE`` technology

    SciTech Connect

    Aguirre, P.; Solozabal, R.; Gaballah, I.; Ivanaj, S.; Fenouillet, B.; Lacoste, G.

    1995-08-01

    Recovery of zinc, copper and nickel from electroplating waste solutions was achieved by using a Pulsated Percolated Porous Electrode ``3PE`` reactor on a pilot plant scale. Intensity-potential curves were used to study the possibility of metal removal and to define the working potential range. The present study describes the use of the 3PE reactors in several electroplating industrial units for the decontamination of their effluents. These effluents were issued from different industrial solutions such as cyanide, sulfate, chloride and Watts baths. Using the stripping curves, deposition rates and electrical efficiencies were determined as function of the metal concentrations in these effluents. Their decontamination could be achieved to the level of few ppm of metals with reasonable current efficiencies. The recovery rates of zinc and copper were about 93 and 99%, respectively. The treated effluents contained less than 7 and 1% of the initial contents of Zn and Cu, respectively. This process allows the recycling of the recovered metals and leads to water saving.

  4. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag(+), Cu(2+) and Fe(3+) from industrial effluents.

    PubMed

    Liu, Peng; Borrell, Pere Ferrer; Božič, Mojca; Kokol, Vanja; Oksman, Kristiina; Mathew, Aji P

    2015-08-30

    The potential of nanoscaled cellulose and enzymatically phosphorylated derivatives as bio-adsorbents to remove metal ions (Ag(+), Cu(2+) and Fe(3+)) from model water and industrial effluents is demonstrated. Introduction of phosphate groups onto nanocelluloses significantly improved the metal sorption velocity and sorption capacity. The removal efficiency was considered to be driven by the high surface area of these nanomaterials as well as the nature and density of functional groups on the nanocellulose surface. Generally, in the solutions containing only single types of metal ions, the metal ion selectivity was in the order Ag(+)>Cu(2+)>Fe(3+), while in the case of mixtures of ions, the order changed to Ag(+)>Fe(3+)>Cu(2+), irrespective of the surface functionality of the nanocellulose. In the case of industrial effluent from the mirror making industry, 99% removal of Cu(2+) and Fe(3+) by phosphorylated nanocellulose was observed. The study showed that phosphorylated nanocelluloses are highly efficient biomaterials for scavenging multiple metal ions, simultaneously, from industrial effluents. PMID:25867590

  5. Assessment of heavy metals in the industrial effluents, tube-wells and municipal supplied water of Dehradun, India.

    PubMed

    Kulshrestha, Shail; Awasthi, Alok; Dabral, S K

    2013-07-01

    The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed. PMID:25509947

  6. [Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate].

    PubMed

    Zhu, Song-mei; Zhou, Zhen; Gu, Ling-yun; Jiang, Hai-tao; Ren, Jia-min; Wang, Luo-chun

    2016-01-15

    Fe(II) activated sodium persulfate (PS) technology was used for advanced treatment of effluent from industrial park wastewater treatment plant. Separate and combined effects of PS/COD, Fe(II)/PS and pH on COD and TOC removal were analyzed by the response surface methodology. Variations of organic substances before and after Fe(II)-PS oxidation were characterized by UV-Vis spectrometry, gel chromatography and three-dimensional fluorescence. PS/COD and Fe(II)/PS had significant effect on COD removal, while all the three factors had significant effect on TOC removal. The combined effect of PS/COD and pH had significant effect on COD removal. COD and TOC removal efficiencies reached 50.7% and 60.6% under optimized conditions of PS/COD 3.47, Fe(II)/PS 3.32 and pH 6.5. Fe(II)-PS oxidation converted macromolecular organic substances to small ones, and reduced contents of protein-, humic- and fulvic-like substances. PMID:27078964

  7. A Bacillus sphaericus Based Biosensor for Monitoring Nickel Ions in Industrial Effluents and Foods.

    PubMed

    Verma, Neelam; Singh, Minni

    2006-01-01

    A microbial-based biosensor has been developed based on enzyme inhibition bioassay for monitoring the presence of Ni(II) in real-time samples. The sensing element is immobilized Bacillus sphaericus MTCC 5100 yielding urease enzyme. The transducer is an NH4+ ion selective electrode in conjunction with a potentiometer. Heavy metals are potentially toxic to human beings. Nickel is associated with causing adverse health effects such as dermatitis and vertigo, in humans. Toxicity is manifested by affecting T-cell system and suppressing the activity of natural killer cells. Nickel finds applications in electroplating, coinage, electrodes, jewellery, alloys. The foods rich in Ni(II) are nuts, beans, oats, and wheat. The range of Ni(II) detection by the developed biosensor is 0.03-0.68 nM (0.002-0.04 ppb) with a response time of 1.5 minutes. For application, the Ni(II) effluent was procured from an electroplating industrial unit and was found to have a concentration of 100.0 ppm Ni(II). In foods, wheat flour sample was acid digested and Ni(II) was specifically complexed in the presence of other cations, and had an Ni(II) concentration of 0.044 ppm. The developed system has a reliability of 91.5% and 90.6%, respectively, for the samples and could possibly replace the existing conventional techniques of analysis. PMID:17671626

  8. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    PubMed

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden. PMID:26398023

  9. Greek petrochemicals finds buyers for plants

    SciTech Connect

    Alperowicz, N.

    1993-02-17

    Greek Petrochemicals (Athens) has found buyers for two polyethylene (PE) plants it ordered from U.K. contractors 10 years ago and that are currently stored in Manchester. It is understood that Thai Polyethylene (Bangkok) has been selected to acquire the 70,000-m.t./year ICI process low-density PE plant engineered by Simon-Carves. Reliance Industries is in talks to by the 50,000-m.t./year Union Carbide Unipol process high-density PE unit. The plants are to be installed at Map Ta Put, Thailand and Hazira, India, respectively.

  10. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.

    PubMed

    Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir

    2015-01-01

    Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results. PMID:26398037

  11. Assessment of the effluent quality from a gold mining industry in Ghana.

    PubMed

    Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L

    2013-06-01

    The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam. PMID:23179219

  12. Phytotoxicities of Selected Chemicals and Industrial Effluents to Nitellopsis obtuse Cells, Assessed by Using a Rapid Electrophysiological Charophyte Test.

    PubMed

    Manusadzianas, L; Vitkus, R; Pörtner, R; Märkl, H

    1999-01-01

    The acute phytotoxicities of seven heavy metals (Cd2+, Cu2+, Hg2+, Ni2+, Zn2+, Cr6+ and Co2+), three phenolic compounds (phenol, 3,5-dichlorophenol and pentachlorophenol) and nine industrial effluents were appraised by using a rapid electrophysiological test with cells of the charophyte, Nitellopsis obtusa. The EC50 values (concentrations causing a 50% decrease in resting potential) obtained for reference chemicals were compared with those of five microbiotests (Polytox®, Microtox®, Selenastrum capricornutum growth inhibition, Daphnia magna immobilisation and Rotoxkit F™) taken from the scientific literature. The 45-minute charophyte test, the freshwater Algaltoxkit F™, Daphtoxkit F™ and Rotoxkit F™ were conducted simultaneously to assess the toxicities of effluents. The Toxkit microbiotests were typically two orders of magnitude more sensitive than the electrophysiological charophyte test to pure chemicals. The electrophysiological charophyte test was generally more sensitive than the Toxkit microbiotests to complex effluents. The rapid electrophysiological test, employing the 45-minute membrane depolarisation of N. obtusa cells as an endpoint, demonstrated similar sensitivity to heavy metals and phenolic compounds as the 20-minute bacterial Polytox® test, but less sensitivity than the 15-minute Microtox® test. Therefore, this rapid macroalgal test appears to be valuable as a sublethal toxicity screening tool for effluents. PMID:25470676

  13. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri.

    PubMed

    Wang, Chunxia; Yediler, Ayfer; Lienert, Doris; Wang, Zijian; Kettrup, Antonius

    2002-01-01

    The toxicity of 17 selected process effluents, 11 reactive dyestuffs and 8 auxiliaries from a textile dyeing and finishing mill in Ayazaga, Istanbul, Turkey was evaluated by bioluminescence test using bacteria Vibrio fischeri in LUMIStox 300. The EC20 and EC50 for auxiliaries, the EC20 for dyestuffs were determined. For selected process effluents GL-values, the dilution level at which a wastewater sample causes less than 20% inhibition, were examined. Our results demonstrate that the toxicity assessment with luminescent bacteria is effective and of practical use for chemicals applied in textile finishing industry with the limitation of the deep dark-colored dye bath samples and for the related effluents. Inhibition effects of numerous dyestuffs as well as auxiliaries to luminescent bacteria differed considerably with a range 5-600 mg l(-1) for EC20 and 9-6930 mg l(-1) for EC50, respectively. Among 17 effluents, I sample exhibited high toxicity (GL = 100), 7 showed moderate toxicity (GL = 12-32), and 9 had a GL-value <10 indicating a low or no toxicity. PMID:11827294

  14. Evaluation of Changes in Effluent Quality from Industrial Complexes on the Korean Nationwide Scale Using a Self-Organizing Map

    PubMed Central

    Bae, Mi-Jung; Kim, Jun-Su; Park, Young-Seuk

    2012-01-01

    One of the major issues related to the environment in the 21st century is sustainable development. The innovative economic growth policy has supported relatively successful economic development, but poor environmental conservation efforts, have consequently resulted in serious water quality pollution issues. Hence, assessments of water quality and health are fundamental processes towards conserving and restoring aquatic ecosystems. In this study, we characterized spatial and temporal changes in water quality (specifically physico-chemical variables plus priority and non-priority pollutants) of discharges from industrial complexes on a national scale in Korea. The data were provided by the Water Quality Monitoring Program operated by the Ministry of Environment, Korea and were measured from 1989 to 2008 on a monthly basis at 61 effluent monitoring sites located at industrial complexes. Analysis of monthly and annual changes in water quality, using the seasonal Mann-Kendall test, indicated an improvement in water quality, which was inferred from a continuous increase in dissolved oxygen and decrease in other water quality factors. A Self-Organizing Map, which is an unsupervised artificial neural network, also indicated an improvement of effluent water quality, by showing spatial and temporal differences in the effluent water quality as well as in the occurrence of priority pollutants. Finally, our results suggested that continued long-term monitoring is necessary to establish plans and policies for wastewater management and health assessment. PMID:22690190

  15. Petrochemicals for the nonchemical person

    SciTech Connect

    Burdick, D.L.; Leffler, W.L.

    1983-01-01

    Petrochemicals for the Nontechnical Person is the second book in a series designed to inform the curious novice or frustrated veteran of what petrochemicals are and how they're made. Contents include: The complete course in organic chemistry; Benzene, toluene, and the xylenes; Cyclohexane; Olefin plants; The C/sub 4/ hydrocarbon family; Cumene and phenol; Ethylbenzene and styrene; Ethylene dichloride and vinyl chloride; Ethylene oxide and ethylene glycol; Propylene oxide and propylene glycol; Methanol and synthesis gas; The other alcohols; Acetone, methyl ethyl ketone, and methyl isobutyl ketone; The acids; Acrylonitriles and the acrylates; Maleic anhydride; The nature of polymers; Thermoplastics; Resins and fibers; Index.

  16. The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent.

    PubMed

    Shin, Kwang-Soo

    2004-03-01

    The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis. PMID:15357290

  17. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale. PMID:25185495

  18. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing Basidiomycetes strains.

    PubMed

    Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F

    2013-04-01

    The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. PMID:23350659

  19. English for Petrochemical Plant Operators.

    ERIC Educational Resources Information Center

    Bynum, Henri Sue

    The development of a program and curriculum for instruction in technical English for Saudi Arabian petrochemical plant operator trainees studying in the United States for two years was undertaken by the University of South Alabama's English Language Center. The program was designed to accommodate (1) the degree of skills and prior learning of the…

  20. Understanding the petrochemical cycle: Part 2

    SciTech Connect

    Sedriks, W. )

    1994-04-01

    The manager of a petrochemical enterprise, to survive the competitive 1990s, must have a good understanding of the industry's cyclicality, and a good grasp of coping alternatives. To select the best strategies and tactics calls for a familiarity with such concepts as the hockey-stick profile for profitability and the experience curve for cost reductions at both ends of the supply curve. The manager must carefully weigh advantages of build-and-scrap policies and differentiation vs. diversification and recognize the pitfalls associated with the prisoner's dilemma. With these elements well understood, the manager is in an improved position to cope with the industry's boom-and-bust characteristics. The paper discusses practicalities, the prisoner's dilemma in game theory, individual company actions, leveraging cyclicability, differentiation and diversification/integration, improvement of competitiveness, and structure as part of the problem.

  1. Dicentrarchus labrax biotransformation and genotoxicity responses after exposure to a secondary treated industrial/urban effluent.

    PubMed

    Gravato, C; Santos, M A

    2003-07-01

    The present research work was designed to study Dicentrarchus labrax (sea bass) biotransformation and genotoxicity responses to the soluble fraction of a secondary treated industrial/urban effluent (SF-STIUE) discharged through a submarine pipe outlet into the Aveiro coastal area. Sea bass was exposed for 4, 8, 16, 24, 48, and 96 h to 0%, 0.1%, and 1% SF-STIUE and the following biological responses were measured: (1) liver cytochrome P450 (P450) content and ethoxyresorufin-O-deethylase (EROD) activity, as phase I biotransformation parameters; (2) liver gluthathione S-transferase (GST) activity as a phase II conjugation enzyme; (3) biliary and liver cytosol naphthalene (Naph)- and benzo(a)pyrene (B(a)P)-type metabolites, by fixed wavelength fluorescence detection (FF); (4) liver DNA strand breaks, erythrocytic micronuclei (EMN), and erythrocytic nuclear abnormalities (ENA) as genotoxicity parameters. Both SF-STIUE dilutions (0.1% and 1%) failed to significantly increase liver EROD activity, despite a significant increase of liver P450 at 16 and 48 h exposure to 0.1%. Liver GST activity increased significantly at 4h of sea bass exposure to 1% SF-STIUE, being inhibited at 96 h of exposure to this SF-STIUE dilution. Naph- and B(a)P-type metabolite contents were not significantly increased in bile. However, Naph-type metabolite contents increased significantly in liver cytosol at 4h exposure to 1% SF-STIUE, and at 24h exposure to 0.1% and 1% SF-STIUE. Furthermore, B(a)P-type metabolites increased significantly in liver cytosol at 4h exposure to 1% SF-STIUE, and 16 h exposure to 0.1% and 1% SF-STIUE. EMN and ENA frequencies increased significantly at 4, 8, 16, 24, 48, and 96 h exposure to 0.1% and 1% SF-STIUE. Liver DNA integrity decreased significantly at 96 h of sea bass exposure to 1% SF-STIUE. The STIUE discharged into Aveiro coastal area is of great ecotoxicological concern due to its genotoxic potential. PMID:12798764

  2. Application of industrial hygiene techniques for work-place exposure assessment protocols related to petro-chemical exploration and production field activities

    SciTech Connect

    Koehn, J.

    1995-12-31

    Standard industrial hygiene techniques for recognition, evaluation, and control can be directly applied to development of technical protocols for workplace exposure assessment activities for a variety of field site locations. Categories of occupational hazards include chemical and physical agents. Examples of these types of hazards directly related to oil and gas exploration and production workplaces include hydrocarbons, benzene, oil mist, hydrogen sulfide, Naturally Occurring Radioactive Materials (NORM), asbestos-containing materials, and noise. Specific components of well process chemicals include potential hazardous chemical substances such as methanol, acrolein, chlorine dioxide, and hydrochloric acid. Other types of exposure hazards may result from non-routine conduct of sandblasting and painting operations.

  3. The Sequential Application of Macroalgal Biosorbents for the Bioremediation of a Complex Industrial Effluent

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models. PMID:25061756

  4. Removal and recovery of lead (Pb2+) from industrial effluent using indigenous and tailor-made Aureobasidium sp. RBSS-303.

    PubMed

    Aftab, Kiran; Akhtar, Kalsoom; Anjum, Fozia

    2015-01-01

    The objective of this study was to assess the removal and recovery of Pb-II from industrial wastewater using a locally isolated strain of Aureobasidium sp. RBSS-303. The initial Pb2+ concentration of 600 mg/L resulted in maximum uptake capacity (Qmax 235.1±0.3 mg/g). The biosorbent revival was attained by contacting with HCl (0.01 M), with 75.3% recovery of Pb2+. The Freundlich isotherm best explains the Pb2+ sorption performances. Maximum adsorption distribution coefficient of 1,309.6 mg metal/mL was observed at initial Pb2+ concentration value of 100 mg/L. Evaluation of nine kinetic models showed the removal rate of Pb2+ was reliant on diffusion control pseudo-second-order and saturation-mixed-order kinetic models with a high correlation coefficient value (R=0.99). Fourier transform infrared spectroscopy analysis showed the major contribution of -NH2 and -CN ligands of Aureobasidium sp. RBSS-303 in the sorption phenomenon of Pb2+. The biosorption assays carried out with effluent of the paint industry showed 76.8% efficiency for Pb2+ removal by the candidate biosorbent, regardless of the complex composition of the industrial effluent. PMID:25607681

  5. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    PubMed

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. PMID:24685513

  6. Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge--a case study.

    PubMed

    Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S

    2005-09-01

    Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted. PMID:16196413

  7. Electrocatalytic treatment of waste: studies on discoloration of an industrial azo dye effluent.

    PubMed

    Vaghela, Sanjay S; Jethva, Ashok D; Gohil, Mahendra S; Subbarayappa, Adimurthy; Gour, Prem M; Susarla, Venkataramakrishna S; Gadde, Ramachandraiah; Ghosh, Puspito K

    2003-01-01

    A textile dye effluent containing chiefly reactive azo dyes has been treated electrochemically for discoloration and COD (chemical oxygen demand) reduction at different current densities, flow rates and dilution. Experiments have been carried out in a thin electrochemical reactor under single pass conditions using a dimensionally stable catalytic anode (DSA) and a stainless steel cathode. PMID:14672378

  8. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity.

    PubMed

    Patel, Tallika L; Patel, Bhargav C; Kadam, Avinash A; Tipre, Devayani R; Dave, Shailesh R

    2015-01-01

    The present study was aimed towards the effective bio-treatment of actual industrial effluent containing as high as 42,000 mg/L COD (chemical oxygen demand), >28,000 ADMI (American Dye Manufacturers Institute) color value and four heavy metals using indigenous developed bacterial consortium TSR. Mineral salt medium supplemented with as low as 0.02% (w/v) yeast extract and glucose was found to remove 70% ADMI, 69% COD and >99% sorption of heavy metals in 24 h from the effluent by consortium TSR. The biodegradation of effluent was monitored by UV-vis light, HPLC (high performance liquid chromatography), HPTLC (high performance thin layer chromotography) and FTIR (Fourier transform infrared spectroscopy) and showed significant differences in spectra of untreated and treated effluent, confirming degradation of the effluent. Induction of intracellular azoreductase (107%) and NADH-DCIP reductase (128%) in addition to extracellular laccase (489%) indicates the vital role of the consortium TSR in the degradation process. Toxicity study of the effluent using Allium cepa by single cell gel electrophoresis showed detoxification of the effluent. Ninety per cent germination of plant seeds, Triticum aestivum and Phaseolus mungo, was achieved after treatment by consortium TSR in contrast to only 20% and 30% germination of the respective plants in case of untreated effluent. PMID:25945844

  9. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry: Part I. Carcinogenicity of motor fuels: gasoline

    SciTech Connect

    Mehlman, M.A. )

    1991-09-01

    Studies in humans and animals have shown that gasoline contains a number of cancer-causing and toxic chemicals such as 1,3-butadiene, benzene, toluene, ethylbenzene, xylenes, isoparaffins, methyltert-butylether, and others. The International Agency for Research on Cancer (IARC) in its Monograph Supplement 7 (1987) concludes that in the absence of adequate data on humans, it is biologically plausible and prudent to regard agents for which there is sufficient evidence of carcinogenicity in experimental animals as if they present a carcinogenic risk to humans.' Epidemiological studies in humans provide important evidence of potential increased risk of leukemia, lymphatic tissue cancers, cancers of the brain, liver, and other organs and tissues. Recently (July, 1990) the American Conference of Governmental Industrial Hygiene (ACGIH) recommended that the TLV-TWA for benzene be reduced from 1 ppm to 0.1 ppm (ACGIH, 1990). The Collegium Ramazzini and others have also recommended that the exposure level for 1,3-Butadiene be reduced from 1,000 ppm to below 0.2 ppm. This recommendation is based on the findings that were presented at the Symposium on Toxicology, Carcinogenesis, and Human Health Aspects of 1,3-Butadiene (Environ. Health Perspec., 1990). Thus, studies on health effects resulting from very low levels of benzene, 1,3-butadiene, and other cancer-causing chemicals--components of gasoline--necessitate that all avoidable exposure to gasoline or gasoline vapors be avoided.

  10. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    PubMed

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent. PMID:24504774

  11. Results of a technology demonstration project to compare rapid aquatic toxicity screening tests in the analysis of industrial effluents.

    PubMed

    Daniel, M; Sharpe, A; Driver, J; Knight, A W; Keenan, P O; Walmsley, R M; Robinson, A; Zhang, T; Rawson, D

    2004-11-01

    The results of a 'BioWise' demonstration project to assess the comparative sensitivity and practicality of seven new assays for the direct assessment of ecotoxicity in industrial effluents are presented. In addition the aim of the project was to validate the results of the new assays against benchmark data generated from non-proprietary, rapid, microplate screening assays using the regulatory species; freshwater crustacean Daphnia magna and green algae Selenastrum capricornutum, chosen in view of their environmental relevance. The new commercial test assays were: Daphnia magna, Selenastrum capricornutum and Thamnocephalus platyurus Toxkits supplied by Vickers Laboratories Ltd, containing dormant, immobilised life stages of the test species; GreenScreen EM, a yeast based assay for genotoxicity and general acute toxicity supplied by Gentronix Ltd; and CellSense a mediated, amperometric whole cell biosensor based on immobilised activated sludge and E. coli. 38 effluent samples supplied by members of SOCSA (Specialised Organic Chemicals Sector Association) were examined over a period of 13 months, in the project co-ordinated by the AstraZeneca Brixham Environmental Laboratory, and part funded by BioWise via the UK Government Department of Trade and Industry. PMID:15536498

  12. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils. PMID:26803661

  13. What are future petrochemical feedstocks?

    SciTech Connect

    Manning, T.J.

    1997-05-01

    Continuing growth in olefins and aromatics demand will require investment in production facilities worldwide. Feedstock selection for these new plants must take into account changing co-product demand patterns and production technology. Feedstock availability and logistics will be the most important considerations. Competition with fuel demand will encourage petrochemical producers to increase feedstock integration, to expand feedstock flexibility and to seek new feedstock sources. The paper discusses the following feedstocks: ethane, propane, butane, naphtha, gas oil, and condensate.

  14. Toxicity assessment of nickel using Aspergillus niger and its removal from an industrial effluent.

    PubMed

    Rajendran, P; Ashokkumar, B; Muthukrishnan, J; Gunasekaran, P

    2002-01-01

    Chemical analysis of electroplating effluent revealed the presence of very high concentrations of nickel (393 ppm) in the effluent. Bioassay was carried out to test the toxicity of nickel chloride to Aspergillus niger. In contrast to 50% conidial inhibition at 1.7 mM nickel, hyphal extension was affected even at a lower concentration (0.4 mM), suggesting that hyphae are more sensitive than conidia to nickel. An increase in nickel concentration resulted in a proportionate decrease in the hyphal extension. Nickel (II)-resistant mutants of A. niger M1, M2, and M3, were obtained using direct selection, stepwise adaptation, and ultraviolet mutation techniques. Biosorption of Ni (II) by the mutant M3 was 50% more than that of its parent strain. PMID:12396123

  15. Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents.

    PubMed

    lvarez, M S; Moscoso, F; Rodrguez, A; Sanromn, M A; Deive, F J

    2013-10-01

    In this work, a novel remediation strategy consisting of a sequential biological and physical process is proposed to remove dyes from a textile polluted effluent. The decolorization ability of Anoxybacillus flavithermus in an aqueous effluent containing two representative textile finishing dyes (Reactive Black 5 and Acid Black 48, as di-azo and antraquinone class, respectively) was proved. The decolorization efficiency for a mixture of both dyes reached almost 60% in less than 12h, which points out the suitability of the selected microorganism. In a sequential stage, an aqueous biphasic system consisting of non-ionic surfactants and a potassium-based organic salt, acting as the salting out agent, was investigated. The phase segregation potential of the selected salts was evaluated in the light of different thermodynamic models, and remediation levels higher than 99% were reached. PMID:23985354

  16. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays

    PubMed Central

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples. PMID:21637622

  17. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.

    PubMed

    Hadad, H R; Mufarrege, M M; Pinciroli, M; Di Luca, G A; Maine, M A

    2010-04-01

    Typha domingensis had become the dominant species after 2 years of operation of a wetland constructed for metallurgical effluent treatment. Therefore, the main purpose of this study was to investigate its ability to tolerate the effluent and to maintain the contaminant removal efficiency of the constructed wetland. Plant, sediment, and water at the inlet and outlet of the constructed wetland and in two natural wetlands were sampled. Metal concentration (Cr, Ni, and Zn) and total phosphorus were significantly higher in tissues of plants growing at the inlet in comparison with those from the outlet and natural wetlands. Even though the chlorophyll concentration was sensitive to effluent toxicity, biomass and plant height at the inlet and outlet were significantly higher than those in the natural wetlands. The highest root and stele cross-sectional areas, number of vessels, and biomass registered in inlet plants promoted the uptake, transport, and accumulation of contaminants in tissues. The modifications recorded accounted for the adaptability of T. domingensis to the conditions prevailing in the constructed wetland, which allowed this plant to become the dominant species and enabled the wetland to maintain a high contaminant retention capacity. PMID:20041323

  18. Physicochemical characteristics of paper industry effluents--a case study of South India Paper Mill (SIPM).

    PubMed

    Devi, Ningombam Linthoingambi; Yadav, Ishwar Chandra; Shihua, Q I; Singh, Surendra; Belagali, S L

    2011-06-01

    Pulp and paper mills generate varieties of pollutants depending upon type of the pulping process being used. This paper presents the characteristics of wastewater from South India Paper Mill, Karnataka, India which is using recycled waste paper as a raw material. The raw wastewater consists of 80-90 mg L( - 1) suspended solid and 1,010-1,015 mg L( - 1) dissolved solid. However, pH varied from 5.5-6.8. The biochemical oxygen demand and chemical oxygen demand ranged from 200-210 and 1,120-1,160 mg L( - 1), respectively. Aerobic treatment of raw effluent attribute to significant reduction in suspended solid (range between 25 to 30 mg L( - 1)) and total dissolved solid (range between 360 to 390 mg L( - 1)). However, pH, temperature, and electrical conductivity were found superior after treatment. Copper, cadmium, iron, lead, nickel, and zinc were found in less quantity in raw effluent and were almost completely removed after treatment. The dendrogram of the effluent quality parameters clearly indicate that South India Paper Mill does not meet Minimal National Standard set by central Pollution Control Board to discharge in agricultural field. PMID:20661771

  19. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.

    PubMed

    Zhou, Guiyin; Luo, Jinming; Liu, Chengbin; Chu, Lin; Ma, Jianhong; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2016-02-01

    High sorption capacity, high sorption rate, and fast separation and regeneration for qualified sorbents used in removing heavy metals from wastewater are urgently needed. In this study, a polyampholyte hydrogel was well designed and prepared via a simple radical polymerization procedure. Due to the remarkable mechanical strength, the three-dimensional polyampholyte hydrogel could be fast separated, easily regenerated and highly reused. The sorption capacities were as high as 216.1 mg/g for Pb(II) and 153.8 mg/g for Cd(II) owing to the existence of the large number of active groups. The adsorption could be conducted in a wide pH range of 3-6 and the equilibrium fast reached in 30 min due to its excellent water penetration for highly accessible to metal ions. The fixed-bed column sorption results indicated that the polyampholyte hydrogel was particularly effective in removing Pb(II) and Cd(II) from actual industrial effluent to meet the regulatory requirements. The treatment volumes of actual smelting effluent using one fixed bed column were as high as 684 bed volumes (BV) (7736 mL) for Pb(II) and 200 BV (2262 mL) for Cd(II). Furthermore, the treatment volumes of actual smelting effluent using tandem three columns reached 924 BV (31,351 mL) for Pb(II) and 250 BV (8483 mL) for Cd(II), producing only 4 BV (136 mL) eluent. Compared with the traditional high density slurry (HDS) process with large amount of sludge, the proposed process would be expected to produce only a small amount of sludge. When the treatment volume was controlled below 209.3 BV (7103 mL), all metal ions in the actual industrial effluent could be effectively removed (<0.01 mg/L). This wok develops a highly practical process based on polyampholyte hydrogel sorbents for the removal of heavy metal ions from practical wastewater. PMID:26650450

  20. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe3O4.

  1. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus.

