Science.gov

Sample records for petrochemical effluents industries

  1. Toxic impact of effluents from petrochemical industry

    SciTech Connect

    Nikunen, E.

    1985-02-01

    The toxicity of effluents from a petrochemical industry center in southern Finland was tested by conducting bioassays on organisms from three different trophic levels. In fish tests, rainbow trout (Salmo gairdneri) were caged at the discharge site and simultaneously at a reference area. The only clear differences, among the measurements of 25 metabolic parameters, were observed in fish liver where activities of two detoxication enzymes were significantly increased in the exposed group. The water flea (Daphnia magna) was used both in acute (EC50) and long-term reproduction tests. No acute lethal toxicity was detected in any of the wastewater samples investigated. A combined effluent, however, caused a reduction in the reproduction rate with an EC50 of 3%. No mutagenic activity was observed with the Ames test (Salmonella typhimurium, strains TA 97, TA 98, and TA 100) in concentrated effluents, in sediment samples, or in liver samples from predator fish caught from the discharge site.

  2. The international petrochemical industry

    SciTech Connect

    Chapman, K.

    1991-01-01

    The petrochemical industry occupies a crucial place in economic, strategic and political terms in the twentieth century. The author explains its growth and international distribution from the 1920s tot he present, relating the particular experience of petrochemicals to the processes that have shaped the long-term evolution of industry in general. The geographical coverage of this book extends from the regional to international scale, and its historical scope embraces one hundred years from the laboratory origins of polymer science and petrochemistry to the massive operations of modern industry. It represents the result of twenty years of research, and reflects the author's privileged access to company sources in both the U.S. and Europe.

  3. Utilization of short chain monocarboxylic acids in an effluent of petrochemical industry by Acinetobacter calcoaceticus

    SciTech Connect

    Du Preez, J.C.; Toerien, D.F.

    1985-02-01

    The aqueous effluent generated by the Fischer-Tropsch process, containing a total of 13 g/L C/sub 2/-C/sub 5/ monocarboxylic acids, was investigated as a potential substrate for the production of single-cell protein (SCP). A bacterial isolate, Acinetobacter calcoaceticus, could utilize all the acids in the effluent simultaneously in chemostat cultures, and no residual acids were detected in the culture below a dilution rate of 0.78 h/sup -1/. The critical dilution rate was 1.04 h/sup -1/. The maintenance energy requirement of the cells growing on the monocarboxylic acid mixture was considerably lower than that of cells growing on acetate as the sole carbon source. Enrichment of the effluent with ethanol to increase the biomass concentration was successful and still allowed the simultaneous and efficient utilization of all the carbon sources, but resulted in a decrease of the critical dilution rate by ca. 20%.

  4. China`s petrochemical industry

    SciTech Connect

    Takeda, Makoto; Tamura, Kazuhisa

    1996-01-01

    It is clear from the trade press that American, European, and Japanese chemical companies are making major capital investment commitments in China. They are also developing strategies to participate in the country`s growth. Many people wonder how long the window of opportunity will remain open. Some questions one may ask include: What are the driving forces for such intense activity? What role is the Chinese government playing in implementing growth plans? What are the classes of chemical products receiving priority attention? To what degree is China integrating upstream into energy and basic feedstocks? What are the long-term implications for Asia and the rest of the world with respect to foreign trade? To answer these and other questions, Martech, Inc., a subsidiary of Mitsubishi Chemical Corporation, recently completed a comprehensive report on China`s petrochemical industry. This article is adapted from the executive summary of that report.

  5. Petrochemicals

    SciTech Connect

    Reeves, T.S.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of wastewater related to the petrochemicals industry. Topics covered include: wastewater characterization; treatment technologies; and water reuse and pollution prevention. 19 refs.

  6. [Source identification of toxic wastewaters in a petrochemical industrial park].

    PubMed

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park. PMID:25826928

  7. Identification and chemical characterization of specific organic constituents of petrochemical effluents.

    PubMed

    Botalova, Oxana; Schwarzbauer, Jan; Frauenrath, Tom; Dsikowitzky, Larissa

    2009-08-01

    Based on extensive GC/MS screening analyses, the molecular diversity of petrochemical effluents discharged to a river in North Rhine-Westphalia was characterised. Within a wide spectrum of organic wastewater constituents, specific compounds that might act as source indicators have been determined. This differentiation was based on (i) the individual molecular structures, (ii) the quantitative appearance of organic compounds in treated effluents and (iii) the information on their general occurrence in the technosphere and hydrosphere. Principally, site-specific indicators have been distinguished from candidates to act as general petrochemical indicators. Further on, monitoring the environmental behaviour of target organic contaminants in an aquatic system shortly after their release into the river allowed a first evaluation of the impact of the petrogenic emission in terms of the quantity and spatial distribution. The identification of petrogenic contaminants was not restricted to constituents of the effluents only, but comprised the compounds circulating in the wastewater systems within a petrochemical plant. A number of environmentally relevant and structurally specific substances that are normally eliminated by wastewater treatment facilities were identified. Insufficient wastewater treatment, careless waste handling or accidents at industrial complexes are potential sources for a single release of the pollutants. This study demonstrates the relevance of source specific organic indicators to be an important tool for comprehensive assessment of the potential impact of petrochemical activities to the contamination of an aquatic environment. PMID:19577787

  8. [Treatment of Petrochemical Treatment Plant Secondary Effluent by Fenton Oxidation].

    PubMed

    Wang, Yi; Wu, Chang-yong; Zhou, Yue-xi; Zhang, Xue; Dong, Bo; Chen, Xue-min

    2015-07-01

    Fenton oxidation was applied to treat the petrochemical treatment plant secondary effluent by the continuous flow configuration. The effect of Fenton agent dosage on the COD and phosphorus removal and the variation of the dissolved organic matter characteristics during the treatment process were investigated. The results showed the average COD and PO(4)3- -P concentrations were 64.8 mg.L-1 and 0. 79 mg.L-1, respectively. When the dosage of H2O (30%), FeSO4.7H2O and PAM were 0. 4 mL.L-1, 0. 8 mg.L-1 and 0. 9 mg.L-1 and the residence time was 30 min, the average removal rate of COD and PO(4)3- -P were 24. 3% and 95. 5% respectively. The effluent COD was lower than 50 mg.L-1. The percentage of dissolved organic matters with molecular weight less than 1 x 10(3) was 80. 4% in the raw wastewater, however, the percentage increased to 95. 6% when treated by Fenton oxidation. Three-dimensional fluorescence analysis showed that the Fenton oxidation can effectively remove protein and phenols. GC-MS results showed that there were about 117 kinds of organic matters detected in the secondary effluent, while the number reduced to 27 after oxidation by Fenton. The organics containing unsaturated bond had a better removal than those of other types of organics. Fenton oxidation can be used in the advanced treatment of petrochemical secondary effluent. PMID:26489330

  9. Tantalum coatings for the petrochemical industry

    SciTech Connect

    Hays, C.; Watson, J.L. Sr.; Walker, J.P. Jr.

    1995-12-31

    Tantalum coatings have never been a cost attractive item for the petrochemical industry but corrosion-resistant tantalum coatings have been and continue to be a very cost effective solution for many complex metallurgical applications. There are certain environments where thermally-sprayed tantalum has little or no competition from all other corrosion-resistant-alloy-coatings (CRAC). This paper reviews tantalum technology in terms of the relevant petrochemical needs and priorities. Selected properties of both tantalum (Ta) and Ta{sub 2}O{sub 5} are given along with a brief history of tantalum and Ta coatings. Some important discussion is also given about the very difficult development path that tantalum has been forced to overcome. This characterization study involves 2 different applicators and two competitive processes; i.e., plasma and high velocity oxygen flame (HVOF) spraying. Test coupons from this cooperative effort by Watson and Gartner are evaluated in terms of structure, properties and composition. Electron and optical metallography are both used with microhardness and associated methods of characterization for thermal spray coatings.

  10. Regional Industry Workforce Development: The Gulf Coast Petrochemical Information Network

    ERIC Educational Resources Information Center

    Hodgin, Johnette; Muha, Susan

    2008-01-01

    The Gulf Coast Petrochemical Information Network (GC-PIN) is a workforce development partnership among industry businesses and area institutions of higher education in the four-county Gulf Coast region. GC-PIN partners develop new industry-specific curricula, foster industry career awareness, and retrain existing employees in new technologies.

  11. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents.

    PubMed

    Ajayan, K V; Selvaraju, M; Thirugnanamoorthy, K

    2011-08-15

    Microalgae exhibit a number of heavy metal uptake process by different metabolism. In this study, the ability of microalgae for removal of heavy metal from wastewater was studied. Growth and biochemical contents of microalgae were determined by spectrophotometer. Heavy metal analysis of wastewater effluents were performed by atomic absorption spectrophotometer before and after treatment at laboratory scale. The growth of Scenedesmus bijuga and Oscillatoria quadripunctulata in sewage wastewater was higher than those grown in synthetic medium. Whereas, the growth of S. bijuga and O. quadripunctulata in sterilized petrochemical effluents was slightly lower than that grown in the standard synthetic medium. The chlorophyll, carotenoid and protein content of S. bijuga and O. quadripunctulata grown in sterilized sewage wastewater were higher than those grown in the standard medium. Similarly S. bijuga and O. quadripunctulata grown in sterilized petrochemical effluents showed lower contents of pigments and protein than those grown in sewage and synthetic medium. Heavy metals copper, cobalt, lead and zinc were removed by 37-50, 20.3-33.3, 34.6-100 and 32.1-100%, respectively from sewage wastewater and petrochemical effluent using Ocillatoria culture. The metal absorption by S. bijuga were (Cu, Co, Pb, Zn) 60-50, 29.6-66, 15.4-25 and 42.9-50%, respectively from sewage and petrochemical effluents. Both species showed high level of heavy metal removal efficiency and metal sorption efficiency of both microalgae depended on the type of biosorbent, the physiological status of the cells, availability of heavy metal, concentration of heavy metal and chemical composition of wastewater. PMID:22545355

  12. A demonstration of biofiltration for VOC removal in petrochemical industries.

    PubMed

    Zhao, Lan; Huang, Shaobin; Wei, Zongmin

    2014-05-01

    A biotrickling filter demo has been set up in a petrochemical factory in Sinopec Group for about 10 months with a maximum inlet gas flow rate of 3000 m3 h(-1). The purpose of this project is to assess the ability of the biotrickling filter to remove hardly biodegradable VOCs such as benzene, toluene and xylene which are recalcitrant and poorly water soluble and commonly found in petrochemical factories. Light-weight hollow ceramic balls (Φ 5-8 cm) were used as the packing media treated with large amounts of circulating water (2.4 m3 m(-2) h(-1)) added with bacterial species. The controlled empty bed retention time (EBRT) of 240 s is a key parameter for reaching a removal efficiency of 95% for benzene, toluene, xylene, and 90% for total hydrocarbons. The demo has been successfully adopted and practically applied in waste air treatments in many petrochemical industries for about two years. The net inlet concentrations of benzene, toluene and xylene were varied from 0.5 to 3 g m(-3). The biofiltration process is highly efficient for the removal of hydrophobic and recalcitrant VOCs with various concentrations from the petrochemical factories. The SEM analysis of the bacterial community in the BTF during VOC removal showed that Pseudomonas putida and Klebsiella sp. phylum were dominant and shutdown periods could play a role in forming the community structural differences and leading to the changes of removal efficiencies. PMID:24569855

  13. Industrial Energy in Transition: A Petrochemical Perspective

    ERIC Educational Resources Information Center

    Wishart, Ronald S.

    1978-01-01

    An industrial development involves the conversion of biomass, through fermentation, to useful chemical products and the gasification of municiple wastes to produce steam for electricity generation. These gases may also serve as chemical feedstocks. (Author/MA)

  14. Treatment of petrochemical secondary effluent by an up-flow biological aerated filter (BAF).

    PubMed

    Fu, L Y; Wu, C Y; Zhou, Y X; Zuo, J E; Ding, Y

    2016-01-01

    In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography-mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86-6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent. PMID:27120658

  15. Assessment of the petrochemical industry pollution on the Skikda bay, Algeria.

    PubMed

    Maachia, Leila; Boutefnouchet, Nafissa; Nafissa, Boutefnouchet; Bouzerna, Noureddine; Chettibi, Houria

    2005-12-01

    The Skikda bay is located in the northern part of Algeria. The area is in contact with a petrochemical industrial complex, which raw materials and final products contaminate the surrounding areas via atmospheric pollution as well as effluents, which are dumped into seawaters. To establish the effects of these pollutants and waste disposal on the vicinity of the bay, several samples were taken at different distances along the bay and the outfall pipes of the industrial complex. Subsequently, several chemical analyses were made to analyze the concentrations of hydrocarbons, CO[2], Ca(+2) and Mg(+2), chlorides and phosphates and the alkalinity present into the samples. Several concentrations of the above constituents are reported as a function of the different sites. PMID:16819102

  16. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  17. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  18. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  19. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  20. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  1. Long term effects of irrigation with petrochemical industry wastewater

    SciTech Connect

    Aziz, O.; Inam, A.; Samiullah; Siddiqi, R.H.

    1996-11-01

    Split plot designed field trials were conducted during 1988-1995 to study the long term effects of petrochemical industry wastewater on six crops and agricultural soils. It was observed that wastewater irrigation resulted in increased seed yield of all the crops selected, viz. wheat, triticale, chickpea, lentil and pigeonpea, except summer moong which showed a decrease in seed yield. Soil receiving the wastewater showed no significant changes in pH, total organic carbon, electrical conductivity, cation exchange capacity, micro- and macro-nutrients and SAR. Thus, it may be concluded that treated refinery wastewater met the irrigational quality requirements as its physico-chemical characteristics were within the permissible limits. The same could be said for the accumulation of heavy metals in the soil as well as in the grains making the latter safe for human consumption. 28 refs., 5 figs., 2 tabs.

  2. NPRA meeting checks the pulse of the petrochemical industry

    SciTech Connect

    Hunter, D.; Young, I.; Wood, A.

    1992-04-08

    The Globalization of Petrochemicals was the rather hackneyed theme of last week`s National Petroleum Refiners Association (NPRA) international petrochemical conference in San Antonio. But though petrochemicals may be taking on a more global character, the mood of delegates from different parts of the world was sharply different. There was a perceptible feeling of confidence among US delegates, that the current beginnings of an uptick in the economy will bolster the petrochemical business. Producers report that volumes are up during the first quarter and inventories are tightening, providing the backdrop for price initiatives during the second quarter that might this time have a chance of sticking.

  3. Characterizing the genotoxicity of hazardous industrial wastes and effluents using short-term bioassays

    SciTech Connect

    Houk, V.S.; DeMarini, D.M.

    1989-01-01

    This paper demonstrates that short-term bioassays can reliably and expeditiously measure the genotoxic potential of hazardous industrial wastes and effluents. Petrochemical wastes have been studied in detail, especially discharges from chemical manufacturing plants and textile and dye effluents. However, there is little information on effluents from pesticide manufacturers. The most extensive evaluations have been conducted on effluents from pulp and paper mills. These studies have shown which pulping plants generate the most genotoxic effluents, which process wastes are most hazardous, have isolated and identified the compounds responsible for the genotoxic activity, have described the environmental fate of these compounds, have evaluated the types of genetic damage likely to occur upon exposure to the effluents, and have identified several treatment methods that effectively reduce the genotoxicity of the effluents. The coupling of bioassays for biological analysis with chemical evaluation provides the most powerful approach to assessing the overall health effects of complex industrial wastes and effluents.

  4. Cancer risk of petrochemical workers exposed to airborne PAHs in industrial Lanzhou City, China.

    PubMed

    Wang, Li; Zhao, Yuan; Liu, Xianying; Huang, Tao; Wang, Yanan; Gao, Hong; Ma, Jianmin

    2015-12-01

    This paper reports the connections between red blood cells abnormality risk of petrochemical workers and their exposure to airborne polycyclic aromatic hydrocarbons (PAHs). Urinary 1-hydroxypyrene (1-OHP), as the biomarker of PAHs exposure, was adopted to assess the exposure risk of the petrochemical workers to PAHs in Xigu, the west suburb of Lanzhou where petrochemical industries are located. Fifty-three workers, sub-grouped to 36 petrochemical workers and 17 office workers, participated in this investigation. Logistic regression model and spearman correlation analysis were performed to estimate the associations between PAHs exposure levels and red blood cells abnormality risk of petrochemical workers. Strong associations between some red cell indices (MCH, MCHC, RDW) and 1-OHP concentration were found. Results also show that the red blood cells abnormality risk increased with increasing PAHs exposure level. Compared with office workers, risk level of red blood cells abnormality in petrochemical workers was higher by 41.7 % (OR, 1.417; 95 % CI: 0.368-5.456) than that in office workers. This result was verified by the tissue-to-human blood partition coefficient for pyrene and 1-OHP. The quantitative assessments of the potential health risk through inhalation exposure to PAHs were conducted using the Incremental Lifetime Cancer Risk (ILCR) model. It was found the ILCR from inhalation exposure to PAHs for the petrochemical workers ranged from 10(-5) to 10(-4) with 95 % probability, indicating that petrochemical plant workers were under a high potential cancer risk level. PMID:26282442

  5. Industry sector analysis, China: Petrochemical industry in east China. Export trade information

    SciTech Connect

    Not Available

    1993-01-01

    The market survey covers the petrochemical equipment and technology market in East China. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Chinese consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

  6. Emissions of polycyclic aromatic hydrocarbons from fluidized and fixed bed incinerators disposing petrochemical industrial biological sludge.

    PubMed

    Wang, Lin-Chi; Lin, Long-Full; Lai, Soon-Onn

    2009-08-30

    This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs) from two fluidized bed incinerators (FLBI_A and FLBI_B) and one fixed bed incinerator (FIBI) disposing biological sludge generated from the petrochemical industries in Taiwan. The results of 21 individual PAHs (including low (LM-PAHs), middle (MM-PAHs) and high molecular weight PAHs (HM-PAHs)) were reported. The LM-PAHs mainly dominated the total-PAHs in the stack flue gases, whereas the LM- and HM-PAHs dominated the total-PAHs in the bottom fly, fly ash and WSB effluent. Due to high carcinogenic potencies (=total-BaP(eq) concentrations) in the bottom ash (195 ng g(-1)) and WSB effluent (20,600 ng L(-1)) of the FIBI, cautious should be taken in treating them to avoid second contamination. Lower combustion efficiency and elevated fuel/feedstock (F/W) ratio for the FIBI led to the highest total emission factor of total-PAHs (38,400 microg kg(-1)). Lower total-PAH removal efficiencies of wet scrubber (WSB) (0.837-5.89%), cyclone (0.109-0.255%) and electrostatic precipitator (ESP) (0.032%) than those reported elsewhere resulted in high fraction in PAH contributions from the stack flue gases. Lower total-PAH emission factor was found for FLBI_A (2380 microg kg(-1) biological sludge) with higher combustion efficiency compared to those for FLBI_B (11,500 microg kg(-1)) and FIBI (38,400 microg kg(-1) biological sludge), implying that combustion efficiency plays a vital role in PAH emissions. PMID:19272707

  7. Quality of effluents from Hattar Industrial Estate

    PubMed Central

    Sial, R.A.; Chaudhary, M.F.; Abbas, S.T.; Latif, M.I.; Khan, A.G.

    2006-01-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry. These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine if these effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH, electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were

  8. Quality of effluents from Hattar Industrial Estate.

    PubMed

    Sial, R A; Chaudhary, M F; Abbas, S T; Latif, M I; Khan, A G

    2006-12-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry. These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine if these effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH, electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were

  9. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  10. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  11. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  12. Advanced treatment of refractory organic pollutants in petrochemical industrial wastewater by bioactive enhanced ponds and wetland system.

    PubMed

    Liu, Shuo; Ma, Qiusha; Wang, Baozhen; Wang, Jifu; Zhang, Ying

    2014-05-01

    A large-scale combined ponds-wetland system was applied for advanced treatment of refractory pollutants in petrochemical industrial wastewater. The system was designed to enhance bioactivity and biological diversity, which consisted of anaerobic ponds (APs), facultative ponds (FPs), aerobic pond and wetland. The refractory pollutants in the petrochemical wastewater to be treated were identified as alkanes, chloroalkanes, aromatic hydrocarbons, and olefins, which were significantly degraded and transformed along with the influent flowing through the enhanced bioactive ponds-wetland system. 8 years of recent operational data revealed that the average removal rate of stable chemical oxygen demand (COD) was 42.7 % and that influent COD varied from 92.3 to 195.6 mg/L. Final effluent COD could reach 65.8 mg/L (average). COD removal rates were high in the APs and FPs and accounted for 75 % of the total amount removed. This result indicated that the APs and FPs degraded refractory pollutants through the facilitation of bacteria growth. The changes in the community structures of major microbes were assessed by 16SrDNA-denaturing gradient gel electrophoresis. The same analysis was used to identify the main bacterial function for the removal of refractory pollutants in the APs and FPs. The APs and FPs displayed similar microbial diversities, and some of the identified bacteria degraded and removed refractory pollutants. The overall results proved the applicability, stability, and high efficiency of the ponds-wetland system with enhanced bioactivity in the advanced removal of refractory pollutants from petrochemical industrial wastewater. PMID:24578265

  13. Biomass alcohols as potential petroleum alternatives in the fuel and petrochemical industries: A generalized network model

    NASA Astrophysics Data System (ADS)

    Farina, R. F.

    A generalized network model called PETNET is developed to address this problem. The focus of the analysis presented is the role of biomass alcohols as potential alternatives to fossil hydrocarbons as raw materials in the petrochemical and oil industries. Illustrative scenarios for biomass-based alcohol replacements are investigated with PETNET by solving for alternative assumptions of price, capacity, resource availability and process technology.

  14. Trends in high performance compressors for petrochemical and natural gas industry in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  15. New petrochemical compositions for use in the coal industry

    SciTech Connect

    D.O. Safieva; E.V. Surov; O.G. Safiev

    2008-12-15

    Various aspects of the use of antifreezing agents in the coal industry are considered. It has been found that, unlike previously proposed compositions, these agents can be prepared based on the products of a single process, the vacuum distillation of fuel oil.

  16. Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Ryerson, T. B.; Trainer, M.; Angevine, W. M.; Brock, C. A.; Dissly, R. W.; Fehsenfeld, F. C.; Frost, G. J.; Goldan, P. D.; Holloway, J. S.; Hübler, G.; Jakoubek, R. O.; Kuster, W. C.; Neuman, J. A.; Nicks, D. K.; Parrish, D. D.; Roberts, J. M.; Sueper, D. T.; Atlas, E. L.; Donnelly, S. G.; Flocke, F.; Fried, A.; Potter, W. T.; Schauffler, S.; Stroud, V.; Weinheimer, A. J.; Wert, B. P.; Wiedinmyer, C.; Alvarez, R. J.; Banta, R. M.; Darby, L. S.; Senff, C. J.

    2003-04-01

    Petrochemical industrial facilities can emit large amounts of highly reactive hydrocarbons and NOx to the atmosphere; in the summertime, such colocated emissions are shown to consistently result in rapid and efficient ozone (O3) formation downwind. Airborne measurements show initial hydrocarbon reactivity in petrochemical source plumes in the Houston, TX, metropolitan area is primarily due to routine emissions of the alkenes propene and ethene. Reported emissions of these highly reactive compounds are substantially lower than emissions inferred from measurements in the plumes from these sources. Net O3 formation rates and yields per NOx molecule oxidized in these petrochemical industrial source plumes are substantially higher than rates and yields observed in urban or rural power plant plumes. These observations suggest that reductions in reactive alkene emissions from petrochemical industrial sources are required to effectively address the most extreme O3 exceedences in the Houston metropolitan area.

  17. [Evolution of technology and occupational exposures in petrochemical industry and in petroleum refining].

    PubMed

    Cottica, Danilo; Grignani, Elena

    2013-01-01

    The industry of oil refining and petrochemical play an important role in terms of number of employees in the Italian production. Often the terms "petroleum refining" and "petrochemical" are used interchangeably to define processes that occur in complex plants, which grow outdoors on large surfaces and a visual impact is not irrelevant. In reality, the two areas involve potential exposure to different chemical agents, related to raw materials processed and the specific products. The petrochemical uses as raw materials, the oil fractions, obtained by distillation in the refinery, or natural gas; petrochemical products are, usually, single compounds with a specific degree of purity, used as basic raw materials for the entire industry of organic chemistry, from the production of plastics to pharmaceuticals. The oil refining, that is the topic of this paper, processes mainly oil to obtain mixtures of hydrocarbon compounds, the products of which are specified on the basis of aptitude for use. For example gasolines, are obtained by mixing of fractions of the first distillation, reforming products, antiknock. The paper illustrates, necessarily broadly due to the complexity of the productive sectors, the technological and organizational changes that have led to a significant reduction of occupational exposure to chemical agents, the results of environmental monitoring carried out in some refineries both during routine conditions that during scheduled maintenance activities with plant shutdown and a store of petroleum products. The chemical agents measured are typical for presence, physico-chemical properties and toxicological characteristics of the manufacturing processes of petroleum products like benzene, toluene, xylenes, ethyl benzene, n-hexane, Volatile Hydrocarbons belonging to gasoline, kerosene, diesel fuel. Data related to both personal sampling and fixed positions. PMID:24303703

  18. Pulp and Paper Industry Effluent Management.

    ERIC Educational Resources Information Center

    Gove, George W.

    1978-01-01

    Presents a literature review of wastes from pulp and paper industry, covering publications of 1976-77. This review focuses on: (1) receiving water, toxicity, and effluent characterization; (2) pulping liquor disposal and recovery; and (3) physicochemical and biological treatment. A list of 238 references is also presented. (HM)

  19. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan

    PubMed Central

    Hanai, Yoshimichi; Masunaga, Shigeki

    2009-01-01

    Urban ambient air concentrations of 39 aromatic (including benzene, toluene, and xylenes) and aliphatic volatile organic compounds (VOCs) were measured in Yokohama city, Japan. Yokohama city was selected as a case study to assess the amount of VOC released from Industrial area to characterize the ambient air quality with respect to VOC as well as to know the impact of petrochemical storage facilities on local air quality. For this purpose, ambient air samples were collected (from June 2007 to November 2008) at six selected locations which are designated as industrial, residential, or commercial areas. To find out the diurnal variations of VOC, hourly nighttime sampling was carried out for three nights at one of the industrial locations (Shiohama). Samples were analyzed using gas chromatographic system (GC-FID). Results show strong variation between day and nighttime concentrations and among the seasons. Aliphatic fractions were most abundant, suggesting petrochemical storage facilities as the major source of atmospheric hydrocarbons. High concentrations of benzene, toluene, ethyl benzene, and xylene (BTEX) were observed at industrial locations. BTEX showed strong diurnal variation which is attributed to change in meteorology. During our campaign, low ambient VOC concentrations were observed at the residential site. PMID:20495606

  20. A comparison of new and existing light sources for the petrochemical industry

    SciTech Connect

    Borton, J.A.; Daley, K.A.

    1995-12-31

    This paper will compare current light sources with new research available for the Petrochemical Industry in the 1990`s. High lumen output, by today`s standards, is not necessarily the correct criterion for selection of light sources in process and work areas. This paper will demonstrate how the human eye reacts to various light sources both photopically (day vision) and scotopically (night vision). This comparison of light sources with the new research may change the thinking of users and designers in their selection of light sources.

  1. Annoyance and Worry in a Petrochemical Industrial Area—Prevalence, Time Trends and Risk Indicators

    PubMed Central

    Axelsson, Gösta; Stockfelt, Leo; Andersson, Eva; Gidlof-Gunnarsson, Anita; Sallsten, Gerd; Barregard, Lars

    2013-01-01

    In 1992, 1998, and 2006, questionnaires were sent to stratified samples of residents aged 18–75 years living near petrochemical industries (n = 600–800 people on each occasion) and in a control area (n = 200–1,000). The aims were to estimate the long-term prevalence and change over time of annoyance caused by industrial odour, industrial noise, and worries about possible health effects, and to identify risk indicators. In 2006, 20% were annoyed by industrial odour, 27% by industrial noise (1–4% in the control area), and 40–50% were worried about health effects or industrial accidents (10–20% in the control area). Multiple logistic regression analyses revealed significantly lower prevalence of odour annoyance in 1998 and 2006 than in 1992, while industrial noise annoyance increased significantly over time. The prevalence of worry remained constant. Risk of odour annoyance increased with female sex, worry of health effects, annoyance by motor vehicle exhausts and industrial noise. Industrial noise annoyance was associated with traffic noise annoyance and worry of health effects of traffic. Health-risk worry due to industrial air pollution was associated with female sex, having children, annoyance due to dust/soot in the air, and worry of traffic air pollution. PMID:23552810

  2. Petrochemical industry standards activity aimed at improving the mechanical integrity of process piping

    SciTech Connect

    Reynolds, J.T.

    1996-07-01

    This paper will cover numerous changes being made to existing standards and several new standards being created, all focusing on increasing mechanical integrity of petrochemical industry process piping. Those new standards include ones for (1) Risk-Based Inspection (2) Fitness for Service Analysis, (3) Positive Material Identification, and (4) In-service Inspection and Maintenance for Process Piping. A progress report is included for the Process Industry Practices (PIP) being created to consolidate individual company piping standards into one consistent industry set. And finally, recent initiatives toward standards cooperation/coordination between the American Petroleum Institute(API), American Society of Mechanical Engineers (ASME), International Standards Organization (ISO) and National Board are highlighted.

  3. Toxicity reduction in industrial effluents

    SciTech Connect

    Lankford, P.W.; Eckenfelder, W.W.

    1990-01-01

    The toxicity of manufacturing wastewaters to fish and other aquatic organisms is now being used by state and federal regulators to monitor and restrict industrial wastewater discharges. As a result, there is a great need for guidance on the subject of aquatic toxicity reduction in the field of industrial water pollution control. This book is a comprehensive reference source on the testing protocols, comparative data, and treatment techniques for effective toxicity reduction. Included in this book are detailed chapters covering various methods for toxicity reduction, such as the removal of metals, aerobic biological treatment, stripping of volatile organics, and management of sludges from toxic wastewater treatment. The book features: a complete overview of the subject, including background material for newcomers to the field; a basic summary and comparison of alternate treatment procedures; the latest methods for the identification of toxic components that readers can use for testing in their own laboratories; a description of applicable technologies for toxicity reduction; actual data from the use of processes that allow readers to compare technologies; solids management requirements including handling and disposal; useful economic comparisons of technologies; and illustrative case studies that demonstrate the application of the latest toxicity reduction technology and data to specific situations. Eleven chapters are processed separately in the appropriate data bases.

  4. Novel technology for flame and gas detection in the petrochemical industry

    NASA Astrophysics Data System (ADS)

    Spector, Yechiel; Jacobson, Esther

    1999-01-01

    A reliable and high performance novel method of flame and gas optical spectral analysis was developed to meet the specific flame and gas detection of the petrochemical industry. Petrochemical industries, especially the offshore and unmanned areas in onshore refineries, pose a major safety hazard with respect to potential explosions and fire events. Unwanted fuel spills or fugitive flammable vapor clouds, migrating along congested pipe lines and hot production areas may cause upon ignition significant loss or damage. To help prevents events like the catastrophic fire that destroyed the offshore oil platform Piper Alpha in July 1988, a reliable and fast gas and flame detection system can be used to trigger effective risk management actions. The present paper describes a patented method of Triple Optical Spectral Analysis employed for the detection of various gases in the air according to their unique 'spectral finger print' absorption characteristics of radiation, as well as for analysis of emission and absorption radiation from combustion processes for flame detection purpose. The method has been applied in the development of unique gas and flame monitoring system designed for 'high risk - harsh/extreme weather conditions continuous operation'. These systems have been recently installed on several offshore platforms and oil rigs as well as on 'floating production Storage and Offloading' - FPSO vessels. The systems advantages and limitations as well as several installations and test data are presented. Various atmospheric conditions as well as false alarm stimulus are discussed.

  5. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  6. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  7. Radioactivity in the industrial effluent disposed soil

    NASA Astrophysics Data System (ADS)

    Senthilkumar, R. D.; Narayanaswamy, R.; Meenashisundaram, V.

    2012-04-01

    Studies on radiation and radioactivity distribution in the soils of effluent disposed from the sugar industry in India have been conducted. The external gamma dose rates in air and natural radionuclides activities in the soils were measured using an Environmental Radiation Dosimeter and a Gamma-ray Spectrometer respectively. The soil samples were also subject to various physico-chemical analyses. This study revealed some remarkable results that are discussed in the article.

  8. Worldwide petrochemical directory, 1987

    SciTech Connect

    Not Available

    1986-01-01

    This directory gives the information on the worldwide petrochemical industry in existence. It makes available the names, addresses, phone and telex numbers of most of the world's companies which are involved in the petrochemical industry. The directory provides the names of over 14,000 key personnel at over 2,000 plant sizes in the United States, Canada, Europe, Latin America, Asia-Pacific, Africa and the Middle East. A company index is provided for easy reference. It details current petrochemical plants' feedstocks, products and capacities. The newly updated petrochemical plant construction survey is also provided.

  9. Employment and exposures in the petroleum refining and petrochemical industries and the risk of lung cancer

    SciTech Connect

    Aldrich, T.E.

    1985-01-01

    This dissertation addresses the risk of lung cancer associated with occupational exposures in the petroleum refining and petrochemical industries. Earlier epidemiologic studies of this association did not adjust for cigarette smoking or have specific exposure classifications. The Texas EXposure Assessment System (TEXAS) was developed with data from a population-based, case-comparison study conducted in five southeast Texas counties between 1976 and 1980. An industry-wide, increased risk for lung cancer was associated with jobs having low-level hydrocarbon exposure that also include other occupational inhalation exposures. The prohibition of cigarette smoking for jobs with high-level hydrocarbon exposure might explain part of the increased risk for jobs with low-level hydrocarbon exposures. Asbestos exposure comprises a large part of the risk associated with jobs having other inhalation exposures besides hydrocarbons. Workers in petroleum refineries were not shown to have an increased, occupational risk for lung cancer. The study results demonstrate that the predominant risk for lung cancer is due to cigarette smoking. Cigarette smoking accounts for 86.5% of the incident lung cancer cases within the study area. Workers in the petroleum industry smoke significantly less than persons employed in other industries. Only 2.2% of the incident lung cancer cases may be attributed to petroleum industry jobs; lifestyle factors (e.g., nutrition) may be associated with the balance of the cases.

  10. Urinary cytology in workmen engaged in the petrochemical industry with reference to non-industrial risk factors.

    PubMed

    Adolphs, H D; Hildenbrand, G; Schwabe, H W; Vahlensieck, E W

    1985-01-01

    Urine cytology was evaluated in 8,406 male workers of 8 petrochemical factories in western and northern Germany during the routine medical check-up performed by the department of industrial medicine of the respective factory. All relevant data referring to possible private and occupational risk factors were registered and evaluated. Four percent (n = 358) of the 8,406 workers examined exhibited Pap 3/4 cytology. Urological examination did not reveal any bladder tumor in those workers with either a single Pap 4 or a repeated Pap 3 finding on cytology. Our study showed that deterioration of cell differentiation correlated significantly with age and cigarette smoking. Furthermore, a risk group (males above 40 years of age exposed to occupational chemicals, smokers, and coffee drinkers) differed from a non-risk group. Age and cigarette smoking seemed to be the determinant factors. No correlation could be adduced between any kind of industrial exposure and urine cytology. PMID:4012936

  11. The effect of social trust on citizens’ health risk perception in the context of a petrochemical industrial complex.

    PubMed

    López-Navarro, Miguel Angel; Llorens-Monzonís, Jaume; Tortosa-Edo, Vicente

    2013-01-01

    Perceived risk of environmental threats often translates into psychological stress with a wide range of effects on health and well-being. Petrochemical industrial complexes constitute one of the sites that can cause considerable pollution and health problems. The uncertainty around emissions results in a perception of risk for citizens residing in neighboring areas, which translates into anxiety and physiological stress. In this context, social trust is a key factor in managing the perceived risk. In the case of industrial risks, it is essential to distinguish between trust in the companies that make up the industry, and trust in public institutions. In the context of a petrochemical industrial complex located in the port of Castellón (Spain), this paper primarily discusses how trust - both in the companies located in the petrochemical complex and in the public institutions - affects citizens' health risk perception. The research findings confirm that while the trust in companies negatively affects citizens' health risk perception, trust in public institutions does not exert a direct and significant effect. Analysis also revealed that trust in public institutions and health risk perception are essentially linked indirectly (through trust in companies). PMID:23337129

  12. The Effect of Social Trust on Citizens’ Health Risk Perception in the Context of a Petrochemical Industrial Complex

    PubMed Central

    López-Navarro, Miguel Ángel; Llorens-Monzonís, Jaume; Tortosa-Edo, Vicente

    2013-01-01

    Perceived risk of environmental threats often translates into psychological stress with a wide range of effects on health and well-being. Petrochemical industrial complexes constitute one of the sites that can cause considerable pollution and health problems. The uncertainty around emissions results in a perception of risk for citizens residing in neighboring areas, which translates into anxiety and physiological stress. In this context, social trust is a key factor in managing the perceived risk. In the case of industrial risks, it is essential to distinguish between trust in the companies that make up the industry, and trust in public institutions. In the context of a petrochemical industrial complex located in the port of Castellón (Spain), this paper primarily discusses how trust—both in the companies located in the petrochemical complex and in the public institutions—affects citizens’ health risk perception. The research findings confirm that while the trust in companies negatively affects citizens’ health risk perception, trust in public institutions does not exert a direct and significant effect. Analysis also revealed that trust in public institutions and health risk perception are essentially linked indirectly (through trust in companies). PMID:23337129

  13. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 5. BASIC PETROCHEMICALS INDUSTRY

    EPA Science Inventory

    The catalog was developed to aid in defining the environmental impacts of U.S. industrial activity. Entries for each industry are in consistent format and form separate chapters of the catalog. The basic petroleum industry includes companies that treat hydrocarbon streams from th...

  14. Exposure to polycyclic aromatic hydrocarbons in petrochemical industries by measurement of urinary 1-hydroxypyrene.

    PubMed Central

    Boogaard, P J; van Sittert, N J

    1994-01-01

    Biological monitoring of exposure of workers to polycyclic aromatic hydrocarbons (PAHs) in petrochemical industries was performed by the measurement of urinary excretion of 1-hydroxypyrene. In 121 of the 462 workers studied (both smokers and non-smokers) who had had no recent occupational exposure to PAHs a median 1-hydroxypyrene concentration of 0.21 micrograms/g creatinine was found. The upper limit of the 95% confidence interval in these workers of 0.99 micrograms/g creatinine was used as the upper normal value for industrial workers. Urinary 1-hydroxypyrene concentrations were measured in workers involved in manufacture and maintenance operations in oil refineries (13 studies in eight different settings), in workers manufacturing or handling products containing PAHs in chemical plants (five studies in three settings) and laboratories (four studies), and in workers digging soil contaminated with PAHs (three studies). In most studies in oil refineries 1-hydroxypyrene concentrations were only marginally greater than the values measured in the 121 workers with no recent occupational exposure to PAHs. This was also the case in maintenance operations with higher potential exposure to PAHs, indicating that personal protection equipment was generally adequate to prevent excessive exposure. The studies in chemical plants also showed that exposure to PAHs is low. An exception was the workers engaged in the production of needle coke from ethylene cracker residue, where increased urinary 1-hydroxypyrene concentrations were measured. The excretion of 1-hydroxypyrene by the operators and maintenance workers of this plant was investigated in relation to potential methods of exposure to PAHs. Dermal and inhalatory exposure were both significant determinants of exposure to PAHs. PMID:8199667

  15. Barry Commoner Assails Petrochemicals

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses Commoner's ideas on the social value of the petrochemical industry and his suggestions for curtailment or elimination of its productive operation to produce a higher environmental quality for mankind at a relatively low loss in social benefit. (CC)

  16. PAH characteristics and genotoxicity in the ambient air of a petrochemical industry complex

    SciTech Connect

    Tsai, Jiun-Horng; Peng, Being-Hwa; Lee, Ding-Zang; Lee, Ching-Chang

    1995-05-01

    Polycyclic aromatic hydrocarbons (PAHs) samples, at four sampling sites, in the ambient air of petrochemical plants were collected by several PS-1 samplers from October 1993 to July 1994 in a petrochemical complex area located in southern Taiwan. In addition, the genotoxicity of the PAH samples were investigated by the Ames Salmonella/microsomal assay system. The winter/summer ratios of total-PAH composition were 0.60, 1.39, 2.97, and 1.28 for sites A, B, C, and D, respectively. This result implied that wind direction is the most significant parameter affecting the total-PAH composition in these four sampling sites. Sampling sites B, C, and D were located on the downwind side of the petrochemical plant and gave higher total-PAH composition than those of sampling site A. Particle phase PAHs had higher mutagenicity than those in the gas phase.

  17. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  18. 1988 worldwide petrochemical directory

    SciTech Connect

    Not Available

    1987-01-01

    This directory makes available the names, addresses, phone and telex numbers of most of the world's companies which are involved in the petrochemical industry. The directory provides the names of over 14,000 key personnel at over 2,000 plant sites in the United States, Canada, Europe, Latin America, Asia-Pacific, Africa and the Middle East. A company index is provided for easy reference. The Oil and Gas Journal's Worldwide Petrochemical Survey appears in its entirety in this volume.

  19. Wastewater reuse in a cascade based system of a petrochemical industry for the replacement of losses in cooling towers.

    PubMed

    Hansen, Everton; Rodrigues, Marco Antônio Siqueira; Aquim, Patrice Monteiro de

    2016-10-01

    This article discusses the mapping of opportunities for the water reuse in a cascade based system in a petrochemical industry in southern Brazil. This industrial sector has a large demand for water for its operation. In the studied industry, for example, approximately 24 million cubic meters of water were collected directly from the source in 2014. The objective of this study was to evaluate the implementation of the reuse of water in cascade in a petrochemical industry, focusing on the reuse of aqueous streams to replenish losses in the cooling towers. This is an industrial scale case study with real data collected during the years 2014 and 2015. Water reuse was performed using heuristic approach based on the exploitation of knowledge acquired during the search process. The methodology of work consisted of the construction of a process map identifying the stages of production and water consumption, as well as the characterization of the aqueous streams involved in the process. For the application of the industrial water reuse as cooling water, mass balances were carried out considering the maximum concentration levels of turbidity, pH, conductivity, alkalinity, calcium hardness, chlorides, sulfates, silica, chemical oxygen demand and suspended solids as parameters turbidity, pH, conductivity, alkalinity, calcium hardness, chlorides, sulfates, silica, chemical oxygen demand and suspended solids as parameters. The adopted guideline was the fulfillment of the water quality criteria for each application in the industrial process. The study showed the feasibility for the reuse of internal streams as makeup water in cooling towers, and the implementation of the reuse presented in this paper totaled savings of 385,440 m(3)/year of water, which means a sufficient volume to supply 6350 inhabitants for a period of one year, considering the average water consumption per capita in Brazil; in addition to 201,480 m(3)/year of wastewater that would no longer be generated. PMID

  20. The feasibility of effluent trading in the energy industries

    SciTech Connect

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all point sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.

  1. [Detoxification of textile industry effluents by photocatalytic treatment].

    PubMed

    Gebrati, L; Idrissi, L Loukili; Mountassir, Y; Nejmeddine, A

    2010-05-01

    In Morocco the textile industry, representing 31% of all Moroccan industries, is accompanied by high water consumption and important wastewater discharges rejected without any treatment. The focus of this study was to characterize the effluent from the textile industry, to test separately the effect of UV light and TiO2 catalyst and to determine the optimum conditions (pH, concentration and reaction time) in photocatalytic treatment to reduce chemical oxygen demand (COD) and colour. The biodegradability of the effluent was also studied using a toxicity test before and after treatment. After 90 min of reaction time at pH 4 and with 1.5 g F' of TiO2 catalyst, the photocatalytic treatment reached a global removal rate of 53% for COD and 89% for discoloration of the effluent. The relation BOD5/COD increased from around 0 to 0.3. The effluent became accessible to a biological treatment. The toxicity was studied by the Daphnia magna test over 24 hours. The results have shown the important toxicity of these effluents, which are rich in organic matter and other chemical compounds. After treatment by photocatalytic oxidation, the CI50 24 increased from 3.8% to 22.8%. This reduction of toxicity is related to the reduction of COD (53%) and colour (89%). Photocatalytic treatment has been shown to have an environmental benefit and, in combination with a secondary biological treatment, can be important for a significant reduction in the pollution of textile effluents. PMID:20540424

  2. Electromagnetic acoustic transducers for wall thickness applications in the petrochemical industry

    NASA Astrophysics Data System (ADS)

    Edwards, C.; Dixon, S.; Widdowson, A.; Palmer, S. B.

    2000-05-01

    Electromagnetic acoustic transducers (EMATs) are now becoming widely used in the field, for example for boiler tube wall thickness surveys in Power Generation plant. In general EMATs work efficiently on steel components with a surface oxide layer, where the oxides can be residual mill scale from the steel manufacturing process due to in-service growth in boilers or chemical processing plant. Very often these oxides have rough surfaces and have to be removed prior to conventional ultrasonic inspection. This can be both time consuming and costly, in addition the removal of the protective oxide layer accelerates the future wall lose rate of the pipe or vessel. As well as the Power Generation application, EMATs can also be used for ultrasonic inspection of petrochemical tubulars without having to remove oxides giving the same associated benefits. This paper presents results obtained from laboratory trials of EMAT thickness monitoring of petrochemical plant pipe samples and real EMAT surveys carried out on-site on refinery plant. In parallel with the practical application of EMATs we are studying the underlying physics of operation with the aim of predicting the EMAT performance for steels with and without oxide layers.

