Sample records for petrochemical effluents industries

  1. Study of different pretreatments for reverse osmosis reclamation of a petrochemical secondary effluent.

    PubMed

    Benito-Alcázar, C; Vincent-Vela, M C; Gozálvez-Zafrilla, J M; Lora-García, J

    2010-06-15

    Conventionally treated petrochemical wastewaters contain substantial quantities of hazardous pollutants. In addition, wastewater reuse is being enhanced as a consequence of the shortage of fresh water. Advanced petrochemical wastewater treatment for water reuse will reduce hazardous pollutants discharges as well as water consumption. Reverse osmosis is a suitable technology to obtain pure water. This work studies the adequacy of different pretreatments applied to a petrochemical secondary effluent to produce a suitable feeding for reverse osmosis treatment. The permeate obtained can be used in the petrochemical industry for different processes. In this work, several experiments (granulated activated carbon filtration, ultrafiltration, nanofiltration and granulated activated carbon filtration coupled with nanofiltration) were performed to improve the conventional pretreatment. Total organic carbon, chemical oxygen demand, turbidity and silt density index were used to evaluate water quality for reverse osmosis feeding. In granulated activated carbon filtration, all the measured parameters but silt density index indicated a good filtrate quality to feed reverse osmosis membranes. Although the ultrafiltration permeate obtained was suitable for reverse osmosis, nanofiltration and granulated activated carbon filtration coupled with NF provided a better effluent quality for reverse osmosis than the other pretreatments studied. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    PubMed

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  3. Chemical and petrochemical industry

    NASA Astrophysics Data System (ADS)

    Staszak, Katarzyna

    2018-03-01

    The potential sources of various metals in chemical and petrochemical processes are discussed. Special emphasis is put on the catalysts used in the industry. Their main applications, compositions, especially metal contents are presented both for fresh and spent ones. The focus is on the main types of metals used in catalysts: the platinum-group metals, the rare-earth elements, and the variety of transition metals. The analysis suggested that chemical and petrochemical sectors can be considered as the secondary source of metals. Because the utilization of spent refinery catalysts for metal recovery is potentially viable, different methods were applied. The conventional approaches used in metal reclamation as hydrometallurgy and pyrometallurgy, as well as new methods include bioleaching, were described. Some industrial solutions for metal recovery from spent solution were also presented.

  4. Components of sustainability considerations in management of petrochemical industries.

    PubMed

    Aryanasl, Amir; Ghodousi, Jamal; Arjmandi, Reza; Mansouri, Nabiollah

    2017-06-01

    Sustainability comprises three pillars of social, environmental, and economic aspects. Petrochemical industry has a great inter-related complex impact on social and economic development of societies and adverse impact on almost all environmental aspects and resource depletion in many countries, which make sustainability a crucial issue for petrochemical industries. This study was conducted to propose components of sustainability considerations in management of petrochemical industries.A combination of exploratory study-to prepare a preliminary list of components of sustainable business in petrochemical industries based on review of literature and Delphi-to obtain experts' view on this preliminary list and provide a detailed list of components and sub-components that should be addressed to bring sustainability to petrochemical industries, were used.Two sets of components were provided. First general components, which include stakeholders (staffs, society, and environment) with four sub-components, financial resources with 11 sub-components, improvement of design and processes with nine sub-components, policy and strategy of cleaner production with seven sub-components and leadership with seven sub-components. The second operational components included raw material supply and preparation with five, synthesis with ten, product separation and refinement with nine, product handling and storage with five, emission abatement with eight, and improvement of technology and equipment with 16 sub-components.

  5. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... petrochemical industries. (a) Except as otherwise authorized, and notwithstanding any contract entered into or... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to, oilfield...

  6. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... petrochemical industries. (a) Except as otherwise authorized, and notwithstanding any contract entered into or... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to, oilfield...

  7. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... petrochemical industries. (a) Except as otherwise authorized, and notwithstanding any contract entered into or... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to, oilfield...

  8. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns.

    PubMed

    Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan

    2018-07-15

    The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. [Influencing factors for reproductive health of female workers in petrochemical industry].

    PubMed

    Kou, Z X; Wang, S L; Chen, Z L; He, Y H; Yu, W L; Mei, L Y; Zhang, H D

    2018-02-20

    Objective: To investigate the reproductive health status of female workers in petrochemical industry, and to provide a reference for improving reproductive health status and developing preventive and control measures for female workers in petrochemical industry. Methods: A face-to-face questionnaire survey was performed from January to October, 2016. The Questionnaire on Women's Reproductive Health was used to investigate the reproductive health of female workers in petrochemical industry. The multivariate logistic regression model was used to identify the influencing factors for reproductive health of female workers in petrochemical industry. Results: Among the 7485 female workers, 1 268 (40.9%) had abnormal menstrual period, 1 437 (46.4%) had abnormal menstrual volume, 177 (28.5%) had hyperplasia of mammary glands, and 1 807 (24.6%) had gynecological inflammation. The reproductive system diseases in female workers in petrochemical industry were associated with the factors including age, marital status, education level, unhealthy living habits, abortion, overtime work, work shift, workload, video operation, occupational exposure, positive events, and negative events, and among these factors, negative events (odds ratio[ OR ]= 1.856) , unhealthy living habits ( OR =1.542) , and positive events ( OR =1.516) had greater impact on reproductive system diseases. Conclusion: Many chemical substances in the occupational environment of petrochemical industry can cause damage to the reproductive system, which not only affects the health of the female workers, but also poses potential threats to the health of their offspring. Occupational exposure, unhealthy living habits, overtime work, and work shift have great influence on reproductive system diseases in female workers.

  10. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    PubMed

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI 30 /SVI 5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g -1 to 80 mL·g -1 . Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  11. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to, oilfield...

  12. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to, oilfield...

  13. Safety and health in the petrochemical industry in Map Ta Phut, Thailand.

    PubMed

    Langkulsen, Uma; Vichit-Vadakan, Nuntavarn; Taptagaporn, Sasitorn

    2011-01-01

    Petrochemical industries are known as sources of many toxic chemicals. Safety and health risks of the petrochemical workers employed at Map Ta Phut Industrial Estate, located in Rayong, Thailand, are potentially high. The research materials consisted of documents emanating from statutory reports on safety in working with toxic chemicals and the results of interviews by questionnaire among 457 petrochemical workers regarding occupational health and safety issues. Most of workers who were working with toxic chemicals had knowledge and awareness of health risks and chemical hazards at work. We found that safe behavior at work through read the safety information among operational workers less than non-operational workers around 10%. Most of workers had perceived occupational health and safety management in their companies. Some companies revealed that they had not been performing biological monitoring of blood or urine for their health examination reports and that workplace exposure monitoring had not correlated well with health examination of workers. Our study suggested that occupational health and safety for petrochemical industries requires standards and guidelines for workers' health surveillance aimed at protection of workers.

  14. Regional Industry Workforce Development: The Gulf Coast Petrochemical Information Network

    ERIC Educational Resources Information Center

    Hodgin, Johnette; Muha, Susan

    2008-01-01

    The Gulf Coast Petrochemical Information Network (GC-PIN) is a workforce development partnership among industry businesses and area institutions of higher education in the four-county Gulf Coast region. GC-PIN partners develop new industry-specific curricula, foster industry career awareness, and retrain existing employees in new technologies.

  15. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and petrochemical industries in the Republic of South Sudan. 538.536 Section 538.536 Money and Finance... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South Sudan...

  16. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and petrochemical industries in the Republic of South Sudan. 538.536 Section 538.536 Money and Finance... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South Sudan...

  17. Metabolic response of environmentally isolated microorganisms to industrial effluents: Use of a newly described cell culture assay

    NASA Technical Reports Server (NTRS)

    Ferebee, Robert N.

    1992-01-01

    An environmental application using a microtiter culture assay to measure the metabolic sensitivity of microorganisms to petrochemical effluents will be tested. The Biomedical Operations and Research Branch at NASA JSC has recently developed a rapid and nondestructive method to measure cell growth and metabolism. Using a colorimetric procedure the uniquely modified assay allows the metabolic kinetics of prokaryotic and eukaryotic cells to be measured. Use of such an assay if adapted for the routine monitoring of waste products, process effluents, and environmentally hazardous substances may prove to be invaluable to the industrial community. The microtiter method as described will be tested using microorganisms isolated from the Galveston Bay aquatic habitat. The microbial isolates will be identified prior to testing using the automated systems available at JSC. Sodium dodecyl sulfate (SDS), cadmium, and lead will provide control toxic chemicals. The toxicity of industrial effluent from two industrial sites will be tested. An effort will be made to test the efficacy of this assay for measuring toxicity in a mixed culture community.

  18. Health effects of people living close to a petrochemical industrial estate in Thailand.

    PubMed

    Kongtip, Pornpimol; Singkaew, Panawadee; Yoosook, Witaya; Chantanakul, Suttinun; Sujiratat, Dusit

    2013-12-01

    An acute health effect of people living near the petrochemical industrial estate in Thailand was assessed using a panel study design. The populations in communities near the petrochemical industrial estates were recruited. The daily air pollutant concentrations, daily percentage of respiratory and other health symptoms reported were collected for 63 days. The effect of air pollutants to reported symptoms of people were estimated by adjusted odds ratios and 95% confidence interval using binary logistic regression. The significant associations were found with the adjusted odds ratios of 38.01 for wheezing, 18.63 for shortness of breath, 4.30 for eye irritation and 3.58 for dizziness for total volatile organic compounds (Total VOCs). The adjusted odds ratio for carbon monoxide (CO2) was 7.71 for cough, 4.55 for eye irritation and 3.53 for weakness and the adjusted odds ratio for ozone (O3) was 1.02 for nose congestion, sore throat and 1.05 for phlegm. The results showed that the people living near petrochemical industrial estate had acute adverse health effects, shortness of breath, eye irritation, dizziness, cough, nose congestion, sore throat, phlegm and weakness from exposure to industrial air pollutants.

  19. Trends in high performance compressors for petrochemical and natural gas industry in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  20. [Asbestos exposure in the petrochemical industry and interaction with other occupational risk factors: analysis of the last ten years INAIL data].

    PubMed

    Innocenzi, Mariano; Saldutti, Elisa; Bindi, Luciano; Di Giacobbe, Andrea; Mercadante, Lucina; Innocenzi, Ludovico

    2013-01-01

    The present study analyzes the trend of occupational diseases, in particular those asbestos-related, in the petrochemical industry from 2002 to 2011, taking into account the number of diseases claimed to and compensated by the National Institute for Insurance of Workplace Accidents and Occupational Diseases (INAIL), assessing risk factors and possible interactions. To identify the research areas, we selected INAIL cost codes, related to the petrochemical industry. In the last five years, over the total claims submitted by industrial workers, 54% of claims for asbestosis, 76.7% of claims for neoplastic diseases, and 78.6% of claims for pleural plaques have been compensated. In the petrochemical industry, such percentages are respectively 59.2%, 81.6% and 82.7%. These data suggest possible interactions between asbestos and other risk factors, particularly significant in the petrochemical industry, although difficult to identify, as well as an initial underestimation of asbestos exposure in this industry.

  1. A demonstration of biofiltration for VOC removal in petrochemical industries.

    PubMed

    Zhao, Lan; Huang, Shaobin; Wei, Zongmin

    2014-05-01

    A biotrickling filter demo has been set up in a petrochemical factory in Sinopec Group for about 10 months with a maximum inlet gas flow rate of 3000 m3 h(-1). The purpose of this project is to assess the ability of the biotrickling filter to remove hardly biodegradable VOCs such as benzene, toluene and xylene which are recalcitrant and poorly water soluble and commonly found in petrochemical factories. Light-weight hollow ceramic balls (Φ 5-8 cm) were used as the packing media treated with large amounts of circulating water (2.4 m3 m(-2) h(-1)) added with bacterial species. The controlled empty bed retention time (EBRT) of 240 s is a key parameter for reaching a removal efficiency of 95% for benzene, toluene, xylene, and 90% for total hydrocarbons. The demo has been successfully adopted and practically applied in waste air treatments in many petrochemical industries for about two years. The net inlet concentrations of benzene, toluene and xylene were varied from 0.5 to 3 g m(-3). The biofiltration process is highly efficient for the removal of hydrophobic and recalcitrant VOCs with various concentrations from the petrochemical factories. The SEM analysis of the bacterial community in the BTF during VOC removal showed that Pseudomonas putida and Klebsiella sp. phylum were dominant and shutdown periods could play a role in forming the community structural differences and leading to the changes of removal efficiencies.

  2. Performance of Nitrogen and Phosphorus Removal in Petrochemical Wastewater by Zeolited Fly Ash

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Gu, Guizhou; Ji, Shenghao

    2018-05-01

    The zeolitized fly ash was synthesized by alkali melt hydrothermal method. The cation exchange capacity of zeolitized fly ash was far greater than the raw material fly ash. The main component was NaP1 zeolite (Na6Al6Si10O32·12H2O), followed by mullite, and a small amount of heterozygous crystals. The effect of synthetic zeolite dosage, pH value, adsorption time and reaction temperature on the effect of nitrogen and phosphorus removal in petrochemical wastewater were investigated. The results showed that when the zeolitized fly ash dosage was 9 g/L, the petrochemical wastewater pH value was 6∼8, adsorption time was 30 min and the reaction temperature was 30°C, the synthetic zeolite had the best effect on the removal of TN and TP in petrochemical wastewater, and the removal was 65.5%, 91.4% respectively. Besides, the concentrations of TN and TP in the effluent were 11.04 mg/L, 0.31 mg/L respectively. The concentrations met the sewage discharge standard in petrochemical industry of "Liaoning sewage comprehensive discharge standard" (DB21 1627-2008). This study was to realize the comprehensive utilization of solid waste and achieve the purpose of waste and waste.