    PubMed

    Zoppellari, Francesca; Bardi, Laura

    2013-09-25

    Whey and scotta are effluents coming from cheese and ricotta processing respectively. Whey contains minerals, lipids, lactose and proteins; scotta contains mainly lactose. Whey can be reused in several ways, such as protein extraction or animal feeding, while nowadays scotta is just considered as a waste; moreover, due to very high volumes of whey produced in the world, it poses serious environmental and disposal problems. Alternative destinations of these effluents, such as biotechnological transformations, can be a way to reach both goals of improving the added value of the agroindustrial processes and reducing their environmental impact. In this work we investigated the way to produce bioethanol from lactose of whey and scotta and to optimize the fermentation yields. Kluyveromyces marxianus var. marxianus was chosen as lactose-fermenting yeast. Batch, aerobic and anaerobic, fermentations and semicontinuous fermentations in dispersed phase and in packed bed reactor were carried out of row whey, scotta and mix 1:1 whey:scotta at a laboratory scale. Different temperatures (28-40°C) were also tested to check whether the thermotolerance of the chosen yeast could be useful to improve the ethanol yield. The best performances were reached at low temperatures (28°C); high temperatures are also compatible with good ethanol yields in whey fermentations, but not in scotta fermentations. Semicontinuous fermentations in dispersed phase gave the best fermentation performances, particularly with scotta. Then both effluents can be considered suitable for ethanol production. The good yields obtained from scotta allow us to transform this waste in a source. PMID:23201075

  2. Accumulation of heavy metals (Cd, Cr, Cu, Ni and Zn) in Raphanus sativus L. and Spinacia oleracea L. plants irrigated with industrial effluent.

    PubMed

    Pandey, S N

    2006-05-01

    Effluent from electroplating industry contains various heavy metals like Cd, Cr, Cu, Ni and Zn, which are used in electroplating process of industry. Effluent was slightly greenish in colour and pungent in odour. Physico-chemical properties like total suspended solids (TSS), total solids (TS), alkalinity, Biological oxygen demand (BOD), and Chemical oxygen demand (COD) showed higher values in effluent with high metal contents like Cd, 0.013; Cr, 0.093; Ni, 0.935 and Zn 4.76 mg l(-1). plants of S. oleracea and R. sativus were raised in uncontaminated alluvial soil of Lucknow by soil pot culture method and irrigated with industrial effluent, showed visual toxic symptoms like stunted growth, necrosis followed by chlorosis in leaves and finally death of the plants. Severity of toxicity was less in plants treated with diluted effluent (50%). High accumulation of Cr, 302.0; Cu, 81.2; Ni, 155.1 and Zn 146.8 microg g(-1) dry weight in S. oleracea and Cr, 198.0; Cu, 41.0; Ni, 84.3 and Zn, 140.2 microg g(-1) dry weight in R. sativus were determined. Tissue concentration of metals and toxic effects was more in S. oleracea plants. The tissue concentration of metals showed much higher values in treated plants than that of their respective control. PMID:17436528

  3. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India.

    PubMed

    Tiwari, K K; Dwivedi, S; Mishra, S; Srivastava, S; Tripathi, R D; Singh, N K; Chakraborty, S

    2008-12-01

    Phytoremediation is a novel, solar-driven and cost-effective technology for the remediation of heavy metal contaminated environments through exploitation of plants ability to accumulate heavy metals in their harvestable shoot parts. In the present investigation, we collected plants of two species of Portulaca i.e. P. tuberosa and P. oleracea from field sites in Vadodra, Gujrat, India. At one site, field was being irrigated with industrial effluent while at other with tube well water. Analysis of heavy metals was performed in industrial effluent, tube well water, soils irrigated with them, and in different parts viz., roots, stem, leaves and flowers of the plant samples. Industrial effluent and soil irrigated with it had very high level of heavy metals (Fe, Zn, Cd, Cr and As) as compared to the tube well water and soil irrigated with that. Plants of both the species growing in effluent irrigated soils showed high accumulation of metals in all plant parts with the maximum being in roots and the least in flowers. Interestingly, both species of Portulaca hyperaccumulated more than one heavy metal viz., Cd, Cr and As. The total shoot concentrations (microg g(-1) dw) of Cd, Cr and As in P. tuberosa were 1,571, 7,957 and 3,118, respectively while in P. oleracea, these were 1,128, 7,552 and 2,476, respectively. Portulaca plants have good biomass and high regeneration potential; hence appear to be suitable for the remediation of effluent (metal) contaminated areas. PMID:18193484

  4. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents.

    PubMed

    Ohyama, Seiichi; Abe, Keiko; Ohsumi, Hitoshi; Kobayashi, Hirokazu; Miyazaki, Naotsugu; Miyadera, Koji; Akasaka, Kin-ichi

    2009-06-01

    Fully automated measuring equipment for aqueous boron (referred to as the online boron monitor) was developed on the basis of a rapid potentiometric determination method using a commercial BF4(-) ion-selective electrode (ISE). The equipment can measure boron compounds with concentration ranging from a few to several hundred mg/L, and the measurement is completed in less than 20 min without any pretreatment of the sample. In the monitor, a series of operations for the measurement, i.e., sampling and dispensing of the sample, addition of the chemicals, acquisition and processing of potentiometric data, rinsing of the measurement cell, and calibration of the BF4(-) ISE, is automated. To demonstrate the performance, we installed the monitor in full-scale coal-fired power plants and measured the effluent from a flue gas desulfurization unit. The boron concentration in the wastewater varied significantly depending on the type of coal and the load of power generation. An excellent correlation (R2 = 0.987) was obtained in the measurements between the online boron monitor and inductively coupled plasma atomic emission spectrometry, which proved that the developed monitor can serve as a useful tool for managing boron emission in industrial process effluent. PMID:19569339

  5. Risk assessment of domestic and industrial effluents unloaded into a freshwater environment.

    PubMed

    Di Marzio, W D; Sáenz, M; Alberdi, J; Tortorelli, M; Silvana, Galassi

    2005-07-01

    An ecotoxicologic study was performed to assess the environmental status of the Lujan River. It is an important freshwater system in the northeast of Buenos Aires Province, Argentina. Surface waters (SWs) and liquids effluents (LEs), before they reached the river, and sediments were assessed via acute toxicity screening using a battery of tests with native species. Additionally, the presence, in each LE and SW sample, of bioaccumulatable compounds was checked by SPME extraction and gas chromatograph-MS determination. An environmental risk assessment of each LE was carried out via toxic units and assessment factors approach and through extrapolation methods. Hazardous concentrations for each LE were compared with their river effluent concentrations. Ninety-one percent (91%) of the total toxic load of the river was due to 4 of 11 LEs (37%) evaluated. Although SW samples were not toxic, a real environmental risk was found for this freshwater environment. Sediment toxicity was found to be related to the proximity to pipe discharges. Bioaccumulatable compounds were found in SWs and in LEs. Esters of phthalic acids, morpholine, hydroquinone, and nonylphenol were found throughout the river at different sample sites and in different months during the 1-year sampling program. PMID:15922804

  6. The toxic potential of an industrial effluent determined with the Saccharomyces cerevisiae-based assay.

    PubMed

    Schmitt, Marcel; Gellert, Georg; Lichtenberg-Fraté, Hella

    2005-09-01

    Increasing levels of environmental pollution and the continuous monitoring of water quality both request specific and sensitive methods for the detection of detrimental water contents. On a regulatory basis genotoxicity is assessed by the standard umu-test (ISO 13829) that responds to DNA damage induced by chemicals. The focus of this study was the examination of the toxic potential of samples taken from the wastewater treatment plant of a refinery factory to explore the applicability of the Saccharomyces cerevisiae (bakers yeast) test for the detection of bio-available genotoxic activity in complex matrices. The toxic potential of samples without pre-treatment and following centrifugation was determined with the eukaryotic Saccharomyces cerevisiae bioassay based on the transcriptional activation of the green fluorescent protein (gfp) fused to the DNA damage inducible RAD54 promoter and general growth inhibition. Primary effluent samples were taken as qualified sterile spot samples from the final effluent of the purification plant. The Saccharomyces cerevisiae assay yielded geno- and cytotoxic responses in all complex untreated and centrifuged samples with high reproducibility. The obtained results suggest that the yeast assay is suited as a screening tool to monitor genotoxic potential of wastewater. PMID:16002118

  7. Silica removal in industrial effluents with high silica content and low hardness.

    PubMed

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%. PMID:24777323

  8. Measurement of sucrose and ethanol concentrations in process streams and effluents of sugarcane bioethanol industry by optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Fujiwara, Eric; Ono, Eduardo; Manfrim, Tarcio P.; Santos, Juliana S.; Suzuki, Carlos K.

    2011-05-01

    The measurement of process streams and effluents from sugar-ethanol industry by using optical fiber sensor based on Fresnel reflection principle is reported. Firstly, binary sucrose-water and ethanol-water solutions were measured in order to determine the calibration curves. Secondly, the co-products from various processing stages were analyzed in order to identify the sucrose or ethanol concentration. The absolute error was calculated by comparison between the nominal concentration values obtained by plant laboratory analysis and the sensor response, yielding errors <= 5 wt% and <= 5 vol% for sucrose and ethanol content, respectively. The fiber sensor provided reliable results even for samples with more complex compositions than pure sucrose or ethanol solutions, with perspectives of application on the several stages of the plant facility.

  9. Genotoxicity evaluation of effluents from textile industries of the region Fez-Boulmane, Morocco: a case study.

    PubMed

    Giorgetti, Lucia; Talouizte, Hakima; Merzouki, Mohammed; Caltavuturo, Leonardo; Geri, Chiara; Frassinetti, Stefania

    2011-11-01

    In order to investigate the biological hazard of effluents from textile industries of Fez-Boulmane region in Morocco, mutagenicity and phytotoxicity tests were performed on different biological systems. Moreover, the efficiency of a Sequencing Batch Reactor (SBR) system, working by activated sludge on a laboratory scale, was estimated by comparing the ecotoxicity results observed before and after wastewater treatment. Evaluation of the genotoxic potential was investigated by means of classic mutagenicity tests on D7 strain of Saccharomyces cerevisiae and by phytotoxicity tests on Allium sativum L., Vicia faba L. and Lactuca sativa L., estimating micronuclei presence, mitotic index and cytogenetic anomalies. The results obtained by testing untreated wastewater demonstrated major genotoxicity effects in S. cerevisiae and various levels of phytotoxicity in the three plant systems, while after SBR treatment no more ecotoxicological consequences were observed. These data confirm the effectiveness of the SBR system in removing toxic substances from textile wastewaters in Fez-Boulmane region. PMID:21840051

  10. Characterization of a phenol-degrading bacterium isolated from an industrial effluent and its potential application for bioremediation.

    PubMed

    Paisio, Cintia E; Talano, Melina A; González, Paola S; Pajuelo-Domínguez, Eloisa; Agostini, Elizabeth

    2013-01-01

    The use of native microorganisms is a useful strategy for phenol bioremediation. In the present work, a bacterial strain, named RTE1.4, was isolated from effluents of a chemical industry. The strain was able to grow at high concentrations of phenol and its derivatives, such as guaiacol, 2,4-dichlorophenol and pentachlorophenol, as well as in a medium containing industrial effluents. This bacterium was identified as Acinetobacter sp. using morphological, physiological, biochemical and 16S rRNA gene analysis. Acinetobacter sp. RTE1.4 degraded phenol (200 to 600 mg/L) at wide pH range and temperature (5-9 and 25-37 degrees C, respectively) demonstrating high adaptation ability to different conditions. The strain would metabolize phenol by the ortho-pathway since catechol 1,2-dioxygenase activity was detected. When bacteria were grown in medium containing phenol, an altered whole-cell protein pattern was observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), with the lack of some low-molecular mass polypeptides and an increase in the relative abundance of high-molecular mass proteins after treatment. Considering that the use of native strains in bioremediation studies shows several ecological advantages and that the studied bacterium showed high tolerance and biodegradation capabilities, Acinetobacter sp. RTE1.4 could be an appropriate microorganism for improving bioremediation and biotreatment of areas polluted with phenol and/or some of its derivatives. Moreover, the establishment of the optimal growth conditions (pH, temperature, concentration of the pollutant) would provide baseline data for bulk production of the strain and its use in bioremediation processes. PMID:23530363

  11. Multispectral identiftcation of alkyl and chloroalkyl phosphates from an industrial effluent.

    PubMed

    Thruston, A D; Richardson, S D; McGuire, J M; Collette, T W; Trusty, C D

    1991-09-01

    Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared spectroscopy) were used to identify 13 alkyl and chloroalkyl phosphates in a water sample taken from the effluent of a plant that manufactures fire-retardant chemicals. Of the 13 phosphates identified, only 4 were located in hbrary mass spectral data bases; thus, techniques other than conventional low resolution electron-impact mass spectrometry with data base matching were required. Several of the Identified phosphates are commonly used ftre retardants; however, three exhibited chemical structures different from those of the commercially manufactured fire retardants and the reactants used in their synthesis. PMID:24242693

  12. Combined treatment of chemical, pharmaceutical and cosmetic industrial effluents by waste stabilization ponds.

    PubMed

    Veeresh, Mangala; Veeresh, A V; Hosetti, B B

    2002-10-01

    Influent and final effluent was collected from the CMM Ltd., Bethora, Ponda, Goa and were analysed for pH, DO, BOD, enzyme activity and chlorophyll content of the waste stabilization pond for over a period of two years of which the data for one year (pre monsoon, monsoon and post monsoon periods) is given. The study revealed that the DO was maximum during the pre-monsoon months and least during the monsoon. Maximum removal of BOD and phosphate was observed during the pre-monsoon periods. Enzymatic activity was at its peak during the monsoons than during the other months. Chlorophyll content was maximum during the pre-monsoon months due to increased growth of phytoplankton as the conditions were favourable for their growth. Also depending on the concentration of different chlorophyll pigments, one can come to know the different groups of algae inhabiting the stabilization ponds. PMID:12674388

  13. Simultaneously bio treatment of textiles and food industries effluent at difference ratios with the aid of e-beam radiation

    NASA Astrophysics Data System (ADS)

    Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah

    2012-09-01

    The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.

  14. BIOLOGICAL TREATMENT, EFFLUENT REUSE, AND SLUDGE HANDLING FOR THE SIDE LEATHER TANNING INDUSTRY

    EPA Science Inventory

    An evaluation of the treatability of unsegregated, unequalized, and unneutralized wastewaters from a side-leather tanning industry utilizing the hair pulping process by primary and secondary biological and gravity separation in clarifier-thickeners, whereas the secondary treatmen...

  15. Zero Liquid Discharge approach in plating industry: treatment of degreasing effluents by electrocoagulation and anodic oxidation.

    PubMed

    Hermon, S; Grange, D; Pellet, Y; Lloret, G; Oyonarte, S; Bosch, F; Coste, M

    2008-01-01

    Degreasing waste effluents issued from a surface treatment plant were treated by electrochemical techniques in an attempt to reduce COD so that clean water can be returned to the rinse bath. Electrocoagulation, both with iron and aluminium anodes, and anodic oxidation with boron doped diamond (BDD) anodes were tested. In the electrocoagulation tests, the nature of the anodes did not impact significantly the reduction of COD. Electrocoagulation showed good COD removal rates, superior to 80%, but it was not able to reduce COD down to low levels. Anodic oxidation was able to reduce COD down to discharge limits; the oxidation efficiency was superior to 50%. Economical calculations show that anodic oxidation is best used as a polishing step after electrocoagulation. The bulk of the COD would be reduced by electrocoagulation and, then, anodic oxidation would reduce COD below discharge limits. The maximum treatable flow is somewhat hindered by the small sizes of current BDD installation but it would reach 600 m(3)/year if anodic oxidation is coupled with electrocoagulation, the operational cost being 2.90 Euros /m(3). PMID:18725717

  16. Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents.

    PubMed

    Sau, Gopi Ballav; Chatterjee, Swagata; Sinha, Sangram; Mukherjee, Samir Kumar

    2008-01-01

    A chromium resistant bacterial strain KUCr1 exhibiting potential Cr(VI) reducing ability under in vitro aerobic condition is reported. The bacterial strain showed varied degree of resistance to different heavy metals. The MIC of chromium to this strain was found to be 950 mM under aerobic culture condition in complex medium. The factors affecting Cr(VI) reduction by this strain under culture condition were evaluated. Maximal Cr(VI) reduction was observed at the pH 8 to 10 and at a temperature of 35 degrees C. Higher concentration of Cr(VI) slowed down the reduction, eventually all the metal could be reduced with longer incubation time. Different toxic metals showed differential effect on reduction. Cadmium and zinc were found to inhibit reduction. Cr(VI) reduction and bioremediation were found to be related to the growth supportive condition in terms of carbon, phosphorous and nitrogen supply in wastewater fed with tannery effluent indicating cell mass dependency of Cr(VI) reduction. Through biochemical characterization and 16S rDNA sequence analysis, the strain KUCr1, as the name given to it, was identified as a strain of Bacillus firmus. PMID:19275047

  17. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.

    PubMed

    Sridhar, R; Sivakumar, V; Prince Immanuel, V; Prakash Maran, J

    2011-02-28

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m(3) depending on the operating conditions. Under optimal operating condition such as 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m(3). The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse. PMID:21227578

  18. Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry.

    PubMed

    Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S

    2011-02-01

    Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions. PMID:20582453

  19. [Enhanced bio-contact oxidation method to treat petrochemical wastewater by tourmaline].

    PubMed

    Jiang, Kan; Ma, Fang; Sun, Tie-Heng; Feng, Zhi-Yun

    2009-06-15

    Aiming at the complexity and poor biochemical degradability of petrochemical wastewater, the effect of tourmaline on bio-contact oxidation method was investigated. The influent and effluent of petrochemical wastewater were analyzed by GC-MS, and the carrier was observed in reactor by scanning electron microscope (SEM). As the loading rates of influent were COD 0.64-0.72 kg/(m3 x d) and NH4(+) -N 0.058-0.072 kg/(m3 x d), the start up of pilot system supported tourmaline were improved, and the removal rate of COD and NH4(+) -N of effluent was increased 8.7% and 6.4%, respectively. Organic pollutants of 100 kinds were detected in influent, mainly including aromatic hydrocarbon, acids, lipids, phenols, alcohols, and alkanes compounds. The removal efficiency of organic pollutant of reactor 1 with tourmaline was higher than reactor 2 without tourmaline. The number of organic pollutant in effluent from reactor 1 and 2 were 14 and 28, respectively. Zoogloea can be observed on carrier supported tourmaline, and the biomass of bacteria was predominant. The efficiency of bio-contact oxidation method on petrochemical wastewater treatment can be enhanced by tourmaline. PMID:19662849

  20. POLISHING INDUSTRIAL WASTE STREAM EFFLUENTS USING FLY ASH - NATURAL CLAY SORBENT COMBINATION

    EPA Science Inventory

    A laboratory evaluation of the use of acidic and basic fly ashes, bentonite, bauxite, illite, kaolinite, zeolite, vermiculite, and activated alumina is presented for polishing a 3.8 x 10 to the 6th power liters per day waste stream from the feldspar mining and processing industry...

  1. ECONOMIC IMPACT ANALYSIS OF EFFLUENT STANDARDS AND LIMITATIONS FOR THE METAL FINISHING INDUSTRY

    EPA Science Inventory

    The U.S. Environmental Protection Agency issued e-fluent guidelines and limitations for the Metal Finishing Industry in June 1983. This report estimates the economic impact of pollution control costs in terms of price changes, effects profitability, potential plant closures, unem...

  2. Morphological, Physiological and Biochemical Impact of Ink Industry Effluent on Germination of Maize (Zea mays), Barley (Hordeum vulgare) and Sorghum (Sorghum bicolor).

    PubMed

    Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch

    2015-11-01

    The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water. PMID:26341252

  3. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-An application towards phycoremediation.

    PubMed

    Balaji, S; Kalaivani, T; Sushma, B; Pillai, C Varneetha; Shalini, M; Rajasekaran, C

    2016-08-01

    Phycoremediation ability of microalgae namely Oscillatoria acuminate and Phormidium irrigum were validated against the heavy metals from tannery effluent of Ranipet industrial area. The microalgae species were cultured in media containing tannery effluent in two different volumes and the parameters like specific growth rate, protein content and antioxidant enzyme activities were estimated. FTIR spectroscopy was carried out to know the sorption sites interaction. The antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) contents were increased in microalgae species indicating the free radical scavenging mechanism under heavy metal stress. SOD activity was 0.502 and 0.378 units/gram fresh weight, CAT activity was 1.36 and 0.256 units/gram fresh weight, GSH activity was 1.286 and 1.232 units/gram fresh weight respectively in the effluent treated microalgae species. Bio sorption efficiency for Oscillatoria acuminate and Phormidium irrigum was 90% and 80% respectively. FTIR analysis revealed the interaction of microalgae species with chemical groups present in the tannery effluent. From the results, the microalgae Oscillatoria acuminate possess high antioxidant activity and bio sorption efficiency when compared to Phormidium irrigum and hence considered useful in treating heavy metals contaminated effluents. PMID:26587690

  4. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    PubMed Central

    2014-01-01

    Background Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. Results In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of “green” gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Conclusions Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants’ metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost-effective solution for efficient bio-filtration of swine wastewater and petrochemicals production from generated biomass. PMID:24576349

  5. Impact of industrial effluents on geochemical association of metals within intertidal sediments of a creek.

    PubMed

    Volvoikar, Samida P; Nayak, G N

    2015-10-15

    Metal speciation studies were carried out on three intertidal core sediments of the industrially impacted Dudh creek located along west coast of India. Metals indicated a drastic increase in the bioavailable fraction towards the surface of the cores, suggesting an increase in anthropogenic metal input in recent years as compared to the past. Also, when compared with Vaitarna estuary and Khonda creek of Thane district, the speciation of metals in Dudh creek sediments was observed to have been highly modified in recent years. High concentrations of metals associated with bioavailable fractions therefore suggested a risk of toxicity to sediment associated biota of Dudh creek. PMID:26231063

  6. BIOLOGICAL TREATMENT OF HIGH STRENGTH PETROCHEMICAL WASTEWATER

    EPA Science Inventory

    The biological treatment of a complex petrochemical wastewater containing high concentrations of organic chlorides, nitrates, and amines was initially studied using a sequence of anaerobic methanogenesis and oxygen activated sludge. Bench-scale and pilot-plant treatability studie...

  7. Microbial Populations Associated with Treatment of an Industrial Dye Effluent in an Anaerobic Baffled Reactor

    PubMed Central

    Plumb, Jason J.; Bell, Joanne; Stuckey, David C.

    2001-01-01

    Fluorescent in situ hybridization (FISH) using 16S and 23S rRNA-targeted probes together with construction of an archaeal 16S ribosomal DNA (rDNA) clone library was used to characterize the microbial populations of an anaerobic baffled reactor successfully treating industrial dye waste. Wastewater produced during the manufacture of food dyes containing several different azo and other dye compounds was decolorized and degraded under sulfidogenic and methanogenic conditions. Use of molecular methods to describe microbial populations showed that a diverse group of Bacteria and Archaea was involved in this treatment process. FISH enumeration showed that members of the gamma subclass of the class Proteobacteria and bacteria in the Cytophaga-Flexibacter-Bacteroides phylum, together with sulfate-reducing bacteria, were prominent members of a mixed bacterial population. A combination of FISH probing and analysis of 98 archaeal 16S rDNA clone inserts revealed that together with the bacterial population, a methanogenic population dominated by Methanosaeta species and containing species of Methanobacterium and Methanospirillum and a relatively unstudied methanogen, Methanomethylovorans hollandica, contributed to successful anaerobic treatment of the industrial waste. We suggest that sulfate reducers, or more accurately sulfidogenic bacteria, together with M. hollandica contribute considerably to the treatment process through metabolism of dye-associated sulfonate groups and subsequent conversion of sulfur compounds to carbon dioxide and methane. PMID:11425746

  8. Effect of dichromate on population and growth of various protozoa isolated from industrial effluents.

    PubMed

    Haq, R U; Rehman, A; Shakoori, A R

    2000-01-01

    Three protozoa belonging to genera Euglena, Vorticella and Stylonychia collected from industrial wastes were cultured in a medium containing inorganic salts, basically meant for the growth of algae. Protozoa showed rapid growth in the medium. Hexavalent chromium (K2Cr2O7) at a concentration of 5 micrograms/L in the medium adversely affected the growth of protozoa. At the end of eight days of Cr administration, the population of Euglena, Vorticella and Stylonychia increased 8-, 4.5- and 10-fold, respectively, as against 30-, 6.75- and 50-fold increase in the control cultures. No apparent death phase and no change in activity or morphology of protozoa was observed at this Cr concentration. The protozoa were also exposed to different metal ions, viz. Pb (2.42 mmol/L), Cr (0.48 mmol/L), Cd (0.36 mmol/L), administered in the culture medium for a period of 2 years. The metal tolerance for S. mytilus and V. microstoma was Pb > Cr > Cd. E. proxima could not tolerate any of the long-term metal treatments. Because of the ability of these protozoa to tolerate high concentrations of heavy metals, their potential role in remediation of heavy metals from industrial wastewater is considered. PMID:11271815

  9. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  10. Hydrocarbon Processing`s petrochemical processes `97

    SciTech Connect

    1997-03-01

    The paper compiles information on numerous petrochemical processes, describing the application, the process, yields, economics, commercial plants, references, and licensor. Petrochemicals which are synthesized include: alkylbenzene, methylamines, ammonia, benzene, bisphenol-A, BTX aromatics, butadiene, butanediol, butyraldehyde, caprolactam, cumene, dimethyl terephthalate, ethanolamines, ethylbenzene, ethylene, ethylene glycols, ethylene oxide, formaldehyde, maleic anhydride, methanol, olefins, paraxylene, phenol, phthalic anhydride, polycaproamide, polyethylene, polyethylene terephthalate, polypropylene, PVC, styrene, terephthalic acid, urea, vinyl chloride, and xylene isomers.

  11. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons.

    PubMed

    Anirudhan, T S; Sreekumari, S S

    2011-01-01

    Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(II), Hg(II) and Cu(II) from industrial effluents through batch adsorption process. The AC was characterized by elemental analysis, fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric and differential thermal analysis, surface area analyzer and potentiometric titrations. The effects of initial metal concentration, contact time, pH and adsorbent dose on the adsorption of metal ions were studied. The adsorbent revealed a good adsorption potential for Pb(II) and Cu(II) at pH 6.0 and for Hg(II) at pH 7.0. The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation. The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model. The adsorption capacities of the AC decreased in the order: Pb(II) > Hg(II) > Cu(II). PMID:22432329

  12. Copper removal from an effluent generated by a plastics chromium-plating industry using a rotating cylinder electrode (RCE) reactor.

    TOXLINE Toxicology Bibliographic Information

    Rivera FF; González I; Nava JL

    2008-08-01

    This work shows the application of a rotating cylinder electrode (RCE) in the removal of Cu(II) content from an effluent generated by a plastics chromium-plating industry, on the laboratory scale; in particular, it deals with rinse water from the electrolytic copper process. This process was designed to convert cupric ions in solution to metal powder. The generation of metal powders in the RCE was achieved at Reynolds numbers between 52925 and 83183 and limiting current densities (J(L)) in the range of 17 to 25 mA cm(-2). The removal of Cu(II) (initially 922 ppm) reached 43 ppm in 10 minutes of electrolysis for Re = 83183 and J = 25 mA cm(-2), with a space-time yield of 88 mg Cu(II) L(-1) min(-1), 95% current efficiency, and energy consumption of 5.3 KWh m(-3). The electrochemical treatment applied to waste rinse water at the RCE allows this treated water to be recycled back to the same rinsing process, avoiding additional consumption and discharge of this liquid.

  13. Copper removal from an effluent generated by a plastics chromium-plating industry using a rotating cylinder electrode (RCE) reactor.

    PubMed

    Rivera, F F; González, I; Nava, J L

    2008-08-01

    This work shows the application of a rotating cylinder electrode (RCE) in the removal of Cu(II) content from an effluent generated by a plastics chromium-plating industry, on the laboratory scale; in particular, it deals with rinse water from the electrolytic copper process. This process was designed to convert cupric ions in solution to metal powder. The generation of metal powders in the RCE was achieved at Reynolds numbers between 52925 and 83183 and limiting current densities (J(L)) in the range of 17 to 25 mA cm(-2). The removal of Cu(II) (initially 922 ppm) reached 43 ppm in 10 minutes of electrolysis for Re = 83183 and J = 25 mA cm(-2), with a space-time yield of 88 mg Cu(II) L(-1) min(-1), 95% current efficiency, and energy consumption of 5.3 KWh m(-3). The electrochemical treatment applied to waste rinse water at the RCE allows this treated water to be recycled back to the same rinsing process, avoiding additional consumption and discharge of this liquid. PMID:18724636

  14. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    PubMed

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance. PMID:25935283

  15. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    PubMed

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation. PMID:25768053

  16. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system. PMID:25982984

  17. Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; He, Ji-Zheng

    2014-07-01

    Soil nitrifiers have been showing an important role in assessing environmental pollution as sensitive biomarkers. In this study, the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in long-term industrial waste effluent (IWE) polluted soils. Three different IWE polluted soils characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) were collected in triplicate along Mahi River basin, Gujarat, Western India. Quantitative numbers of ammonia monooxygenase α-subunit (amoA) genes as well as 16S rRNA genes indicated apparent deleterious effect of IWE on abundance of soil AOA, AOB, bacteria, and archaeal populations. Relatively, AOB was more abundant than AOA in the highly contaminated soil R3, while predominance of AOA was noticed in uncontaminated (R1) and moderately contaminated (R2) soils. Soil potential nitrification rate (PNR) significantly (P < 0.05) decreased in polluted soils R2 and R3. Reduced diversity accompanied by apparent community shifts of both AOB and AOA populations was detected in R2 and R3 soils. AOB were dominated with Nitrosospira-like sequences, whereas AOA were dominated by Thaumarchaeal "group 1.1b (Nitrososphaera clusters)." We suggest that the significant reduction in abundance and diversity AOA and AOB could serve as relevant bioindicators for soil quality monitoring of polluted sites. These results could be further useful for better understanding of AOB and AOA communities in polluted soils. PMID:24554021

  18. Impact of urban and industrial effluents on the coastal marine environment in Oran, Algeria.

    PubMed

    Tayeb, A; Chellali, M R; Hamou, A; Debbah, S

    2015-09-15

    In Algeria most of the urban waste water is dumped without treatment into the Sea. It is tremendously important to assess the consequences of organic matter rich sewage on marine ecosystem. In this study we investigated the effects of industrial and urban sewage on the dissolved oxygen (O2), chemical oxygen demand (COD), biochemical oxygen demands (BOD5), pH, salinity, electrical conductivity (EC), Metal element (Hg, Pb, Cu, Ni, Cr, Cd), petroleum hydrocarbons (HC), oil and grease (OG) in Bay of Oran, Algeria. A ten-year follow-up research showed that the concentrations of oil and grease released into the bionetwork are of higher ecological impact and this needs to be given the desired consideration. Information on bathing water quality revealed that the most beaches in Oran are under the national environmental standard limit. PMID:26164780

  19. Bacterial bioluminescence response to long-term exposure to reverse osmosis treated effluents from dye industries.

    PubMed

    Ravindran, J; Manikandan, B; Shirodkar, P V; Francis, K X; Mani Murali, R; Vethamony, P

    2014-10-01

    The bacterial bioluminescence assay is one of the novel means for toxicity detection. The bioluminescence response of 2 marine bioluminescent bacteria was tested upon their long-term exposure to 9 different reverse osmosis (RO) rejects with varying chemical composition sampled from various dye industries. Bioluminescent bacteria were cultured in the RO reject samples, at different concentrations, and their growth rate and luminescence was measured for 24 h. The RO reject samples caused sublethal effects upon exposure and retarded the growth of bacteria, confirming their toxic nature. Further, continuation of the exposure showed that the initial luminescence, though reduced, recovered and increased beyond the control cultures irrespective of cell density, and finally decreased once again. The present study emphasizes the need of evolving a long-term exposure assay and shows that the method followed in this study is suitable to evaluate the toxicants that exert delayed toxicity, using lower concentrations of toxicants as well as coloured samples. PMID:25302530

  20. Removal of Hexavalent Chromium from Electroplating Industrial Effluents by Using Hydrothermally Treated Fly Ash

    NASA Astrophysics Data System (ADS)

    Ram Mohan Rao, S.; Basava Rao, V. V.