  3. CORRESPONDENCE BETWEEN WHOLE EFFLUENT TOXICITY AND THE PRESENCE OF PRIORITY SUBSTANCES IN COMPLEX INDUSTRIAL EFFLUENT

    EPA Science Inventory

    The purpose of this study was to examine broad-scale correlation between presence of priority substances and whole effluent toxicity (WET) across a range of industry types. Using regression analysis, we examined how chemical-based inferred toxicity predicted measured WET of the e...

  4. Metabolic response of environmentally isolated microorganisms to industrial effluents: Use of a newly described cell culture assay

    NASA Technical Reports Server (NTRS)

    Ferebee, Robert N.

    1992-01-01

    An environmental application using a microtiter culture assay to measure the metabolic sensitivity of microorganisms to petrochemical effluents will be tested. The Biomedical Operations and Research Branch at NASA JSC has recently developed a rapid and nondestructive method to measure cell growth and metabolism. Using a colorimetric procedure the uniquely modified assay allows the metabolic kinetics of prokaryotic and eukaryotic cells to be measured. Use of such an assay if adapted for the routine monitoring of waste products, process effluents, and environmentally hazardous substances may prove to be invaluable to the industrial community. The microtiter method as described will be tested using microorganisms isolated from the Galveston Bay aquatic habitat. The microbial isolates will be identified prior to testing using the automated systems available at JSC. Sodium dodecyl sulfate (SDS), cadmium, and lead will provide control toxic chemicals. The toxicity of industrial effluent from two industrial sites will be tested. An effort will be made to test the efficacy of this assay for measuring toxicity in a mixed culture community.

  5. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    PubMed

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  7. Determination of Phenols and Trimethylamine in Industrial Effluents

    NASA Technical Reports Server (NTRS)

    Levaggi, D. A.; Feldstein, M.

    1971-01-01

    For regulatory purposes to control certain odorous compounds the analysis of phenols and trimethylamines in industrial effluents is necessary. The Bay Area Air Pollution Control District laboratory has been determining these gases by gas chromatographic techniques. The procedures for sample collection, preparation for analysis and determination are described in detail. Typical data from various sources showing the effect of proposed regulations is shown. Extensive sampling and usage of these procedures has shown them to be accurate, reliable and suitable to all types of source effluents.

  8. Biological treatments of textile industrial effluents in Lagos metropolis, Nigeria.

    PubMed

    Ugoji, E O; Aboaba, O O

    2004-10-01

    The assessment of the effluents from two textile industries in Ilupeju in Lagos metropolis, Nigeria showed that they were high in conductivity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS) and contained traces of heavy metals like Ca, Zn but high concentrations of Cr and Pb. These wastewaters are normally discharged into neighbouring water bodies. Five bacterial groups, namely Micrococcus sp., Enterobacter sp., Alcaligens sp., Bacillus sp. and Acinetobacter sp. were isolated from these effluents. They were used individually for biotreatment and found to be able to utilize the components of the wastewaters for growth, Bacillus sp. and Acinetobacter sp. being the most efficient utilizers as they were able to reduce BOD to zero. The total viable count (TVC) increased significantly depicting growth of the bacterial population. The pH was regulated from 3.4-6.80 for NSF effluent and 12.2-10.29 for STI effluent. The work emphasises the level of industrial pollution in our environment as wastes are indiscrimately dumped into surrounding water bodies in urban areas, the textile industry being a case study. The treatment of any form of waste before disposal into the environment is important and ensures safety of the populace. PMID:15907081

  9. INDUSTRIAL EFFLUENT TREATMENT USING IONIZING RADIATION COMBINED TO TITANIUM DIOXIDE

    SciTech Connect

    Duarte, C.L.; Oikawa, H.; Mori, M.N.; Sampa, M.H.O.

    2004-10-04

    The Advanced Oxidation Process (AOP) with OH radicals are the most efficient to mineralize organic compounds, and there are various methods to generate OH radicals as the use of ozone, hydrogen peroxide and ultra-violet radiation and ionizing radiation. The irradiation of aqueous solutions with high-energy electrons results in the excitation and ionizing of the molecules and rapid (10{sup -14} - 10{sup -9} s) formation of reactive intermediates. These reactive species will react with organic compounds present in industrial effluent inducing their decomposition. Titanium dioxide (TiO{sub 2}) catalyzed photoreaction is used to remove a wide range of pollutants in air and water media, combined to UV/VIS light, FeO{sub 2}, and H{sub 2}O{sub 2}, but as far as known there is no report on the combination with ionizing radiation. In some recent studies, the removal of organic pollutants in industrial effluent, such as Benzene, Toluene, and Xylene from petroleum production using ionizing radiation was investigated. It has been ob served that none of the methods can be used individually in wastewater treatment applications with good economics and high degree of energy efficiency. In the present work, the efficiency of ionizing radiation in presence of TiO{sub 2} to treat industrial effluent was evaluated. The main aim to combine these technologies is to improve the efficiency for very hard effluents and to reduce the processing cost for future implementation to large-scale design.

  10. Mutagenicity evaluation of industrial sludge from common effluent treatment plant.

    PubMed

    Mathur, Nupur; Bhatnagar, Pradeep; Mohan, Krishna; Bakre, Prakash; Nagar, Pankaj; Bijarnia, Mahendra

    2007-04-01

    Sludge from common effluent treatment plant (CETP) receiving effluents from textile industries at Mandia Road, Pali, was analyzed to assess the level of mutagenicity. Mutagenicity assay using Salmonella typhimurium tester strains TA 98 and TA 100 gave positive results, thus suggesting presence of genotoxic contaminants in the samples investigated. Further, mutagenic activity of chemical sludge was found to be lesser than that of biological sludge. This result is very surprising and unexpected as it is indicating that some mutagenic compounds are either being formed or certain promutagenic compounds are being converted into stable mutagenic metabolites during the biological treatment of the wastewater effluents. There have been no previous reports giving similar or contrary results. Most of the previous studies have reported effects of single combined sludge. PMID:17182078

  11. The birth and growth of the Grozny petroleum refining and petrochemical industry

    SciTech Connect

    Dorogochinskii, A.Z.

    1994-07-01

    The first oil gushers were struck in Grozny in 1893, the year that marks the start of rapid development of the Grozny petroleum refining industry. This report describes the operation and growth of the refining industry.

  12. Safety Culture Assessment in Petrochemical Industry: A Comparative Study of Two Algerian Plants

    PubMed Central

    Boughaba, Assia; Hassane, Chabane; Roukia, Ouddai

    2014-01-01

    Background To elucidate the relationship between safety culture maturity and safety performance of a particular company. Methods To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of Fernández-Muñiz et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. Results The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. Conclusion The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance. PMID:25180135

  13. Laboratory studies of electrochemical treatment of industrial azo dye effluent.

    PubMed

    Vaghela, Sanjay S; Jethva, Ashok D; Mehta, Bhavesh B; Dave, Sunil P; Adimurthy, Subbarayappa; Ramachandraiah, Gadde

    2005-04-15

    Removal of color and reduction of chemical oxygen demand (COD) in an industrial azo dye effluent containing chiefly reactive dyes were investigated under single-pass conditions at a dimensionally stable anode (DSA) in a thin electrochemical flow reactor at different current densities, flow rates, and dilutions. With 50% diluted effluent, decolorization was achieved up to 85-99% at 10-40 mA/ cm2 at 5 mL/min flow rate and 50-88% at 30-40 mA/ cm2 at high (10-15 mL/min) flow rates. The COD reduction was maximum (81%) at 39.9 mA/cm2 or above when solution-electrode contact time (Ct) was as high as 21.7 s/cm2 and decreased as Ct declined at a given current density. Cyclic voltammetric studies suggesting an indirect oxidation of dye molecules over the anode surface were carried out at a glassy carbon electrode. The effect of pH on decolorization and COD reduction was determined. An electrochemical mechanism mediated by OCl- operating in the decolorization and COD reduction processes was suggested. The effluent was further treated with NaOCI. The oxidized products from the treated effluents were isolated and confirmed to be free from chlorine-substituted products by IR spectroscopy. From the apparent pseudo-first-order rate data, the second-order rate coefficients were evaluated to be 2.9 M(-1) s(-1) at 5 mL/ min, 76.2 M(-1) s(-1) at 10 mL/min, and 156.1 M(-1) s(-1) at 15 mL/ min for color removal, and 1.19 M(-1) s(-1) at 5 mL/min, 1.79 M(-1) s(-1) at 10 mL/min, and 3.57 M(-1) s(-1) at 15 mL/min for COD reduction. Field studies were also carried out with a pilot-scale cell at the source of effluent generation of different plants corresponding to the industry. Decolorization was achieved to about 94-99% with azo dye effluents at 0.7-1.0 L/min flow costing around Indian Rupees 0.02-0.04 per liter, and to about 54-75% in other related effluents at 0.3-1.0 L/min flow under single-pass conditions. PMID:15884385

  14. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  15. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  16. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    PubMed

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-05-13

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. PMID:24824168

  17. The effect of paper industry effluent on growth, pigments, carbohydrates and proteins of rice seedlings.

    PubMed

    Misra, R N; Behera, P K

    1991-01-01

    The effect of paper industry effluent on the growth and content of certain macromolecules of seedlings of rice (Oryza sativa L. cv. Kesari-82K) has been examined. The effects were investigated in relation to both concentration of effluent and time of exposure to the effluent. Percentage of germination, water imbibing capacity, growth, pigment, carbohydrate and protein content showed a decreasing trend with increase in effluent concentration and time. Protein content was the most sensitive macromolecule affected by effluent. Measurement of protein and protein enzymes might therefore provide a useful criterion for the evaluation of the phytotoxicity of effluent released from the pulp and paper industries. PMID:15092110

  18. Impact of industrial waste effluents on river Damodar adjacent to Durgapur industrial complex, West Bengal, India.

    PubMed

    Banerjee, U S; Gupta, S

    2013-03-01

    The present study deals with the characterization of industrial effluents released from various industries and distribution of heavy metals in effluent discharge channel and its impact on the river Damodar. The effluent of tamlanala, a natural storm water channel, is extensively used for irrigation for growing vegetables in and around the study area. The heavy metals in water of the study area are in the order of Fe > Mn > Pb > Cd and sediments follow similar trends too. The enrichment of heavy metals in the sediments are in the order of Cd (39.904) > Pb (33.156) > Mn (0.164) > Fe (0.013). The geoaccumulation index values reveal effluent channel is subjected to moderate to high pollution with respect to Cd (4.733) and Pb (4.466). The analyzed data for enrichment factors and the pollution load index (1.305) show that effluent channels have suffered from significant heavy metal contamination following industrialization and urbanization. Compared to baseline values, the surface sediment layers show high enrichment across the channel and at its discharge point. The factor analysis reveals three factors-industrial sources, surface runoff inputs, and background lithogenic factors which clarify the observed variance of the environmental variables. Metal pollution assessment of sediments suggests that pollution from the heavy metals observed is high in the tamlanala which in turn affects the downstream of the river system. PMID:22623168

  19. Technical Training in the MNCs in Malaysia: A Case Study Analysis of the Petrochemical Industry

    ERIC Educational Resources Information Center

    Hooi, Lai Wan

    2010-01-01

    Purpose: The aim of this paper is to gain insight into some of the types of training and development practices that are carried out in the chemical industry for technical workers. A salient focus of the study is to make a comparative analysis of four MNCs, which were selected based on equity ownership, to ascertain whether T&D practices are…

  20. Fundamental studies of hydrogen attack in carbon-0.5molybdenum steel and weldments applied in petroelum and petrochemical industries

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one

  1. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... topping, cracking, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations. The provisions of this subpart shall not be... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY...

  2. New industrial heat pump applications to a petrochemical plant, Phase IIA: Final report

    SciTech Connect

    1995-12-31

    The purpose of this study was to evaluate the energy conservation potential of a heat pump in an industrial site. The proper placement of the heat pump was based on the principles of Pinch Technology. Chevron`s refinery at Port Arthur, Texas, was selected as the industrial site for this study. Two energy conservation options were identified for this site with a combined total savings of $570,000 per year. This represents over 10% reduction in current thermal energy consumption of the process units, which were part of this study. The details of each option are described. The first option was a passive heat integration scheme. The second option involves a semi-open cycle mechanical vapor recompression heat pump that compresses the steam generated from the reactor exhaust streams of the cyclohexane unit to provide part of the reboiling duty of the benzene column.

  3. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    SciTech Connect

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  4. Efficacy and reliability of upgraded industrial treatment plant at Porto Marghera, near Venice, Italy, in removing nutrients and dangerous micropollutants from petrochemical wastewaters.

    PubMed

    Verlicchi, Paola; Cattaneo, Serena; Marciano, Ferdinando; Masotti, Luigi; Vecchiato, Giuseppe; Zaffaroni, Carlo

    2011-08-01

    Chemical and petrochemical wastewaters contain a host of contaminants that require different treatment strategies. Regulation of macropollutants and micropollutants in the final discharge from industrial wastewater treatment plants (WWTPs) have become increasingly stringent in recent decades, requiring many WWTPs to be upgraded. This article presents an analysis of a WWTP treating petrochemicals in Porto Marghera, Italy, that recently was upgraded following legislative changes. Because of strict legal limits for macropollutants and micropollutants and a lack of space necessary for a full-scale WWTP overhaul, the existing activated sludge tank was converted into a membrane biological reactor. The paper presents experimental data collected during a five-month investigation showing the removal rates achieved by the upgraded plant for macropollutants (particularly nitrogen compounds) and micropollutants (heavy metals and organic and inorganic toxic compounds). PMID:21905411

  5. [Evaluation of treatment technology of odor pollution source in petrochemical industry].

    PubMed

    Mu, Gui-Qin; Sui, Li-Hua; Guo, Ya-Feng; Ma, Chuan-Jun; Yang, Wen-Yu; Gao, Yang

    2013-12-01

    Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil. PMID:24640922

  6. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    PubMed

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model. PMID:24640915

  7. Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats.

    PubMed

    Akhtar, Muhammad Furqan; Ashraf, Muhammad; Anjum, Aftab Ahmad; Javeed, Aqeel; Sharif, Ali; Saleem, Ammara; Akhtar, Bushra

    2016-01-01

    Exposure to complex mixtures like textile effluent poses risks to animal and human health such as mutations, genotoxicity and oxidative damage. Aim of the present study was to quantify metals in industrial effluent and to determine its mutagenic, genotoxic and cytotoxic potential and effects on oxidative stress biomarkers in effluent exposed rats. Metal analysis revealed presence of high amounts of zinc, copper, chromium, iron, arsenic and mercury in industrial effluent. Ames test with/without enzyme activation and MTT assay showed strong association of industrial effluent with mutagenicity and cytotoxicity respectively. In-vitro comet assay revealed evidence of high oxidative DNA damage. When Wistar rats were exposed to industrial effluent in different dilutions for 60 days, then activities of total superoxide dismutase and catalase and hydrogen peroxide concentration were found to be significantly lower in kidney, liver and blood/plasma of effluent exposed rats than control. Vitamin C in a dose of 50 mg/kg/day significantly reduced oxidative effects of effluent in rats. On the basis of this study it is concluded that industrial effluent may cause mutagenicity, in-vitro oxidative stress-related DNA damage and cytotoxicity and may be associated with oxidative stress in rats. Vitamin C may have ameliorating effect when exposed to effluent. PMID:26710178

  8. Anaerobic treatment of effluents from an industrial polymers synthesis plant

    SciTech Connect

    Araya, P.; Aroca, G.; Chamy, R.

    1999-06-01

    The feasibility of the anaerobic treatment of an industrial polymer synthesis plant effluent was evaluated. The composition of the wastewater includes acrylates, styrene, detergents, a minor amount of silicates and a significant amount of ferric chloride. The average chemical oxygen demand (COD) corresponding is about 2,000 mg/l. The anaerobic biodegradability of the effluent is shown and the toxicity effect on the populations of anaerobic bacteria is evaluated. The results of the anaerobic biodegradation assays show that 62% of the wastewater compounds, measured as COD, could be consumed. An upflow anaerobic sludge blanket (UASB) reactor was used in the evaluation, it has a diameter-height ratio of 1:7, and 4-liter volume. The inoculum was obtained from a UASB pilot plant that treats brewery wastewaters. At the beginning of the operation, the biomass showed an anaerobic activity of 0.58 gCOD/(gVSS {times} d), it decreased only 2.5% in the subsequent 4 months. After 35 days of continuous operation, the reactor was operated at different steady states for 140 days. The COD was maintained at 2,200 mg/l in the feed. The results were: organic loading rate (OLR): 4.3 kg COD/(m{sup 3} {times} d), hydraulic retention time: 12 h, superficial velocity: 1 m/h, average biogas productivity: 290 L CH{sub 4}/kg COD fed, biogas composition: 70--75% methane and a COD removal percentage > 75%.

  9. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters. PMID:26547320

  10. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1996-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Assessment of the impact of petroleum and petrochemical industries to the surrounding areas in Malaysia using mosses as bioindicator supported by multivariate analysis.

    PubMed

    Abdullah, Mohd Zahari Bin; Saat, Ahmad Bin; Hamzah, Zaini Bin

    2012-06-01

    Biomonitoring of multi-element atmospheric deposition using terrestrial moss is a well-established technique in Europe. Although the technique is widely known, there were very limited records of using this technique to study atmospheric air pollution in Malaysia. In this present study, the deposition of 11 trace metals surrounding the main petroleum refinery plant in Kerteh Terengganu (eastern part of peninsular Malaysia) has been evaluated using two local moss species, namely Hypnum plumaeforme and Taxithelium instratum as bioindicators. The study was also done by means of observing whether these metals are attributed to work related to oil exploration in this area. The moss samples have been collected at 30 sampling stations in the vicinity of the petrochemical industrial area covering up to 15 km to the south, north, and west in radius. The contents of heavy metal in moss samples were analyzed by energy dispersive x-ray fluorescence technique. Distribution of heavy metal content in all mosses is portrayed using Surfer software. Areas of the highest level of contaminations are highlighted. The results obtained using the principal components analysis revealed that the elements can be grouped into three different components that indirectly reflected three different sources namely anthropogenic factor, vegetation factor, and natural sources (soil dust or substrate) factor. Heavy metals deposited mostly in the distance after 9 km onward to the western part (the average direction of wind blow). V, Cr, Cu, and Hg are believed to have originated from local petrochemical-based industries operated around petroleum industrial area. PMID:21822578

  12. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    PubMed

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent. PMID:25944749

  13. 1991 worldwide petrochemical directory

    SciTech Connect

    Not Available

    1990-01-01

    This book is a source of information on the petrochemical industry in existence. The new edition lists more than 1500 companies providing you with a brief company description, their address, phone, fax and telex numbers, as well as more than 10,000 names of key personnel and their titles. Where available, products and capacities are listed as are proposed projects. Information is included for more than 2000 plant sites in the United States, Canada, Europe, Latin America, Asia-Pacific, Africa and the Middle East.

  14. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1995-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains 250 citations and includes a subject term index and title list.)

  16. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, color removal by ozonization and by treatment with manganese solid waste, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains a minimum of 244 citations and includes a subject term index and title list.)

  17. 1986 Worldwide Petrochemical Directory

    SciTech Connect

    Not Available

    1985-01-01

    The 1986 Worldwide Petrochemical Directory contains names, addresses, phone and telex numbers of the companies in the worldwide petrochemical community. Listed are more than 14,000 key operating personnel at nearly 2,000 plant sites in the United States, Canada, Latin America, Europe, Africa, Asia-Pacific and the Middle East. Among the surveys included in this directory is the Worldwide Petrochemical Survey. This survey details petrochemical plant feedstocks, product and capacities.

  18. CHARACTERIZING THE GENOTOXICITY OF HAZARDOUS INDUSTRIAL WASTES AND EFFLUENTS USING SHORT-TERM BIOASSAYS

    EPA Science Inventory

    This chapter demonstrates that short-term bioassays can reliably and expeditiously measure the genotoxic potential of hazardous industrial wastes and effluents. etrochemical wastes have been studied in detail, especially discharges from chemical manufacturing plants and textile a...

  19. ASSESSMENT OF TECHNOLOGY FOR CONTROL OF TOXIC EFFLUENTS FROM THE ELECTRIC UTILITY INDUSTRY

    EPA Science Inventory

    The report assesses the applicability of control technologies for reducing priority pollutants in effluents from the steam-electric power generating industry. It surveys control technologies, identifying those that have demonstrated some control effectiveness for priority polluta...

  20. Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).

    PubMed

    Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru

    2012-11-01

    Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum. PMID:23741804

  1. Growth and mineral accumulation in Eucalyptus camaldulensis seedlings irrigated with mixed industrial effluents.

    PubMed

    Bhati, M; Singh, G

    2003-07-01

    Effects of mixed industrial effluents on growth, dry matter accumulation and mineral nutrient in Eucalyptus camaldulensis seedlings were studied. The objective was to evaluate the adaptability of E. camaldulensis to effluent, tolerance to excess/deficiency of mineral elements and ultimately to determine suitable combinations of industrial/municipal effluent for their use in biomass production in dry areas. Different irrigation treatments were: T(1): good water; T(2): municipal effluent; T(3): textile effluent; T(4): steel effluent; T(5): textile effluent+municipal effluent in 1:1 ratio; T(6): steel effluent+municipal effluent in 1:2 ratio; T(7): steel+textile+municipal effluent in 1:2:2 ratio; and T(8): steel+textile effluent in 1:2 ratio. High concentrations of metal ions and low concentrations of Ca, Mg, K, Na, N and P in soil and seedlings of T(4) resulted in mortality of the seedlings within a few days. Addition of the textile/municipal effluent increased the survival time of the seedlings for two to three months in T(6), T(7) and T(8) treatments. Among the remaining treatments, the seedlings of T(2) attained 131 cm height, 1.97 cm collar diameter, 19 total branches and produced 158 g seedling(-1) of dry biomass at the age of 10 months. The seedling of T(3) produced the least growth and biomass. Growth equivalent to that of the seedlings of T(1) treatment was achieved when municipal effluent was mixed with textile effluent (T(5)). There was a decrease in soil pH, EC, SOC, NH(4)-N, NO(3)-N, PO(4)-P and basic cations and increase in the concentration of Cu, Fe, Mn and Zn with T(4) treatment. The reverse trend was observed in T(3) where a high concentration of Na might have reduced Mg and micronutrient concentration in seedlings potentially affecting root and leaf growth. Mixing of effluents may be useful in tree irrigation to increase biomass productivity, which is evidenced by improved growth in T(5) and survival in T(6), T(7) and T(8) treatments. Further

  2. Removal of heavy metal from industrial effluents using Baker's yeast

    NASA Astrophysics Data System (ADS)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  3. Bioremediation of a Complex Industrial Effluent by Biosorbents Derived from Freshwater Macroalgae

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Hu, Yi; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent. PMID:24919058

  4. Decreased fish diversity found near marble industry effluents in River Barandu, Pakistan.

    PubMed

    Mulk, Shahi; Korai, Abdul Latif; Azizullah, Azizullah; Khattak, Muhammad Nasir Khan

    2016-01-01

    In a recently published study we observed that effluents from marble industry affected physicochemical characteristics of River Barandu in District Buner, Pakistan. These changes in water quality due to marble effluents may affect fish community. The present study was therefore conducted to evaluate the impacts of marble industry effluents on fish communities in River Barandu using abundance, richness, diversity and evenness of fish species as end point criteria. The fish samples were collected by local fishermen on monthly basis from three selected sites (upstream, effluents/industrial, and downstream sites). During the study period, a total of 18 fish species were found belonging to 4 orders, 5 families and 11 genera. The Cyprinidae was observed to be the dominant family at all the three selected sites. Lower abundance and species diversity was observed at the industrial (22%) and downstream sites (33%) as compared to the upstream site (45%). Effluents of marble industry were associated with lower abundance of species in River Barandu. It is recommended that industries should be shifted away from the vicinity of river and their effluents must be treated before discharging to prevent further loss of fish abundance and diversity in the River. PMID:26497021

  5. Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.

    PubMed

    Ibrahim, Wael M; Mutawie, Hawazin H

    2013-02-01

    Three different species of nonliving red algal biomass Laurancia obtusa, Geldiella acerosa and Hypnea sp. were used to build three types of fixed-bed column for the removal of toxic heavy metal ions such as Cu(2+), Zn(2+), Mn(2+) and Ni(2+) from industrial effluent. In general, the highest efficiency of metal ion bioremoval was recorded for algal column of L. obtusa followed by G. acerosa and the lowest one was recorded for Hypnea sp., with mean removal values of 94%, 85% and 71%, respectively. The obtained results showed that biological treatments of industrial effluents with these algal columns, using standard algal biotest, Pseudokirchneriella subcapitata, were capable of reducing effluent toxicities from 75% to 15%, respectively. Red algal column may be considered as an inexpensive and efficient alternative treatment for conventional removal technology, for sequestering heavy metal ions from industrial effluents. PMID:22661401

  6. Urinary 1-hydroxypyrene as biomarker of exposure to polycyclic aromatic hydrocarbons in workers in petrochemical industries: baseline values and dermal uptake.

    PubMed

    Boogaard, P J; van Sittert, N J

    1995-02-24

    The suitability of urinary 1-hydroxypyrene as a biomarker for the assessment of exposure to polycyclic aromatic hydrocarbons (PAH) in petrochemical industries was evaluated in 562 workers involved in various operations in petrochemical industries. The median 1-hydroxypyrene concentration in 121 of these workers (both smokers and non-smokers) who had had no recent occupational exposure to PAH was 0.11 mumol/mol creatinine. The upper limit of the 95% confidence interval was 0.51 mumol/mol creatinine. During activities with a low potential exposure to PAH, such as loading bitumen and the handling of clarified slurry oils and furfural extracts, 1-hydroxypyrene concentrations were only marginally increased compared with the values measured in the 121 workers with no recent occupational exposure to PAH. Despite the substantially higher potential exposure to PAH during clean-out operations of various oil refinery installations, the concentrations of 1-hydroxypyrene in the workers involved were in the same range. This suggests that personal protection equipment was generally adequate to prevent excessive exposure. However, in workers digging PAH-contaminated soil and workers engaged in the production of needle coke from ethylene cracker residue, significantly increased urinary 1-hydroxypyrene concentrations were measured. A major decrease in urinary 1-hydroxypyrene following the application of dermal protective equipment in the ground workers suggested that skin absorption plays a major role in occupational exposure to PAH. The excretion of 1-hydroxypyrene by the workers of the needle coke plant was investigated in relation to potential determinants of exposure to PAH. It was indeed found that not only inhalatory but also dermal exposure was a significant determinant of occupational exposure to PAH. PMID:7716500

  7. Electrocoagulation for the treatment of textile industry effluent--a review.

    PubMed

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. PMID:23892280

  8. Pathogens Assessment in Reclaimed Effluent Used for Industrial Crops Irrigation

    PubMed Central

    Al-Sa’ed, R.

    2007-01-01

    Reuse of treated effluent is a highly valued water source in Palestine, however with limited success due to public health concerns. This paper assesses the potential pathogens in raw, treated and reclaimed wastewater at Albireh urban wastewater treatment facility, and provides scientific knowledge to update the Palestinian reuse guidelines. Laboratory analyses of collected samples over a period of 4 months have indicated that the raw wastewater from Albireh city contained high numbers of fecal coliforms and worm eggs while 31% of the samples were Salmonella positive. Treated effluent suitable for restricted irrigation demonstrated that the plant was efficient in removing indicator bacteria, where fecal coliforms and fecal streptococci removal averaged 99.64% and 93.44%, respectively. Although not disinfected, treated effluent was free of Salmonella and parasites, hence safe for restricted agricultural purposes. All samples of the reclaimed effluent and three samples of irrigated grass were devoid of microbial pathogens indicating a safe use in unrestricted agricultural utilization. Adequate operation of wastewater treatment facilities, scientific updating of reuse guidelines and launching public awareness campaigns are core factors for successful and sustainable large-scale wastewater reuse schemes in Palestine. PMID:17431318

  9. IDENTIFICATION OF ORGANIC COMPOUNDS IN INDUSTRIAL EFFLUENT DISCHARGES

    EPA Science Inventory

    Samples of 63 effluent and 22 intake waters were collected from a wide range of chemical manufacturers in areas across the United States. The samples were analyzed for organic compounds in an effort to identify previously unknown and potentially hazardous organic pollutants. Each...

  10. Mortality experience of a young petrochemical industry cohort. 1979-1992 follow-up study of US-based employees.

    PubMed

    Huebner, W W; Schnatter, A R; Nicolich, M J; Jorgensen, G

    1997-10-01

    This retrospective study examines the mortality patterns of a relatively young cohort of 81,746 former and current petrochemical company employees. Standardized mortality ratios (SMR) for 1979 through 1992 are generally from about unity to well below unity for major causes and numerous specific causes of death studied by gender/race/job subgroups. Findings of note include a SMR (based on incidence rates) of 1.94 (95% confidence interval [CI], 1.04 to 3.33) for mesothelioma, and a SMR of 1.81 (95% CI, 0.90 to 3.24) for chronic lymphocytic leukemia, both among males hired before 1960. All male semiskilled operatives have a 1.6-fold increase (95% CI, 1.07 to 2.29) in motor vehicle accident deaths, with declining rates since the mid-1980s. The overall SMR for acquired immunodeficiency syndrome (AIDS) is at unity (69 deaths), with excesses in technician and office worker subgroups. Four decedents with lymphoma (code 202.8 in 9th revision ICD) had AIDS as a secondary cause of death, suggesting the need to examine secondary causes when studying lymphopoietic conditions. This routine surveillance activity provides leads regarding the presence or absence of excess mortality risk. PMID:9343762

  11. China petrochemical expansion progressing

    SciTech Connect

    Not Available

    1991-08-05

    This paper reports on China's petrochemical expansion surge which is picking up speed. A worldscale petrochemical complex is emerging at Shanghai with an eye to expanding China's petrochemical exports, possibly through joint ventures with foreign companies, China Features reported. In other action, Beijing and Henan province have approved plans for a $1.2 billion chemical fibers complex at the proposed Luoyang refinery, China Daily reported.

  12. Hazard zoning around electric substations of petrochemical industries by stimulation of extremely low-frequency magnetic fields.

    PubMed

    Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein

    2015-05-01

    Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations. PMID:25877640

  13. Integrated process for the removal of emulsified oils from effluents in the steel industry

    SciTech Connect

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  14. Source fingerprint monitoring of air pollutants from petrochemical industry and the determination of their annual emission flux using open path Fourier transform infrared spectroscopy

    SciTech Connect

    Yih-Shiaw Huang; Shih-Yi Chang; Tai-Ly Tso

    1996-12-31

    Toxic air pollutants were investigated in several petrochemical industrial park in Taiwan using a movable open-path Fourier-transform infrared spectroscopy (FTIR). The results show the qualitative and quantitative analysis of emission gases from plants, and also provide the emission rates of various compounds. More than twenty compounds under usual operation were found from these industrial park. The concentration variation with time could be correlated exactly with the distances from the emission source along the wind direction. This means that by changing the measuring points the source of emission could be unambiguously identified. The point, area and line source (PAL) plume dispersion model has been applied to estimate the emission rate of either a point or an area source. The local atmospheric stability was determined by releasing an SF{sub 6} tracer. The origin of errors came mainly from the uncertainty of the source configuration and the variation of the meteorological condition. Through continuous measurement using a portable open-path Fourier transform infrared (POP-FTIR) spectrometer, the maximum value of the emission rate and the annual amount of emission could be derived. The emission rate of the measured toxic gases was derived by the model technique, and the results show that the emission amount is on the order of ten to hundred tons per year.

  15. The feasibility of effluent trading in the oil and gas industry

    SciTech Connect

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades, for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  16. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-11-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L-1, respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation.

  17. A Petrochemical Primer.

    ERIC Educational Resources Information Center

    Martin, Amy

    1991-01-01

    Informs the reader of the pervasiveness of petrochemicals in everyday life. Discusses the petroleum-to-petrochemical transformation at the refinery and issues related to how petroleum products will be utilized for fuel or nonfuel needs such as lubricants, computers, and medicine in the future. (MDH)

  18. Incorporation of effluent trading in the city of Millville, NJ industrial pretreatment program

    SciTech Connect

    Taylor, S.T.; Dimino, M.A.; Tarasevich, A.

    1998-07-01

    The City of Millville, NJ recently updated its sewer use ordinance to incorporate technically defensible effluent limitations for industrial users of their POTW. These limitations were designed to protect the POTW from the potential inhibitory effects of pollutants in the waste stream, to protect the quality of the biosolids generated at the POTW, and to protect the quality of effluent discharged by the POTW. Along with these technically defensible limits, the City also developed a pollutant trading program which allows industries to set up agreements, under the City's supervision, which affect the allocation of pollutant loadings.

  19. Biomass in a petrochemical world.

    PubMed

    Roddy, Dermot J

    2013-02-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted. PMID:24427511

  20. Biomass in a petrochemical world

    PubMed Central

    Roddy, Dermot J.

    2013-01-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted. PMID:24427511

  1. Quantitative Estimation of Trace Chemicals in Industrial Effluents with the Sticklet Transform Method

    SciTech Connect

    Mehta, N C; Scharlemann, E T; Stevens, C G

    2001-04-02

    Application of a novel transform operator, the Sticklet transform, to the quantitative estimation of trace chemicals in industrial effluent plumes is reported. The sticklet transform is a superset of the well-known derivative operator and the Haar wavelet, and is characterized by independently adjustable lobe width and separation. Computer simulations demonstrate that they can make accurate and robust concentration estimates of multiple chemical species in industrial effluent plumes in the presence of strong clutter background, interferent chemicals and random noise. In this paper they address the application of the sticklet transform in estimating chemical concentrations in effluent plumes in the presence of atmospheric transmission effects. They show that this transform retains the ability to yield accurate estimates using on-plume/off-plume measurements that represent atmospheric differentials up to 10% of the full atmospheric attenuation.

  2. Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge.

    PubMed

    Wang, Wenhao; Wang, Wen-Xiong

    2016-07-01

    Severe trace metal pollution due to industrial effluents releases was found in Jiulong River Estuary, Southern China. In this study, water samples were collected during effluent release events to study the dynamic changes of environmental conditions and metal partitioning among dissolved, particulate and colloidal phases controlled by estuarine mixing. Intermittent effluent discharges during low tide caused decreasing pH and dissolved oxygen, and induced numerous suspended particulate materials and dissolved organic carbon to the estuary. Different behaviors of Cu, Zn, Ni, Cr and Pb in the dissolved fraction against the conservative index salinity indicated different sources, e.g., dissolved Ni from the intermittent effluent. Although total metal concentrations increased markedly following effluent discharges, Cu, Zn, Cr, Pb were predominated by the particulate fraction. Enhanced adsorption onto particulates in the mixing process resulted in elevated partitioning coefficient (Kd) values for Cu and Zn, and the particle concentration effect was not obvious under such anthropogenic impacts. Colloidal proportion of these metals (especially Cu and Zn) showed positive correlations with dissolved or colloidal organic carbon, suggesting the metal-organic complexation. However, the calculated colloidal partitioning coefficients were relatively constant, indicating the excess binding capacity. Overall, the intermittent effluent discharge altered the particulate/dissolved and colloidal/soluble phase partitioning process and may further influence the bioavailability and potential toxicity to aquatic organisms. PMID:27061473

  3. Development of biological oxygen demand biosensor for monitoring the fermentation industry effluent.

    PubMed

    Verma, Neelam; Singh, Ashish Kumar

    2013-01-01

    A biosensor was developed for the determination of BOD value of fermentation industry effluent. The developed biosensor was fabricated by immobilizing the microbial consortium on cellulose acetate (CA) membrane in close proximity to a DO probe electrode. The microbial consortium was harvested from the fermentation industry effluent. The BOD biosensor was calibrated by using a solution containing the equivalent amount of glucose/glutamic acid (GGA) as a standard sample solution. The response time was optimized by immobilizing different concentrations of cell biomass on CA membrane. Once the response time was optimized, it was used for determination of BOD of fermentation industry effluent. For analysis of fermentation industry effluent, the response time was observed 7 minutes with detection limit 1 mg/L. Good linear range with GGA standard solution was observed, R (2) 0.99 with relative standard deviation (RSD) <%. The observed BOD value by biosensor showed a good comparison with the conventional method for the determination of BOD. PMID:25969770

  4. Development of Biological Oxygen Demand Biosensor for Monitoring the Fermentation Industry Effluent

    PubMed Central

    Verma, Neelam; Singh, Ashish Kumar

    2013-01-01

    A biosensor was developed for the determination of BOD value of fermentation industry effluent. The developed biosensor was fabricated by immobilizing the microbial consortium on cellulose acetate (CA) membrane in close proximity to a DO probe electrode. The microbial consortium was harvested from the fermentation industry effluent. The BOD biosensor was calibrated by using a solution containing the equivalent amount of glucose/glutamic acid (GGA) as a standard sample solution. The response time was optimized by immobilizing different concentrations of cell biomass on CA membrane. Once the response time was optimized, it was used for determination of BOD of fermentation industry effluent. For analysis of fermentation industry effluent, the response time was observed 7 minutes with detection limit 1 mg/L. Good linear range with GGA standard solution was observed, R2 0.99 with relative standard deviation (RSD) <%. The observed BOD value by biosensor showed a good comparison with the conventional method for the determination of BOD. PMID:25969770

  5. Industrial effluents as a source of mercury contamination in terrestrial riparian vertebrates

    USGS Publications Warehouse

    Powell, G.V.N.

    1983-01-01

    Eight species of piscivorous and insectivorous birds and one species of bat collected along Virginia's North Fork of the Holston River contained elevated mercury residues. The ubiquitous occurrence of mercury in riparian insectivores implicates aquatic insects as a vehicle for spreading mercury contamination from one ecosystem to another and expands the ecological ramifications of mercury-contaminated industrial effluents.

  6. 1985 Worldwide Petrochemical Directory

    SciTech Connect

    Not Available

    1984-01-01

    This directory lists names, addresses, phone numbers, and telex listings. The directory includes more than 14,000 key operating personnel at over 1,900 plant locations in the United States, Canada, Latin America, Europe, Africa, Asia-Pacific and the Middle East. Featured is a special survey prepared with the help of the Oil and Gas Journal that details the petrochemical plant feedstocks, product and capacities. This Worldwide-Petrochemical Survey appears only in its entirety in directory. Also included is an updated petrochemical plant construction survey.

  7. Application of toxicity identification evaluation procedure to toxic industrial effluent in South Korea.

    PubMed

    Ra, Jin-Sung; Jeong, Tae-Yong; Lee, Sun-Hong; Kim, Sang Don

    2016-01-01

    Toxicity identification evaluation (TIE) was applied to the effluent from a pharmaceutical industrial complex, following the US EPA TIE guidelines. The whole effluent toxicity (WET) test found toxicity greater than 16toxic units (TU) in the effluent. Dissolved non-polar organic compounds were identified as the major contributor to the observed toxicity in the TIE manipulations in phases I and II. Among the 48 organic compounds identified, three compounds (i.e., acetophenone, benzoimide, and benzothiazole) were related to the pharmaceutical production procedure; however, no contribution to toxicity was predicted in the compounds. The results of the ECOSAR model, which predicts toxicity, indicated that the alkane compounds caused significant toxicity in the effluent. The toxicity test and heavy metal analysis, which used IC and ICP/MS, identified that particulate and heavy metals, such as Cu and Zn, contributed to the remaining toxicity, except dissolved organics. The results showed the applicability of the TIE method for predicting regional effluents produced by the industrial pharmaceutical complex in this study. Although the location was assumed to be affected by discharge of pharmaceutical related compounds in the river, no correlations were observed in the study. Based on the results, advanced treatment processes, such as activated carbon adsorption, are recommended for the wastewater treatment process in this location. PMID:25997865

  8. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    PubMed

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed. PMID:27191579

  9. Economic impact analysis of proposed effluent standards and limitations for the coil coating industry. Final report

    SciTech Connect

    Not Available

    1982-11-01

    The report provides an identification and analysis of the economic impacts which are likely to result from the promulgation of EPA's effluent regulations on the Coil Coating Industry. The primary economic impact variables assessed in the study include the costs of the proposed regulations and potential for these regulations to cause plant closures, price changes, unemployment, changes in industry profitability, structure and competition, shifts in the balance of foreign trade, new source impacts, and impacts on small businesses.

  10. Application of membrane and ozonation technologies to remove color from agro-industry effluents.

    PubMed

    Koyuncu, I; Sevimli, M F; Ozturk, I; Aydin, A F

    2001-01-01

    The results of membrane and ozonation experiments carried out on various agro-industry effluents including fermentation (baker's yeast), corrugated board, opium alkaloid and textile dying industries are presented. The experiments were performed using lab-scale membrane and ozonation reactors. Color removals were in the range of 80 to 99% for the membrane treatment studies. Ozonation experiments have shown that color removals in the range of 83 to 98% are possible for the investigated wastewaters. Final color levels were lower than 100 Pt-Co unit, which is quite acceptable aesthetically. The relative unit treatment costs of ozonation were about two times higher than membrane systems especially for very strong colored effluents including fermentation and opium alkaloid industries. The study has demonstrated that both membrane and ozonation technologies are viable options for color removal. PMID:11443967

  11. Use of ozone and/or UV in the treatment of effluents from board paper industry.

    PubMed

    Amat, A M; Arques, A; Miranda, M A; López, F

    2005-08-01

    The aim of this work has been to study the viability of ozone and/or UV in the treatment of cardboard industry effluents. Several model compounds have been chosen for the experiments: guaicol, eugenol, glucose, acetate and butyrate. Significant differences in the ozonisation rates are observed between phenolic products coming from lignin (eugenol and guaiacol) and aliphatic compounds. Reactions fit in all cases a pseudo-first order kinetics and are influenced by the pH of the solution. Real effluents have also been tested, and the COD decrease has been found to depend on the fatty acids/phenols ratio. Finally, respirometric studies have shown an increase in the BODst in effluents subjected to a mild oxidation, while under stronger conditions a BODst decrease is observed. PMID:15993159

  12. Toxicity assessment of effluent from flash light manufacturing industry by bioassay tests in Trigonella foenumgracum.

    PubMed

    Kumari, Narendra; Kumar, Sanjeev; Bauddh, Kuldeep; Dwivedi, Neetu; Singh, D P; Barman, S C

    2014-11-01

    A rapid bioassay test was conducted to study heavy metal accumulation and biochemical changes in Trigonella foenumgracum (methi) irrigated with 25, 50, 75 and 100% of effluent from flash light manufacturing industry at 60 days after sowing. Total metal concentration in effluent samples was: Cr = 0.12 < Cd = 0.18 < Pb = 0.24 < Cu = 2.68 mg l(-1) whereas, metals were not detected in control. An increase in photosynthetic pigments of exposed plant was noticed up to 50% concentrations of the effluent followed by a decrease at higher concentration as compared to their respective control.An enhanced lipid peroxidation in the treated plants was observed, which was evident by increased level of antioxidants: proline, cysteine, malondialdehyde and ascorbic acid content. The treated plants accumulated metals in the following order: Cu > Pb > Cr > Cd in the roots and shoots. PMID:25522513

  13. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry.

    PubMed

    Soares, Eduardo V; Soares, Helena M V M

    2013-08-01

    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed. PMID:23824444

  14. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C., Jr.

    1981-01-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  15. A comparative study on toxicity identification of industrial effluents using Daphnia magna.

    PubMed

    Yi, Xianliang; Kim, Eunhee; Jo, Hun-Je; Han, Taejun; Jung, Jinho

    2011-09-01

    In this study, acute toxicity monitoring and toxicity identification evaluation procedures were applied to identify causative toxicants in industrial effluents. Effluents from a metal plating factory and a rubber products factory were acutely toxic toward Daphnia magna and the toxicity varied over different sampling events (2.9-5.9 and 1.7-7.6 TU, respectively). For the rubber products effluent, it was confirmed that zinc (5.65-13.18 mg L(-1)) was found to be a major cause of toxicity, which is likely originated from zinc 2-mercaptobenzothiazole and zinc diethyldithiocarbamate used as vulcanization accelerators. For the metal plating effluent, it appeared that the presence of high concentrations of Cl(-) and SO(4)(2-) (8,539-11,400 and 3,588-4,850 mg L(-1), respectively) caused the observed toxicity. These toxicants likely originated from sodium bisulfate (NaHSO(3)) and sodium hypochlorite (NaOCl) used as reducing and oxidizing agents. Though copper was found to be present in levels much higher than the EC(50) (50% effective concentration) value, this was not attributable to the toxicity of metal plating effluent likely due to complexation with dissolved organic matter. PMID:21761172

  16. Application of electron beam irradiation combined to conventional treatment to treat industrial effluents

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Sampa, M. H. O.; Rela, P. R.; Oikawa, H.; Cherbakian, E. H.; Sena, H. C.; Abe, H.; Sciani, V.

    2000-03-01

    A preliminary study to combine electron beam irradiation process with biological treatment was carried out. Experiments were conducted using samples from a governmental wastewater treatment plant (WTP) that receives about 20% of industrial wastewater, with the objective of destroying the refractory organic pollutants and to obtain a better performance of this plant. Samples from five different steps of WTP were collected and irradiated in the electron beam accelerator in a batch system with 5.0, 10.0 and 20.0 kGy doses. The main results showed a removal of 99% of all organic compound analysed in the industrial receiver unit (IRU) effluent and in the coarse bar screen (CBS) effluent with a 20 kGy dose, and for the medium bar screen (MBS) and primary sedimentation (PS) effluent a 10 kGy dose was sufficient. In the case of final effluent (FE), a dose of 5 kGy removed the remaining organic compounds and dyes present after biological treatment.

  17. Investigating the differences between receptor and dispersion modeling for concentration prediction and health risk assessment of volatile organic compounds from petrochemical industrial complexes.