  3. [Evolution of technology and occupational exposures in petrochemical industry and in petroleum refining].

    PubMed

    Cottica, Danilo; Grignani, Elena

    2013-01-01

    The industry of oil refining and petrochemical play an important role in terms of number of employees in the Italian production. Often the terms "petroleum refining" and "petrochemical" are used interchangeably to define processes that occur in complex plants, which grow outdoors on large surfaces and a visual impact is not irrelevant. In reality, the two areas involve potential exposure to different chemical agents, related to raw materials processed and the specific products. The petrochemical uses as raw materials, the oil fractions, obtained by distillation in the refinery, or natural gas; petrochemical products are, usually, single compounds with a specific degree of purity, used as basic raw materials for the entire industry of organic chemistry, from the production of plastics to pharmaceuticals. The oil refining, that is the topic of this paper, processes mainly oil to obtain mixtures of hydrocarbon compounds, the products of which are specified on the basis of aptitude for use. For example gasolines, are obtained by mixing of fractions of the first distillation, reforming products, antiknock. The paper illustrates, necessarily broadly due to the complexity of the productive sectors, the technological and organizational changes that have led to a significant reduction of occupational exposure to chemical agents, the results of environmental monitoring carried out in some refineries both during routine conditions that during scheduled maintenance activities with plant shutdown and a store of petroleum products. The chemical agents measured are typical for presence, physico-chemical properties and toxicological characteristics of the manufacturing processes of petroleum products like benzene, toluene, xylenes, ethyl benzene, n-hexane, Volatile Hydrocarbons belonging to gasoline, kerosene, diesel fuel. Data related to both personal sampling and fixed positions.

  4. Treatment of industrial effluent water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskii, Yu.N.

    1982-09-01

    This article reports on a thematic exhibition on ''New Developments in Treatment of Natural and Effluent Water'' in the Sanitary-Technical Construction Section at the Exhibition of Achievements of the National Economy of the USSR. The exhibition acquainted visitors with the achievements of leading organizations in different branches of industry with respect to treatment of natural and industrial effluent water. The Kharkov ''Vodkanalproekt'' Institute and the Kharkov affiliate of the All-Union Scientific-Research Institute of Water and Geodesy has jointly developed a ''Polymer-25'' filter for removal of oil products from nonexplosive effluent water discharged by machine building plants. A Baku affiliate hasmore » developed a new ShFP-1 screw-type press filter for dewatering the sediments from water treatment plants as well as for sediments from chemical, food, and other types of plants. The State Institute for Applied Chemistry has designed a continuous process plant for treating effluent water and removing toxic organic waste by converting them into mineral salts with high efficiency.« less

  5. The Effect of Social Trust on Citizens’ Health Risk Perception in the Context of a Petrochemical Industrial Complex

    PubMed Central

    López-Navarro, Miguel Ángel; Llorens-Monzonís, Jaume; Tortosa-Edo, Vicente

    2013-01-01

    Perceived risk of environmental threats often translates into psychological stress with a wide range of effects on health and well-being. Petrochemical industrial complexes constitute one of the sites that can cause considerable pollution and health problems. The uncertainty around emissions results in a perception of risk for citizens residing in neighboring areas, which translates into anxiety and physiological stress. In this context, social trust is a key factor in managing the perceived risk. In the case of industrial risks, it is essential to distinguish between trust in the companies that make up the industry, and trust in public institutions. In the context of a petrochemical industrial complex located in the port of Castellón (Spain), this paper primarily discusses how trust—both in the companies located in the petrochemical complex and in the public institutions—affects citizens’ health risk perception. The research findings confirm that while the trust in companies negatively affects citizens’ health risk perception, trust in public institutions does not exert a direct and significant effect. Analysis also revealed that trust in public institutions and health risk perception are essentially linked indirectly (through trust in companies). PMID:23337129

  6. Risk factors affecting visual-motor coordination deficit among children residing near a petrochemical industrial estate.

    PubMed

    Aungudornpukdee, P; Vichit-Vadakan, N

    2009-12-01

    Thailand has been changed to rapid urbanization and industrialization since 1980s. During 1992 through 1996, the number of industrial factories in Rayong province increased very sharply. The major types of industries are petrol-chemical and plastic production. However, after the petrochemical industry boomed, the higher demand led to an industrial area expansion. The establishment of factories in this area leads to serious environmental and health impacts. The study aims to investigate the factors that affect visual-motor coordination deficit among children, 6-13 years of age, residing near the Petrochemical Industrial Estate, Map Ta Phut, Rayong province. A population-based cross-sectional study was employed for collecting data on neurobehavioral effects using the Digit Symbol Test. The study found one-third of 2,956 children presented with visual-motor coordination deficits. Three factors were identified that caused children to have a higher risk of visual-motor coordination deficits: gender (adjusted OR 1.934), monthly parental income (range of adjusted OR 1.977 - 2.612), and household environmental tobacco smoke (adjusted OR 1.284), while age (adjusted OR 0.874) and living period (adjusted OR 0.954) in study areas were reversed effects on visual-motor coordination deficit among children. The finding indicated that children with visual-motor coordination deficit were affected by gender, monthly parental income, age of children, length of living period, and household environmental tobacco smoke.

  7. The potential for effluent trading in the energy industries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.; Environmental Assessment

    1998-01-01

    In January 1996, the US Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades: point source/point source, point source/nonpoint source, pretreatment, intraplant and nonpoint source/nonpoint source. This paper evaluates the feasibility of implementing these types of effluent trading for facilities in the oil and gas, electric power and coal industries. This paper finds that the potential for effluent trading in these industries is limited because trades would generally need to involve toxic pollutants, which can only be traded undermore » a narrow range of circumstances. However, good potential exists for other types of water-related trades that do not directly involve effluents (e.g. wetlands mitigation banking and voluntary environmental projects). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.« less

  8. Characteristics of Occupational Exposure to Benzene during Turnaround in the Petrochemical Industries

    PubMed Central

    Shin, Jung-Ah; Lee, Byung-Kyu; Kwon, Jiwoon; Lee, Naroo; Chung, Kwang-Jae; Lee, Jong-Han; Lee, In-Seop; Kang, Seong-Kyu; Jang, Jae-Kil

    2010-01-01

    Objectives The level of benzene exposure in the petrochemical industry during regular operation has been well established, but not in turnaround (TA), where high exposure may occur. In this study, the characteristics of occupational exposure to benzene during TA in the petrochemical companies were investigated in order to determine the best management strategies and improve the working environment. This was accomplished by evaluating the exposure level for the workers working in environments where benzene was being produced or used as an ingredient during the unit process. Methods From 2003 to 2008, a total of 705 workers in three petrochemical companies in Korea were studied. Long- and short-term (< 1 hr) samples were taken during TAs. TA was classified into three stages: shut-down, maintenance and start-up. All works were classified into 12 occupation categories. Results The long-term geometric mean (GM) benzene exposure level was 0.025 (5.82) ppm (0.005-42.120 ppm) and the short-term exposure concentration during TA was 0.020 (17.42) ppm (0.005-61.855 ppm). The proportions of TA samples exceeding the time-weighted average, occupational exposure level (TWA-OEL in Korea, 1 ppm) and the short-term exposure limit (STEL-OEL, 5 ppm) were 4.1% (20 samples of 488) and 6.0% (13 samples of 217), respectively. The results for the benzene exposure levels and the rates of exceeding the OEL were both statistically significant (p < 0.05). Among the 12 job categories of petrochemical workers, mechanical engineers, plumbers, welders, fieldman and scaffolding workers exhibited long-term samples that exceeded the OEL of benzene, and the rate of exceeding the OEL was statistically significant for the first two occupations (p < 0.05). Conclusion These findings suggest that the periodic work environment must be assessed during non-routine works such as TA. PMID:22953163

  9. Characteristics of Occupational Exposure to Benzene during Turnaround in the Petrochemical Industries.

    PubMed

    Chung, Eun-Kyo; Shin, Jung-Ah; Lee, Byung-Kyu; Kwon, Jiwoon; Lee, Naroo; Chung, Kwang-Jae; Lee, Jong-Han; Lee, In-Seop; Kang, Seong-Kyu; Jang, Jae-Kil

    2010-09-01

    The level of benzene exposure in the petrochemical industry during regular operation has been well established, but not in turnaround (TA), where high exposure may occur. In this study, the characteristics of occupational exposure to benzene during TA in the petrochemical companies were investigated in order to determine the best management strategies and improve the working environment. This was accomplished by evaluating the exposure level for the workers working in environments where benzene was being produced or used as an ingredient during the unit process. From 2003 to 2008, a total of 705 workers in three petrochemical companies in Korea were studied. Long- and short-term (< 1 hr) samples were taken during TAs. TA was classified into three stages: shut-down, maintenance and start-up. All works were classified into 12 occupation categories. The long-term geometric mean (GM) benzene exposure level was 0.025 (5.82) ppm (0.005-42.120 ppm) and the short-term exposure concentration during TA was 0.020 (17.42) ppm (0.005-61.855 ppm). The proportions of TA samples exceeding the time-weighted average, occupational exposure level (TWA-OEL in Korea, 1 ppm) and the short-term exposure limit (STEL-OEL, 5 ppm) were 4.1% (20 samples of 488) and 6.0% (13 samples of 217), respectively. The results for the benzene exposure levels and the rates of exceeding the OEL were both statistically significant (p < 0.05). Among the 12 job categories of petrochemical workers, mechanical engineers, plumbers, welders, fieldman and scaffolding workers exhibited long-term samples that exceeded the OEL of benzene, and the rate of exceeding the OEL was statistically significant for the first two occupations (p < 0.05). These findings suggest that the periodic work environment must be assessed during non-routine works such as TA.

  10. Cyanobacterial flora from polluted industrial effluents.

    PubMed

    Parikh, Amit; Shah, Vishal; Madamwar, Datta

    2006-05-01

    Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.

  11. A modular success story the Saudi petrochemical project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirven, J.B.; Swenson, C.R.

    1986-01-01

    The Saudi Petrochemical Company is referred to within this paper as ''Sadaf''. Sadaf is the phonetic spelling of the Arabic word for seashell and is a joint venture of Saudi Basic Industries Corporation (SABIC) and Pecten Arabian Ltd., an affiliate of Shell Oil Comapny, U.S.A. SABIC is a joint stock corporation responsible for the development of basic industries in the Kingdom in the petrochemicals, metals and fertilizers field.

  12. Electrocoagulation for the treatment of textile industry effluent--a review.

    PubMed

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.

  13. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    PubMed

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  14. The feasibility of effluent trading in the energy industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all pointmore » sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.« less

  15. Barry Commoner Assails Petrochemicals

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses Commoner's ideas on the social value of the petrochemical industry and his suggestions for curtailment or elimination of its productive operation to produce a higher environmental quality for mankind at a relatively low loss in social benefit. (CC)

  16. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  17. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.

  18. Decreased fish diversity found near marble industry effluents in River Barandu, Pakistan.

    PubMed

    Mulk, Shahi; Korai, Abdul Latif; Azizullah, Azizullah; Khattak, Muhammad Nasir Khan

    2016-01-01

    In a recently published study we observed that effluents from marble industry affected physicochemical characteristics of River Barandu in District Buner, Pakistan. These changes in water quality due to marble effluents may affect fish community. The present study was therefore conducted to evaluate the impacts of marble industry effluents on fish communities in River Barandu using abundance, richness, diversity and evenness of fish species as end point criteria. The fish samples were collected by local fishermen on monthly basis from three selected sites (upstream, effluents/industrial, and downstream sites). During the study period, a total of 18 fish species were found belonging to 4 orders, 5 families and 11 genera. The Cyprinidae was observed to be the dominant family at all the three selected sites. Lower abundance and species diversity was observed at the industrial (22%) and downstream sites (33%) as compared to the upstream site (45%). Effluents of marble industry were associated with lower abundance of species in River Barandu. It is recommended that industries should be shifted away from the vicinity of river and their effluents must be treated before discharging to prevent further loss of fish abundance and diversity in the River.

  19. Hurricane Harvey, Houston's Petrochemical Industry, and US Chemical Safety Policy: Impacts to Environmental Justice Communities

    NASA Astrophysics Data System (ADS)

    Goldman, G. T.; Johnson, C.; Gutierrez, A.; Declet-Barreto, J.; Berman, E.; Bergman, A.

    2017-12-01

    When Hurricane Harvey made landfall outside Houston, Texas, the storm's wind speeds and unprecedented precipitation caused significant damage to the region's petrochemical infrastructure. Most notably, the company Arkema's Crosby facility suffered a power failure that led to explosions and incineration of six of its peroxide tanks. Chemicals released into the air from the explosions sent 15 emergency responders to the hospital with severe respiratory conditions and led to the evacuation of hundreds of surrounding households. Other petrochemical facilities faced other damages that resulted in unsafe and acute chemical releases into the air and water. What impacts did such chemical disasters have on the surrounding communities and emergency responders during Harvey's aftermath? What steps might companies have taken to prevent such chemical releases? And what chemical safety policies might have ensured that such disaster risks were mitigated? In this talk we will report on a survey of the extent of damage to Houston's oil and gas infrastructure and related chemical releases and discuss the role of federal chemical safety policy in preventing and mitigating the potential for such risks for future storms and other extreme weather and climate events. We will also discuss how these chemical disasters created acute toxics exposures on environmental justice communities already overburdened with chronic exposures from the petrochemical industry.

  20. Toxicity and biodegradability of high strength/toxic organic liquid industrial effluents and hazardous landfill leachates.