    Chromium in the wastewater coming out from tanneries and electroplating industries is to be treated because of exposure to it may produce effects on the liver, kidney, gastrointestinal and immune systems. On the other hand, fly ash produced from coal fired power plants is having disposal problem and it has to be properly utilized. In this study, the fly ash, subjected to hydrothermal treatment is used as adsorbent to remove Cr (VI) from synthetic samples. The effect of initial stock solution, contact time, adsorbent dose and pH were studied in a batch experiment. Results are compared with powdered activated carbon, granular activated carbon and untreated fly ash. The capacity of adsorption was found to be increased in the case of treated fly ash and it follows the order of powdered activated carbon >granular activated carbon >treated fly ash >untreated fly ash. The adsorption isotherms of Langmuir constants and Freundlich constants for all the adsorbents were determined. The Langmuir adsorption isotherm was recommended.

  1. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent

    PubMed Central

    Ogugbue, Chimezie Jason; Sawidis, Thomas

    2011-01-01

    Economical and bio-friendly approaches are needed to remediate dye-contaminated wastewater from various industries. In this study, a novel bacterial strain capable of decolorizing triarylmethane dyes was isolated from a textile wastewater treatment plant in Greece. The bacterial isolate was identified as Aeromonas hydrophila and was shown to decolorize three triarylmethane dyes tested within 24 h with color removal in the range of 72% to 96%. Decolorization efficiency of the bacterium was a function of operational parameters (aeration, dye concentration, temperature, and pH) and the optimal operational conditions obtained for decolorization of the dyes were: pH 7-8, 35°C and culture agitation. Effective color removal within 24 h was obtained at a maximum dye concentration of 50 mg/L. Dye decolorization was monitored using a scanning UV/visible spectrophotometer which indicated that decolorization was due to the degradation of dyes into non-colored intermediates. Phytotoxicity studies carried out using Triticum aestivum, Hordeum vulgare, and Lens esculenta revealed the triarylmethane dyes exerted toxic effects on plant growth parameters monitored. However, significant reduction in toxicity was obtained with the decolorized dye metabolites thus, indicating the detoxification of the dyes following degradation by Aeromonas hydrophila. PMID:21808740

  2. Surface Alteration of Activated Carbon for Detoxification of Copper (ii) from Industrial Effluents

    NASA Astrophysics Data System (ADS)

    Bhutto, Sadaf; Khan, M. Nasiruddin

    2013-04-01

    The low-cost modified activated carbons were prepared from Thar and Lakhra (Pakistan) coals by activation with sulfuric acid and further modified with citric, tartaric and acetic acids for the selective adsorption of Cu(II) from aqueous solution. The original carbon obtained from activated Thar and Lakhra coals at pH 3.0 displayed significant adsorption capacity for lead and insignificant capacity values (0.880 and 0.830 mg?g-1) for copper. However, after modification with citric, tartaric and acetic acid the copper adsorption capacities enhanced in the range of 5.56-21.85 and 6.05-44.61 times, respectively. The Langmuir, Freundlich and Temkin adsorption isotherms were used to elucidate the observed sorption phenomena. The isotherm equilibrium data was well fitted by the Langmuir and sufficiently fitted to the Freundlich models. The calculated thermodynamic parameters such as change in Gibbs free energy (?G), enthalpy (?H) and entropy (?S) inferred that the investigated adsorption was spontaneous and endothermic in nature. Based on the results, it was concluded that the surface alteration with citric and tartaric acid, Thar and Lakhra activated carbons had significant potential for selective removal of copper(II) from industrial wastewater.

  3. Use of neural network models to predict industrial bioreactor effluent quality.

    PubMed

    Pigram, G M; MacDonald, T R

    2001-01-01

    Engineered bioreactors are useful tools for degrading wastes from crude oil refining facilities. One such bioreactor forms part of the wastewater remediation process used at a refinery in the San Francisco Bay Area. The flow rate and chemical concentrations of the waste vary, and it is necessary to be able to predict the efficiency of the reactor degradation process for this varied input. The complex biological, physical, and chemical processes of the reactor make deterministic modeling unsuitable. Therefore, predictive modeling for this system was performed using a neural network model. A predictive, time-series neural network model requires a complete data set. Often, in the case of a large industrial facility, data are missing. Various techniques can be used to reconstruct missing data, but comparisons of techniques have not been performed for large-scale remediation processes. In this manuscript, four techniques are used for reconstructing missing data to examine which ones provide superior predictive capabilities. It was found that the interpolated and moving average values methods provided the best predictions. The mean and median replacement methods, commonly used in neural network modeling, provided much poorer predictions. Another goal of this study is to determine which water quality parameters are more accurately predicted than others. In this study, pH was the most accurately predicted, while ammonia and total phenolics concentrations were the least accurately predicted. PMID:11352004

  4. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.

    PubMed

    Rai, Prabhat Kumar

    2008-01-01

    The level of heavy metal pollution in Singrauli, an industrial region in India, was assessed and the phytoremediation capacity of a small water fern, Azolla pinnata R.BR (Azollaceae), was observed to purify waters polluted by two heavy metals, i.e., mercury (Hg) and cadmium (Cd) under a microcosm condition. Azolla pinnata is endemic to India and is an abundant and easy-growing free-floating water fern usually found in the rice fields, polluted ponds, and reservoirs of India. The fern was grown in 24 40-L aquariums containing Hg2+ and Cd2+ ions each in concentrations of 0.5, 1.0, and 3.0 mgL(-1) during the course of this study. The study revealed an inhibition of Azolla pinnata growth by 27.0-33.9% with the highest in the presence of Hg (II) ions at 0.5 mgL(-1) in comparison to the control After 13 days of the experiment, metal contents in the solution were decreased up to 70-94%. In the tissues of Azolla pinnata, the concentration of selected heavy metals during investigation was recorded between 310 and 740 mgKg(-1) dry mass, with the highest levelfoundfor Cd (II) treatment at 3.0 mgL(-1) containing a metal solution. PMID:19260224

  5. Impact of pharmaceutical industry treated effluents on the water quality of river Uppanar, South east coast of India: A case study

    NASA Astrophysics Data System (ADS)

    Damodhar, Usha; Vikram Reddy, M.

    2013-06-01

    The water quality of a river that received pharmaceutical industrial effluents is evaluated through the analysis of two indices to describe the level of pollution of the river, in this paper. The indices have been computed from December 2009 to June 2011 at four sampling stations—outlet, outfall, upstream, and downstream in the Uppanar River located at Cuddalore (South east coast of India). The results were compared with the guidelines of Bureau of Indian standards for drinking water specifications (BIS 10500).The study also identifies the pollutants of pharmaceutical industrial effluents before and after treatment that affects the river water quality. Data on spatial and temporal changes in dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, pH, temperature, color, electrical conductance, total dissolved solids, total suspended solids, calcium, magnesium, hardness, sodium, and chloride were collected. The water quality indices used, Bascarón (1979) adapted Water Quality Index (WQIBA) and the Canadian Council of Ministers of the Environment-Water Quality Index 1.0 (CCME WQI), which is a well-accepted and universally applicable computer model for evaluating the water quality index. Both the indices presented similar trends, and were considered adequate for evaluating the impacts of industrial effluent on the river water bodies.

  6. The removal of arsenic-based inhibitors from petrochemical equipment

    SciTech Connect

    Hoy, E.F.

    1988-01-01

    Environmental concerns have forced the discontinuance of arsenic compounds as inhibitors in the petrochemical industry. This environmental concerns has led to their replacement with either less toxic antimony or organic inhibitors. During the change of inhibitor systems, arsenic removal and toxic arsine gas production are major concerns. Arsenic dissolution rates, total scale removal, and arsine gas production are major concerns. Arsenic dissolution rates, total scale removal, and arsine gas production were compared using several commercial solvents. Laboratory and field data confirm that a two-stage solvent involving tetraamonium ethylenediaminetetraacetic acid and hydrogen peroxide provides a safe and effective treatment for the removal of arsenic.

  7. Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan.

    PubMed

    Irshad, Muhammad; Ahmad, Sajjad; Pervez, Arshid; Inoue, Mitsuhiro

    2015-01-01

    The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals/metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe>Zn>Cr>Pb>Ni>Cd>As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo>A. modesta>A. nilotica>R. communis>I. carnea>C. album>E. indica>P. hysterophorus>S. nigrum>C. sativa>D. aegyptium>X. strumarium>C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils. PMID:25254600

  8. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers.

    PubMed

    Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-08-01

    Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28±13.15mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume. PMID:27045623

  9. The impact of an industrial effluent on the water quality, submersed macrophytes and benthic macroinvertebrates in a dammed river of Central Spain.

    PubMed

    Gonzalo, Cristina; Camargo, Julio A

    2013-10-01

    This research was conducted in the middle Duratón River (Central Spain), in the vicinity of Burgomillodo Reservoir. An industrial effluent enters the river 300 m downstream from the dam. Fluoride and turbidity levels significantly increased downstream from the effluent, these levels being to some extent affected by differential water releases from the dam. The community of submersed macrophytes exhibited slighter responses and, accordingly, lower discriminatory power than the community of benthic macroinvertebrates, this indicating that metrics and indices based on macroinvertebrates may be more suitable for the biological monitoring of water pollution and habitat degradation in dammed rivers receiving industrial effluents. However, in relation to fluoride bioaccumulation at the organism level, macrophytes (Fontinalis antipyretica and Potamogeton pectinatus) were as suitable bioindicators of fluoride pollution as macroinvertebrates (Ancylus fluviatilis and Pacifastacus leniusculus). Fluoride bioaccumulation in both hard and soft tissues of these aquatic organisms could be used as suitable bioindicator of fluoride pollution (even lower than 1 mg F(-)L(-1)) in freshwater ecosystems. Echinogammarus calvus exhibited a great sensitivity to the toxicity of fluoride ions, with a 96 h LC₅₀ of 7.5 mg F(-)L(-1) and an estimated safe concentration of 0.56 mg F(-)L(-1). The great capacity of E. calvus to take up and retain fluoride during exposures to fluoride ions would be a major cause of its great sensitivity to fluoride toxicity. It is concluded that the observed fluoride pollution might be partly responsible for the absence of this native amphipod downstream from the industrial effluent. PMID:23830885

  10. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil

    PubMed Central

    Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas

    2012-01-01

    The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25–150 mgl−1) of heavy metals, such as cadmium, chromium, copper, lead and nickel, the B. thuringiensis strain OSM29 showed an obvious metal removing potential. The effect of certain physico-chemical factors such as pH, initial metal concentration, and contact time on biosorption was also assessed. The optimum pH for nickel and chromium removal was 7, while for cadmium, copper and lead, it was 6. The optimal contact time was 30 min. for each metal at 32 ± 2 °C by strain OSM29. The biosorption capacity of the strain OSM29 for the metallic ions was highest for Ni (94%) which was followed by Cu (91.8%), while the lowest sorption by bacterial biomass was recorded for Cd (87%) at 25 mgl−1 initial metal ion concentration. The regression coefficients obtained for heavy metals from the Freundlich and Langmuir models were significant. The surface chemical functional groups of B. thuringiensis biomass identified by Fourier transform infrared (FTIR) were amino, carboxyl, hydroxyl, and carbonyl groups, which may be involved in the biosorption of heavy metals. The biosorption ability of B. thuringiensis OSM29 varied with metals and was pH and metal concentration dependent. The biosorption of each metal was fairly rapid which could be an advantage for large scale treatment of contaminated sites. PMID:24115905

  11. Freshwater microcosms-based assessment of eco-toxicological effects of a chemical effluent from the Pilcam industry in Cameroon.

    PubMed

    Monkiedje, A; Njinel, T; Meyabeme Elono, A L; Zebaze, S H; Kemka, N; Tchounwou, P B; Djomo, J E

    2004-09-01

    We studied the acute toxicity of a raw effluent from a battery manufacturing plant (Pilcam) in Douala, Cameroon, to a freshwater fish (Oreochromis niloticus), and subsequently evaluated its sub-acute effects on water quality and the biota in freshwater microscosms. The acute toxicity test was based on 96 hrs static renewal bioassays that resulted in 96-h LC50 and LC90 values of 16 and 20.7% (v/v), respectively. The sub-acute experiments were conducted by exposing several species of aquatic organisms (plankton, macroinvertebrates and mollusks) to lower effluent concentrations [1.6%, 8.0%, 16% (v/v)] for six weeks, and monitoring their survival rates, as well as the physical and chemical characteristics of water. These concentrations were based on 10%, 50%, and 100% of the 96 h - median lethal concentrations (LC50) of the effluent to the freshwater fish, Oreochromis niloticus. Significant effects on functional parameters, such as, chlorophyll-a and total protein could not be demonstrated. However, the activity of alkaline phosphatase was significantly inhibited at all concentrations tested. Phytoplankton, zooplankton, macro-invertebrate communities and snails were negatively affected by the effluent application at concentrations ? 8% (v/v), with chlorophyta, ciliates, ostracoda, annelida, planaria and snails being the most sensitive groups. The snails were eliminated after 24 h exposure from microcosms treated with effluent at concentration ? 8% (v/v). Effluent exposure also caused significant effects on water quality parameters (DO, pH, hardness, conductivity, color, turbidity, ammonia) in general at concentrations ? 8% (v/v). Temperature and alkalinity were not significantly affected. Overall, data from this research indicate that a dilution of the Pilcam effluent down to 1.6% does not provide protection against chronic toxicity to aquatic organisms. Further studies are needed to determine the no observable adverse effect level (NOAEL), as well as a chronic reference concentration for this effluent. PMID:16696186

  12. Accumulation of Metals in Soils, Groundwater and Edible Parts of Crops Grown Under Long-Term Irrigation with Sewage Mixed Industrial Effluents.

    PubMed

    Yadav, R K; Minhas, P S; Lal, Khajanchi; Chaturvedi, R K; Yadav, Gajender; Verma, T P

    2015-08-01

    Farmers in developing countries irrigate crops using raw urban and industrial effluents with consequent risks from metal contamination. Therefore, soils, crops and groundwater from an effluent irrigation use site were assessed for Cd, Cr, Ni and Pb. Total and available contents of metals in soil followed the order Pb>Ni>Cr>Cd. Crops accumulated more Pb, followed by Cd, Ni and Cr. Pb exceeded the permissible limit with wastewater irrigation only, but Cd exceeded the limit even with combined irrigations of wastewater and groundwater. Among crops, sugar beet assimilated highest Cd (3.14 μg g(-1)) and Pb (6.42 μg g(-1)) concentrations. Legumes accumulated more metals than cereals. Long-term use of wastewater and its conjunctive use with groundwater led to toxic accumulations of Cd, Pb, Ni and Cr. Cd with higher availability and mobility indices and lower toxicity limit, posed the maximum risk of food-chain contamination. PMID:25894348

  13. Cancer incidence and mortality among temporary maintenance workers in a refinery/petrochemical complex in Korea

    PubMed Central

    Koh, Dong-Hee; Chung, Eun-Kyo; Jang, Jae-Kil; Lee, Hye-Eun; Ryu, Hyang-Woo; Yoo, Kye-Mook; Kim, Eun-A; Kim, Kyoo-Sang

    2014-01-01

    Background: Petrochemical plant maintenance workers are exposed to various carcinogens such as benzene and metal fumes. In Korea, maintenance operations in petrochemical plants are typically performed by temporary employees hired as contract workers. Objectives: The purpose of this retrospective study was to evaluate cancer risk in temporary maintenance workers in a refinery/petrochemical complex in Korea. Methods: Subjects consisted of 14 698 male workers registered in a regional petrochemical plant maintenance workers union during 2002–2007. Cancer mortality and incidence were identified by linking with the nationwide death and cancer registries during 2002–2007 and 2002–2005, respectively. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for each cancer. Results: Increased SMR 3.61 (six cases, 95% CI: 1.32–7.87) and SIR 3.18 (five cases, 95% CI: 1.03–7.42) were observed in oral and pharyngeal cancers. Conclusion: Our findings may suggest a potential association between oral and pharyngeal cancers and temporary maintenance jobs in the petrochemical industry. Future studies should include a longer follow-up period and a quantitative exposure assessment. PMID:24999849

  14. Mortality among workers employed in petroleum refining and petrochemical plants

    SciTech Connect

    Thomas, T.L.; Decoufle, P.; Moure-Eraso, R.

    1980-02-01

    The cause-specific mortality experience of 3,105 members of the Oil, Chemical and Atomic Workers International Union was examined to determine if there were unusual patterns of fatal disease that may be indicative of hazardous agents in the work environment. Deaths among active Union members that were reported by locals in Texas between 1947 and 1977 were identified through membership records, and proportionate mortality was analyzed in several broad industrial categories. PMRs for cancers of the liver and biliary passages, pancreas, lung and skin were elevated among refinery and petrochemical plant workers; however risks did not increase with length of membership. Increased relative frequencies of stomach cancer, cancer of the brain, leukemia and multiple myeloma were confined to white males in the same category who had been Union members for 10 or more years. Excess deaths from stomach cancer and brain cancer were found among white male members employed at one specific oil refinery and petrochemical plant. Observed numbers of deaths from cancer of the stomach were greater than expected among whites and nonwhites, and an elevated PMR for lung cancer among nonwhites was found at an additional plant. Findings suggest that workers in this industry may be at increased risk of certain cancers and indicate areas for further investigation.

  15. Method for inhibiting fouling of petrochemical processing equipment

    SciTech Connect

    Broom, H.T.

    1980-10-07

    Method for inhibiting the formation of foulants on petrochemical equipment which involves adding to the petrochemical, during processing, a composition comprising a thiodipropionate and either a dialkyl acid phosphate ester or a dialkyl acid phosphite ester.

  16. Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system.

    PubMed

    Lin, C K; Tsai, T Y; Liu, J C; Chen, M C

    2001-03-01

    The characteristics of degradation/conversion of bio-refractory and the growth of a biofilm are investigated in laboratory-scale pre-ozonation and lifted moving-bed biological activated carbon (BAC) advanced treatment processes treating phenol, benzoic acid, aminobenzoic acid and petrochemical industry wastewater which contains acrylonitrile butadiene styrene (ABS). The optimal reaction time and ozone dosage of pre-ozonation for bio-refractory conversion were determined to be 30 min and 100-200 mg O3/hr, respectively. After pre-ozonation of 30 min treatment, BOD5/COD ratio of influent and effluent increased apparently from 20 to 35%, approximately. However, the change of pH in pre-ozonation was inconspicuous. The optimal flow rate of influent and air were controlled at 1.6 l/h and 120-150 nl/min in lifted moving-bed BAC advanced treatment reactor. A COD removal efficiency of 85-95% and 70-90% may be maintained by using an organic loading of 3.2-6.3 kg COD/m3 day and 0.6-1.6 kg-COD/m3 day with an HRT of 6.0 h as secondary and advanced treatment system, respectively. The time required for the BAC bed is be regenerated by a thermal regeneration is prolonged 4-5 times more than that of GAC system. It can be estimated that the enhanced COD removal capability of the biofilm was not only due to the increase in the COD removal capability of acclimated bacteria, but also due to species succession of bacteria in bio-film ecosystem. PMID:11228967

  17. Directional drilling allows quick exit from petrochemical plant

    SciTech Connect

    Halderman, R.G.

    1994-12-31

    Horizontal directional drilling uses specialty tools and techniques largely taken from the oil field and the mining industry to very accurately install pipelines, utilities and other conduits under obstacles such as rivers, beaches, environmentally sensitive areas, roadways, railroads, airfields, and congested pipeline corridors. In the early part of 1990, a particularly interesting problem confronted the pipeline engineers at Union Carbides 2,500-acre Seadrift plant near Port Lavaca, Texas. Having started up in 1954, the plant today is a major supplier of chemicals and plastics to industry, shipping more than two billion pounds per year. Since very large volumes of cooling water are needed for the operation of a petrochemical complex of this magnitude, years of expansion and modifications have caused the plant to become nearly surrounded by a number of rather large segmented ponds.

  18. Water quality benefit analysis for the proposed effluent guidelines for the coastal subcategory of the oil and gas extraction industry. Final report

    SciTech Connect

    1995-02-01

    The Water Quality Benefit Analysis (WQBA) assesses the effects of current discharges and the projected benefits of proposed effluent guidelines limitations for the coastal subcategory of the oil and gas extraction industry. The WQBA considers two separate geographic areas: the Gulf of Mexico (Louisiana and Texas) and Cook Inlet, Alaska. The WQBA examines potential impacts from current produced water discharges in both geographic areas, and potential impacts from drilling fluids and drill cuttings discharges in Cook Inlet. Three types of benefits are analyzed; quantified and non-monetized benefits, quantified and monetized benefits, and non-quantified and non-monetized benefits.

  19. 40 CFR 419.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Petrochemical... Guidelines, New Source Performance Standards, and Pretreatment Standards for the Petroleum Refining Point... provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must...

  20. FISH COUGH RESPONSE - A METHOD FOR EVALUATING QUALITY OF TREATED COMPLEX EFFLUENTS

    EPA Science Inventory

    Bluegill sunfish (Lepomis macrochirus) showed increases in cough frequency commensurate with effluent concentration when exposed for 24 h to different industrial and municipal effluents. Effluents known to be toxic caused steadily increasing cough rates in the fish as effluent co...

  1. Effects of sewage and industrial effluent on the concentration of Zn, Cu, Pb and Cd in water and sediments along Waterfalls stream and lower Mukuvisi River in Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Nyamangara, J.; Bangira, C.; Taruvinga, T.; Masona, C.; Nyemba, A.; Ndlovu, D.

    The disposal of sewage and industrial effluent is a problem confronting municipalities in most developing countries. A study was conducted to determine the effects of the disposal of sewage and industrial effluent into Mukuvisi River and Waterfalls stream, a tributary of Mukuvisi River in Harare, Zimbabwe. Water and sediment samples were collected over two seasons (October 2003 to November 2004). Sampling sites were located before and after Firle Sewage Treatment Works (FSTW) along Mukuvisi River and before and after Prospect Industrial Area (PIA) along the Waterfalls stream. The water and sediment samples were analysed for pH, and total Zn, Cu, Pb and Cd. The FSTW had no effect on water and sediment pH in Mukuvisi River, which ranged 6.8-7.0 and 5.0-5.6, respectively. The heavy metal concentration upstream of the sewage processing plant was higher than down stream implying that the effluent disposed into the river had lower metal concentrations compared to the river water. Metal concentrations in water and sediment samples along the Waterfalls stream showed an increase just after the PIA, and were more significant in sediment samples. It was concluded that the metal pollution of the two streams was due to industrial pollution rather than sewage effluent disposal. Accumulation of heavy metals in streams is better monitored using sediments where they accumulate rather than water. Continued dumping of industrial effluent into Mukuvisi River and its tributaries will cause further damage to the ecosystem and the food chain.

  2. Potential of biosorbent developed from fruit peel of Trewia nudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds.

    PubMed

    Bhattacharya, Priyankari; Banerjee, Priya; Mallick, Kwonit; Ghosh, Sourja; Majumdar, Swachchha; Mukhopadhyay, Aniruddha; Bandyopadhyay, Sibdas

    2013-01-01

    Chromium (VI) removal efficiency of a biosorbent prepared from fruit peel of Trewia nudiflora plant was studied. The effect of pH, sorbent dose, initial metal concentration and temperature was studied with synthetic Cr⁺⁶ solution in batch mode. About 278 mg/g of Cr⁺⁶ sorption was obtained at 293 K at an optimum pH of 2.0 and biosorbent dose of 0.75 g/L. Equilibrium sorption data with varying initial concentration of Cr⁺⁶ (22-248 mg/L) at three different temperatures (293-313 K) were analyzed by various isotherms. Biosorption kinetics and thermodynamics were described using standard model equations. Encouraging results were obtained by the application of the biosorptive treatment for removal of Cr⁺⁶ from wastewater collected from common effluent treatment plant of tannery industry. In addition, C⁺⁶r desorption behavior was studied on different systems. Biosorbent was characterized by FESEM, FT-IR and XRD, etc. Effect of the biosorptive treatement with respect to the phytotoxicity of Cr⁺⁶ was analyzed by studying the seed germination behavior and enzyme activity of a pulse seed (Vigna radiata L.). Different concentrations of Cr⁺⁶ solution in both synthetic medium, as well as, in tannery effluent was employed and the results were compared with that of biosorbent treated medium. The study showed that due to efficient removal of Cr⁺⁶ from aqueous phase, considerable enhancement of seed germination, as well as, increase in root length was obtained for the biosorbent treated solutions which were close to that of the control values. Significant decrease (P < 0.01) in POD activity was observed in seeds irrigated with biosorbent treated wastewater compared to untreated wastewater. The study showed that the novel biosorbent prepared might be utilized for abatement of heavy metal toxicity, i.e., Cr⁺⁶ from industrial effluent. PMID:23445414

  3. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    PubMed Central

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  4. Determination of pesticide residues and related compounds in water and industrial effluent by solid-phase extraction and gas chromatography coupled to triple quadrupole mass spectrometry.

    PubMed

    Martins, Manoel L; Donato, Filipe F; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2013-09-01

    Pollution of drinking water supplies from industrial waste is a result of several industrial processes and disposal practices, and the establishment of analytical methods for monitoring organic compounds related to environmental and health problems is very important. In this work, a method using solid-phase extraction (SPE) and gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS) was developed and validated for the simultaneous determination of pesticide residues and related compounds in drinking and surface water as well as in industrial effluent. Optimization of the method was achieved by using a central composite design approach on parameters such as the sample pH and SPE eluent composition. A single SPE consisting of the loading on a polymeric sorbent of 100 mL of sample adjusted to pH 3 and elution with methanol/methylene chloride (10:90, v/v) permitted the obtaining of acceptable recoveries in most cases. The concentration factor associated with sensitivity of the chromatographic analysis permitted the achievement of the method limit of detection values between 0.01 and 0.25 μg L(-1). Recovery assays presented mean recoveries between 70 and 120% for most of the compounds with very good precision, despite the different chemical nature of the compounds analyzed. The selectivity of the method, evaluated through the relative intensity of quantification and qualification ions obtained by GC-QqQ-MS/MS, was considered adequate. The developed method was finally applied to the determination of target analytes in real samples. River water and treated industrial effluent samples presented residues of some compounds, but no detectable residues were found in the drinking water samples evaluated. PMID:23995504

  5. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents.

    PubMed

    Karas, Panagiotis; Metsoviti, Aria; Zisis, Vasileios; Ehaliotis, Constantinos; Omirou, Michalis; Papadopoulou, Evangelia S; Menkissoglou-Spiroudi, Urania; Manta, Stella; Komiotis, Dimitri; Karpouzas, Dimitrios G

    2015-10-15

    Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides. In the absence of effective depuration methods, they are discharged in municipal wastewater treatment plants or spread to land. Modified biobeds could be an applicable solution for their treatment. We studied the dissipation of thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ), used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom substrate (SMS) in various volumetric ratios. Pesticide sorption was also determined. TBZ and IMZ showed higher persistence especially in the anaerobically digested sewage sludge (DT50=32.3-257.6d), in contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine (QI) which did not persist and dimethyl ethoxyquinoline (EQNL, minor metabolite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation capacity with TBZ and IMZ DT50s of ca. 28 d compared to DT50s of >50 d in the other substrates. TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current disposal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, whereas SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry via accelerated dissipation even of recalcitrant fungicides. PMID:26042894

  6. The chemical industry, by country

    SciTech Connect

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  7. INEEL Liquid Effluent Inventory

    SciTech Connect

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  8. Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds

    SciTech Connect

    1996-09-01

    The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

  9. Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923.