    PubMed

    Chen, Wei-Hsiang; Chen, Zheng-Bin; Yuan, Chung-Shin; Hung, Chung-Hsuang; Ning, Shu-Kuang

    2016-01-15

    Receptor and dispersion models both provide important information to help understand the emissions of volatile organic compounds (VOCs) and develop effective management strategies. In this study, differences between the predicted concentrations of two models and the associated impacts on the estimated health risks due to different theories behind two models were investigated. Two petrochemical industrial complexes in Kaohsiung city of southern Taiwan were selected as the sites for this comparison. Although the study compares the approaches by applying the methods to this specific area, the results are expected to be adopted for other areas or industries. Ninety-nine VOC concentrations at eight monitoring sites were analyzed, with the effects of diurnal temperature and seasonal humidity variations being considered. The Chemical Mass Balance (CMB) receptor model was used for source apportionment, while the Industrial Source Complex (ISC) dispersion model was used to predict the VOC concentrations at receptor sites. In the results of receptor modeling, 54% ± 11% and 49% ± 20% of the monitored concentrations were contributed by process emissions in two complexes, whereas the numbers increased to 78% ± 41% and 64% ± 44% in the results of dispersion modeling. Significant differences were observed between two model predictions (p < 0.05). The receptor model was more reproducible given the smaller variances of its results. The effect of seasonal humidity variation on two model predictions was not negligible. Similar findings were observed given that the cancer and non-cancer risks estimated by the receptor model were lower but more reproducible. The adverse health risks estimated by the dispersion model exceeded and were 75.3%-132.4% of the values estimated by using the monitored data, whereas the percentages were lowered to the range from 27.4% to 53.8% when the prediction was performed by using the receptor model. As the results of different models could be

  18. Removal of chromium from electroplating industry effluents by ion exchange resins.

    PubMed

    Cavaco, Sofia A; Fernandes, Sandra; Quina, Margarida M; Ferreira, Licínio M

    2007-06-18

    Effluent discharged from the chromium electroplating industry contains a large number of metals, including chromium, copper, nickel, zinc, manganese and lead. The ion exchange process is an alternative technique for application in the treatment of industrial wastewater containing heavy metals and indeed it has proven to be very promising in the removal and recovery of valuable species. The main objective of the present work is to evaluate the performance of commercial ion exchange resins for removing chromium trivalent from industrial effluents, and for this purpose two resins were tested: a chelating exchange resin (Diaion CR11) and a weak cationic resin (Amberlite IRC86). In order to evaluate the sorption capacity of the resins some equilibrium experiments were carried out, being the temperature and pH the main variables considered. The chromium solutions employed in the experiments were synthetic solutions and industrial effluents. In addition, a transient test was also performed as an attempt to understand the kinetic behaviour of the process. PMID:17336455

  19. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    PubMed

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries. PMID:25860696

  20. Thai petrochemical boom on track

    SciTech Connect

    Not Available

    1992-03-16

    This paper reports that Thailand continues to mark progress on the ambitious expansion of its petrochemical industry. Among recent developments: The outlook for Thailand's troubled worldscale aromatics project has improved with a major cut in its estimated cost. In addition, the project apparently has drawn the interest of other companies seeking a possible equity stake. Amoco Chemical Co., which lost a tender to build a worldscale purified terephathalic acid (PTA) complex in Thailand to Taiwan's Tuntex Co., is reviving its bid with a proposal similar to its earlier one. Amoco contends there will be enough demand to warrant a second PTA plant in Thailand. Tuntex is negotiating with several business groups to take part in its $333 million, 350,000 ton/year PTA project in Thailand. Tuntex is soliciting interest from a number of Thai companies, including Bangkok Bank and the Saha Union industrial conglomerate to acquire portions of the 51% interest in the project earmarked for Thai shareholders. The firm also is negotiating with a number of Japanese companies with whom it has long trade ties, including Mitsui and Co. and Marubeni Corp. to acquire part of the 49% foreign shareholding in the project. Thai Olefins Co. (TOC) marked further progress with feedstock contracts and financing arrangements for its proposed $720 million olefins plant, part of Thailand's second worldscale petrochemical complex (NPC II). Indian industrial giant Birla proposed a $20 million ethylene glycol (EG) project in Thailand.

  1. Respirometric biomonitor for the control of industrial effluent toxicity

    SciTech Connect

    Campanella, L.; Favero, G.; Mastrofini, D.; Tomassetti, M.

    1995-12-31

    A yeast cell biosystem has been recently developed for the total toxicity testing of a sample that may contain a number of different polluting species. The method uses an amperometric gas diffusion oxygen sensor as indicating electrode and is based on the perturbation of the respiratory activity of the immobilized yeast saccharomyces cerevisiae; glucose acts as substrate. Several toxic substances were tested: metal ions (Cd{sup 2+}, Cr{sup 3+}, Pb{sup 2+}, Cu{sup 2+}, Hg{sup 2+}), phenol and cationic, anionic or nonionic surfactants. Some results of a monitoring program of an industrial wastewater are also reported and discussed.

  2. Effluent treatment in the paint and coating industry. (Latest citations from World Surface Coatings abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the analysis and treatment of effluents from the coating industry. Filters used for solvent adsorption and recovery, activated carbon adsorption of paint fumes, hydrogen peroxide treatment of wastes, effluent heat recovery, and biological treatments are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. How best to promote industrial pollution prevention through the effluent guidelines process. Recommendations of the industrial pollution prevention project (IP3) focus group

    SciTech Connect

    Not Available

    1994-05-01

    The Industrial Pollution Prevention Project (IP3) Focus Group was requested by EPA to provide specific recommendations on how best to promote industrial pollution prevention through the effluent guidelines process. In response to that request, the Group makes the following recommendations to EPA: To promote more industrial pollution prevention, the effluent guidelines process must (1) be more flexible, (2) address all media, and (3) impart a pollution prevention mindset to everyone throughout the effluent guidelines process. To accomplish this, EPA should adopt a specific new approach to the development and achievement of Best Available Technology (BAT) limits.

  4. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry: Part V--Asbestos-caused cancers and exposure of workers in the oil refining industry.

    PubMed

    Mehlman, M A

    1991-01-01

    In the oil refining and petrochemical industries exposure to cancer-causing asbestos particles, especially during equipment repair and maintenance, is very high. Up to 90% of workers in the oil refining industry had direct and/or indirect contact with asbestos, and more than half of this contact occurred without the use of any kind of precaution, thus these workers are in high risk of developing lung cancer and mesothelioma, both fatal diseases. The hazards include: inadequate health and safety training for both company personnel and workers, failure to inform about the dangers and diseases (cancers) resulting from exposure to asbestos; excessive use of large numbers of untrained and uninformed contract workers; lack of use of protective equipment; and archaeological approaches and responses to repairing asbestos breaks and replacement of asbestos in oil refining facilities. For a better understanding of practices and policies in the oil refining industry, refer to Rachel Scott's Muscle and Blood, in particular the chapter "Oil" (E.P. Dutton, New York, 1974), as well as to an editorial which appeared in the Oil and Gas Journal, April, 1968. PMID:1853354

  5. Estimating genetic potential of biofuel forest hardwoods to withstand metal toxicity in industrial effluent under dry tropical conditions.

    PubMed

    Manzoor, S A; Mirza, S N; Zubair, M; Nouman, W; Hussain, S B; Mehmood, S; Irshad, A; Sarwar, N; Ammar, A; Iqbal, M F; Asim, A; Chattha, M U; Chattha, M B; Zafar, A; Abid, R

    2015-01-01

    Biofuel tree species are recognized as a promising alternative source of fuel to conventional forms. Additionally, these tree species are also effective in accumulating toxic heavy metals present in some industrial effluents. In developing countries such as Pakistan, the use of biofuel tree species is gaining popularity not only for harvesting economical and environmentally friendly biofuel, but also to sequester poisonous heavy metals from industrial wastewater. This study was aimed at evaluating the genetic potential of two biofuel species, namely, Jatropha curcas and Pongamia pinnata, to grow when irrigated with industrial effluent from the Pak-Arab Fertilizer Factory Multan, Southern Punjab, Pakistan. The growth performances of one-year-old seedlings of both species were compared in soil with adverse physiochemical properties. It was found that J. curcas was better able to withstand the toxicity of the heavy metals present in the fertilizer factory effluent. J. curcas showed maximum gain in height, diameter, and biomass production in soil irrigated with 75% concentrated industrial effluent. In contrast, P. pinnata showed a significant reduction in growth in soil irrigated with more than 50% concentrated industrial effluent, indicating that this species is less tolerant to higher toxicity levels of industrial effluent. This study identifies J. curcas as a promising biofuel tree species that can be grown using industrial wastewater. PMID:26345887

  6. USE OF TOXICITY IDENTIFICATION EVALUATION METHODS TO CHARACTERIZE IDENTIFY, AND CONFIRM HEXAVALENT CHROMIUM TOXICITY IN AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...

  7. Effluent treatment in the textile industry: Excluding dyes. July 1983-September 1989 (Citations from World Textile Abstracts). Report for July 1983-September 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning the treatment and reuse of textile industry effluents. Effluents that contain dyes are discussed in a separate bibliography. Recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents are discussed. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. (This updated bibliography contains 322 citations, 22 of which are new entries to the previous edition.)

  8. Petroleum industry effluents and other oxygen-demanding wastes in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Uwakwe, Augustine A

    2006-07-01

    In this article, we review the fundamental phenomenon of oxygenation within the overriding context of petroleum-industry effluents and the other oxygen demanding wastes in Niger Delta, Nigeria. Drill cuttings, drilling mud (fluids used to stimulate the production processes), and accidental discharges of crude petroleum constitute serious land and water pollution in the oil-bearing province. Effluents from other industrial establishments such as distilleries, pulp and paper mills, fertilizer plants, and breweries, as well as thermal effluents, plant nutrients (such as nitrates and phosphates), and eroded sediments have also contributed to the pollution of their surrounding environment. Since these wastes are oxygen-demanding in nature, their impact on the recipient environment can be reversed by the direct application of simple chemistry. The wastes can be reduced, particularly in natural bodies of water, by direct oxidation-reduction processes or simple chemical combinations, acid-base reactions, and solubility equilibria; these are pH- and temperature-dependent. A shift in pH and alkalinity affects the solubility equilibria of Na+, Cl-, SO(2-), NO3(-), HCO3(-), and PO4(3-), and other ions and compounds. PMID:17193303

  9. Assessment of ecological risks linked to the discharge of saline industrial effluent into a river.

    PubMed

    Perrodin, Yves; Volatier, Laurence; Bazin, Christine; Boisson, Jean-Claude

    2013-03-01

    Discharges of saline effluents into rivers can lead to risks for local aquatic ecosystems. A specific ecological risk assessment methodology has been developed to propose a management tool to organisations responsible for managing rivers and industrial companies producing saline effluents. This methodology involves the detailed description of the spatiotemporal system concerned, the choice of ecological targets to be preserved, and the performance of bioassays adapted to each of the compartments of the river. Following development, it was applied to an industrial effluent in eastern France. For the scenario studied, results obtained suggest a high risk for the organisms of the water column and a low risk for the organisms of the periphyton. This difference can be explained by the structure of the latter which integrate extracellular polymers secreted by the organisms of the biofilm, forming a gel with a porous structure that acts as a barrier to diffusion. The methodology formulated permitted identifying the critical points of the spatiotemporal system studied and then using them as the basis for making well-grounded proposals for management. Lastly, proposals to improve the methodology itself are made, especially concerning the integration of the sediment compartment in the version formulated initially. PMID:22684878

  10. Use of recycling through medium size granular filters to treat small food processing industry effluents.

    PubMed

    Ménoret, C; Boutin, C; Liénard, A; Brissaud, F

    2002-01-01

    Currently there are no suitable wastewater treatment systems for effluents from small food processing industries (dairy, cheese, wine production). Such raw sewages are characterized by high organic matter concentrations (about 10 g COD L-1) and relatively low daily volumes (about 2 m3). An adaptation of attached-growth cultures on fine media processes, known to be easy and inexpensive to use, could fit both the technical and economical context of those industries. Coarser filter particle size distributions than those normally used allow a better aeration and reduce clogging risk. The transit time of the effluent through the porous filter materials is shortened and requires recycling to increase the contact time between the biomass and the substrate. A pilot plant was built to compare the efficiency of two kinds of filter materials, gravel (2-5 mm) and pozzolana (3-7 mm). Two measurement campaigns were undertaken on a full-scale unit dealing with cheese dairy effluents. Both pilot-scale and full-scale plants show high COD removal rates (> 95%). Pilot-scale experiments show that accumulation of organic matter leads to the clogging of the recycling filter. To prevent early clogging, a better definition of feeding cycles is needed. PMID:12201106

  11. A modular success story the Saudi petrochemical project

    SciTech Connect

    Kirven, J.B.; Swenson, C.R.

    1986-01-01

    The Saudi Petrochemical Company is referred to within this paper as ''Sadaf''. Sadaf is the phonetic spelling of the Arabic word for seashell and is a joint venture of Saudi Basic Industries Corporation (SABIC) and Pecten Arabian Ltd., an affiliate of Shell Oil Comapny, U.S.A. SABIC is a joint stock corporation responsible for the development of basic industries in the Kingdom in the petrochemicals, metals and fertilizers field.

  12. Study of biological aerated filters for the treatment of effluents from the citrus industry.

    PubMed

    Osorio, Francisco; Torres, Juan C; Hontoria, Ernesto

    2006-01-01

    The primary objective of this research study was to test the applicability and optimize the design parameters of a system of biological aerated filters in order to obtain an optimal effluent from the citrus industry, which would allow its drainage into the municipal sewer system. Expanded clay was used as a support material. After experimenting with both countercurrent and cocurrent flows as well different aeration levels, it was found that cocurrent flow was more efficient. Backwashing was carried out on a daily basis. The results of our study showed that for an aeration of 10.47 Nm3/h/m2, the volumetric load should be less than 20 Kg. COD/m3/d in order to obtain an effluent with a maximum concentration of 600 mgCOD/L, and the hydraulic load should be less than 0.36 m/h. PMID:17114100

  13. Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation.

    PubMed

    Nagel-Hassemer, Maria Eliza; Carvalho-Pinto, Catia Regina S; Matias, William Gerson; Lapolli, Flávio Rubens

    2011-12-01

    This study has investigated the reduction in coloured substances and toxic compounds present in textile industry effluent by the use of an advanced oxidation process using hydrogen peroxide (H2O2) as oxidant, activated by ultraviolet radiation. The investigation was carried out on industrial effluents, both raw and after biological treatment, using different concentrations of H2O2 in a photochemical reactor equipped with a 250 W high-pressure mercury vapour lamp. The results showed that after 60 minutes of ultraviolet irradiation a H2O2 concentration of 500 mg L(-1) was able to remove approximately 73% of the coloured compounds present in raw effluent and 96% of those present in biologically treated effluent. Additionally, post-treatment toxicity tests performed using the microcrustacean Daphnia magna showed a significant effective reduction in the acute toxicity of the raw effluent. In tests carried out with treatment at a concentration of 750 and 1000 mg L(-1) H2O2, analysis of the frequency ofmicronuclei in erythrocytes of Tilapia cf rendalli exposed to treated effluent samples confirmed that there were no mutagenic effects on the fish. Together, these results indicate that the oxidation process offers a good alternative for the removal of colour and toxicity from textile industry effluent. PMID:22439575

  14. How will Southeast Asian petrochemicals impact the HPI?

    SciTech Connect

    Rothman, S.N.

    1997-05-01

    Development of East Asia`s petrochemical industry has been phenomenal, with major complexes built in numerous locations. The Southeast Asian countries of particular interest are members of the Association of Southeast Asian Nations (ASEAN): Singapore, Thailand, Malaysia, Indonesia, the Philippines, Brunei and Vietnam. As new capacity is built in this region, these large operating facilities will affect supply and demand for key petrochemical products--ethylene and polyolefins. What are the potential regional effects from this new capacity? Traditional net export countries will have to re-evaluate their future marketing strategies to remain competitive in Southeast Asia and other trading areas. As East Asia`s petrochemical industry comes of age, competition will undoubtedly increase. However, this growing region offers opportunities to widen manufacturing basis. The paper discusses basic chemical demands and the outlook for the Asian petrochemical industry.

  15. Adverse pregnancy outcome in a petrochemical polluted area in Taiwan.

    PubMed

    Lin, M C; Yu, H S; Tsai, S S; Cheng, B H; Hsu, T Y; Wu, T N; Yang, C Y

    2001-08-24

    The petrochemical industry is the main source of industrial air pollution in Taiwan. Reported here are the results from an ongoing study of outdoor air pollution and the health of individuals living in a community in close proximity to petrochemical industrial complexes. The prevalences of term low birth weight (LBW) in the petrochemical municipality and control municipality were 3.22%, and 1.84%, respectively. After controlling for several possible confounders (including maternal age, season, marital status, maternal education, and infant sex), the adjusted odds ratio was 1.767 (1.002-3.116) for term LBW in the petrochemical municipality. Data provide further support for the hypothesis that air pollution can affect the outcome of pregnancy. PMID:11549116

  16. Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan.

    PubMed

    Mulk, Shahi; Azizullah, Azizullah; Korai, Abdul Latif; Khattak, Muhammad Nasir Khan

    2015-02-01

    Industries play an important role in improving the living standard but at the same time cause several environmental problems. Therefore, it is necessary to evaluate the impact of industries on the quality of environment. In the present study, the impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan was evaluated. Water and sediment samples were collected at three different sampling sites (upstream, industrial, and downstream sites) from Barandu River and their physicochemical properties were inter-compared. In addition, different marble stones and mix water (wastewater) from marble industry were analyzed. The measured physicochemical parameters of river water including pH, electrical conductivity (EC), alkalinity, total hardness, Ca and Mg hardness, total dissolved solid (TDS), total suspended solids (TSS), sulfates (SO4 (2-)), sodium (Na(+)), potassium (K(+)), nitrites (NO2 (-)), nitrate (NO3 (-)), chloride (Cl(-)), calcium (Ca(2+)), and magnesium (Mg(2+)) were found to be significantly altered by effluent discharges of marble industries. Similarly, heavy metal concentrations in both water and sediments of the river were significantly increased by marble industry wastewater. It is concluded that large quantities of different pollutants are added to Barandu River due to direct disposal of marble industry effluents which degrades its quality. Therefore, it is recommended that direct disposal of marble industry wastewater should be banned and all effluents must be properly treated before discharging in the river water. PMID:25616784

  17. Economic analysis of final effluent limitations guidelines and standards for the pharmaceutical manufacturing industry

    SciTech Connect

    1998-07-01

    This economic analysis (EA) examines compliance costs and economic impacts resulting from the US Environmental Protection Agency`s (EPA`s) Final Effluent Limitations Guidelines and Standards for the Pharmaceutical Manufacturing Industry Point Source Category. It also investigates the costs and impacts associated with an air rule requiring Maximum Achievable Control Technology (MACT) to control air emissions, both separately and together with the Final Pharmaceutical Industry Effluent Guidelines. The EA estimates the economic effects of compliance with both final rules in terms of total aggregate annualized costs of compliance, facility closures, impacts on firms (likelihood of bankruptcy and effects on profit margins), and impacts on new sources. The EA also investigates secondary impacts on employment and communities, foreign trade, specific demographic groups, and environmental justice. This report includes a Final Regulatory Flexibility Analysis (FRFA) detailing the impacts on small businesses within the pharmaceutical industry to meet the requirements of the Regulatory Flexibility Act (RFA), as amended by the Small Business Regulatory Enforcement Fairness Act (SBREFA). Finally, the EA presents a cost-benefit analysis to meet the requirements of Executive Order 12866 and the Unfunded Mandates Reform Act.

  18. Effect of leather industry effluents on soil microbial and protease activity.

    PubMed

    Pradeep, M Reddi; Narasimha, G

    2012-01-01

    Release of leather industry effluents into the agricultural fields causes indicative changes in nutrient cycling and organic matter processing. In the present study, leather industry effluent discharged soil (test) and undischarged soil(control) were collected from the surrounding areas of industry. The physico-chemical, biological properties and soil protease activity were examined. The study reflected the average mean value of pH, electrical conductivity and water holding capacity of the test soil was found to be 7.94, 0.89 microMhos cm(-1) and 0.51 ml g(-1), respectively. In chemical parameters, organic matter, total nitrogen, phosphorus and potassium has the mean of 6.73%, 0.23 g kg(-1), 4.28 mg g(-1) and 28 microg g(-1), respectively. In all the respects, the test soil showed higher values than the control. The soil protease enzyme activity was determined by using substrate casein and the activity was found to be higher (180 microg TE g(-1) 24 hr(-1)) in test soil than the control soil (63 microg TE g(-1) 24 hr(-1)). PMID:23033641

  19. Nutrient loadings to streams of the continental United States from municipal and industrial effluent?

    USGS Publications Warehouse

    Maupin, Molly A.; Ivahnenko, Tamara

    2011-01-01

    Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.

  20. Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent1

    PubMed Central

    Maupin, Molly A; Ivahnenko, Tamara

    2011-01-01

    Abstract Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using “typical pollutant concentrations” to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. PMID:22457577

  1. Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents.

    PubMed

    Cavaco, Sofia A; Fernandes, Sandra; Augusto, Cátia M; Quina, Margarida J; Gando-Ferreira, Licínio M

    2009-09-30

    In this study two chelating resins containing iminodiacetic acid groups (Amberlite IRC 748 and Diaion CR 11) and a chelating resin based on sulfonic and diphosphonic acid groups (Diphonix) were investigated in order to separate Cr(III) from industrial effluents produced in hard and decorative electroplating. Samples of two industrial plants were characterized during a period of about one year and a half in terms of the metals content (Cr, Cu, Na, Ca, Fe and Ni), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Chemical Oxygen Demand (COD) and pH. Some of the physical properties of the resins, namely the moisture content, apparent density, intraparticle porosity and the particle size distribution were also evaluated. To quantify the sorption capacity of the resins, batch experiments were performed using synthetic solutions of Cr(III), as well as solutions of Fe in the case of Diphonix. The Langmuir and Langmuir-Freundlich isotherms enabled a good description of the ion-exchange equilibrium data, and the maximum sorption capacity determined for Amberlite and Diaion was 3.6 mequiv./g(dry resin). For Diphonix that parameter was 3.4 mequiv./g(dry resin). The Diphonix resin exhibits a high selectivity for transition metals (Fe, Ni) over the chromium trivalent. Therefore, it was screened as the most suitable for selectively removing those metal impurities from chromium electroplating effluents. For this resin, the sorption capacity is strongly dependent on the initial pH of the solution. Though, high regeneration efficiencies of Diphonix for stripping Cr(III) were found by using a mixture of NaOH/H(2)O(2). The mathematical model tested for describing the dynamics of the process allowed a good fitting to the experimental data and enabled the estimation of effective pore diffusivity of Cr(III). The saturations of Diphonix with industrial effluents demonstrated that the breakthrough capacity of the resin is affected by the presence of other species in solution

  2. a Study for Remote Detection of Industrial Effluents' Effect on Rice Using Thermal Images

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Abkar, A. A.; Maghsoudi, Y.; Dehnavi, E.

    2015-12-01

    Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images) useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory's effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant's product and its f-cover value, also some changes in radiant temperature.

  3. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    PubMed

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. PMID:27112874

  4. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in municipal and industrial effluents.

    PubMed

    Sappington, Emily N; Balasubramani, Aparna; Rifai, Hanadi S

    2015-08-01

    Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were quantified in 45 effluent samples in the Houston Ship Channel (HSC) system in Texas. Total PCDD/F concentrations ranged from 0.16 to 13.23 pg L(-1) in the dissolved phase and from 0.79 to 682.27 pg L(-1) in the suspended phase. Generally, industrial facilities contained more PCDD/F contamination than municipal wastewater treatment plants or refuse facilities. World Health Organization Toxic Equivalents (WHO-TEQs) ranged from 0.007 to 0.279 pg L(-1) in the dissolved phase and 0.021-1.851 pg L(-1) in the suspended phase. The major TEQ contributor was 2,3,7,8-TCDD and overall, TEQs were greatest in industrial effluents. A correlation between high solids and high PCDD/F concentrations was observed and based on the results obtained in this study, the abundance of suspended solids may have largely contributed to high PCDD/F contamination in the suspended phase. Homolog profiles revealed that PCDD/F contamination increased with increasing chlorination and the highest concentrations were primarily from the octa-chlorinated congeners (OCDD/F) in both the dissolved and suspended phase. PMID:25935498

  5. Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism.

    PubMed

    Radić, Sandra; Stipanicev, Drazenka; Cvjetko, Petra; Mikelić, Ivanka Lovrencić; Rajcić, Marija Marijanović; Sirac, Sinisa; Pevalek-Kozlina, Branka; Pavlica, Mirjana

    2010-01-01

    This study aimed at assessing the toxic effects of industrial effluents using duckweed (Lemna minor L.) plants as a test system. Growth inhibition test according to standardized protocol (ISO 20079) was performed. The suitability of the Comet assay (indicates DNA damage) and certain parameters such as peroxidase activity and lipid peroxidation level, as biomarkers for environmental monitoring was evaluated. The water samples were collected monthly over a 3-month period from the stream near the industrial estate of Savski Marof, Croatia. All samples caused inhibition of growth rates based on frond number and biomass as well as decrease of chlorophylls content. In contrast, peroxidase activity, malondialdehyde content and tail extent moment (measure of DNA strand breaks) markedly increased. Obtained data demonstrate the relevance of duckweed as sensitive indicators of water quality as well as the significance of selected biological parameters in the reliable assessment of phyto- and genotoxic potential of complex wastewaters. PMID:19757030

  6. Confectionery industry: a case study on treatability-based effluent characterization and treatment system performance.

    PubMed

    Ozgun, H; Karagul, N; Dereli, R K; Ersahin, M E; Coskuner, T; Ciftci, D I; Ozturk, I; Altinbas, M

    2012-01-01

    Source-based wastewater characterization and stream segregation provide effective management of industrial wastewaters. The characterization of wastewater sources from a confectionery factory was presented and performance of the wastewater treatment plant was evaluated in this study. All of the wastewater sources in the factory, except the vacuum water line, can be characterized by high concentrations of soluble pollutants and low pH. High organic content of the wastewater generated from the confectionery industry promoted the application of anaerobic technology as a pre-treatment before the conventional aerobic treatment. The average chemical oxygen demand (COD) removal and biogas production for expanded granular sludge bed reactor were 88% and 1,730 Nm(3)/day, respectively. The effluent from the investigated facility can be used for irrigation provided that conductivity values are within acceptable limits. PMID:22678195

  7. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    PubMed

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  8. Effect of gaseous cement industry effluents on four species of microalgae.

    PubMed

    Talec, Amélie; Philistin, Myrvline; Ferey, Frédérique; Walenta, Günther; Irisson, Jean-Olivier; Bernard, Olivier; Sciandra, Antoine

    2013-09-01

    Experiments were performed at lab scale in order to test the possibility to grow microalgae with CO2 from gaseous effluent of cement industry. Four microalgal species (Dunaliella tertiolecta, Chlorella vulgaris, Thalassiosira weissflogii, and Isochrysis galbana), representing four different phyla were grown with CO2 enriched air or with a mixture of gasses mimicking the composition of a typical cement flue gas (CFG). In a second stage, the culture submitted to the CFG received an increasing concentration of dust characteristic of cement industry. Results show that growth for the four species is not affected by the CFG. Dust added at realistic concentrations do not have any impact on growth. For dust concentrations in two ranges of magnitude higher, microalgae growth was inhibited. PMID:23811523

  9. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator.

    PubMed

    Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio

    2011-10-01

    Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. PMID:21835466

  10. Effect of marble industry effluent on seed germination, post germinative growth and productivity of Zea mays L.

    PubMed

    Akbar, Fazal; Hadi, Fazal; Ullah, Zakir; Zia, Muhammad Amir

    2007-11-15

    A green house study was conducted at the University of Malakand, NWFP, Pakistan to evaluate the effect of marble industry effluent on soil pH, germination, post germinative growth and productivity of maize. The experiment was conducted in triplicate form for each treatment and tape water was used as control (T0). Effluents were diluted with tap water at concentration of 20% (T1), 40% (T2), 60% (T3), 80% (T4) and also used 100% (T5) concentration in 4 kg soil pot(-1) and plants were grown for 90 days. Results showed that there was a linear increase in pH of soil with increase in effluent concentration while germination, root length and stem girth was enhanced and found maximum at 40% concentration of effluent applied. The shoot length and root dry biomass was depressed as compared to control. It is concluded from the present study that marble industry effluent can be used as a fertilizer in low concentration especially for highly acidic soil but there is still need to carry out series of greenhouse and field trials to ascertain the fertilizer potentials of this effluent for maize crop. PMID:19090297

  11. Low effluent processing in the pulp and paper industry: Electrodialysis for continuous selective chloride removal

    SciTech Connect

    Pfromm, P.H.

    1997-12-01

    Pollution prevention is currently a major focus of the United States pulp and paper industry. Significant process changes are inevitable to implement low effluent processing. The kraft pulping process is prevalent for the production of wood pulp. About 50 million tons of wood pulp are produced annually in the United States alone using the kraft process. Water consumption is currently roughly between 30 and 200 m{sup 3} of water per ton of air dry bleached kraft pulp. In-process recycling of water is now being implemented by many mills to reduce the use of increasingly scarce water resources and to reduce the need for waste-water treatment. Mass balance considerations and industrial experience show that nonprocess elements, which are detrimental to the kraft process, such as chloride and potassium, will quickly build up once water use is significantly reduced. High concentrations of chloride and potassium can cause corrosion and lead to more frequent mill shutdowns due to fouling of heat exchanger surfaces in the kraft recovery furnace. Electrodialysis will monovalent selective anion and cation exchange membranes was explored here to selectively remove chlorine as sodium and potassium chloride from a feed stream with very high ionic strength. Experiments with model solutions and extended tests with the actual pulp mill materials were performed. Very good selectivities and current efficiencies were observed for chloride over sulfate. The outstanding performance of the process with actual mill materials containing organic and inorganic contamination shows great promise for rapid transfer to the pilot scale. This work is an example of the usefulness of membrane separations as a kidney in low effluent industrial processing.

  12. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  13. Identification of a new N-nitrosodimethylamine precursor in sewage containing industrial effluents.

    PubMed

    Kosaka, Koji; Asami, Mari; Ohkubo, Keiko; Iwamoto, Takuji; Tanaka, Yasuo; Koshino, Hiroyuki; Echigo, Shinya; Akiba, Michihiro

    2014-10-01

    N-Nitrosodimethylamine (NDMA), a potential human carcinogen, is known to be a disinfection byproduct of chloramination and ozonation. NDMA is formed during ozonation at water purification plants in the Yodo River basin, a major drinking water source in western Japan. An NDMA precursor, 1,1,5,5-tetramethylcarbohydrazide (TMCH) was identified in sewage containing industrial effluents via ultrahigh performance liquid chromatography-tandem mass spectrometry, and ultrahigh performance liquid chromatography-time-of-flight mass spectrometry, as well as nuclear magnetic resonance spectroscopy. The mean of the NDMA molar formation yield of TMCH upon ozonation in four water matrices was 140%. TMCH removal was low during biological treatment processes at a sewage treatment plant. The mean TMCH contribution to total NDMA precursors upon ozonation of the primary, secondary, and final effluents of the sewage treatment plant in January and February of 2014 was 43-72%, 51-72%, and 42-60%, respectively, while the contributions of 4,4'-hexamethylenebis(1,1-dimethylsemicarbazide) and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide, two other known NDMA precursors, were limited to 0.6% and 6.9%, respectively. Thus, TMCH was identified as the primary precursor yielding NDMA upon ozonation in the Yodo River basin. PMID:25184404

  14. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay.

    PubMed

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-06-01

    Anthropogenic activities usually contaminate water environments, and have led to the eutrophication of many estuaries and shifts in microbial communities. In this study, the temporal and spatial changes of the microbial community in an industrial effluent receiving area in Hangzhou Bay were investigated by 454 pyrosequencing. The bacterial community showed higher richness and biodiversity than the archaeal community in all sediments. Proteobacteria dominated in the bacterial communities of all the samples; Marine_Group_I and Methanomicrobia were the two dominant archaeal classes in the effluent receiving area. PCoA and AMOVA revealed strong seasonal but minor spatial changes in both bacterial and archaeal communities in the sediments. The seasonal changes of the bacterial community were less significant than those of the archaeal community, which mainly consisted of fluctuations in abundance of a large proportion of longstanding species rather than the appearance and disappearance of major archaeal species. Temperature was found to positively correlate with the dominant bacteria, Betaproteobacteria, and negatively correlate with the dominant archaea, Marine_Group_I; and might be the primary driving force for the seasonal variation of the microbial community. PMID:27266302

  15. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  16. Glyphosate degradation by immobilized bacteria: field studies with industrial wastewater effluent.

    PubMed Central

    Hallas, L E; Adams, W J; Heitkamp, M A

    1992-01-01

    Immobilized bacteria have been shown in the laboratory to effectively remove glyphosate from wastewater effluent discharged from an activated sludge treatment system. Bacterial consortia in lab columns maintained a 99% glyphosate-degrading activity (GDA) at a hydraulic residence time of less than 20 min. In this study, a pilot plant (capacity, 45 liters/min) was used for a field demonstration. Initially, activated sludge was enriched for microbes with GDA during a 3-week biocarrier activation period. Wastewater effluent was then spiked with glyphosate and NH4Cl and recycled through the pilot plant column during start-up. Microbes with GDA were enhanced by maintaining the pH at less than 8 and adding yeast extract (less than 10 mg/liter). Once the consortia were stabilized, the column capacity for glyphosate removal was determined in a 60-day continuous-flow study. Waste containing 50 mg of glyphosate per liter was pumped at increasing flow rates until a steady state was reached. A microbial GDA of greater than 90% was achieved at a 10-min hydraulic residence time (144 hydraulic turnovers per day). Additional studies showed that microbes with GDA were recoverable within (i) 5 days of an acid shock and (ii) 3 days after a 21-day dormancy (low-flow, low-maintenance) mode. These results suggest that full-scale use of immobilized bacteria can be a cost-effective and dependable technique for the biotreatment of industrial wastewater. PMID:1599241

  17. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface. PMID:27148721

  18. Removal of chromium from tannery industry effluents with (activated carbon and fly ash) adsorbents.

    PubMed

    Rao, S; Lade, H S; Kadam, T A; Ramana, T V; Krishnamacharyulu, S K G; Deshmukh, S; Gyananath, G

    2007-10-01

    Adsorption is a strong choice for removal operations as it is very simple to recover a high quality product from waste sludge. The efficiency of adsorbents like fly ash and activated carbon are tested based on their performance to remove chrome at various pH values, bed heights, and concentration of adsorbents. The removal efficiency was also tested for wastewater characteristics in a pilot plant in addition to the use of adsorbents. The concentration of chromium was determined by atomic absorption spectrophotometer (Perkin Elmer). The results depicted that the efficiency of removal increased with increasing pH and bed height and decreased with increasing concentration. The removal efficiency with fly ash as an adsorbent was comparatively better than activatedcarbon. Thus, adsorbents can be used for chromium removal from tannery industry effluent. PMID:18476371

  19. Remotion of organic compounds of actual industrial effluents by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Sampa, M. H. O.; Duarte, C. L.; Rela, P. R.; Somessari, E. S. R.; Silveira, C. G.; Azevedo, A. L.

    1998-06-01

    Organic compounds has been a great problem of environmental pollution, the traditional methods are not effecient on removing these compounds and most of them are deposited to ambient and stay there for long time causing problems to the environment. Ionizing radiation has been used with success to destroy organic molecules. Actual industrial effluents were irradiated using IPEN's electron beam wastewater pilot plant to study organic compounds degradation. The samples were irradiated with and without air mixture by different doses. Irradiation treatment efficiency was evaluated by the Cromatography Gas Analyses of the samples before and after irradiation. The studied organic compounds were: phenol, chloroform, tetrachloroethylene (PCE), carbon tetrachloride, trichloroethylene (TCE), 1,1-dichloroethane, dichloromethane, benzene, toluene and xilene. A degradation superior to 80% was achieved for the majority of the compounds with air addition and 2kGy delivered dose condition. For the samples that were irradiated without air addition the degradation was higher.

  20. Elimination of As, Hg and Zn from synthetic solutions and industrial effluents using modified bark

    SciTech Connect

    Gaballah, I.; Kilbertus, G.

    1995-08-01

    Elimination of arsenic, mercury and zinc from synthetic solutions containing H{sub 3}AsO{sub 4}, HgCl{sub 2} and ZnCl{sub 2} using modified barks was investigated. The pH range was varied from 1 to 10. The initial concentrations of individual element were 10, 100 and 1,000 ppm. More than 99% of mercury and 65% of zinc cations were removed by the modified bark. In this case, the modified bark reacts as a cation exchanger leading to the release of two protons for every Hg{sup II} or Zn{sup II} fixed by this material. About 30% of arsenic was eliminated from the solution. This low efficiency could be attributed to the presence of arsenic as anion. Decontamination of a treated industrial effluent containing 4 ppm of ion metals was performed on a pilot scale by the modified bark. More than 70% of these ion metals were eliminated.

  1. Economic impact analysis of effluent limitations and standards for plastics molding and forming industry. Final report

    SciTech Connect

    Not Available

    1984-12-01

    The U.S. Environmental Protection Agency issued effluent limitations and standards in December, 1984, for the Plastics Molding and Forming Industry. The report estimates the economic impacts associated with pollution control costs. Plant-specific treatment costs for 20 percent of the impacted plants are compared to estimated pre-tax plant income to assess the impact of treatment costs on plant liquidity. Then a closure analysis is performed, comparing the current salvage value of the plant's assets with the present value of the plant's cash flow plus the terminal value of its assets. The results are extrapolated to the 558 plants which, as direct dischargers, would be impacted. The results of this plant-level analysis are used to assess the indirect impacts of the regulation, e.g., price changes, unemployment and shifts, in the balance of foreign trade.

  2. Effluent treatment in the textile industry: excluding dyes. January 1983-January 1989 (Citations from World Textile Abstracts). Report for January 1983-January 1989

    SciTech Connect

    Not Available

    1989-02-01

    This bibliography contains citations concerning the treatment and reuse of textile-industry effluents. Effluents that contain dyes are discussed in a separate bibliography. Recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents are discussed. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic-fiber manufacture and wool-scouring processes are emphasized. (This updated bibliography contains 300 citations, 84 of which are new entries to the previous edition.)

  3. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.

    PubMed

    Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R

    2006-05-01

    This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon. PMID:16418891

  4. Pulping effluents: Biological treatment. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning effluent and wastewater biological treatment and disposal in the pulping industry. Effluent toxicity; treatment plant management, treatment systems, and equipment design; combined mechanical and biological treatment processes; biological degradation treatment in chemical pulp mills; and the handling and disposal of solid wastes are among the topics discussed. Also examined are performance evaluations of biological treatment processes in domestic and foreign plants in full scale operation and pilot programs. (Contains a minimum of 168 citations and includes a subject term index and title list.)

  5. Sequential in situ hydrotalcite precipitation and biological denitrification for the treatment of high-nitrate industrial effluent.

    PubMed

    Cheng, Ka Yu; Kaksonen, Anna H; Douglas, Grant B

    2014-11-01

    A sequential process using hydrotalcite precipitation and biological denitrification was evaluated for the treatment of a magnesium nitrate (Mg(NO3)2)-rich effluent (17,000mgNO3(-)-N/L, 13,100mgMg/L) generated from an industrial nickel-mining process. The hydrotalcite precipitation removed 41% of the nitrate (7000mgNO3(-)-N/L) as an interlayer anion with an approximate formula of Mg5Al2(OH)14(NO3)2·6H2O. The resultant solute chemistry was a Na-NO3-Cl type with low trace element concentrations. The partially treated effluent was continuously fed (hydraulic retention time of 24h) into a biological fluidised bed reactor (FBR) with sodium acetate as a carbon source for 33days (1:1 v/v dilution). The FBR enabled >70% nitrate removal and a maximal NOx (nitrate+nitrite) removal rate of 97mg NOx-N/Lh under alkaline conditions (pH 9.3). Overall, this sequential process reduced the nitrate concentration of the industrial effluent by >90% and thus represents an efficient method to treat Mg(NO3)2-rich effluents on an industrial scale. PMID:25280045

  6. Transcriptional response of stress-regulated genes to industrial effluent exposure in the cockle Cerastoderma glaucum.

    PubMed

    Karray, Sahar; Tastard, Emmanuelle; Moreau, Brigitte; Delahaut, Laurence; Geffard, Alain; Guillon, Emmanuel; Denis, Françoise; Hamza-Chaffai, Amel; Chénais, Benoît; Marchand, Justine

    2015-11-01

    This study assessed the responses of molecular biomarkers and heavy metal levels in Cerastoderma glaucum exposed for 1 week to two industrial effluents (1%) discharged into the Tunisian coastal area, F1 and F2, produced by different units of production of a phosphate treatment plant. A significant uptake of metals (Cd, Cu, Zn, and Ni) was observed in exposed cockles compared to controls, with an uptake higher for F1 than for F2. A decrease in LT50 (stress on stress test) was also observed after an exposure to the effluent F1. Treatments resulted in different patterns of messenger RNA (mRNA) expression of the different genes tested in this report. Gene transcription monitoring performed on seven genes potentially involved in the tolerance to metal exposure showed that for both exposures, mechanisms are rapidly and synchronically settled down to prevent damage to cellular components, by (1) handling and exporting out metal ions through the up-regulation of ATP-binding cassette xenobiotic transporter (ABCB1) and metallothionein (MT), (2) increasing the mRNA expression of antioxidant enzymes (catalase (CAT), superoxide dismutases, CuZnSOD and MnSOD), (3) protecting and/or repairing proteins through the expression of heat shock protein 70 (HSP70) mRNAs, and (4) increasing ATP production (through the up-regulation of cytochrome c oxidase 1 (CO1)) to provide energy for cells to tolerate stress exposure. The tools developed may be useful both for future control strategies and for the use of the cockle C. glaucum as a sentinel species. PMID:25613800

  7. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    PubMed Central

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-01-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  8. CRIER, a relative analysis tool for preliminary screening of complex industrial waste and effluents

    SciTech Connect

    Anderson, P.D.; Brucher, S.; Melanson, P.

    1994-12-31

    CRIER (Chemrisk, a Relative Index for Evaluating Risk), a Windows{trademark}-based program for the preliminary screening of potential risk to aquatic ecosystems, has been developed at the Center of Environmental Chemistry and Ecotoxicology (CECE) in Concordia. This tool, originally designed for environmental management government bodies, was designed to screen chemical compounds found in industrial aqueous effluents, for their potential to cause harm to some selected target species such as the rainbow trout (Oncorhynchus mykiss). This revised model will be applicable in both regulatory and industrial managements as an expert system that provides an assessment based on the most up-to-date toxicological information regarding each compound. Some major characteristics include the consideration of partitioning, plume effect, bioavailability and bioconcentration capacity in producing an evaluation of potential for harm to freshwater species. When parameters are empirically unavailable from the diverse databases, QSARs are used to produce theoretical preliminary estimates of the missing values. one aspect of the model allows consideration of the combined toxicity of organic congeners. Case studies are used in demonstrating the capacities of this model.

  9. Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation.

    PubMed

    Cerqueira, Vanessa S; Hollenbach, Emanuel B; Maboni, Franciele; Camargo, Flávio A O; Peralba, Maria do Carmo R; Bento, Fátima M

    2012-03-01

    The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18-48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants. PMID:22805841

  10. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    NASA Astrophysics Data System (ADS)

    Moraes, M. C. F.; Romanelli, M. F.; Sena, H. C.; Pasqualini da Silva, G.; Sampa, M. H. O.; Borrely, S. I.

    2004-09-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  11. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin.

    PubMed

    Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J

    2015-05-01

    The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced. PMID:26270209

  12. Usefulness of sediment toxicity tests with estuarine plants and animals to indicate municipal and industrial effluent impact

    SciTech Connect

    Lewis, M.A.; Weber, D.E.

    1994-12-31

    The environmental impact of municipal and industrial effluents has been predicted from results from single species toxicity tests. The goal of these tests is to ensure that water quality criteria and the designated use of the waterbody is not impacted. Recently, the focus of some effluent toxicity evaluation has centered on determining the effluent impact on the sediment in the receiving water. This study evaluated the toxicities of several sediment samples collected above and below six outfalls to the Pensacola Bay system. Toxicities were determined using three macrophytic plants and four animal species. The sediments, with few exceptions, exhibited a low level of toxicity. The mysid shrimp was more sensitive than Ampelisca, Leptocheirus and the sheepshead minnow. The sensitivities of the plants, Echinochloa crusgalli, Scirpus robustus and Sesbania macrocarpa, were comparable to those of the animal species. The toxicity of time sediment, when compared to that of the effluent, determined using standard single species of plants and animals was less. Overall, the sediment toxicity tests were useful in providing insight on the impact of effluents. However, the application and usefulness of this assessment tool is highly dependent upon a variety of factors, including the geomorphological characteristics of the receiving waters.

  13. Chromium in tannery industry effluent and its effect on plant metabolism and growth.

    PubMed

    Nath, Kamlesh; Saini, Sonia; Sharma, Yogesh Kumar

    2005-04-01

    Different dilution levels of tannery treated effluent and their corresponding concentration of chromium (Cr6+) were studied in a petridish culture experiment on seed germination and seedling growth in radish (Raphanus sativus L). The different concentrations of Cr6+ (2, 5 and 10 ppm) and treated tannery effluent (10, 25 and 50%) showed reduction in seedling growth and related enzymatic activities with increase in concentration of Cr6+ in treatments and effluent both. The low concentration of chromium (2 ppm) and effluent dilution (10%) showed significant growth reduction separately. At this concentration of chromium and effluent dilution chlorophyll content, amylase, catalase and protein contents remained unchanged while with increase in Cr6+ concentration (>2ppm) and effluent dilution (> 10%) in treatments showed growth inhibitory effects. PMID:16161973

  14. Reduction in the estrogenic activity of a treated sewage effluent discharge to an English river as a result of a decrease in the concentration of industrially derived surfactants.