    PubMed

    Naidoo, V; du Preez, M; Rakgotho, T; Odhav, B; Buckley, C A

    2002-01-01

    Industrial effluents and leachates from hazardous landfill sites were tested for toxicity using the anaerobic toxicity assay. This test was done on several industrial effluents (brewery spent grain effluent, a chemical industry effluent, size effluent), and several hazardous landfill leachates giving vastly different toxicity results. The brewery effluent, spent grain effluent and size effluent were found to be less toxic than the chemical effluent and hazardous landfill leachate samples. The chemical industry effluent was found to be most toxic. Leachate samples from the H:h classified hazardous landfill site were found to be less toxic at high concentrations (40% (v/v)) while the H:H hazardous landfill leachate samples were found to be more toxic even at low concentrations of 4% (v/v). The 30 d biochemical methane potential tests revealed that the brewery effluent, organic spent grain effluent and size effluent were 89%, 63%, and 68% biodegradable, respectively. The leachate from Holfontein hazardous landfill site was least biodegradable (19%) while the chemical effluent and Aloes leachate were 29% and 32% biodegradable under anaerobic conditions.

  1. Biomass in a petrochemical world

    PubMed Central

    Roddy, Dermot J.

    2013-01-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted. PMID:24427511

  2. Bioremediation of a Complex Industrial Effluent by Biosorbents Derived from Freshwater Macroalgae

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Hu, Yi; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent. PMID:24919058

  3. Wastewater Treatment Costs and Outlays in Organic Petrochemicals: Standards Versus Taxes With Methodology Suggestions for Marginal Cost Pricing and Analysis

    NASA Astrophysics Data System (ADS)

    Thompson, Russell G.; Singleton, F. D., Jr.

    1986-04-01

    With the methodology recommended by Baumol and Oates, comparable estimates of wastewater treatment costs and industry outlays are developed for effluent standard and effluent tax instruments for pollution abatement in five hypothetical organic petrochemicals (olefins) plants. The computational method uses a nonlinear simulation model for wastewater treatment to estimate the system state inputs for linear programming cost estimation, following a practice developed in a National Science Foundation (Research Applied to National Needs) study at the University of Houston and used to estimate Houston Ship Channel pollution abatement costs for the National Commission on Water Quality. Focusing on best practical and best available technology standards, with effluent taxes adjusted to give nearly equal pollution discharges, shows that average daily treatment costs (and the confidence intervals for treatment cost) would always be less for the effluent tax than for the effluent standard approach. However, industry's total outlay for these treatment costs, plus effluent taxes, would always be greater for the effluent tax approach than the total treatment costs would be for the effluent standard approach. Thus the practical necessity of showing smaller outlays as a prerequisite for a policy change toward efficiency dictates the need to link the economics at the microlevel with that at the macrolevel. Aggregation of the plants into a programming modeling basis for individual sectors and for the economy would provide a sound basis for effective policy reform, because the opportunity costs of the salient regulatory policies would be captured. Then, the government's policymakers would have the informational insights necessary to legislate more efficient environmental policies in light of the wealth distribution effects.

  4. The feasibility of effluent trading in the oil and gas industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades,more » for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.« less

  5. Toxicity assessment on combined biological treatment of pharmaceutical industry effluents.

    PubMed

    Inanc, B; Calli, B; Alp, K; Ciner, F; Mertoglu, B; Ozturk, I

    2002-01-01

    This paper describes the wastewater characterization and aerobic/anaerobic treatability (oxygen uptake rate and biogas production measurement) of chemical-synthesis based pharmaceutical industry effluents in a nearby baker's yeast industry treatment plant. Preliminary experiments by the industry had indicated strong anaerobic toxicity. On the other hand, aerobic treatability was also uncertain due to complexity and unknown composition of the wastewater. The work in this study has indicated that the effluents of the pharmaceutical industry can be treated without toxicity in the aerobic stage of the treatment plant. Methanogenic activity tests with anaerobic sludge from the anaerobic treatment stage of the wastewater treatment plant and acetate as substrate have confirmed the strong toxicity, while showing that 30 min aeration or coagulation with an alum dose of 300 mg/l is sufficient for reducing the toxicity almost completely. Powdered activated carbon, lime and ferric chloride (100-1,000 mg/l) had no effect on reduction of the toxicity. Consequently, the pharmaceutical industry was recommended to treat its effluents in the anaerobic stage of the nearby baker's yeast industry wastewater treatment plan at which there will be no VOC emission and toxicity problem, provided that pretreatment is done.

  6. Pollution of Nigerian Aquatic Ecosystems by Industrial Effluents: Effects on Fish Productivity

    NASA Astrophysics Data System (ADS)

    Nwagwu, S. N.; Kuyoro, E. O.; Agboola, D. M.; Salau, K. S.; Kuyoro, T. O.

    2016-02-01

    Nigeria is uniquely endowed with vast water resources. The near-shore, estuaries, rivers, lakes and pond all taken together, offer tremendous opportunities for fish production. Globally, water bodies are primary means for disposal of waste especially the effluents from industrial, municipal, sewage and agricultural practices near the water body. Studies carried out in most cities in Nigeria has shown that industrial effluent is one of the main sources of water pollution in Nigeria and less than 10% of industries in Nigeria treat their effluents before discharging them into the water bodies. This effluent can alter the physical, chemical and biological nature of the receiving water body resulting in the death of the inhabiting organisms including fish. Untreated industrial waste discharged into water bodies have resulted in eutrophication of aquatic ecosystem as evidence by substantial algal bloom leading to dissolve oxygen depletion and eventually massive mortality of fish and other organisms. Industries like textile producing factory, paper manufacturing plants, oil refinery, brewery and fermentation factory and metal producing industries discharge their wastes into the aquatic ecosystem. These industrial wastes contain pollutants like acids, heavy metals, oil, cyanide, organic chemicals, pesticides, polychlorinated biphenyls, dioxins etc. Some of these pollutants are carcinogenic, mutagenic and teratogenic while some are poisonous depending on the level of exposure and intake by aquatic organisms and man. These pollutants affect the biological growth and reproduction of fishes in the aquatic ecosystem thereby reducing the amount of captured fishes. Fish and other aquatic lives face total extinction due to destruction of aquatic lives and natural habitats by pollution of water bodies. Effluents and wastes produced by industries should be minimised by using low and non-waste technologies; and effluents should be properly treated before they are discharged into

  7. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    PubMed

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-06-01

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. © The Author(s) 2014.

  8. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries.

    PubMed

    Bielen, Ana; Šimatović, Ana; Kosić-Vukšić, Josipa; Senta, Ivan; Ahel, Marijan; Babić, Sanja; Jurina, Tamara; González Plaza, Juan José; Milaković, Milena; Udiković-Kolić, Nikolina

    2017-12-01

    Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 μg/L). Accordingly, the highest total concentrations (up to 30 μg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low μg/L to approx. 200 μg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few μg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Impact of industrial effluents on the biochemical composition of fresh water fish Labeo rohita.

    PubMed

    Muley, D V; Karanjkar, D M; Maske, S V

    2007-04-01

    In acute toxicity (96 hr) experiment the fingerlings of freshwater fish Labeo rohita was exposed to tannery, electroplating and textile mill effluents. The LC0 and LC50 concentrations were 15% and 20% for tannery effluents, 3% and 6% for electroplating effluents and 18% and 22% for textile mill effluents respectively. It was found that, electroplating effluent was more toxic than tannery and textile mill wastes. After acute toxicity experiments for different industrial effluents, various tissues viz. gill, liver, muscle and kidney were obtained separately from control, LC0 and LC50 groups. These tissues were used for biochemical estimations. The glycogen content in all the tissues decreased considerably upon acute toxicity of three industrial effluents except muscle in LC50 group of tannery effluent and kidney in LC50 group of textile mill effluent, when compared to control group. The total protein content decreased in all tissues in three effluents except gills in LC50 group of tannery effluent, kidney in LC50 group of electroplating effluent and kidney in LC0 group of textile mill effluent. In general total lipid content decreased in all tissues after acute exposure when compared to control group. The results obtained in the present study showed that, the industrial effluents from tannery, electroplating and textile mills caused marked depletion in biochemical composition in various tissues of the fish Labeo rohita after acute exposure.

  10. Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents).

    PubMed

    Sponza, Delia Teresa

    2002-01-01

    Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses

  11. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale.

    PubMed

    Boonpeng, Chaiwat; Polyiam, Wetchasart; Sriviboon, Chutima; Sangiamdee, Duangkamon; Watthana, Santi; Nimis, Pier Luigi; Boonpragob, Kansri

    2017-05-01

    Several trace elements discharged by the petrochemical industry are toxic to humans and the ecosystem. In this study, we assessed airborne trace elements in the vicinity of the Map Ta Phut petrochemical industrial complex in Thailand by transplanting the lichen Parmotrema tinctorum to eight industrial, two rural, and one clean air sites between October 2013 and June 2014. After 242 days, the concentrations of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Ti, V, and Zn in lichens at most industrial sites were higher than those at the rural and the control sites; in particular, As, Cu, Mo, Sb, V, and Zn were significantly higher than at the control site (p < 0.05). Contamination factors (CFs) indicated that Cd, Cu, Mo, and Sb, which have severe health impacts, heavily contaminated at most industrial sites. Principal component analysis (PCA) showed that most elements were associated with industry, with lesser contributions from traffic and agriculture. Based on the pollution load indexes (PLIs), two industrial sites were highly polluted, five were moderately polluted, and one had a low pollution level, whereas the pollution load at the rural sites was comparable to background levels. This study reinforces the utility of lichens as cost-effective biomonitors of airborne elements, suitable for use in developing countries, where adequate numbers of air monitoring instruments are unavailable due to financial, technical, and policy constraints.

  12. Visual functions of workers exposed to organic solvents in petrochemical industries

    PubMed Central

    Indhushree, R.; Monica, R.; Coral, K.; Angayarkanni, Narayanasamy; Punitham, R.; Subburathinam, B. M.; Krishnakumar, R.; Santanam, P. P.

    2016-01-01

    Aim: The purpose of this study was to evaluate the visual functions of workers exposed to organic solvents in petrochemical industries. Materials and Methods: Thirty workers from the petroleum refinery and 30 age-matched controls (mean age) were recruited. Visual functions and occupational exposure levels were assessed among both the groups. Visual acuity, contrast sensitivity, color vision, and visual fields were evaluated at the workplace. The biological samples, namely blood and urine, were collected at the workplace and transported to the laboratory for analysis. The urinary excretion of hippuric and methylhippuric acid as well as creatinine was measured by high performance liquid chromatography. Results: The mean age of the workers and controls were 39.7 ± 7.6 years and 38.6 ± 8.1, years respectively. The mean years of experience of the workers were 15.6 ± 6.8 years. Visual acuity was >0.01 LogMAR among both the control and case groups. The contrast sensitivity was reduced at 12cpd among workers. Comparison between groups was done using independent sample t-test. The mean difference in color confusion index was 0.11 ± 0.05 (P = 0.037*). The mean difference in visual fields was −0.31 ± 0.36 dB (P = 0.933). The mean difference in urinary hippuric acid level (urinary metabolite of toluene) between the groups was 0.19 ± 0.96 g/g creatinine (P = 0.049FNx01). The mean difference in the excretion of methylhippuric acid (urinary metabolite of xylene) was 0.06 ± 0.04g/g creatinine (P = 0.154). We also found that exposure was a significant risk factor for color vision defect with an odds ratio of 4.43 (95% CI: 1.36–14.4); P = 0.013. Conclusion: The study results showed that contrast sensitivity and color vision were affected among workers in petrochemical industry. PMID:28446838

  13. Annoyance and Worry in a Petrochemical Industrial Area—Prevalence, Time Trends and Risk Indicators

    PubMed Central

    Axelsson, Gösta; Stockfelt, Leo; Andersson, Eva; Gidlof-Gunnarsson, Anita; Sallsten, Gerd; Barregard, Lars

    2013-01-01

    In 1992, 1998, and 2006, questionnaires were sent to stratified samples of residents aged 18–75 years living near petrochemical industries (n = 600–800 people on each occasion) and in a control area (n = 200–1,000). The aims were to estimate the long-term prevalence and change over time of annoyance caused by industrial odour, industrial noise, and worries about possible health effects, and to identify risk indicators. In 2006, 20% were annoyed by industrial odour, 27% by industrial noise (1–4% in the control area), and 40–50% were worried about health effects or industrial accidents (10–20% in the control area). Multiple logistic regression analyses revealed significantly lower prevalence of odour annoyance in 1998 and 2006 than in 1992, while industrial noise annoyance increased significantly over time. The prevalence of worry remained constant. Risk of odour annoyance increased with female sex, worry of health effects, annoyance by motor vehicle exhausts and industrial noise. Industrial noise annoyance was associated with traffic noise annoyance and worry of health effects of traffic. Health-risk worry due to industrial air pollution was associated with female sex, having children, annoyance due to dust/soot in the air, and worry of traffic air pollution. PMID:23552810

  14. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    PubMed Central

    2014-01-01

    Background Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. Results In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of “green” gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Conclusions Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants’ metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost

  15. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production.

    PubMed

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Gujar, Amit; Rochfort, Simone; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-02-28

    Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of "green" gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants' metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost-effective solution for efficient bio

  16. 88. ARAIII. "Petrochem" heater is hoisted over south exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. ARA-III. "Petro-chem" heater is hoisted over south exterior wall of heater pit in GCRE reactor building (ARA-608). Printing on heater says, "Petro-chem iso-flow furnace; American industrial fabrications, inc." Camera facing north. January 7, 1959. Ineel photo no. 529-124. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. Remediation System Evaluation, Mattiace Petrochemical Superfund Site

    EPA Pesticide Factsheets

    The Mattiace Petrochemical Superfund Site, located in an industrial area near the harbor of Glen Cove, isapproximately 1.9 acres and has extensive soil and groundwater contamination of volatile organiccompounds stemming from the operations of...