    PubMed

    Manai, Imène; Miladi, Baligh; El Mselmi, Abdellatif; Smaali, Issam; Ben Hassen, Aida; Hamdi, Moktar; Bouallagui, Hassib

    2016-04-01

    The treatment of an industrial textile effluent (ITE) was investigated by using a mono-culture of a novel fungal strain Chaetomium globosum IMA1. This filamentous fungus was selected based on its capacity for dye removal via the biodegradation mechanism. The respirometric analysis showed that C. globosum IMA1 was resistant to an indigo concentration up to 700 mg equivalent COD/L. The decolourization of the ITE by C. globosum was performed in static and stirred batch systems. The better lignin peroxidase (LiP), laccase and the manganese peroxidase (MnP) productions were 829.9 U/L, 83 U/L and 247.8 U/L, respectively since 3-5 days under a stirred condition. Therefore, the chemical oxygen demand (COD) and colors (OD620) removal yields reached 88.4% and 99.8%, respectively. Fourier transforms infrared spectroscopy (FTIR) analysis of the treated effluent showed that the decolourization was due to the degradation and the transformation of dye molecules. However, spectrophotometric examination showed that the complete dye removal was through fungal adsorption (8%), followed by degradation (92%). PMID:26775156

  10. Degradation and monitoring of acetamiprid, thiabendazole and their transformation products in an agro-food industry effluent during solar photo-Fenton treatment in a raceway pond reactor.

    PubMed

    Carra, Irene; Sirtori, Carla; Ponce-Robles, Laura; Sánchez Pérez, José Antonio; Malato, Sixto; Agüera, Ana

    2015-07-01

    In this study, pesticides acetamiprid and thiabendazole and their transformation products (TPs), seven from each pesticide, were successfully monitored during solar photo-Fenton treatment in a real secondary effluent from an agro-food industry spiked with 100μgL(-1) of each pesticide. To this end, a highly sensitive procedure was developed, based on liquid chromatography (LC) coupled to hybrid quadrupole-linear ion trap mass spectrometry (QqLIT-MS). In addition, finding low-cost and operational technology for the application of AOPs would then facilitate their use on a commercial level. Simple and extensive photoreactors such as raceway pond reactors (RPRs) are therefore proposed as an alternative for the application of solar photo-Fenton. Results showed that high degradation could be achieved in a complex water matrix (>99% TBZ and 91% ACTM in 240min) using a 120-L RPR pilot plant as novel technology. The analyses indicated that after the treatment only three TPs from ACTM were still present in the effluent, while the others had been removed. The study showed that the goal of either just removing the parent compounds, or going one step further and removing all the TPs, can significantly change the treatment time, which would affect process costs. PMID:25841181

  11. Determination of thimerosal in pharmaceutical industry effluents and river waters by HPLC coupled to atomic fluorescence spectrometry through post-column UV-assisted vapor generation.

    PubMed

    Acosta, Gimena; Spisso, Adrián; Fernández, Liliana P; Martinez, Luis D; Pacheco, Pablo H; Gil, Raúl A

    2015-03-15

    A high performance liquid chromatography coupled with atomic fluorescence spectrometry method for the determination of thimerosal (sodium ethylmercury thiosalicylate, C9H9HgNaO2S), ethylmercury, and inorganic mercury is proposed. Mercury vapor is generated by the post-column reduction of mercury species in formic acid media using UV-radiation. Thimerosal is quantitatively converted to Hg(II) followed by the reduction of Hg(II) to Hg(0). This method is applied to the determination of thimerosal (THM), ethylmercury (EtHg) and inorganic Hg in samples of a pharmaceutical industry effluent, and in waters of the San Luis River situated in the west side of San Luis city (Middle West, Argentine) where the effluents are dumped. The limit of detections, calculated on the basis of the 3σ criterion, where 0.09, 0.09 and 0.07 μg L(-1) for THM, EtHg(II) and for Hg(II), respectively. Linearity was attained from levels close to the detection limit up to at least 100 μg L(-1). PMID:25280990

  12. Hepatic alterations and induction of micronuclei in rainbow trout (Oncorhynchus mykiss) exposed to a textile industry effluent.

    PubMed

    Marlasca, M J; Sanpera, C; Riva, M C; Sala, R; Crespo, S

    1998-07-01

    Rainbow trout, Oncorhynchus mykiss, were exposed to a sublethal dose of a wool shrinkproofing effluent for 15, 30, 45 and 60 days. Liver and blood samples were taken after the exposure time together with samples of control handled fish. A light and electron microscope study was carried out to evaluate the histopathological lesions induced in the liver of treated fish. The genotoxic potential of the effluent was assessed by piscine micronucleus test. Vacuolation of liver bile preductular cells was observed in all exposed fish; abnormal lipid accumulation and basophilic foci were seen in the liver of one 30-days- and 45-days-exposed fish, respectively. These specific alterations could be related to a pre-carcinogenic process. On the contrary, other lesions also described in all treated fish such as dilatation, vesiculation and degranulation of the rough endoplasmic reticulum, altered mitochondria, increase in myelin bodies and lysosomes and presence of phagosomes in wandering macrophages might be considered as non-specific alterations, similar to those described in fish exposed to different pollutants. Frequencies of micronucleated peripheral erythrocytes showed a significant increase following 30-days exposure. PMID:9690127

  13. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies.

    PubMed

    Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S

    2015-01-01

    Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost. PMID:25560264

  14. Recover refinery aromatics for petrochemical feedstocks: Efficiently operating BTX recovery and purification units to maximize chemical values from large production volumes is discussed

    SciTech Connect

    Gentry, J.C.

    1995-09-01

    The aromatic petrochemicals benzene, toluene and xylenes (BTX) have received much attention recently because of their perceived health risks by certain environmental groups. However, aromatics are integral feedstocks for much of the petrochemical industry. The large production volumes and chemical value warrant study of the aromatics recovery and purification units in order to operate efficiently. Efficiently operating BTX recovery and purification units to maximize chemical values from large production volumes is discussed.

  15. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Prasanna, Apoorva; Manjunath, Sirisha P; Karanth, Soujanya S; Nazre, Ambika

    2016-02-01

    Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. is one of the edible mushrooms currently gaining attention as environmental restorer. The present study explores the potential of P. ostreatus (Jacq.: Fr.) P. Kumm. in degradation of textile dyes and effluents. The mushroom cultivation was carried out using paddy bed as substrate. The fully grown mushroom fruit bodies were used as a bioremediation agent against two industrially important azo dyes such as nylon blue and cotton yellow and few effluents collected from various textile industries in Karnataka, India. The ideal growth parameters such as temperature, pH, and dye concentrations for effective degradation were carried out. One of the main enzymes, laccase, responsible for biodegradation, was partially characterized. The degradation was found to be ideal at pH 3.0 and temperature at 26-28 °C. This study demonstrated a percentage degradation of 78.10, 90.81, 82.5, and 64.88 for dye samples such as nylon blue (50 ppm), cotton yellow (350 ppm), KSIC effluents, and Ramanagar effluents at 28 °C within 15th days respectively in comparison with other temperature conditions. Similarly, a percentage degradation of 35.99, 33.33, 76.13 and 25.8 for nylon blue (50 ppm), cotton yellow (350 ppm), Karnataka Silk Industries Corporation (KSIC) effluents and Ramnagar effluents were observed at pH 3.0 within 15 days, respectively (p < 0.05). Thus, the current study concluded that the utilization of P. ostreatus (Jacq.: Fr.) P. Kumm. at ideal environmental conditions is a cost-effective and eco-friendly approach for the degradation of various azo dyes and textile effluents which are harmful to the ecosystem. PMID:26818015

  16. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-05-15

    A hydrolysis acidification (HA)-anoxic-oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500m(3)h(-1)) was operated with the same parameters. The results showed that the BOD5/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4mgL(-1) for bench scale reactor and 60.9mgL(-1) for PCWWTP when the influent COD was about 480mgL(-1) on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC-MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24mgL(-1). There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment. PMID:26894292

  17. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China.

    PubMed

    Mo, Ziwei; Shao, Min; Lu, Sihua; Qu, Hang; Zhou, Mengyi; Sun, Jin; Gou, Bin

    2015-11-15

    Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities were investigated in the Yangtze River Delta, China. Source samples were collected from various process units in the petrochemical, basic chemical, and chlorinated chemical plants, and were measured using gas chromatography-mass spectrometry/flame ionization detection. The results showed that propane (19.9%), propene (11.7%), ethane (9.5%) and i-butane (9.2%) were the most abundant species in the petrochemical plant, with propene at much higher levels than in petrochemical profiles measured in other regions. Styrene (15.3%), toluene (10.3%) and 1,3-butadiene (7.5%) were the major species in the basic chemical industry, while halocarbons, especially dichloromethane (15.2%) and chloromethane (7.5%), were substantial in the chlorinated chemical plant. Composite profiles were calculated using a weight-average approach based on the VOC emission strength of various process units. Emission profiles for an entire petrochemical-related industry were found to be process-oriented and should be established considering the differences in VOC emissions from various manufacturing facilities. The VOC source reactivity and carcinogenic risk potential of each process unit were also calculated in this study, suggesting that process operations mainly producing alkenes should be targeted for possible controls with respect to reducing the ozone formation potential, while process units emitting 1,3-butadiene should be under priority control in terms of toxicity. This provides a basis for further measurements of process-specific VOC emissions from the entire petrochemical industry. Meanwhile, more representative samples should be collected to reduce the large uncertainties. PMID:26179779

  18. Petrochemical processes '95: A special report

    SciTech Connect

    Not Available

    1995-03-01

    This data compilation describes application, synthesis process, yields, economics, commercial plants, and licensor for the following chemicals: alkylbenzene, methyl amines, ammonia, benzene, bisphenol-A, BTX aromatics, butadiene, butanediol, butene-1, butylene, butyraldehyde, caprolactam, cumene, cyclohexane, dimethyl terephthalate, ethanolamines, ethers, ethylbenzene, ethylene, ethylene glycols, ethylene oxide, formaldehyde, isobutane, isobutylene, maleic anhydride, methanol, olefins, paraxylene, phenol, polycaproamide, polyethylenes, polypropylene, polystyrene, propylene, PVC, styrene, urea, vinyl chloride, and xylene isomers. Also included is the licensor index, an inclusive listing of all petrochemical licensors and their technologies.

  19. Hazardous effects of effluent from the chrome plating industry: 70 kDa heat shock protein expression as a marker of cellular damage in transgenic Drosophila melanogaster (hsp70-lacZ).

    PubMed Central

    Mukhopadhyay, Indranil; Saxena, Daya Krishna; Chowdhuri, Debapratim Kar

    2003-01-01

    Hazardous effects of an effluent from the chrome plating industry were examined by exposing transgenic Drosophila melanogaster (hsp70-lacZ) to various concentrations (0.05, 0.1, 1.0, 10.0, and 100.0 micro L/mL) of the effluent through diet. The emergence pattern of adult flies was affected, along with impaired reproductive performance at the higher dietary concentrations of the effluent. Interestingly, the effect of the effluent was more pronounced in male than in female flies. The effect of the effluent on development of adult flies was concurrent with the expression pattern of the heat shock protein 70 gene (hsp70), both in larval tissues and in the reproductive organs of adult flies. We observed a dose- and time-dependent expression of hsp70 in third instar larvae exposed for different time intervals. Absence of hsp70 expression in larvae exposed to 0.1 micro L/mL of the effluent indicated that this is the highest nontoxic concentration for Drosophila. The stress gene assay in the reproductive organs of adult flies revealed hsp70 expression in the testis of male flies only. However, trypan blue dye exclusion tests in these tissues indicate tissue damage in the male accessory gland of adult flies, which was further confirmed by ultrastructural observations. In the present study we demonstrate the utility of transgenic Drosophila as an alternative animal model for evaluating hazardous effects of the effluent from the chrome plating industry and further reveal the cytoprotective role of hsp70 and its expression as an early marker in environmental risk assessment. PMID:14644668

  20. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... topping, cracking, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations. The provisions of this subpart shall not...

  1. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    PubMed

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method. PMID:24640914

  2. Coagulation pretreatment of highly concentrated acrylonitrile wastewater from petrochemical plants.

    PubMed

    Zheng, Dongju; Qin, Lin; Wang, Tao; Ren, Xiaojing; Zhang, Zhongguo; Li, Jiding

    2014-01-01

    Acrylonitrile (AN) wastewater is a heavily polluted and a likely hazardous liquid that is generated during the production of AN. Several chemical methods for the pretreatment of AN wastewater are available in laboratory scale. However, the harsh reaction conditions and high operational cost make these methods undesirable. Until now, four-effect evaporation is the only pretreatment method used for AN wastewater in industry despite its huge energy consumption and high cost. It is difficult to find an energy-saving pretreatment technique from the perspective of industrial application. In this study, a safe and low-cost coagulation technique was developed for the pretreatment of AN wastewater. Three types of inorganic coagulant and three types of polymer coagulant were investigated for the coagulation treatment of highly concentrated AN wastewater from petrochemical plants. The effects of coagulant type, dosage, and coagulation conditions on the pretreatment efficiency of AN wastewater were investigated. The results show that a combination of inorganic and polymer coagulants is effective for the pretreatment of AN wastewater. PMID:25051483

  3. Dangerous and cancer-causing properties of products and chemicals in the oil-refining and petrochemical industry--Part XXII: Health hazards from exposure to gasoline containing methyl tertiary butyl ether: study of New Jersey residents.

    PubMed

    Mehlman, M A

    1996-01-01

    Methyl tertiary butyl ether has caused the following cancers in rats and mice: kidney, testicular, liver, lymphomas, and leukemias. Thus, in the absence of adequate data on humans, it is biologically plausible and prudent to regard methyl tertiary butyl ether-for which there is sufficient evidence of carcinogenicity in experimental animals-as a probable human carcinogen. This means that some humans are at extreme risk of contracting cancers resulting from their exposure to oxygenated gasoline containing methyl tertiary butyl ether. Immediately after the introduction of methyl tertiary butyl ether into gasoline, many consumers of this product in New Jersey, New York, Alaska, Maine, Pennsylvania, Colorado, Arizona, Montana, Massachusetts, California, and other areas, experienced a variety of neurotoxic, allergic, and respiratory illnesses. These illnesses were similar to those suffered by refinery workers from the Oil, Chemical, and Atomic Workers Union who mixed methyl tertiary butyl ether with gasoline. Additionally, these illnesses occurred following exposure to extremely low levels of methyl tertiary butyl ether in gasoline, particularly when compared to the adverse health effects that occurred only after exposure to very high levels of conventional gasoline. Thus, gasoline containing methyl tertiary butyl ether exhibited substantially more toxicity in humans than gasoline without this additive. A number of oil industry-sponsored or influenced reports alleged that these illnesses were either unrelated to exposure to reformulated gasoline or were characteristic of some yet-to-be-identified communicable disease. These studies further alleged that the widespread concern was not about illness, but was merely a reaction to the odor and the five cent increase in the price of gasoline. To clarify the significance of this issue, it is important to note that consumers have been using gasoline for many decades, with complaints only occurring following exposure to high levels at 100s ppm or higher. After the introduction of methyl tertiary butyl ether gasoline there were thousands of human health complaints. The sudden increase in widespread illnesses from which many thousands of individuals throughout the United States began to suffer immediately following the introduction of methyl tertiary butyl ether into gasoline provides strong and unquestionable evidence that gasoline containing methyl tertiary butyl ether is associated with human illnesses. When considering the severity of the illnesses in humans, it is prudent that this highly dangerous chemical be promptly removed from gasoline and comprehensive studies be conducted to assess the long-term effects that human may experience in the future from past and current exposure. PMID:8989842

  4. QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.

    SciTech Connect

    SENUM,G.I.; DIETZ,R.N.

    2004-06-30

    Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissions are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a large variety of experiments. PFTs are inert, nontoxic, noncombustible and nonreactive. Up to seven unique PFTs can be simultaneously released, sampled and analyzed and the technology is well suited for determining emission fluxes from large petrochemical facilities. The PFT experiment described here was designed to quantitate alkene emissions from a single petrochemical facility, but such experiments could be applied to other industrial sources or groups of sources in the Houston area.

  5. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    PubMed

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4°C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. PMID:26723112

  6. Impact on surface ozone by fugitive emissons of ethylene and propylene from a petrochemical plant cluster

    NASA Astrophysics Data System (ADS)

    Hsieh, H.; Chang, J.; Chen, S.; Wang, J.

    2010-12-01

    Ethylene and propylene are two most produced organic compounds in the world which are mainly produced from the cracking process in the oil refinery industry. In a large petrochemical plant cluster a large variety of petrochemical products are derived from these two compounds used as starting reagents. Fugitive emissions of these two compounds from storage tanks and pipelines are often inevitable, which could pose a great burden on the formation of surface ozone and thus deteriorate air quality if leakage is significant. In this study, a photochemical assessment monitoring station (PAMS) was deployed 7 kilometers south of a large petrochemical plant cluster. Concentration spikes of ethylene and propylene were frequently observed by the on-line gas chromatographic system whenever northerly prevailed. The impact of ethylene and propylene’s leakage on ozone formation was simulated by an air quality model (i.e., PAMS-AQM), of which emission inventory of non-methane hydrocarbons (NMHCs) were speciated and calibrated by the PAMS measurements. Contribution to ozone formation by these two compounds in the downwind areas was able to be assessed by turning off the emissions of ethylene and propylene from this plant cluster while maintaining those of other precursors in the model. Scenarios of precursor (NMHC and NOx) reduction or increase were also simulated from the perspectives of ozone control strategies.

  7. Polydimethylsiloxane composites containing 1,2-naphtoquinone 4-sulphonate as unique dispositive for estimation of casein in effluents from dairy industries.

    PubMed

    Muñoz-Ortuño, M; Argente-García, A; Moliner-Martínez, Y; Molins-Legua, C; Campíns-Falcó, P

    2015-05-11

    A unique dispositive to determine casein which is the most abundant protein in dairy sewages has been proposed. In this sensing technology, the derivatization reagent 1,2-naphtoquininone 4-sulphonate (NQS) is embedded into a polydimethylsiloxane-tetraethylortosilicate-SiO2 nanoparticles composite (PDMS-TEOS-SiO2NPs). When the composite is immersed into the samples, casein is extracted from the solution and derivatized inside the PDMS matrix after 10 min at 100°C. The sensing support changes its color from yellow to orange depending on the casein concentration. Quantitative analysis can be carried out by measuring the absorbance with a reflection probe or by image-processing tool (GIMP). This sensor provides good sensitivity and precision (RSD% <12%). The method validation has been done by applying the biocinchoninic acid method (BCA). Moreover, semiquatitative analysis of casein can be performed by visual observation. Taking into account the advantages of small size, rapidity, simplicity, good stability and high compatibility in aqueous solution, this sensor is expected to have potential practical applications for in-situ determination of casein. Finally the method has been applied to analyze effluents from dairy industries. PMID:25911427

  8. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor.

    PubMed

    Rodríguez, Francisca A; Mateo, María N; Aceves, Juan M; Rivero, Eligio P; González, Ignacio

    2013-01-01

    This work presents a study on degradation of indigo carmine dye in a filter-press type FM01-LC reactor using Sb2O5-doped Ti/IrO2-SnO2 dimensionally stable anode (DSA) electrodes. Micro- and macroelectrolysis studies were carried out using solutions of 0.8 mM indigo carmine in 0.05 M NaCl, which resemble blue denim laundry industrial wastewater. Microelectrolysis results show the behaviour of DSA electrodes in comparison with the behaviour of boron-doped diamond (BDD) electrodes. In general, dye degradation reactions are carried out indirectly through active chlorine generated on DSA, whereas in the case of BDD electrodes more oxidizing species are formed, mainly OH radicals, on the electrode surface. The well-characterized geometry, flow pattern and mass transport of the FM01-LC reactor used in macroelectrolysis experiments allowed the evaluation of the effect of hydrodynamic conditions on the chlorine-mediated degradation rate. Four values of Reynolds number (Re) (93, 371, 464 and 557) at four current densities (50, 100, 150 and 200 A/m2) were tested. The results show that the degradation rate is independent of Re at low current density (50 A/m2) but becomes dependent on the Re at high current density (200 A/m2). This behaviour shows the central role of mass transport and the reactor parameters and design. The low energy consumption (2.02 and 9.04 kWh/m3 for complete discolouration and chemical oxygen demand elimination at 50 A/m2, respectively) and the low cost of DSA electrodes compared to BDD make DSA electrodes promising for practical application in treating industrial textile effluents. In the present study, chlorinated organic compounds were not detected. PMID:23837306

  9. Toxicity Identification Evaluation (Phase I) of water and sediment samples from a tropical reservoir contaminated with industrial and domestic effluents.

    PubMed

    Matos, Mariana de F; Botta, Clarice Maria Rispoli; Fonseca, Ana Lúcia

    2014-11-01

    The Funil Reservoir (Rio de Janeiro State, Brazil) is an environment degraded by constant discharge of nutrients and pollution coming from the most industrialized region of the country. As a consequence of eutrophication, there are continuous cyanobacteria blooms, which cause acute and chronic toxicity to zooplankton. In this context, Phase I of Toxicity Identification Evaluation (TIE) was performed on Daphnia similis using water and interstitial water from the reservoir, with the aim of identifying classes of compounds responsible for toxicity. The results indicated that water toxicity was due to cyanobacteria resulting from blooms in the reservoir and surfactants. Metals, especially copper, contributed to sediment toxicity. This research is the first attempt to describe the nature of toxicity in this reservoir using this method. PMID:25103213

  10. Developing a safety and health training model for petrochemical workers.

    PubMed

    Hong, Yu-Jue; Lin, Ya-Hsuan; Pai, Hsiu-Hua; Lai, Yung-Chang; Lee, I-Nong

    2004-02-01

    The production processes of the petrochemical industry expose workers to high potential hazards. Our previous study showed that hazard recognition was closely related to worker safety and health training activities. The purpose of this study was to establish and validate a safety and health training model. It is expected that the training model will help workers to recognize hazards, thereby lowering their operating risks. The training model, which included a complete training course and follow-up scoring using a questionnaire, was applied to three groups of subjects for comparison. Group A had joined our study previously and took the training course again at this time. Group B had also joined our previous study but did not take this training course. Group C was new to our study and took this training course for the first time. Groups A and C (who took the training course) had higher cognition and attitude scores than group B (who did not take the training course). The training course was a significant factor that positively influenced both cognition and attitude scores among managers and workers. The training course was more significant for managers while the duration of education was more significant for workers. PMID:15481552

  11. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat-Fulia region of West Bengal, India.

    PubMed

    Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata

    2015-11-01

    Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat-Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g(-1) during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g(-1)). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g(-1)) during monsoon followed by gill of Mystus bleekeri (190.0 μg g(-1)) and gut of G. giuris (123.7 μg g(-1)) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65-99 μg g(-1)) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g(-1)) in different tissues except in gill (64.4 μg g(-1)). PMID:26644938

  12. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat–Fulia region of West Bengal, India

    PubMed Central

    Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata

    2014-01-01

    Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat–Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g−1 during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g−1). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g−1) during monsoon followed by gill of Mystus bleekeri (190.0 μg g−1) and gut of G. giuris (123.7 μg g−1) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65–99 μg g−1) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g−1) in different tissues except in gill (64.4 μg g−1). PMID:26644938

  13. DEVELOPMENT OF TREATMENT AND CONTROL TECHNOLOGY FOR REFRACTORY PETROCHEMICAL WASTES

    EPA Science Inventory

    This summary document presents the results of research and development work pertaining to the treatment of biorefractory organic pollutants emanating from petrochemical processing plants. Specifically, it covers application of the unit operations of (1) carbon adsorption, (2) ste...

  14. Uranium behaviour in an estuary polluted by mining and industrial effluents: the Ría of Huelva (SW of Spain).

    PubMed

    Hierro, A; Martín, J E; Olías, M; Vaca, F; Bolivar, J P

    2013-10-15

    This paper describes a comprehensive study of the behaviour of U in the Ría of Huelva estuary, formed by the Tinto and Odiel rivers. This ecosystem is conditioned by two hydrochemical facts: one connected with the acid mining drainage (AMD) generated in the first section of the river basins, and another one related to the fertilizer industry located at the estuary. AMD gives a singular character to these rivers; low pH and high redox potential that keep high amounts of toxic elements and radionuclides in dissolution. Most of the data for dissolved U in estuaries indicate conservative mixing, but there are examples of non-conservative behaviour attributed to oxidation/reduction processes or solubility variations. In the Ría of Huelva estuary the U shows a non-conservative behaviour due to solubility changes produced by variations in the pH. A complete removal of riverine dissolved U is observed in a pH range of 4-6. At higher pH values, U release from suspended matter, and probably also from sediments into the dissolved phase is found. PMID:23973258

  15. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes.

    PubMed

    Singha, Biswajit; Das, Sudip Kumar

    2013-07-01

    The potentiality of low cost natural/agricultural waste biomasses for the removal of Cu(II) ion from aqueous solution has been investigated in batch experiments. The effect of various physico-chemical parameters such as initial pH, initial Cu(II) concentration, adsorbent dosage, contact time and temperature has been studied. The optimum pH for adsorption was found to be 6 for all adsorbents used. Kinetics data were best described by the pseudo-2nd-order model. The experimental data were fitted well with Freundlich and Halsey isotherm models. The diffusion coefficient and sorption energy indicated that the adsorption process was chemical in nature. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated, and it was observed that the adsorption process was spontaneous and endothermic. The mean sorption energy was calculated using Dubinin-Radushkevich isotherm model and it confirmed that the sorption process was chemical in nature. Different active functional groups were identified by FTIR studies which were responsible for Cu(II) ion adsorption process. Application study using electroplating industrial waste water and regeneration experiment of the adsorbent were also investigated. Design procedure for the batch process was also reported. PMID:23466548

  16. Petrochemical wastewater odor treatment by biofiltration.

    PubMed

    Xie, B; Liang, S B; Tang, Y; Mi, W X; Xu, Y

    2009-04-01

    The treatment of odorous pollutants by microorganisms on packed waste straw and cortex was investigated at the wastewater treatment plant of the Shanghai petrochemical factory. The removal efficiency of H(2)S, NH(3) and VOCs (volatile organic compounds) reached 98%, 91% and 90%, respectively after operation for one month at an empty bed retention time (EBRT) of 120s. The heterotrophic bacteria were found to be the dominant microorganism in the biofilter, while fungi and actinomycetes were also present. The bacteria were mostly identified as the members of the genus Bacillus (62.5% of cultured bacteria). The single strand conformation polymorphism (SSCP) results revealed that the genus Bacillus and Pseudomonas were the predominant bacteria. The microbial diversity gradually increased as the treatment progressed, which indicated that the microbial community in the biofilter became more stable upon pollutant removal. The scanning electron microscopy (SEM) was performed to evaluate the microorganism growth on the media. It was found that the waste straw and cortex were suitable for microorganism attachment and growth, and may have potential application in odor treatment. PMID:19056260

  17. Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan

    SciTech Connect

    Bi Jen Pan; Yu Jue Hong; Gwo Chin Chang; Frigyes F. Cinkotai; Ying Chin Ko; Ming Tsan Wang

    1994-12-31

    We have collected data on the cancer deaths of children and adolescents 0-19 yr old living in a residential area near 3 large petroleum and petrochemical complexes in and near Kaohsiung city (petrochemical industrial districts, PIDs) in the period of 1971-1990 and compared these with the cancer deaths of children and adolescents 0-19 yr old among the entire population of Taiwan (national reference) and among the residents of 26 administrative districts, comprising all of Kaohsiung city and Kaohsiung county (local reference), except for 8 sparsely populated, rural districts. Having scrutinized all cancer death certificates, we have identified various statistically significant excess deaths, as compared with the national and local reference, due to cancers at all sites. Cancer of the bone, brain, and bladder in boys and girls 0-9 yr and 10-19 yr of age in the 1981-1990 decade that followed the establishment of petrochemical production in the PIDs was studied. However, excess cancer deaths seemed to have clustered in the 10-19 yr age group, who had been potentially exposed to the petrochemical pollutants for the longest period of time from the youngest age. Almost all bone, brain, and bladder cancer deaths registered were within 3 km of the 3 complexes. Bone and brain cancers in particular occurred in girls in the PIDs more frequently than in boys, even though these are believed to occur more in males than females elsewhere. 32 refs., 1 fig., 6 tabs.

  18. Pulp and paper mill effluents: Toxicity to humans. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the hazards of toxic pulping and papermaking effluents to plant workers and the populace surrounding the plant. Biomonitoring studies, bioassay performance and reliability, cost factors of reducing toxicity, and effects of reducing toxicity on biological treatment of wastes are discussed. Evaluation of toxicity and mutagenicity of effluents within the plants compared with those discharged to the outside environment is included. Toxicity of pulping effluents to fish and water vegetation is covered in another bibliography. (Contains a minimum of 131 citations and includes a subject term index and title list.)

  19. A nano-structured material for reliable speciation of chromium and manganese in drinking waters, surface waters and industrial wastewater effluents.

    PubMed

    Abdolmohammad-Zadeh, H; Sadeghi, G H

    2012-05-30

    A simple solid phase extraction system based on the applying the nickel-aluminum layered double hydroxide (Ni-Al LDH) as a nano-sorbent was developed for the speciation analysis of chromium and manganese by flame atomic absorption spectrometry (FAAS). The method is based on the fact that Cr(VI) and Mn(VII) oxyanions could be adsorbed on the Ni-Al(NO(3)(-)) LDH and/or exchanged with LDH interlayer NO(3)(-) ions at pH 6.0, whereas Cr(III) and Mn(II) cations pass through the LDH-packed column without retention. The determinations of total Cr and Mn, and hence indirectly Cr(III) and Mn(II), involve the pre-oxidations of Cr(III) and Mn(II) to Cr(VI) and Mn(VII) with H(2)O(2) and acidic solution of KIO(4), respectively. Several important factors affecting the retention efficiency were investigated and optimized. In the optimum experimental conditions, the limits of detection (3S(b)/m) for Cr(VI) and Mn(VII) were 0.51 and 0.47 ng mL(-1), and the relative standard deviations were 2.5 and 3.2% (C=30.0 ng mL(-1), n=6), respectively. The presented method was validated by the analysis of a certified reference material, and applied to the speciation of Cr and Mn in drinking waters, surface waters and industrial wastewater effluents. PMID:22608436

  20. Development of highly sensitive extractive spectrophotometric determination of nickel(II) in medicinal leaves, soil, industrial effluents and standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone.