    PubMed

    Sheahan, David A; Brighty, Geoff C; Daniel, Mic; Jobling, Susan; Harries, Jule E; Hurst, Mark R; Kennedy, Joe; Kirby, Sonia J; Morris, Steven; Routledge, Edwin J; Sumpter, John P; Waldock, Michael J

    2002-03-01

    As a result of the introduction of tighter discharge limits and effluent treatment processes at source, the concentration of alkylphenol ethoxylates and nonylphenol present in the final effluent discharge from a sewage treatment works that treats trade effluent from the textiles industry was reduced. The estrogenic effects of the final effluent discharge to the Aire River were compared over a four-year period during which various treatment measures were introduced. Male rainbow trout exposed to the effluent on four occasions in consecutive years (1994-1997) showed a reduction in the level of induced vitellogenesis between 1994 and 1997. A marked decrease in gonadosomatic index (GSI) and increase in heptaosomatic index (HSI) was measured in fish exposed to the effluent in 1994. In successive years, these differences diminished, and in the case of the GSI no measurable difference was observed between fish exposed to the final effluent or those in the control group in 1997. However, an increase in HSI was still measurable in 1997 in fish exposed to the final effluent and at sites farther downstream. The reduction in the effects of the effluent paralleled the reduction in the concentration of nonylphenol as well as its mono- and diethoxylates, which have been demonstrated to produce estrogenic effects in trout exposed to these compounds in the laboratory. This study demonstrates that the setting of more restricted discharge limits for known estrogenic chemicals of industrial origin can lead to significant reductions in the estrogenic activity of the watercourses into which the effluents are discharged. PMID:11878464

  15. Assessment of heavy metals in the industrial effluents, tube-wells and municipal supplied water of Dehradun, India.

    PubMed

    Kulshrestha, Shail; Awasthi, Alok; Dabral, S K

    2013-07-01

    The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed. PMID:25509947

  16. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag(+), Cu(2+) and Fe(3+) from industrial effluents.

    PubMed

    Liu, Peng; Borrell, Pere Ferrer; Božič, Mojca; Kokol, Vanja; Oksman, Kristiina; Mathew, Aji P

    2015-08-30

    The potential of nanoscaled cellulose and enzymatically phosphorylated derivatives as bio-adsorbents to remove metal ions (Ag(+), Cu(2+) and Fe(3+)) from model water and industrial effluents is demonstrated. Introduction of phosphate groups onto nanocelluloses significantly improved the metal sorption velocity and sorption capacity. The removal efficiency was considered to be driven by the high surface area of these nanomaterials as well as the nature and density of functional groups on the nanocellulose surface. Generally, in the solutions containing only single types of metal ions, the metal ion selectivity was in the order Ag(+)>Cu(2+)>Fe(3+), while in the case of mixtures of ions, the order changed to Ag(+)>Fe(3+)>Cu(2+), irrespective of the surface functionality of the nanocellulose. In the case of industrial effluent from the mirror making industry, 99% removal of Cu(2+) and Fe(3+) by phosphorylated nanocellulose was observed. The study showed that phosphorylated nanocelluloses are highly efficient biomaterials for scavenging multiple metal ions, simultaneously, from industrial effluents. PMID:25867590

  17. [Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate].

    PubMed

    Zhu, Song-mei; Zhou, Zhen; Gu, Ling-yun; Jiang, Hai-tao; Ren, Jia-min; Wang, Luo-chun

    2016-01-15

    Fe(II) activated sodium persulfate (PS) technology was used for advanced treatment of effluent from industrial park wastewater treatment plant. Separate and combined effects of PS/COD, Fe(II)/PS and pH on COD and TOC removal were analyzed by the response surface methodology. Variations of organic substances before and after Fe(II)-PS oxidation were characterized by UV-Vis spectrometry, gel chromatography and three-dimensional fluorescence. PS/COD and Fe(II)/PS had significant effect on COD removal, while all the three factors had significant effect on TOC removal. The combined effect of PS/COD and pH had significant effect on COD removal. COD and TOC removal efficiencies reached 50.7% and 60.6% under optimized conditions of PS/COD 3.47, Fe(II)/PS 3.32 and pH 6.5. Fe(II)-PS oxidation converted macromolecular organic substances to small ones, and reduced contents of protein-, humic- and fulvic-like substances. PMID:27078964

  18. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    PubMed

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden. PMID:26398023

  19. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    NASA Astrophysics Data System (ADS)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  20. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.

    PubMed

    Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir

    2015-01-01

    Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results. PMID:26398037

  1. Assessment of the effluent quality from a gold mining industry in Ghana.

    PubMed

    Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L

    2013-06-01

    The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam. PMID:23179219

  2. Studies on application of teak leaf powders for the removal of color from synthetic and industrial effluents.

    PubMed

    Ponnusami, V; Srivastava, S N

    2009-09-30

    Batch studies were conducted to investigate the potential of untreated teak leaf powder (TLP) to remove color from synthetic and industrial effluents. Langmuir and Freundlich isotherms were used to analyze the equilibrium data. Langmuir isotherm was found to be the best-fitting isotherm. The monolayer adsorption capacity was found to be 99.1, 145.2, 188.7 and 207.9 mg methyleneblue/gTLP at 293, 303, 313 and 323 K, respectively. It was also found from the thermodynamic analysis that the adsorption of methylene blue onto TLP was spontaneous, chemisorption and exothermic in nature. The color of the effluent was quantified in terms of the area under absorbance spectrum. Percentage color, COD and total dissolved solids (TDS) removed from a diluted effluent (10% effluent by vol.) were found to be 57.41, 45.95 and 49.46, respectively. The monolayer capacity was calculated in terms of TDS and was found to be 219 mg/g. PMID:19411138

  3. Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy.

    PubMed

    Gross, Kevin C; Bradley, Kenneth C; Perram, Glen P

    2010-12-15

    Industrial smokestack plume emissions were remotely measured with a midwave infrared (1800-3000 cm(-1)) imaging Fourier-transform spectrometer operating at moderate spatial (128 × 64 with 19.4 × 19.4 cm(2) per pixel) and high spectral (0.25 cm(-1)) resolution over a 20 min period. Strong emissions from CO(2), H(2)O, SO(2), NO, HCl, and CO were observed. A single-layer plume radiative transfer model was used to estimate temperature T and effluent column densities q(i) for each pixel's spectrum immediately above the smokestack exit. Across the stack, temperature was uniform with T = 396.3 ± 1.3 K (mean ± stdev), and each q(i) varied in accordance with the plume path length defined by its cylindrical geometry. Estimated CO(2) and SO(2) volume fractions of 8.6 ± 0.4% and 380 ± 23 ppm(v), respectively, compared favorably with in situ measurements of 9.40 ± 0.03% and 383 ± 2 ppm(v). Total in situ NO(x) concentration (NO + NO(2)) was reported at 120 ± 1 ppm(v). While NO(2) was not spectrally detected, NO was remotely observed with a concentration of 104 ± 7 ppm(v). Concentration estimates for the unmonitored species CO, HCl, and H(2)O were 14.4 ± 0.3 ppm(v), 88 ± 1 ppm(v), and 4.7 ± 0.1%, respectively. PMID:21069951

  4. Regulatory impact assessment of proposed effluent guidelines and NESHAP for the pulp, paper, and paperboard industry. Final report

    SciTech Connect

    Not Available

    1993-11-01

    The report has been prepared to comply with Executive Order 12866, which requires that federal agencies assess costs and benefits of each significant rule they propose or promulgate. The pulp and paper industry is the eighth largest manufacturing industry in the U.S. in terms of the value of goods shipped and third among the nondurables sector in sales. The products of this industry are used every day and involve many aspects of our lives. Approximately 200 companies are engaged in the manufacture of pulp, paper, and paperboard in the United States. These companies own and operate 565 facilities in 42 states. The pulp, paper, and paperboard industry is one of the largest users of water in the U.S.; because large quantities of water are used in making pulp and paper products, these mills recycle, treat and discharge large quantities of effluent water. The main categories of aquatic pollutants found in pulp and paper mill effluent are conventional pollutants, such as biochemical oxygen demand (BOD), and toxic pollutants such as chlorinated compounds. Conventional pollution abatement in the U.S. paper industry has focused on reducing solids and BOD.

  5. Petrochemicals for the nonchemical person

    SciTech Connect

    Burdick, D.L.; Leffler, W.L.

    1983-01-01

    Petrochemicals for the Nontechnical Person is the second book in a series designed to inform the curious novice or frustrated veteran of what petrochemicals are and how they're made. Contents include: The complete course in organic chemistry; Benzene, toluene, and the xylenes; Cyclohexane; Olefin plants; The C/sub 4/ hydrocarbon family; Cumene and phenol; Ethylbenzene and styrene; Ethylene dichloride and vinyl chloride; Ethylene oxide and ethylene glycol; Propylene oxide and propylene glycol; Methanol and synthesis gas; The other alcohols; Acetone, methyl ethyl ketone, and methyl isobutyl ketone; The acids; Acrylonitriles and the acrylates; Maleic anhydride; The nature of polymers; Thermoplastics; Resins and fibers; Index.

  6. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.

    PubMed

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries. PMID:21419572

  7. Increased risk of preterm delivery in areas with cancer mortality problems from petrochemical complexes.

    PubMed

    Yang, Chun-Yuh; Chiu, Hui-Fen; Tsai, Shang-Shyue; Chang, Chih-Ching; Chuang, Hung-Yi

    2002-07-01

    The petrochemical and petroleum industries are the main sources of industrial air pollution in Taiwan. Data in this study concern outdoor air pollution and the health of individuals living in communities in close proximity to petrochemical industrial complexes. The prevalence of delivery of preterm birth infants was significantly higher in mothers living near petrochemical industrial complexes than in control mothers living elsewhere in Taiwan. After controlling for several possible confounders (including maternal age, season, marital status, maternal education, and infant sex), the adjusted odds ratio was 1.18 (95% CI=1.04-1.34) for delivery of preterm infants in the petrochemically polluted region. The data provide further support for the hypothesis that air pollution can affect the outcome of pregnancy. PMID:12176003

  8. The Level/Preventive Approach to Solving Technical and Economic Tasks as One of Directions in Development of the Enterprises of Oil Refining and Petrochemical Industry

    NASA Astrophysics Data System (ADS)

    Damineva, R.; Daminev, R.; Karimov, O.

    2016-06-01

    In this work, as a tool of strategy generation in development of industrial enterprise, a methodological approach is considered, that allows the choosing the best path of development among many solutions of technical and economic tasks, taking into account both the interests of enterprises and of society as a whole.

  9. Assessment of microbial quality of fish processing industrial effluent in bar-mouth at Bhidia landing site, Veraval, Gujarat, India.

    PubMed

    Sivaraman, G K; Visnuvinayagam, S; Jha, Ashish Kumar; Renuka, V; Remya, S; Vanik, Deesha

    2016-07-01

    The present study was carried out to assess the microbial quality of fish processing industries effluent at Bhidia bar-mouth, Veraval, Gujarat during April, 2012 to March 2013. The total viable bacterial count (TVBC), total Enterobacteriaceae count, E. coli count (EC), Staphylococcus aureus and Fecal Streptococcal count in effluent ranged from 3.0 x 10(-1) to 6.8 x 10(6), 9.0 x 10(1) to 2.9 x 10(4), 0 to 0. 5 x 10(4), 0 to 0. 4 x 102 and 0.3 x 10(1) to 0. 1 x 10(4) cfu.(-1)respectively. Significantly higher load of TEC, E. coli, S.aureus, Fecal Streptococci, Total coliforms and Fecal coliforms were higher during summer whereas, TVBC was higher in the month of Sept.-Oct. Furthermore, the total coliform and fecal coliform counts were found to be higher with 1400+ /100 ml MPN value throughout the year of the study, except in the month of August. Overall occurrence of pathogenic strains of E. coli, S. aureus and Fecal streptococci were 41.67%, 25.00% and 66.67% respectively during this period. The antibiogram of the isolated E. coli isolates show that almost 50% were resistant to Cefazidime/Clavulanic acid (CAC), Amoxyclav (AMC), Ciprofloxacin (CIF) and Ampicillin (AMP). The present study indicated that the effluent of fish processing industry was heavily contaminated with E. coli, S. aureus and Fecal Streptococci which confirmed improper treatment of fish processing effluent. Moreover, the precedence of antibiotic resistant E. coli may pose threat to public health safety. PMID:27498498

  10. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale. PMID:25185495

  11. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing Basidiomycetes strains.

    PubMed

    Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F

    2013-04-01

    The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. PMID:23350659

  12. The sequential application of macroalgal biosorbents for the bioremediation of a complex industrial effluent.

    PubMed

    Kidgell, Joel T; de Nys, Rocky; Paul, Nicholas A; Roberts, David A

    2014-01-01

    Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models. PMID:25061756

  13. The Sequential Application of Macroalgal Biosorbents for the Bioremediation of a Complex Industrial Effluent

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models. PMID:25061756

  14. Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process.

    PubMed

    Zhu, Songmei; Zhou, Zhen; Jiang, Haitao; Ye, Jianfeng; Ren, Jiamin; Gu, Lingyun; Wang, Luochun

    2016-01-01

    The advanced oxidation technology, ferrous ion (Fe(II)) activated persulfate (PS) producing sulfate radicals, was used for the advanced treatment of effluent from an integrated wastewater treatment plant in a papermaking industrial park. Separate and interactive effects of PS dosage, Fe(II)/PS ratio and initial pH on chemical oxygen demand (COD) removal were analyzed by the response surface methodology (RSM). The results showed that Fe(II)-PS system was effective in COD removal from the secondary effluent. PS dosage was the most dominant factor with positive influence on COD removal, followed by initial pH value. The optimum conditions with COD removal of 54.4% were obtained at PS/COD of 2.2, initial pH of 6.47 and Fe(II)/PS of 1.89. UV-visible spectrum analysis showed that after RSM optimization, Fe(II)-PS system effectively degraded large organic molecules into small ones, and decreased humification degree of the effluent. Three-dimensional fluorescence analysis demonstrated that aromatic protein and fulvic substances were fully decomposed by the Fe(II)-PS treatment. PMID:27438260

  15. Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge--a case study.

    PubMed

    Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S

    2005-09-01

    Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted. PMID:16196413

  16. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity.

    PubMed

    Patel, Tallika L; Patel, Bhargav C; Kadam, Avinash A; Tipre, Devayani R; Dave, Shailesh R

    2015-01-01

    The present study was aimed towards the effective bio-treatment of actual industrial effluent containing as high as 42,000 mg/L COD (chemical oxygen demand), >28,000 ADMI (American Dye Manufacturers Institute) color value and four heavy metals using indigenous developed bacterial consortium TSR. Mineral salt medium supplemented with as low as 0.02% (w/v) yeast extract and glucose was found to remove 70% ADMI, 69% COD and >99% sorption of heavy metals in 24 h from the effluent by consortium TSR. The biodegradation of effluent was monitored by UV-vis light, HPLC (high performance liquid chromatography), HPTLC (high performance thin layer chromotography) and FTIR (Fourier transform infrared spectroscopy) and showed significant differences in spectra of untreated and treated effluent, confirming degradation of the effluent. Induction of intracellular azoreductase (107%) and NADH-DCIP reductase (128%) in addition to extracellular laccase (489%) indicates the vital role of the consortium TSR in the degradation process. Toxicity study of the effluent using Allium cepa by single cell gel electrophoresis showed detoxification of the effluent. Ninety per cent germination of plant seeds, Triticum aestivum and Phaseolus mungo, was achieved after treatment by consortium TSR in contrast to only 20% and 30% germination of the respective plants in case of untreated effluent. PMID:25945844

  17. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry: Part I. Carcinogenicity of motor fuels: gasoline

    SciTech Connect

    Mehlman, M.A. )

    1991-09-01

    Studies in humans and animals have shown that gasoline contains a number of cancer-causing and toxic chemicals such as 1,3-butadiene, benzene, toluene, ethylbenzene, xylenes, isoparaffins, methyltert-butylether, and others. The International Agency for Research on Cancer (IARC) in its Monograph Supplement 7 (1987) concludes that in the absence of adequate data on humans, it is biologically plausible and prudent to regard agents for which there is sufficient evidence of carcinogenicity in experimental animals as if they present a carcinogenic risk to humans.' Epidemiological studies in humans provide important evidence of potential increased risk of leukemia, lymphatic tissue cancers, cancers of the brain, liver, and other organs and tissues. Recently (July, 1990) the American Conference of Governmental Industrial Hygiene (ACGIH) recommended that the TLV-TWA for benzene be reduced from 1 ppm to 0.1 ppm (ACGIH, 1990). The Collegium Ramazzini and others have also recommended that the exposure level for 1,3-Butadiene be reduced from 1,000 ppm to below 0.2 ppm. This recommendation is based on the findings that were presented at the Symposium on Toxicology, Carcinogenesis, and Human Health Aspects of 1,3-Butadiene (Environ. Health Perspec., 1990). Thus, studies on health effects resulting from very low levels of benzene, 1,3-butadiene, and other cancer-causing chemicals--components of gasoline--necessitate that all avoidable exposure to gasoline or gasoline vapors be avoided.

  18. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study.

    PubMed

    Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L

    2016-10-01

    To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production. PMID:27450127

  19. Biological alternatives to chemical identification for the ecotoxicological assessment of industrial effluents: The RTG-2 in vitro cytotoxicity test

    SciTech Connect

    Castano, A. . Centro de Sanidad Ambiental); Vega, M.; Blazquez, T.; Tarazona, J.V. )

    1994-10-01

    Ecotoxicology is concerned with the effects of chemicals on biological systems. Identifying components of complex aqueous effluents poses special problems, and can be useless if there is a lack of information on the biological effects of the identified chemicals. Toxicity-based (bioassay-directed) sample fractionation can be very useful, but the small amount of fractioned material is a constraint that can be solved by using in vitro tests. The RTG-2 in vitro cytotoxicity test has been used to assess (a) the efficacy of a treatment plant in the aeronautics industry and (b) the exposure of fish and molluscs cultured in Esteiro Bay to the effluent of a fish-processing factory. Ecotoxicological assessments could be done without identifying the responsible chemicals. The RTG-2 test was used in combination with concentration/fractionation procedures. It proved that the toxicity of the liquid wastes from the aeronautics industry was eliminated by the treatment, and that molluscs and fish reared in Esteiro Bay had accumulated toxic chemicals dumped by the fish-processing factory. A combination of the RTG-2 cytotoxicity test and HPLC proved to give useful information even for chemicals not identified by GC-MS.

  20. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils. PMID:26803661

  1. Ecological effects of contaminated sediments following a decade of no industrial effluents emissions: the Sediment Quality Triad approach.

    PubMed

    Lopes, Marta Lobão; Rodrigues, Ana Maria; Quintino, Victor

    2014-10-15

    Sediments contaminated by industrial effluents a decade after the emissions were stopped were statistically compared to sediments from reference channels, using the Sediment Quality Triad approach. The metals and metalloid concentrations, mainly Hg and As, increased towards the upper part of a contaminated channel, where the industrial discharge was located. A bioaccumulation assay with Scrobicularia plana showed the highest bioaccumulation and mortality in the most contaminated sediments and bioaccumulation strongly correlated with the sediments metals and metalloid concentrations. The resident macroinvertebrate community also showed significant differences between the contaminated and reference channels, in the upper areas, where the community was most affected. All three elements of the quality triad rejected the null hypothesis and indicated that despite the emissions ceasing in 2004, sediments remain contaminated by high levels of metals and metalloid, leading to bioaccumulation and with severe community level consequences. PMID:25152187

  2. Purification of effluent waters from industrial enterprises using a biosorption technology

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Nedzvetskaya, R. Ya.

    2012-03-01

    A technology for purifying effluent waters that uses carbonate sludge from thermal power stations as sorbent is considered. Initial experimental data are presented, as well as their approximation and correlation analysis. A model is used for mathematically describing the biosorption process, which is constructed on the assumption that diffusion is the main process that goes in the course of sorbing pollutants by sludge and biologically oxidizing them by active sludge.

  3. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents.

    PubMed

    Singhal, V; Rai, J P N

    2003-02-01

    The paper reports on the biogas production from water hyacinth (Eichhornia crassipes) and channel grass (Vallisneria spiralis) employed separately for phytoremediation of lignin and metal-rich pulp and paper mill and highly acidic distillery effluents. These plants eventually grow well in diluted effluent up to 40% (i.e., 2.5-times dilution with deionized water) and often take up metals and toxic materials from wastewater for their metabolic use. Slurry of the two plants used for phytoremediation produced significantly more biogas than that produced by the plants grown in deionized water; the effect being more marked with plants used for phytoremediation of 20% pulp and paper mill effluent. Biogas production from channel grass was relatively greater and quicker (maximum in 6-9 days) than that from water hyacinth (in 9-12 days). Such variation in biogas production by the two macrophytes has been correlated with the changes in C, N and C/N ratio of their slurry brought by phytoremediation. PMID:12688463

  4. Evaluation of ELISA kits followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry for the determination of organic pollutants in industrial effluents

    SciTech Connect

    Castillo, M.; Oubina, A.; Barcelo, D.

    1998-07-15

    Contaminated industrial effluents often contain a variety of organic pollutants which are difficult to analyze by standard GC-MS methods since they often miss the more polar or nonvolatile of these organic compounds. The identification of highly polar analytes by chemical or rapid biological techniques is needed for characterization of the effluents. The present work evaluates the use of enzyme linked immunosorbent assays (ELISA) kits for determining pentachlorophenol, carcinogenic PAHs and BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) among the organic analytes present in various industrial effluents from Europe. The analytical protocol applied for the evaluation of the kits was based on the use of ELISA followed by solid-phase extraction (SPE) for the preconcentration of a variety of organic pollutants such as pentachlorophenol, phthalates, and nonylphenol and final determination with LC-MS characterization using an atmospheric pressure chemical ionization (APCI) interface in the positive and negative ionization modes. The developed protocol permitted the unequivocal identification of target analytes such as pentachlorophenol, nonylphenol, dibutylphthalate, dimethylphthalate, bis(2-ethylhexyl)phthalate 2-methylbenzenesulfonamide, and 2,2-dimethylbenzene-sulfonamide present in industrial effluents. The advantages and limitations of the three RaPID-magnetic particle-based ELISA kits applied to the characterization of industrial effluents are also reported.

  5. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding

  6. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.

    PubMed

    Zhou, Guiyin; Luo, Jinming; Liu, Chengbin; Chu, Lin; Ma, Jianhong; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2016-02-01

    High sorption capacity, high sorption rate, and fast separation and regeneration for qualified sorbents used in removing heavy metals from wastewater are urgently needed. In this study, a polyampholyte hydrogel was well designed and prepared via a simple radical polymerization procedure. Due to the remarkable mechanical strength, the three-dimensional polyampholyte hydrogel could be fast separated, easily regenerated and highly reused. The sorption capacities were as high as 216.1 mg/g for Pb(II) and 153.8 mg/g for Cd(II) owing to the existence of the large number of active groups. The adsorption could be conducted in a wide pH range of 3-6 and the equilibrium fast reached in 30 min due to its excellent water penetration for highly accessible to metal ions. The fixed-bed column sorption results indicated that the polyampholyte hydrogel was particularly effective in removing Pb(II) and Cd(II) from actual industrial effluent to meet the regulatory requirements. The treatment volumes of actual smelting effluent using one fixed bed column were as high as 684 bed volumes (BV) (7736 mL) for Pb(II) and 200 BV (2262 mL) for Cd(II). Furthermore, the treatment volumes of actual smelting effluent using tandem three columns reached 924 BV (31,351 mL) for Pb(II) and 250 BV (8483 mL) for Cd(II), producing only 4 BV (136 mL) eluent. Compared with the traditional high density slurry (HDS) process with large amount of sludge, the proposed process would be expected to produce only a small amount of sludge. When the treatment volume was controlled below 209.3 BV (7103 mL), all metal ions in the actual industrial effluent could be effectively removed (<0.01 mg/L). This wok develops a highly practical process based on polyampholyte hydrogel sorbents for the removal of heavy metal ions from practical wastewater. PMID:26650450

  7. Assessing acute toxicity of effluent from a textile industry and nearby river waters using sulfur-oxidizing bacteria in continuous mode.

    PubMed

    Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun

    2011-10-01

    Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources. PMID:22329151

  8. Impact of biodegradation on the potential bioaccumulation and toxicity of refinery effluents.

    PubMed

    Leonards, Pim E G; Postma, Jaap F; Comber, Mike; Whale, Graham; Stalter, George

    2011-10-01

    Whole effluent assessments (WEA) are being investigated as potential tools for controlling aqueous industrial discharges and minimizing environmental impact. The present study investigated how toxicity and the presence of potentially bioaccumulative substances altered when refinery effluents were subjected to biodegradation tests. Three petrochemical effluents were assessed, two freshwater and one saline, and subjected to two different types of biodegradation tests, resembling either a ready style (dissolved organic carbon (DOC)-die away) or an inherent style (Zahn-Wellens) test and the toxicity and potential to bioaccumulate parameters were re-analysed during and after biodegradation. A high proportion of the potentially bioaccumulative substances (PBS) in these effluents was easily biodegradable. Biodegradation not only lowered the PBS concentration but also toxicity. Appropriate controls are required however, as some increases in toxicity were observed after 4 h. In the present study, six other petrochemical effluents were also assessed for their PBS content and toxicity to increase the understanding of the relationship between PBS and toxicity. The results showed that the PBS concentrations in these samples were lower than the estimated benchmarks of acute toxicity for algae, fish and crustacean, although two samples were above the critical PBS values for chronic narcotic toxicity for Daphnia magna, which support the assumption that narcotic effects are mainly responsible for the observed toxicity in refinery effluents. It can be concluded that for facilities processing petroleum products that the measurement of PBS is a suitable surrogate for toxicity tests at the screening stage. Finally, the combination of persistency, bioaccumulation, and toxicity tests was shown to have additional value compared to an approach using only toxicity tests. PMID:21796668

  9. Identification of toxicity variations in a stream affected by industrial effluents using Daphnia magna and Ulva pertusa.

    PubMed

    Yoo, Jisu; Ahn, Byeongyong; Oh, Jeong-Ju; Han, Taejun; Kim, Woo-Keun; Kim, Sanghoon; Jung, Jinho

    2013-09-15

    A comprehensive toxicity monitoring study from August to October 2011 using Daphnia magna and Ulva pertusa was conducted to identify the cause of toxicity in a stream receiving industrial effluents (IEs) from a textile and leather products manufacturing complex. Acute toxicity toward both species was observed consistently in IE, which influenced toxicity of downstream (DS) water. A toxicity identification evaluation (TIE) confirmed that both Cu and Zn were key toxicants in the IE, and that the calculated toxicity based on Cu and Zn concentrations well simulated the variation in the observed toxicity (r(2)=0.9216 and 0.7256 for D. magna and U. pertusa, respectively). In particular, U. pertusa was sensitive enough to detect acute toxicity in DS and was useful to identify Zn as a key toxicant. Activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and malondialdehyde were induced significantly in D. magna, although acute toxicity was not observed. In addition, higher levels of antioxidant enzymes were expressed in DS than upstream waters, likely due to the Cu and Zn from IE. Overall, TIE procedures with a battery of bioassays were effective for identifying the cause of lethal and sub-lethal toxicity in effluent and stream water. PMID:23892313

  10. Genotoxicity evaluation of effluents from textile industries of the region Fez-Boulmane, Morocco: a case study.

    PubMed

    Giorgetti, Lucia; Talouizte, Hakima; Merzouki, Mohammed; Caltavuturo, Leonardo; Geri, Chiara; Frassinetti, Stefania

    2011-11-01

    In order to investigate the biological hazard of effluents from textile industries of Fez-Boulmane region in Morocco, mutagenicity and phytotoxicity tests were performed on different biological systems. Moreover, the efficiency of a Sequencing Batch Reactor (SBR) system, working by activated sludge on a laboratory scale, was estimated by comparing the ecotoxicity results observed before and after wastewater treatment. Evaluation of the genotoxic potential was investigated by means of classic mutagenicity tests on D7 strain of Saccharomyces cerevisiae and by phytotoxicity tests on Allium sativum L., Vicia faba L. and Lactuca sativa L., estimating micronuclei presence, mitotic index and cytogenetic anomalies. The results obtained by testing untreated wastewater demonstrated major genotoxicity effects in S. cerevisiae and various levels of phytotoxicity in the three plant systems, while after SBR treatment no more ecotoxicological consequences were observed. These data confirm the effectiveness of the SBR system in removing toxic substances from textile wastewaters in Fez-Boulmane region. PMID:21840051

  11. Measurement of sucrose and ethanol concentrations in process streams and effluents of sugarcane bioethanol industry by optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Fujiwara, Eric; Ono, Eduardo; Manfrim, Tarcio P.; Santos, Juliana S.; Suzuki, Carlos K.

    2011-05-01

    The measurement of process streams and effluents from sugar-ethanol industry by using optical fiber sensor based on Fresnel reflection principle is reported. Firstly, binary sucrose-water and ethanol-water solutions were measured in order to determine the calibration curves. Secondly, the co-products from various processing stages were analyzed in order to identify the sucrose or ethanol concentration. The absolute error was calculated by comparison between the nominal concentration values obtained by plant laboratory analysis and the sensor response, yielding errors <= 5 wt% and <= 5 vol% for sucrose and ethanol content, respectively. The fiber sensor provided reliable results even for samples with more complex compositions than pure sucrose or ethanol solutions, with perspectives of application on the several stages of the plant facility.

  12. Draft Genome Sequence of Paracoccus sp. MKU1, a New Bacterial Strain Isolated from an Industrial Effluent with Potential for Bioremediation

    PubMed Central

    Nisha, Kamaldeen Nasrin; Sridhar, Jayavel; Varalakshmi, Perumal; Ashokkumar, Balasubramaniem

    2016-01-01

    Paracoccus sp. MKU1, a novel dimethylformamide degrading bacterial strain was originally isolated from an industrial effluent, Tirupur region, Tamil Nadu, India. Here, we report the draft genome sequence of Paracoccus sp. MKU1, which could provide the genetic insights on its evolution and application of this versatile bacterium for effective degradation of xenobiotics and thus in bioremediation. PMID:27326263

  13. Draft Genome Sequence of Paracoccus sp. MKU1, a New Bacterial Strain Isolated from an Industrial Effluent with Potential for Bioremediation.

    PubMed

    Nisha, Kamaldeen Nasrin; Sridhar, Jayavel; Varalakshmi, Perumal; Ashokkumar, Balasubramaniem

    2016-01-01

    Paracoccus sp. MKU1, a novel dimethylformamide degrading bacterial strain was originally isolated from an industrial effluent, Tirupur region, Tamil Nadu, India. Here, we report the draft genome sequence of Paracoccus sp. MKU1, which could provide the genetic insights on its evolution and application of this versatile bacterium for effective degradation of xenobiotics and thus in bioremediation. PMID:27326263

  14. Simultaneously bio treatment of textiles and food industries effluent at difference ratios with the aid of e-beam radiation

    NASA Astrophysics Data System (ADS)

    Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah

    2012-09-01

    The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.

  15. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. PMID:27209118

  16. Phthalates and alkylphenols in industrial and domestic effluents: case of Paris conurbation (France).

    PubMed

    Bergé, A; Gasperi, J; Rocher, V; Gras, L; Coursimault, A; Moilleron, R

    2014-08-01

    Phthalates and alkylphenols are toxics classified as endocrine disrupting compounds (EDCs). They are of particular concern due to their ubiquity and generally higher levels found in the environment comparatively to other EDCs. Industrial and domestic discharges might affect the quality of receiving waters by discharging organic matter and contaminants through treated waters and combined sewer overflows. Historically, industrial discharges are often considered as the principal vector of pollution in urban areas. If this observation was true in the past for some contaminants, no current data are today available to compare the quality of industrial and domestic discharges as regards EDCs. In this context, a total of 45 domestic samples as well as 101 industrial samples were collected from different sites, including 14 residential and 33 industrial facilities. This study focuses more specifically on 4 phthalates and 2 alkylphenols, among the most commonly studied congeners. A particular attention was also given to routine wastewater quality parameters. For most substances, wastewaters from the different sites were heavily contaminated; they display concentrations up to 1200 μg/l for di-(2-ethylhexyl) phthalate and between 10 and 100 μg/l for diethyl phthalate and nonylphenol. Overall, for the majority of compounds, the industrial contribution to the flux of contaminant reaching the wastewater treatment plants ranges between 1 and 3%. The data generated during this work constitutes one of the first studies conducted in Europe on industrial fluxes for a variety of sectors of activity. The study of the wastewater contribution was used to better predict the industrial and domestic contributions at the scale of a huge conurbation heavily urbanized but with a weak industrial cover, illustrated by Paris. Our results indicate that specific investigations on domestic discharges are necessary in order to reduce the release of phthalates and alkylphenols in the sewer systems

  17. BIOLOGICAL TREATMENT, EFFLUENT REUSE, AND SLUDGE HANDLING FOR THE SIDE LEATHER TANNING INDUSTRY

    EPA Science Inventory

    An evaluation of the treatability of unsegregated, unequalized, and unneutralized wastewaters from a side-leather tanning industry utilizing the hair pulping process by primary and secondary biological and gravity separation in clarifier-thickeners, whereas the secondary treatmen...

  18. Petrochemicals from coal-derived syngas

    SciTech Connect

    Sardesai, A.; Lee, S.

    1996-12-31

    The development of the Liquid Phase Dimethyl Ether (LPDME) process has established a means to effectively convert CO-rich syngas to dimethyl ether (DME) in a mechanically agitated slurry reactor. By operating in a dual catalyst mode, in-situ produced methanol may be converted to DME, thereby alleviating the chemical equilibrium limitation imposed on the methanol synthesis reaction. As a result, higher syngas conversions and methyl productivities are seen over methanol synthesis alone. This effective route to DME production over methanol has led to the development of conversion technologies based on a DME feedstock. Oxygenates, in particular, ethers and their precursors, are very important as potential clean fuel additives and have been postulated through vinylation/hydrogenation and oxidative coupling reactions. Specialty chemicals such as methyl acetate and acetic acid have widescale industrial importance in the conversion to ethanol from a non-agricultural feedstock. Vapor phase oxidative dimerization of DME over tin based catalysts produced precursors of ethylene glycol. Finally, DME has been extensively used as a feedstock for hydrocarbon synthesis including olefins, paraffins and gasoline range hydrocarbons, over zeolite based catalysts with a 46% increase in product selectivity over methanol. The efficient production of DME in the liquid phase has given it widescale industrial significance as a potential replacement for methanol and as a keystone for more important petrochemicals.

  19. [Enhanced bio-contact oxidation method to treat petrochemical wastewater by tourmaline].

    PubMed

    Jiang, Kan; Ma, Fang; Sun, Tie-Heng; Feng, Zhi-Yun

    2009-06-15

    Aiming at the complexity and poor biochemical degradability of petrochemical wastewater, the effect of tourmaline on bio-contact oxidation method was investigated. The influent and effluent of petrochemical wastewater were analyzed by GC-MS, and the carrier was observed in reactor by scanning electron microscope (SEM). As the loading rates of influent were COD 0.64-0.72 kg/(m3 x d) and NH4(+) -N 0.058-0.072 kg/(m3 x d), the start up of pilot system supported tourmaline were improved, and the removal rate of COD and NH4(+) -N of effluent was increased 8.7% and 6.4%, respectively. Organic pollutants of 100 kinds were detected in influent, mainly including aromatic hydrocarbon, acids, lipids, phenols, alcohols, and alkanes compounds. The removal efficiency of organic pollutant of reactor 1 with tourmaline was higher than reactor 2 without tourmaline. The number of organic pollutant in effluent from reactor 1 and 2 were 14 and 28, respectively. Zoogloea can be observed on carrier supported tourmaline, and the biomass of bacteria was predominant. The efficiency of bio-contact oxidation method on petrochemical wastewater treatment can be enhanced by tourmaline. PMID:19662849

  20. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.

    PubMed

    Sridhar, R; Sivakumar, V; Prince Immanuel, V; Prakash Maran, J

    2011-02-28

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m(3) depending on the operating conditions. Under optimal operating condition such as 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m(3). The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse. PMID:21227578

  1. Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry.

    PubMed

    Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S

    2011-02-01

    Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions. PMID:20582453

  2. Efficient decolorization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment.

    PubMed

    Chandanshive, Vishal V; Rane, Niraj R; Gholave, Avinash R; Patil, Swapnil M; Jeon, Byong-Hun; Govindwar, Sanjay P

    2016-10-01

    Salvinia molesta, an aquatic fern was observed to have a potential of degrading azo dye Rubine GFL up to 97% at a concentration of 100mg/L within 72h using 60±2g of root biomass. Both root as well as stem tissues showed induction in activities of the enzymes such as lignin peroxidase, veratryl alcohol oxidase, laccase, tyrosinase, catalase, DCIP reductase and superoxide dismutase during decolorization of Rubine GFL. FTIR, GC-MS, HPLC and UV-visible spectrophotometric analysis confirmed phytotransformation of the model dye into smaller molecules. Analysis of metabolites revealed breakdown of an azo bond of Rubine GFL by the action of lignin peroxidase and laccase and formation of 2-methyl-4-nitroaniline and N-methylbenzene-1, 4-diamine. Anatomical tracing of dye in the stem of S. molesta confirmed the presence of dye in tissues and subsequent removal after 48h of treatment. The concentration of chlorophyll pigments like chlorophyll a, chlorophyll b and carotenoid was observed during the treatment. Toxicity analysis on seeds of Triticum aestivum and Phaseolus mungo revealed the decreased toxicity of dye metabolites. In situ treatment of a real textile effluent was further monitored in a constructed lagoon of the dimensions of 7m×5m×2m (total surface area 35m(2)) using S. molesta for 192h. This large scale treatment was found to significantly reduce the values of COD, BOD5 and ADMI by 76%, 82% and 81% considering initial values 1185, 1440mg/L and 950 units, respectively. PMID:27268973

  3. POLISHING INDUSTRIAL WASTE STREAM EFFLUENTS USING FLY ASH - NATURAL CLAY SORBENT COMBINATION

    EPA Science Inventory

    A laboratory evaluation of the use of acidic and basic fly ashes, bentonite, bauxite, illite, kaolinite, zeolite, vermiculite, and activated alumina is presented for polishing a 3.8 x 10 to the 6th power liters per day waste stream from the feldspar mining and processing industry...

  4. ECONOMIC IMPACT ANALYSIS OF EFFLUENT STANDARDS AND LIMITATIONS FOR THE METAL FINISHING INDUSTRY

    EPA Science Inventory

    The U.S. Environmental Protection Agency issued e-fluent guidelines and limitations for the Metal Finishing Industry in June 1983. This report estimates the economic impact of pollution control costs in terms of price changes, effects profitability, potential plant closures, unem...

  5. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-An application towards phycoremediation.

    PubMed

    Balaji, S; Kalaivani, T; Sushma, B; Pillai, C Varneetha; Shalini, M; Rajasekaran, C

    2016-08-01

    Phycoremediation ability of microalgae namely Oscillatoria acuminate and Phormidium irrigum were validated against the heavy metals from tannery effluent of Ranipet industrial area. The microalgae species were cultured in media containing tannery effluent in two different volumes and the parameters like specific growth rate, protein content and antioxidant enzyme activities were estimated. FTIR spectroscopy was carried out to know the sorption sites interaction. The antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) contents were increased in microalgae species indicating the free radical scavenging mechanism under heavy metal stress. SOD activity was 0.502 and 0.378 units/gram fresh weight, CAT activity was 1.36 and 0.256 units/gram fresh weight, GSH activity was 1.286 and 1.232 units/gram fresh weight respectively in the effluent treated microalgae species. Bio sorption efficiency for Oscillatoria acuminate and Phormidium irrigum was 90% and 80% respectively. FTIR analysis revealed the interaction of microalgae species with chemical groups present in the tannery effluent. From the results, the microalgae Oscillatoria acuminate possess high antioxidant activity and bio sorption efficiency when compared to Phormidium irrigum and hence considered useful in treating heavy metals contaminated effluents. PMID:26587690

  6. Morphological, Physiological and Biochemical Impact of Ink Industry Effluent on Germination of Maize (Zea mays), Barley (Hordeum vulgare) and Sorghum (Sorghum bicolor).

    PubMed

    Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch

    2015-11-01

    The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water. PMID:26341252

  7. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    PubMed Central

    2014-01-01

    Background Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. Results In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of “green” gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Conclusions Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants’ metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost

  8. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. PMID:20570506

  9. Effluent management for a metal finishing industry aiming zero discharge conditions.

    PubMed

    Babuna, Fatos Germirli; Kabdasli, Isik; Sözen, Seval; Orhon, Derin

    2006-01-01

    Technical applicability of zero discharge conditions is evaluated for the specific case of a large metal finishing industry located within the protection zone of a surface water body designated as a potential source for domestic water supply. Within the context of a sound water management strategy, a detailed process profile of the plant is established with relevant balance between water demand and wastewater generation. Quality restrictions for various water uses are identified. Wastewater flows are segregated depending on significant quality parameters. A comprehensive treatment scheme is defined for optimum wastewater recycle and reuse. Source allocation is made for the reuse of different streams of recycled wastewater. The study indicates that wastewater reuse can only be implemented with an efficiency of around 85-90% for the selected industry. PMID:16849126

  10. BIOLOGICAL TREATMENT OF HIGH STRENGTH PETROCHEMICAL WASTEWATER

    EPA Science Inventory

    The biological treatment of a complex petrochemical wastewater containing high concentrations of organic chlorides, nitrates, and amines was initially studied using a sequence of anaerobic methanogenesis and oxygen activated sludge. Bench-scale and pilot-plant treatability studie...

  11. Hydrocarbon Processing`s petrochemical processes `97

    SciTech Connect

    1997-03-01

    The paper compiles information on numerous petrochemical processes, describing the application, the process, yields, economics, commercial plants, references, and licensor. Petrochemicals which are synthesized include: alkylbenzene, methylamines, ammonia, benzene, bisphenol-A, BTX aromatics, butadiene, butanediol, butyraldehyde, caprolactam, cumene, dimethyl terephthalate, ethanolamines, ethylbenzene, ethylene, ethylene glycols, ethylene oxide, formaldehyde, maleic anhydride, methanol, olefins, paraxylene, phenol, phthalic anhydride, polycaproamide, polyethylene, polyethylene terephthalate, polypropylene, PVC, styrene, terephthalic acid, urea, vinyl chloride, and xylene isomers.

  12. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  13. Microbial Populations Associated with Treatment of an Industrial Dye Effluent in an Anaerobic Baffled Reactor

    PubMed Central

    Plumb, Jason J.; Bell, Joanne; Stuckey, David C.

    2001-01-01

    Fluorescent in situ hybridization (FISH) using 16S and 23S rRNA-targeted probes together with construction of an archaeal 16S ribosomal DNA (rDNA) clone library was used to characterize the microbial populations of an anaerobic baffled reactor successfully treating industrial dye waste. Wastewater produced during the manufacture of food dyes containing several different azo and other dye compounds was decolorized and degraded under sulfidogenic and methanogenic conditions. Use of molecular methods to describe microbial populations showed that a diverse group of Bacteria and Archaea was involved in this treatment process. FISH enumeration showed that members of the gamma subclass of the class Proteobacteria and bacteria in the Cytophaga-Flexibacter-Bacteroides phylum, together with sulfate-reducing bacteria, were prominent members of a mixed bacterial population. A combination of FISH probing and analysis of 98 archaeal 16S rDNA clone inserts revealed that together with the bacterial population, a methanogenic population dominated by Methanosaeta species and containing species of Methanobacterium and Methanospirillum and a relatively unstudied methanogen, Methanomethylovorans hollandica, contributed to successful anaerobic treatment of the industrial waste. We suggest that sulfate reducers, or more accurately sulfidogenic bacteria, together with M. hollandica contribute considerably to the treatment process through metabolism of dye-associated sulfonate groups and subsequent conversion of sulfur compounds to carbon dioxide and methane. PMID:11425746

  14. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.

    PubMed

    Hunsom, M; Pruksathorn, K; Damronglerd, S; Vergnes, H; Duverneuil, P

    2005-02-01

    An electrochemical technique was tested in a laboratory scale to treat heavy metals (Cu2+, Cr6+ and Ni2+) from plating industrial effluent. The experiments were performed in a membrane reactor having a capacity of 1 l. Stainless-steel sheets with surface area of 0.011 m2 and titanium coated with ruthenium oxide were used as cathode and anode, respectively. The electrolyte was circulated at a constant flow rate (0.42 l/min) and the pH was kept constant at 1. Applied current densities were 10 and 90 A/m2. According to the experiment, it was found that a membrane reactor with plane electrode was capable for treating plating wastewater with low energy consumption (42.30 kWh/kg metal) and low operating cost (5.43 US dollars/m3). More than 99% of metal reduction was achieved and the final concentrations of copper, chromium and nickel in treated water were 0.10-0.13, 0.19-0.20 and 0.05-0.13 ppm, respectively. The brightener had no effect on copper reduction whereas hexavalent chromium had strong effect. The kinetic of copper reduction in the presence of hexavalent chromium was modeled as a two-step process with respect to copper concentration. PMID:15707634

  15. Combined advanced oxidation and biodegradation of industrial effluents from the production of stilbene-based fluorescent whitening agents.