  18. Determination of Phenols and Trimethylamine in Industrial Effluents

    NASA Technical Reports Server (NTRS)

    Levaggi, D. A.; Feldstein, M.

    1971-01-01

    For regulatory purposes to control certain odorous compounds the analysis of phenols and trimethylamines in industrial effluents is necessary. The Bay Area Air Pollution Control District laboratory has been determining these gases by gas chromatographic techniques. The procedures for sample collection, preparation for analysis and determination are described in detail. Typical data from various sources showing the effect of proposed regulations is shown. Extensive sampling and usage of these procedures has shown them to be accurate, reliable and suitable to all types of source effluents.

  19. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    PubMed

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).

    PubMed

    Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru

    2012-11-01

    Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.

  1. Effect of textile industrial effluent on tree plantation and soil chemistry.

    PubMed

    Singh, G; Bala, N; Rathod, T R; Singh, B

    2001-01-01

    A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.

  2. Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.

    PubMed

    Ibrahim, Wael M; Mutawie, Hawazin H

    2013-02-01

    Three different species of nonliving red algal biomass Laurancia obtusa, Geldiella acerosa and Hypnea sp. were used to build three types of fixed-bed column for the removal of toxic heavy metal ions such as Cu(2+), Zn(2+), Mn(2+) and Ni(2+) from industrial effluent. In general, the highest efficiency of metal ion bioremoval was recorded for algal column of L. obtusa followed by G. acerosa and the lowest one was recorded for Hypnea sp., with mean removal values of 94%, 85% and 71%, respectively. The obtained results showed that biological treatments of industrial effluents with these algal columns, using standard algal biotest, Pseudokirchneriella subcapitata, were capable of reducing effluent toxicities from 75% to 15%, respectively. Red algal column may be considered as an inexpensive and efficient alternative treatment for conventional removal technology, for sequestering heavy metal ions from industrial effluents.

  3. Physicochemical assessment of industrial textile effluents of Punjab (India)

    NASA Astrophysics Data System (ADS)

    Bhatia, Deepika; Sharma, Neeta Raj; Kanwar, Ramesh; Singh, Joginder

    2018-06-01

    Urbanization and industrialization are generating huge quantities of untreated wastewater leading to increased water pollution and human diseases in India. The textile industry is one of the leading polluters of surface water and consumes about 200-270 tons of water to produce 1 ton of textile product. The primary objective of the present study was to investigate the pollution potential of textile industry effluent draining into Buddha Nallah stream located in Ludhiana, Punjab (India), and determine the seasonal variation in physicochemical parameters (pH, water temperature, total dissolved solids, total suspended solids, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of Buddha Nallah water. During summer months, for Site 1 and Site 2, the value of pH was in the alkaline range of 8.78 ± 0.47 and 8.51 ± 0.41, respectively. The values of pH in the rainy season were found to be in the range of 7.38 ± 0.58 and 7.11 ± 0.59 for Site 1 and Site 2, respectively. In the autumn and winter seasons, the average pH values were found to be in the range of 8.58 ± 1.40 and 8.33 ± 0.970, respectively. The maximum mean temperature in summer was recorded as 41.16 ± 4.99 °C, and lowest mean temperature in winter was recorded as 39.25 ± 2.25 °C at Site 2. The suspended solids were found to be highest (143.5 ± 75.01 and 139.66 ± 71.87 mg/L) in autumn for both the sites and lowest (86.50 + 15.10 mg/L) in the rainy season for Site 1. The values of BOD and COD of the textile effluent of both sites during all the seasons ranged from 121-580 to 240-990 mg/L, respectively, much higher than WHO water quality standard of 30 mg/L for BOD and 250 mg/L for COD. The present study deals with the collection of textile industry effluent and its characterization to find out the physicochemical load being drained by the effluent generated from textile industries, on the natural wastewater streams.

  4. Decolorization of dye-containing textile industry effluents using Ganoderma lucidum IBL-05 in still cultures.

    PubMed

    Asgher, Muhammad; Noreen, Sadia; Bhatti, Haq Nawaz

    2010-04-01

    A locally isolated white rot fungus Ganoderma lucidum IBL-05 was used for development of a bioremediation process for original textile industry effluents. Dye-containing effluents of different colors were collected from the Arzoo (maroon), Ayesha (yellow), Ittemad (green), Crescent (navy blue) and Magna (yellowish) textile industries of Faisalabad, Pakistan. G. lucidum IBL-05 was screened for its decolorization potential on all the effluents. Maximum decolorization (49.5 %) was observed in the case of the Arzoo textile industry (ART) effluent (lambda(max) = 515 nm) on the 10th day of incubation. Therefore, the ART effluent was selected for optimization of its decolorization process. Process optimization could improve color removal efficiency of the fungus to 95% within only 2 days, catalyzed by manganese peroxidase (1295 U/mL) as the main enzyme activity at pH 3 and 35 degrees C using 1% starch supplemented Kirk's basal medium. Nitrogen addition inhibited enzyme formation and effluent decolorization. The economics and effectiveness of the process can be improved by further process optimization.

  5. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry.

    PubMed

    Soares, Eduardo V; Soares, Helena M V M

    2013-08-01

    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.

  6. Control of ammonia and urea emissions from urea manufacturing facilities of Petrochemical Industries Company (PIC), Kuwait.

    PubMed

    Khan, A R; Al-Awadi, L; Al-Rashidi, M S

    2016-06-01

    Petrochemical Industries Company (PIC) in Kuwait has mitigated the pollution problem of ammonia and urea dust by replacing the melting and prilling units of finished-product urea prills with an environmentally friendly granulation process. PIC has financed a research project conducted by the Coastal and Air Pollution Program's research staff at the Kuwait Institute for Scientific Research to assess the impact of pollution control strategies implemented to maintain a healthy productive environment in and around the manufacturing premises. The project was completed in three phases: the first phase included the pollution monitoring of the melting and prilling units in full operation, the second phase covered the complete shutdown period where production was halted completely and granulation units were installed, and the last phase encompassed the current modified status with granulation units in full operation. There was substantial decrease in ammonia emissions, about 72%, and a 52.7% decrease in urea emissions with the present upgrading of old melting and prilling units to a state-of-the-art technology "granulation process" for a final finished product. The other pollutants, sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs), have not shown any significant change, as the present modification has not affected the sources of these pollutants. Petrochemical Industries Company (PIC) in Kuwait has ammonia urea industries, and there were complaints about ammonia and urea dust pollution. PIC has resolved this problem by replacing "melting and prilling unit" of final product urea prills by more environmentally friendly "granulation unit." Environmental Pollution and Climate Program has been assigned the duty of assessing the outcome of this change and how that influenced ammonia and urea dust emissions from the urea manufacturing plant.

  7. Pollution and health risk assessment of industrial and residential area based on metal and metalloids contents in soil and sediment samples from and around the petrochemical industry, Serbia

    NASA Astrophysics Data System (ADS)

    Relic, Dubravka; Sakan, Sanja; Andjelkovic, Ivan; Djordjevic, Dragana

    2017-04-01

    Within this study the investigation of pollution state of metal and metalloids contamination in soils and sediments samples of the petrochemical and nearby residential area is present. The pseudo-total concentrations of Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn, As, Hg, and Se were monitored with ICP/OES. The pollution indices applied in this work, such as the enrichment factor, the pollution load index, the total enrichment factor, and the ecological risk index showed that some of the soil and sediment samples were highly polluted by Hg, Ba, Pb, Cd, Cr Cu and Zn. The highest pollution indices were calculated for Hg in samples from the petrochemical area: chloralkali plant, electrolysis factory, mercury disposal area, and in samples from the waste channel. The pollution indices of the samples from the residential area indicated that this area is not polluted by investigated elements. Besides the pollution indices, the metal and metalloids concentrations were used in the equations for calculating the health risk criteria. We calculate no carcinogenic and carcinogenic risks for the composite worker and residential people by usage adequate equations. In analyzed samples, the no carcinogenic risks were lower than 1. The highest values of carcinogenic risk were obtained in sediment samples from the waste channel within the petrochemical industry and the metal that mostly contributes to the highest carcinogenic risk is Cr. Correlation analysis of pollution indices and carcinogenic risks calculated from the residential area samples showed good correlations while this is not the case for an industrial area.

  8. Estimating genetic potential of biofuel forest hardwoods to withstand metal toxicity in industrial effluent under dry tropical conditions.

    PubMed

    Manzoor, S A; Mirza, S N; Zubair, M; Nouman, W; Hussain, S B; Mehmood, S; Irshad, A; Sarwar, N; Ammar, A; Iqbal, M F; Asim, A; Chattha, M U; Chattha, M B; Zafar, A; Abid, R

    2015-08-14

    Biofuel tree species are recognized as a promising alternative source of fuel to conventional forms. Additionally, these tree species are also effective in accumulating toxic heavy metals present in some industrial effluents. In developing countries such as Pakistan, the use of biofuel tree species is gaining popularity not only for harvesting economical and environmentally friendly biofuel, but also to sequester poisonous heavy metals from industrial wastewater. This study was aimed at evaluating the genetic potential of two biofuel species, namely, Jatropha curcas and Pongamia pinnata, to grow when irrigated with industrial effluent from the Pak-Arab Fertilizer Factory Multan, Southern Punjab, Pakistan. The growth performances of one-year-old seedlings of both species were compared in soil with adverse physiochemical properties. It was found that J. curcas was better able to withstand the toxicity of the heavy metals present in the fertilizer factory effluent. J. curcas showed maximum gain in height, diameter, and biomass production in soil irrigated with 75% concentrated industrial effluent. In contrast, P. pinnata showed a significant reduction in growth in soil irrigated with more than 50% concentrated industrial effluent, indicating that this species is less tolerant to higher toxicity levels of industrial effluent. This study identifies J. curcas as a promising biofuel tree species that can be grown using industrial wastewater.

  9. A Petrochemical Primer.

    ERIC Educational Resources Information Center

    Martin, Amy

    1991-01-01

    Informs the reader of the pervasiveness of petrochemicals in everyday life. Discusses the petroleum-to-petrochemical transformation at the refinery and issues related to how petroleum products will be utilized for fuel or nonfuel needs such as lubricants, computers, and medicine in the future. (MDH)

  10. The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: an 11-year longitudinal study

    PubMed Central

    2014-01-01

    Background Petrochemical industries have been identified as important sources of emissions of chemical substances, and adverse health outcomes have been reported for residents who live nearby. The purpose of the current study was to examine the adverse effects of petrochemical industrialization in Taiwan on the life expectancy and personal income of people living in nearby communities. Methods This study compared life expectancies and personal income between one industrial county (Yunlin County) and one reference county (Yilan County), which had no significant industrial activity that might emit pollutants, in Taiwan through analysis of 11 year long and publicly available data. Data from before and after the petrochemical company in the industrial county started (year 1999) operating were compared. Results Residents of the industrialized county had lesser increases in life expectancy over time than did residents of a similar but less-industrialized county, with difference means ranging from 0.89 years (p < 0.05) to 1.62 years (p < 0.001) at different stages. Male residents were more vulnerable to the effects of industrialization. There were no significant differences in individual income between the two counties. Conclusions Countries, including Taiwan and the U.S., embracing petrochemical industries now face the challenge of environmental injustice. Our findings suggested that life expectancy lengthening was slowed and income growth was stalled for residents living in the industrial communities. PMID:24621018

  11. The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: an 11-year longitudinal study.

    PubMed

    Chen, Ya-Mei; Lin, Wan-Yu; Chan, Chang-Chuan

    2014-03-12

    Petrochemical industries have been identified as important sources of emissions of chemical substances, and adverse health outcomes have been reported for residents who live nearby. The purpose of the current study was to examine the adverse effects of petrochemical industrialization in Taiwan on the life expectancy and personal income of people living in nearby communities. This study compared life expectancies and personal income between one industrial county (Yunlin County) and one reference county (Yilan County), which had no significant industrial activity that might emit pollutants, in Taiwan through analysis of 11 year long and publicly available data. Data from before and after the petrochemical company in the industrial county started (year 1999) operating were compared. Residents of the industrialized county had lesser increases in life expectancy over time than did residents of a similar but less-industrialized county, with difference means ranging from 0.89 years (p<0.05) to 1.62 years (p<0.001) at different stages. Male residents were more vulnerable to the effects of industrialization. There were no significant differences in individual income between the two counties. Countries, including Taiwan and the U.S., embracing petrochemical industries now face the challenge of environmental injustice. Our findings suggested that life expectancy lengthening was slowed and income growth was stalled for residents living in the industrial communities.

  12. Wastewater reuse in a cascade based system of a petrochemical industry for the replacement of losses in cooling towers.