    PubMed

    Sarma, Loka Subramanyam; Kumar, Jyothi Rajesh; Reddy, Koduru Janardhan; Thriveni, Thenepalli; Reddy, Ammireddy Varada

    2008-01-01

    Pyridoxal-4-phenyl-3-thiosemicarbazone (PPT) is proposed as a new sensitive reagent for the extractive spectrophotometric determination of nickel(II). PPT reacts with nickel(II) in the pH range 4.0-6.0 to form a reddish brown colored complex, which was well-extracted into n-butanol. The absorbance value of the Ni(II)-PPT complex was measured at different time intervals at 430nm, to ascertain the stability of the complex. The system obeyed Beer's law up to 0.5-5.0microgmL(-1) of nickel(II), with an excellent linearity in terms of the correlation coefficient value of 0.99. The molar absorptivity and Sandell's sensitivity of the extracted species are 1.92 x 10(4)Lmol(-1)cm(-1) and 0.003057microgcm(-2) respectively at 430nm. The detection limit of the method is 0.069microgmL(-1). To assess precision and accuracy of the developed method, determinations were carried out at different concentrations. The relative standard deviation of all measurements does not exceed 2.62%. The developed method has been satisfactorily applied for the determination of nickel(II), when present alone or in the presence of diverse ions, which are usually associated with nickel(II) in medicinal leaves, soil and industrial effluent samples. Various standard and certified reference materials (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have also been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are compared with those obtained from an atomic absorption spectrometer (AAS). PMID:19013356

  1. iWitness pollution map: crowdsourcing petrochemical accident research.

    PubMed

    Bera, Risha; Hrybyk, Anna

    2013-01-01

    Community members living near any one of Louisiana's 160 chemical plants or refineries have always said that accidents occurring in these petrochemical facilities significantly impact their health and safety. This article reviews the iWitness Pollution Map tool and Rapid Response Team (RRT) approach led by the Louisiana Bucket Brigade, an environmental nonprofit group, and their effectiveness in documenting these health and safety impacts during petrochemical accidents. Analysis of a January 2013 RRT deployment in Chalmette, LA, showed increased documentation of current petrochemical accidents and suggested increased preparedness to report future accidents. The RRT model encourages government response and enforcement agencies to integrate with organized community groups to fully document the impacts during ongoing accidents, lead a more timely response to the accident, and prevent future accidents from occurring. PMID:24135064

  2. Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor.

    PubMed

    Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura

    2016-04-01

    Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ. PMID:26419746

  3. Synergize fuel and petrochemical processing plans with catalytic reforming

    SciTech Connect

    1997-03-01

    Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

  4. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. PMID:24881546

  5. Corrosion inhibitors for petroleum refinery and petrochemical operations

    SciTech Connect

    Gutzeit, J.; Johnson, J.M. )

    1989-01-01

    Organic corrosion inhibitors have been used to control process-side corrosion in petroleum refineries and petrochemical plants for many years. This review describes the type of corrosion problems which have lent themselves to inhibitor application, the probable mechanism of protection, and certain process limitations that should be considered. Also covered are various test methods for the evaluations of organic corrosion inhibitors.

  6. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria.

    PubMed

    Shehzadi, Maryam; Afzal, Muhammad; Khan, Muhammad Umar; Islam, Ejazul; Mobin, Amina; Anwar, Samina; Khan, Qaiser Mahmood

    2014-07-01

    Textile effluent is one of the main contributors of water pollution and it adversely affects fauna and flora. Constructed wetland is a promising approach to remediate the industrial effluent. The detoxification of industrial effluent in a constructed wetland system may be enhanced by applying beneficial bacteria that are able to degrade contaminants present in industrial effluent. The aim of this study was to evaluate the influence of inoculation of textile effluent-degrading endophytic bacteria on the detoxification of textile effluent in a vertical flow constructed wetland reactor. A wetland plant, Typha domingensis, was vegetated in reactor and inoculated with two endophytic bacterial strains, Microbacterium arborescens TYSI04 and Bacillus pumilus PIRI30. These strains possessed textile effluent-degrading and plant growth-promoting activities. Results indicated that bacterial inoculation improved plant growth, textile effluent degradation and mutagenicity reduction and were correlated with the population of textile effluent-degrading bacteria in the rhizosphere and endosphere of T. domingensis. Bacterial inoculation enhanced textile effluent-degrading bacterial population in rhizosphere, root and shoot of T. domingensis. Significant reductions in COD (79%), BOD (77%) TDS (59%) and TSS (27%) were observed by the combined use of plants and bacteria within 72 h. The resultant effluent meets the wastewater discharge standards of Pakistan and can be discharged into the environment without any risks. This study revealed that the combined use of plant and endophytic bacteria is one of the approaches to enhance textile effluent degradation in a constructed wetland system. PMID:24755300

  7. CO{sub 2} Reuse in Petrochemical Facilities

    SciTech Connect

    Jason Trembly; Brian Turk; Maruthi Pavani; Jon McCarty; Chris Boggs; Aqil Jamal; Raghubir Gupta

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals and fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.

  8. Coagulation-flocculation-decantation of dye house effluents: concentrated effluents.

    PubMed

    Allegre, C; Maisseu, M; Charbit, F; Moulin, P

    2004-12-10

    The treatment and valorization (recycling of water and mineral salts) of dyeing effluents constitutes a major economic and environmental issue. Cotton dyeing using reactive dyes is actually the most polluting in terms of discharge. In order to treat and valorize the effluent from a dyeing process using reactive dyes, the firm Clariant and the LPPE have developed and patented a process allowing the recovery of most of the water and salts present in the effluent and also of a concentrate containing the hydrolyzed reactive dyes and the highly concentrated auxiliaries. This paper describes the coagulation-flocculation-decantation process used to optimize water recovery from the concentrate. Coagulants and flocculants are used in the industry for the treatment of effluents produced by the synthesis of dyes in general (acid, disperse, reactive). Although the settling velocity is relatively low, the results show that it is possible to recycle a great volume of water using a small decanter area, since the concentrate flow rate is low. These effluents are substantially discolored, it possible to envisage recycling them. PMID:15561363

  9. Occurrence and distribution of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in industrial and domestic sewage sludge.

    PubMed

    Balasubramani, Aparna; Rifai, Hanadi S

    2015-10-01

    Sewage sludge samples collected from 43 different domestic and industrial wastewater treatment plants and petrochemical industries that discharge to the Houston Ship Channel (HSC) were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), which are highly toxic and carcinogenic towards humans and animals. The measured total PCDD/F toxic equivalency (TEQ) ranged between 0.73 and 7348.40 pg/g dry weight. The mean TEQ of PCDD/Fs in industrial sludge was approximately 40 times higher than that in sewage sludge. The PCDD homolog concentrations in the industrial samples were higher than those observed at the wastewater treatment plants by a factor of 10, with total heptachlorodibenzodioxin (HpCDD) exhibiting the maximum concentration in most of the samples. Among the PCDF homologs, total heptadichlorodibenzofuran (HpCDF) dominated the total homolog concentration in sludge from the wastewater treatment plants, whereas total tetradichlorodibenzofuran (TeCDF) dominated the industrial sludge samples. Overall, the total PCDD/F TEQ in sludge samples was much higher than that in effluent samples from the same facility. A linear correlation (R (2) = 0.62, p value < 0.068) was found indicating that sludge sampling can be used as a surrogate for effluent concentrations in wastewater treatment plants but not for industrial discharges. PMID:25989862

  10. Petrochemical feedstock from basic oxygen steel furnace

    SciTech Connect

    Greenwood, C.W.; Hardwick, W.E.

    1983-10-01

    Iron bath gasification in which coal, lime, steam and oxygen are injected into a bath of molten iron for the production of a medium-Btu gas is described. The process has its origin in basic oxygen steelmaking. It operates at high temperatures and is thus not restrictive on the type of coal used. The ash is retained in the slag. The process is also very efficient. The authors suggest that in the present economic climate in the iron and steel industry, such a plant could be sited where existing coal-handling, oxygen and steelmaking equipment are available.

  11. The U.S. Chemical Industry, the Raw Materials It Uses

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The raw materials used by the industry are considered in this section of the annual chemical industry report, including data covering: natural gas, lead, mercury, phosphate rock, potash, salt, petroleum products including petrochemical feedstocks. (PR)

  12. The Mexican petrochemical sector in the NAFTA negotiations

    SciTech Connect

    Kessel, G.; Kim, C.S.

    1993-12-31

    Since 1985, there have been important changes in the Mexican petrochemical sector, including trade liberalization, deregulation and the elimination of subsidies. NAFTA represents another step towards liberalization of the sector. Given the low tariffs currently applied to international trade among the three nations, the authors do not anticipate major impacts of NAFTA on trade flows. Nevertheless, the elimination of restrictions to foreign investment is expected to increase capital flows into the sector and to promote productivity increases. On the other hand, the new barriers to trade in petrochemical feedstocks and the restrictions on private investment in infrastructure may negatively affect the sector`s growth, making it necessary to adjust domestic regulations to improve the performance of Pemex. 12 refs., 4 tabs.

  13. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    PubMed

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed. PMID:22576841

  14. Industrial Fuel Flexibility Workshop

    SciTech Connect

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  15. Carbohydrate-mediated purification of petrochemicals.

    PubMed

    Holcroft, James M; Hartlieb, Karel J; Moghadam, Peyman Z; Bell, Jon G; Barin, Gokhan; Ferris, Daniel P; Bloch, Eric D; Algaradah, Mohammed M; Nassar, Majed S; Botros, Youssry Y; Thomas, K Mark; Long, Jeffrey R; Snurr, Randall Q; Stoddart, J Fraser

    2015-05-01

    Metal-organic frameworks (MOFs) are known to facilitate energy-efficient separations of important industrial chemical feedstocks. Here, we report how a class of green MOFs-namely CD-MOFs-exhibits high shape selectivity toward aromatic hydrocarbons. CD-MOFs, which consist of an extended porous network of γ-cyclodextrins (γ-CDs) and alkali metal cations, can separate a wide range of benzenoid compounds as a result of their relative orientation and packing within the transverse channels formed from linking (γ-CD)6 body-centered cuboids in three dimensions. Adsorption isotherms and liquid-phase chromatographic measurements indicate a retention order of ortho- > meta- > para-xylene. The persistence of this regioselectivity is also observed during the liquid-phase chromatography of the ethyltoluene and cymene regioisomers. In addition, molecular shape-sorting within CD-MOFs facilitates the separation of the industrially relevant BTEX (benzene, toluene, ethylbenzene, and xylene isomers) mixture. The high resolution and large separation factors exhibited by CD-MOFs for benzene and these alkylaromatics provide an efficient, reliable, and green alternative to current isolation protocols. Furthermore, the isolation of the regioisomers of (i) ethyltoluene and (ii) cymene, together with the purification of (iii) cumene from its major impurities (benzene, n-propylbenzene, and diisopropylbenzene) highlight the specificity of the shape selectivity exhibited by CD-MOFs. Grand canonical Monte Carlo simulations and single component static vapor adsorption isotherms and kinetics reveal the origin of the shape selectivity and provide insight into the capability of CD-MOFs to serve as versatile separation platforms derived from renewable sources. PMID:25806952

  16. Health planning for remote petrochemical field operations

    SciTech Connect

    Krieger, G.R.; Balge, M.Z.

    1995-12-31

    Occupational/Public Health Services are becoming increasingly required in projects that involve the extended presence of expatriates in remote underdeveloped areas of the world. These ``expats`` are defined as individuals living and working in the environment who are not indigenous to the area. Under this definition, workers who are resistant to a ``local`` strain of malaria and then relocate to another geographic within the same country can also be considered as ``biologic expatriates`` since their resistance profile for certain tropical diseases is not reflective of their new environment. Unlike a major infrastructure project in the industrialized world, project planners in remote areas of the developing world should be expected to make significant long term medical and environmental commitments. US companies have extensive experience in the business of large-scale development projects, e.g. oil and gas pipelines and well field development; however, these projects represent major long-term in-country commitments with potentially large labor forces and substantial and sustained impacts on local health and safety resources. The initial structuring of health and safety programs will, therefore, have long-term ramifications on the project both during construction and ``routine`` operations since the multi-national companies are increasingly expected to develop and maintain self-sustaining health, safety and environmental programs.

  17. Petrochemical types of kimberlites and their diamond-bearing capacity

    NASA Astrophysics Data System (ADS)

    Kostrovitsky, Sergey

    2010-05-01

    Kimberlite rocks of Yakutian province (belong to 1 group of kimberlites after Smith, 1983) are characterized by wide variations of rock-forming oxides [Ilupin et al., 1986; Milashev, 1965; Kharkiv et al., 1991]. A number of factors could be discussed to explain the variety of chemical compositions of rocks. The first factor, explaining the regional differences in the kimberlite composition with primarily different composition of source kimberlite melt-fluid, is conventionally called «primary». All other factors are connected with the secondary redistribution of chemical components of kimberlites. Irrespective of intensity of secondary factors, the primary composition of kimberlites varies broadly, which is noticeable in kimberlites of some provinces, kimberlites fields, pipe clusters and individual pipes. The petrochemical types are classified based on the contents of such oxides as FeO, TiO2 and K2O, being relatively inert in the secondary processes. In the Yakutian Province we have distinguished 5 petrochemical types of kimberlites (Kostrovitsky et al, 2007); with principal ones - high-Mg, magnesium-ferruginous (Mg-Fe) and ferruginous-titaniferous, their composition: < 6; 6-9; 8-15 % FeOtotal and < 1; 1-2.5; 1.5-5.0 % TiO2). Some petrochemical and mineralogical criteria of diamond-bearing capacity of kimberlites were identified some time before. The essence of petrochemical criterion consists of the inverse correlation dependence between the contents FeOtotal, TiO2 in kimberlite rocks and their diamond-bearing capacity (Milashev, 1965; Krivonos, 1998). The mineralogical criteria of diamond-bearing capacity infer presence of direct dependence of the rate of capacity on the content in kimberlites of low-Ca, high-Cr garnet and chrome spinellids with Cr2O3 > 62% and TiO2 < 0.5%, of dunite-harzburgite paragenesis (Sobolev, 1974; Meyer, 1968). The acquired results are applied to evaluate «efficiency» of criteria of diamond-bearing capacity exemplified by the deposits of Yakutian Province. The high-Mg kimberlites of the Njurba, Botuoba, International and Aikhal pipes are known as mostly diamondiferous. Kimberlites of these fields are marked by absence or minor abundance of minerals of low-Cr megacryst association - picroilmenite and orange-red garnet, and on the other hand, increased content of chrome spinellids and garnets, referred to as dunite-harzburgite paragenesis. Whereas most of the other deposits of Yakutia (pipes Mir, Udachnaya-Vostochnaya, Udachnaya-Zapadnaya, Yubileinaya, Komsomolskaya, Zarnitsa and Sytykan) are referred to the Mg-Fe petrochemical type distinguished by fairly raised content of TiO2 and FeOtotal and high content of minerals of low-Cr megacryst association. The minerals of dunite-harzburgite paragenesis in kimberlites of Mg-Fe type occur as varying amounts, but in general they are less numerous than in high-Mg type of kimberlites. The enumerated deposits have different rates of diamond-bearing capacity, but none of them reaches the rate of capacity common for the Mg-type deposits. The kimberlites with higher content of TiO2 and FeOtotal, referred to the Fe-Ti petrochemical type, do not produce commercial diamond fields within the Yakutian Province. The kimberlites of this type practically do not contain garnet and spinellids of dunite-harzburgite paragenesis. Therefore, comparison of kimberlite deposits of different petrochemical types points out that the petrochemical criterion of diamond capacity is as if «workable». But on the other hand, there are pipes composed of kimberlites of high-Mg and Mg-Fe petrochemical types with a poor capacity or devoid diamonds, which essentially conceal supposed dependence of parameter of diamond-bearing capacity on the chemical composition of rocks. Thus, the negative correlation between the contents FeOtotal, TiO2 in kimberlite rocks and their diamond capacity manifests itself as a tendency in general for kimberlite rocks. Different petrochemical types of kimberlites, varying in the rate of diamond capacity, are indistinguishable in the content of incompatible elements or differ slightly (Kostrovitsky et al, 2007). There is no correlation relationship between the microelement composition (from some incoherent elements) and diamond-bearing capacity of kimberlites. The efficiency of applying petrochemical and mineralogical criteria of diamond-bearing capacity is explained considering the genesis of kimberlite rock formation. It is assumed that the asthenosphere kimberlite-forming fluid-melt displayed capacity of fluid brecciation of rocks of lithosphere mantle. The composition of kimberlites and their diamond-bearing capacity also depend on the fact, which rocks of the mantle are largely brecciated and captured by the fluid melt. While kimberlite pipes Aikhal and International were formed, these were basically the rocks of high-Mg dunite-harzburgite diamondiferous paragenesis, which experienced brecciation. This predetermined both the petrochemical type of kimberlites and diamond-bearing capacity of these pipes. Thus, we suppose, that kimberlites, traditionally referred to group I, are not similar. Within this group it is feasible to recognize petrochemical types differing in mineralogical composition and the rate of potential diamond-bearing capacity. References Ilupin, I.P., Kaminsky, F.V., Frantsesson, E.V. (1978) Geochemistry of kimberlites [in Russian]. Nedra, Moscow. Khar'kiv, A.D., Zuenko, V.V., Zinchuk, N.N., Kryuchkov, A.I., Ukhanov, V.A. (1991). Petrochemistry of kimberlites [in Russian]. Nedra, Moscow. Kostrovitsky S.I., T. Morikiyo, I.V. Serov, D.A. Yakovlev, A.A. Amirzhanov. (2007) Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russian Geology and Geophysics. V. 48. P. 272-290. Krivonos V.F. (1999) Petrochemical criteria of diamond content in the kimberlites and lamproites. Geology and Geophysics. [in Russian] № 2. P. 187-200. Meyer, H.O.A. Chrome pyrope: an inclusion in natural diamond. (1968) Science. V. 160. P. 1446-1447. Milashev, V.A. (1965) Petrochemistry of Yakutian kimberlites and factors of their diamond potential [in Russian]. Nedra, Leningrad. Smith C.B. Pb, Sr and Nd isotopic evidence for sources of African Cretaceous kimberlites. (1983) Nature. V. 304. P. 51-54. Sobolev, N.V. (1974) Depth inclusions in kimberlites [in Russian]. Nauka, Novosibirsk.

  18. Waste monitoring system for effluents

    SciTech Connect

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory`s Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system.

  19. Nano-occurrence and removal of PCBs within the Europe's largest petrochemical MBR system.

    PubMed

    Jelic, Aleksandra; Di Fabio, Silvia; Vecchiato, Giuseppe; Cecchi, Franco; Fatone, Francesco

    2015-10-15

    The occurrence of 45 PCBs was studied in a wastewater treatment plant (WWTP), which treats industrial wastewater from the zone of Porto Marghera (Venice, Italy) in an MBR, and in the Naviglio del Brenta River, which serves as a source of process water supply for this industrial zone. The focus of the study was placed on the comparison of levels of contamination of the WWTP effluent and the river water by selected PCBs in order to understand the major source of PCB pollution for the Lagoon of Venice and contrast them with the current legislation. Out of 45, 31 PCBs were detected in the WWTP at total median PCB concentration of 5.5 ng/L with a predominant presence of six indicator - PCBs (PCB 28, 52, 101, 138, 153 and 180), which accounted for 50-55% of total PCBs in both wastewater and sludge samples. The total PCB concentration was reduced by around 90% during the applied wastewater treatment to a median concentration of 0.5 ng/L at the WWTP effluent. In the samples collected from the river, 27 PCBs were detected at total median concentration of 2.1 ng/L, which is few times higher than the total PCB concentration found in the WWTP effluent. This result suggests that the current legislative limitations applied to the WWTPs effluent discharges into the Lagoon of Venice, regarding the presence of PCBs (i.e. absent) is rather arbitrary given the higher concentration levels encountered in river water than in the WWTP effluent of the studied industrial WWTP. PMID:26188596

  20. TOXICITY TESTS OF EFFLUENTS WITH MARSH PLANTS IN WATER AND SEDIMENT

    EPA Science Inventory

    Methods are described for toxicity testing of water and sediment with the rooted marsh plants, Echinochloa crusgalli var. crusgalli and var. zelavensis (freshwater) and Spartina alterniflora (estuarine). ive industrial effluents, a sewage treatment plant effluent and a herbicide ...

  1. Behavior of natural radionuclides in surficial sediments from an estuary impacted by acid mine discharge and industrial effluents in Southwest Spain.

    PubMed

    Hierro, A; Bolivar, J P; Vaca, F; Borrego, J

    2012-08-01

    The environmental degradation resulting from the acid mine drainage (AMD) and discharge from effluents of phosphogypsum (PG) piles in the watershed of Tinto and Odiel Rivers estuary over long periods of time has resulted in significant impact on the ecosystem of this estuary, resulting that the sediments are highly polluted by heavy metals and radionuclides from the discharge AMD and leachates from the PG. During resuspension of benthic sediments some of the radionuclides are desorbed making them bioavailable. In the present study, we investigate the spatial distribution of radionuclides U, Th and Ra and assess the factors and processes that caused the spatial distribution of these nuclides in this estuarine system. This study has global significance for other polluted environmental systems that are impacted by AMD and PG. PMID:22327046

  2. The use of lidar as optical remote sensors in the assessment of air quality near oil refineries and petrochemical sites

    NASA Astrophysics Data System (ADS)

    Steffens, Juliana; Landulfo, Eduardo; Guardani, Roberto; Oller do Nascimento, Cláudio A.; Moreira, Andréia

    2008-10-01

    Petrochemical and oil refining facilities play an increasingly important role in the industrial context. The corresponding need for monitoring emissions from these facilities as well as in their neighborhood has raised in importance, leading to the present tendency of creating real time data acquisition and analysis systems. The use of LIDAR-based techniques, both for air quality and emissions monitoring purposes is currently being developed for the area of Cubatao, Sao Paulo, one of the largest petrochemical and industrial sites in Brazil. In a partnership with the University of SÃ#o Paulo (USP) the Brazilian oil company PETROBRAS has implemented an Environmental Research Center - CEPEMA - located in the industrial site, in which the development of fieldwork will be carried out. The current joint R&D project focuses on the development of a real time acquisition system, together with automated multicomponent chemical analysis. Additionally, fugitive emissions from oil processing and storage sites will be measured, together with the main greenhouse gases (CO2, CH4), and aerosols. Our first effort is to assess the potential chemical species coming out of an oil refinery site and to verify which LIDAR technique, DIAL, Raman, fluorescence would be most efficient in detecting and quantifying the specific atmospheric emissions.

  3. Considerations for Planning a Monitoring Campaign at Petrochemical Complexes: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Cuclis, A.

    2010-12-01

    An air quality monitoring campaign was developed for the late spring of 2009 near Houston area petrochemical facilities. The focus of the field campaign was to measure free radicals that contribute to the formation of ozone, however refinery and chemical plants monitored are also emitters of many different volatile organic compounds (vocs) and hazardous air pollutants (haps). The Houston area is home to the largest aggregation of petrochemical facilities in the U.S. Three specific geographical areas with industrial facilities were considered: Mont Belvieu, the Houston Ship Channel and the Texas City Industrial Complex. Previous experiences with field campaigns in the area led to the presumption that there would be little if any access inside the facilities. Considerations for which areas to focus on included: how close could the facility be approached, what were the directions of the prevailing winds, what kind of barriers to measurement existed (e.g. trees, buildings, highways, privately owned land, etc.), and what were the possible chemical interferences from other sources near the measurement sites? Close communications with the plant security, the local police, the Federal Bureau of Investigations (FBI), Homeland Security, the Federal Aviation Administration (FAA), and the Texas Commission on Environmental Quality (TCEQ) were required. Substantial delays can occur due to local concerns regarding homeland security and plant safety. Also, a system of communications is essential to coordinate the participating scientists operating stationary analyzers with the scientists who have analyzers mounted in ground vehicles and in aircraft. The researchers were provided with information regarding plant operations, types of equipment and potential pollutants. A wide variety of stationery and mobile ambient air monitoring techniques were used to measure formaldehyde and other volatile organic compounds. In order to identify likely formaldehyde sources the self-reported submissions to the EPA in the Toxic Release Inventory and emissions reports to the Texas Commission on Environmental Quality were reviewed. Other considerations were the locations of boilers, furnaces and flares, since formaldehyde is a product of combustion. In addition, a review was made to identify any sources of formaldehyde stored, consumed or produced in the petrochemical processes. The Texas City complex was chosen for the focus on formaldehyde study due to the very heavy concentration (fence-line to fence-line) of several refineries, chemical plants and storage facilities. Also there were sites upwind and downwind of the complex that were available for installing critical stationary analyzers for the study. Formaldehyde was identified in several locations, including from flares and smokestacks on ships. Also, benzene was measured less than a mile away from a plume emanating from a 200 foot flare. The solar occultation flux method was used to identify voc emissions that were 5-10 times higher than expected based on the emissions reported to the state environmental agency by the facilities. This paper will describe how the site selection and preparation enhanced the data that was retrieved, and how preparations might be adjusted to improve future air quality studies at petrochemical sites.

  4. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  5. Metabolic profiling of residents in the vicinity of a petrochemical complex.

    PubMed

    Yuan, Tzu-Hsuen; Chung, Ming-Kei; Lin, Ching-Yu; Chen, Shu-Ting; Wu, Kuen-Yuh; Chan, Chang-Chuan

    2016-04-01

    No previous studies have simultaneously measured the biomarkers of environmental exposure and metabolome perturbation in residents affected by industrial pollutants. This study aimed to investigate the metabolic effects of environmental pollutants such as vanadium and polycyclic aromatic hydrocarbons (PAHs) on residents in the vicinity of a petrochemical complex. The study subjects were 160 residents, including 80 high-exposure subjects exposed to high levels of vanadium and PAHs and 80 age- and gender-matched low-exposure subjects living within a 40-km radius of a petrochemical complex. The exposure biomarkers vanadium and 1-hydroxypyrene and four oxidative/nitrosative stress biomarkers were measured in these subjects. Plasma samples from the study subjects were also analyzed using (1)H NMR spectroscopy for metabolic profiling. The results showed that the urinary levels of vanadium and 1-hydroxypyrene in the high-exposure subjects were 40- and 20-fold higher, respectively, than those in the low-exposure subjects. Higher urinary levels of stress biomarkers, including 8-OHdG, HNE-MA, 8-isoPF2α, and 8-NO2Gua, were also observed among the high-exposure subjects compared with the low-exposure subjects. Partial least squares discriminant analysis of the plasma metabolome demonstrated a clear separation between the high- and low-exposure subjects; the intensities of amino acids and carbohydrate metabolites were lower in the high-exposure subjects compared with the low-exposure subjects. The exposure to vanadium and PAHs may cause a reduction in the levels of amino acids and carbohydrates by elevating PPAR and insulin signaling, as well as oxidative/nitrosative stress. PMID:26802354

  6. Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: an operational cost study on a pilot plant scale.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I

    2012-05-15

    The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy. PMID:22325636

  7. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily

    NASA Astrophysics Data System (ADS)

    Manno, Emanuela; Varrica, Daniela; Dongarrà, Gaetano

    Eight samples of road dust were collected from three different localities (industrial, urban, peripheral) of the town of Gela (Italy) to characterize their chemical composition and to assess (a) the influence of the petrochemical plant and the urban traffic on the trace element content in different grain-size fractions of street dust and (b) the solid-phase speciation of the analysed metal using sequential extraction. The samples were sieved into six particle size ranges: 500-250, 250-125, 125-63, 63-40, 40-20 and <20 μm and then analysed for 15 trace elements by ICP-MS. Sequential extraction of metals was performed on each subsample. A principal component analysis was also carried out to define the possible origin of metals in dusts. A comparison was made between the trace metal concentrations in road dust and those in main local outcropping rocks. The obtained results, indicate, that the road dust samples contain non-soil-derived elements, whose primary contributors appear to be vehicular traffic and the nearby petrochemical plant. Traffic appears to be responsible for the high levels of Ba, Cu, Cr, Mo, Pb, Sb and Zn. High concentrations of Ni, V and, partly, Ba and Cr were associated with emissions from the petrochemical plant. With respect to the local background, Sb was the most highly enriched trace element in the road dusts. Results of sequential extraction analysis show that most metals are mainly distributed in the non-residual fractions and particularly in the organic/sulphide and Fe-Mn oxides fractions. They also point to superficial adsorption as an important transfer mechanism of trace metals from their sources to the environment.

  8. Technology transfer through a network of standard methods and recommended practices - The case of petrochemicals

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Karvounis, Sotirios

    2012-12-01

    Technology transfer may take place in parallel with cooperative action between companies participating in the same organizational scheme or using one another as subcontractor (outsourcing). In this case, cooperation should be realized by means of Standard Methods and Recommended Practices (SRPs) to achieve (i) quality of intermediate/final products according to specifications and (ii) industrial process control as required to guarantee such quality with minimum deviation (corresponding to maximum reliability) from preset mean values of representative quality parameters. This work deals with the design of the network of SRPs needed in each case for successful cooperation, implying also the corresponding technology transfer, effectuated through a methodological framework developed in the form of an algorithmic procedure with 20 activity stages and 8 decision nodes. The functionality of this methodology is proved by presenting the path leading from (and relating) a standard test method for toluene, as petrochemical feedstock in the toluene diisocyanate production, to the (6 generations distance upstream) performance evaluation of industrial process control systems (ie., from ASTM D5606 to BS EN 61003-1:2004 in the SRPs network).