    PubMed

    Hörsch, Philip; Speck, Andreas; Frimmel, Fritz H

    2003-06-01

    Three different industrial wastewaters from the production of stilbene-based fluorescent whitening agents were investigated with regard to the applicability of advanced oxidation processes combined with biodegradation. Oxidation processes included the application of ozone, hydrogen peroxide, UV-radiation and Fenton's reagent (Fe(2+)/H(2)O(2)). Characterization of the combined chemical-biological treatment was done by sum parameters and HPLC analysis. In addition, toxicity was determined using the luminescence inhibition test. Results showed that processes producing OH-radicals without the need of UV-irradiation proved to be suited for the oxidation of all three wastewaters. H(2)O(2)/UV processes were ineffective due to the high inner filter effect of the effluents. Comparing the combined oxidative-biological process with biological treatment, the applied pre-oxidation steps did not always lead to a significant improvement of the biological degradation. In one case, an inverted treatment starting with biodegradation followed by oxidation turned out to be the preferable procedure. After oxidation with ozone or ozone combined with UV-irradiation, an increase in toxicity was partly observed indicating the formation of toxic intermediate products. In some cases samples had to be diluted before the biodegradation step to achieve a better biodegradability. PMID:12753853

  16. Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; He, Ji-Zheng

    2014-07-01

    Soil nitrifiers have been showing an important role in assessing environmental pollution as sensitive biomarkers. In this study, the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in long-term industrial waste effluent (IWE) polluted soils. Three different IWE polluted soils characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) were collected in triplicate along Mahi River basin, Gujarat, Western India. Quantitative numbers of ammonia monooxygenase α-subunit (amoA) genes as well as 16S rRNA genes indicated apparent deleterious effect of IWE on abundance of soil AOA, AOB, bacteria, and archaeal populations. Relatively, AOB was more abundant than AOA in the highly contaminated soil R3, while predominance of AOA was noticed in uncontaminated (R1) and moderately contaminated (R2) soils. Soil potential nitrification rate (PNR) significantly (P < 0.05) decreased in polluted soils R2 and R3. Reduced diversity accompanied by apparent community shifts of both AOB and AOA populations was detected in R2 and R3 soils. AOB were dominated with Nitrosospira-like sequences, whereas AOA were dominated by Thaumarchaeal "group 1.1b (Nitrososphaera clusters)." We suggest that the significant reduction in abundance and diversity AOA and AOB could serve as relevant bioindicators for soil quality monitoring of polluted sites. These results could be further useful for better understanding of AOB and AOA communities in polluted soils. PMID:24554021

  17. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system. PMID:25982984

  18. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons.

    PubMed

    Anirudhan, T S; Sreekumari, S S

    2011-01-01

    Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(II), Hg(II) and Cu(II) from industrial effluents through batch adsorption process. The AC was characterized by elemental analysis, fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric and differential thermal analysis, surface area analyzer and potentiometric titrations. The effects of initial metal concentration, contact time, pH and adsorbent dose on the adsorption of metal ions were studied. The adsorbent revealed a good adsorption potential for Pb(II) and Cu(II) at pH 6.0 and for Hg(II) at pH 7.0. The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation. The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model. The adsorption capacities of the AC decreased in the order: Pb(II) > Hg(II) > Cu(II). PMID:22432329

  19. Impact of urban and industrial effluents on the coastal marine environment in Oran, Algeria.

    PubMed

    Tayeb, A; Chellali, M R; Hamou, A; Debbah, S

    2015-09-15

    In Algeria most of the urban waste water is dumped without treatment into the Sea. It is tremendously important to assess the consequences of organic matter rich sewage on marine ecosystem. In this study we investigated the effects of industrial and urban sewage on the dissolved oxygen (O2), chemical oxygen demand (COD), biochemical oxygen demands (BOD5), pH, salinity, electrical conductivity (EC), Metal element (Hg, Pb, Cu, Ni, Cr, Cd), petroleum hydrocarbons (HC), oil and grease (OG) in Bay of Oran, Algeria. A ten-year follow-up research showed that the concentrations of oil and grease released into the bionetwork are of higher ecological impact and this needs to be given the desired consideration. Information on bathing water quality revealed that the most beaches in Oran are under the national environmental standard limit. PMID:26164780

  20. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2015-02-01

    Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems. PMID:25201323

  1. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    PubMed

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate. PMID:27339314

  2. Impact of pharmaceutical industry treated effluents on the water quality of river Uppanar, South east coast of India: A case study

    NASA Astrophysics Data System (ADS)

    Damodhar, Usha; Vikram Reddy, M.

    2013-06-01

    The water quality of a river that received pharmaceutical industrial effluents is evaluated through the analysis of two indices to describe the level of pollution of the river, in this paper. The indices have been computed from December 2009 to June 2011 at four sampling stations—outlet, outfall, upstream, and downstream in the Uppanar River located at Cuddalore (South east coast of India). The results were compared with the guidelines of Bureau of Indian standards for drinking water specifications (BIS 10500).The study also identifies the pollutants of pharmaceutical industrial effluents before and after treatment that affects the river water quality. Data on spatial and temporal changes in dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, pH, temperature, color, electrical conductance, total dissolved solids, total suspended solids, calcium, magnesium, hardness, sodium, and chloride were collected. The water quality indices used, Bascarón (1979) adapted Water Quality Index (WQIBA) and the Canadian Council of Ministers of the Environment-Water Quality Index 1.0 (CCME WQI), which is a well-accepted and universally applicable computer model for evaluating the water quality index. Both the indices presented similar trends, and were considered adequate for evaluating the impacts of industrial effluent on the river water bodies.

  3. Significant reduction in toxicity, BOD, and COD of textile dyes and textile industry effluent by a novel bacterium Pseudomonas sp. LBC1.

    PubMed

    Telke, Amar A; Kim, Seon-Won; Govindwar, Sanjay P

    2012-03-01

    The 16S rRNA sequence analysis and biochemical characteristics were confirmed that the isolated bacterium is Pseudomonas sp. LBC1. The commonly used textile dye, Direct Brown MR has been used to study the fate of biodegradation. Pseudomonas sp. LBC1 showed 90% decolorization of Direct Brown MR (100 mg/L) and textile industry effluent with significant reduction in COD and BOD. The optimum condition for decolorization was 7.0 pH and 40°C. Significant increase in a activity of extracellular laccase suggested their possible involvement in decolorization of Direct Brown MR. Biodegradation metabolites viz. 3,6-dihydroxy benzoic acid, 2-hydroxy-7-aminonaphthol-3-sulfonic acid, and p-dihydroperoxybenzene were identified on the basis of mass spectra and using the 1.10 beta Shimadzu NIST GC-MS library. The Direct Brown MR and textile industry effluent were toxic to Sorghum bicolor and Vigna radiata plants as compared to metabolites obtained after decolorization. The Pseudomonas sp. LBC1 could be useful strain for decolorization and detoxification of textile dyes as well as textile industry effluent. PMID:22354382

  4. Process for removing sulfur and sulfur compounds from the effluent of industrial processes

    SciTech Connect

    Sims, A.V.

    1981-03-10

    Sulfur dioxide in the stack gas from an industrial process is converted to elemental sulfur in a claus reactor at low temperature to produce sulfur fume. The sulfur is condensed by direct heat transfer with a continuously flowing countercurrent recirculating catalyst and a substantially sulfur dioxide-free gas is discharged. Catalyst and condensed sulfur are fed into the top of a sulfur recovery column and heated in the top of the column by direct heat transfer with a countercurrent stream of recycle gas. The sulfur and catalyst descend into a vaporization zone of the column where sulfur is vaporized. The vaporized sulfur is carried by the recycle gas back towards the top of the column and condensed to a fume by incoming sulfur bearing catalyst. The sulfur fume is carried from the top of the column in cold recycle gas. Hot catalyst from the vaporization section of the column is cooled by recycle gas entering the bottom of the column. Sulfur fume is recovered conventionally. Regenerated catalyst from the column is returned to the sulfur dioxide reactor. Claus plant tail gas with air passes into the base of an incinerator and passes countercurrent to recycled heat transfer solids and is oxidized to convert sulfur and sulfur bearing compounds to sulfur dioxide. The sulfur dioxide is then converted to sulfur in the process just described.

  5. Removal of Hexavalent Chromium from Electroplating Industrial Effluents by Using Hydrothermally Treated Fly Ash

    NASA Astrophysics Data System (ADS)

    Ram Mohan Rao, S.; Basava Rao, V. V.

    Chromium in the wastewater coming out from tanneries and electroplating industries is to be treated because of exposure to it may produce effects on the liver, kidney, gastrointestinal and immune systems. On the other hand, fly ash produced from coal fired power plants is having disposal problem and it has to be properly utilized. In this study, the fly ash, subjected to hydrothermal treatment is used as adsorbent to remove Cr (VI) from synthetic samples. The effect of initial stock solution, contact time, adsorbent dose and pH were studied in a batch experiment. Results are compared with powdered activated carbon, granular activated carbon and untreated fly ash. The capacity of adsorption was found to be increased in the case of treated fly ash and it follows the order of powdered activated carbon >granular activated carbon >treated fly ash >untreated fly ash. The adsorption isotherms of Langmuir constants and Freundlich constants for all the adsorbents were determined. The Langmuir adsorption isotherm was recommended.

  6. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.

    PubMed

    Rai, Prabhat Kumar

    2008-01-01

    The level of heavy metal pollution in Singrauli, an industrial region in India, was assessed and the phytoremediation capacity of a small water fern, Azolla pinnata R.BR (Azollaceae), was observed to purify waters polluted by two heavy metals, i.e., mercury (Hg) and cadmium (Cd) under a microcosm condition. Azolla pinnata is endemic to India and is an abundant and easy-growing free-floating water fern usually found in the rice fields, polluted ponds, and reservoirs of India. The fern was grown in 24 40-L aquariums containing Hg2+ and Cd2+ ions each in concentrations of 0.5, 1.0, and 3.0 mgL(-1) during the course of this study. The study revealed an inhibition of Azolla pinnata growth by 27.0-33.9% with the highest in the presence of Hg (II) ions at 0.5 mgL(-1) in comparison to the control After 13 days of the experiment, metal contents in the solution were decreased up to 70-94%. In the tissues of Azolla pinnata, the concentration of selected heavy metals during investigation was recorded between 310 and 740 mgKg(-1) dry mass, with the highest levelfoundfor Cd (II) treatment at 3.0 mgL(-1) containing a metal solution. PMID:19260224

  7. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent

    PubMed Central

    Ogugbue, Chimezie Jason; Sawidis, Thomas

    2011-01-01

    Economical and bio-friendly approaches are needed to remediate dye-contaminated wastewater from various industries. In this study, a novel bacterial strain capable of decolorizing triarylmethane dyes was isolated from a textile wastewater treatment plant in Greece. The bacterial isolate was identified as Aeromonas hydrophila and was shown to decolorize three triarylmethane dyes tested within 24 h with color removal in the range of 72% to 96%. Decolorization efficiency of the bacterium was a function of operational parameters (aeration, dye concentration, temperature, and pH) and the optimal operational conditions obtained for decolorization of the dyes were: pH 7-8, 35°C and culture agitation. Effective color removal within 24 h was obtained at a maximum dye concentration of 50 mg/L. Dye decolorization was monitored using a scanning UV/visible spectrophotometer which indicated that decolorization was due to the degradation of dyes into non-colored intermediates. Phytotoxicity studies carried out using Triticum aestivum, Hordeum vulgare, and Lens esculenta revealed the triarylmethane dyes exerted toxic effects on plant growth parameters monitored. However, significant reduction in toxicity was obtained with the decolorized dye metabolites thus, indicating the detoxification of the dyes following degradation by Aeromonas hydrophila. PMID:21808740

  8. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent.

    PubMed

    Ogugbue, Chimezie Jason; Sawidis, Thomas

    2011-01-01

    Economical and bio-friendly approaches are needed to remediate dye-contaminated wastewater from various industries. In this study, a novel bacterial strain capable of decolorizing triarylmethane dyes was isolated from a textile wastewater treatment plant in Greece. The bacterial isolate was identified as Aeromonas hydrophila and was shown to decolorize three triarylmethane dyes tested within 24 h with color removal in the range of 72% to 96%. Decolorization efficiency of the bacterium was a function of operational parameters (aeration, dye concentration, temperature, and pH) and the optimal operational conditions obtained for decolorization of the dyes were: pH 7-8, 35°C and culture agitation. Effective color removal within 24 h was obtained at a maximum dye concentration of 50 mg/L. Dye decolorization was monitored using a scanning UV/visible spectrophotometer which indicated that decolorization was due to the degradation of dyes into non-colored intermediates. Phytotoxicity studies carried out using Triticum aestivum, Hordeum vulgare, and Lens esculenta revealed the triarylmethane dyes exerted toxic effects on plant growth parameters monitored. However, significant reduction in toxicity was obtained with the decolorized dye metabolites thus, indicating the detoxification of the dyes following degradation by Aeromonas hydrophila. PMID:21808740

  9. Surface Alteration of Activated Carbon for Detoxification of Copper (ii) from Industrial Effluents

    NASA Astrophysics Data System (ADS)

    Bhutto, Sadaf; Khan, M. Nasiruddin

    2013-04-01

    The low-cost modified activated carbons were prepared from Thar and Lakhra (Pakistan) coals by activation with sulfuric acid and further modified with citric, tartaric and acetic acids for the selective adsorption of Cu(II) from aqueous solution. The original carbon obtained from activated Thar and Lakhra coals at pH 3.0 displayed significant adsorption capacity for lead and insignificant capacity values (0.880 and 0.830 mgṡg-1) for copper. However, after modification with citric, tartaric and acetic acid the copper adsorption capacities enhanced in the range of 5.56-21.85 and 6.05-44.61 times, respectively. The Langmuir, Freundlich and Temkin adsorption isotherms were used to elucidate the observed sorption phenomena. The isotherm equilibrium data was well fitted by the Langmuir and sufficiently fitted to the Freundlich models. The calculated thermodynamic parameters such as change in Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) inferred that the investigated adsorption was spontaneous and endothermic in nature. Based on the results, it was concluded that the surface alteration with citric and tartaric acid, Thar and Lakhra activated carbons had significant potential for selective removal of copper(II) from industrial wastewater.

  10. Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan.

    PubMed

    Irshad, Muhammad; Ahmad, Sajjad; Pervez, Arshid; Inoue, Mitsuhiro

    2015-01-01

    The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals/metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe>Zn>Cr>Pb>Ni>Cd>As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo>A. modesta>A. nilotica>R. communis>I. carnea>C. album>E. indica>P. hysterophorus>S. nigrum>C. sativa>D. aegyptium>X. strumarium>C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils. PMID:25254600

  11. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    PubMed

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+). PMID:27491862

  12. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers.

    PubMed

    Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-08-01

    Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28±13.15mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume. PMID:27045623

  13. The impact of an industrial effluent on the water quality, submersed macrophytes and benthic macroinvertebrates in a dammed river of Central Spain.

    PubMed

    Gonzalo, Cristina; Camargo, Julio A

    2013-10-01

    This research was conducted in the middle Duratón River (Central Spain), in the vicinity of Burgomillodo Reservoir. An industrial effluent enters the river 300 m downstream from the dam. Fluoride and turbidity levels significantly increased downstream from the effluent, these levels being to some extent affected by differential water releases from the dam. The community of submersed macrophytes exhibited slighter responses and, accordingly, lower discriminatory power than the community of benthic macroinvertebrates, this indicating that metrics and indices based on macroinvertebrates may be more suitable for the biological monitoring of water pollution and habitat degradation in dammed rivers receiving industrial effluents. However, in relation to fluoride bioaccumulation at the organism level, macrophytes (Fontinalis antipyretica and Potamogeton pectinatus) were as suitable bioindicators of fluoride pollution as macroinvertebrates (Ancylus fluviatilis and Pacifastacus leniusculus). Fluoride bioaccumulation in both hard and soft tissues of these aquatic organisms could be used as suitable bioindicator of fluoride pollution (even lower than 1 mg F(-)L(-1)) in freshwater ecosystems. Echinogammarus calvus exhibited a great sensitivity to the toxicity of fluoride ions, with a 96 h LC₅₀ of 7.5 mg F(-)L(-1) and an estimated safe concentration of 0.56 mg F(-)L(-1). The great capacity of E. calvus to take up and retain fluoride during exposures to fluoride ions would be a major cause of its great sensitivity to fluoride toxicity. It is concluded that the observed fluoride pollution might be partly responsible for the absence of this native amphipod downstream from the industrial effluent. PMID:23830885

  14. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil

    PubMed Central

    Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas

    2012-01-01

    The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25–150 mgl−1) of heavy metals, such as cadmium, chromium, copper, lead and nickel, the B. thuringiensis strain OSM29 showed an obvious metal removing potential. The effect of certain physico-chemical factors such as pH, initial metal concentration, and contact time on biosorption was also assessed. The optimum pH for nickel and chromium removal was 7, while for cadmium, copper and lead, it was 6. The optimal contact time was 30 min. for each metal at 32 ± 2 °C by strain OSM29. The biosorption capacity of the strain OSM29 for the metallic ions was highest for Ni (94%) which was followed by Cu (91.8%), while the lowest sorption by bacterial biomass was recorded for Cd (87%) at 25 mgl−1 initial metal ion concentration. The regression coefficients obtained for heavy metals from the Freundlich and Langmuir models were significant. The surface chemical functional groups of B. thuringiensis biomass identified by Fourier transform infrared (FTIR) were amino, carboxyl, hydroxyl, and carbonyl groups, which may be involved in the biosorption of heavy metals. The biosorption ability of B. thuringiensis OSM29 varied with metals and was pH and metal concentration dependent. The biosorption of each metal was fairly rapid which could be an advantage for large scale treatment of contaminated sites. PMID:24115905

  15. Estimating effluent COD

    SciTech Connect

    Eckenfelder, W.W.; Landine, R.

    1995-06-01

    In many parts of the world, chemical oxygen demand (COD) is a primary effluent parameter. Unlike BOD, which considers only biodegradable organics, COD also includes non-degradable organics and non-degradable biological oxidation by-products, generally referred to as soluble microbial products (SMP). The SMP can vary from 2% to 10% of the influent degradable COD. If the technology is limited to biological treatment only, the degradable COD will be removed. Further reductions in COD will require physical chemical treatments such as activated carbon. Effluent COD values for several industrial wastewaters are presented. Effluent characteristics from the anaerobic treatment of industrial wastewaters are also discussed.

  16. Cancer incidence and mortality among temporary maintenance workers in a refinery/petrochemical complex in Korea

    PubMed Central

    Koh, Dong-Hee; Chung, Eun-Kyo; Jang, Jae-Kil; Lee, Hye-Eun; Ryu, Hyang-Woo; Yoo, Kye-Mook; Kim, Eun-A; Kim, Kyoo-Sang

    2014-01-01

    Background: Petrochemical plant maintenance workers are exposed to various carcinogens such as benzene and metal fumes. In Korea, maintenance operations in petrochemical plants are typically performed by temporary employees hired as contract workers. Objectives: The purpose of this retrospective study was to evaluate cancer risk in temporary maintenance workers in a refinery/petrochemical complex in Korea. Methods: Subjects consisted of 14 698 male workers registered in a regional petrochemical plant maintenance workers union during 2002–2007. Cancer mortality and incidence were identified by linking with the nationwide death and cancer registries during 2002–2007 and 2002–2005, respectively. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for each cancer. Results: Increased SMR 3.61 (six cases, 95% CI: 1.32–7.87) and SIR 3.18 (five cases, 95% CI: 1.03–7.42) were observed in oral and pharyngeal cancers. Conclusion: Our findings may suggest a potential association between oral and pharyngeal cancers and temporary maintenance jobs in the petrochemical industry. Future studies should include a longer follow-up period and a quantitative exposure assessment. PMID:24999849

  17. Accumulation of Metals in Soils, Groundwater and Edible Parts of Crops Grown Under Long-Term Irrigation with Sewage Mixed Industrial Effluents.

    PubMed

    Yadav, R K; Minhas, P S; Lal, Khajanchi; Chaturvedi, R K; Yadav, Gajender; Verma, T P

    2015-08-01

    Farmers in developing countries irrigate crops using raw urban and industrial effluents with consequent risks from metal contamination. Therefore, soils, crops and groundwater from an effluent irrigation use site were assessed for Cd, Cr, Ni and Pb. Total and available contents of metals in soil followed the order Pb>Ni>Cr>Cd. Crops accumulated more Pb, followed by Cd, Ni and Cr. Pb exceeded the permissible limit with wastewater irrigation only, but Cd exceeded the limit even with combined irrigations of wastewater and groundwater. Among crops, sugar beet assimilated highest Cd (3.14 μg g(-1)) and Pb (6.42 μg g(-1)) concentrations. Legumes accumulated more metals than cereals. Long-term use of wastewater and its conjunctive use with groundwater led to toxic accumulations of Cd, Pb, Ni and Cr. Cd with higher availability and mobility indices and lower toxicity limit, posed the maximum risk of food-chain contamination. PMID:25894348

  18. Mortality among workers employed in petroleum refining and petrochemical plants

    SciTech Connect

    Thomas, T.L.; Decoufle, P.; Moure-Eraso, R.

    1980-02-01

    The cause-specific mortality experience of 3,105 members of the Oil, Chemical and Atomic Workers International Union was examined to determine if there were unusual patterns of fatal disease that may be indicative of hazardous agents in the work environment. Deaths among active Union members that were reported by locals in Texas between 1947 and 1977 were identified through membership records, and proportionate mortality was analyzed in several broad industrial categories. PMRs for cancers of the liver and biliary passages, pancreas, lung and skin were elevated among refinery and petrochemical plant workers; however risks did not increase with length of membership. Increased relative frequencies of stomach cancer, cancer of the brain, leukemia and multiple myeloma were confined to white males in the same category who had been Union members for 10 or more years. Excess deaths from stomach cancer and brain cancer were found among white male members employed at one specific oil refinery and petrochemical plant. Observed numbers of deaths from cancer of the stomach were greater than expected among whites and nonwhites, and an elevated PMR for lung cancer among nonwhites was found at an additional plant. Findings suggest that workers in this industry may be at increased risk of certain cancers and indicate areas for further investigation.

  19. The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: an 11-year longitudinal study

    PubMed Central

    2014-01-01

    Background Petrochemical industries have been identified as important sources of emissions of chemical substances, and adverse health outcomes have been reported for residents who live nearby. The purpose of the current study was to examine the adverse effects of petrochemical industrialization in Taiwan on the life expectancy and personal income of people living in nearby communities. Methods This study compared life expectancies and personal income between one industrial county (Yunlin County) and one reference county (Yilan County), which had no significant industrial activity that might emit pollutants, in Taiwan through analysis of 11 year long and publicly available data. Data from before and after the petrochemical company in the industrial county started (year 1999) operating were compared. Results Residents of the industrialized county had lesser increases in life expectancy over time than did residents of a similar but less-industrialized county, with difference means ranging from 0.89 years (p < 0.05) to 1.62 years (p < 0.001) at different stages. Male residents were more vulnerable to the effects of industrialization. There were no significant differences in individual income between the two counties. Conclusions Countries, including Taiwan and the U.S., embracing petrochemical industries now face the challenge of environmental injustice. Our findings suggested that life expectancy lengthening was slowed and income growth was stalled for residents living in the industrial communities. PMID:24621018

  20. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater. PMID:27533873

  1. Dispersion and co-combustion studies for disposal of agro-industrial effluents in bubbling fluidized bed

    SciTech Connect

    Miccio, F.

    1997-12-31

    The present work was developed in the frame of a collaboration between CNR/Istituto Ricerche Combustione, University of Parma and ENEA. It was aimed at exploiting and recovering the thermal energy from liquid effluents and solid wastes derived from typical Italian manufacturing of agro-industrial companies. This paper focuses on an organic sludge that is obtained as a residue during steam concentration of waste water from alcohol production in distilleries. This sludge has a very low calorific value and cannot be directly used in a combustion process. The first objective was to turn the sludge into a coal/waste/water mixture, easy to prepare and to burn on site in a bubbling fluidized combustor. To do so, some preliminary runs were carried out on a significant experimental scale by employing the 2100 kW{sub t} FBC-370 pre-pilot facility and by feeding underbed a South African coal/dry residue/water mixture with a maximum particle size of 1 mm. Very satisfactory values of co-combustion efficiency (i.e., larger than 98%), were attained as a function of the dispersing air velocity. It was proven that the mechanism of combustion passes through the formation of carbon-sand aggregates and tiny carbon deposits on bed sand particles. Another outcome was that pumping the mixture directly into the bed without any atomization is feasible and favorable from the point of view of co-combustion efficiency. Therefore, a second objective was to investigate aggregate formation as a result of mixture injection into the hot bed. This has been pursued through a review of the fundamental aspects underlying the behavior of a liquid issuing from an orifice. Two simple approaches, one based on Scheele and Meister`s (1968) results and the other one based on a balance of force moments, were followed. These two approaches provided two different equations to predict the diameter of a drop that detaches from the injection nozzle. Furthermore, aggregate formation was investigated through the set

  2. A heavy-metal tolerant novel bacterium, Alcaligenes pakistanensis sp. nov., isolated from industrial effluent in Pakistan.

    PubMed

    Abbas, Saira; Ahmed, Iftikhar; Iida, Toshiya; Lee, Yong-Jae; Busse, Hans-Jürgen; Fujiwara, Toru; Ohkuma, Moriya

    2015-10-01

    Two strains, NCCP-650(T) and NCCP-667, were isolated from industrial effluent and their taxonomic positions were investigated using a polyphasic taxonomic approach. The strains were found to be Gram-stain negative, strictly aerobic, motile short rods, which are tolerant to heavy-metals (Cr(+2), As(+2), Pb(+2) and Cu(+2)). Cells were observed to grow at a temperature range of 10-37 °C (optimal 25-33 °C), pH range of 5.5-10.0 (optimal 6.5-7.5) and can tolerate 0-7 % NaCl (w/v) (optimum 0-1 %) in tryptic soya agar medium. Sequencing of the 16S rRNA gene and two housekeeping genes, gyrB and nirK, of the isolated strains revealed that both strains belong to the Betaproteobacteria showing highest sequence similarities with members of the genus Alcaligenes. The chemotaxonomic data [major quinones as Q-8; predominant cellular fatty acids as summed features 3 (C16 :1 ω7c/iso-C15 :0 2OH) and C16:0 followed by Summed features 2 (iso-C16 :1 I/C14 :0 3OH), C17:0 Cyclo and C18:1 ω7c; major polar lipids as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminolipid] also supported the affiliation of the isolated strains with the genus Alcaligenes. DNA-DNA hybridizations between the two strains and with closely related type strains of species of the genus Alcaligenes confirmed that both isolates belong to a single novel species within the genus Alcaligenes. On the basis of phylogenetic analyses, physiological, biochemical characteristics and DNA-DNA hybridization, the isolated strains can be differentiated from established Alcaligenes species and thus represent a novel species, for which the name Alcaligenes pakistanensis sp. nov. is proposed with the type strain NCCP-650(T) (=LMG 28368(T) = KCTC42083(T) = JCM 30216(T)). PMID:26238381

  3. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    PubMed

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. PMID:24076569

  4. Directional drilling allows quick exit from petrochemical plant

    SciTech Connect

    Halderman, R.G.

    1994-12-31

    Horizontal directional drilling uses specialty tools and techniques largely taken from the oil field and the mining industry to very accurately install pipelines, utilities and other conduits under obstacles such as rivers, beaches, environmentally sensitive areas, roadways, railroads, airfields, and congested pipeline corridors. In the early part of 1990, a particularly interesting problem confronted the pipeline engineers at Union Carbides 2,500-acre Seadrift plant near Port Lavaca, Texas. Having started up in 1954, the plant today is a major supplier of chemicals and plastics to industry, shipping more than two billion pounds per year. Since very large volumes of cooling water are needed for the operation of a petrochemical complex of this magnitude, years of expansion and modifications have caused the plant to become nearly surrounded by a number of rather large segmented ponds.

  5. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. PMID:23313684

  6. Economic-impact analysis of effluent-limitations guidelines and standards for the organic chemicals, plastics, and synthetic-fibers industry

    SciTech Connect

    Not Available

    1987-09-01

    This report identifies and analyzes economic impacts that are likely to result from water-pollution-control regulations on the organic chemicals, plastics, and synthetic fibers (OCPSF) industry. The regulations included EPA effluent limitations and standards. The report supplements technical studies supporting the issuance of the OCPSF regulations by estimating the broader economic effects that might result from the application of various control methods and technologies. The primary economic-impact variables assessed include the costs of the contemplated regulations, and the potential for these regulations to cause plant closure, unemployment, reductions in profitability, shifts in the balance of trade, and anticompetitive effects on small business and new facilities.

  7. Lymphohematopoietic Cancer Mortality and Morbidity of Workers in a Refinery/Petrochemical Complex in Korea

    PubMed Central

    Kim, Tae-Woo; Yoon, Yong-Hoon; Shin, Kyung-Seok; Yoo, Seung-Won

    2011-01-01

    Objectives The purpose of this retrospective cohort study was to investigate the relationship between exposure of Korean workers to petrochemicals in the refinery/petrochemical industry and lymphohematopoietic cancers. Methods The cohort consisted of 8,866 male workers who had worked from the 1960s to 2007 at one refinery and six petrochemical companies located in a refinery/petrochemical complex in Korea that produce benzene or use benzene as a raw material. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for 1992-2007 and 1997-2005 based on the death rate and cancer incidence rate of the Korean male population according to job title (production, maintenance, laboratory, and office workers). Results The overall mortality and most cause-specific mortalities were lower among these workers than those of the general Korean population. Increased SMRs were observed for leukemia (4/1.45; SMR 2.77, 95% CI: 0.75-7.09) and lymphohematopoietic cancers (5/2.51; SMR 2, 95% CI: 0.65-4.66) in production workers, and increased SIRs were also observed in leukemia (3/1.34; SIR 2.24, 95% CI: 0.46-6.54) and lymphohematopoietic cancers (5/3.39; SIR 1.47, 95% CI: 0.48-3.44) in production workers, but the results were not statistically significant. Conclusion The results showed a potential relationship between leukemia and lymphohematopoietic cancers and exposure to benzene in refinery/petrochemical complex workers. This study yielded limited results due to a short observational period; therefore, a follow-up study must be performed to elucidate the relationship between petrochemical exposure and cancer rates. PMID:22953184

  8. FISH COUGH RESPONSE - A METHOD FOR EVALUATING QUALITY OF TREATED COMPLEX EFFLUENTS

    EPA Science Inventory

    Bluegill sunfish (Lepomis macrochirus) showed increases in cough frequency commensurate with effluent concentration when exposed for 24 h to different industrial and municipal effluents. Effluents known to be toxic caused steadily increasing cough rates in the fish as effluent co...

  9. Potential of biosorbent developed from fruit peel of Trewia nudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds.

    PubMed

    Bhattacharya, Priyankari; Banerjee, Priya; Mallick, Kwonit; Ghosh, Sourja; Majumdar, Swachchha; Mukhopadhyay, Aniruddha; Bandyopadhyay, Sibdas

    2013-01-01

    Chromium (VI) removal efficiency of a biosorbent prepared from fruit peel of Trewia nudiflora plant was studied. The effect of pH, sorbent dose, initial metal concentration and temperature was studied with synthetic Cr⁺⁶ solution in batch mode. About 278 mg/g of Cr⁺⁶ sorption was obtained at 293 K at an optimum pH of 2.0 and biosorbent dose of 0.75 g/L. Equilibrium sorption data with varying initial concentration of Cr⁺⁶ (22-248 mg/L) at three different temperatures (293-313 K) were analyzed by various isotherms. Biosorption kinetics and thermodynamics were described using standard model equations. Encouraging results were obtained by the application of the biosorptive treatment for removal of Cr⁺⁶ from wastewater collected from common effluent treatment plant of tannery industry. In addition, C⁺⁶r desorption behavior was studied on different systems. Biosorbent was characterized by FESEM, FT-IR and XRD, etc. Effect of the biosorptive treatement with respect to the phytotoxicity of Cr⁺⁶ was analyzed by studying the seed germination behavior and enzyme activity of a pulse seed (Vigna radiata L.). Different concentrations of Cr⁺⁶ solution in both synthetic medium, as well as, in tannery effluent was employed and the results were compared with that of biosorbent treated medium. The study showed that due to efficient removal of Cr⁺⁶ from aqueous phase, considerable enhancement of seed germination, as well as, increase in root length was obtained for the biosorbent treated solutions which were close to that of the control values. Significant decrease (P < 0.01) in POD activity was observed in seeds irrigated with biosorbent treated wastewater compared to untreated wastewater. The study showed that the novel biosorbent prepared might be utilized for abatement of heavy metal toxicity, i.e., Cr⁺⁶ from industrial effluent. PMID:23445414

  10. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents.

    PubMed

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  11. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    PubMed Central

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  12. Economic benefits of final effluent limitations guidelines and standards for the offshore oil and gas industry. Final report

    SciTech Connect

    Not Available

    1993-01-14

    The report provides an overview of the benefits analysis of the effluent limitation guidelines for offshore oil and gas facilities. Regulatory options were evaluated for two wastestreams: (1) drilling fluids (muds) and cuttings; and (2) produced water. The analysis focuses on the human health-related benefits of the regulatory options considered. These health risk reduction benefits are associated with reduced human exposure to various carcinogenic and noncarcinogenic contaminants, including lead, by way of consumption of shrimp and recreationally caught finfish from the Gulf of Mexico. Most of the health-risk reduction benefits analysis is based upon a previous report (RCG/Hagler, Bailly, January 1991), developed in support of the proposed rulemaking. Recreational, commercial, and nonuse benefits have not been estimated for these regulations, due to data limitations and the difficulty of estimating these values for effluent controls in the open-water marine environment.

  13. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents.

    PubMed

    Karas, Panagiotis; Metsoviti, Aria; Zisis, Vasileios; Ehaliotis, Constantinos; Omirou, Michalis; Papadopoulou, Evangelia S; Menkissoglou-Spiroudi, Urania; Manta, Stella; Komiotis, Dimitri; Karpouzas, Dimitrios G

    2015-10-15

    Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides. In the absence of effective depuration methods, they are discharged in municipal wastewater treatment plants or spread to land. Modified biobeds could be an applicable solution for their treatment. We studied the dissipation of thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ), used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom substrate (SMS) in various volumetric ratios. Pesticide sorption was also determined. TBZ and IMZ showed higher persistence especially in the anaerobically digested sewage sludge (DT50=32.3-257.6d), in contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine (QI) which did not persist and dimethyl ethoxyquinoline (EQNL, minor metabolite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation capacity with TBZ and IMZ DT50s of ca. 28 d compared to DT50s of >50 d in the other substrates. TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current disposal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, whereas SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry via accelerated dissipation even of recalcitrant fungicides. PMID:26042894

  14. Determination of pesticide residues and related compounds in water and industrial effluent by solid-phase extraction and gas chromatography coupled to triple quadrupole mass spectrometry.

    PubMed

    Martins, Manoel L; Donato, Filipe F; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2013-09-01

    Pollution of drinking water supplies from industrial waste is a result of several industrial processes and disposal practices, and the establishment of analytical methods for monitoring organic compounds related to environmental and health problems is very important. In this work, a method using solid-phase extraction (SPE) and gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS) was developed and validated for the simultaneous determination of pesticide residues and related compounds in drinking and surface water as well as in industrial effluent. Optimization of the method was achieved by using a central composite design approach on parameters such as the sample pH and SPE eluent composition. A single SPE consisting of the loading on a polymeric sorbent of 100 mL of sample adjusted to pH 3 and elution with methanol/methylene chloride (10:90, v/v) permitted the obtaining of acceptable recoveries in most cases. The concentration factor associated with sensitivity of the chromatographic analysis permitted the achievement of the method limit of detection values between 0.01 and 0.25 μg L(-1). Recovery assays presented mean recoveries between 70 and 120% for most of the compounds with very good precision, despite the different chemical nature of the compounds analyzed. The selectivity of the method, evaluated through the relative intensity of quantification and qualification ions obtained by GC-QqQ-MS/MS, was considered adequate. The developed method was finally applied to the determination of target analytes in real samples. River water and treated industrial effluent samples presented residues of some compounds, but no detectable residues were found in the drinking water samples evaluated. PMID:23995504

  15. The chemical industry, by country

    SciTech Connect

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  16. INEEL Liquid Effluent Inventory

    SciTech Connect

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  17. Fate of thiabendazole through the treatment of a simulated agro-food industrial effluent by combined MBR/Fenton processes at μg/L scale.

    PubMed

    Sánchez Peréz, J A; Carra, I; Sirtori, C; Agüera, A; Esteban, B

    2014-03-15

    This study has been carried out to assess the performance of a combined system consisting of a membrane bioreactor (MBR) followed by an advanced oxidation process (Fenton/Photo-Fenton) for removing the fungicide thiabendazole (TBZ) in a simulated agro-food industrial wastewater. Previous studies have shown the presence of TBZ in the effluent of an agro-food industry treated by activated sludge in a sequencing batch reactor (SBR), thus reinforcing the need for alternative treatments for removal. In this study, a simulated agro-food industry effluent was enriched with 100 μg L(-1) TBZ and treated by combined MBR/Fenton and MBR/solar photo-Fenton systems. Samples were directly injected into a highly sensitive liquid chromatography-triple quadrupole-linear ion trap-mass spectrometer (LC-QqLiT-MS/MS) analytical system to monitor the degradation of TBZ even at low concentration levels (ng L(-1)). Results showed that the biological treatment applied was not effective in TBZ degradation, which remained almost unaltered; although most dissolved organic matter was biodegraded effectively. Fenton and solar photo-Fenton, were assayed as tertiary treatments. The experiments were run without any pH adjustment by using an iron dosage strategy in the presence of excess hydrogen peroxide. Both treatments resulted in a total degradation of TBZ, obtaining more than 99% removal in both cases. To assure the total elimination of contaminants in the treated waters, transformation products (TPs) of TBZ generated during Fenton degradation experiments were identified and monitored by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS). Up to four TPs could be identified. Two of them corresponded to mono-hydroxylated derivatives, typically generated under hydroxyl radicals driven processes. The other two corresponded with the hydrolysis of the TBZ molecule to yield benzoimidazole and thiazole-4-carboxamidine. All of them were also degraded during the

  18. Mercury removal from liquid effluents of the chlor-alkali industry by using the biomass Sargassum sp

    NASA Astrophysics Data System (ADS)

    Sobral, L. G. S.; de Barros Lima, R.; Leite, S. G. F.; Fernandes, A. L. V.

    2003-05-01

    In this work, the used biomass, for removing the mercuric species from the liquid effluents of the chlor-alkali plants was the macro-algae Sargassum sp. According to the results obtained, until this moment in time, it was possible to remove more than 99% of the ionic mercury with the advantage of not releasing me aqueous phase, that returns to the operation of brine production, the electrolyte of the electrolytic cells. In addition, it was verified that the biomass, once loaded with Mercury, can be reused in the biosorption step, after suffering an elution process.

  19. Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds

    SciTech Connect

    1996-09-01

    The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

  20. Determination of thimerosal in pharmaceutical industry effluents and river waters by HPLC coupled to atomic fluorescence spectrometry through post-column UV-assisted vapor generation.

    PubMed

    Acosta, Gimena; Spisso, Adrián; Fernández, Liliana P; Martinez, Luis D; Pacheco, Pablo H; Gil, Raúl A

    2015-03-15

    A high performance liquid chromatography coupled with atomic fluorescence spectrometry method for the determination of thimerosal (sodium ethylmercury thiosalicylate, C9H9HgNaO2S), ethylmercury, and inorganic mercury is proposed. Mercury vapor is generated by the post-column reduction of mercury species in formic acid media using UV-radiation. Thimerosal is quantitatively converted to Hg(II) followed by the reduction of Hg(II) to Hg(0). This method is applied to the determination of thimerosal (THM), ethylmercury (EtHg) and inorganic Hg in samples of a pharmaceutical industry effluent, and in waters of the San Luis River situated in the west side of San Luis city (Middle West, Argentine) where the effluents are dumped. The limit of detections, calculated on the basis of the 3σ criterion, where 0.09, 0.09 and 0.07 μg L(-1) for THM, EtHg(II) and for Hg(II), respectively. Linearity was attained from levels close to the detection limit up to at least 100 μg L(-1). PMID:25280990

  1. Degradation and monitoring of acetamiprid, thiabendazole and their transformation products in an agro-food industry effluent during solar photo-Fenton treatment in a raceway pond reactor.

    PubMed

    Carra, Irene; Sirtori, Carla; Ponce-Robles, Laura; Sánchez Pérez, José Antonio; Malato, Sixto; Agüera, Ana

    2015-07-01

    In this study, pesticides acetamiprid and thiabendazole and their transformation products (TPs), seven from each pesticide, were successfully monitored during solar photo-Fenton treatment in a real secondary effluent from an agro-food industry spiked with 100μgL(-1) of each pesticide. To this end, a highly sensitive procedure was developed, based on liquid chromatography (LC) coupled to hybrid quadrupole-linear ion trap mass spectrometry (QqLIT-MS). In addition, finding low-cost and operational technology for the application of AOPs would then facilitate their use on a commercial level. Simple and extensive photoreactors such as raceway pond reactors (RPRs) are therefore proposed as an alternative for the application of solar photo-Fenton. Results showed that high degradation could be achieved in a complex water matrix (>99% TBZ and 91% ACTM in 240min) using a 120-L RPR pilot plant as novel technology. The analyses indicated that after the treatment only three TPs from ACTM were still present in the effluent, while the others had been removed. The study showed that the goal of either just removing the parent compounds, or going one step further and removing all the TPs, can significantly change the treatment time, which would affect process costs. PMID:25841181

  2. Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923.

    PubMed

    Manai, Imène; Miladi, Baligh; El Mselmi, Abdellatif; Smaali, Issam; Ben Hassen, Aida; Hamdi, Moktar; Bouallagui, Hassib

    2016-04-01

    The treatment of an industrial textile effluent (ITE) was investigated by using a mono-culture of a novel fungal strain Chaetomium globosum IMA1. This filamentous fungus was selected based on its capacity for dye removal via the biodegradation mechanism. The respirometric analysis showed that C. globosum IMA1 was resistant to an indigo concentration up to 700 mg equivalent COD/L. The decolourization of the ITE by C. globosum was performed in static and stirred batch systems. The better lignin peroxidase (LiP), laccase and the manganese peroxidase (MnP) productions were 829.9 U/L, 83 U/L and 247.8 U/L, respectively since 3-5 days under a stirred condition. Therefore, the chemical oxygen demand (COD) and colors (OD620) removal yields reached 88.4% and 99.8%, respectively. Fourier transforms infrared spectroscopy (FTIR) analysis of the treated effluent showed that the decolourization was due to the degradation and the transformation of dye molecules. However, spectrophotometric examination showed that the complete dye removal was through fungal adsorption (8%), followed by degradation (92%). PMID:26775156

  3. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Prasanna, Apoorva; Manjunath, Sirisha P; Karanth, Soujanya S; Nazre, Ambika

    2016-02-01

    Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. is one of the edible mushrooms currently gaining attention as environmental restorer. The present study explores the potential of P. ostreatus (Jacq.: Fr.) P. Kumm. in degradation of textile dyes and effluents. The mushroom cultivation was carried out using paddy bed as substrate. The fully grown mushroom fruit bodies were used as a bioremediation agent against two industrially important azo dyes such as nylon blue and cotton yellow and few effluents collected from various textile industries in Karnataka, India. The ideal growth parameters such as temperature, pH, and dye concentrations for effective degradation were carried out. One of the main enzymes, laccase, responsible for biodegradation, was partially characterized. The degradation was found to be ideal at pH 3.0 and temperature at 26-28 °C. This study demonstrated a percentage degradation of 78.10, 90.81, 82.5, and 64.88 for dye samples such as nylon blue (50 ppm), cotton yellow (350 ppm), KSIC effluents, and Ramanagar effluents at 28 °C within 15th days respectively in comparison with other temperature conditions. Similarly, a percentage degradation of 35.99, 33.33, 76.13 and 25.8 for nylon blue (50 ppm), cotton yellow (350 ppm), Karnataka Silk Industries Corporation (KSIC) effluents and Ramnagar effluents were observed at pH 3.0 within 15 days, respectively (p < 0.05). Thus, the current study concluded that the utilization of P. ostreatus (Jacq.: Fr.) P. Kumm. at ideal environmental conditions is a cost-effective and eco-friendly approach for the degradation of various azo dyes and textile effluents which are harmful to the ecosystem. PMID:26818015

  4. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies.

    PubMed

    Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S

    2015-01-01

    Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost. PMID:25560264

  5. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-05-15

    A hydrolysis acidification (HA)-anoxic-oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m(3) h(-1)) was operated with the same parameters. The results showed that the BOD5/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L(-1) for bench scale reactor and 60.9 mg L(-1) for PCWWTP when the influent COD was about 480 mg L(-1) on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC-MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L(-1). There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment. PMID:26894292

  6. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China.