    PubMed

    Hansen, Everton; Rodrigues, Marco Antônio Siqueira; Aquim, Patrice Monteiro de

    2016-10-01

    This article discusses the mapping of opportunities for the water reuse in a cascade based system in a petrochemical industry in southern Brazil. This industrial sector has a large demand for water for its operation. In the studied industry, for example, approximately 24 million cubic meters of water were collected directly from the source in 2014. The objective of this study was to evaluate the implementation of the reuse of water in cascade in a petrochemical industry, focusing on the reuse of aqueous streams to replenish losses in the cooling towers. This is an industrial scale case study with real data collected during the years 2014 and 2015. Water reuse was performed using heuristic approach based on the exploitation of knowledge acquired during the search process. The methodology of work consisted of the construction of a process map identifying the stages of production and water consumption, as well as the characterization of the aqueous streams involved in the process. For the application of the industrial water reuse as cooling water, mass balances were carried out considering the maximum concentration levels of turbidity, pH, conductivity, alkalinity, calcium hardness, chlorides, sulfates, silica, chemical oxygen demand and suspended solids as parameters turbidity, pH, conductivity, alkalinity, calcium hardness, chlorides, sulfates, silica, chemical oxygen demand and suspended solids as parameters. The adopted guideline was the fulfillment of the water quality criteria for each application in the industrial process. The study showed the feasibility for the reuse of internal streams as makeup water in cooling towers, and the implementation of the reuse presented in this paper totaled savings of 385,440 m(3)/year of water, which means a sufficient volume to supply 6350 inhabitants for a period of one year, considering the average water consumption per capita in Brazil; in addition to 201,480 m(3)/year of wastewater that would no longer be generated

  13. Algae in the assessment of industrial effluents: case study in Southern Bengal, India.

    PubMed

    Sen Sarkar, Neera; Bandyopadhyaya, Tuli; Datta, Shilpa; Das, Swapna

    2013-01-01

    This article is an assessment of the diversity of scum and bloom algae encountered in different industrial effluents of Southern Bengal, India, analyzing their habitat and correlating the habitat ecology of each study site. The study was conducted during the period May 2009 to August 2010. The study sites include effluent release areas of the dairy industry, a distillery unit, the leather industry, and an herbal medicine unit. Habitat were analyzed for pH, dissolved oxygen, biological oxygen demand, salinity, alkalinity, and phosphate and nitrate levels. Correlation coefficients were calculated for habitat parameters and algae encountered, showing a significant positive correlation between the richness of dominant and subdominant species with biochemical oxygen demand and salinity and a significant negative correlation with alkalinity, phosphates, and the nitrate-to-phosphate ratio. The richness of dominant and subdominant species in the effluent discharge areas show average values of 9 and 5 in the distillery unit, 8 and 5 in the dairy industry, 7 and 8 in the leather industry, and 5 and 9 in the herbal medicine unit, respectively, with a few (ranging between 3 and 7) co-occurring species in each case. The algal groups encountered were cyanobacteria, euglenophytes, chlorophytes, and bacillariophytes, showing Palmer's Algal Pollution Index of 15 in the dairy industry, 20 in the distillery unit, 28 in the leather industry, and 8 in the herbal medicine unit.

  14. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    PubMed

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  15. Bioprospecting of lipolytic microorganisms obtained from industrial effluents.

    PubMed

    Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S

    2016-01-01

    The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  16. Integrated process for the removal of emulsified oils from effluents in the steel industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, J.M.; Rios, G.; Gutierrez, B.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicatedmore » coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.« less

  17. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    PubMed

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed.

  18. Effects of endocrine disrupting chemicals from leather industry effluents on male reproductive system.

    PubMed

    Kumar, Vikas; Majumdar, Chandrajeetbalo; Roy, Partha

    2008-09-01

    The leather tanning industry is characterized by the production of different kinds of effluents, generated in each step of leather processing. These effluents have various chemical compounds which may cause toxicity and endocrine disruption and are thus known as endocrine disrupting chemicals (EDC). This study was aimed to examine the androgenic potential of leather industry effluents collected from northern region of India. Hershberger assay data showed a significant increase (p<0.05) in the weight and structure of sex accessory tissues of castrated rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change (p<0.05) in the expression patterns of the major steroidogenic enzymes in adrenal and testes namely, cytochrome P450scc, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydorgenase in castrated and intact rats. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile demonstrated a dose dependent increase in testicular and adrenal testosterone productions in intact and castrated rats, respectively. This was further supported by decreased level of gonadotrophic hormones (LH and FSH) in treated groups of animals. Further, the effluent treatment resulted in the development of hyperplasia in seminiferous tubules of testes in treated rats as evident from histopathological studies and about two-fold increases in daily sperm production. On analysis of water samples using GC-MS, it was found to contain various aromatic compounds (nonylphenol, hexaclrobenzene and several azo dyes) some of which independently demonstrated similar effects as shown by water samples. Our data suggests that the effluents from leather industry have potential EDC demonstrating androgenic activities.

  19. The Impact of Job Stress and Job Satisfaction on Workforce Productivity in an Iranian Petrochemical Industry.

    PubMed

    Hoboubi, Naser; Choobineh, Alireza; Kamari Ghanavati, Fatemeh; Keshavarzi, Sareh; Akbar Hosseini, Ali

    2017-03-01

    Job stress and job satisfaction are important factors affecting workforce productivity. This study was carried out to investigate the job stress, job satisfaction, and workforce productivity levels, to examine the effects of job stress and job satisfaction on workforce productivity, and to identify factors associated with productivity decrement among employees of an Iranian petrochemical industry. In this study, 125 randomly selected employees of an Iranian petrochemical company participated. The data were collected using the demographic questionnaire, Osipow occupational stress questionnaire to investigate the level of job stress, Job Descriptive Index to examine job satisfaction, and Hersey and Goldsmith questionnaire to investigate productivity in the study population. The levels of employees' perceived job stress and job satisfaction were moderate-high and moderate, respectively. Also, their productivity was evaluated as moderate. Although the relationship between job stress and productivity indices was not statistically significant, the positive correlation between job satisfaction and productivity indices was statistically significant. The regression modeling demonstrated that productivity was significantly associated with shift schedule, the second and the third dimensions of job stress (role insufficiency and role ambiguity), and the second dimension of job satisfaction (supervision). Corrective measures are necessary to improve the shift work system. "Role insufficiency" and "role ambiguity" should be improved and supervisor support must be increased to reduce job stress and increase job satisfaction and productivity.

  20. Concern About Petrochemical Health Risk Before and After a Refinery Explosion

    PubMed Central

    Cutchin, Malcolm P.; Martin, Kathryn Remmes; Owen, Steven V.; Goodwin, James S.

    2014-01-01

    On March 23, 2005, a large explosion at an oil refinery in Texas City, Texas caused 15 deaths and approximately 170 injuries. Little is known about how such an industrial accident influences concern about environmental health risks. We used measures of environmental health concern about nearby petrochemical production with a sample of Texas City residents to understand patterns of concern and change in concern after an industrial accident, as well as individual and contextual factors associated with those patterns. Survey interviews with residents of Texas City, Texas (N =315) both pre- and postexplosion using a brief Concern About Petrochemical Health Risk Scale (CAPHRS) and other questions were used to collect pertinent predictor information. CAPHRS baseline, postexplosion, and change scores were compared and modeled using ordinary least squares (OLS) regression and a mixed model. Higher preexplosion CAPHRS scores were predicted by younger adults, foreign-born Hispanics, non-Hispanic blacks, lower- and middle-income groups, and those who live with someone who has worked at the petrochemical plants. Higher CAPHRS change scores are predicted by the same variables (except income), as well as proximity to, or perception of, the explosion, and reports of neighborhood damage. Findings suggest these groups’ concern scores could indicate a greater vulnerability to psychological and physical harm generated by concern and stress arising from local petrochemical activities. A clearer understanding of concern about actual environmental health risks in exposed populations may enhance the evolving theory of stress and coping and eventually enable public health professionals to develop appropriate mitigation strategies. PMID:18643817

  1. Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry.

    PubMed

    Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant

    2017-08-01

    The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.

  2. Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan.

    PubMed

    Mulk, Shahi; Azizullah, Azizullah; Korai, Abdul Latif; Khattak, Muhammad Nasir Khan

    2015-02-01

    Industries play an important role in improving the living standard but at the same time cause several environmental problems. Therefore, it is necessary to evaluate the impact of industries on the quality of environment. In the present study, the impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan was evaluated. Water and sediment samples were collected at three different sampling sites (upstream, industrial, and downstream sites) from Barandu River and their physicochemical properties were inter-compared. In addition, different marble stones and mix water (wastewater) from marble industry were analyzed. The measured physicochemical parameters of river water including pH, electrical conductivity (EC), alkalinity, total hardness, Ca and Mg hardness, total dissolved solid (TDS), total suspended solids (TSS), sulfates (SO4 (2-)), sodium (Na(+)), potassium (K(+)), nitrites (NO2 (-)), nitrate (NO3 (-)), chloride (Cl(-)), calcium (Ca(2+)), and magnesium (Mg(2+)) were found to be significantly altered by effluent discharges of marble industries. Similarly, heavy metal concentrations in both water and sediments of the river were significantly increased by marble industry wastewater. It is concluded that large quantities of different pollutants are added to Barandu River due to direct disposal of marble industry effluents which degrades its quality. Therefore, it is recommended that direct disposal of marble industry wastewater should be banned and all effluents must be properly treated before discharging in the river water.

  3. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator.

    PubMed

    Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio

    2011-10-01

    Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Application of membrane and ozonation technologies to remove color from agro-industry effluents.

    PubMed

    Koyuncu, I; Sevimli, M F; Ozturk, I; Aydin, A F

    2001-01-01

    The results of membrane and ozonation experiments carried out on various agro-industry effluents including fermentation (baker's yeast), corrugated board, opium alkaloid and textile dying industries are presented. The experiments were performed using lab-scale membrane and ozonation reactors. Color removals were in the range of 80 to 99% for the membrane treatment studies. Ozonation experiments have shown that color removals in the range of 83 to 98% are possible for the investigated wastewaters. Final color levels were lower than 100 Pt-Co unit, which is quite acceptable aesthetically. The relative unit treatment costs of ozonation were about two times higher than membrane systems especially for very strong colored effluents including fermentation and opium alkaloid industries. The study has demonstrated that both membrane and ozonation technologies are viable options for color removal.

  5. Effect of leather industry effluents on soil microbial and protease activity.

    PubMed

    Pradeep, M Reddi; Narasimha, G

    2012-01-01

    Release of leather industry effluents into the agricultural fields causes indicative changes in nutrient cycling and organic matter processing. In the present study, leather industry effluent discharged soil (test) and undischarged soil(control) were collected from the surrounding areas of industry. The physico-chemical, biological properties and soil protease activity were examined. The study reflected the average mean value of pH, electrical conductivity and water holding capacity of the test soil was found to be 7.94, 0.89 microMhos cm(-1) and 0.51 ml g(-1), respectively. In chemical parameters, organic matter, total nitrogen, phosphorus and potassium has the mean of 6.73%, 0.23 g kg(-1), 4.28 mg g(-1) and 28 microg g(-1), respectively. In all the respects, the test soil showed higher values than the control. The soil protease enzyme activity was determined by using substrate casein and the activity was found to be higher (180 microg TE g(-1) 24 hr(-1)) in test soil than the control soil (63 microg TE g(-1) 24 hr(-1)).

  6. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system.

    PubMed

    Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar

    2013-08-01

    The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.

  7. Cancer incidence and mortality among temporary maintenance workers in a refinery/petrochemical complex in Korea.

    PubMed

    Koh, Dong-Hee; Chung, Eun-Kyo; Jang, Jae-Kil; Lee, Hye-Eun; Ryu, Hyang-Woo; Yoo, Kye-Mook; Kim, Eun-A; Kim, Kyoo-Sang

    2014-01-01

    Petrochemical plant maintenance workers are exposed to various carcinogens such as benzene and metal fumes. In Korea, maintenance operations in petrochemical plants are typically performed by temporary employees hired as contract workers. The purpose of this retrospective study was to evaluate cancer risk in temporary maintenance workers in a refinery/petrochemical complex in Korea. Subjects consisted of 14 698 male workers registered in a regional petrochemical plant maintenance workers union during 2002-2007. Cancer mortality and incidence were identified by linking with the nationwide death and cancer registries during 2002-2007 and 2002-2005, respectively. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for each cancer. Increased SMR 3·61 (six cases, 95% CI: 1·32-7·87) and SIR 3·18 (five cases, 95% CI: 1·03-7·42) were observed in oral and pharyngeal cancers. Our findings may suggest a potential association between oral and pharyngeal cancers and temporary maintenance jobs in the petrochemical industry. Future studies should include a longer follow-up period and a quantitative exposure assessment.

  8. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development.

    PubMed

    Hoffman, D J; Eastin, W C

    1981-09-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  9. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C.

    1981-01-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  10. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment.

  11. Prevalence of musculoskeletal symptoms among employees of Iranian petrochemical industries: October 2009 to December 2012.

    PubMed

    Choobineh, A R; Daneshmandi, H; Aghabeigi, M; Haghayegh, A

    2013-10-01

    Work-related musculoskeletal disorders (WMSDs) are a common health problem throughout the world and a major cause of disability in the workplace. To determine the prevalence rate of MSDs, assessment of ergonomics working conditions and identification of major risk factors associated with MSDs symptoms among employees of Iranian petrochemical industries between October 2009 and December 2012. In this study, we studied 1184 randomly selected employees of 4 Iranian petrochemical companies with at least one year of work experience in office or operational units. For those with office jobs, data were collected using Nordic Musculoskeletal disorders Questionnaire (NMQ) and ergonomics checklist for the assessment of working conditions. For those with operational jobs, NMQ and Quick Exposure Check (QEC) method were used for data collection. The most prevalent MSD symptoms were reported in lower back (41.5%) and neck (36.5%). The prevalence of MSDs in all body regions but elbows and thighs of the office staff was significantly higher than that of operational workers. Assessment of working conditions in office staff revealed that the lowest index was attributed to workstation. QEC technique among operational workers showed that in 73.8% of the workers studied, the level of exposure to musculoskeletal risks was "high" or "very high." MSDs were associated with type of job, age, body mass index, work experience, gender, marital status, educational level and type of employment. The prevalence of MSDs in the office staff was higher than that of operational workers. Level of exposure to MSDs risk was high in operational workers. Corrective measures are thus necessary for improving working conditions for both office and operational units.

  12. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia

    NASA Astrophysics Data System (ADS)

    Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.