  9. Wastewater reclamation and reuse in a petrochemical plant

    SciTech Connect

    Wong, J.M.

    1996-11-01

    A large petrochemical plant located in a water-limited area is a major water user. The plant is facing a critical water problem because of several factors: (1) the raw water total dissolved solids (TDS) content has been increasing, (2) water rationing, which limits plant production, occurs during drought periods, (3) the plant is planning for a major expansion that requires major additional water supply, and (4) there is persistent community pressure for wastewater discharge reduction. A water resource management and planning study was conducted for this plant to resolve the water problem. This chapter describes the results of the study and the design of a pilot plant program for the testing of a wastewater treatment and recycling system.

  10. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  11. A novel "wastes-treat-wastes" technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater.

    PubMed

    Chen, Chunmao; Yu, Ji; Yoza, Brandon A; Li, Qing X; Wang, Gang

    2015-04-01

    Catalytic ozonation is a promising wastewater treatment technology. However, the high cost of the catalyst hinders its application. A novel "wastes-treat-wastes" technology was developed to reuse spent fluid catalytic cracking catalysts (sFCCc) for the ozonation of petrochemical wastewater in this study. Multivalent vanadium (V(4+) and V(5+)), iron (Fe(2+) and Fe(3+)) and nickel (Ni(2+)) oxides that are distributed on the surface of sFCCc and poisoned FCC catalysts are the catalytic components for ozonation. The sFCCc assisted catalytic ozonation (sFCCc-O) of nitrobenzene indicated that the sFCCc significantly promoted hydroxyl radical mediated oxidation. The degradation rate constant of nitrobenzene in sFCCc-O (0.0794 min(-1) at 298 K) was approximately doubled in comparison with that in single ozonation (0.0362 min(-1) at 298 K). The sFCCc-O of petrochemical wastewater increased chemical oxygen demand removal efficiency by three-fold relative to single ozonation. The number of oxygen-containing (Ox) polar contaminants in the effluent (253) from sFCCc-O treatment decreased to about 70% of the initial wastewater (353). The increased oxygen/carbon atomic ratio and decreased number of Ox polar contaminants indicated a high degree of degradation. The present study showed the role and potential of sFCCc for catalytic ozonation of petrochemical wastewater, particularly in an advantage of the cost-effectiveness through "wastes-treat-wastes". PMID:25617869

  12. Assessing vanadium and arsenic exposure of people living near a petrochemical complex with two-stage dispersion models.

    PubMed

    Chio, Chia-Pin; Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chan, Chang-Chuan

    2014-04-30

    The goal of this study is to demonstrate that it is possible to construct a two-stage dispersion model empirically for the purpose of estimating air pollution levels in the vicinity of petrochemical plants. We studied oil refineries and coal-fired power plants in the No. 6 Naphtha Cracking Complex, an area of 2,603-ha situated on the central west coast of Taiwan. The pollutants targeted were vanadium (V) from oil refineries and arsenic (As) from coal-fired power plants. We applied a backward fitting method to determine emission rates of V and As, with 192 PM10 filters originally collected between 2009 and 2012. Our first-stage model estimated emission rates of V and As (median and 95% confidence intervals at 0.0202 (0.0040-0.1063) and 0.1368 (0.0398-0.4782) g/s, respectively. In our second stage model, the predicted zone-average concentrations showed a strong correlation with V, but a poor correlation with As. Our findings show that two-stage dispersion models are relatively precise for estimating V levels at residents' addresses near the petrochemical complex, but they did not work as well for As levels. In conclusion, our model-based approach can be widely used for modeling exposure to air pollution from industrial areas in countries with limited resources. PMID:24607528

  13. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    PubMed

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results. PMID:25236238

  14. 40 CFR 406.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent...

  15. 40 CFR 406.17 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling Subcategory... products standard to the corn wet milling industry. For those plants producing modified starches at a...

  16. 40 CFR 406.17 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling Subcategory... products standard to the corn wet milling industry. For those plants producing modified starches at a...

  17. 40 CFR 406.17 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling Subcategory... products standard to the corn wet milling industry. For those plants producing modified starches at a...

  18. 40 CFR 406.17 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling Subcategory... products standard to the corn wet milling industry. For those plants producing modified starches at a...

  19. 40 CFR 406.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent...

  20. 40 CFR 406.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent...

  1. Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing

    EPA Science Inventory

    Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...

  2. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    PubMed

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater. PMID:25752866

  3. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    PubMed

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well. PMID:21870885

  4. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study. PMID:23109595

  5. GEOTHERMAL EFFLUENT SAMPLING WORKSHOP

    EPA Science Inventory

    This report outlines the major recommendations resulting from a workshop to identify gaps in existing geothermal effluent sampling methodologies, define needed research to fill those gaps, and recommend strategies to lead to a standardized sampling methodology.

  6. NATIONAL WWTP EFFLUENT STUDY

    EPA Science Inventory

    Reports of potential wildlife risk from exposure to environmental estrogens emphasize the need to better understand both estrogenic presence and persistence in treated wastewater effluents. In addition to wildlife exposure, human exposure should also be examined, especially in si...

  7. Recovery of enthalpy as work from thermal effluents

    NASA Astrophysics Data System (ADS)

    Molini, A. E.

    1982-08-01

    Enthalpy is recovered as work from hot industrial effluents by the controlled expansion of liquids through convergent-divergent nozzles in true reaction turbines. For hot liquid effluents, the effluent itself serves as the working fluid. For gaseous effluents, a high boiling stable liquid is heated by the gas in a scrubbing tower and then the liquid is expanded as the work fluid. If the effluents contain undesirable levels of particulate pollutants, the liquid is cleaned before it is expanded. The results predicted when using both impulse and true reaction turbines are reported. Results predicted when using work fluids as glycerol, tricresyl phosphate, bi-phenyls, and silicone oils are presented. Cycle efficiencies as high as 26% are predicted as possible.

  8. Reuse of waste water for industrial cooling systems

    SciTech Connect

    Rebhun, M.; Engel, G.

    1988-02-01

    Reuse of municipal effluent for cooling systems in a large refinery and petrochemical complex is described. Quality criteria for the cooling water were related to scale formers, corrosion, and biogrowth. After tertiary lime treatment using sludge blanket precipitator-clarifier was applied, phosphate removal, high reductions in alkalinity, calcium, COD, and suspended solids were obtained. A stripping tower reduced ammonia concentrations by 50%. Biological nitrification eliminated ammonia in the circulating cooling system. Acidity generated by nitrification neutralized excess lime in treated effluent. Reclamation of waste water for cooling saved millions of cubic meters of fresh water.

  9. ACTIVATED CARBON TREATMENT OF INDUSTRIAL WASTEWATERS: SELECTED TECHNICAL PAPERS

    EPA Science Inventory

    Because of the tremendous interest in the organic constituent removal by activated carbon, the two industrial categories displaying the most interest are the petroleum refining and petrochemical industries. EPA's Office of Research and Development has co-sponsored two technical s...

  10. Volatile organic monitor for industrial effluents

    SciTech Connect

    Laguna, G.R.; Peter, F.J.; Stuart, A.D.; Loyola, V.M.

    1993-07-01

    1990 amendments to the Clean Air Act have created the need for instruments capable of monitoring volatile organic compounds (VOCS) in public air space in an unattended and low cost manner. The purpose of the study was to develop and demonstrate the capability to do long term automatic and unattended ambient air monitoring using an inexpensive portable analytic system at a commercial manufacturing plant site. A gas chromatograph system personal computer hardware, meteorology tower & instruments, and custom designed hardware and software were developed. Comparison with an EPA approved method was performed. The system was sited at an aircraft engines manufacturing site and operated in a completely unattended mode for 60 days. Two VOCs were monitored every 30 minutes during the 24hr day. Large variation in the concentration from 800ppb to the limits of detection of about 10ppb were observed. Work to increase the capabilities of the system is ongoing.

  11. Methanogenic toxicity and continuous anaerobic treatment of wood processing effluents.

    PubMed

    Vidal, G; Diez, M C

    2005-03-01

    Wood processing effluents contain different types of phenolic compounds, from simple monomers to high molecular weight (MW) polyphenolic polymers, that can inhibit wastewater treatment. This work presents a comparative study of the methanogenic toxicity produced by three wood processing effluents (hardboard, fiberboard and BKME (kraft mill effluent)) using Pinus radiata, Eucalyptus and Tepa as feedstock (the last one being a native Chilean tree species). This study evaluates the influence of non-adapted granular and adapted flocculent sludge on forest industrial wastewater treatment as well as continuous anaerobic biodegradation of hardboard processing effluent using the upflow anaerobic sludge blanket (UASB). The adapted biomass (flocculent sludge) did not show any lag-phase signs. The 50% IC (the concentration causing 50% inhibition of methanogenic activity) was 4.3 g COD-effluent (chemical oxygen demand (COD)-of the effluent)/l and 2.8 g COD-effluent/l for the flocculent sludge and the granular sludge, respectively. The UASB system worked at low organic load rates (0.1-0.4 g COD/l d) with the COD removal ranging between 10 and 30%, and color removal did not occur under anaerobic conditions due to high MW. Indeed, the MW analysis indicates the presence of phenolic compounds over 25,000 Da in the anaerobic effluent. PMID:15737456

  12. Integrated treatment of farm effluents in New Zealand's dairy operations.

    PubMed

    Bolan, N S; Laurenson, S; Luo, J; Sukias, J

    2009-11-01

    Maintaining growth through intensification in the New Zealand dairy industry is a challenge for various reasons, in particular sustainably managing the large volumes of effluent. Dairy farm effluents have traditionally been treated using two-pond systems that are effective in the removal of carbon and suspended solids, however limited in their ability to remove nutrients. In the past these nutrient-rich two-pond treated effluents were disposed of in surface waters. Current environmental concerns associated with the direct discharge of these effluents to surface waters has prompted in developing technologies to either minimise the nutrient content of the effluent or apply effluents to land. Here, we discuss various approaches and methods of treatment that enable producers to sustainably manage farm effluents, including advanced pond treatment systems, stripping techniques to reduce nutrient concentration, land application strategies involving nutrient budgeting models to minimise environmental degradation and enhance fodder quality. We also discuss alternative uses of farm effluents to produce energy and animal feed. PMID:19342229

  13. Effluent guidelines, leather tanning, and pollution prevention: A retrospective study

    SciTech Connect

    1995-06-01

    This study was undertaken to learn: in what ways and for what reasons a specific industry in the past already was implementing pollution in order to comply with existing effuent guidelines and to what degree the effluent guidelines development document for that industry had already previously projected that outcome.

  14. Risk assessment study of fire following an earthquake: a case study of petrochemical enterprises in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Y.; Chen, H.; Lin, L.

    2014-04-01

    After an earthquake, the fire risk of petrochemical enterprises is higher than that of other enterprises as it involves production processes with inflammable and explosive characteristics. Using Chinese petrochemical enterprises as the research object, this paper uses a literature review and case summaries to study, amongst others, the classification of petrochemical enterprises, the proportion of daily fires, and fire loss ratio. This paper builds a fire following an earthquake risk assessment model of petrochemical enterprises based on a previous earthquake fire hazard model, and the earthquake loss prediction assessment method, calculates the expected loss of the fire following an earthquake in various counties and draws a risk map. Moreover, this research identifies high-risk areas, concentrating on the Beijing-Tianjin-Tangshan region, and Shandong, Jiangsu, and Zhejiang provinces. Differences in enterprise type produce different levels and distribution of petrochemical enterprise earthquake fire risk. Furthermore, areas at high risk of post-earthquake fires and with low levels of seismic fortification require extra attention to ensure appropriate mechanisms are in place.

  15. Modeling of Flow and Water Quality Processes with Finite Volume Method due to Spreading and Dispersion of Petrochemical Pollution in the Hydro-Environments

    NASA Astrophysics Data System (ADS)

    Sarhadi Zadeh, Ehsan; Hejazi, Kourosh

    2009-11-01

    Having two water frontiers, namely (everlasting) Persian Gulf and Oman Sea in the south and Caspian Sea in the north, intense dependence on extracting and exporting oil, especially via marine fleets and ever-increasing development of petrochemical industry, Iran is exposed to severe environmental damages caused by oil and petrochemical industries. This essay investigates how oil spill is diffused and its environmental pollution is spread. The movement of oil spill, and its diffusion in water and its effects on water and the environment has been simulated by developing a Depth-Averaged numerical model and using the Finite Volume method. The existing models are not efficient enough to fulfill current modeling needs. The developed model uses the parameters useful in the advection and diffusion of oil pollutions in a model appropriate for predicting the transport of oil spill. Since the Navier-Stokes Equations play an important role in the advection and diffusion of oil pollutions, it is highly important to choose an appropriate numerical method in the advection and diffusion section. In this essay, choosing the methods used in the advection and diffusion have been emphasized and highly-accurate algorithms has been used in the advection terms. These algorithms are not present in similar models. The resulting equations have been solved using the ADI method. This method solves the unknown parameters with solving a Penta-Diagonal matrix in each time step. It does so without sacrificing the desired precision.

  16. Substance abuse in the refining industry

    SciTech Connect

    Little, A. Jr. ); Ross, J.K. ); Lavorerio, R. ); Richards, T.A. )

    1989-01-01

    In order to provide some background for the NPRA Annual Meeting Management Session panel discussion on Substance Abuse in the Refining and Petrochemical Industries, NPRA distributed a questionnaire to member companies requesting information regarding the status of their individual substance abuse policies. The questionnaire was designed to identify general trends in the industry. The aggregate responses to the survey are summarized in this paper, as background for the Substance Abuse panel discussions.

  17. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  18. Assessment of the levels of urinary 1-hydroxypyrene and air polycyclic aromatic hydrocarbon in PM2.5 for adult exposure to the petrochemical complex emissions.

    PubMed

    Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chin, Yu-Yen; Chan, Chang-Chuan

    2015-01-01

    The relationship between external exposure and internal doses of polycyclic aromatic hydrocarbons (PAHs) has not been established for people living in industrial areas. This study was carried out to estimate the relationship between particle-phase PAH exposure and urinary 1-hydroxypyrene (1-OHP) levels among the adults living near a large petrochemical complex in Mailiao, Taiwan. We measured urinary 1-OHP in 781 residents above 35 years old and PM2.5 PAHs within a 20-km radius downwind from the petrochemical complex. Urinary 1-OHP was analyzed by high performance liquid chromatography, while 16 ambient particle-phase PAHs were measured by gas chromatography mass spectrometry. External exposures to individual PAHs at each study subject's address were estimated by kriging interpolation from air sampling results and regressed against the subjects' urinary 1-OHP levels, adjusting for confounding factors. The study population's urinary 1-OHP levels ranged from 0.001 to 3.005 μmol/mol-creatinine with significantly higher levels for females, grilled food consumers, and residents living close to roads. All 16 particle-phase PAHs were present in the study area with total PAH concentrations ranging from 0.111 to 1.982 ng/m(3). The spatial distribution of 4- and 5-ring PAHs identified high-concentration hotspots close to the complex in Mailiao. The multiple regression models showed that the adults' urinary 1-OHP levels were significantly correlated with 5 out of the 16 PAHs, including benzo[a]anthracene, benzo[k]fluoranthene, fluoranthene, pyrene, and dibenzo[a,h]anthracene; a 0.01 ng/m(3) increase in the concentration of these 5 PAHs at the study subjects' addresses was associated with a 20% elevation in urinary 1-OHP levels (μg/g-creatinine). Emissions from a petrochemical complex can elevate particle-phase PAH concentrations in surrounding areas and increase the urinary 1-OHP levels of adults living nearby. PMID:25460640

  19. Silage effluent management: a review.

    PubMed

    Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D

    2014-10-01

    Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of repeated land application of effluent on soil quality and crop yields, as spreading is a common disposal practice. PMID:24905641

  20. A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India.

    PubMed

    Dsikowitzky, Larissa; Nordhaus, Inga; Sujatha, C H; Akhil, P S; Soman, Kunjupilai; Schwarzbauer, Jan

    2014-07-01

    The Cochin Backwaters in India are part of the Vembanad-Kol system, which is a protected wetland and one of the largest estuarine ecosystems in South Asia. The backwaters are a major supplier of fisheries resources and are developed as tourist destination. Periyar River discharges into the northern arm of the system and receives effluents from chemical, petrochemical and metal processing industries which release huge amounts of wastewaters after little treatment. We investigated water and sediment contamination in the industrial vicinity and at one station further away including organic and inorganic contaminants. In total 83 organic contaminants were found, e.g. well known priority pollutants such as endosulfan, hexachlorobenzene, DDT, hexachlorocyclohexane and their metabolites, which likely stem from the industrial manufacturing of organochlorine pesticides. Furthermore, several benzothiazole, dibenzylamine and dicyclohexylamine derivatives were detected, which indicated inputs from rubber producing facilities. Several of these compounds have not been reported as environmental contaminants so far. A comparison of organic contaminant and trace hazardous element concentrations in sediments with reported sediment quality guidelines revealed that adverse effects on benthic species are likely at all stations. The chemical assessment was combined with an investigation of macrobenthic diversity and community composition. Benthic organisms were completely lacking at the site with the highest trace hazardous element concentrations. Highest species numbers, diversity indices and abundances were recorded at the station with the greatest distance to the industrial area. Filter feeders were nearly completely lacking, probably leading to an impairment of the filter function in this area. This study shows that a combination of chemical and biological methods is an innovative approach to achieve a comprehensive characterization of industrial contamination, to evaluate associated risks for bottom dwelling consumers regarding sediment quality guidelines, and to observe related adverse effects on the benthic community directly in the field. PMID:24735943

  1. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  2. Risk assessment study of fire following earthquake: a case study of petrochemical enterprises in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Y.; Chen, H.; Lin, L.

    2013-04-01

    After an earthquake, the fire risk of petrochemistry enterprises is higher than that of other enterprises as it involves production processes with inflammable and explosive characteristics. Using Chinese petrochemical enterprises as the research object, this paper uses a literature review and case summaries to study, amongst others, the classification of petrochemical enterprises, the proportion of daily fires, and fire loss ratio. This paper builds a fire following earthquake risk assessment model of petrochemical enterprises based on a previous earthquake fire hazard model, and the earthquake loss prediction assessment method, calculates the expected loss of the fire following earthquake in various counties and draws a risk map. Moreover, this research identifies high-risk areas, concentrating on the Beijing-Tianjin-Tangshan region, and Shandong, Jiangsu, and Zhejiang provinces. Differences in enterprise type produce different levels and distribution of petrochemical enterprises earthquake fire risk. Furthermore, areas at high risk of post-earthquake fires and with low levels of seismic fortification require extra attention to ensure appropriate mechanisms are in place.

  3. Seaborne petrochemical spill analysis within the United States, 1992-1999.

    PubMed

    Nicholson, Benjamin L; Perakis, Anastassios N; Bulkley, Jonathan W

    2003-04-01

    Through discussion of causative factors and examination of historical data, petrochemical spill prevention in US waters is reviewed. Unintentional petrochemical outflow is analyzed in a comprehensive manner and presented as a hierarchical sequence of antecedent events to reveal the trends of causative factors leading to release. Specifically, a seaborne petrochemical spill is examined in terms of four basic, antecedent events: (1) an underway source, (2) a failure incident, (3) a marine accident capable of breaching the hull and cargo block, and (4) the onset of outflow. These events are further subdivided into underlying, contributing events to form a causative framework for spill prevention. While a hierarchical review is not necessary to uncover the elements of causation, it does provide a comprehensive and logical structure that clearly defines these elements in terms of occurrence frequency and contribution to resulting outflow. It is found that relatively small, frequent spills less than 40,000 liters (10,567 gallons), attributable to human operator failures, leading to grounding, and cargo transfer system failure accidents, dominate US seaborne petrochemical outflow from 1992 to 1999. Given the frequency of groundings, structural reinforcement regulations such as those contained in the Oil Pollution Act of 1990 (requiring double hulls) appear well justified. However, passive restraint systems are secondary to the need for vigilant training and licensing of tank vessel operators. PMID:12677298

  4. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs.

    PubMed

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W C; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  5. Exposure of composite tannery effluent on snail, Pila globosa: A comparative assessment of toxic impacts of the untreated and membrane treated effluents.

    PubMed

    Bhattacharya, Priyankari; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-04-01

    Effluent from tannery industries can significantly affect the aquatic environment due to the presence of a variety of recalcitrant components. The present study focuses on a comparative assessment of the toxic impacts of an untreated tannery effluent and membrane treated effluents using snail, Pila globosa as an aquatic model. Composite tannery effluent collected from a common effluent treatment plant was selected as the untreated effluent. To investigate the effect of treated effluents on the aquatic organism the effluent was treated by two ways, viz. a single stage microfiltration (MF) using ceramic membrane and a two-step process involving MF followed by reverse osmosis (RO). The whole body tissue, gonad and mantle of P. globosa were subjected to enzyme assays like superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-GPx), glutathione S- transferase (GST), etc. for assessing toxic impact. Changes in the biochemical parameters like protein, carbohydrate and amino acid were observed including histological studies of gonad and mantle tissue upon treatment with tannery effluents. To examine potential DNA damage due to the exposure of the effluent, comet assay was conducted. The study revealed that with an exposure to the untreated effluent, activity of the antioxidant enzymes increased significantly while the protein and carbohydrate content reduced largely in the whole body tissue, gonad as well as mantle tissues of P. globosa. Histological study indicated considerable damage in the gonad and mantle tissues following exposure to the untreated effluent. Comet assay using hemolymph of P. globosa following exposure to tannery effluent, showed significant genotoxicity. Interestingly, compared to the untreated effluent, damaging effect was reduced in molluscs tissues when exposed to MF treated effluent and even lesser when exposed to MF+RO treated effluent. Apart from the reduced activities of oxidative stress enzymes, the protein, amino acid and carbohydrate content of molluscs exposed to both of the treated effluent were found close to that of control. Comet assay revealed no damage in the DNA for MF and MF+RO treated effluent indicating that the membrane based treatment procedure restores environmental condition to control level. PMID:26720808

  6. NMR shielding and a thermodynamic study of the effect of environmental exposure to petrochemical solvent on DPPC, an important component of lung surfactant

    NASA Astrophysics Data System (ADS)

    Monajjemi, M.; Afsharnezhad, S.; Jaafari, M. R.; Abdolahi, T.; Nikosade, A.; Monajemi, H.

    2007-12-01

    The chemical and petrochemical industries are the major air polluters. Millions of workers are exposed to toxic chemicals on the job, and it is becoming more toxic, causing much damage to respiratory system, today. One of the main components of lung alveoli is a surfactant. DPPC (Dipalmitolphosphatidylcholine) is the predominant lipid component in the lung surfactant, which is responsible for lowering surface tension in alveoli. In this article, we used an approximate model and ab initio computations to describe interactions between DPPC and some chemical solvents, such as benzene, toluene, heptane, acetone, chloroform, ether, and ethanol, which cause lung injuries and lead to respiratory distress such as ARDS. The effect of these solvents on the conformation and disordering of the DPPC head group was investigated by calculations at the Hatree-Fock level using the 6-31G basis set with the Onsager continuum solvation, GAIO, and frequency models. The simulation model was confirmed by accurate NMR measurements as concerns conformational energy. Water can be the most suitable solvent for DPPC. Furthermore, this study shows that ethanol has the most destructive effect on the conformation and lipid disorder of the DPPC head group of the lung surfactant in our model. Our finding will be useful for detecting the dysfunction of DPPC in the lung surfactant caused by acute or chronic exposures to air toxics from petrochemical organic solvent emission source and chronic alcohol consumption, which may lead to ARDS.

  7. Land application of pulp and paper mill effluents -- A literature review

    SciTech Connect

    Rezende, A.A.; Edwards, E.

    1999-07-01

    This paper reviews the literature on land application of pulp and paper mill effluents with emphasis on secondary treated effluents from kraft bleach pulp mills. It discusses the current status of effluent land application in the industry and the need for further studies. The literature review showed that considerable research had been undertaken, including full-scale land application of effluents from pulp and paper mills. These studies dealt almost exclusively with crop productivity aspects. Soil salinity and sodicity problems, as well as application rates were extensively studied. However, relatively little attention has been given to the behavior of toxic organic compounds from pulp mill effluents in the soil environment and the long-term environmental impact of the effluent disposal practices is not fully understood.

  8. Measurement and removal of bioconcentratable compounds in refinery effluents

    SciTech Connect

    Gala, W.R.; Dorn, P.B.; Means, J.C.; Jenkins, K.D.; Folwarkow, S.

    1994-12-31

    Public concern regarding the presence of persistent, bioconcentratable compounds in fish and shellfish has led the petroleum industry to investigate methods for the measurement of bioconcentratable compounds in refinery effluents. Research has focused on developing methods to measure polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons directly in the effluent and in bivalves exposed to refinery effluents in the field and in the laboratory. Results from a multi-refinery study in the San Francisco Bay Area using selective ion monitoring GC/MS-MS indicated that alkylated and non-substituted 2--3 ring PAHs are rarely present in refinery effluents at concentrations greater than 100 ng/L. Higher MW PAHs were rarely detected. PAHs did not substantially bioconcentrate in bivalves exposed in the laboratory to refinery effluent and reference sea water. Total PAHs were generally less than 50 {mu}g/g in the effluent-exposed bivalves. A comparison of the waste water treatment facilities at each refinery suggest that biological treatment already required by existing regulations is sufficient to reduce PAH concentrations to these low levels.

  9. DETERMINATION OF TRACE METALS IN EFFLUENTS BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMETRY

    EPA Science Inventory

    Differential pulse anodic stripping voltametry (DPASV) was evaluated to determine its applicability to industrial and domestic effluents. The results show that trace amounts of zinc, cadmium, lead, bismuth, copper, thallium, indium, antimony, tin and nickel can be determined indi...

  10. Valuable product production from wood mill effluents.

    PubMed

    Mato, T; Ben, M; Kennes, C; Veiga, M C

    2010-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand (COD), low pH and nutrients limitation. Aerobic and anaerobic processes have been used for their treatment. Presently, bioplastics production (mainly polyhydroxyalkanoates or PHA) from wastewaters with mixed cultures is being studied. Substrate requirements for these processes are a high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. PHA production from wastewaters is carried out in three steps. First, complex organic matter is converted into volatile fatty acids (VFA) through acidogenic fermentation. Then, VFA are used as substrate in an aerobic sequencing batch reactor (SBR), in which the enrichement of PHA producing bacteria from a mixed culture is favoured. Finally, the sludge from the SBR is fed with a pulse containing high VFA concentrations, resulting in PHA accumulation inside the cells. In this work, the possibility of applying this process to wood mill effluents is proposed. An acidification percentage of 37% and a storage yield (Y(STO)) of 0.23 Cmmol/Cmmol were obtained. PMID:21076215

  11. Fatigue and Psychological Distress: A Case Study Among Shift Workers of an Iranian Petrochemical Plant, During 2013, in Bushehr

    PubMed Central

    Rasoulzadeh, Yahya; Bazazan, Ahmad; Safaiyan, Abdolrasoul; Dianat, Iman

    2015-01-01

    Background: Shift work is a well-recognized occupational health hazard in both industrialized and industrially developing countries. Prolonged working time, day/night shift rotation, circadian rhythm and sleep disorders, family and social problems are the most important features of shift working, which have serious complications. Objectives: The present study evaluated the fatigue and psychological distress and their relationship among shift workers, in a petrochemical plant (Southern Pars gas field) in Southwest Iran. Materials and Methods: In this cross-sectional field study, 400 shift workers from a plant were involved, with participation rate of 72.5% (290 persons). The multidimensional fatigue inventory (MFI-20) and general health questionnaire (GHQ-28) were used to evaluate the level of fatigue and psychological distress, respectively. Results: The results showed that the fatigue and psychological distress (particularly social dysfunction, anxiety and insomnia) are frequent among 12-hour shift workers (the total MFI and total GHQ scores were 42.68 ± 17.88 and 34.66 ± 18.56). A relatively strong positive correlation was found between fatigue and psychological distress (r = 0.62). The results of the stepwise regression model indicated that the psychological distress was significantly related only to general fatigue, mental fatigue and reduced motivation, whereas it was not to the physical fatigue and reduced activity. Conclusions: The study findings highlight the importance of the mental aspect of fatigue in this working group. These results have possible implications for workers’ health and well-being and for the design of shift work systems, for industrial workers. PMID:26568862

  12. Measurement of fugitive volatile organic compound emissions from a petrochemical tank farm using open-path Fourier transform infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Fu; Wu, Tzong-gang; Hashmonay, Ram A.; Chang, Shih-Ying; Wu, Yu-Syuan; Chao, Chun-Ping; Hsu, Cheng-Ping; Chase, Michael J.; Kagann, Robert H.

    2014-01-01

    Fugitive emission of air pollutants is conventionally estimated based on standard emission factors. The Vertical Radial Plume Mapping (VRPM) technique, as described in the US EPA OTM-10, is designed to measure emission flux by directly monitoring the concentration of the plume crossing a vertical plane downwind of the site of interest. This paper describes the evaluation results of implementing VRPM in a complex industrial setting (a petrochemical tank farm). The vertical plane was constructed from five retroreflectors and an open-path Fourier transform infrared spectrometer. The VRPM configuration was approximately 189.2 m in width × 30.7 m in height. In the accompanying tracer gas experiment, the bias of the VRPM estimate was less than 2% and its 95% confidence interval contained the true release rate. Emission estimates of the target VOCs (benzene, m-xylene, o-xylene, p-xylene, and toluene) ranged from 0.86 to 2.18 g s-1 during the 14-day field campaign, while estimates based on the standard emission factors were one order of magnitude lower, possibly leading to an underestimation of the impact of these fugitive emissions on air quality and human health. It was also demonstrated that a simplified 3-beam geometry (i.e., without one dimensional scanning lines) resulted in higher uncertainties in the emission estimates.