    PubMed

    Mo, Ziwei; Shao, Min; Lu, Sihua; Qu, Hang; Zhou, Mengyi; Sun, Jin; Gou, Bin

    2015-11-15

    Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities were investigated in the Yangtze River Delta, China. Source samples were collected from various process units in the petrochemical, basic chemical, and chlorinated chemical plants, and were measured using gas chromatography-mass spectrometry/flame ionization detection. The results showed that propane (19.9%), propene (11.7%), ethane (9.5%) and i-butane (9.2%) were the most abundant species in the petrochemical plant, with propene at much higher levels than in petrochemical profiles measured in other regions. Styrene (15.3%), toluene (10.3%) and 1,3-butadiene (7.5%) were the major species in the basic chemical industry, while halocarbons, especially dichloromethane (15.2%) and chloromethane (7.5%), were substantial in the chlorinated chemical plant. Composite profiles were calculated using a weight-average approach based on the VOC emission strength of various process units. Emission profiles for an entire petrochemical-related industry were found to be process-oriented and should be established considering the differences in VOC emissions from various manufacturing facilities. The VOC source reactivity and carcinogenic risk potential of each process unit were also calculated in this study, suggesting that process operations mainly producing alkenes should be targeted for possible controls with respect to reducing the ozone formation potential, while process units emitting 1,3-butadiene should be under priority control in terms of toxicity. This provides a basis for further measurements of process-specific VOC emissions from the entire petrochemical industry. Meanwhile, more representative samples should be collected to reduce the large uncertainties. PMID:26179779

  7. Resource Conservation and Recovery Act industrial site environmental restoration site characterization plan. Area 6 Steam Cleaning Effluent Ponds

    SciTech Connect

    1996-02-01

    This plan presents the strategy for the characterization of the Area 6 South and North Steam Cleaning Effluent Ponds (SCEPs) at the Nevada Test Site (NTS) to be conducted for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration Division (ERD). The purposes of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste (IDW). The scope of the characterization may include excavation, drilling, and sampling of soil in and around both ponds; sampling of the excavated material; in situ sampling of the soil at the bottom and on the sides of the excavations as well as within subsurface borings; and conducting sample analysis for both characterization and waste management purposes. Contaminants of concern include RCRA-regulated VOCs and metals.

  8. Petrochemical processes '95: A special report

    SciTech Connect

    Not Available

    1995-03-01

    This data compilation describes application, synthesis process, yields, economics, commercial plants, and licensor for the following chemicals: alkylbenzene, methyl amines, ammonia, benzene, bisphenol-A, BTX aromatics, butadiene, butanediol, butene-1, butylene, butyraldehyde, caprolactam, cumene, cyclohexane, dimethyl terephthalate, ethanolamines, ethers, ethylbenzene, ethylene, ethylene glycols, ethylene oxide, formaldehyde, isobutane, isobutylene, maleic anhydride, methanol, olefins, paraxylene, phenol, polycaproamide, polyethylenes, polypropylene, polystyrene, propylene, PVC, styrene, urea, vinyl chloride, and xylene isomers. Also included is the licensor index, an inclusive listing of all petrochemical licensors and their technologies.

  9. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... topping, cracking, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations. The provisions of this subpart shall not...

  10. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... topping, cracking, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations. The provisions of this subpart shall not...

  11. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    PubMed

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method. PMID:24640914

  12. Cleaner production and methodological proposal of eco-efficiency measurement in a Mexican petrochemical complex.

    PubMed

    Morales, M A; Herrero, V M; Martínez, S A; Rodríguez, M G; Valdivieso, E; Garcia, G; de los Angeles Elías, Maria

    2006-01-01

    Abstract In the frame of the Petróleos Mexicanos Institutional Program for Sustainable Development, processes were evaluated in the manufacture operation of the petrochemical industry, with the purpose of reducing their ecological fingerprint. Thirteen cleaner production opportunities were registered in six process plants: ethylene oxide and glycols, acetaldehyde, ethylene, high density polyethylene, polypropylene switch and acrylonitrile, and 45 recommendations in the waste water treatment plant. Morelos is the second most important petrochemical complex in the Mexican and Latin American petrochemical industry. A tool was developed to obtain eco-efficiency indicators in operation processes, and as a result, potential savings were obtained based on best performance, as well as the integrated distribution of Sankey diagrams. Likewise, a mechanism of calculation to obtain economic savings based on the reduction of residues during the whole productive process is proposed. These improvement opportunities and recommendations will result in economic and environmental benefits minimising the use of water, efficient use of energy, raw materials and reducing residues from source, generating less environmental impacts during the process. PMID:16862769

  13. Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents.

    PubMed

    Salima, Attouti; Benaouda, Bestani; Noureddine, Benderdouche; Duclaux, Laurent

    2013-06-15

    Marine algae Ulva lactuca (ULV-AC) and Systoceira stricta (SYS-AC) based activated carbons were investigated as potential adsorbents for the removal of hazardous cationic dyes. Both algae were surface oxidised by phosphoric acid for 2 and subsequently air activated at 600 °C for 3 h. Dyes adsorption parameters such as solution pH, contact time, carbon dosage, temperature and ionic strength were measured in batch experiments. Adsorption capacities of 400 and 526 mg/g for Malachite green and Safranine O by the SYS-AC and ULV-AC respectively were significantly enhanced by the chemical treatments. Model equations such as Langmuir, Freundlich and Temkin isotherms were used to analyse the adsorption equilibrium data and the best fits to the experimental data were provided by the first two isotherm models. BET, FT-IR, iodine number and methylene blue index determination were also performed to characterize the adsorbents. To describe the adsorption mechanism, kinetic models such as pseudo-second-order and the intra particle diffusion were applied. Thermodynamic analysis of the adsorption processes of both dyes confirms their spontaneity and endothermicity. Increasing solution ionic strength increased significantly the adsorption of Safranine O. This study shows that surface modified algae can be an alternative to the commercially available adsorbents for dyes removal from liquid effluents. PMID:23597681

  14. Removal of hydrocarbons from petrochemical wastewater by dissolved air flotation.

    PubMed

    Galil, N I; Wolf, D

    2001-01-01

    The dissolved air flotation (DAF) method has an important role in the removal of hydrocarbons, as well as in the protection of the biological treatment, which usually follows the DAF. The aims of this study were to evaluate the removal efficiencies of suspended solids, general organic matter, hydrocarbons and phenols by DAF, as influenced by the flocculant type, aluminum sulfate (alum) or a cationic polyelectrolyte. Laboratory batch experiments included chemical flocculation followed by DAF, controlling the flocculant dose and the air to solids ratio. The characterization of the influent and effluent was based on general analysis of organic matter (COD), suspended solids, hydrocarbons and phenols. The influent to all experiments was supplied daily from the outlet of a full scale oil-water gravitational separation unit at a petrochemical complex in Haifa, Israel. The influent contained hydrocarbons in the range of 20 to 77 mg/L. Usually less than 10% were found in "free" form, 70 to 80% were emulsified and 10 to 20% were dissolved. The DAF process enabled us to reduce the general hydrocarbon content by 50 to 90%. The effluent was characterized by stable and uniform levels of suspended solids, and oil, almost without depending on the influent concentrations. The results indicate that the chemical flocculation followed by DAF removed efficiently the emulsified phase, which could be aggregated and separated to the surface. However, it was found that the process could also remove substantial amounts of dissolved organic matter. This mechanism could be explained by the hydrophobic characteristics of some of the substances, which could bind to the solid surfaces. It was found that aggregates created by the flocculation with the cationic polyelectrolite (C-577) could remove up to 40% from the dissolved hydrocarbon. Alum flocs also indicated removal of soluble materials, mainly phenols. The results obtained in this study indicated the possibility to improve the protection

  15. Heavy metal removal from industrial effluents by sorption on cross-linked starch: chemical study and impact on water toxicity.

    PubMed

    Sancey, Bertrand; Trunfio, Giuseppe; Charles, Jérémie; Minary, Jean-François; Gavoille, Sophie; Badot, Pierre-Marie; Crini, Grégorio

    2011-03-01

    Batch sorption experiments using a starch-based sorbent were carried out for the removal of heavy metals present in industrial water discharges. The influence of contact time, mass of sorbent and pollutant load was investigated. Pollutant removal was dependent on the mass of sorbent and contact time, but independent of the contaminant load. The process was uniform, rapid and efficient. Sorption reached equilibrium in 60 min irrespective of the metal considered (e.g. Zn, Pb, Cu, Ni, Fe and Cd), reducing concentrations below those permitted by law. The material also removed residual turbidity and led to a significant decrease in the residual chemical oxygen demand (COD) present in the industrial water discharge. The germination success of lettuce (Lactuca sativa) was used as a laboratory indicator of phytotoxicity. The results show that the sorption using a starch-based sorbent as non-conventional material, is a viable alternative for treating industrial wastewaters. PMID:21067859

  16. Ecological impact and recovery of a Mediterranean river after receiving the effluent from a textile dyeing industry.

    PubMed

    Colin, Nicole; Maceda-Veiga, Alberto; Flor-Arnau, Núria; Mora, Josep; Fortuño, Pau; Vieira, Cristiana; Prat, Narcís; Cambra, Jaume; de Sostoa, Adolfo

    2016-10-01

    The textile industry is one of the largest sectors globally, representing up to 20% of industrial water pollution. However, there is limited insight into how fluvial ecosystems respond and recover from this impact. From summer 2012 to spring 2013, we examined water quality and ecological status upstream and 1.5km downstream the input of a textile industry wastewater treatment plant (WWTP) in Ripoll River, NE Spain. The ecological status was determined via diversity measures and 10 biotic indices based on diatoms, macrophytes, macroinvertebrates and fish. Our results showed that the WWTP severely deteriorated water quality and biological communities at the discharge site, but that they improved at 1.5km downstream. Severity also varied across taxa and seasons, being fish the most affected taxa and spring the season with the best ecological status. The strong correlation amongst water quality variables and many biotic indices across taxa indicated that this is a chronic pollution event affecting multiple trophic levels. Thus, this study suggests that there is an urgent need to invest in wastewater treatment in this industry to preserve the ecological integrity of Ripoll River and especially its fish fauna. Likewise, it illustrates the diagnostic power of biotic indices based on diatoms, macroinvertebrates and fish, as driven by the European Water Framework Directive. PMID:27344397

  17. Dangerous and cancer-causing properties of products and chemicals in the oil-refining and petrochemical industry--Part XXII: Health hazards from exposure to gasoline containing methyl tertiary butyl ether: study of New Jersey residents.

    PubMed

    Mehlman, M A

    1996-01-01

    Methyl tertiary butyl ether has caused the following cancers in rats and mice: kidney, testicular, liver, lymphomas, and leukemias. Thus, in the absence of adequate data on humans, it is biologically plausible and prudent to regard methyl tertiary butyl ether-for which there is sufficient evidence of carcinogenicity in experimental animals-as a probable human carcinogen. This means that some humans are at extreme risk of contracting cancers resulting from their exposure to oxygenated gasoline containing methyl tertiary butyl ether. Immediately after the introduction of methyl tertiary butyl ether into gasoline, many consumers of this product in New Jersey, New York, Alaska, Maine, Pennsylvania, Colorado, Arizona, Montana, Massachusetts, California, and other areas, experienced a variety of neurotoxic, allergic, and respiratory illnesses. These illnesses were similar to those suffered by refinery workers from the Oil, Chemical, and Atomic Workers Union who mixed methyl tertiary butyl ether with gasoline. Additionally, these illnesses occurred following exposure to extremely low levels of methyl tertiary butyl ether in gasoline, particularly when compared to the adverse health effects that occurred only after exposure to very high levels of conventional gasoline. Thus, gasoline containing methyl tertiary butyl ether exhibited substantially more toxicity in humans than gasoline without this additive. A number of oil industry-sponsored or influenced reports alleged that these illnesses were either unrelated to exposure to reformulated gasoline or were characteristic of some yet-to-be-identified communicable disease. These studies further alleged that the widespread concern was not about illness, but was merely a reaction to the odor and the five cent increase in the price of gasoline. To clarify the significance of this issue, it is important to note that consumers have been using gasoline for many decades, with complaints only occurring following exposure to high

  18. Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment.

    PubMed

    Torrijos, V; Gonzalo, O G; Trueba-Santiso, A; Ruiz, I; Soto, M

    2016-10-15

    Hybrid constructed wetlands (CWs) including subsurface horizontal flow (HF) and vertical flow (VF) steps look for effective nitrification and denitrification through the combination of anaerobic/anoxic and aerobic conditions. Several CW configurations including several configurations of single pass systems (HF + HF, VF + VF, VF + HF), the Bp(VF + HF) arrangement (with feeding by-pass) and the R(HF + VF) system (with effluent recirculation) were tested treating synthetic domestic wastewater. Two HF/VF area ratios (AR) were tested for the VF + HF and Bp(VF + HF) systems. In addition, a R(VF + VF) system was tested for the treatment of a high strength industrial wastewater. The percentage removal of TSS, COD and BOD5 was usually higher than 95% in all systems. The single pass systems showed TN removal below the threshold of 50% and low removal rates (0.6-1.2 g TN/m(2) d), except the VF + VF system which reached 63% and 3.5 g TN/m(2) d removal but only at high loading rates. Bp(VF + HF) systems required by-pass ratios of 40-50% and increased TN removal rates to approximately 50-60% in a sustainable manner. Removal rates depended on the AR value, increasing from 1.6 (AR 2.0) to 5.2 g TN/m(2) d (AR 0.5), both working with synthetic domestic wastewater. On real domestic wastewater the Bp (VF + HF) (AR 0.5 and 30% by-pass) reached 2.5 g TN/m(2) d removal rate. Effluent recirculation significantly improved the TN removal efficiency and rate. The R(HF + VF) system showed stable TN removals of approximately 80% at loading rates ranging from 2 to 8 g TN/m(2) d. High TN removal rates (up to 73% TN and 8.4 g TN/m(2) d) were also obtained for the R(VF + VF) system treating industrial wastewater. PMID:27441816

  19. Survey of hazardous organic compounds in the groundwater, air and wastewater effluents near the Tehran automobile industry.

    PubMed

    Kargar, Mahdi; Nadafi, Kazem; Nabizadeh, Ramin; Nasseri, Simin; Mesdaghinia, Alireza; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nazmara, Shahrokh; Rastkari, Noushin

    2013-02-01

    Potential of wastewater treatment in car industry and groundwater contamination by volatile organic compounds include perchloroethylene (PCE), trichloroethylene (TCE) and dichloromethane (DCM) near car industry was conducted in this study. Samples were collected in September through December 2011 from automobile industry. Head-space Gas chromatography with FID detector is used for analysis. Mean PCE levels in groundwater ranged from 0 to 63.56 μg L(-1) with maximum level of 89.1 μg L(-1). Mean TCE from 0 to 76.63 μg L(-1) with maximum level of 112 μg L(-1). Due to the data obtained from pre treatment of car staining site and conventional wastewater treatment in car factory, the most of TCE, PCE and DCM removed by pre aeration. Therefor this materials entry from liquid phase to air phase and by precipitation leak out to the groundwater. As a consequence these pollutants have a many negative health effect on the workers by air and groundwater. PMID:23160750

  20. QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.

    SciTech Connect

    SENUM,G.I.; DIETZ,R.N.

    2004-06-30

    Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissions are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a

  1. Studies on thio-substituted polyurethane foam (T-PUF) as a new efficient separation medium for the removal of inorganic/organic mercury from industrial effluents and solid wastes.

    PubMed

    Anjaneyulu, Y; Marayya, R; Rao, T H

    1993-01-01

    Novel thio-substituted flexible polyurethane foam (T-PUF) was synthesised by addition polymerisation of mercaptan with the precursors of an open-cell polyurethane foam, which can be used as a highly selective sorbent for inorganic and organic mercury from complex matrices. The percentage extraction of inorganic mercury was studied at different flow-rates, over a wide pH range at different concentrations ranging from 1 ppm, to 100 ppm. The break-through capacity and total capacity of unmodified and thio-foams were determined for inorganic and organic mercurials. The absorption efficiency of thio-foam was far superior to other sorbent media, such as activated carbon, polymeric ion-exchange resins and reagent-loaded polyurethane foams. It was observed that even at the 1000 ppm level, divalent ions like Cu, Mg, Ca, Zn do not appreciably influence the per cent extraction of inorganic mercury at the 10 ppm level. These matrix levels are the most concentrated ones which are likely to occur, both in local sewage and effluent waters. Further, the efficiency of this foam was sufficiently high at 10-100 ppm levels of Hg, even from 5-10 litres of effluent volumes using 50 g of thio-foam packed into different columns in series. Thio-foams were found to possess excellent abilities to remove and recover mercury even at low levels from industrial effluents and brine mud of chlor-alkali industry after pre-acid extraction. This makes it a highly efficient sorbent for possible application in effluent treatment. Model schemes for the removal and recovery of mercury from industrial effluents and municipal sewage (100-1000 litre) by a dynamic method are proposed and the costs incurred in a full-scale application method are indicated to show that the use of thio-foam could be commercially attractive. PMID:15091891

  2. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    PubMed

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. PMID:26723112

  3. Polydimethylsiloxane composites containing 1,2-naphtoquinone 4-sulphonate as unique dispositive for estimation of casein in effluents from dairy industries.

    PubMed

    Muñoz-Ortuño, M; Argente-García, A; Moliner-Martínez, Y; Molins-Legua, C; Campíns-Falcó, P

    2015-05-11

    A unique dispositive to determine casein which is the most abundant protein in dairy sewages has been proposed. In this sensing technology, the derivatization reagent 1,2-naphtoquininone 4-sulphonate (NQS) is embedded into a polydimethylsiloxane-tetraethylortosilicate-SiO2 nanoparticles composite (PDMS-TEOS-SiO2NPs). When the composite is immersed into the samples, casein is extracted from the solution and derivatized inside the PDMS matrix after 10 min at 100°C. The sensing support changes its color from yellow to orange depending on the casein concentration. Quantitative analysis can be carried out by measuring the absorbance with a reflection probe or by image-processing tool (GIMP). This sensor provides good sensitivity and precision (RSD% <12%). The method validation has been done by applying the biocinchoninic acid method (BCA). Moreover, semiquatitative analysis of casein can be performed by visual observation. Taking into account the advantages of small size, rapidity, simplicity, good stability and high compatibility in aqueous solution, this sensor is expected to have potential practical applications for in-situ determination of casein. Finally the method has been applied to analyze effluents from dairy industries. PMID:25911427

  4. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment. PMID:26841606

  5. Genetic markers for detection of Escherichia coli K-12 harboring ampicillin-resistance plasmid from an industrial wastewater treatment effluent pond.

    PubMed

    Simões, G A R; Xavier, M A S; Oliveira, D A; Menezes, E V; Magalhães, S S G; Gandra, J A C D; Xavier, A R E O

    2016-01-01

    Biotechnology industries that use recombinant DNA technology are potential sources for release of genetically modified organisms to the environment. Antibiotic-resistance marker genes are commonly used for recombinant bacteria selection. One example is the marker gene coding for β-lactamase (bla) in plasmids found in Escherichia coli K-12. The aim of this study was to provide an approach to develop a molecular method for genetic marker detection in E. coli K-12 harboring bla genes from an industrial wastewater treatment effluent pond (IWTEP). For the detection of bla and Achromobacter lyticus protease I (api) genes in samples from IWTEP, we employed multiplex polymerase chain reaction (PCR) using E. coli K-12 genetic marker detection primers, previously described in the literature, and primers designed in our laboratory. The microbiological screening method resulted in 22 bacterial colony-forming units isolated from three different IWTEP harvesting points. The multiplex PCR amplicons showed that five isolates were positive for the bla gene marker and negative for the E. coli K-12 and api genes. The 16S rRNA regions of positive microorganisms carrying the bla gene were genotyped by the MicroSeq®500 system. The bacteria found were Escherichia spp (3/5), Chromobacterium spp (1/5), and Aeromonas spp (1/5). None of the 22 isolated microorganisms presented the molecular pattern of E. coli K-12 harboring the bla gene. The presence of microorganisms positive for the bla gene and negative for E. coli K-12 harboring bla genes at IWTEP suggests that the ampicillin resistance found in the isolated bacteria could be from microorganisms other than the E. coli K-12 strain harboring plasmid. PMID:27323199

  6. TOTAL RECYCLE SYSTEMS FOR PETROCHEMICAL WASTE BRINES CONTAINING REFRACTORY CONTAMINANTS

    EPA Science Inventory

    Petrochemical wastewaters containing relatively high concentrations of salt and refractory organics were selected to study their feasibility for total recycle. A combination of reverse osmosis and electrodialysis was operated as a hybrid system using the pretreated wastes to prod...

  7. Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent.

    PubMed

    Aman, Tehseen; Kazi, Asrar Ahmad; Sabri, Muhammad Usman; Bano, Qudsia

    2008-05-01

    A new sorbent potato peels, which are normally discarded as solid waste for removing toxic metal ion Cu(II) from water/industrial waste water have been studied. Potato peels charcoal (PPC) was investigated as an adsorbent of Cu(II) from aqueous solutions. Kinetic and isotherm studies were carried out by studying the effects of various parameters such as temperature, pH and solid liquid ratios. The optimum pH value for Cu(II) adsorption onto potato peels charcoal (PPC) was found to be 6.0. The thermodynamic parameters such as standard Gibb's free energy (Delta G degrees ), standard enthalpy (Delta H degrees ) and standard entropy (DeltaS degrees ) were evaluated by applying the Van't Hoff equation. The thermodynamics of Cu(II) adsorption onto PPC indicates its spontaneous and exothermic nature. The equilibrium data at different temperatures were analyzed by Langmuir and Freundlich isotherms. PMID:18215510

  8. Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry.

    PubMed

    Kumar, R Ranjith; Rao, P Hanumantha; Subramanian, V V; Sivasubramanian, V

    2014-02-01

    Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris have gained considerable importance in recent decades. C. vulgaris strain highly tolerant to extreme pH variations was isolated and mass-cultivated in the wastewater from a confectionery industry. C.vulgaris showed better growth in wastewater than in improvised CFTRI medium. The microalgal biomass was then screened for the following antioxidants: peroxidase, superoxide dismutase, polyphenol oxidase, glutathione peroxidase, chlorophyll a, ascorbic acid, α-tocopherol and reduced glutathione. The total polyphenol content of the strain was also studied. The strain showed a high degree of enzymatic antioxidant activity (0.195 × 10(-5) ± 0.0072 units/cell peroxidase, 0.04125 × 10(-5) ± 0.001 units/cell superoxide dismutase, 0.2625 × 10(-5) ± 0.003 units/cell polyphenol oxidase and 0.025 × 10(-5) ± 0.003 glutathione peroxidase). The microalgal biomass also showed, per milligram weight, 0.2182 ± 0.005 μg of ascorbic acid, 0.00264 ± 0.001 μg of α-tocopherol and 0.07916 ± 0.004 μg of reduced glutathione. These results represent the possibility of using C. vulgaris grown in confectionery industry wastewater as a source of nutritious supplement, which is highly promising in terms of both economic and nutritional point of view. PMID:24493890

  9. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat–Fulia region of West Bengal, India

    PubMed Central

    Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata

    2014-01-01

    Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat–Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g−1 during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g−1). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g−1) during monsoon followed by gill of Mystus bleekeri (190.0 μg g−1) and gut of G. giuris (123.7 μg g−1) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65–99 μg g−1) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g−1) in different tissues except in gill (64.4 μg g−1). PMID:26644938

  10. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat-Fulia region of West Bengal, India.

    PubMed

    Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata

    2015-11-01

    Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat-Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g(-1) during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g(-1)). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g(-1)) during monsoon followed by gill of Mystus bleekeri (190.0 μg g(-1)) and gut of G. giuris (123.7 μg g(-1)) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65-99 μg g(-1)) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g(-1)) in different tissues except in gill (64.4 μg g(-1)). PMID:26644938

  11. Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan

    SciTech Connect

    Bi Jen Pan; Yu Jue Hong; Gwo Chin Chang; Frigyes F. Cinkotai; Ying Chin Ko; Ming Tsan Wang

    1994-12-31

    We have collected data on the cancer deaths of children and adolescents 0-19 yr old living in a residential area near 3 large petroleum and petrochemical complexes in and near Kaohsiung city (petrochemical industrial districts, PIDs) in the period of 1971-1990 and compared these with the cancer deaths of children and adolescents 0-19 yr old among the entire population of Taiwan (national reference) and among the residents of 26 administrative districts, comprising all of Kaohsiung city and Kaohsiung county (local reference), except for 8 sparsely populated, rural districts. Having scrutinized all cancer death certificates, we have identified various statistically significant excess deaths, as compared with the national and local reference, due to cancers at all sites. Cancer of the bone, brain, and bladder in boys and girls 0-9 yr and 10-19 yr of age in the 1981-1990 decade that followed the establishment of petrochemical production in the PIDs was studied. However, excess cancer deaths seemed to have clustered in the 10-19 yr age group, who had been potentially exposed to the petrochemical pollutants for the longest period of time from the youngest age. Almost all bone, brain, and bladder cancer deaths registered were within 3 km of the 3 complexes. Bone and brain cancers in particular occurred in girls in the PIDs more frequently than in boys, even though these are believed to occur more in males than females elsewhere. 32 refs., 1 fig., 6 tabs.

  12. A cohort mortality study of petrochemical workers

    SciTech Connect

    Austin, S.G.; Schnatter, A.R.

    1983-04-01

    A historical prospective cohort mortality study was conducted for a cohort of 6,588 white male employees of a Texas petrochemical plant because of a suspected increased incidence of malignant brain tumors. Mortality experience from 1941 to 1977 was determined and compared with that of the general U.S. white male population adjusting for age and time period. Overall and cause-specific standardized mortality ratios were calculated for various subgroups of the population defined by length of employment, latency and payroll status. Significant deficits in total cohort mortality were found for all causes of death, all circulatory diseases, all respiratory diseases and all digestive diseases. Although not statistically significant, fewer deaths were observed (O) than expected (E) for all malignant neoplasms. No statistically significant excess of malignant brain tumors was found in the overall plant population (O/E = 12/7.42 = 1.62). A borderline significant excess of brain cancer deaths was found among hourly employees with more than six months' employment based on 10 observed and five expected deaths. This excess was observed to occur among elderly employees (over 55 years) and in later follow-up years (post-1970). Risk did not appear to be related to length of employment. Because of the nature of the problem that prompted this study, the small number of cases involved and the lack of a suspect agent in the plant that could have produced this excess, insufficient evidence was found to conclude that these tumors were occupationally related.

  13. Pulp and paper mill effluents: Toxicity to humans. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the hazards of toxic pulping and papermaking effluents to plant workers and the populace surrounding the plant. Biomonitoring studies, bioassay performance and reliability, cost factors of reducing toxicity, and effects of reducing toxicity on biological treatment of wastes are discussed. Evaluation of toxicity and mutagenicity of effluents within the plants compared with those discharged to the outside environment is included. Toxicity of pulping effluents to fish and water vegetation is covered in another bibliography. (Contains a minimum of 131 citations and includes a subject term index and title list.)

  14. Evaluation of the genotoxicity of waters impacted by domestic and industrial effluents of a highly industrialized region of São Paulo State, Brazil, by the comet assay in HTC cells.

    PubMed

    Manzano, Bárbara Cassu; Roberto, Matheus Mantuanelli; Hoshina, Márcia Miyuki; Menegário, Amauri Antônio; Marin-Morales, Maria Aparecida

    2015-01-01

    The problems that most affect the quality of the waters of rivers and lakes are associated with the discharges performed in these environments, mainly industrial and domestic effluents inappropriately treated or untreated. The comet assay is a sensitive tool and is recommended for studies of environmental biomonitoring, which aim to determine the genotoxicity potential of water pollutants. This study aimed to assess the genotoxic potential of the Ribeirão Tatu waters, region of Limeira, São Paulo (SP), by the comet assay with mammalian cells (hepatoma tissue culture (HTC)). Water samples were collected along the Ribeirão Tatu at three distinct periods: November 2008, February 2009 and August 2009, and five collection sites were established: P1, source of the stream; P2, site located downstream the urban perimeter of the municipality of Cordeirópolis and after receiving the pollution load of this city; P3, collection site located upstream the urban perimeter of the city of Limeira; P4, urban area of Limeira; and P5, rural area of Limeira, downstream the discharges of the city sewage. The results showed that for the November 2008 collection, there was no water sample-induced genotoxicity; for the February 2009 collection, the sites P1 and P2 were statistically significant in relation to the negative control (NC), and for the August 2009 collection, the site P5 was statistically significant. These results could be explained by the content of different metals during the different seasons that are under the influence of domestic, industrial and agricultural effluents and also due to the seasonality, since the water samples collected in the period of heavy rain (February 2009) presented a higher genotoxicity possibly due to the entrainment of contaminants into the bed of the stream promoted by the outflow of rainwaters. The comet assay showed to be a useful and sensitive tool in the evaluation of hydric resources impacted by pollutants of diverse origins, and a

  15. Dynamical modelling of an activated sludge system of a petrochemical plant operating at high temperatures.

    PubMed

    Maqueda, M A M; Martinez, Sergio A; Narváez, D; Rodriguez, Miriam G; Aguilar, Ricardo; Herrero, Victor M

    2006-01-01

    The Mexican petrochemical industry, Morelos S.A. de C.V., is one of the biggest and more important petroleum industries in Mexico and Latin America. It has an activated sludge system to treat its wastewater flow, which is approximately 7,000 m3/d. The wastewater contains volatile organic carbon substances classified as toxics. The old surface aeration system was changed for fine bubble diffusers; however, one major drawback of the new aeration system is that the temperature in the bioreactor has increased due to the compression of the air, which at the compressor exit reaches 85 degrees C. This effect results in the temperature in the bioreactor attaining 32 degrees C during the fall, whereas in the spring and summer, the bioreactor temperature reaches higher values than 40 degrees C. The high temperatures reduce the microorganism activity and cause a higher volatilisation rate of volatile compounds, among other effects, which affect the performance of the biological treatment. This work was performed to obtain a better modelling of the wastewater treatment from the petrochemical industry. The model describes the effect of the temperature on the performance of the biological treatment. The model was obtained from tests that were carried out in laboratory reactors with 14 L capacity, which were operated at different temperatures (from 30 to 45 degrees C), with the same wastewater and conditions as the actual system. PMID:16862783

  16. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    PubMed

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully. PMID:17143595

  17. iWitness pollution map: crowdsourcing petrochemical accident research.

    PubMed

    Bera, Risha; Hrybyk, Anna

    2013-01-01

    Community members living near any one of Louisiana's 160 chemical plants or refineries have always said that accidents occurring in these petrochemical facilities significantly impact their health and safety. This article reviews the iWitness Pollution Map tool and Rapid Response Team (RRT) approach led by the Louisiana Bucket Brigade, an environmental nonprofit group, and their effectiveness in documenting these health and safety impacts during petrochemical accidents. Analysis of a January 2013 RRT deployment in Chalmette, LA, showed increased documentation of current petrochemical accidents and suggested increased preparedness to report future accidents. The RRT model encourages government response and enforcement agencies to integrate with organized community groups to fully document the impacts during ongoing accidents, lead a more timely response to the accident, and prevent future accidents from occurring. PMID:24135064

  18. [Main results of scientific researches in oil industry].

    PubMed

    Bakirov, A B; Gimranova, G G

    2009-01-01

    Clinical and hygienic research was carried out in major oil extracting, oil processing and petrochemical enterpirses. Complex of industrial hazards results in occupational diseases of mild and medium severity, in increase of occupationally mediated diseases. The article covers sanitary and epidemiologic evaluation of oil processing and petrochemical products, technical documentation certificates for these products are obtained. PMID:20099388

  19. Synergize fuel and petrochemical processing plans with catalytic reforming

    SciTech Connect

    1997-03-01

    Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

  20. Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor.

    PubMed

    Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura

    2016-01-01

    Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ. PMID:26419746

  1. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. PMID:24881546

  2. Ionic imbalance as a source of toxicity in an estuarine effluent.

    PubMed

    Douglas, W S; Grasso, S S; Hutton, D G; Schroeder, K R

    1996-10-01

    A toxicity identification evaluation (TIE) was conducted on the effluent from a petrochemical plant which discharges into an estuary. The effluent had been consistently toxic to mysid shrimp (Mysidopsis bahia) but not toxic to sheepshead minnows (Cyprinodon variegatus). Phase I effluent toxicity characterization tests revealed that treatment of the effluent with a cation exchange resin (Amberlite(R) IR-120 Plus) was partially effective at reducing, but not removing, toxicity. Phase II characterization tests revealed that four cations varied with toxicity: Ca and Sn were positively correlated with increasing toxicity; Mg and K were negatively correlated with increasing toxicity. Toxicity tests with SnCl2 revealed that the toxicity threshold for Sn was far above the concentrations present in the raw effluent. Reduction of Ca was shown to result in a significant improvement in survival, but some toxicity still remained. Further augmentation of the treated effluent with CaCl2, MgCl2, and KBr to restore the concentrations of Ca, Mg, K, and Br to natural seawater concentrations resulted in survival of all exposed organisms. Repeated success of this treatment regime on additional samples of the effluent as well as "mock effluent" studies confirmed that ion imbalance was the sole source of toxicity in this effluent. Process source water composition and essential ion balance are discussed as important components of marine effluent TIEs. PMID:8854838

  3. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria.

    PubMed

    Shehzadi, Maryam; Afzal, Muhammad; Khan, Muhammad Umar; Islam, Ejazul; Mobin, Amina; Anwar, Samina; Khan, Qaiser Mahmood

    2014-07-01

    Textile effluent is one of the main contributors of water pollution and it adversely affects fauna and flora. Constructed wetland is a promising approach to remediate the industrial effluent. The detoxification of industrial effluent in a constructed wetland system may be enhanced by applying beneficial bacteria that are able to degrade contaminants present in industrial effluent. The aim of this study was to evaluate the influence of inoculation of textile effluent-degrading endophytic bacteria on the detoxification of textile effluent in a vertical flow constructed wetland reactor. A wetland plant, Typha domingensis, was vegetated in reactor and inoculated with two endophytic bacterial strains, Microbacterium arborescens TYSI04 and Bacillus pumilus PIRI30. These strains possessed textile effluent-degrading and plant growth-promoting activities. Results indicated that bacterial inoculation improved plant growth, textile effluent degradation and mutagenicity reduction and were correlated with the population of textile effluent-degrading bacteria in the rhizosphere and endosphere of T. domingensis. Bacterial inoculation enhanced textile effluent-degrading bacterial population in rhizosphere, root and shoot of T. domingensis. Significant reductions in COD (79%), BOD (77%) TDS (59%) and TSS (27%) were observed by the combined use of plants and bacteria within 72 h. The resultant effluent meets the wastewater discharge standards of Pakistan and can be discharged into the environment without any risks. This study revealed that the combined use of plant and endophytic bacteria is one of the approaches to enhance textile effluent degradation in a constructed wetland system. PMID:24755300

  4. CO{sub 2} Reuse in Petrochemical Facilities

    SciTech Connect

    Jason Trembly; Brian Turk; Maruthi Pavani; Jon McCarty; Chris Boggs; Aqil Jamal; Raghubir Gupta

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals and fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that

  5. Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry.

    PubMed

    Bahari, Ismail; Mohsen, Nasirian; Abdullah, Pauzi

    2007-01-01

    The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use. PMID:17428589

  6. The Mexican petrochemical sector in the NAFTA negotiations

    SciTech Connect

    Kessel, G.; Kim, C.S.

    1993-12-31

    Since 1985, there have been important changes in the Mexican petrochemical sector, including trade liberalization, deregulation and the elimination of subsidies. NAFTA represents another step towards liberalization of the sector. Given the low tariffs currently applied to international trade among the three nations, the authors do not anticipate major impacts of NAFTA on trade flows. Nevertheless, the elimination of restrictions to foreign investment is expected to increase capital flows into the sector and to promote productivity increases. On the other hand, the new barriers to trade in petrochemical feedstocks and the restrictions on private investment in infrastructure may negatively affect the sector`s growth, making it necessary to adjust domestic regulations to improve the performance of Pemex. 12 refs., 4 tabs.

  7. The U.S. Chemical Industry, the Raw Materials It Uses

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The raw materials used by the industry are considered in this section of the annual chemical industry report, including data covering: natural gas, lead, mercury, phosphate rock, potash, salt, petroleum products including petrochemical feedstocks. (PR)

  8. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    PubMed

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed. PMID:22576841

  9. Carbohydrate-mediated purification of petrochemicals.

    PubMed

    Holcroft, James M; Hartlieb, Karel J; Moghadam, Peyman Z; Bell, Jon G; Barin, Gokhan; Ferris, Daniel P; Bloch, Eric D; Algaradah, Mohammed M; Nassar, Majed S; Botros, Youssry Y; Thomas, K Mark; Long, Jeffrey R; Snurr, Randall Q; Stoddart, J Fraser

    2015-05-01

    Metal-organic frameworks (MOFs) are known to facilitate energy-efficient separations of important industrial chemical feedstocks. Here, we report how a class of green MOFs-namely CD-MOFs-exhibits high shape selectivity toward aromatic hydrocarbons. CD-MOFs, which consist of an extended porous network of γ-cyclodextrins (γ-CDs) and alkali metal cations, can separate a wide range of benzenoid compounds as a result of their relative orientation and packing within the transverse channels formed from linking (γ-CD)6 body-centered cuboids in three dimensions. Adsorption isotherms and liquid-phase chromatographic measurements indicate a retention order of ortho- > meta- > para-xylene. The persistence of this regioselectivity is also observed during the liquid-phase chromatography of the ethyltoluene and cymene regioisomers. In addition, molecular shape-sorting within CD-MOFs facilitates the separation of the industrially relevant BTEX (benzene, toluene, ethylbenzene, and xylene isomers) mixture. The high resolution and large separation factors exhibited by CD-MOFs for benzene and these alkylaromatics provide an efficient, reliable, and green alternative to current isolation protocols. Furthermore, the isolation of the regioisomers of (i) ethyltoluene and (ii) cymene, together with the purification of (iii) cumene from its major impurities (benzene, n-propylbenzene, and diisopropylbenzene) highlight the specificity of the shape selectivity exhibited by CD-MOFs. Grand canonical Monte Carlo simulations and single component static vapor adsorption isotherms and kinetics reveal the origin of the shape selectivity and provide insight into the capability of CD-MOFs to serve as versatile separation platforms derived from renewable sources. PMID:25806952

  10. LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters.

    PubMed

    Loos, Robert; Hanke, Georg; Umlauf, Gunther; Eisenreich, Steven J

    2007-01-01

    Alkylphenols (APs), alkylphenol ethoxylates (APEOs), ethoxycarboxylate metabolites (APECs) and bisphenol A were determined in surface water using solid-phase extraction (SPE) followed by triple-quadrupole LC-MS-MS. APs were separated by LC from APECs using an acetonitrile-water-gradient without the addition of any buffer. Nonylphenol ethoxycarboxylates (NPECs) interfere in the detection of nonylphenols (NPs) when using an acidic mobile phase, because they produce the same MS-MS fragment ions (219>133 and 147). 4n-NP shows the characteristic transition 219>106; it is well suited as internal standard. Nonylphenol ethoxylates NPE(n)Os (n=1-17) were analysed separately in a second run by positive ionization using an ammonium acetate mobile phase. Textile industry discharges, the corresponding wastewater treatment plant (WWTP) effluents and the receiving rivers in Belgium and Italy were analysed. Among the substances investigated, NPE1C and NPE2O exhibited the highest concentrations in the water samples, up to 4.5 microg l(-1) NPE1C in a WWTP effluent and 3.6 microg l(-1) NPE2O in a river. The highest NP levels were found in the receiving rivers (max. 2.5 microg l(-1)). The predicted no-effect concentration (PNEC) for NP of 0.33 microg l(-1) for water species was frequently exceeded in the surface waters investigated, suggesting potential adverse effects to the aquatic environment. PMID:16949635

  11. Industrial Fuel Flexibility Workshop

    SciTech Connect

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  12. Health planning for remote petrochemical field operations

    SciTech Connect

    Krieger, G.R.; Balge, M.Z.

    1995-12-31

    Occupational/Public Health Services are becoming increasingly required in projects that involve the extended presence of expatriates in remote underdeveloped areas of the world. These ``expats`` are defined as individuals living and working in the environment who are not indigenous to the area. Under this definition, workers who are resistant to a ``local`` strain of malaria and then relocate to another geographic within the same country can also be considered as ``biologic expatriates`` since their resistance profile for certain tropical diseases is not reflective of their new environment. Unlike a major infrastructure project in the industrialized world, project planners in remote areas of the developing world should be expected to make significant long term medical and environmental commitments. US companies have extensive experience in the business of large-scale development projects, e.g. oil and gas pipelines and well field development; however, these projects represent major long-term in-country commitments with potentially large labor forces and substantial and sustained impacts on local health and safety resources. The initial structuring of health and safety programs will, therefore, have long-term ramifications on the project both during construction and ``routine`` operations since the multi-national companies are increasingly expected to develop and maintain self-sustaining health, safety and environmental programs.

  13. Waste monitoring system for effluents

    SciTech Connect

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory`s Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system.

  14. Petrochemical types of kimberlites and their diamond-bearing capacity

    NASA Astrophysics Data System (ADS)

    Kostrovitsky, Sergey

    2010-05-01

    Kimberlite rocks of Yakutian province (belong to 1 group of kimberlites after Smith, 1983) are characterized by wide variations of rock-forming oxides [Ilupin et al., 1986; Milashev, 1965; Kharkiv et al., 1991]. A number of factors could be discussed to explain the variety of chemical compositions of rocks. The first factor, explaining the regional differences in the kimberlite composition with primarily different composition of source kimberlite melt-fluid, is conventionally called «primary». All other factors are connected with the secondary redistribution of chemical components of kimberlites. Irrespective of intensity of secondary factors, the primary composition of kimberlites varies broadly, which is noticeable in kimberlites of some provinces, kimberlites fields, pipe clusters and individual pipes. The petrochemical types are classified based on the contents of such oxides as FeO, TiO2 and K2O, being relatively inert in the secondary processes. In the Yakutian Province we have distinguished 5 petrochemical types of kimberlites (Kostrovitsky et al, 2007); with principal ones - high-Mg, magnesium-ferruginous (Mg-Fe) and ferruginous-titaniferous, their composition: < 6; 6-9; 8-15 % FeOtotal and < 1; 1-2.5; 1.5-5.0 % TiO2). Some petrochemical and mineralogical criteria of diamond-bearing capacity of kimberlites were identified some time before. The essence of petrochemical criterion consists of the inverse correlation dependence between the contents FeOtotal, TiO2 in kimberlite rocks and their diamond-bearing capacity (Milashev, 1965; Krivonos, 1998). The mineralogical criteria of diamond-bearing capacity infer presence of direct dependence of the rate of capacity on the content in kimberlites of low-Ca, high-Cr garnet and chrome spinellids with Cr2O3 > 62% and TiO2 < 0.5%, of dunite-harzburgite paragenesis (Sobolev, 1974; Meyer, 1968). The acquired results are applied to evaluate «efficiency» of criteria of diamond-bearing capacity exemplified by the

  15. TOXICITY TESTS OF EFFLUENTS WITH MARSH PLANTS IN WATER AND SEDIMENT

    EPA Science Inventory

    Methods are described for toxicity testing of water and sediment with the rooted marsh plants, Echinochloa crusgalli var. crusgalli and var. zelavensis (freshwater) and Spartina alterniflora (estuarine). ive industrial effluents, a sewage treatment plant effluent and a herbicide ...

  16. The use of lidar as optical remote sensors in the assessment of air quality near oil refineries and petrochemical sites

    NASA Astrophysics Data System (ADS)

    Steffens, Juliana; Landulfo, Eduardo; Guardani, Roberto; Oller do Nascimento, Cláudio A.; Moreira, Andréia

    2008-10-01

    Petrochemical and oil refining facilities play an increasingly important role in the industrial context. The corresponding need for monitoring emissions from these facilities as well as in their neighborhood has raised in importance, leading to the present tendency of creating real time data acquisition and analysis systems. The use of LIDAR-based techniques, both for air quality and emissions monitoring purposes is currently being developed for the area of Cubatao, Sao Paulo, one of the largest petrochemical and industrial sites in Brazil. In a partnership with the University of SÃ#o Paulo (USP) the Brazilian oil company PETROBRAS has implemented an Environmental Research Center - CEPEMA - located in the industrial site, in which the development of fieldwork will be carried out. The current joint R&D project focuses on the development of a real time acquisition system, together with automated multicomponent chemical analysis. Additionally, fugitive emissions from oil processing and storage sites will be measured, together with the main greenhouse gases (CO2, CH4), and aerosols. Our first effort is to assess the potential chemical species coming out of an oil refinery site and to verify which LIDAR technique, DIAL, Raman, fluorescence would be most efficient in detecting and quantifying the specific atmospheric emissions.

  17. Octadecyl bonded silica membrane disk modified with Cyanex302 for separation and flame atomic absorption spectrometric determination of nickel from tap water and industrial effluent.

    PubMed

    Karve, Manjusha; Rajgor, Reeta V

    2009-07-15

    A simple and reliable method based upon impregnation of Cyanex302 on octadecyl bonded silica membrane disk has been developed for separation and atomic absorption spectrometric determination of nickel. The influence of various parameters like aqueous phase pH, flow rate and volume of eluent were investigated systematically to optimize the conditions for quantitative sorption and desorption of nickel. The break through volume for nickel was greater than 1.0 dm(3), enrichment factor more than 100 and a detection limit of 2.1 microg dm(-3) was achieved. The method applied for detection of nickel in tap water and effluent sample had a relative standard deviation (R.S.D.) of 0.4%. PMID:19124200

  18. Facility effluent monitoring

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  19. Considerations for Planning a Monitoring Campaign at Petrochemical Complexes: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Cuclis, A.