    2018-04-01

    Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.

  14. Work ability index (WAI) and its association with psychosocial factors in one of the petrochemical industries in Iran.

    PubMed

    Mazloumi, Adel; Rostamabadi, Akbar; Nasl Saraji, Gabraeil; Rahimi Foroushani, Abbas

    2012-01-01

    In recent decades, work ability index (WAI) has been a common practical tool to measure individuals' work ability in many European, Asian and South American countries. However, there is no study concerning work ability in Iran. The aim of this study was to determine the work ability index in an Iranian petrochemical job setting and to examine its relationship with psychosocial factors. A cross-sectional study was conducted among 420 male workers in various occupations. Work ability was evaluated using the WAI questionnaire developed by FIOH; the Job content questionnaire (JCQ) was used to assess psychosocial factors. The mean WAI score was 39.1 (SD=5.7) among workers in the studied petrochemical industry. Multiple linear regression analysis revealed a significant association between mean WAI score and age, job tenure, educational level, rest and sleep status and vocational education. Moreover, the results showed that skill discretion, coworker support and supervisor support were positively associated with the mean WAI score. On the other hand, it was inversely associated with job demands, job strain and job insecurity. This study was the first research to determine WAI in an important industry in Iran. Overall, work ability was in the "Good" category among the workers in the studied field. On the basis of the WAI guidelines, this level should be maintained and promoted to excellent level by providing supportive countermeasures. The WAI score was significantly associated with psychosocial factors. The results showed that even in heavy physical work, factors such as job insecurity, skill discretion, job strain and social support play an important role in maintaining work ability. A positive combination of "psychosocial characteristics" of the job with "individual resources" can promote work ability in such occupations.

  15. Cancer incidence and mortality among temporary maintenance workers in a refinery/petrochemical complex in Korea

    PubMed Central

    Koh, Dong-Hee; Chung, Eun-Kyo; Jang, Jae-Kil; Lee, Hye-Eun; Ryu, Hyang-Woo; Yoo, Kye-Mook; Kim, Eun-A; Kim, Kyoo-Sang

    2014-01-01

    Background: Petrochemical plant maintenance workers are exposed to various carcinogens such as benzene and metal fumes. In Korea, maintenance operations in petrochemical plants are typically performed by temporary employees hired as contract workers. Objectives: The purpose of this retrospective study was to evaluate cancer risk in temporary maintenance workers in a refinery/petrochemical complex in Korea. Methods: Subjects consisted of 14 698 male workers registered in a regional petrochemical plant maintenance workers union during 2002–2007. Cancer mortality and incidence were identified by linking with the nationwide death and cancer registries during 2002–2007 and 2002–2005, respectively. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for each cancer. Results: Increased SMR 3.61 (six cases, 95% CI: 1.32–7.87) and SIR 3.18 (five cases, 95% CI: 1.03–7.42) were observed in oral and pharyngeal cancers. Conclusion: Our findings may suggest a potential association between oral and pharyngeal cancers and temporary maintenance jobs in the petrochemical industry. Future studies should include a longer follow-up period and a quantitative exposure assessment. PMID:24999849

  16. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    PubMed

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.

  17. QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SENUM,G.I.; DIETZ,R.N.

    2004-06-30

    Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissionsmore » are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully

  18. Effluent Treatment Technologies in the Iron and Steel Industry - A State of the Art Review.

    PubMed

    Das, Pallabi; Mondal, Gautam C; Singh, Siddharth; Singh, Abhay K; Prasad, Bably; Singh, Krishna K

    2018-05-01

      Iron and steel industry is the principal driving force propelling economic and technological growth of a nation. However, since its inception this industry is associated with widespread environmental pollution and enormous water consumption. Different units of a steel plant discharge effluents loaded with toxic, hazardous pollutants, and unutilized components which necessitates mitigation. In this paper, pollutant removal efficiency, effluent volume product quality, and economic feasibility of existing treatments are studied vis-à-vis their merits, demerits, and innovations to access their shortcomings which can be overcome with new technology to identify future research directions. While conventional methods are inadequate for complete remediation and water reclamation, the potential of advanced treatments, like membrane separation, remains relatively untapped. It is concluded that integrated systems combining membrane separation with chemical treatments can guarantee a high degree of contaminant removal, reusability of effluents concurrently leading to process intensification ensuring ecofriendliness and commercial viability.

  19. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    PubMed

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  20. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.

    PubMed

    Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R

    2006-05-01

    This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon.

  1. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.

    PubMed

    Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir

    2015-01-01

    Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results.

  2. Lymphohematopoietic cancer mortality and morbidity of workers in a refinery/petrochemical complex in Korea.

    PubMed

    Koh, Dong-Hee; Kim, Tae-Woo; Yoon, Yong-Hoon; Shin, Kyung-Seok; Yoo, Seung-Won

    2011-03-01

    The purpose of this retrospective cohort study was to investigate the relationship between exposure of Korean workers to petrochemicals in the refinery/petrochemical industry and lymphohematopoietic cancers. The cohort consisted of 8,866 male workers who had worked from the 1960s to 2007 at one refinery and six petrochemical companies located in a refinery/petrochemical complex in Korea that produce benzene or use benzene as a raw material. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for 1992-2007 and 1997-2005 based on the death rate and cancer incidence rate of the Korean male population according to job title (production, maintenance, laboratory, and office workers). The overall mortality and most cause-specific mortalities were lower among these workers than those of the general Korean population. Increased SMRs were observed for leukemia (4/1.45; SMR 2.77, 95% CI: 0.75-7.09) and lymphohematopoietic cancers (5/2.51; SMR 2, 95% CI: 0.65-4.66) in production workers, and increased SIRs were also observed in leukemia (3/1.34; SIR 2.24, 95% CI: 0.46-6.54) and lymphohematopoietic cancers (5/3.39; SIR 1.47, 95% CI: 0.48-3.44) in production workers, but the results were not statistically significant. The results showed a potential relationship between leukemia and lymphohematopoietic cancers and exposure to benzene in refinery/petrochemical complex workers. This study yielded limited results due to a short observational period; therefore, a follow-up study must be performed to elucidate the relationship between petrochemical exposure and cancer rates.

  3. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    PubMed

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.

  4. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study.

    PubMed

    Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L

    2016-10-01

    To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Lymphohematopoietic Cancer Mortality and Morbidity of Workers in a Refinery/Petrochemical Complex in Korea

    PubMed Central

    Kim, Tae-Woo; Yoon, Yong-Hoon; Shin, Kyung-Seok; Yoo, Seung-Won

    2011-01-01

    Objectives The purpose of this retrospective cohort study was to investigate the relationship between exposure of Korean workers to petrochemicals in the refinery/petrochemical industry and lymphohematopoietic cancers. Methods The cohort consisted of 8,866 male workers who had worked from the 1960s to 2007 at one refinery and six petrochemical companies located in a refinery/petrochemical complex in Korea that produce benzene or use benzene as a raw material. Standardized mortality ratios (SMRs) and standardized incidence ratios (SIRs) were calculated for 1992-2007 and 1997-2005 based on the death rate and cancer incidence rate of the Korean male population according to job title (production, maintenance, laboratory, and office workers). Results The overall mortality and most cause-specific mortalities were lower among these workers than those of the general Korean population. Increased SMRs were observed for leukemia (4/1.45; SMR 2.77, 95% CI: 0.75-7.09) and lymphohematopoietic cancers (5/2.51; SMR 2, 95% CI: 0.65-4.66) in production workers, and increased SIRs were also observed in leukemia (3/1.34; SIR 2.24, 95% CI: 0.46-6.54) and lymphohematopoietic cancers (5/3.39; SIR 1.47, 95% CI: 0.48-3.44) in production workers, but the results were not statistically significant. Conclusion The results showed a potential relationship between leukemia and lymphohematopoietic cancers and exposure to benzene in refinery/petrochemical complex workers. This study yielded limited results due to a short observational period; therefore, a follow-up study must be performed to elucidate the relationship between petrochemical exposure and cancer rates. PMID:22953184

  6. Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge.

    PubMed

    Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I

    2017-01-01

    Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H 2 -consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H 2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL -1 ) or vinasse (8.8, 12.7 and 13.4mmolL -1 ) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm -3 and 4.0MJm -3 , respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Advanced oxidation processes for treatment of effluents from a detergent industry.

    PubMed

    Martins, Rui C; Silva, Adrián M T; Castro-Silva, Sérgio; Garção-Nunes, Paulo; Quinta-Ferreira, Rosa M

    2011-07-01

    Ozonation, catalytic ozonation, Fenton's and heterogeneous Fenton-like processes were investigated as possible pretreatments of a low biodegradable and highly toxic wastewater produced by a detergent industry. The presence of a Mn-Ce-O catalyst in ozonation enhances the biodegradability and improves the degradation at low pH values. However, a high content of carbonyl compounds adsorbed on the recovered solid indicates some limitations for real-scale application. A commercial Fe2O3-MnOx catalyst shows higher activity as well as higher stability concerning carbon adsorption, but the leaching of metals is larger than for Mn-Ce-O. Regarding the heterogeneous Fenton-like route with an Fe-Ce-O catalyst, even though a high activity and stability are attained, the intermediates are less biodegradable than the original compounds, indicating that the resulting effluent cannot be conducted to an activated sludge post-treatment. The highest enhancement of effluent biodegradability is obtained with the classic homogeneous Fenton's process, with the BOD5/COD ratio increasing from 0.32 to 0.80. This process was scaled up and the treated effluent is now safely directed to a municipal wastewater treatment plant.

  8. Treatment and Energy Valorisation of an Agro-Industrial Effluent in Upflow Anaerobic Sludge Reactor (UASB)

    NASA Astrophysics Data System (ADS)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    The accelerated growth of the population brings with it an increase in the generation of agro-industrial effluents. The inadequate discharge of these effluents significantly affects the quality of water resources. In this way, it becomes important to invest in treatment processes for agro-industrial effluents, particularly low-cost ones. In this context, the present study includes the design and construction of an UASB reactor and optimization of the anaerobic digestion treatment of the raw effluent from sweet chestnut production in the agro-industrial company Sortegel. The efficiency of the system was evaluated through the determination / monitoring of oxygen chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), biogas production rate and quality (% methane). The reactor was fed for 25 weeks and operated under mesophilic conditions (temperature 30-40 °C). Different values were tested for the hydraulic retention time (HRT) and volumetric flow rate (VF): 0.66 days (VF=1509 L.m-3.d-1); 1.33 days (VF=755 L.m-3.d-1); 2.41 d days (VF=415 L.m-3.d-1). The average COD removal efficiency reached values of 69%, 82% and 75%, respectively, and simultaneously the associated BOD5 removal efficiency was 84%, 91% and 70%. As regards TSS, removal values were 78%, 94% and 63%. In addition, high methane production rates were obtained, between 2500 and 4800 L CH4.kg-1 COD removed d-1. For all the hydraulic retention times tested, high concentrations of methane in the biogas were recorded: 66-75%, 70% and 75% for HRT of 0.66, 1.33 and 2.41 days, respectively.

  9. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Occurrence and distribution of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in industrial and domestic sewage sludge.

    PubMed

    Balasubramani, Aparna; Rifai, Hanadi S

    2015-10-01

    Sewage sludge samples collected from 43 different domestic and industrial wastewater treatment plants and petrochemical industries that discharge to the Houston Ship Channel (HSC) were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), which are highly toxic and carcinogenic towards humans and animals. The measured total PCDD/F toxic equivalency (TEQ) ranged between 0.73 and 7348.40 pg/g dry weight. The mean TEQ of PCDD/Fs in industrial sludge was approximately 40 times higher than that in sewage sludge. The PCDD homolog concentrations in the industrial samples were higher than those observed at the wastewater treatment plants by a factor of 10, with total heptachlorodibenzodioxin (HpCDD) exhibiting the maximum concentration in most of the samples. Among the PCDF homologs, total heptadichlorodibenzofuran (HpCDF) dominated the total homolog concentration in sludge from the wastewater treatment plants, whereas total tetradichlorodibenzofuran (TeCDF) dominated the industrial sludge samples. Overall, the total PCDD/F TEQ in sludge samples was much higher than that in effluent samples from the same facility. A linear correlation (R (2) = 0.62, p value < 0.068) was found indicating that sludge sampling can be used as a surrogate for effluent concentrations in wastewater treatment plants but not for industrial discharges.

  11. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    PubMed

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  12. Bioassessment of the Effluents Discharged from Two Export Oriented Industrial Zones Located in Kelani River Basin, Sri Lanka Using Erythrocytic Responses of the Fish, Nile Tilapia (Oreochromis niloticus).

    PubMed

    Hemachandra, C K; Pathiratne, A

    2017-10-01

    Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.

  13. Use of ozone and/or UV in the treatment of effluents from board paper industry.

    PubMed

    Amat, A M; Arques, A; Miranda, M A; López, F

    2005-08-01

    The aim of this work has been to study the viability of ozone and/or UV in the treatment of cardboard industry effluents. Several model compounds have been chosen for the experiments: guaicol, eugenol, glucose, acetate and butyrate. Significant differences in the ozonisation rates are observed between phenolic products coming from lignin (eugenol and guaiacol) and aliphatic compounds. Reactions fit in all cases a pseudo-first order kinetics and are influenced by the pH of the solution. Real effluents have also been tested, and the COD decrease has been found to depend on the fatty acids/phenols ratio. Finally, respirometric studies have shown an increase in the BODst in effluents subjected to a mild oxidation, while under stronger conditions a BODst decrease is observed.

  14. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    NASA Astrophysics Data System (ADS)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  15. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    PubMed

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry.