  13. Definition and GIS-based characterization of an integral risk index applied to a chemical/petrochemical area.

    PubMed

    Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L

    2006-08-01

    A risk map of the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain) was designed following a two-stage procedure. The first step was the creation of a ranking system (Hazard Index) for a number of different inorganic and organic pollutants: heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated aromatic hydrocarbons (PAHs) by applying self-organizing maps (SOM) to persistence, bioaccumulation and toxicity properties of the chemicals. PCBs seemed to be the most hazardous compounds, while the light PAHs showed the minimum values. Subsequently, an Integral Risk Index was developed taking into account the Hazard Index and the concentrations of all pollutants in soil samples collected in the assessed area of Tarragona. Finally, a risk map was elaborated by representing the spatial distribution of the Integral Risk Index with a geographic information system (GIS). The results of the present study seem to indicate that the development of an integral risk map might be useful to help in making-decision processes concerning environmental pollutants. PMID:16442585

  14. Association between occupational exposure to benzene and chromosomal alterations in lymphocytes of Brazilian petrochemical workers removed from exposure.

    PubMed

    Gonçalves, Rozana Oliveira; de Almeida Melo, Neli; Rêgo, Marco Antônio Vasconcelos

    2016-06-01

    We aimed to investigate the association between chronic exposure to benzene and genotoxicity in the lymphocytes of workers removed from exposure. The study included 20 workers with hematological disorders who had previously worked in the petrochemical industry of Salvador, Bahia, Brazil; 16 workers without occupational exposure to benzene served as the control group. Chromosomal analysis was performed on lymphocytes from peripheral blood, to assess chromosomal breaks and gaps and to identify aneuploidy. The Kruskal-Wallis test was used to compare the mean values between two groups, and Student's t test for comparison of two independent means. The frequency of gaps was statistically higher in and the exposed group than in the controls (2.13 ± 2.86 vs. 0.97 ± 1.27, p = 0.001). The frequency of chromosomal breaks was significantly higher among cases (0.21 ± 0.58) than among controls (0.12 ± 0.4) (p = 0.0002). An association was observed between chromosomal gaps and breaks and occupational exposure to benzene. Our study showed that even when removed from exposure for several years, workers still demonstrated genotoxic damage. Studies are still needed to clarify the long-term genotoxic potential of benzene after removal from exposure. PMID:27155858

  15. Genotoxicity assessment of a pharmaceutical effluent using four bioassays.

    PubMed

    Bakare, Adekunle A; Okunola, Alabi A; Adetunji, Olusanmi A; Jenmi, Hafeez B

    2009-04-01

    Pharmaceutical industries are among the major contributors to industrial waste. Their effluents when wrongly handled and disposed of endanger both human and environmental health. In this study, we investigated the potential genotoxicity of a pharmaceutical effluent, by using the Allium cepa, mouse- sperm morphology, bone marrow chromosome aberration (CA) and micronucleus (MN) assays. Some of the physico-chemical properties of the effluent were also determined. The A. cepa and the animal assays were respectively carried out at concentrations of 0.5, 1, 2.5, 5 and 10%; and 1, 5, 10, 25 and 50% of the effluent. There was a statistically different (p < 0.05), concentration-dependent inhibition of onion root growth and mitotic index, and induction of chromosomal aberrations in the onion and mouse CA test. Assessment of sperm shape showed that the fraction of the sperm that was abnormal in shape was significantly (p < 0.05) greater than the negative control value. MN analysis showed a dose-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. These observations were provoked by the toxic and genotoxic constituents present in test samples. The tested pharmaceutical effluent is a potentially genotoxic agent and germ cell mutagen, and may induce adverse health effects in exposed individuals. PMID:21637694

  16. Complete physico-chemical treatment for coke plant effluents.

    PubMed

    Ghose, M K

    2002-03-01

    Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites. PMID:11902769

  17. Genotoxicity assessment of a pharmaceutical effluent using four bioassays

    PubMed Central

    2009-01-01

    Pharmaceutical industries are among the major contributors to industrial waste. Their effluents when wrongly handled and disposed of endanger both human and environmental health. In this study, we investigated the potential genotoxicity of a pharmaceutical effluent, by using the Allium cepa, mouse- sperm morphology, bone marrow chromosome aberration (CA) and micronucleus (MN) assays. Some of the physico-chemical properties of the effluent were also determined. The A. cepa and the animal assays were respectively carried out at concentrations of 0.5, 1, 2.5, 5 and 10%; and 1, 5, 10, 25 and 50% of the effluent. There was a statistically different (p < 0.05), concentration-dependent inhibition of onion root growth and mitotic index, and induction of chromosomal aberrations in the onion and mouse CA test. Assessment of sperm shape showed that the fraction of the sperm that was abnormal in shape was significantly (p < 0.05) greater than the negative control value. MN analysis showed a dose-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. These observations were provoked by the toxic and genotoxic constituents present in test samples. The tested pharmaceutical effluent is a potentially genotoxic agent and germ cell mutagen, and may induce adverse health effects in exposed individuals. PMID:21637694

  18. Ni(II) removal from aqueous effluents by silylated clays.

    PubMed

    Carvalho, Wagner A; Vignado, Carolina; Fontana, Juliane

    2008-05-30

    Industrial effluents discharged in water bodies without proper treatment contribute to water pollution by potentially toxic metal ions. Considering that the legislation for discarding of such effluents is getting more and more rigorous, the development of efficient processes for the treatment of industrial effluents is of great interest. A study on the capacity of metal retention by silylated-modified clays was carried out with the aim to evaluate the efficiency of this application. K10 clay was modified with 3-mercaptopropyltrimethoxysilane (MPS) and tested in batch removal processes. We investigated the sorption process, obtaining isotherms and kinetics of adsorption and the influence of pH, the desorption process and the metal recovery. It was observed that the modified clay presents fast retention and good capacity of both adsorption and desorption. The use of K10/MPS as adsorbent shows to be more adequate in effluent final polishment, after a conventional treatment, or when Ni(II) initial concentration in the effluent is low enough to permit its adequate removal by conventional methods. PMID:17980481

  19. [Health effects in petrochemical workers: cohort mortality studies in Italian plants].

    PubMed

    Pesatori, Angela Cecilia

    2013-01-01

    The issue of carcinogenicty of petroleum chemicals has been extensively addressed in the scientific literature. The International Agency for Research on Cancer (IARC), in 1989, classified working in petroleum refineries in Group 2A (probable carcinogen) mainly due to increased risks for skin cancer and leukemia. Subsequent studies highlighted increased mortality from pleural mesothelioma. We present and discuss the findings of the mortality studies in four Italian petrochemical plants. The study population includes: 676 subjects employed in a plant near Rome, 1583 workers of a plant located in the Milan area, 903 workers employed in another northern petrochemical plant (Cremona area) and over 2000 subjects who had worked in a similar plant in Sardinia (Cagliari area). Age-gender-and calendar period adjusted Standardized Mortality Ratios (SMRs) and 95% Confidence Intervals (CI) were calculated using regional rates. Analyses by duration of employment and time since first employment were also performed. PMID:24303710

  20. Filtration device for active effluents

    SciTech Connect

    Guerin, M.; Meunier, G.

    1994-12-31

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.

  1. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2016-03-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  2. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery.

    PubMed

    Cetin, Eylem; Odabasi, Mustafa; Seyfioglu, Remzi

    2003-08-01

    Air samples were collected between September 2000 and September 2001 in Izmir, Turkey at three sampling sites located around a petrochemical complex and an oil refinery to measure ambient volatile organic compound (VOC) concentrations. VOC concentrations were 4-20-fold higher than those measured at a suburban site in Izmir, Turkey. Ethylene dichloride, a leaded gasoline additive used in petroleum refining and an intermediate product of the vinyl chloride process in the petrochemical complex, was the most abundant volatile organic compound, followed by ethyl alcohol and acetone. Evaluations based on wind direction clearly indicated that ambient VOC concentrations measured were affected by the refinery and petrochemical complex emissions. VOC concentrations showed seasonal variations at all sampling sites. Concentrations were highest in summer, followed by autumn, probably due to increased evaporation of VOCs from fugitive sources as a result of higher temperatures. VOC concentrations generally increased with temperature and wind speed. Temperature and wind speed together explained 1-60% of the variability in VOC concentrations. The variability in ambient VOC concentrations that could not be explained by temperature and wind speed can be attributed to the effect of other factors (i.e. wind direction, other VOC sources). PMID:12873403

  3. Remedy of dye manufacturing process effluent by UV/H2O2 process.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Hsieh, Wen-Pin

    2006-01-16

    The effluent from dye manufacturing industry is more difficult to be treated than laboratory synthesized wastewater according to high variability of composition and color intensity. Thus, this study aimed to propose the method for remedying industrial effluent by UV/H2O2 process in a recirculated batch reactor system while considering the effects on hydrogen peroxide dosage, UV power and wastewater intensity for the removal of color and COD. From the experimental results, it was feasibly treated that the distinguished removal of color and COD by increasing the hydrogen peroxide dosage and UV power, but not by the strong intensity of industrial effluent. Therefore, UV/H2O2 process of the developed reactor was a positively superior treatment or pre-treatment for dye manufacturing plant effluent to comply the regulated requirements. PMID:16125312

  4. Evaluation of Dairy Effluent Management Options Using Multiple Criteria Analysis

    NASA Astrophysics Data System (ADS)

    Hajkowicz, Stefan A.; Wheeler, Sarah A.

    2008-04-01

    This article describes how options for managing dairy effluent on the Lower Murray River in South Australia were evaluated using multiple criteria analysis (MCA). Multiple criteria analysis is a framework for combining multiple environmental, social, and economic objectives in policy decisions. At the time of the study, dairy irrigation in the region was based on flood irrigation which involved returning effluent to the river. The returned water contained nutrients, salts, and microbial contaminants leading to environmental, human health, and tourism impacts. In this study MCA was used to evaluate 11 options against 6 criteria for managing dairy effluent problems. Of the 11 options, the MCA model selected partial rehabilitation of dairy paddocks with the conversion of remaining land to other agriculture. Soon after, the South Australian Government adopted this course of action and is now providing incentives for dairy farmers in the region to upgrade irrigation infrastructure and/or enter alternative industries.

  5. Facility effluent monitoring plan for WESF

    SciTech Connect

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  6. Role of livestock effluent suspended particulate in sealing effluent ponds.

    PubMed

    Bennett, J McL; Warren, B R

    2015-05-01

    Intensive livestock feed-lots have become more prevalent in recent years to help in meeting the predicted food production targets based on expected population growth. Effluent from these is stored in ponds, representing a potential concern for seepage and contamination of groundwater. Whilst previous literature suggests that effluent particulate can limit seepage adequately in combination with a clay liner, this research addresses potential concerns for sealing of ponds with low concentration fine and then evaluates this against proposed filter-cake based methodologies to describe and predict hydraulic reduction. Short soil cores were compacted to 98% of the maximum dry density and subject to ponded head percolation with unfiltered-sediment-reduced effluent, effluent filtered to <3 μm, and chemically synthesized effluent. Reduction in hydraulic conductivity was observed to be primarily due to the colloidal fraction of the effluent, with larger particulate fractions providing minimal further reduction. Pond sealing was shown to follow mathematical models of filter-cake formation, but without the formation of a physical seal on top of the soil surface. Management considerations based on the results are presented. PMID:25721977

  7. Cytotoxicity assays to evaluate tannery effluents treated by photoelectrooxidation.

    PubMed

    Jaeger, N; Moraes, J P; Klauck, C R; Gehlen, G; Rodrigues, M A S; Ziulkoski, A L

    2015-12-01

    The advanced oxidation process (AOP) is used to increase the treatment efficiency of effluents however, it is necessary to compare the toxicity of treated and untreated effluents to evaluate if the decontamination process does not cause any biological harm. Cultured cells have been previously used to assess the genotoxic and cytotoxic potential of various compounds. Hence, the aim of this work was to assess the applicability of cytotoxicity assays to evaluate the toxicity related to the AOP treatment. Samples of an industrial effluent were collected after their treatment by a conventional method. Cytotoxicity of standard and AOP treated effluents was assessed in CRIB and HEp-2 cell line using the MTT and neutral red assays. We observed decrease at cell viability in the both assays (50% MTT and 13% NRU) when cells were exposed to the AOP treatment in the highest concentration. Thus, cytotoxic assays in cultured cells can be explored as an useful method to evaluate toxicity as well as to optimize effluents treatment process. PMID:26628242

  8. Bioplastic production using wood mill effluents as feedstock.

    PubMed

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media. PMID:21436556

  9. Exposure to volatile organic compounds and health risks among residents in an area affected by a petrochemical complex in Rayong, Thailand.

    PubMed

    Tanyanont, W; Vichit-Vadakan, N

    2012-01-01

    In Thailand, there is a growing concern regarding the possible effects of air pollution on the health of residents living near a petrochemical complex in Map Ta Phut Industrial Estate (MTPIE), Rayong Province, Thailand. We studied exposure to selected volatile organic compounds (VOCs) in Map Ta Phut and the association between residing near the petrochemical complex and respiratory ailments. We carried out a population-based cross-sectional study, utilizing health data regarding respiratory problems among adults collected as part of a Health Effects of Air Pollution study of residents living in Map Ta Phut Municipality, Thailand, using a standardized questionnaire. The distance from the subject's residence to the center of the MTPIE was mapped using a geographical information system (GIS). A total of 15,441 adults aged > or = 13 years who lived in Map Ta Phut Municipality for at least 1 year were included in the study. Multiple logistic regression models were used to examine the relationship between the distance between the subject's residence and the MTPIE and the presence of the respiratory problems during the previous 12 months. A 5 km distance was chosen as the maximum study radius. Volatile organic compounds were observed higher concentrations at sites downwind from the MTPIE, and closer to the MTPIE. Study subjects who lived closer to the MTPIE reported an odor more frequently than subjects who lived farther from the MTPIE. Living closer to the MTPIE was associated with more acute respiratory problems, but not more chronic respiratory problems than living farther from the MTPIE. Adults aged > or = 40 years were more likely to have respiratory symptoms and eye irritation than those aged < 40 years. Females were more likely to have dyspnea, wheezing and upper respiratory symptoms than males. Living near the MTPIE for more than 5 years was associated with an increased risk of wheezing and upper respiratory symptoms. PMID:23082571

  10. Treatment of effluents from uranium oxide production.

    PubMed

    Ladeira, A C Q; Gonçalves, J S; Morais, C A

    2011-01-01

    The nuclear fuel cycle comprises a series of industrial processes which involve the production of electricity from uranium in nuclear power reactors. In Brazil the conversion of uranium hexafluoride (UF6) into uranium dioxide (UO2) takes place in Resende (RJ) at the Nuclear Fuel Factory (FCN). The process generates liquid effluents with significant concentrations of uranium, which might be treated before being discharged into the environment. This study investigates the recovery of uranium from three distinct liquid effluents: one with a high carbonate content and the other with an elevated fluoride concentration. This paper also presents a study on carbonate removal from an effluent that consists of a water-methanol solution generated during the filtration of the yellow cake (ammonium uranyl tricarbonate). The results showed that: (1) the uranium from the carbonated solution can be recovered through the ion exchange technique using the strong base anionic resin IRA 910-U, as the carbonate has been removed as CO2 after heating; (2) the most suitable technique to recover uranium from the fluoride solution is its precipitation as (NH4)2UO4F2 (ammonium fluorouranate peroxide), (3) the solution free of carbonate can be added to the fluoride solution and the uranium from the final solution can be recovered by precipitation as ammonium fluorouranate peroxide as well; (4) the carbonate from the water-methanol solution can be recovered as calcium carbonate through the addition of calcium chloride, or it can be recovered as ammonium sulphate through the addition of sulphuric acid. The ammonium sulphate product can be used as a fertilizer. PMID:21473275

  11. Effects of brine addition on effluent toxicity and marine toxicity identification evaluation (TIE) manipulations

    SciTech Connect

    Ho, K.T.; Burgess, R.M. ); Mitchell, K. . Biology Dept.); Zappala, M. )

    1995-02-01

    Little information is available concerning the effect of salinity adjustment on effluent storage and toxicity identification evaluation (TIE) performance. These factors are important for accurate assessments of potential toxicity to marine organisms. The objective of this study was to determine (a) the effect of salinity adjustment using hypersaline brine on the toxicity of effluents stored up to 40 d, and (b) to determine the effect of salinity adjustment on TIE manipulations. Changes in effluent toxicity over time were examined by using a municipal and an industrial effluent. A toxicity time series was performed for 16 d for the industrial effluent and 40 d for the municipal effluent. Toxicity was measured with modified 48-h acute Mysidopsis bahia and Menidia beryllina tests. Results indicate that, compared to day 0 test results, effluent stored with brine had fewer significant changes in toxicity than did effluent stored without brine. To determine the effects of brine addition on TIE manipulations, the authors conducted a series of manipulations in which one aliquot of an effluent had brine added prior to the TIE manipulations and the other aliquot had brine added after the TIE manipulation. The manipulations conducted were EDTA addition, sodium thiosulfate addition, C[sub 18] extraction, aeration, filtration, and graduated pH manipulations. Toxicity was measured with the modified 48-h acute mysid test. Addition of brine had no effect on the outcome of TIE manipulations. They have concluded that it is operationally easier to add brine as soon as possible after sampling and that effluent tests should be conducted as soon as practical.

  12. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    PubMed Central

    Cao, Yujin; Zhang, Rubing; Sun, Chao; Cheng, Tao; Liu, Yuhua; Xian, Mo

    2013-01-01

    Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed. PMID:24396827

  13. Open-path FTIR air quality measurements at a petrochemical complex in Brazil

    SciTech Connect

    Kagann, R.H.; Neves, N.; Villas Boas, F.

    1994-12-31

    An open-path FTIR sensor was used to determine the characteristic air pollutants at ten different locations in a large petrochemical complex in Bahia, Brazil. These measurements were part of an initial survey in preparation for a measurement program which will use both open path FTIR and GC/MS analysis of collected air samples to characterize the air quality within the complex and to obtain emission rates of the individual sources. In this initial survey, a total 17 different compounds were measured with the FTIR sensor, including the polar species, ammonia and acrylonitrile.

  14. Sleep quality and general health status of employees exposed to extremely low frequency magnetic fields in a petrochemical complex

    PubMed Central

    2014-01-01

    Background Advances in science and technology of electrical equipment, despite increasing human welfare in everyday life, have increased the number of people exposed to Electro-Magnetic Fields (EMFs). Because of possible adverse effects on the health of exposed individuals, the EMFs have being the center of attention. This study was performed to determine possible correlation between Extremely Low Frequency Electro-Magnetic Fields (ELF EMFs) and sleep quality and public health of those working in substation units of a petrochemical complex in southern Iran. Materials and method To begin with, magnetic flux density was measured at different parts of a Control Building and two substations in accordance with IEEE std 644–1994. Subsequently, the questionnaires “Pittsburgh Sleep Quality Index” (PSQI) and “General Health Quality (GHQ)” were used to investigate relationship between ELF exposure level and sleep quality and public health, respectively. Both questionnaires were placed at disposal of a total number of 40 workers at the complex. The filled out questionnaires were analyzed by T-test, Duncan and the Chi-square tests. Results The obtained results revealed that 28% of those in case group suffered from poor health status and 61% were diagnosed with a sleep disorder. However, all members in control group were in good health condition and only 4.5% of them had undesirable sleep quality. Conclusion In spite of a significant difference between the case and control groups in terms of sleep quality and general health, no significant relationship was found between the exposure level and sleep quality and general health. It is worth noting that the measured EMF values were lower than the standard limits recommended by American Conference of Industrial Hygienists (ACGIH). However, given the uncertainties about the pathogenic effects caused by exposure to ELF EMFs, further epidemiological studies and periodic testing of personnel working in high voltage substations are of utmost importance. PMID:24904752

  15. The potential of organic substrates based on mushroom substrate and straw to dissipate fungicides contained in effluents from the fruit-packaging industry - Is there a role for Pleurotus ostreatus?

    PubMed

    Karas, Panagiotis A; Makri, Sotirina; Papadopoulou, Evangelia S; Ehaliotis, Constantinos; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G

    2016-02-01

    Citrus fruit-packaging plants (FPP) produce large wastewater volumes with high loads of fungicides like ortho-phenylphenol (OPP) and imazalil (IMZ). No methods are in place for the treatment of those effluents and biobeds appear as a viable alternative. We employed a column study to investigate the potential of spent mushroom substrate (SMS) of Pleurotus ostreatus, either alone or in mixture with straw and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. The role of P. ostreatus on fungicides dissipation was also investigated by studying in parallel the performance of fresh mushroom substrate of P. ostreatus (FMS) and measuring lignolytic enzymatic activity in the leachates. All substrates effectively reduced the leaching of OPP and IMZ which corresponded to 0.014-1.1% and 0.120-0.420% of their initial amounts respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25 by vol) offered the most efficient removal of OPP and IMZ from wastewaters respectively. Regardless of the substrate, OPP was restricted in the top 0-20cm of the columns and was bioavailable (extractable with water), compared to IMZ which was less bioavailable (extractable with acetonitrile) but diffused at deeper layers (20-50, 50-80cm) in the SMS- and Straw/Soil-columns. PLFAs showed that fungal abundance was significantly lower in the top layer of all substrates from where the highest pesticide amounts were recovered suggesting an inhibitory effect of fungicides on total fungi in the substrates tested. Our data suggest that biobeds packed with SMS-rich substrates could ensure the efficient removal of IMZ and OPP from wastewaters of citrus FPP. PMID:26624931

  16. Anaerobic treatment of pulp and paper mill effluents--status quo and new developments.

    PubMed

    Habets, Leo; Driessen, Willie

    2007-01-01

    Since the early 1980s, anaerobic treatment of industrial effluents has found widespread application in the pulp and paper industry. Over 200 installations are treating a large variety of different pulp and paper mill effluents. Amongst various anaerobic systems the UASB and IC are the most applied anaerobic reactor systems. Anaerobic treatment is well feasible for effluents originated from recycle paper mills, mechanical pulping (peroxide bleached), semi-chemical pulping and sulphite and kraft evaporator condensates. The advantages of anaerobic pre-treatment are (1) net production of renewable energy (biogas), (2) minimized bio-solids production, (3) minimal footprint and (4) reduced emission of greenhouse gases. Via in-line application of anaerobic treatment in closed circuits (paper kidney technology) further savings on cost of fresh water intake and effluent discharge levies are generated. PMID:17486855

  17. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  18. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  19. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  20. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  1. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  2. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  3. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  4. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  5. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  6. Characteristics of treated effluents and their potential applications for producing concrete.

    PubMed

    Noruzman, Ainul Haezah; Muhammad, Bala; Ismail, Mohammad; Abdul-Majid, Zaiton

    2012-11-15

    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones. PMID:22705857

  7. Industrial water reuse in Texas

    SciTech Connect

    Hoflinan, H.W. Jr.

    1999-11-01

    The use of treated wastewater effluent for industrial purposes holds the promise of an economical source of water in a State with limited conventional fresh water resources such as Texas. By combining water reuse and increased water use efficiency with the development of conventional resources such as groundwater and new surface water reservoirs, they can ensure that water is available for industrial growth into the foreseeable future. Reuse holds some specific advantages as a future resource for industry, including: (1) Effluent from municipal wastewater plants is a drought-proof water source; (2) Treated effluent is the ONLY source of water that automatically increases in volume as economic and population growth occurs in the community; and (3) The treated effluent is usually located near the intended use, not at a yet-to-be developed distant reservoir or well field. In order to provide for the orderly, environmentally sound, and economical development of the State`s water resources, Texas has embarked on a major new water resource planning effort under Senate Bill 1 which was passed by the Texas Legislature in 1997. Industry should carefully follow this process since it provides both an opportunity for industry to make its needs known and specifically provides economic and tax incentives for industries which employ water reuse and water conservation in the future.

  8. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales).

    PubMed

    Chia, Mathias A; Musa, Rilwan I

    2014-03-01

    The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing. PMID:24676177

  9. Laboratory testing protocol for the impact of dispersed petrochemicals on seagrass.

    PubMed

    Wilson, K G; Ralph, P J

    2012-11-01

    To improve the effectiveness of oil spill mitigation, we developed a rapid, logistically simple protocol to detect petrochemical stress on seagrass. Sections of leaf blades from Zostera muelleri subsp. capricorni were exposed to the water accommodated fraction (WAF) of non-dispersed and dispersed Tapis crude oil and fuel oil (IFO-380) for 5h. Photosynthetic health was monitored by assessing changes in effective quantum yield of photosystem II (ΔF/F(m)(')) and chlorophyll a pigment concentrations. Loss of total petroleum hydrocarbons (TPH) was measured using an oil-in-water fluorometer, whilst GC-MS analyses quantified the hydrocarbon components within each treatment. Few significant differences were detected in the chlorophyll a pigment analyses; however, ΔF/F(m)(') appeared sensitive to petrochemical exposure. Dispersing both types of oil resulted in a substantial increase in the TPH of the WAF and was generally correlated with a greater physiological impact to the seagrass health, compared with the oil alone. PMID:22959173

  10. Use of an open-path FTIR sensor at Camacari Petrochemical Complex--Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Neves, Neuza; Couto, Elizabeth d. R.; Kagann, Robert H.

    1995-05-01

    CETREL--Empresa de Protecao Ambiental, is an environmental engineering company, which is owned by the member companies in the Camacari Petrochemical Complex, the largest petrochemical complex in Brazil. CETREL operates a centralized waste treatment plant, treatment and disposal facilities, an incineration unit, groundwater monitoring and air quality monitoring networks. The air monitoring network was designed based on mathematical modeling, and the results showed that the monoitoring of hydrocarbons is important not just within the complex but also at the area surrounding the complex. There are presently no regulations for hydrocarbons in Brazil, however they are monitored due to concerns about health problems arising from human exposure. The network has eight multiparameter monitoring stations, located at the villages nearby, where hydrocarbons are sampled with Summa canisters and subsequently analyzed with a GC/MS, using a Cryogenic trap at the interface. The open-path FTIR is used to monitor at the individual plants and in the areas in between because it is more efficient and costs less than it would to attempt to achieve the same level of coverage using the canisters. Ten locations were selected based on mathematical modeling and knowledge of the likely emission sources. Since August 1993, there have been five different measurement campaigns.

  11. Petroleum industry in Iran

    SciTech Connect

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  12. "Black"-Appearing Peritoneal Effluent.

    PubMed

    Headley, Carol M; Naseer, Adnan; Ramaiah, Manjunath; Wall, Barry; Gyamlani, Geeta

    2015-01-01

    When encountering unusually appearing dialysate effluent from a patient doing peri- toneal dialysis, it is important to review the patient's recent exposures. In the case of "black"-appearing dialysate effluent, consideration needs to be given to the possibility of someone having undergone a colonoscopy and having tattooing with India ink. Nephrology nurses are frequently the first to be notified when there has been a change in the character of a patient's peritoneal dialysis dialysate effluent. This article describes a case of "black"-appearing dialysate and includes some of the potential differentials that were considered in the evaluation process. Even though "black"-appearing dialysate is a rare occurrence, nephrology nurses need to be aware of some of the potential etiologies, including exposure to India ink. PMID:26875232

  13. Ureolytic phosphate precipitation from anaerobic effluents.

    PubMed

    Desmidt, E; Verstraete, W; Dick, J; Meesschaert, B D; Carballa, M

    2009-01-01

    In this work, the elimination of phosphate from industrial anaerobic effluents was evaluated at lab-scale. For that purpose, the ureolytic method previously developed for the precipitation of Ca(2 + ) from wastewater as calcite was adapted for the precipitation of phosphate as struvite. In the first part of the study, computer simulations using MAPLE and PHREEQC were performed to model phosphate precipitation from wastewater as struvite. The results obtained showed that relative high concentrations of ammonium and magnesium are needed to precipitate phosphate as struvite. The total molar concentrations ratio of Mg(2 + ):PO(4) (3-)-P:NH(4) (+) required to decrease PO(4) (3-)-P concentrations from 20 to 6 mg PO(4) (3-)-P/l at pH 8.4-8.5 was estimated on 4.6:1:8. In the second part of the study, lab-scale experiments with either synthetic wastewater or the anaerobic effluent from a vegetable processing industry were carried out in batch and continuous mode. Overall, the continuous operation at a hydraulic retention time (HRT) of 2.4 h and an added molar concentration [Mg(2 + )]:[PO(4) (3-)-P]:[NH(4) (+)] ratio of 1.6:1:2.3 resulted in a constant pH value in the reactor (around 8.5) and an efficient phosphate removal (>90%) to residual levels of 1-2 mg PO(4) (3-)-P/l. Different operational conditions, such as the initial phosphate concentration, HRT and the use of CaCl(2) or MgO instead of MgCl(2), were analysed and the performance of the reactor was satisfactory under a broad range of them. Yet, overall, optimal results (higher phosphate removal) were obtained with MgCl(2). PMID:19474493

  14. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  15. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  16. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  17. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  18. An evaluation of the whole effluent toxicity test method

    SciTech Connect

    Osteen, D.V.