    2010-12-01

    An air quality monitoring campaign was developed for the late spring of 2009 near Houston area petrochemical facilities. The focus of the field campaign was to measure free radicals that contribute to the formation of ozone, however refinery and chemical plants monitored are also emitters of many different volatile organic compounds (vocs) and hazardous air pollutants (haps). The Houston area is home to the largest aggregation of petrochemical facilities in the U.S. Three specific geographical areas with industrial facilities were considered: Mont Belvieu, the Houston Ship Channel and the Texas City Industrial Complex. Previous experiences with field campaigns in the area led to the presumption that there would be little if any access inside the facilities. Considerations for which areas to focus on included: how close could the facility be approached, what were the directions of the prevailing winds, what kind of barriers to measurement existed (e.g. trees, buildings, highways, privately owned land, etc.), and what were the possible chemical interferences from other sources near the measurement sites? Close communications with the plant security, the local police, the Federal Bureau of Investigations (FBI), Homeland Security, the Federal Aviation Administration (FAA), and the Texas Commission on Environmental Quality (TCEQ) were required. Substantial delays can occur due to local concerns regarding homeland security and plant safety. Also, a system of communications is essential to coordinate the participating scientists operating stationary analyzers with the scientists who have analyzers mounted in ground vehicles and in aircraft. The researchers were provided with information regarding plant operations, types of equipment and potential pollutants. A wide variety of stationery and mobile ambient air monitoring techniques were used to measure formaldehyde and other volatile organic compounds. In order to identify likely formaldehyde sources the self

  20. Job strain (demands and control model) as a predictor of cardiovascular risk factors among petrochemical personnel

    PubMed Central

    Habibi, Ehsanollah; Poorabdian, Siamak; Shakerian, Mahnaz

    2015-01-01

    Background: One of the practical models for the assessment of stressful working conditions due to job strain is job demand and control model, which explains how physical and psychological adverse consequences, including cardiovascular risk factors can be established due to high work demands (the amount of workload, in addition to time limitations to complete that work) and low control of the worker on his/her work (lack of decision making) in the workplace. The aim of this study was to investigate how certain cardiovascular risk factors (including body mass index [BMI], heart rate, blood pressure, cholesterol and smoking) and the job demand and job control are related to each other. Materials and Methods: This prospective cohort study was conducted on 500 workers of the petrochemical industry in south of Iran, 2009. The study population was selected using simple random statistical method. They completed job demand and control questionnaire. The cardiovascular risk factors data was extracted from the workers hygiene profiles. Chi-square (χ2) test and hypothesis test (η) were used to assess the possible relationship between different quantified variables, individual demographic and cardiovascular risk factors. Results: The results of this study revealed that a significant relationship can be found between job demand control model and cardiovascular risk factors. Chi-square test result for the heart rate showed the highest (χ2 = 145.078) relationship, the corresponding results for smoking and BMI were χ2 = 85.652 and χ2 = 30.941, respectively. Subsequently, hypothesis testing results for cholesterol and hypertension was 0.469 and 0.684, respectively. Discussion: Job strain is likely to be associated with an increased risk of cardiovascular risk factors among male staff in a petrochemical company in Iran. The parameters illustrated in the Job demands and control model can act as acceptable predictors for the probability of job stress occurrence followed by showing

  1. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  2. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily

    NASA Astrophysics Data System (ADS)

    Manno, Emanuela; Varrica, Daniela; Dongarrà, Gaetano

    Eight samples of road dust were collected from three different localities (industrial, urban, peripheral) of the town of Gela (Italy) to characterize their chemical composition and to assess (a) the influence of the petrochemical plant and the urban traffic on the trace element content in different grain-size fractions of street dust and (b) the solid-phase speciation of the analysed metal using sequential extraction. The samples were sieved into six particle size ranges: 500-250, 250-125, 125-63, 63-40, 40-20 and <20 μm and then analysed for 15 trace elements by ICP-MS. Sequential extraction of metals was performed on each subsample. A principal component analysis was also carried out to define the possible origin of metals in dusts. A comparison was made between the trace metal concentrations in road dust and those in main local outcropping rocks. The obtained results, indicate, that the road dust samples contain non-soil-derived elements, whose primary contributors appear to be vehicular traffic and the nearby petrochemical plant. Traffic appears to be responsible for the high levels of Ba, Cu, Cr, Mo, Pb, Sb and Zn. High concentrations of Ni, V and, partly, Ba and Cr were associated with emissions from the petrochemical plant. With respect to the local background, Sb was the most highly enriched trace element in the road dusts. Results of sequential extraction analysis show that most metals are mainly distributed in the non-residual fractions and particularly in the organic/sulphide and Fe-Mn oxides fractions. They also point to superficial adsorption as an important transfer mechanism of trace metals from their sources to the environment.

  3. Technology transfer through a network of standard methods and recommended practices - The case of petrochemicals

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Karvounis, Sotirios

    2012-12-01

    Technology transfer may take place in parallel with cooperative action between companies participating in the same organizational scheme or using one another as subcontractor (outsourcing). In this case, cooperation should be realized by means of Standard Methods and Recommended Practices (SRPs) to achieve (i) quality of intermediate/final products according to specifications and (ii) industrial process control as required to guarantee such quality with minimum deviation (corresponding to maximum reliability) from preset mean values of representative quality parameters. This work deals with the design of the network of SRPs needed in each case for successful cooperation, implying also the corresponding technology transfer, effectuated through a methodological framework developed in the form of an algorithmic procedure with 20 activity stages and 8 decision nodes. The functionality of this methodology is proved by presenting the path leading from (and relating) a standard test method for toluene, as petrochemical feedstock in the toluene diisocyanate production, to the (6 generations distance upstream) performance evaluation of industrial process control systems (ie., from ASTM D5606 to BS EN 61003-1:2004 in the SRPs network).

  4. Using pollution roses to assess sulfur dioxide impacts in a township downwind of a petrochemical complex.

    PubMed

    Shie, Ruei-Hao; Yuan, Tzu-Hsuen; Chan, Chang-Chuan

    2013-06-01

    This study used pollution roses to assess sulfur dioxide (SO) pollution in a township downwind of a large petrochemical complex based on data collected from a single air quality monitoring station. The pollution roses summarized hourly SO2 concentrations at the Taishi air quality monitoring station, located approximately 7.8-13.0 km south of the No. 6 Naphtha Cracking Complex in Taiwan, according to 36 sectors of wind direction during the preoperational period (1995-1999) and two postoperational periods (2000-2004 and 2005-2009). The 99th percentile of hourly SO2 concentrations 350 degrees downwind from the complex increased from 28.9 ppb in the preoperational period to 86.2-324.2 ppb in the two postoperational periods. Downwind SO2 concentrations were particularly high during 2005-2009 at wind speeds of 6-8 m/sec. Hourly SO2 levels exceeded the US. Environmental Protection Agency (EPA) health-based standard of 75 ppb only in the postoperational periods, with 65 exceedances from 0-10 degrees and 330-350 degrees downwind directions during 2001-2009. This study concluded that pollution roses based on a single monitoring station can be used to investigate source contributions to air pollution surrounding industrial complexes, and that it is useful to combine such directional methods with analyses of how pollution varies between different wind speeds, times of day, and periods of industrial development. PMID:23858996

  5. A novel "wastes-treat-wastes" technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater.

    PubMed

    Chen, Chunmao; Yu, Ji; Yoza, Brandon A; Li, Qing X; Wang, Gang

    2015-04-01

    Catalytic ozonation is a promising wastewater treatment technology. However, the high cost of the catalyst hinders its application. A novel "wastes-treat-wastes" technology was developed to reuse spent fluid catalytic cracking catalysts (sFCCc) for the ozonation of petrochemical wastewater in this study. Multivalent vanadium (V(4+) and V(5+)), iron (Fe(2+) and Fe(3+)) and nickel (Ni(2+)) oxides that are distributed on the surface of sFCCc and poisoned FCC catalysts are the catalytic components for ozonation. The sFCCc assisted catalytic ozonation (sFCCc-O) of nitrobenzene indicated that the sFCCc significantly promoted hydroxyl radical mediated oxidation. The degradation rate constant of nitrobenzene in sFCCc-O (0.0794 min(-1) at 298 K) was approximately doubled in comparison with that in single ozonation (0.0362 min(-1) at 298 K). The sFCCc-O of petrochemical wastewater increased chemical oxygen demand removal efficiency by three-fold relative to single ozonation. The number of oxygen-containing (Ox) polar contaminants in the effluent (253) from sFCCc-O treatment decreased to about 70% of the initial wastewater (353). The increased oxygen/carbon atomic ratio and decreased number of Ox polar contaminants indicated a high degree of degradation. The present study showed the role and potential of sFCCc for catalytic ozonation of petrochemical wastewater, particularly in an advantage of the cost-effectiveness through "wastes-treat-wastes". PMID:25617869

  6. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  7. Assessing vanadium and arsenic exposure of people living near a petrochemical complex with two-stage dispersion models.

    PubMed

    Chio, Chia-Pin; Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chan, Chang-Chuan

    2014-04-30

    The goal of this study is to demonstrate that it is possible to construct a two-stage dispersion model empirically for the purpose of estimating air pollution levels in the vicinity of petrochemical plants. We studied oil refineries and coal-fired power plants in the No. 6 Naphtha Cracking Complex, an area of 2,603-ha situated on the central west coast of Taiwan. The pollutants targeted were vanadium (V) from oil refineries and arsenic (As) from coal-fired power plants. We applied a backward fitting method to determine emission rates of V and As, with 192 PM10 filters originally collected between 2009 and 2012. Our first-stage model estimated emission rates of V and As (median and 95% confidence intervals at 0.0202 (0.0040-0.1063) and 0.1368 (0.0398-0.4782) g/s, respectively. In our second stage model, the predicted zone-average concentrations showed a strong correlation with V, but a poor correlation with As. Our findings show that two-stage dispersion models are relatively precise for estimating V levels at residents' addresses near the petrochemical complex, but they did not work as well for As levels. In conclusion, our model-based approach can be widely used for modeling exposure to air pollution from industrial areas in countries with limited resources. PMID:24607528

  8. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    PubMed

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results. PMID:25236238

  9. Characterization of an Am-Be PGNAA set-up developed for in situ liquid analysis: Application to domestic waste water and industrial liquid effluents analysis

    NASA Astrophysics Data System (ADS)

    Idiri, Z.; Mazrou, H.; Amokrane, A.; Bedek, S.

    2010-01-01

    A prompt gamma neutron activation analysis (PGNAA) set-up with an Am-Be source developed for in situ analysis of liquid samples is described. The linearity of its response was tested for chlorine and cadmium dissolved in water. Prompt gamma efficiency of the system has been determined experimentally using prompt gamma of chlorine dissolved in water and detection limits for different elements have been derived for domestic waste water. A methodology to analyze any kind of liquid is then proposed. This methodology consists mainly on using standards with water as bulk or in the case of absolute method, to use gamma efficiency determined with prompt gammas emitted by chlorine dissolved in water. To take into account the thermal neutron flux variations inside the samples, flux monitoring was carried out using a He-3 neutron detector placed at the external sample container surface. Finally, to correct for the differences in gamma attenuation, average gamma attenuations factors were calculated using MCNP5 code. This method was then checked successfully by determining cadmium in industrial phosphoric acid and our result was in good agreement with that obtained with inductively coupled plasma (ICP) method.

  10. Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing

    EPA Science Inventory

    Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...

  11. Observations and Modeling of Ozone Photochemistry in Plumes from Petrochemical Facilities near Houston, TX.

    NASA Astrophysics Data System (ADS)

    Trainer, M.; Angevine, W.; Atlas, E.; Dissley, R.; Donnelly, S.; Fehsenfeld, F.; Flocke, F.; Fried, A.; Goldan, P.; Hansel, A.; Holloway, J.; Huebler, G.; Neuman, A.; Nicks, D.; Parrish, D.; Ryerson, T.; Schauffler, S.; Weinheimer, A.; Wert, B.; Wisthaler, A.

    2002-12-01

    Comprehensive airborne measurements of ozone and its precursors, as well as other secondary photochemical products were made during the Texas 2000 Air Quality Study in the plumes of power plants, petrochemical facilities and the Houston urban plume. These measurements indicate particularly rapid and efficient ozone formation as a result of the collocation of significant emissions of NOx and reactive alkenes (mainly ethene and propene) at some of the petrochemical facilities. In a two dimensional Lagrangian plume model the emission rates of NOx, as well as, ethene and propene were adjusted by comparison with the observations downwind from isolated petrochemical facilities. While adopted and reported NOx emission rates compare reasonably well for these facilities, the reported alkene emission rates are much lower than the observation based estimates. The model, using the observation based emission rates, reproduces the observed formation of ozone and other secondary products such as formaldehyde, acetaldehyde and the partitioning of the reactive nitrogen species well in the plumes of petrochemical facilities.

  12. Pulp and paper mill effluents: Toxicity to humans. February 1987-October 1989 (Citations from the Paper and Board, Printing, and Packaging Industries Research Associations data base). Report for February 1987-October 1989

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning the hazards of toxic pulping and papermaking effluents to people within the plants as well as outside. Biomonitoring studies, bioassay performance and reliability, cost factors of reducing toxicity, and effects of reducing toxicity on biological treatment of wastes are discussed. Evaluation of toxicity and mutagenicity of effluents within the plants compared to that which is discharged to the outside environment is included. Toxicity of pulping effluents to fish and water vegetation is covered in another bibliography. (This updated bibliography contains 140 citations, all of which are new entries to the previous edition.)

  13. Pulp and paper mill effluents: Toxicity to humans. January 1976-January 1987 (Citations from the Paper and Board, Printing, and Oackaging Industries Research Associations data base). Report for January 1976-January 1987

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning the hazards of toxic pulping and papermaking effluents to people within the plants as well as outside. Biomonitoring studies, bioassay performance and reliability, cost factors of reducing toxicity, and effects of reducing toxicity on biological treatment of wastes are discussed. Evaluation of toxicity and mutagenicity of effluents within the plants compared to that which is discharged to the outside environment is included. Toxicity of pulping effluents to fish and water vegetation is covered in another bibliography. (This updated bibliography contains 197 citations, none of which are new entries to the previous edition.)

  14. Pulp and paper mill effluents: Toxicity to humans. February 1987-March 1990 (A Bibliography from the Paper and Board, Printing, and Packaging Industries Research Associations data base). Report for February 1987-March 1990

    SciTech Connect

    Not Available

    1990-05-01

    This bibliography contains citations concerning the hazards of toxic pulping and papermaking effluents to plant workers and the populace surrounding the plant. Biomonitoring studies, bioassay performance and reliability, cost factors of reducing toxicity, and effects of reducing toxicity on biological treatment of wastes are discussed. Evaluation of toxicity and mutagenicity of effluents within the plants compared with those discharged to the outside environment is included. Toxicity of pulping effluents to fish and water vegetation is covered in another bibliography. (This updated bibliography contains 120 citations, 22 of which are new entries to the previous edition.)

  15. Nuclear reactor effluent monitoring

    SciTech Connect

    Minns, J.L.; Essig, T.H.

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  16. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    PubMed

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well. PMID:21870885

  17. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study. PMID:23109595

  18. NATIONAL WWTP EFFLUENT STUDY

    EPA Science Inventory

    Reports of potential wildlife risk from exposure to environmental estrogens emphasize the need to better understand both estrogenic presence and persistence in treated wastewater effluents. In addition to wildlife exposure, human exposure should also be examined, especially in si...

  19. GEOTHERMAL EFFLUENT SAMPLING WORKSHOP

    EPA Science Inventory

    This report outlines the major recommendations resulting from a workshop to identify gaps in existing geothermal effluent sampling methodologies, define needed research to fill those gaps, and recommend strategies to lead to a standardized sampling methodology.

  20. Lidar Measurements of Industrial Benzene Emissions

    NASA Astrophysics Data System (ADS)

    Berkhout, A. J. C.; van der Hoff, G. R.; Gast, L. F. L.

    2016-06-01

    The ability to measure benzene concentrations was added to the RIVM mobile DIAL system. In a ten-days campaign, it was used to measure benzene emissions in the Rijnmond, a heavily industrialised area in the South-west of the Netherlands with petrochemical industry, petrochemical products storage and the port of Rotterdam. On two of the ten days, benzene emissions were found. Combined with measurements of wind speed and wind direction, the Lidar measurements indicated the possible origins of these emissions. This makes the Lidar a valuable tool, augmenting the data collected at fixed monitoring stations.

  1. ACTIVATED CARBON TREATMENT OF INDUSTRIAL WASTEWATERS: SELECTED TECHNICAL PAPERS

    EPA Science Inventory

    Because of the tremendous interest in the organic constituent removal by activated carbon, the two industrial categories displaying the most interest are the petroleum refining and petrochemical industries. EPA's Office of Research and Development has co-sponsored two technical s...

  2. Effluent guidelines, leather tanning, and pollution prevention: A retrospective study

    SciTech Connect

    1995-06-01

    This study was undertaken to learn: in what ways and for what reasons a specific industry in the past already was implementing pollution in order to comply with existing effuent guidelines and to what degree the effluent guidelines development document for that industry had already previously projected that outcome.

  3. Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China.

    PubMed

    Li, Junhui; Lu, Ying; Yin, Wei; Gan, Haihua; Zhang, Chao; Deng, Xianglian; Lian, Jin

    2009-06-01

    The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products. PMID:18600466

  4. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence.

    PubMed

    Lemos, Andréia Torres; Lemos, Clarice Torres de; Flores, Andressa Negreiros; Pantoja, Eduarda Ozório; Rocha, Jocelita Aparecida Vaz; Vargas, Vera Maria Ferrão

    2016-09-01

    The effects of fine inhalable particles (PM2.5) were evaluated in an area under the influence of a petrochemical industry, investigating the sensitivity of different genotoxicity biomarkers. Organic extracts were obtained from PM2.5 samples at two sites, positioned in the first and second preferential wind direction in the area. The extracts were evaluated with Salmonella/microsome assay, microsuspension method, strains TA98, YG1021 and YG1024. The mammalian metabolization fraction (S9) was used to evaluate metabolite mutagenicity. The Comet Assay (CA) and Micronuclei Test were used in a Chinese hamster lung cell line (V79). All extracts showed mutagenicity in Salmonella, and nitrogenated compounds were strongly present. Genotoxicity were found in CA in almost all extracts and the micronuclei induction at the Site in the first (Autumn 1, Winter 1), and in the second (Spring 2) wind direction. V79 showed cytotoxicity in all samples. The three biomarkers were concordant in characterization Site NO with worse quality, compatible with the greater pollutants dispersion in the first wind direction. All PM2.5 concentrations were lower than those recommended by air quality standards but genotoxic effects were detected in all samples, corroborating that these standards are inadequate as quality indicators. The Salmonella/microsome assay proved sensitive to PM2.5 mutagenicity, with an outstanding influence of nitroarenes and aromatic amines. Analyses using CA and the micronucleus test broadened the levels of response that involve different damage induction mechanisms. Results show that the complex PM2.5 composition can provoke various genotoxic effects and the use of different bioassays is essential to understand its effects. PMID:27343868

  5. Data on greenhouse gases emission in condensate separation unit of a petrochemical company in Iran.

    PubMed

    Ahmadi, Mehdi; Dastorian, Mehrshad; Jafarzadeh, Nemat; Jorfi, Sahand; Ramavandi, Bahman

    2016-09-01

    Since global warming due to greenhouse gas emissions is no respecter of geographical boundaries of countries, concerted mitigation activities such as Clean Development Mechanism (CDM), are suitable. In this mechanism, some developed countries can gain certified emission reduction credits from emission reduction actions undertaken in developing countries. Thus, the data of greenhouse gas emissions in developing countries would be informative for implementing of CDM. Herein, the data of greenhouse gas emissions of Bandar Imam Petrochemical Complex, one of the biggest petrochemical companies in the Middle East region is presented. The data was acquired using emission factor method and self-presented raw information of the Bandar Imam Petrochemical Complex. Overall, the data will be interesting for environmentalists, non-governmental organization (NGO), and developed countries to perform CDM. PMID:27500190

  6. Optimization of a biological wastewater treatment process at a petrochemical plant using process simulation

    SciTech Connect

    Jones, R.M.; Dold, P.L.; Baker, A.J.; Briggs, T.

    1996-12-31

    A research study was conducted on the activated sludge process treating the wastewater from a petrochemical manufacturing facility in Ontario, Canada. The objective of the study was to improve the level of understanding of the process and to evaluate the use of model-based simulation tools as an aid in the optimization of the wastewater treatment facility. Models such as the IAWQ Activated Sludge Model No. 1 (ASM1) have previously been developed and applied to assist in designing new systems and to assist in the optimization of existing systems for the treatment of municipal wastewaters, However, due to significant differences between the characteristics of the petrochemical plant wastewater and municipal wastewaters, this study required the development of a mechanistic model specifically to describe the behavior of the activated sludge treatment of the petrochemical wastewater. This paper outlines the development of the mechanistic model and gives examples of how plant performance issues were investigated through process simulation.

  7. Biotreatment of chromium (VI) effluents

    SciTech Connect

    Tavares, T.; Neto, P.; Martins, C.

    1995-12-31

    The presence of heavy metals in industrial wastewaters is still a serious problem for some local small and medium size industries. Particularly electroplating and tanneries produce highly concentrated chromium effluents, which are treated by traditional physico-chemical processes. Those are able to reduce the total chromium concentration from some hundreds of mg.l{sup {minus}1} to very low concentrations, but the allowable final value of 0.1 mg.l{sup {minus}1} is hardly obtained as the referred processes become too costly for those small and medium size industries. The aim of these studies is the definition of an efficient system, economically attractive and friendly to the environment, based on the ability of some microorganisms to concentrate heavy metals. This system would be used as a final treatment step to remove low concentrations of hexavalent chromium. Three different bacteria were used in batch systems to evaluate their resistance to Cr(VI) and their ability to reduce it to the trivalent form. The results were compared with those obtained with microorganisms isolated from sludge of treatment plants receiving wastewater loaded with chromium. One of those bacteria was supported on granular activated carbon and the biofilm was optimized in terms of adhesion and removal efficiency. The chromium adsorption capacity of the support was also studied as albeit it is known that adsorption is not used for heavy metals removal, granular activated carbon is an excellent immobilization support for the biofilm and certainly has some responsibility on the chromium fixation process.

  8. Modeling of Flow and Water Quality Processes with Finite Volume Method due to Spreading and Dispersion of Petrochemical Pollution in the Hydro-Environments

    NASA Astrophysics Data System (ADS)

    Sarhadi Zadeh, Ehsan; Hejazi, Kourosh

    2009-11-01

    Having two water frontiers, namely (everlasting) Persian Gulf and Oman Sea in the south and Caspian Sea in the north, intense dependence on extracting and exporting oil, especially via marine fleets and ever-increasing development of petrochemical industry, Iran is exposed to severe environmental damages caused by oil and petrochemical industries. This essay investigates how oil spill is diffused and its environmental pollution is spread. The movement of oil spill, and its diffusion in water and its effects on water and the environment has been simulated by developing a Depth-Averaged numerical model and using the Finite Volume method. The existing models are not efficient enough to fulfill current modeling needs. The developed model uses the parameters useful in the advection and diffusion of oil pollutions in a model appropriate for predicting the transport of oil spill. Since the Navier-Stokes Equations play an important role in the advection and diffusion of oil pollutions, it is highly important to choose an appropriate numerical method in the advection and diffusion section. In this essay, choosing the methods used in the advection and diffusion have been emphasized and highly-accurate algorithms has been used in the advection terms. These algorithms are not present in similar models. The resulting equations have been solved using the ADI method. This method solves the unknown parameters with solving a Penta-Diagonal matrix in each time step. It does so without sacrificing the desired precision.

  9. A Conceptual Analysis of the Economic Effects of an Effluent Charge on an Industry--An Exemplary Environmental Problem-Solving and Policy Development Aid Designed for Instructional Purposes.

    ERIC Educational Resources Information Center

    Horn, B. Ray

    This paper is addressed to the student already familiar with basic economic terms and concepts. It analyzes some existing policy alternatives by which sociopolitical units can attempt to modify environmental behavior. The primary objective of the paper is to construct a theoretical model of probabilistic effects that an effluent charge has on an…

  10. Substance abuse in the refining industry

    SciTech Connect

    Little, A. Jr. ); Ross, J.K. ); Lavorerio, R. ); Richards, T.A. )

    1989-01-01

    In order to provide some background for the NPRA Annual Meeting Management Session panel discussion on Substance Abuse in the Refining and Petrochemical Industries, NPRA distributed a questionnaire to member companies requesting information regarding the status of their individual substance abuse policies. The questionnaire was designed to identify general trends in the industry. The aggregate responses to the survey are summarized in this paper, as background for the Substance Abuse panel discussions.

  11. The effluent-free process: A case history

    SciTech Connect

    Arean, B.J.

    1995-12-31

    The tightening of environmental regulations world-wide is causing the petroleum refining industry to rethink its processing options. New approaches are being implemented both for production of cleaner petroleum products, and for the generation and handling of waste effluents. A large portion of refinery effluent is spent caustic. Because spent caustic is a hazardous waste, its disposal is difficult and expensive for the refiner. The UOP Merox process is the refining industry standard for mercaptan control in gasoline and kerosine. However, it can be a generator of spent caustic waste. During the 30 year commercial lifetime of this process, UOP has made step-wise improvements that have led to the complete elimination of spent caustic effluent. Changes made in the catalyst system and process conditions led to a new process whose characteristics are in line with the needs of an environmentally aware refining industry.

  12. Assessment of the levels of urinary 1-hydroxypyrene and air polycyclic aromatic hydrocarbon in PM2.5 for adult exposure to the petrochemical complex emissions.

    PubMed

    Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chin, Yu-Yen; Chan, Chang-Chuan

    2015-01-01

    The relationship between external exposure and internal doses of polycyclic aromatic hydrocarbons (PAHs) has not been established for people living in industrial areas. This study was carried out to estimate the relationship between particle-phase PAH exposure and urinary 1-hydroxypyrene (1-OHP) levels among the adults living near a large petrochemical complex in Mailiao, Taiwan. We measured urinary 1-OHP in 781 residents above 35 years old and PM2.5 PAHs within a 20-km radius downwind from the petrochemical complex. Urinary 1-OHP was analyzed by high performance liquid chromatography, while 16 ambient particle-phase PAHs were measured by gas chromatography mass spectrometry. External exposures to individual PAHs at each study subject's address were estimated by kriging interpolation from air sampling results and regressed against the subjects' urinary 1-OHP levels, adjusting for confounding factors. The study population's urinary 1-OHP levels ranged from 0.001 to 3.005 μmol/mol-creatinine with significantly higher levels for females, grilled food consumers, and residents living close to roads. All 16 particle-phase PAHs were present in the study area with total PAH concentrations ranging from 0.111 to 1.982 ng/m(3). The spatial distribution of 4- and 5-ring PAHs identified high-concentration hotspots close to the complex in Mailiao. The multiple regression models showed that the adults' urinary 1-OHP levels were significantly correlated with 5 out of the 16 PAHs, including benzo[a]anthracene, benzo[k]fluoranthene, fluoranthene, pyrene, and dibenzo[a,h]anthracene; a 0.01 ng/m(3) increase in the concentration of these 5 PAHs at the study subjects' addresses was associated with a 20% elevation in urinary 1-OHP levels (μg/g-creatinine). Emissions from a petrochemical complex can elevate particle-phase PAH concentrations in surrounding areas and increase the urinary 1-OHP levels of adults living nearby. PMID:25460640

  13. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  14. Mortality among maintenance employees potentially exposed to asbestos in a refinery and petrochemical plant.

    PubMed

    Tsai, S P; Waddell, L C; Gilstrap, E L; Ransdell, J D; Ross, C E

    1996-01-01

    This paper reports the mortality experience from 1948 to 1989 of 2,504 maintenance employees who had a minimum of one year of employment in jobs with potential exposure to asbestos at a Texas refinery and petrochemical plant. For the purposes of this study, "potential exposure" is equated with those jobs or crafts having the greatest direct potential proximity to, or which worked directly with, asbestos-containing materials, especially asbestos-containing thermal insulation. Approximately one-half of the study population had 10 years or longer potential exposure, and 80% had their first potential exposure before 1970. The total population exhibited significantly lower mortality for all causes, the standardized mortality ratio (SMR = 77); and for all cancer (SMR = 85), as compared to residents in the surrounding communities. Statistically significant deficits in mortality were also observed in a number of noncancerous diseases such as heart disease (SMR = 78; 95% CI = 69-88), nonmalignant respiratory disease (SMR = 70; 95% CI = 50-95), and cirrhosis of the liver (SMR = 44; 95% CI = 22-79). Mortality among employees who had 20 years or longer since their first potential exposure was also examined; the pattern of mortality was similar to that exhibited by the total cohort, with a slight increase in the SMR for most of the causes. The only statistically significant excess of mortality found was a fourfold increase in mesothelioma (5 observed and 1.2 expected deaths) the SMR was 428 (95% CI = 139-996) for the total cohort and was 469 (95% CI = 152-1093) for those who had 20 years or more since first potential exposure. In contrast to asbestos industry worker studies, mortality for lung cancer was substantially lower than the general population (SMR = 81; 95% CI = 63-103). The observed number of deaths for cancer of the larynx was virtually the same as expected (3 observed vs. 2.8 expected). This study also showed decreased mortality for cancers of gastrointestinal

  15. Silage effluent management: a review.

    PubMed

    Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D

    2014-10-01

    Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of

  16. Gene expression of fathead minnows (Pimephales promelas) exposed to two types of treated municipal wastewater effluents.

    PubMed

    Vidal-Dorsch, Doris E; Colli-Dula, R Cristina; Bay, Steven M; Greenstein, Darrin J; Wiborg, Lan; Petschauer, Dawn; Denslow, Nancy D

    2013-10-01

    Contaminants of emerging concern (CECs) in treated municipal effluents have the potential to adversely impact exposed organisms prompting elevated public concern. Using transcriptomic tools, we investigated changes in gene expression and cellular pathways in the liver of male fathead minnows (Pimephales promelas) exposed to 5% concentrations of full secondary-treated (HTP) or advanced primary-treated (PL) municipal wastewater effluents containing CECs. Gene expression changes were associated with apical end points (plasma vitellogenin and changes in secondary sexual characteristics). Of 32 effluent CECs analyzed, 28 were detected including pharmaceuticals, personal care products, hormones, and industrial compounds. Exposure to both effluents produced significantly higher levels of plasma VTG and changes in secondary sexual characteristics (e.g., ovipositor development). Transcript patterns differed between effluents, with <10% agreement in the detected response (e.g., altered production of transcripts involved in xenobiotic detoxification, oxidative stress, and apoptosis were observed following exposure to both effluents). Exposure to PL effluent caused changes in transcription of genes involved in metabolic pathways (e.g., lipid transport and steroid metabolism). Exposure to HTP effluent affected transcripts involved in signaling pathways (e.g., focal adhesion assembly and extracellular matrix). The results suggest a potential association between some transcriptomic changes and physiological responses following effluent exposure. This study identified responses in pathways not previously implicated in exposure to complex chemical mixtures containing CECs, which are consistent with effluent exposure (e.g., oxidative stress) in addition to other pathway responses specific to the effluent type. PMID:23919544

  17. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  18. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs.

    PubMed

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W C; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  19. Advancements in NDE for utilities and the petrochemical industry through electromagnetic acoustic transducers (EMATs)

    NASA Astrophysics Data System (ADS)

    Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.

    1998-03-01

    The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.

  20. NMR shielding and a thermodynamic study of the effect of environmental exposure to petrochemical solvent on DPPC, an important component of lung surfactant

    NASA Astrophysics Data System (ADS)

    Monajjemi, M.; Afsharnezhad, S.; Jaafari, M. R.; Abdolahi, T.; Nikosade, A.; Monajemi, H.

    2007-12-01

    The chemical and petrochemical industries are the major air polluters. Millions of workers are exposed to toxic chemicals on the job, and it is becoming more toxic, causing much damage to respiratory system, today. One of the main components of lung alveoli is a surfactant. DPPC (Dipalmitolphosphatidylcholine) is the predominant lipid component in the lung surfactant, which is responsible for lowering surface tension in alveoli. In this article, we used an approximate model and ab initio computations to describe interactions between DPPC and some chemical solvents, such as benzene, toluene, heptane, acetone, chloroform, ether, and ethanol, which cause lung injuries and lead to respiratory distress such as ARDS. The effect of these solvents on the conformation and disordering of the DPPC head group was investigated by calculations at the Hatree-Fock level using the 6-31G basis set with the Onsager continuum solvation, GAIO, and frequency models. The simulation model was confirmed by accurate NMR measurements as concerns conformational energy. Water can be the most suitable solvent for DPPC. Furthermore, this study shows that ethanol has the most destructive effect on the conformation and lipid disorder of the DPPC head group of the lung surfactant in our model. Our finding will be useful for detecting the dysfunction of DPPC in the lung surfactant caused by acute or chronic exposures to air toxics from petrochemical organic solvent emission source and chronic alcohol consumption, which may lead to ARDS.

  1. Exposure of composite tannery effluent on snail, Pila globosa: A comparative assessment of toxic impacts of the untreated and membrane treated effluents.

    PubMed

    Bhattacharya, Priyankari; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-04-01

    Effluent from tannery industries can significantly affect the aquatic environment due to the presence of a variety of recalcitrant components. The present study focuses on a comparative assessment of the toxic impacts of an untreated tannery effluent and membrane treated effluents using snail, Pila globosa as an aquatic model. Composite tannery effluent collected from a common effluent treatment plant was selected as the untreated effluent. To investigate the effect of treated effluents on the aquatic organism the effluent was treated by two ways, viz. a single stage microfiltration (MF) using ceramic membrane and a two-step process involving MF followed by reverse osmosis (RO). The whole body tissue, gonad and mantle of P. globosa were subjected to enzyme assays like superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-GPx), glutathione S- transferase (GST), etc. for assessing toxic impact. Changes in the biochemical parameters like protein, carbohydrate and amino acid were observed including histological studies of gonad and mantle tissue upon treatment with tannery effluents. To examine potential DNA damage due to the exposure of the effluent, comet assay was conducted. The study revealed that with an exposure to the untreated effluent, activity of the antioxidant enzymes increased significantly while the protein and carbohydrate content reduced largely in the whole body tissue, gonad as well as mantle tissues of P. globosa. Histological study indicated considerable damage in the gonad and mantle tissues following exposure to the untreated effluent. Comet assay using hemolymph of P. globosa following exposure to tannery effluent, showed significant genotoxicity. Interestingly, compared to the untreated effluent, damaging effect was reduced in molluscs tissues when exposed to MF treated effluent and even lesser when exposed to MF+RO treated effluent. Apart from the reduced activities of oxidative stress enzymes, the

  2. Land application of pulp and paper mill effluents -- A literature review

    SciTech Connect

    Rezende, A.A.; Edwards, E.

    1999-07-01

    This paper reviews the literature on land application of pulp and paper mill effluents with emphasis on secondary treated effluents from kraft bleach pulp mills. It discusses the current status of effluent land application in the industry and the need for further studies. The literature review showed that considerable research had been undertaken, including full-scale land application of effluents from pulp and paper mills. These studies dealt almost exclusively with crop productivity aspects. Soil salinity and sodicity problems, as well as application rates were extensively studied. However, relatively little attention has been given to the behavior of toxic organic compounds from pulp mill effluents in the soil environment and the long-term environmental impact of the effluent disposal practices is not fully understood.

  3. Measurement and removal of bioconcentratable compounds in refinery effluents

    SciTech Connect

    Gala, W.R.; Dorn, P.B.; Means, J.C.; Jenkins, K.D.; Folwarkow, S.

    1994-12-31

    Public concern regarding the presence of persistent, bioconcentratable compounds in fish and shellfish has led the petroleum industry to investigate methods for the measurement of bioconcentratable compounds in refinery effluents. Research has focused on developing methods to measure polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons directly in the effluent and in bivalves exposed to refinery effluents in the field and in the laboratory. Results from a multi-refinery study in the San Francisco Bay Area using selective ion monitoring GC/MS-MS indicated that alkylated and non-substituted 2--3 ring PAHs are rarely present in refinery effluents at concentrations greater than 100 ng/L. Higher MW PAHs were rarely detected. PAHs did not substantially bioconcentrate in bivalves exposed in the laboratory to refinery effluent and reference sea water. Total PAHs were generally less than 50 {mu}g/g in the effluent-exposed bivalves. A comparison of the waste water treatment facilities at each refinery suggest that biological treatment already required by existing regulations is sufficient to reduce PAH concentrations to these low levels.

  4. DETERMINATION OF TRACE METALS IN EFFLUENTS BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMETRY

    EPA Science Inventory

    Differential pulse anodic stripping voltametry (DPASV) was evaluated to determine its applicability to industrial and domestic effluents. The results show that trace amounts of zinc, cadmium, lead, bismuth, copper, thallium, indium, antimony, tin and nickel can be determined indi...

  5. Fatigue and Psychological Distress: A Case Study Among Shift Workers of an Iranian Petrochemical Plant, During 2013, in Bushehr

    PubMed Central

    Rasoulzadeh, Yahya; Bazazan, Ahmad; Safaiyan, Abdolrasoul; Dianat, Iman

    2015-01-01

    Background: Shift work is a well-recognized occupational health hazard in both industrialized and industrially developing countries. Prolonged working time, day/night shift rotation, circadian rhythm and sleep disorders, family and social problems are the most important features of shift working, which have serious complications. Objectives: The present study evaluated the fatigue and psychological distress and their relationship among shift workers, in a petrochemical plant (Southern Pars gas field) in Southwest Iran. Materials and Methods: In this cross-sectional field study, 400 shift workers from a plant were involved, with participation rate of 72.5% (290 persons). The multidimensional fatigue inventory (MFI-20) and general health questionnaire (GHQ-28) were used to evaluate the level of fatigue and psychological distress, respectively. Results: The results showed that the fatigue and psychological distress (particularly social dysfunction, anxiety and insomnia) are frequent among 12-hour shift workers (the total MFI and total GHQ scores were 42.68 ± 17.88 and 34.66 ± 18.56). A relatively strong positive correlation was found between fatigue and psychological distress (r = 0.62). The results of the stepwise regression model indicated that the psychological distress was significantly related only to general fatigue, mental fatigue and reduced motivation, whereas it was not to the physical fatigue and reduced activity. Conclusions: The study findings highlight the importance of the mental aspect of fatigue in this working group. These results have possible implications for workers’ health and well-being and for the design of shift work systems, for industrial workers. PMID:26568862

  6. Association between occupational exposure to benzene and chromosomal alterations in lymphocytes of Brazilian petrochemical workers removed from exposure.

    PubMed

    Gonçalves, Rozana Oliveira; de Almeida Melo, Neli; Rêgo, Marco Antônio Vasconcelos

    2016-06-01

    We aimed to investigate the association between chronic exposure to benzene and genotoxicity in the lymphocytes of workers removed from exposure. The study included 20 workers with hematological disorders who had previously worked in the petrochemical industry of Salvador, Bahia, Brazil; 16 workers without occupational exposure to benzene served as the control group. Chromosomal analysis was performed on lymphocytes from peripheral blood, to assess chromosomal breaks and gaps and to identify aneuploidy. The Kruskal-Wallis test was used to compare the mean values between two groups, and Student's t test for comparison of two independent means. The frequency of gaps was statistically higher in and the exposed group than in the controls (2.13 ± 2.86 vs. 0.97 ± 1.27, p = 0.001). The frequency of chromosomal breaks was significantly higher among cases (0.21 ± 0.58) than among controls (0.12 ± 0.4) (p = 0.0002). An association was observed between chromosomal gaps and breaks and occupational exposure to benzene. Our study showed that even when removed from exposure for several years, workers still demonstrated genotoxic damage. Studies are still needed to clarify the long-term genotoxic potential of benzene after removal from exposure. PMID:27155858

  7. Ni(II) removal from aqueous effluents by silylated clays.

    PubMed

    Carvalho, Wagner A; Vignado, Carolina; Fontana, Juliane

    2008-05-30

    Industrial effluents discharged in water bodies without proper treatment contribute to water pollution by potentially toxic metal ions. Considering that the legislation for discarding of such effluents is getting more and more rigorous, the development of efficient processes for the treatment of industrial effluents is of great interest. A study on the capacity of metal retention by silylated-modified clays was carried out with the aim to evaluate the efficiency of this application. K10 clay was modified with 3-mercaptopropyltrimethoxysilane (MPS) and tested in batch removal processes. We investigated the sorption process, obtaining isotherms and kinetics of adsorption and the influence of pH, the desorption process and the metal recovery. It was observed that the modified clay presents fast retention and good capacity of both adsorption and desorption. The use of K10/MPS as adsorbent shows to be more adequate in effluent final polishment, after a conventional treatment, or when Ni(II) initial concentration in the effluent is low enough to permit its adequate removal by conventional methods. PMID:17980481

  8. Genotoxicity assessment of a pharmaceutical effluent using four bioassays

    PubMed Central

    2009-01-01

    Pharmaceutical industries are among the major contributors to industrial waste. Their effluents when wrongly handled and disposed of endanger both human and environmental health. In this study, we investigated the potential genotoxicity of a pharmaceutical effluent, by using the Allium cepa, mouse- sperm morphology, bone marrow chromosome aberration (CA) and micronucleus (MN) assays. Some of the physico-chemical properties of the effluent were also determined. The A. cepa and the animal assays were respectively carried out at concentrations of 0.5, 1, 2.5, 5 and 10%; and 1, 5, 10, 25 and 50% of the effluent. There was a statistically different (p < 0.05), concentration-dependent inhibition of onion root growth and mitotic index, and induction of chromosomal aberrations in the onion and mouse CA test. Assessment of sperm shape showed that the fraction of the sperm that was abnormal in shape was significantly (p < 0.05) greater than the negative control value. MN analysis showed a dose-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. These observations were provoked by the toxic and genotoxic constituents present in test samples. The tested pharmaceutical effluent is a potentially genotoxic agent and germ cell mutagen, and may induce adverse health effects in exposed individuals. PMID:21637694

  9. Filtration device for active effluents

    SciTech Connect

    Guerin, M.; Meunier, G.

    1994-12-31

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.

  10. Comparison of employees' white blood cell counts in a petrochemical plant by worksite and race.

    PubMed Central

    Christian, C. L.; Werley, B.; Smith, A.; Chin, N.; Garde, D.

    1994-01-01

    To determine if employment within a petrochemical plant's quality control (QC) laboratory had any significant effect on the hematopoietic system, and in specific, the white blood cell (WBC) counts, all employees of the QC laboratory were evaluated retrospectively. Trend analysis, linear regression, and Students t tests were performed on all employees of the QC laboratory and on a simple random sample of the rest of this Caribbean petrochemical plant's male employees. Trend analyses revealed a downward trend in 82.6% of the QC laboratory workers and 76.7% in other plant workers. Linear regression and t tests revealed no statistically significant difference by worksite but a significant difference between blacks and whites. The result of the findings of the QC laboratory workers was consistent with that expected in both plant employees and the US general population. A recommendation is made that the Occupational Safety and Health Administration (OSHA) reconsider its WBC cutoff level in the benzene standard. PMID:7932841

  11. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2016-03-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  12. Bioremediation of metal-rich effluents: could the invasive bivalve work as a biofilter?

    PubMed

    Rosa, Inês Correia; Costa, Raquel; Gonçalves, Fernando; Pereira, Joana Luísa

    2014-09-01

    Industrial effluents are important sources of contamination of water and sediments, frequently causing serious damage at different levels of biological organization. Management and treatment of harmful industrial wastes is thus a major concern. Metal-bearing effluents, such as acid mine drainage (AMD), are particularly problematic because metals can easily bioaccumulate in organisms and biomagnify across the trophic chain. Several solutions have been proposed to treat AMD, including active methods involving the addition of neutralizing agents and passive techniques that use natural energy sources for remediation. However, increasing environmental and economic requirements lead the constant search for more sustainable solutions. The present study explores the possibility of using , an invasive freshwater bivalve, as a bioremediation tool using AMD as a model, metal-bearing effluent. The study compares untreated and biotreated effluents at two dilution levels (4 and 10% v/v) following two distinct approaches: (i) chemical characterization of the metal concentrations in water complemented by determination of the accumulation in the clams' soft tissues and shells; and (ii) ecotoxicity assessment using standard organisms (the bacterium , the microalgae , and the cladoceran ). Significant removal of metals from water was recorded for both effluent dilutions, with higher purification levels found for the 4% effluent. The environmental toxicity of the effluents generally decreased after the treatment with the clams. Thus, this study provides evidence for the suitability of as a bioremediator for metal-bearing effluents, especially if the treatment can be materialized in a multistage configuration system. PMID:25603239

  13. Facility effluent monitoring plan for WESF

    SciTech Connect

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  14. Role of livestock effluent suspended particulate in sealing effluent ponds.

    PubMed

    Bennett, J McL; Warren, B R

    2015-05-01

    Intensive livestock feed-lots have become more prevalent in recent years to help in meeting the predicted food production targets based on expected population growth. Effluent from these is stored in ponds, representing a potential concern for seepage and contamination of groundwater. Whilst previous literature suggests that effluent particulate can limit seepage adequately in combination with a clay liner, this research addresses potential concerns for sealing of ponds with low concentration fine and then evaluates this against proposed filter-cake based methodologies to describe and predict hydraulic reduction. Short soil cores were compacted to 98% of the maximum dry density and subject to ponded head percolation with unfiltered-sediment-reduced effluent, effluent filtered to <3 μm, and chemically synthesized effluent. Reduction in hydraulic conductivity was observed to be primarily due to the colloidal fraction of the effluent, with larger particulate fractions providing minimal further reduction. Pond sealing was shown to follow mathematical models of filter-cake formation, but without the formation of a physical seal on top of the soil surface. Management considerations based on the results are presented. PMID:25721977

  15. Dairy shed effluent treatment and recycling: Effluent characteristics and performance.

    PubMed

    Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru

    2016-09-15

    Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. PMID:27213866

  16. The use of phytotoxicity tests (common duckweed, cabbage, and millet) for determining effluent toxicity.

    PubMed

    Wang, W; Williams, J M

    1990-01-01

    The objective of this study was to use higher plants for detecting effluent toxicity. Eight effluent samples were obtained from three industrial sources prior to their entry into a sewer system. The tests were the duckweed reproduction test, and root growth tests using cabbage and millet. The results of repeated phytotoxicity tests were reproducible. Of the three industrial sources, the effluent samples from a specialty chemical industry were the most toxic. For two samples from this source, the IC50 values (the concentrations which caused 50% inhibitory effect) for duckweed were less than 1.6% effluent concentration. The samples from an agricultural product utilization plant were the least toxic. For these samples, root growth tests failed to obtain IC50 values while the duckweed tests showed IC50 values of 91 and 43% effluent concentration. Among the three types of tests conducted, the duckweed reproduction test showed the greatest sensitivity to effluent toxicity, while root growth tests using cabbage and millet had mixed results. Duckweed is recommended as a part of a battery of tests for effluent toxicity. PMID:24243256

  17. Industrial waste pollution

    NASA Technical Reports Server (NTRS)

    Jensen, L. D.