    PubMed

    Mosquera-Corral, A; Sánchez, M; Campos, J L; Méndez, R; Lema, J M

    2001-02-01

    A lab-scale hybrid upflow sludge bed-filter (USBF) reactor was employed to carry out methanogenesis and denitrification of the effluent from an anaerobic industrial reactor (EAIR) in a fish canning industry. The reactor was initially inoculated with methanogenic sludge and there were two different operational steps. During the first step (Step I: days 1-61), the methanogenic process was carried out at organic loading rates (OLR) of 1.0-1.25 g COD l-1 d-1 reaching COD removal percentages of 80%. During the second step (Step II: days 62-109) nitrate was added as KNO3 to the industrial effluent and the OLR was varied between 1.0 and 1.25 g COD l-1 d-1. Two different nitrogen loads of 0.10 and 0.22 g NO3(-)-N l-1 d-1 were applied and these led to nitrogen removal percentages of around 100% in both cases and COD removal percentages of around 80%. Carbon to nitrogen ratio (C:N) in the influent was maintained at 2.0 and eventually it was increased to 3.0, by means of glucose addition, to control the denitrification process. From these results it is possible to establish that wastewater produced in a fish canning industry can be used as a carbon source for denitrification and that denitrifying microorganisms were present in the initially methanogenic sludge. Biomass productions of 0.23 and 0.61 g VSS:g TOC fed for Steps I and II, respectively, were calculated from carbon global balances, showing an increase in biomass growth due to denitrification.

  17. Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge--a case study.

    PubMed

    Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S

    2005-09-01

    Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted.

  18. Exposure to polycyclic aromatic hydrocarbons in petrochemical industries by measurement of urinary 1-hydroxypyrene.

    PubMed Central

    Boogaard, P J; van Sittert, N J

    1994-01-01

    Biological monitoring of exposure of workers to polycyclic aromatic hydrocarbons (PAHs) in petrochemical industries was performed by the measurement of urinary excretion of 1-hydroxypyrene. In 121 of the 462 workers studied (both smokers and non-smokers) who had had no recent occupational exposure to PAHs a median 1-hydroxypyrene concentration of 0.21 micrograms/g creatinine was found. The upper limit of the 95% confidence interval in these workers of 0.99 micrograms/g creatinine was used as the upper normal value for industrial workers. Urinary 1-hydroxypyrene concentrations were measured in workers involved in manufacture and maintenance operations in oil refineries (13 studies in eight different settings), in workers manufacturing or handling products containing PAHs in chemical plants (five studies in three settings) and laboratories (four studies), and in workers digging soil contaminated with PAHs (three studies). In most studies in oil refineries 1-hydroxypyrene concentrations were only marginally greater than the values measured in the 121 workers with no recent occupational exposure to PAHs. This was also the case in maintenance operations with higher potential exposure to PAHs, indicating that personal protection equipment was generally adequate to prevent excessive exposure. The studies in chemical plants also showed that exposure to PAHs is low. An exception was the workers engaged in the production of needle coke from ethylene cracker residue, where increased urinary 1-hydroxypyrene concentrations were measured. The excretion of 1-hydroxypyrene by the operators and maintenance workers of this plant was investigated in relation to potential methods of exposure to PAHs. Dermal and inhalatory exposure were both significant determinants of exposure to PAHs. PMID:8199667

  19. Acute and early life stage toxicity of industrial effluent on Japanese medaka (Oryzias latipes).

    PubMed

    Zha, Jinmiao; Wang, Zijian

    2006-03-15

    To develop the whole effluent toxicity testing methods (WET), embryo larval stage toxicity test using Japanese medaka (Oryzias latipes) was conducted to evaluate an effluent from a banknote printing plant (BPP). The method is based on acute toxicity using endpoint of 96-h larval morality and on chronic toxicity using endpoints such as the time to hatch, hatching success, deformity, growth rate, swim-up failure, accumulative mortality and sexual ratio. In test for 96-h larval mortality, LC50 (the concentration was lethal to 50% of newly hatching medaka larvae) was 72.9%. In chronic toxicity test, newly fertilized embryos (<5-h old) were exposed to 1%, 6.25%, 12.5%, 25%, 50% effluent concentrations and to 200 mug/l BPA in a 24-h static renewal system at 25+/-1 degrees C until 15 day post-hatch. The results showed that all chronic endpoints were significantly different from the control at 50% dilution (p < 0.01). Embryos began to show lesions on 4th day at higher concentrations (12.5%, 25%, 50% BPP effluent concentrations). Treatment group of 25% dilution showed delayed time to hatch. A reduction in body weight was observed at 25% dilutions for males and females, respectively. Deformities were observed in newly hatched larvae at 25% and 50% BPP effluent concentrations. At 25% dilution, sex ratio of larvae was alternated and there was feminization phenomenon. We conclude that embryo larval stage test using medaka is feasible to evaluate both acute and chronic toxicities and potential endocrine disrupting activity of industrial effluents.

  20. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents.

    PubMed

    Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula

    2018-08-01

    Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for

  1. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  2. Investigation on evaluation criteria of backwashing effects for a pilot-scale BAF treating petrochemical wastewater.

    PubMed

    Fu, Liya; Wu, Changyong; Zhou, Yuexi; Zuo, Jiane; Ding, Yan

    2017-10-01

    Parameters for evaluation criteria of air-water backwashing effects of a pilot-scale biological aerated filter (BAF) treating petrochemical wastewater were investigated. The parameters included the suspended solids (SS) and specific oxygen uptake rate (SOUR) of the backwashing effluent, recovery of the BAF after backwashing, and the removal of the biomass/bioactivity attached on the filter media after backwashing. Results showed that the weight of the total sludge produced in the backwashing effluent increased with the increase in water-backwashing intensity, while the total SOUR of backwashing effluent rose notably with the increase of air-backwashing intensity. The optimal backwashing intensity of 14 L/(m 2 · s) for air and 4 L/(m 2 · s) for water were obtained. When the BAF was backwashed on this condition, the BAF recovered with high average removal of chemical oxygen demand (COD) and ammonia nitrogen [Formula: see text] of 14.3% and 50.3%, respectively. High amount of biomass removal at 15.8% and low level of bioactivity removal at 8.8% attached on the filter media were also found. Concentrations of the benzene, toluene, ethylbenzene and (o-, m-, p-) xylenes (BTEX) and phenol in the backwashed sludge were analyzed, showing that the backwashing was essential to remove some aromatic compounds adsorbed in the microorganisms.

  3. Amphibian embryos as a biological test for environmental pollutants in leachates, industrial effluents, surface and ground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkovits, J.; Perez-Coll, C.S.; Herkovits, F.D.

    1995-12-31

    Test of early life stages are very sensitive to toxic effects and moreover a good predictive correlation between embryo-larval survival and independent ecological parameters such as species richness and diversity have been established. The main purpose of this preliminary study is to report that Bufo arenarum embryos are very sensitive to contaminants from a variety of sources such as leachates, industrial effluents, surface and ground water. The toxicity of 30 samples (five from each category plus controls of surface and ground water from reference places) was evaluated during a 14 day renewal toxicity test at 20 C, conducted with 10more » embryos (by triplicate) from stage 23--25 onwards using six concentrations (V/V) of each sample of Holtfreter`s solution. For industrial effluents and leachates the results range from a concentration of 0.6% resulting in 24hs LC100 up to a sample which exert 20% of lethality after 14 days of treatment. The survival of controls and in samples from reference places was over 90% for 7 days and over 80% for 14 days. The results with Bufo arenarum embryos confirm that a 7 day Short-term Chronic Toxicity Test is appropriate for toxicity screening of industrial effluents (as it was established by EPA for whole effluent toxicity test for aquatic life protection performed with other species) as well as for leachates. On the other hand, for freshwater (surface and ground), it is convenient to extend the exposure period until 14 days in order to record situations of low, but significant levels of toxicity, which could be of particular value for surface as well as ground water quality criteria.« less

  4. Assessing the effectiveness of chemical treatment with nanomaterials in improving the quality of different industrial effluents =

    NASA Astrophysics Data System (ADS)

    Nogueira, Veronica Ines Jesus Oliveira

    Industrial activities are the major sources of pollution in all environments. Depending on the type of industry, various levels of organic and inorganic pollutants are being continuously discharged into the environment. Although, several kinds of physical, chemical, biological or the combination of methods have been proposed and applied to minimize the impact of industrial effluents, few have proved to be totally effective in terms of removal rates of several contaminants, toxicity reduction or amelioration of physical and chemical properties. Hence, it is imperative to develop new and innovative methodologies for industrial wastewater treatment. In this context nanotechnology arises announcing the offer of new possibilities for the treatment of wastewaters mainly based on the enhanced physical and chemical proprieties of nanomaterials (NMs), which can remarkably increase their adsorption and oxidation potential. Although applications of NMs may bring benefits, their widespread use will also contribute for their introduction into the environment and concerns have been raised about the intentional use of these materials. Further, the same properties that make NMs so appealing can also be responsible for producing ecotoxicological effects. In a first stage, with the objective of selecting NMs for the treatment of organic and inorganic effluents we first assessed the potential toxicity of nanoparticles of nickel oxide (NiO) with two different sizes (100 and 10-20 nm), titanium dioxide (TiO2, < 25 nm) and iron oxide (Fe2O3, ≈ 85x425 nm). The ecotoxicological assessment was performed with a battery of assays using aquatic organisms from different trophic levels. Since TiO2 and Fe2O3 were the NMs that presented lower risks to the aquatic systems, they were selected for the second stage of this work. Thus, the two NMs pre-selected were tested for the treatment of olive mill wastewater (OMW). They were used as catalyst in photodegradation systems (TiO2/UV, Fe2O3/UV, TiO2

  5. Assessment of heavy metals in the industrial effluents, tube-wells and municipal supplied water of Dehradun, India.

    PubMed

    Kulshrestha, Shail; Awasthi, Alok; Dabral, S K

    2013-07-01

    The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed.

  6. Effect of gaseous cement industry effluents on four species of microalgae.

    PubMed

    Talec, Amélie; Philistin, Myrvline; Ferey, Frédérique; Walenta, Günther; Irisson, Jean-Olivier; Bernard, Olivier; Sciandra, Antoine

    2013-09-01

    Experiments were performed at lab scale in order to test the possibility to grow microalgae with CO2 from gaseous effluent of cement industry. Four microalgal species (Dunaliella tertiolecta, Chlorella vulgaris, Thalassiosira weissflogii, and Isochrysis galbana), representing four different phyla were grown with CO2 enriched air or with a mixture of gasses mimicking the composition of a typical cement flue gas (CFG). In a second stage, the culture submitted to the CFG received an increasing concentration of dust characteristic of cement industry. Results show that growth for the four species is not affected by the CFG. Dust added at realistic concentrations do not have any impact on growth. For dust concentrations in two ranges of magnitude higher, microalgae growth was inhibited. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    PubMed

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  8. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... topping, cracking, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations. The provisions of this subpart shall not be...

  9. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... topping, cracking, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations. The provisions of this subpart shall not be...

  10. Assessing acute toxicity of effluent from a textile industry and nearby river waters using sulfur-oxidizing bacteria in continuous mode.

    PubMed

    Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun

    2011-10-01

    Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.

  11. a Study for Remote Detection of Industrial Effluents' Effect on Rice Using Thermal Images

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Abkar, A. A.; Maghsoudi, Y.; Dehnavi, E.

    2015-12-01

    Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images) useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory's effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant's product and its f-cover value, also some changes in radiant temperature.

  12. A novel "wastes-treat-wastes" technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater.

    PubMed

    Chen, Chunmao; Yu, Ji; Yoza, Brandon A; Li, Qing X; Wang, Gang

    2015-04-01

    Catalytic ozonation is a promising wastewater treatment technology. However, the high cost of the catalyst hinders its application. A novel "wastes-treat-wastes" technology was developed to reuse spent fluid catalytic cracking catalysts (sFCCc) for the ozonation of petrochemical wastewater in this study. Multivalent vanadium (V(4+) and V(5+)), iron (Fe(2+) and Fe(3+)) and nickel (Ni(2+)) oxides that are distributed on the surface of sFCCc and poisoned FCC catalysts are the catalytic components for ozonation. The sFCCc assisted catalytic ozonation (sFCCc-O) of nitrobenzene indicated that the sFCCc significantly promoted hydroxyl radical mediated oxidation. The degradation rate constant of nitrobenzene in sFCCc-O (0.0794 min(-1) at 298 K) was approximately doubled in comparison with that in single ozonation (0.0362 min(-1) at 298 K). The sFCCc-O of petrochemical wastewater increased chemical oxygen demand removal efficiency by three-fold relative to single ozonation. The number of oxygen-containing (Ox) polar contaminants in the effluent (253) from sFCCc-O treatment decreased to about 70% of the initial wastewater (353). The increased oxygen/carbon atomic ratio and decreased number of Ox polar contaminants indicated a high degree of degradation. The present study showed the role and potential of sFCCc for catalytic ozonation of petrochemical wastewater, particularly in an advantage of the cost-effectiveness through "wastes-treat-wastes". Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin.

    PubMed

    Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J

    2015-05-01

    The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.

  15. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    PubMed

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bioprocessing of Biodiesel Industry Effluent by Immobilized Bacteria to Produce Value-Added Products.

    PubMed

    Prakash, Jyotsana; Gupta, Rahul Kumar; Xx, Priyanka; Kalia, Vipin Chandra

    2018-05-01

    Biodiesel industrial effluent rich in crude glycerol (CG) was processed to produce value-added product. Under continuous culture system, Bacillus amyloliquefaciens strain CD16 immobilized within its biofilm, produced 3.2 L H 2 /day/L feed, over a period of 60 days at a hydraulic retention time of 2 days. The effective H 2 yield by B. amyloliquefaciens strain CD16 was 165 L/L CG. This H 2 yield was 1.18-fold higher than that observed with non-biofilm forming Bacillus thuringiensis strain EGU45. Bioprocessing of the effluent released after this stage, by recycling it up to 25% did not have any adverse effect on H 2 production by strain EGU45; however, a 25% reduction in yield was recorded with strain CD16. Biofilm forming H 2 producers thus proved effective as self-immobilizing system leading to enhanced process efficiency.