    1999-12-17

    Whole effluent toxicity (WET) testing has become increasingly more important to the Environmental Protection Agency (EPA) and the States in the permitting of wastewater discharges from industry and municipalities. The primary purpose of the WET test is to protect aquatic life by predicting the effect of an effluent on the receiving stream. However, there are both scientific and regulatory concerns that using WET tests to regulate industrial effluents may result in either false positives and/or false negatives. In order to realistically predict the effect of an effluent on the receiving stream, the test should be as representative as possible of the conditions in the receiving stream. Studies (Rand and Petrocelli 1985) suggested several criteria for an ideal aquatic toxicity test organism, one of which is that the organism be indigenous to, or representative of, the ecosystem receiving the effluent. The other component needed in the development of a predictive test is the use of the receiving stream water or similar synthetic water as the control and dilution water in the test method. Use of an indigenous species and receiving water in the test should help reduce the variability in the method and allow the test to predict the effect of the effluent on the receiving stream. The experience with toxicity testing at the Savannah River Site (SRS) has yielded inconclusive data because of the inconsistency and unreliability of the results. The SRS contention is that the WET method in its present form does not adequately mimic actual biological/chemical conditions of the receiving streams and is neither reasonable nor accurate. This paper discusses the rationale for such a position by SRS on toxicity testing in terms of historical permitting requirements, outfall effluent test results, standard test method evaluation, scientific review of alternate test species, and concerns over the test method expressed by other organizations. This paper presents the Savannah River Site position that the EPA test is neither reasonable nor accurate and thus cannot adequately establish the impact of NPDES outfall discharges on receiving streams.

  19. A comparative study of toxicity identification using Daphnia magna and Tigriopus japonicus: implications of establishing effluent discharge limits in Korea.

    PubMed

    Kang, Sung-Wook; Seo, Jaehwan; Han, Jeonghoon; Lee, Jae-Seong; Jung, Jinho

    2011-01-01

    In Korea, the new permission criteria for industrial effluents based on Daphnia magna acute toxicity tests will be gradually implemented starting from 2011. Thus, in this study, toxicity assessment and identification using a marine species (Tigriopus japonicus) and the freshwater species (D. magna) was comparatively investigated. Effluent from an acid mine drainage treatment plant showed acute toxicity toward both organisms due to low pH, which was removed by neutralization of the effluent. Additionally, evaluation of the effluent of an electronics company revealed that Cu was attributable to the observed toxicity, and the effluent was more toxic toward T. japonicus than D. magna. Moreover, effluents from a metal plating factory were acutely toxic toward D. magna (6.50 TU), while they were not toxic against T. japonicus. Toxicity identification revealed that the high level of Cl- (12,841 mg L(-1)) was the cause of toxicity. Thus, the effluents had no effect on the marine species, T. japonicus. These findings suggest that a marine species rather than a freshwater species is more desirable for toxicity assessment of industrial effluent discharged into the saltwater, and thus should be considered in the legislation of toxicity-based discharge limits in Korea. PMID:21172718

  20. Predictive maintenance program of cathodic protection systems in a petrochemical complex

    SciTech Connect

    Niembro, A.M.

    1997-09-01

    This article describes the results of the 5-year cathodic protection maintenance program for the underground and submerged structures on a Petrochemical Complex. It shows the protection coverage before the program started, the progress at the first year, the results after the program had been implemented, diagnostic and troubleshooting methodology, experiences in anode retrofitting, installation of new systems, and corrective actions for attaining efficient cathodic protection systems. The main actions taken were pipe-to-soil potential surveys at six month intervals, impressed current and sacrificial anode current measurements, two-month rectifier monitoring and electric circuits inspection, troubleshooting, rehabilitation of systems out of operation, and a 5-year project for design and construction of new required systems. The excellent results obtained permit the conclusion that only a conscious cathodic protection maintenance program can provide optimal performance of the CP systems and continuous safe and efficient operation of all the installations of the Complex have improved cost effectiveness for the company.

  1. Bioremediation of Pharmaceuticals, Pesticides, and Petrochemicals with Gomeya/Cow Dung

    PubMed Central

    Randhawa, Gurpreet Kaur; Kullar, Jagdev Singh

    2011-01-01

    Use and misuse of pharmaceuticals, pesticides, and petrochemicals by man is causing havoc with nature, as they persist as such or as their toxic metabolites. These pollutants bioaccumulate in environment, and they ultimately reach man through various means. They are hazardous because of potential toxicity, mutagenicity, carcinogenicity, and genotoxicity. To rejuvenate nature, remediation methods currently available are usually expensive and might convert one toxic pollutant to another. Bioremediation methods use naturally occurring microorganisms to detoxify man-made pollutants so that they change pollutants to innocuous products that make soil fertile in the process. Taking cue from Ayurveda, Gomeya/cow dung is used as an excellent bioremediation method. Thus, utilizing freely available cow dung as slurry or after composting in rural areas, is a cheap and effective measure to bioremediate the harmful pollutants. Yet, more research in this direction is warranted to bioremediate nonbiodegradable, potentially toxic pollutants. PMID:22084712

  2. Voluntary GHG reduction of industrial sectors in Taiwan.

    PubMed

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. PMID:22627150

  3. Identification of the need for research on chemical tracers to detect pulp mill effluent exposure

    SciTech Connect

    Ali, N.; Humphrey, S.; Van Coillie, R.

    1995-12-31

    A critical factor in the assessment of the effects of effluent exposure on sampled biota is the verification of exposure in nearfield and farfield zones and verification of the lack of exposure in the reference areas. At mills with rapid dilution of effluent, or where physical barriers to fish movement between exposure and reference areas do not exist, an appropriate fish tracer must be used. In Canada, because of multiple industrial and municipal discharges at certain pulp mill sites, it is difficult to assess the effects of the mill effluent in isolation from those of neighboring influences unless tracers specific to the different effluents are used. Examples of substances proposed as tracers for pulp mill effluent include resin acids, chloroguaiacols, chlorophenols, dioxin, and furan congeners. This paper gives a summary of tracer substances used to date and the problems encountered in selecting and measuring suitable chemical tracers for regulated environmental effects monitoring studies at Canadian mills. Based on their experience, there is urgent need for research into appropriate tracer substances for pulp mill as well as other industrial and municipal effluents.

  4. Bioremediation of industrial waste by using bat guano.

    PubMed

    Gadhikar, Y A; Zade, V S; Khadse, T

    2007-04-01

    The present investigation is an attempt to study the effect of bat guano with its rich microbial flora on bioremediation of industrial waste effluents. The results revealed that within a period of 15 days, there was a remarkable reduction in the Chemical Oxygen Demand (COD) values up to 50%-70%, thus stabilizing the industrial effluents. In addition to this,values of various physico-chemical parameters were notably found to reduce suggesting that industrial effluents can be effectively treated by bat guano. PMID:18476410

  5. Opportunities for the chemical industry in space, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The chemical/petrochemical industry devotes a large percentage of its gross income to research and development, with much of its R and D of a long-term nature. As the chemical industry is examined as a candidate for space investigations, it is readily apparent that research and development in the space environment may lead to attractive commercial opportunities. The advantages of low gravity manufacturing, with a particular emphasis on chemical catalysts, are presented herein specifically for the chemical industry. Research from the Skylab program and Apollo Soyuz test project is reviewed, including acoustic levitation, crystal growth, and container less melts. Space processing of composite materials, alloys, and coatings is also discussed.

  6. Strategies for chromium bioremediation of tannery effluent.

    PubMed

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and bioreduction methods that rely on free cells for bioremediation suffer from Cr6 toxicity, and cell damage. Therefore, immobilization of microbial cell biomass enhances bioremediation and renders industrial bioremediation processes more economically viable from reduced free-cells toxicity, easier separation of biosorbents from the tannery effluent, ability to achieve multiple biosorption cycles, and desorption (elution) of metal(s) from matrices for reuse. Thus, microbial bioremediation can be a cost competitive strategy and beneficial bioresource for removing many hazardous contaminants from tannery and other industrial wastes. PMID:22350558

  7. EPIDEMIOLOGICAL STUDY OF THE INCIDENCE OF CANCER AS RELATED TO INDUSTRIAL EMISSIONS IN CONTRA COSTA COUNTY, CALIFORNIA

    EPA Science Inventory

    The purpose of this study was to examine the relationship of lung cancer incidence in Contra Costa County to ambient levels of air pollution. It was suspected that the presence of heavy industry in the county, mainly petrochemical plants and oil refineries, could be a contributin...

  8. Liquid Effluents Program mission analysis

    SciTech Connect

    Lowe, S.S.

    1994-09-27

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ``capstone`` team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan.

  9. Survey of perfluorinated alkyl acids in Finnish effluents, storm water, landfill leachate and sludge.

    PubMed

    Perkola, Noora; Sainio, Pirjo

    2013-11-01

    The objective of the Control of Hazardous Substances in the Baltic Sea (COHIBA) project is to support the implementation of the HELCOM Baltic Sea Action Plan regarding hazardous substances by developing joint actions to achieve the goal of "a Baltic Sea with life undisturbed by hazardous substances". One aim in the project was to identify the most important sources of 11 hazardous substances of special concern in the Baltic Sea. Among them are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In this study, four perfluorinated alkyl acids (PFAAs) were studied: PFOA, PFOS, perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA). The occurrence of PFAAs in municipal and industrial wastewater treatment plant effluents (MWWTP1-3, IWWTP1), target industry effluent, storm water, landfill leachate and sludge was studied. Effluents were analysed six times and storm water, leachate and sludge were analysed twice, once in the warm season and once in the cold, during a 1-year sampling campaign. PFOS prevailed in two municipal effluents (MWWTP1 and 3) and industrial effluent (IWWTP1; 7.8-14, 8.0-640 and 320-1,300 ng/l, respectively). However, in one municipal effluent (MWWTP2) PFOA was, in a majority of sampling occasions, the predominant PFAA (9-15 ng/l) followed by PFOS (3.8-20 ng/l). The highest PFAA loads of the municipal effluents were found in the MWWTP3 receiving the biggest portion of industrial wastewater. In storm water the highest concentration was found for PFHxA (17 ng/l). The highest concentration of PFOS and PFOA were 9.9 and 5.1 ng/l, respectively. PFOS, PFOA and PFHxA were detected in every effluent, storm water and landfill leachate sample, whereas PFDA was detected in most of the samples (77%). In the target industry, PFOS concentrations varied between 1,400 and 18,000 μg/l. In addition, on one sampling occasion PFOA and PFHxA were found (0.027 and 0.009 μg/l, respectively). For effluents, PFAA mass flows into the Baltic Sea were calculated. For municipal wastewater treatment plants average mass flows per day varied for PFOS between 1,073 and 38,880 mg/day, for PFOA 960 and 2,700 mg/day, for PFHxA 408 and 1,269 mg/day and for PFDA 84 and 270 mg/day. In IWWTP mass flows for PFOS, PFOA, PFHxA and PFDA were 495 mg/d, 28 mg/d, 23 mg/d and 0.6 mg/g, respectively. PMID:23512237

  10. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  11. Effluent treatment for nuclear thermal propulsion ground testing

    NASA Technical Reports Server (NTRS)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  12. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity.

    PubMed

    Yang, Qi; Xiong, Panpan; Ding, Pengyuan; Chu, Libing; Wang, Jianlong

    2015-11-01

    Microaerobic hydrolysis-acidification (MHA)-anoxic-oxic (A/O) processes were developed to treat actual petrochemical wastewater. The results showed that the overall COD removal efficiency was 72-79% at HRT=20h, and MHA accounted for 33-42% of COD removal, exhibiting good efficiency of acidogenic fermentation. Ammonium removal was more than 94%. The main pollutants in the influent were identified to be benzene, ketone, alcohols, amine, nitrile and phenols by GC-MS, and the majority of pollutants could be removed by MHA-A/O treatment. Proteobacteria was the most dominant bacteria in the system, accounting for more than 55% of the reads. The predominant genera in MHA, anoxic and oxic reactors were Anaerolineaceae and Sulfuritalea, Lactococcus and Blastocatella, and Saprospiraceae uncultured and Nitrosomonadaceae, respectively. This treatment system exhibited good performance in degrading the complex compounds in the petrochemical wastewater. PMID:26233329

  13. Feasibility study on the utilization of rubber latex effluent for producing bacterial biopolymers.

    PubMed

    Tang, S N; Fakhru'l-Razi, A; Hassan, M A; Karim, M I

    1999-01-01

    Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially. PMID:10595441

  14. REDUCTION OF TOXICITY TO AQUATIC ORGANISMS BY INDUSTRIAL WASTEWATER TREATMENT

    EPA Science Inventory

    The specific goal of this research was to conduct 24-hour static acute bioassays with 'untreated' influent and 'treated' effluent using fathead minnows (Pimephales promelas) and water flea (Daphnia magna) to biologically evaluate the effectiveness of industrial wastewater facilit...

  15. Residential exposure to petrochemicals and the risk of leukemia: using geographic information system tools to estimate individual-level residential exposure.

    PubMed

    Yu, Chu-Ling; Wang, Su-Fen; Pan, Pi-Chen; Wu, Ming-Tsang; Ho, Chi-Kung; Smith, Thomas J; Li, Yi; Pothier, Lucille; Christiani, David C

    2006-08-01

    The authors conducted a population-based, case-control study in Kaohsiung, southern Taiwan, Republic of China, to investigate the association between residential petrochemical exposure and leukemia risk among subjects 29 years of age and younger. Between November 1997 and June 2003, 171 cases and 410 controls matched for age and sex were recruited. Since assessment of petrochemical impacts depends on accurate exposure estimates, the authors developed a procedure using geographic information system tools to assign subjects' exposure. The resulting individual-level exposure estimates (the exposure opportunity score) are an integrated exposure measure that accounts for subjects' mobility, length of stay at each residence, distance to petrochemical plant(s), monthly prevailing wind direction, and multiple petrochemical pollution sources. Different conditional logistic regression models were fitted for subjects aged 0-19 and 20-29 years to evaluate separately childhood versus adulthood leukemia. No overall association was observed for the younger age group. However, residential petrochemical exposure was a significant risk factor for leukemia for the older age group. For one unit of increase in the log-transformed exposure opportunity score, the adjusted odds ratio was 1.54 (95 percent confidence interval: 1.14, 2.09). This study illustrates the utility of geographic information system tools for providing refined exposure estimates for residential exposure to petrochemical pollution. PMID:16754633

  16. Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi.

    PubMed

    Raghukumar, Chandralata; D'Souza-Ticlo, Donna; Verma, Ashutosh Kumar

    2008-01-01

    Some of the industries that discharge highly colored effluents are paper and pulp mills, textiles and dye-making industries, alcohol distilleries, and leather industries. Terrestrial white-rot basidiomycetous fungi and their lignin-degrading enzymes laccase, manganese-peroxidase and lignin peroxidases are useful in the treatment of colored industrial effluents and other xenobiotics. Free mycelia, mycelial pellets, immobilized fungi or their lignin-degrading enzymes from terrestrial fungi have been reported in treatment of several effluents. Marine obligate or facultative (marine-derived) fungi may have unique properties but have not been explored sufficiently for this purpose. This article presents a critical review of bioremediation potential of such fungi and their lignin-degrading enzymes in comparison with the state-of-the-art in terrestrial white-rot fungi. PMID:19003603

  17. 40 CFR 434.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology economically achievable (BAT). 434.23 Section 434.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES...

  18. Excitation-emission matrices applied to the study of urban effluent discharges in the Chubut River (Patagonia, Argentina).

    PubMed

    Chiarandini Fiore, Jessica Paola; Scapini, María del Carmen; Olivieri, Alejandro César

    2013-08-01

    Natural and contaminated waters of the final reaches of the Chubut River (Patagonia, Argentina) were studied to obtain information about river organic matter and effects of domestic and industrial discharges (fishery effluents and sewages). Fluorescence Excitation-Emission Matrices (EEMs) were obtained from samples only filtered (0.45 μm) and diluted, if necessary, to avoid the inner filter effect. In addition, physicochemical parameters were measured to know the quality of the water and the effluents. Results show that EEMs allow a rapid and simple control of the effluents from fisheries and domestic sewage in Chubut River estuary, necessary to take management decisions. PMID:23325315

  19. Marine Complex Effluent Toxicity Program: Test sensitivity, repeatability and relevance to receiving water toxicity

    SciTech Connect

    Schimmel, S.C.; Morrison, G.E.; Heber, M.A.

    1989-01-01

    In March 1984, the U.S. Environmental Protection Agency (EPA) issued a significant change in procedures regulating toxic materials in effluents through the National Pollutant Discharge Elimination System (NPDES). Concurrent with this toxicity-based effluent control policy, the EPA established the marine/estuarine component of the Complex Effluent Toxicity Testing Program (CETTP). The CETTP was established to provide reliable, sensitive and environmentally meaningful test protocols that could be used to detect toxic industrial and municipal effluents within the NPDES. Five toxicity test methods have been developed and validated for the program since 1984 using a marine plant (Champia parvula), two invertebrate species (Arbacia punctulata and Mysidopsis bahia) and two fish species (Cyprinodon variegatus and Menidia beryllina). The laboratory precision test results for the methods were acceptable; coefficients of variation for all methods were less than 54%, averaging 34%. Numerous field tests were conducted using these methods and the results indicate that tests on receiving waters (in which effluent concentrations could be estimated through controlled dye studies) accurately reflect the toxicity of the effluents measured directly. Receiving water impacts, when observed, were generally near-field in nature.

  20. Ovulation but not milt production is inhibited in fathead minnows (Pimephales promelas) exposed to a reproductively inhibitory pulp mill effluent

    PubMed Central

    2014-01-01

    Background A 5-day fathead minnow (FHM) spawning assay is used by industry to monitor pulp mill effluent quality, with some mill effluents capable of completely inhibiting spawning. The purpose of this report is to characterize the effect of an inhibitory effluent on egg and milt production in FHM. Methods Eight tanks were treated with an inhibitory effluent while eight were kept with clean water. Each tank contained two males and four females as per the 5-day FHM spawning assay used by industry. Females were stripped of ovulated eggs and males of milt in four effluent-exposed and four control tanks. Eggs oviposited in every tank were also counted and checked for fertilization and data analyzed with 2-way ANOVA. Results We show that female, but not male, fathead minnow reproductive function is impaired in the 5-day fathead minnow spawning assay used by industry to evaluate pulp mill effluent quality in Canada. Milt production was not changed in the control or exposed males mid-way and at the end of the five day exposure (p > 0.05; n = 8). Total egg production (stripped + oviposited) was impaired (p < 0.05) in fathead minnows exposed to effluent (288 eggs/tank, n = 4 tanks) compared to those in control tanks (753 eggs/tank, n = 4 tanks). Conclusions Our results indicate that males are able to detect female signals and prepare appropriately for spawning while in females inhibition of ovulation is occurring somewhere along the hypothalamus-pituitary-gonad reproductive axis. These results suggest female-specific neuroendocrine disruption and provide mechanistic insight into an assay used by industry to assess pulp mill effluent quality. PMID:24884628

  1. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    PubMed

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. PMID:26386413

  2. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  3. Occupational effects on the health of workers and laboratory technicians in petrochemical plants.

    PubMed

    Kassarov, M; Christova, N; Dambova, M

    1998-09-01

    A study was conducted over a 3-year period on the morbidity in petrochemical plants producing xylene, benzene, phenol and acetone, and in the related service laboratory. The incidence rate of system and target organ disorders due to the adverse effects of benzene, toluene, xylene, phenol, acetone, etc., was calculated. The exposure to chemical hazards (except benzene) of plant workers was not high--the concentrations were below the maximum allowable concentrations (MACs) and the duration of contact was not longer than 270 min per 8-h shift. The duration of exposure for laboratory technicians (all female) comprised an entire 8-h working shift, but concentrations of the chemical substances did not exceed MACs. The incidence rate of system and target organ disorders as a total of all production plants was 6% on average over the 3-year period, and for laboratory workers it was 10.3%. The average total incidence rate (comprising all diseases) was 42% in the production plants and comparatively greater in the laboratory--56% as an average for the period. Since laboratory technician posts are well mainly by women in Bulgaria, recommendations are to minimize contact with chemical hazards for women of child-bearing age, as was the case for benzene. PMID:9827889

  4. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    PubMed

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-01

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams. PMID:27067493

  5. The Sulfide Stress Corrosion Cracking Characteristics of the Pipe Weld in the Petrochemical Plant

    NASA Astrophysics Data System (ADS)

    Lee, Gyu Young; Bae, Dong Ho

    Sulfide stress corrosion cracking (SSCC) in crude oil field environment including hydrogen sulfide (H2S) has been recognized as a materials failure mechanism. Welding residual stress generation and metallurgical change by fusion welding process increase the cracking driving force and reduce the resistance of brittle fracture as well as environmental fracture. On the base of this understanding, firstly, we analyzed welding residual stresses of welded ASTM A106 Gr B steel pipe using in the petrochemical plant. And next, SSCC tests were conducted to assess SSCC resistance of the weld with smooth specimens. From the result, influence of temperature on corrosion rate was sensitive in order of HAZ, base metal and weld metal. Therefore, the most sensitive region in the weld is HAZ, and its corrosion rate increases with the temperature of corrosion environment increase. And failure positions of the most cases among failed specimens were at HAZ of the weld. Low limit (σSSCC) of A106 Gr B steel pipe was assessed as 0.6 σy (7271.6N)

  6. Contamination monitoring of snow cover in the vicinity of Tomsk petrochemical plant

    NASA Astrophysics Data System (ADS)

    Talovskaya, Anna V.; Filimonenko, Ekaterina A.; Yazikov, Egor G.; Nadeina, Luisa V.

    2014-11-01

    Petroleum refineries may emit large quantities of pollutants. Tomsk Petrochemical plant impact on the air quality. Most elements associated with the emitted aerosols that are sometimes under-reported or even not cataloged. Because snow is an efficient scavenger of the emitted aerosols, it offers for identifying contaminants. Herein, we present the element concentrations in the insoluble fraction of aerosols in snow samples collected between March 2009 and March 2013. We also develop strategies to identify the marker elements for snow cover contamination in the plant vicinity. In addition, the aerosols transfer was indicated at the distances. Samples were measured using instrumental neutron activation analysis and flameless atomic absorption method. Results show that As, Hg, Br, Sb and Zn were found to be the predominated elements alone with traces of other analyzed elements. Burning gas in flare's plant could be proved to be a source for the toxic and mobile elements Hg, Sb and Br. It is identified that aerosols fallouts degrease away from the plant at a distance from 300 to 1500 m. This study revealed that element concentration did not significant changed between 2009 and 2013.

  7. Improving hydrolysis acidification by limited aeration in the pretreatment of petrochemical wastewater.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Wang, Peichao; Guo, Shujun

    2015-10-01

    Petrochemical wastewater was pretreated by hydrolysis acidification to improve the biodegradation and treatability on limited aeration conditions. The results showed limited aeration with DO from 0.2 to 0.3mg/L (average ORP was -210 mV) was the best condition. The BOD5/COD of influent was 0.23, and it increased to 0.43 on this condition. Limited aeration can obviously reduce the reduction of SO4(2-), reducing the generation of toxic gas H2S, and almost no H2S can be detected in the off-gas. The sulfate reducing bacteria (SRB) diversity and abundance on limited aeration condition was obviously inhibited. Limited aeration condition was benefit for the removal of benzene ring organics, such as benzene, toluene, ethylbenzene and xylenes (BTEX), improving the toxicity and treatability of the wastewater. Based on the experiment results, an anaerobic hydrolysis acidification tank (100,000 m(3)) has been transformed into limited aeration hydrolysis acidification tank and it runs well. PMID:26210137

  8. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge.

    PubMed

    Chen, Jianbiao; Mu, Lin; Jiang, Bo; Yin, Hongchao; Song, Xigeng; Li, Aimin

    2015-09-01

    The pyrolysis characteristics of petrochemical wastewater sludge (PS) were evaluated using TG/DSC-FTIR and fixed-bed reactor with GC. TGA experiments indicated that the pyrolysis of PS proceeded in three phases, and the thermographs shifted to higher temperatures with increasing heating rate. Chars FTIR showed that the absorption of O-H, C-H, C=O and C-C decreased with pyrolysis temperatures increasing. Gases FTIR correspondingly showed that H2O, CO, and CH4 generated at higher temperatures. For the fixed-bed reactor tests, H2 and CO were relatively higher in the pyrolysis gases, and CH4 was negligible at 436K. The kinetic triplets of PS pyrolysis were estimated by Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and integral master-plots method. The results suggested that the most potential kinetic models for the first and second phase were the order reaction model, while the random nucleation and nuclei growth model for the third phase. PMID:26004556

  9. A REVIEW OF RESEARCH NEEDS FOR DAIRY SHED EFFLUENT MANAGEMENT, STATE OF VICTORIA, AUSTRALIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This technical report provides a brief review of current activities in dairy effluent management in the Victorian (Australia) dairy industry, and recommendations for future research priorities to be potentially supported by the Division of Agricultural Development in the Department of Primary Indust...

  10. EFFLUENT AND AMBIENT TOXICITY TESTING IN THE GOETA AELV AND VISKAN RIVERS, SWEDEN

    EPA Science Inventory

    A joint United States-Sweden effluent field study on the Gota Alv River was conducted on site in Sweden in the fall of 1985. The Gota Alv River has a mean flow of 575 cu m/s and is the largest river in Sweden. There are many industrial dischargers along the river and Sweden has b...

  11. Treatment of textile dye plant effluent by nanofiltration membrane

    SciTech Connect

    Xu, Y.; Lebrun, R.E.; Gallo, P.J.; Blond, P.

    1999-09-01

    The study was concerned primarily with characterization of the NF45 membrane. Its pure water permeability, the mass transfer coefficient of NaCl, and the mean radius of the membrane pores were determined. Experiments run with five pure dye solutions and an industrial dye pulp solution confirmed the potential of nanofiltration membrane separation for the treatment of textile dye plant effluent. The effects of such significant parameters as initial solution concentration, transmembrane pressure, and type of dye on two fundamental characteristics of nanofiltration (flux and separation factor) were studied.

  12. ALGAL BIOASSAYS OF INDUSTRIAL AND ENERGY PROCESS EFFLUENTS

    EPA Science Inventory

    This review presents laboratory data and their interpretation with regard to effects of pollutants on marine and freshwater unicellular algae. Stimulation and inhibition of growth are considered to be equally undesirable. It is suggested that a search for new species for use in t...

  13. The distance-to-source trend in vanadium and arsenic exposures for residents living near a petrochemical complex.

    PubMed

    Yuan, Tzu-Hsuen; Chio, Chia-Pin; Shie, Ruei-Hao; Pien, Wei-Hsu; Chan, Chang-Chuan

    2016-05-01

    Biological monitoring of vanadium (V) and arsenic (As) for residents living near a big petrochemical complex has not been previously studied. This study aims to investigate distance-to-source trends in urinary levels and dispersion-estimated concentrations of V and As in areas surrounding a petrochemical complex in central Taiwan. Our study subjects were 1424 residents living in the townships up to ~40 km from the petrochemical complex, and categorized as near (Zone A), further (Zone B) and furthest (Zone C) from the complex. Urinary and ambient V and As levels were analyzed by inductively coupled plasma mass spectrometry. Two-stage dispersion model was used to estimate V and As concentrations at each study subject's address. Multiple linear regression models were used to study the effects of distance-to-source and estimated air concentrations of V and As on the urinary V and As levels of study subjects. Area-wide levels of both V and As showed a high-to-low trend in urinary levels (μg/g-creatinine) from Zone A (V with 2.86±2.30 and As with 104.6±147.9) to Zone C (V with 0.73±0.72 and As with 73.8±90.8). For study subjects, urinary V and As levels were decreased by 0.09 and 1.17 μg/g-creatinine, respectively, with 1 km away from the emission source of the petrochemical complex, and urinary V levels were significantly elevated by 0.38 μg/g-creatinine with a 1 ng/m(3) increase in estimated ambient V concentrations at their addresses. Our study concludes a distance-to-source gradient in V and As exposures exists for residents living near a petrochemical complex with oil refineries and coal-fired power plants and two-stage dispersion model can predict such a trend for V when inhalation is the major exposure route, but not for As that exposure may be from multiple sources and exposure routes. PMID:25690586

  14. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  15. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  16. Chemical oxidation of biologically treated phenolic effluents

    SciTech Connect

    Kamenev, S.; Kallas, J.; Munter, R.; Trapido, M.

    1995-12-01

    Experimental research into the oxidative purification of biologically treated phenolic effluents of the Estonian oil shale chemical industry was undertaken. The main phenolic compounds identified in this wastewater were phenol, cresols, resorcinol and 5-methylresorcinols. For chemical oxidation of phenols different advanced oxidation methods (O{sub 3}, H{sub 2}O{sub 2}, UV, O{sub 3}/H{sub 2}O{sub 2}, O{sub 3}/UV, H{sub 2}O{sub 2}/UV, O{sub 3}/H{sub 2}O{sub 2}/UV) were tested. For tracking of the changes in the concentration of different phenols during the treatment process, HPLC and colorimetry were applied. It was shown that, in principle, phenols can be reduced almost by any oxidation method studied. Oxidation with molecular ozone has the most potential for practical application. Methods not including ozone (H{sub 2}O{sub 2}, UV, H{sub 2}O{sub 2}/UV) had, in general, lower efficiency for total phenols reduction than the methods combining ozone.

  17. 40 CFR 408.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Non-Remote Alaskan Crab Meat Processing Subcategory § 408.42 Effluent limitations guidelines... available (BPT): Effluent characteristic Effluent limitations Maximum for any 1 day Average of daily...

  18. 40 CFR 408.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORY Non-Remote Alaskan Crab Meat Processing Subcategory § 408.42 Effluent limitations guidelines... available (BPT): Effluent characteristic Effluent limitations Maximum for any 1 day Average of daily...

  19. 40 CFR 408.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Non-Remote Alaskan Crab Meat Processing Subcategory § 408.42 Effluent limitations guidelines... available (BPT): Effluent characteristic Effluent limitations Maximum for any 1 day Average of daily...

  20. 40 CFR 408.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Non-Remote Alaskan Crab Meat Processing Subcategory § 408.42 Effluent limitations guidelines... available (BPT): Effluent characteristic Effluent limitations Maximum for any 1 day Average of daily...