    1972-01-01

    The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena

  18. Cytotoxicity assays to evaluate tannery effluents treated by photoelectrooxidation.

    PubMed

    Jaeger, N; Moraes, J P; Klauck, C R; Gehlen, G; Rodrigues, M A S; Ziulkoski, A L

    2015-12-01

    The advanced oxidation process (AOP) is used to increase the treatment efficiency of effluents however, it is necessary to compare the toxicity of treated and untreated effluents to evaluate if the decontamination process does not cause any biological harm. Cultured cells have been previously used to assess the genotoxic and cytotoxic potential of various compounds. Hence, the aim of this work was to assess the applicability of cytotoxicity assays to evaluate the toxicity related to the AOP treatment. Samples of an industrial effluent were collected after their treatment by a conventional method. Cytotoxicity of standard and AOP treated effluents was assessed in CRIB and HEp-2 cell line using the MTT and neutral red assays. We observed decrease at cell viability in the both assays (50% MTT and 13% NRU) when cells were exposed to the AOP treatment in the highest concentration. Thus, cytotoxic assays in cultured cells can be explored as an useful method to evaluate toxicity as well as to optimize effluents treatment process. PMID:26628242

  19. Management of nonprocess elements in low-effluent bleached kraft pulp mills

    SciTech Connect

    Bryant, P.S.

    1995-12-31

    Increasing environmental regulation for the discharge of chlorinated organics in bleach plant effluents has required most manufacturers in the pulp and paper industry to reduce the charge of elemental chlorine in the bleaching of kraft pulp. The best long term solution for reducing effluent pollutants from bleached kraft pulp mills is to move towards low-effluent (closed-cycle) bleaching. Closure of operating bleach plants would dramatically reduce both the volume and the pollutant concentration of pulp mill effluents. However, closing the mill creates many operational problems including a concentration build-up of nonprocess elements (NPE`s) in process streams. NPE`s usually enter the pulp process as trace constituents of wood. Recent studies have lead to a fundamental understanding of how NPE`s partition between the solid cellulose phase and the liquid aqueous phase in pulp mill process streams. This knowledge will help in the design, operation and optimization of future low-effluent bleach plants.

  20. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na(2)CO(3) addition.

    PubMed

    Whang, L M; Yang, K H; Yang, Y F; Han, Y L; Chen, Y J; Cheng, S S

    2009-01-01

    This study evaluated nitrification performance and microbial ecology of AOB in a full-scale biological process, powder activated carbon treatment (PACT), and a pilot-scale biological process, moving bed biofilm reactor (MBBR), treating wastewater collected from a petrochemical industry park. The petrochemical influent wastewater characteristics showed a relative low carbon to nitrogen ratio around 1 with average COD and ammonia concentrations of 310 mg/L and 325 mg-N/L, respectively. The average nitrification efficiency of the full-scale PACT process was around 11% during this study. For the pilot-scale MBBR, the average nitrification efficiency was 24% during the Run I operation mode, which provided a slightly better performance in nitrification than that of the PACT process. During the Run II operation, the pH control mode was switched from addition of NaOH to Na(2)CO(3), leading to a significant improvement in nitrification efficiency of 51%. In addition to a dramatic change in nitrification performance, the microbial ecology of AOB, monitored with the terminal restriction fragment length polymorphism (T-RFLP) molecular methodology, was found to be different between Runs I and II. The amoA-based TRFLP results indicated that Nitrosomonas europaea lineage was the dominant AOB population during Run I operation, while Nitrosospira-like AOB was dominant during Run II operation. To confirm the effects of Na(2)CO(3) addition on the nitrification performance and AOB microbial ecology observed in the MBBR process, batch experiments were conducted. The results suggest that addition of Na(2)CO(3) as a pH control strategy can improve nitrification performance and also influence AOB microbial ecology as well. Although the exact mechanisms are not clear at this time, the results showing the effects of adding different buffering chemicals such as NaOH or Na(2)CO(3) on AOB populations have never been demonstrated until this study. PMID:19182331

  1. Treatment of effluents from uranium oxide production.

    PubMed

    Ladeira, A C Q; Gonçalves, J S; Morais, C A

    2011-01-01

    The nuclear fuel cycle comprises a series of industrial processes which involve the production of electricity from uranium in nuclear power reactors. In Brazil the conversion of uranium hexafluoride (UF6) into uranium dioxide (UO2) takes place in Resende (RJ) at the Nuclear Fuel Factory (FCN). The process generates liquid effluents with significant concentrations of uranium, which might be treated before being discharged into the environment. This study investigates the recovery of uranium from three distinct liquid effluents: one with a high carbonate content and the other with an elevated fluoride concentration. This paper also presents a study on carbonate removal from an effluent that consists of a water-methanol solution generated during the filtration of the yellow cake (ammonium uranyl tricarbonate). The results showed that: (1) the uranium from the carbonated solution can be recovered through the ion exchange technique using the strong base anionic resin IRA 910-U, as the carbonate has been removed as CO2 after heating; (2) the most suitable technique to recover uranium from the fluoride solution is its precipitation as (NH4)2UO4F2 (ammonium fluorouranate peroxide), (3) the solution free of carbonate can be added to the fluoride solution and the uranium from the final solution can be recovered by precipitation as ammonium fluorouranate peroxide as well; (4) the carbonate from the water-methanol solution can be recovered as calcium carbonate through the addition of calcium chloride, or it can be recovered as ammonium sulphate through the addition of sulphuric acid. The ammonium sulphate product can be used as a fertilizer. PMID:21473275

  2. Effects of brine addition on effluent toxicity and marine toxicity identification evaluation (TIE) manipulations

    SciTech Connect

    Ho, K.T.; Burgess, R.M. ); Mitchell, K. . Biology Dept.); Zappala, M. )

    1995-02-01

    Little information is available concerning the effect of salinity adjustment on effluent storage and toxicity identification evaluation (TIE) performance. These factors are important for accurate assessments of potential toxicity to marine organisms. The objective of this study was to determine (a) the effect of salinity adjustment using hypersaline brine on the toxicity of effluents stored up to 40 d, and (b) to determine the effect of salinity adjustment on TIE manipulations. Changes in effluent toxicity over time were examined by using a municipal and an industrial effluent. A toxicity time series was performed for 16 d for the industrial effluent and 40 d for the municipal effluent. Toxicity was measured with modified 48-h acute Mysidopsis bahia and Menidia beryllina tests. Results indicate that, compared to day 0 test results, effluent stored with brine had fewer significant changes in toxicity than did effluent stored without brine. To determine the effects of brine addition on TIE manipulations, the authors conducted a series of manipulations in which one aliquot of an effluent had brine added prior to the TIE manipulations and the other aliquot had brine added after the TIE manipulation. The manipulations conducted were EDTA addition, sodium thiosulfate addition, C[sub 18] extraction, aeration, filtration, and graduated pH manipulations. Toxicity was measured with the modified 48-h acute mysid test. Addition of brine had no effect on the outcome of TIE manipulations. They have concluded that it is operationally easier to add brine as soon as possible after sampling and that effluent tests should be conducted as soon as practical.

  3. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    PubMed Central

    Cao, Yujin; Zhang, Rubing; Sun, Chao; Cheng, Tao; Liu, Yuhua; Xian, Mo

    2013-01-01

    Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed. PMID:24396827

  4. Sleep quality and general health status of employees exposed to extremely low frequency magnetic fields in a petrochemical complex

    PubMed Central

    2014-01-01

    Background Advances in science and technology of electrical equipment, despite increasing human welfare in everyday life, have increased the number of people exposed to Electro-Magnetic Fields (EMFs). Because of possible adverse effects on the health of exposed individuals, the EMFs have being the center of attention. This study was performed to determine possible correlation between Extremely Low Frequency Electro-Magnetic Fields (ELF EMFs) and sleep quality and public health of those working in substation units of a petrochemical complex in southern Iran. Materials and method To begin with, magnetic flux density was measured at different parts of a Control Building and two substations in accordance with IEEE std 644–1994. Subsequently, the questionnaires “Pittsburgh Sleep Quality Index” (PSQI) and “General Health Quality (GHQ)” were used to investigate relationship between ELF exposure level and sleep quality and public health, respectively. Both questionnaires were placed at disposal of a total number of 40 workers at the complex. The filled out questionnaires were analyzed by T-test, Duncan and the Chi-square tests. Results The obtained results revealed that 28% of those in case group suffered from poor health status and 61% were diagnosed with a sleep disorder. However, all members in control group were in good health condition and only 4.5% of them had undesirable sleep quality. Conclusion In spite of a significant difference between the case and control groups in terms of sleep quality and general health, no significant relationship was found between the exposure level and sleep quality and general health. It is worth noting that the measured EMF values were lower than the standard limits recommended by American Conference of Industrial Hygienists (ACGIH). However, given the uncertainties about the pathogenic effects caused by exposure to ELF EMFs, further epidemiological studies and periodic testing of personnel working in high voltage substations

  5. The potential of organic substrates based on mushroom substrate and straw to dissipate fungicides contained in effluents from the fruit-packaging industry - Is there a role for Pleurotus ostreatus?

    PubMed

    Karas, Panagiotis A; Makri, Sotirina; Papadopoulou, Evangelia S; Ehaliotis, Constantinos; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G

    2016-02-01

    Citrus fruit-packaging plants (FPP) produce large wastewater volumes with high loads of fungicides like ortho-phenylphenol (OPP) and imazalil (IMZ). No methods are in place for the treatment of those effluents and biobeds appear as a viable alternative. We employed a column study to investigate the potential of spent mushroom substrate (SMS) of Pleurotus ostreatus, either alone or in mixture with straw and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. The role of P. ostreatus on fungicides dissipation was also investigated by studying in parallel the performance of fresh mushroom substrate of P. ostreatus (FMS) and measuring lignolytic enzymatic activity in the leachates. All substrates effectively reduced the leaching of OPP and IMZ which corresponded to 0.014-1.1% and 0.120-0.420% of their initial amounts respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25 by vol) offered the most efficient removal of OPP and IMZ from wastewaters respectively. Regardless of the substrate, OPP was restricted in the top 0-20cm of the columns and was bioavailable (extractable with water), compared to IMZ which was less bioavailable (extractable with acetonitrile) but diffused at deeper layers (20-50, 50-80cm) in the SMS- and Straw/Soil-columns. PLFAs showed that fungal abundance was significantly lower in the top layer of all substrates from where the highest pesticide amounts were recovered suggesting an inhibitory effect of fungicides on total fungi in the substrates tested. Our data suggest that biobeds packed with SMS-rich substrates could ensure the efficient removal of IMZ and OPP from wastewaters of citrus FPP. PMID:26624931

  6. 40 CFR 463.27 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.27 Effluent limitations guidelines representing the degree of effluent...

  7. 40 CFR 440.115 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.115 Effluent limitations representing the degree of effluent...

  8. 40 CFR 440.35 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...

  9. 40 CFR 440.112 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent...

  10. 40 CFR 440.115 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.115 Effluent limitations representing the degree of effluent...

  11. 40 CFR 440.112 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent...

  12. 40 CFR 440.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent...

  13. 40 CFR 440.35 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...

  14. 40 CFR 440.115 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.115 Effluent limitations representing the degree of effluent...

  15. 40 CFR 440.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent...

  16. 40 CFR 440.112 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent...

  17. 40 CFR 440.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent...

  18. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  19. 40 CFR 428.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.43 Effluent limitations guidelines representing the degree of effluent...

  20. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  1. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  2. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  3. 40 CFR 428.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.43 Effluent limitations guidelines representing the degree of effluent...

  4. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  5. 40 CFR 428.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.43 Effluent limitations guidelines representing the degree of effluent...

  6. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  7. Anaerobic treatment of pulp and paper mill effluents--status quo and new developments.

    PubMed

    Habets, Leo; Driessen, Willie

    2007-01-01

    Since the early 1980s, anaerobic treatment of industrial effluents has found widespread application in the pulp and paper industry. Over 200 installations are treating a large variety of different pulp and paper mill effluents. Amongst various anaerobic systems the UASB and IC are the most applied anaerobic reactor systems. Anaerobic treatment is well feasible for effluents originated from recycle paper mills, mechanical pulping (peroxide bleached), semi-chemical pulping and sulphite and kraft evaporator condensates. The advantages of anaerobic pre-treatment are (1) net production of renewable energy (biogas), (2) minimized bio-solids production, (3) minimal footprint and (4) reduced emission of greenhouse gases. Via in-line application of anaerobic treatment in closed circuits (paper kidney technology) further savings on cost of fresh water intake and effluent discharge levies are generated. PMID:17486855

  8. Characteristics of treated effluents and their potential applications for producing concrete.

    PubMed

    Noruzman, Ainul Haezah; Muhammad, Bala; Ismail, Mohammad; Abdul-Majid, Zaiton

    2012-11-15

    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones. PMID:22705857

  9. Effects of ammonium effluents on planktonic primary production and decomposition in a coastal brackish water environment I. Nutrient balance of the water body and effluent tests

    NASA Astrophysics Data System (ADS)

    Tamminen, T.

    Effects of ammonium discharge on the regulation of photosynthetic production was studied from June to October 1979 in the Archipelago Sea, near the entrance of the Gulf of Finland. Sampled were the inner archipelago loaded with ammonium-rich industry effluents and some stations towards the open sea. Acute effects of effluent on natural algal and bacterial communities were tested by measurements of primary productivity and heterotrophic activity. Effluent tests were also conducted with a test alga ( Chorella sp.). Nutrient ratios and AGP tests indicated that nitrogen was the principal limiting nutrient for algal growth even in the ammonium-loaded regions. Therefore, the discharge causes a considerable eutrophication in the area. Effluent concentrations from 0.01 to 1% stimulated primary productivity of natural algal communities up to 230% of the control, whereas 10% concentrations were toxic. Test algae tolerated also 10% of effluent in some cases, and showed stimulations up to 960% of the control. No stimulation of heterotrophic activity was usually detected in effluent tests, and the threshold of toxicity was considerably lower than with algae. The effect of effluents on heterotrophic bacteria of the water body is therefore likely to be mediated through autotrophic production.

  10. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales).

    PubMed

    Chia, Mathias A; Musa, Rilwan I

    2014-03-01

    The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing. PMID:24676177

  11. Use of an open-path FTIR sensor at Camacari Petrochemical Complex--Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Neves, Neuza; Couto, Elizabeth d. R.; Kagann, Robert H.

    1995-05-01

    CETREL--Empresa de Protecao Ambiental, is an environmental engineering company, which is owned by the member companies in the Camacari Petrochemical Complex, the largest petrochemical complex in Brazil. CETREL operates a centralized waste treatment plant, treatment and disposal facilities, an incineration unit, groundwater monitoring and air quality monitoring networks. The air monitoring network was designed based on mathematical modeling, and the results showed that the monoitoring of hydrocarbons is important not just within the complex but also at the area surrounding the complex. There are presently no regulations for hydrocarbons in Brazil, however they are monitored due to concerns about health problems arising from human exposure. The network has eight multiparameter monitoring stations, located at the villages nearby, where hydrocarbons are sampled with Summa canisters and subsequently analyzed with a GC/MS, using a Cryogenic trap at the interface. The open-path FTIR is used to monitor at the individual plants and in the areas in between because it is more efficient and costs less than it would to attempt to achieve the same level of coverage using the canisters. Ten locations were selected based on mathematical modeling and knowledge of the likely emission sources. Since August 1993, there have been five different measurement campaigns.

  12. Radioactive effluents in Savannah River

    SciTech Connect

    Winn, W.G.

    1991-11-27

    During 1990, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. The Environmental Technology Section (ETS) has conducted radiometric studies of Plant Vogtle since late 1986, prior to its startup. The plant has two 1100 MWe pressurized water reactors developed by Westinghouse. Unit 1 started commercial operations in June 1987, and Unit 2 began in May 1989. During powered operations, ETS has routinely detected neutron-activated isotopes in controlled releases but all activities have been several orders of magnitude below the DOE guide values. In 1990, processing improvements for Vogtle effluents have yielded even lower activities in the river. The Vogtle release data and the ETS measurements have tracked well over the past four years.

  13. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  14. Phytoremediation of the coalmine effluent.

    PubMed

    Bharti, Sandhya; Kumar Banerjee, Tarun

    2012-07-01

    Coal mine effluent was subjected to detoxification by phytoremediation using two macrophytes Azolla pinnata and Lemna minor. Both plants were kept separately in the effluents for 7 day. The initial concentration (mg L⁻¹) of eight metals: Fe, Mn, Cu, Zn, Ni, Pb, Cr and Cd investigated in the effluent were 22.91±0.02, 9.61±1.6, 2.04±0.23, 1.03±0.15, 0.86±0.19, 0.69±0.11, 0.18±0.007 and 0.06±0.008 respectively. The initial fresh biomass of each plant was 100g. After one week, metals removed in A. pinnata-phytoremediated effluent were in the order: Mn (98%)>Fe (95.4%)>Zn (95%)>Cu (93%)>Pb (86.9%)>Cd (85%)>Cr (77.7%)>Ni (66.2%) and metal decrease in L. minor-phytoremediated effluent were: Mn (99.5%)>Cu (98.8%)>Zn (96.7%)>Ni (94.5%)>Fe (93.1%)>Cd (86.7%)>Pb (84%)>Cr (76%). Due to metal toxicity the total chlorophyll and protein contents of L. minor decreased by 29.3% and 38.55% respectively. The decrease of these macromolecules in A. pinnata was 27% and 15.56% respectively. Also, the reduction in biomass of L. minor was greater than that for A. pinnata. Based on the finding we could suggest that both the plants are suitable for bioremediation of mine effluent at the contaminated sites. However, attention for quick disposal of these metal loaded plants is urgently required. PMID:22571948

  15. Ureolytic phosphate precipitation from anaerobic effluents.

    PubMed

    Desmidt, E; Verstraete, W; Dick, J; Meesschaert, B D; Carballa, M

    2009-01-01

    In this work, the elimination of phosphate from industrial anaerobic effluents was evaluated at lab-scale. For that purpose, the ureolytic method previously developed for the precipitation of Ca(2 + ) from wastewater as calcite was adapted for the precipitation of phosphate as struvite. In the first part of the study, computer simulations using MAPLE and PHREEQC were performed to model phosphate precipitation from wastewater as struvite. The results obtained showed that relative high concentrations of ammonium and magnesium are needed to precipitate phosphate as struvite. The total molar concentrations ratio of Mg(2 + ):PO(4) (3-)-P:NH(4) (+) required to decrease PO(4) (3-)-P concentrations from 20 to 6 mg PO(4) (3-)-P/l at pH 8.4-8.5 was estimated on 4.6:1:8. In the second part of the study, lab-scale experiments with either synthetic wastewater or the anaerobic effluent from a vegetable processing industry were carried out in batch and continuous mode. Overall, the continuous operation at a hydraulic retention time (HRT) of 2.4 h and an added molar concentration [Mg(2 + )]:[PO(4) (3-)-P]:[NH(4) (+)] ratio of 1.6:1:2.3 resulted in a constant pH value in the reactor (around 8.5) and an efficient phosphate removal (>90%) to residual levels of 1-2 mg PO(4) (3-)-P/l. Different operational conditions, such as the initial phosphate concentration, HRT and the use of CaCl(2) or MgO instead of MgCl(2), were analysed and the performance of the reactor was satisfactory under a broad range of them. Yet, overall, optimal results (higher phosphate removal) were obtained with MgCl(2). PMID:19474493

  16. Petroleum industry in Iran

    SciTech Connect

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  17. An evaluation of the whole effluent toxicity test method

    SciTech Connect

    Osteen, D.V.

    1999-12-17

    Whole effluent toxicity (WET) testing has become increasingly more important to the Environmental Protection Agency (EPA) and the States in the permitting of wastewater discharges from industry and municipalities. The primary purpose of the WET test is to protect aquatic life by predicting the effect of an effluent on the receiving stream. However, there are both scientific and regulatory concerns that using WET tests to regulate industrial effluents may result in either false positives and/or false negatives. In order to realistically predict the effect of an effluent on the receiving stream, the test should be as representative as possible of the conditions in the receiving stream. Studies (Rand and Petrocelli 1985) suggested several criteria for an ideal aquatic toxicity test organism, one of which is that the organism be indigenous to, or representative of, the ecosystem receiving the effluent. The other component needed in the development of a predictive test is the use of the receiving stream water or similar synthetic water as the control and dilution water in the test method. Use of an indigenous species and receiving water in the test should help reduce the variability in the method and allow the test to predict the effect of the effluent on the receiving stream. The experience with toxicity testing at the Savannah River Site (SRS) has yielded inconclusive data because of the inconsistency and unreliability of the results. The SRS contention is that the WET method in its present form does not adequately mimic actual biological/chemical conditions of the receiving streams and is neither reasonable nor accurate. This paper discusses the rationale for such a position by SRS on toxicity testing in terms of historical permitting requirements, outfall effluent test results, standard test method evaluation, scientific review of alternate test species, and concerns over the test method expressed by other organizations. This paper presents the Savannah River Site

  18. LC-PDA and LC-ESI-MS separation and determination of process-related substances arising from stilbene-type fluorescent whitening agents. Application to monitoring of their photodegradation products in industrial effluents and aqueous environmental systems.

    PubMed

    Rao, R Nageswara; Venkateswarlu, N; Khalid, Sara; Narsimha, R

    2005-03-01

    A simple and rapid gradient elution high-performance liquid chromatographic method using photodiode array and electrospray ionization mass spectrometric detectors was developed for separation and determination of the process-related substances and photodegradation products of stilbenesulfonic acids, viz. 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNSDA), 4-amino-4'-nitrostilbene-2,2'-disulfonic acid (ANSDA), and 4,4'-diaminostilbene-2,2'-disulfonic acid (DASDA) in industrial waste waters. Gradient elution was carried out using ammonium acetate and acetonitrile as mobile phase and an Inertsil-ODS 3V column for separation. The negative-ion electrospray ionization mass spectra containing [M-H]- ions of sulfonic acids allowed molecular mass determination of unknowns and the structures were proposed on the basis of the fragment ions in the MS/MS spectra. PMID:15835732

  19. A comparative study of toxicity identification using Daphnia magna and Tigriopus japonicus: implications of establishing effluent discharge limits in Korea.

    PubMed

    Kang, Sung-Wook; Seo, Jaehwan; Han, Jeonghoon; Lee, Jae-Seong; Jung, Jinho

    2011-01-01

    In Korea, the new permission criteria for industrial effluents based on Daphnia magna acute toxicity tests will be gradually implemented starting from 2011. Thus, in this study, toxicity assessment and identification using a marine species (Tigriopus japonicus) and the freshwater species (D. magna) was comparatively investigated. Effluent from an acid mine drainage treatment plant showed acute toxicity toward both organisms due to low pH, which was removed by neutralization of the effluent. Additionally, evaluation of the effluent of an electronics company revealed that Cu was attributable to the observed toxicity, and the effluent was more toxic toward T. japonicus than D. magna. Moreover, effluents from a metal plating factory were acutely toxic toward D. magna (6.50 TU), while they were not toxic against T. japonicus. Toxicity identification revealed that the high level of Cl- (12,841 mg L(-1)) was the cause of toxicity. Thus, the effluents had no effect on the marine species, T. japonicus. These findings suggest that a marine species rather than a freshwater species is more desirable for toxicity assessment of industrial effluent discharged into the saltwater, and thus should be considered in the legislation of toxicity-based discharge limits in Korea. PMID:21172718

  20. Land treatability of refinery and petrochemical sludges. Final report 10 Oct 77-30 Mar 82

    SciTech Connect

    Brown, K.W.; Deuel, L.E. Jr.; Thomas, J.C.

    1983-08-01

    The land disposal of API separator sludges was investigated with regard to decomposition rates or organic constitutents and the possible impact of these materials on plants and surface water or groundwater quality. Two oily sludges (one from a petroleum refinery and one from a petrochemical plant) were studied as to their phytotoxicity, biodegradability in soils, water-soluble constituents, and field mobility. The water-soluble compounds in both sludges were low indegradability, potentially toxic, and extremely mobile in high concentrations. These results indicate a need for careful managmement of land treatment sites to avoid groundwater contamination. Gas-liquid chromatography (GLC) combined with column chromatography is recommended for effective monitoring of oily wastes applied to soils.

  1. [Assessement of combined impact of hazards on petrochemical and chemical workers' health].

    PubMed

    Badamshina, G G; Karimova, L K; Tkacheva, T A; Mavrina, L N; Bakirova, A É

    2013-01-01

    We have conducted a study on working conditions and health status of petrochemical workers. The main hazardous factor of work environment and manufacture process has been found to be work environment air pollution caused by Class 2-3 hazards. Depending on the composition of the current complex of hazards, the manufacture workers comprise three groups determined by the impact of aromatic hydrocarbons, olefin oxides and their combinations. It has been shown that the combined impact of aromatic hydrocarbons and olefin oxides combination may produce a more pronounced hazardous impact on workers' health compared with the impact of aromatic hydrocarbons or olefin oxides taken separately. This may be due to the summing up of biological effects. PMID:24006618

  2. Bioremediation of Pharmaceuticals, Pesticides, and Petrochemicals with Gomeya/Cow Dung

    PubMed Central

    Randhawa, Gurpreet Kaur; Kullar, Jagdev Singh

    2011-01-01

    Use and misuse of pharmaceuticals, pesticides, and petrochemicals by man is causing havoc with nature, as they persist as such or as their toxic metabolites. These pollutants bioaccumulate in environment, and they ultimately reach man through various means. They are hazardous because of potential toxicity, mutagenicity, carcinogenicity, and genotoxicity. To rejuvenate nature, remediation methods currently available are usually expensive and might convert one toxic pollutant to another. Bioremediation methods use naturally occurring microorganisms to detoxify man-made pollutants so that they change pollutants to innocuous products that make soil fertile in the process. Taking cue from Ayurveda, Gomeya/cow dung is used as an excellent bioremediation method. Thus, utilizing freely available cow dung as slurry or after composting in rural areas, is a cheap and effective measure to bioremediate the harmful pollutants. Yet, more research in this direction is warranted to bioremediate nonbiodegradable, potentially toxic pollutants. PMID:22084712

  3. Identification of the need for research on chemical tracers to detect pulp mill effluent exposure

    SciTech Connect

    Ali, N.; Humphrey, S.; Van Coillie, R.

    1995-12-31

    A critical factor in the assessment of the effects of effluent exposure on sampled biota is the verification of exposure in nearfield and farfield zones and verification of the lack of exposure in the reference areas. At mills with rapid dilution of effluent, or where physical barriers to fish movement between exposure and reference areas do not exist, an appropriate fish tracer must be used. In Canada, because of multiple industrial and municipal discharges at certain pulp mill sites, it is difficult to assess the effects of the mill effluent in isolation from those of neighboring influences unless tracers specific to the different effluents are used. Examples of substances proposed as tracers for pulp mill effluent include resin acids, chloroguaiacols, chlorophenols, dioxin, and furan congeners. This paper gives a summary of tracer substances used to date and the problems encountered in selecting and measuring suitable chemical tracers for regulated environmental effects monitoring studies at Canadian mills. Based on their experience, there is urgent need for research into appropriate tracer substances for pulp mill as well as other industrial and municipal effluents.

  4. Voluntary GHG reduction of industrial sectors in Taiwan.

    PubMed

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. PMID:22627150

  5. Handmade paper and cardboard industries: in health perspectives.

    PubMed

    Kulshreshtha, Shweta; Mathur, Nupur; Bhatnagar, Pradeep

    2011-07-01

    Generally, handmade paper industries are considered as eco-friendly industries. These industries are known to use vegetable dyes which are thought to be safe and non-toxic. However, cardboard industries are considered as pollution-causing industries. The present study focuses on the genotoxic assessment of handmade paper and cardboard industry's effluent by Ames test using Salmonella typhimurium TA 98 and TA 100 strains. On mutagenicity analysis, effluents of both industries were found to be mutagenic with either one strain of Salmonella typhimurium or with both. Besides this, no significant difference was observed in effluent of both small-scale and large-scale handmade paper industries. Moreover, mutagenic compounds reach the nearby water body i.e. Amani Shah Drainage through connecting drain. Discharging of untreated effluent not only deteriorates the water quality but also reaches the food chain when used for irrigating nearby fields. Workers of these industries may suffer various health hazards when they are exposed to mutagenic effluent without having any information about it. Hence, discharging of effluents should thus be restricted or the workers while handling mutagenic substances should at least take proper precautions. PMID:21343227

  6. Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.

    PubMed

    Tripathi, Smriti; Tripathi, B D

    2011-07-01

    The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents. PMID:21550800

  7. Strategies for chromium bioremediation of tannery effluent.

    PubMed

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  8. Opportunities for the chemical industry in space, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The chemical/petrochemical industry devotes a large percentage of its gross income to research and development, with much of its R and D of a long-term nature. As the chemical industry is examined as a candidate for space investigations, it is readily apparent that research and development in the space environment may lead to attractive commercial opportunities. The advantages of low gravity manufacturing, with a particular emphasis on chemical catalysts, are presented herein specifically for the chemical industry. Research from the Skylab program and Apollo Soyuz test project is reviewed, including acoustic levitation, crystal growth, and container less melts. Space processing of composite materials, alloys, and coatings is also discussed.

  9. EPIDEMIOLOGICAL STUDY OF THE INCIDENCE OF CANCER AS RELATED TO INDUSTRIAL EMISSIONS IN CONTRA COSTA COUNTY, CALIFORNIA

    EPA Science Inventory

    The purpose of this study was to examine the relationship of lung cancer incidence in Contra Costa County to ambient levels of air pollution. It was suspected that the presence of heavy industry in the county, mainly petrochemical plants and oil refineries, could be a contributin...

  10. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  11. Effluent treatment for nuclear thermal propulsion ground testing

    NASA Technical Reports Server (NTRS)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  12. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity.

    PubMed

    Yang, Qi; Xiong, Panpan; Ding, Pengyuan; Chu, Libing; Wang, Jianlong

    2015-11-01

    Microaerobic hydrolysis-acidification (MHA)-anoxic-oxic (A/O) processes were developed to treat actual petrochemical wastewater. The results showed that the overall COD removal efficiency was 72-79% at HRT=20h, and MHA accounted for 33-42% of COD removal, exhibiting good efficiency of acidogenic fermentation. Ammonium removal was more than 94%. The main pollutants in the influent were identified to be benzene, ketone, alcohols, amine, nitrile and phenols by GC-MS, and the majority of pollutants could be removed by MHA-A/O treatment. Proteobacteria was the most dominant bacteria in the system, accounting for more than 55% of the reads. The predominant genera in MHA, anoxic and oxic reactors were Anaerolineaceae and Sulfuritalea, Lactococcus and Blastocatella, and Saprospiraceae uncultured and Nitrosomonadaceae, respectively. This treatment system exhibited good performance in degrading the complex compounds in the petrochemical wastewater. PMID:26233329

  13. 40 CFR 434.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology economically achievable (BAT). 434.53 Section 434.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES...

  14. Excitation-emission matrices applied to the study of urban effluent discharges in the Chubut River (Patagonia, Argentina).

    PubMed

    Chiarandini Fiore, Jessica Paola; Scapini, María del Carmen; Olivieri, Alejandro César

    2013-08-01

    Natural and contaminated waters of the final reaches of the Chubut River (Patagonia, Argentina) were studied to obtain information about river organic matter and effects of domestic and industrial discharges (fishery effluents and sewages). Fluorescence Excitation-Emission Matrices (EEMs) were obtained from samples only filtered (0.45 μm) and diluted, if necessary, to avoid the inner filter effect. In addition, physicochemical parameters were measured to know the quality of the water and the effluents. Results show that EEMs allow a rapid and simple control of the effluents from fisheries and domestic sewage in Chubut River estuary, necessary to take management decisions. PMID:23325315

  15. Impact of paper mill effluent on growth and development of certain agricultural crops.

    PubMed

    Medhi, U J; Talukdar, A K; Deka, S

    2011-03-01

    The physico-chemical characteristics of paper mill industry effluent were measured and some were found to be above the permissible limits prescribed by Indian irrigation water standard. A study was conducted in pots to investigate the effects of different concentrations (10, 20, 30, 40, 50, 60, 70, 80 and 100%) of paper mill effluent on growth and production of rice, mustard and peafor three years. The study reveals that the paper mill effluent has deleterious effect on the growth of crop at higher concentrations. However, at lower concentration (viz. 10 to 40% in rice, 10 to 50% in mustard and 10 to 60% in pea) of effluent, beneficial impact on general welfare of the crops was noticed. Growth and development was increased with increasing the concentration of the effluent up to 30% in rice, 40% in mustard and 50% in pea. Investigation showed that the growth and production of rice, mustard and pea was found maximum at a concentration of 30, 40 and 50% effluent respectively. PMID:21882653

  16. SOURCE ASSESSMENT: DRY BOTTOM INDUSTRIAL BOILERS FIRING PULVERIZED BITUMINOUS COAL

    EPA Science Inventory

    The report describes and assesses the potential impact of air emissions, wastewater effluents, and solid wastes from the operation of dry bottom industrial boilers firing pulverized bituminous coal. Air emissions were characterized by a literature survey and field sampling. Signi...

  17. Decoloration and detoxification of effluents by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; da Conceição Pereira, Maria; Higa, Marcela C.

    2016-07-01

    Three distinct textile samples were investigated for color and toxicity (S1-chemical/textile industry; S2-final textile effluent; S3 - standard textile produced effluent-untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism.

  18. A REVIEW OF RESEARCH NEEDS FOR DAIRY SHED EFFLUENT MANAGEMENT, STATE OF VICTORIA, AUSTRALIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This technical report provides a brief review of current activities in dairy effluent management in the Victorian (Australia) dairy industry, and recommendations for future research priorities to be potentially supported by the Division of Agricultural Development in the Department of Primary Indust...

  19. EFFLUENT AND AMBIENT TOXICITY TESTING IN THE GOETA AELV AND VISKAN RIVERS, SWEDEN

    EPA Science Inventory

    A joint United States-Sweden effluent field study on the Gota Alv River was conducted on site in Sweden in the fall of 1985. The Gota Alv River has a mean flow of 575 cu m/s and is the largest river in Sweden. There are many industrial dischargers along the river and Sweden has b...

  20. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge.

    PubMed

    Chen, Jianbiao; Mu, Lin; Jiang, Bo; Yin, Hongchao; Song, Xigeng; Li, Aimin

    2015-09-01

    The pyrolysis characteristics of petrochemical wastewater sludge (PS) were evaluated using TG/DSC-FTIR and fixed-bed reactor with GC. TGA experiments indicated that the pyrolysis of PS proceeded in three phases, and the thermographs shifted to higher temperatures with increasing heating rate. Chars FTIR showed that the absorption of O-H, C-H, C=O and C-C decreased with pyrolysis temperatures increasing. Gases FTIR correspondingly showed that H2O, CO, and CH4 generated at higher temperatures. For the fixed-bed reactor tests, H2 and CO were relatively higher in the pyrolysis gases, and CH4 was negligible at 436K. The kinetic triplets of PS pyrolysis were estimated by Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and integral master-plots method. The results suggested that the most potential kinetic models for the first and second phase were the order reaction model, while the random nucleation and nuclei growth model for the third phase. PMID:26004556

  1. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    PubMed

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-01

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams. PMID:27067493

  2. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    PubMed

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. PMID:26386413

  3. Effect of petrochemical sludge concentrations of changes in mutagenic activity during soil bioremediation process.

    PubMed

    Morelli, I S; Vecchioli, G I; Del Panno, M T; Painceira, M T

    2001-10-01

    The present study was performed to assess the effect of the petrochemical sludge application rate on the mutagenic activity (Ames test) of soil and the persistence of mutagenic activity during laboratory soil bioremediation process. Sludge-soil systems were prepared at four different sludge application rates (1.25, 2.5, 5, and 10% w/w). Unamended soil was used as a control. Immediately following sludge application, in the absence or presence of S9, a linear correlation between sludge application rates and mutagenicity was found but differed significantly (p < 0.05) from the control system only at higher application rates (5 and 10% w/w). The direct mutagenicity of all systems decreases during the bioremediation process, and after a year of treatment only the 10% system induced a mutagenic response that was significantly different from the control system. On the other hand, an initial increase of the indirect mutagenicity was observed at all application rates. The time required for observing this increase was inversely proportional to the initial sludge concentration. After a year of treatment, the indirect mutagenicity of all sludge-amended soils was not significantly different but was significantly different from the unamended soils. The persistence of the direct mutagenic activity of the sludge-amended soils was related to the sludge concentration, whereas the indirect mutagenic persistence was related to the relationship between easily degradable hydrocarbons and polynuclear aromatic hydrocarbons concentration and independent from the initial application rate. PMID:11596747

  4. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  5. Source location and characterization of volatile organic compound emissions at a petrochemical plant in Kaohsiung, Taiwan.

    PubMed

    Chen, Chin-Liang; Fang, Hung Yuan; Shu, Chi-Min

    2005-10-01

    This paper elucidated a novel approach to locating volatile organic compound (VOC) emission sources and characterizing their VOCs by database and contour plotting. The target of this survey was a petrochemical plant in Linyan, Kaohsiung County, Taiwan. Samples were taken with canisters from 25 sites inside this plant, twice per season, and analyzed by gas chromatography-mass spectrometry. The survey covered 1 whole year. By consolidated into a database, the data could be readily retrieved, statistically analyzed, and clearly presented in both table and graph forms. It followed from the cross-analysis of the database that the abundant types of VOCs were alkanes, alkenes/dienes, and aromatics, all of which accounted for 99% of total VOCs. By contour plotting, the emission sources for alkanes, aromatics, and alkenes/ dienes were successfully located. Through statistical analysis, the database could provide the range and 90% confidence interval of each species from each emission source. Both alkanes and alkene/dienes came from tank farm and naphtha cracking units and were mainly composed of C3-C5 members. Regarding aromatics, benzene, toluene, and xylenes were the primary species; they were emitted from tank farm, aromatic units, and xylene units. PMID:16295274

  6. Evaluation of stormwater BMPs for implementing industrial stormwater permitting strategy.

    PubMed

    Park, M-H; Ridgeway, I K; Swamikannu, X; Stenstrom, M K

    2010-01-01

    This study assesses the performance of stormwater best management practices (BMPs) in industrial sectors and their effluent quality to facilitate the development of technology-based numerical effluent criteria. Generally, retention ponds outperform other BMP types for reducing total suspended solids, and media filter and wetland basins outperform other BMPs for metal removal. Detention basins were not effective in reducing stormwater pollution although they can retain the stormwater before entering surface waters. However, many BMPs show high variability of influent and effluent concentrations and no significant difference between them, which makes it difficult to determine the effectiveness of the BMP. In some cases, low influent concentrations govern the distribution of effluent concentrations and effluent concentrations are often greater than inflow concentrations. The analysis results can be used to assist in the developing a watershed based multisector industrial stormwater general permit to ensure compliance with total maximum daily loads. The results also suggest the need for additional monitoring data. PMID:21099042

  7. Performance of an overland flow system for advanced treatment of wastewater plant effluent.

    PubMed

    Taebi, Amir; Droste, Ronald L

    2008-09-01

    Overland flow (OF) systems were evaluated and compared for advanced treatment of municipal and industrial effluents, including nutrients and nondegradable chemical oxygen demand (COD) removal. Three pilot plants were constructed at the Shahin Shahr Wastewater Treatment Plant (WWTP), Isfahan, Iran. Each pilot was assigned a specific wastewater and all were simultaneously operated for 8 months. Treatment of primary effluent, activated sludge secondary effluent, and lagoon effluent of textile wastewater was investigated at application rates (ARs) of 0.15, 0.25, and 0.35 m(3)m(-1)h(-1). During 5 months of stable operation after a 3-month acclimation period, mean removals of total 5-day biochemical oxygen demand (TBOD(5)), total COD (TCOD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and turbidity were 74.5%, 54.8%, 66.2%, 39.4%, 35.8%, and 67.7% for primary effluent; 52.9%, 52.9%, 66.5%, 44.4%, 39.8%, and 50.1% for activated sludge effluent; 65.7%, 58.7%, 70.3%, 41.7%, 41.3%, and 54.9% for textile wastewater lagoon effluent, respectively. The model of Smith and Schroeder, 1985. Field studies of the overland flow process for the treatment of raw and primary treated municipal wastewater. Journal of Water Pollution Control Federation 57, 785-794] was satisfactory for TBOD(5). For all treatment parameters a standard first-order removal model was inadequate to represent the data but a modified first-order model provided a satisfactory fit to the data. Based on the results of this study, it can be concluded that an OF system as advanced treatment had the ability to meet effluent discharge permit limits and was an economical replacement for stabilization ponds and mechanical treatment options. PMID:17499907

  8. The distance-to-source trend in vanadium and arsenic exposures for residents living near a petrochemical complex.

    PubMed

    Yuan, Tzu-Hsuen; Chio, Chia-Pin; Shie, Ruei-Hao; Pien, Wei-Hsu; Chan, Chang-Chuan

    2016-05-01

    Biological monitoring of vanadium (V) and arsenic (As) for residents living near a big petrochemical complex has not been previously studied. This study aims to investigate distance-to-source trends in urinary levels and dispersion-estimated concentrations of V and As in areas surrounding a petrochemical complex in central Taiwan. Our study subjects were 1424 residents living in the townships up to ~40 km from the petrochemical complex, and categorized as near (Zone A), further (Zone B) and furthest (Zone C) from the complex. Urinary and ambient V and As levels were analyzed by inductively coupled plasma mass spectrometry. Two-stage dispersion model was used to estimate V and As concentrations at each study subject's address. Multiple linear regression models were used to study the effects of distance-to-source and estimated air concentrations of V and As on the urinary V and As levels of study subjects. Area-wide levels of both V and As showed a high-to-low trend in urinary levels (μg/g-creatinine) from Zone A (V with 2.86±2.30 and As with 104.6±147.9) to Zone C (V with 0.73±0.72 and As with 73.8±90.8). For study subjects, urinary V and As levels were decreased by 0.09 and 1.17 μg/g-creatinine, respectively, with 1 km away from the emission source of the petrochemical complex, and urinary V levels were significantly elevated by 0.38 μg/g-creatinine with a 1 ng/m(3) increase in estimated ambient V concentrations at their addresses. Our study concludes a distance-to-source gradient in V and As exposures exists for residents living near a petrochemical complex with oil refineries and coal-fired power plants and two-stage dispersion model can predict such a trend for V when inhalation is the major exposure route, but not for As that exposure may be from multiple sources and exposure routes. PMID:25690586

  9. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  10. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  11. 40 CFR 422.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.47 Effluent limitations guidelines representing the degree of effluent... standards set forth in paragraph (c) of this section, whenever chronic or catastrophic precipitation...

  12. 40 CFR 422.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.47 Effluent limitations guidelines representing the degree of effluent... standards set forth in paragraph (c) of this section, whenever chronic or catastrophic precipitation...

  13. 40 CFR 422.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.47 Effluent limitations guidelines representing the degree of effluent... standards set forth in paragraph (c) of this section, whenever chronic or catastrophic precipitation...

  14. 40 CFR 422.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Defluorinated Phosphate Rock Subcategory § 422.47 Effluent limitations guidelines representing the degree of effluent... standards set forth in paragraph (c) of this section, whenever chronic or catastrophic precipitation...

  15. 40 CFR 446.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PAINT FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.13 Effluent limitations guidelines representing the degree of effluent...

  16. 40 CFR 446.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PAINT FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.13 Effluent limitations guidelines representing the degree of effluent...

  17. GUIDELINES FOR PARTICULATE SAMPLING IN GASEOUS EFFLUENTS FROM INDUSTRIAL PROCESSES

    EPA Science Inventory

    The report lists and briefly describes many instruments and techniques used to measure the concentration or size distribution of particles suspended in process streams. Standard (well established) methods are described, as well as some experimental methods and prototype instrumen...

  18. Liquid effluent study characterization data

    SciTech Connect

    Not Available

    1990-05-01

    During the development of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), public comments were received regarding reduction of the discharge of liquid effluents into the soil column. As a result, the US Department of Energy (DOE), with concurrence of the Washington State Department of Ecology (WSDE)and the US Environmental Protection Agency (EPA), committed to a special project designed to document the discharge history and the charter of Hanford Site liquid discharges. The results of this project will be used in determining the need for additional waste stream analysis, and/or to negotiate additional milestones pertaining to such discharges in the Tri-Party Agreement. Wastestream sampling data collected prior to October 1989 were reported in the Waste Stream Characterization Report. Preliminary Stream-specific Reports were prepared which evaluated that data and proposed dangerous waste designations for each stream. This document contains the wastestream sampling and analysis data collected as part of the liquid effluent study. Data contained in this report were obtained from samples collected from October 1989 through March 1990. Information is presented on the wastestreams that have been sampled, the parameters analyzed, and the dates and times at which the samples were collected. This information will be evaluated in the final Stream-Specific Reports. 9 refs., 4 tabs.

  19. 324 and 327 Facilities Environmental Effluent Specifications

    SciTech Connect

    JOHNSON, D.L.

    1999-08-30

    These effluent specifications address requirements for the 324/321 Facilities, which are undergoing stabilization activities. Effluent specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs.

  20. ACTIVATED CARBON TREATMENT OF KRAFT BLEACHING EFFLUENTS

    EPA Science Inventory

    The removal of color and organic contaminants by adsorption on activated carbon from the effluent of a kraft pulp bleaching plant was investigated in a pilot plant. The caustic bleach effluent, which contains 80% of the color from pulp bleaching, was decolorized successfully when...