  17. Effluent Guidelines

    EPA Pesticide Factsheets

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  18. Pyrolytic product characteristics of biosludge from the wastewater treatment plant of a petrochemical industry.

    PubMed

    Lin, Kuo-Hsiung; Hsu, Hui-Tsung; Ko, Ya-Wen; Shieh, Zhu-Xin; Chiang, Hung-Lung

    2009-11-15

    Biosludge was produced from the wastewater treatment plant of a petrochemical industry. The element compositions of pyrolytic residues, CO, CO(2), NOx, SOx, total hydrocarbons and detailed volatile organic compounds of pyrolytic gas, and C, H, N, S content and compositions in biofuel were determined in this study. Generally, 75-80% water content in sludge cakes and about 65-70% weight of water vapor and volatile compounds were volatilized during the drying process. Propene, propane, 1-butene, n-butane, isobutene, toluene and benzene were the major volatile organic compounds (VOCs) of the pyrolytic gas, and the concentrations for most of the top 20 VOC species were greater than 5 ppm. C(5)-C(9) compounds contributed 60% by weight of biofuel; 4-hydroxy-4-methyl-2-pentanone was the highest species, accounting for 28-53% of biofuel at various pyrolytic temperatures. Based on the dried residues, there was 8.5-13% weight in pyrolytic residues, 62-82% weight in liquid products (water and crude oil) and 5.8-30% weight in the gas phase after pyrolytic processing at 500-800 degrees C. Finally, 1.5-2.5 wt% liquid fuel was produced after the distillation process. The pyrolytic residues could be reused, the pyrolytic liquid product could be used as a fuel after distillation, and the pyrolytic gas could be recycled in the pyrolytic process to achieve non-toxic discharge and reduce the cost of sludge disposal.

  19. The effect of an industrial effluent on an urban stream benthic community: water quality vs habitat quality.

    PubMed

    Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G

    2003-01-01

    We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.

  20. Effects of petrochemical contamination on caged marine mussels using a multi-biomarker approach: Histological changes, neurotoxicity and hypoxic stress.

    PubMed

    Maisano, Maria; Cappello, Tiziana; Natalotto, Antonino; Vitale, Valeria; Parrino, Vincenzo; Giannetto, Alessia; Oliva, Sabrina; Mancini, Giuseppe; Cappello, Simone; Mauceri, Angela; Fasulo, Salvatore

    2017-07-01

    This work was designed to evaluate the biological effects of petrochemical contamination on marine mussels. Mytilus galloprovincialis, widely used as sentinel organisms in biomonitoring studies, were caged at the "Augusta-Melilli-Priolo" industrial site (eastern Sicily, Italy), chosen as one of the largest petrochemical areas in Europe, and Brucoli, chosen as reference site. Chemical analyses of sediments at the polluted site revealed high levels of PAHs and mercury, exceeding the national and international guideline limits. In mussels from the polluted site, severe morphological alterations were observed in gills, mainly involved in nutrient uptake and gas exchange. Changes in serotonergic and cholinergic systems, investigated through immunohistochemical, metabolomics and enzymatic approaches, were highlighted in gills, as well as onset of hypoxic adaptive responses with up-regulation of hypoxia-inducible factor transcript. Overall, the application of a multi-biomarker panel results effective in assessing the biological effects of petrochemical contamination on the health of aquatic organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. USE OF TOXICITY IDENTIFICATION EVALUATION METHODS TO CHARACTERIZE IDENTIFY, AND CONFIRM HEXAVALENT CHROMIUM TOXICITY IN AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...

  2. [Occupational diseases in the petrochemical sector: types and temporal trends].

    PubMed

    Campo, Giuseppe

    2013-01-01

    In Italy, the archives of the National Institute for the Insurance of Workplace Accidents and Occupational Diseases (INAIL) are supported from several years by a second source of data on occupational diseases, the MALPROF system, based on data from the prevention units of the local health services (ASL). Integrating these two data flows allows connecting diseases and the occupations at the onset of the disease itself. The 2009-10 data from 12 Italian regions currently participating in the MALPROF system show that noise-induced hearing loss represents the relatively most frequent occupational disease (25.3%) in the petrochemical industry, followed by the musculoskeletal diseases (22.9%). Malignant tumors of the pleura and peritoneum follow with a proportional rate of 19%, six times higher than that recorded for the total industrial sectors (3.6%). Diseases of the respiratory system are clearly proportionally more frequent (16.5%) compared to data reported to the total industrial sectors (6%).

  3. [Toxicity evaluation of sewage treatment plant effluent of chemical industrial park along the Yangtze River on rat testicular germ cells in vitro].

    PubMed

    Hu, Guan-Jiu; Wang, Xiao-Yi; Shi, Wei; Bai, Chou-Yong; Wu, Jiang; Liu, Hong-Ling; Yu, Hong-Xia

    2009-05-15

    By using rat testicular germ cells in vitro toxicity testing method based on original cells culture, the reproduction toxicity of sewage treatment plant effluent of Chemical Industrial Park along the Yangtze River was evaluated, through cells changes in morphologic, activity and viability parameters. The results showed that both of the effluents from new developed Chemical Industrial Park A and provincial Chemical Industrial Park B contain reproductive toxic substances. The toxicity of Park A has more significant undergone changes in cells activity of sertoli cells (p < 0.01), spermatogenic cells (p < 0.05) and leyding cells (p < 0.05), lactate dehydrogenase activity (p < 0.01) and testosterone secretion (p < 0.01) than that of Park B. Sepermatogenic cells are more sensitive in indicating reproduction toxicity for testicular, compared with leyding cells and sertoli cells. This study demonstrated that, as an indispensable and complementary tool for water quality assessment, rat testicular germ cells in vitro toxicity testing based on original cells culture can be used to comprehensively evaluate the reproduction toxicity of sewage treatment plant effluent, and provide prompt and useful discharge quality information.

  4. Investigation of endogenous biomass efficiency in the treatment of unhairing effluents from the tanning industry.

    PubMed

    Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar

    2009-08-01

    The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.

  5. [Prevalence and characterization of hearing loss in workers exposed to industrial noise of the turbogenerated electric plant of a petrochemical industry].

    PubMed

    Montiel-López, María; Corzo-Alvarez, Gilbert; Chacín-Almarza, Betulio; Rojas-González, Liliana; Quevedo, Ana; Rendiles, Hernando

    2006-06-01

    The purpose of the present study was to assess the impact of occupational exposure to noise and its relationship with other factors that can induce hearing loss in the electric plant workers of a petrochemical industry of the west of Venezuela. A cross-sectional study was conducted that included sonometry tests, carried out according to the established methodology by COVENIN rules, and the occupational medical evaluation and liminal tonal audiometrics test in 75 workers. The equivalent noise levels (Leq) was quantified in different workplaces. It was found out that most of the workers are exposed to high noise levels [>85 dB(A)] and during more time than the recommended. All workers use hearing protectors appropriately. The hearing loss prevalence in workers was 16.0%, there were not noise-induced hearing losses. The hearing threshold registered in the audiometrics test was diminished, but inside the normal threshold values. We diagnosed 12 cases of conductive hearing loss, all grade I; there were not sensorial or mixed hearing losses. There was not a relationship between the equivalent noise level and hearing loss. It is suggested the design and implantation of a program of auditory conservation to protect the health and security of the workers and to conduct a longitudinal study considering the findings of the present study as it basis.

  6. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale.

  7. Effects of effluent from electoplating industry on the immune response in the freshwater fish, Cyprinus carpio.

    PubMed

    Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I

    2018-08-01

    The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Economic analysis of effluent limitation guidelines and standards for the centralized waste treatment industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, W.

    1998-12-01

    This report estimates the economic and financial effects and the benefits of compliance with the proposed effluent limitations guidelines and standards for the Centralized Waste Treatment (CWT) industry. The Environmental Protection Agency (EPA) has measured these impacts in terms of changes in the profitability of waste treatment operations at CWT facilities, changes in market prices to CWT services, and changes in the quantities of waste management at CWT facilities in six geographic regions. EPA has also examined the impacts on companies owning CWT facilities (including impacts on small entities), on communities in which CWT facilities are located, and on environmentalmore » justice. EPA examined the benefits to society of the CWT effluent limitations guidelines and standards by examining cancer and non-cancer health effects of the regulation, recreational benefits, and cost savings to publicly owned treatment works (POTWs) to which indirect-discharging CWT facilities send their wastewater.« less

  9. Effluent characterization and different modes of reuse in agriculture-a model case study.

    PubMed

    Das, Madhumita; Kumar, Ashwani

    2009-06-01

    High-quality waters are steadily retreating worldwide. Discharge of industrial effluent in the environment again declines soil/water quality to a great extent. On the other hand, effluent reuse in agriculture could be a means to conserve natural resources by providing assured water supply for growing crops. But industrial effluents are highly variable in nature, containing a variety of substances, and all are not favorable for farming. Appraisal and developing modes of effluent reuse is therefore a prerequisite to enable its proper use in agriculture. Effluents of various industries were assessed and approaches for their use in farming were developed for a particular region in this study. As per availability of effluents, the same could be implemented in other water-scarce areas. Effluents of 20 different industrial units were characterized by 24 attributes. Comparing these with corresponding irrigation water quality standards, the probability of their reuse was interpreted in the first approach. On the basis of relevant properties of major soil types dominated in a particular region, the soil-based usability of effluent was worked out in the second approach. By emphasizing the limitation of groundwater development where it went beyond 50% exploitation level, the land form and major soil type were then identified by applying a soil-based effluent reuse approach; the area-specific suitability of its use was perceived in the third approach. On the basis of irrigation water quality standards, the irrigation potentials of paper mill, fermentation (breweries and distilleries), and sugar factory effluents were recognized. In a soil-based approach, the compatibility of effluent with soil type was marked with A (preferred) and B (moderately preferred) classes and, compiling their recurring presence, the unanimous preference for paper mill effluent followed by rubber goods manufacturing industries/marine shrimp processing units, fermentation, and sugar mills was noted

  10. Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moina macrocopa.

    PubMed

    Yi, Xianliang; Kang, Sung-Wook; Jung, Jinho

    2010-06-15

    Acute toxicity and feeding rate inhibition of effluent from a wastewater treatment plant and its adjacent stream water on Daphnia magna and Moina macrocopa were comparatively studied. The acute toxicity of the final effluent (FE) fluctuated greatly over the sampling period from January to August 2009. Toxicity identification results of the FE in July 2009 showed that Cu originating from the Fenton's reagent was likely a key toxicant. In addition, the feeding rate of both species was still inhibited by the FEs in which acute toxicity was not observed. These findings indicate that the feeding response would be a useful tool for monitoring sublethal effects of industrial effluents. For the acute toxicity test, M. macrocopa was more sensitive than D. magna, but the opposite result was true in the case of the feeding rate inhibition. These suggest that different species have different sensitivities to toxic chemicals and to the test methods. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Characterization of Industrial Emission Sources and Photochemistry in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Atlas, E. L.; Degouw, J.; Flocke, F. M.; Fried, A.; Frost, G. J.; Holloway, J.; Richter, D.; Ryerson, T. B.; Schauffler, S.; Trainer, M.; Walega, J.; Warneke, C.; Weibring, P.; Zheng, W.

    2009-12-01

    The Houston-Galveston urban area contains a number of large industrial petrochemical emission sources that produce volatile organic compounds and nitrogen oxides. These co-located emissions result in rapid and efficient ozone production downwind. Unlike a single large power plant, the industrial complexes consist of numerous sources that can be difficult to quantify in emission inventories. During September - October 2006, the NOAA WP-3 aircraft conducted research flights as part of the second Texas Air Quality Study (TexAQS II). We examine measurements of NOx, SO2, and speciated hydrocarbons from the Houston Ship Channel, which contains a dense concentration of industrial petrochemical sources, and isolated petrochemical facilities. These measurements are used to derive source emission estimates, which are then compared to available emission inventories. We find that high hydrocarbon emissions are typical for the Houston Ship Channel and isolated petrochemical facilities. Ethene and propene are found to be major contributors to ozone formation. Ratios of C2H4 / NOx and C3H6 / NOx exceed emission inventory values by factors of 10 - 50. These findings are consistent with the first TexAQS study in 2000. We examine trends in C2H4 / NOx and C3H6 / NOx ratios between 2000 and 2006, and determine that day-to-day variability and within-plume variability exceeds any long-term reduction in ethene and propene emissions for the isolated petrochemical sources. We additionally examine downwind photochemical products formed by these alkenes.

  12. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Industrial Sand Subcategory § 436.42 Effluent limitations guidelines representing the degree of effluent... 6.0 and water quality criteria in water quality standards approved under the Act authorize such lower pH, the pH limitation for such discharge may be adjusted downward to the pH water quality...

  13. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent.more » After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.« less

  14. Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi Jen Pan; Yu Jue Hong; Gwo Chin Chang

    1994-12-31

    We have collected data on the cancer deaths of children and adolescents 0-19 yr old living in a residential area near 3 large petroleum and petrochemical complexes in and near Kaohsiung city (petrochemical industrial districts, PIDs) in the period of 1971-1990 and compared these with the cancer deaths of children and adolescents 0-19 yr old among the entire population of Taiwan (national reference) and among the residents of 26 administrative districts, comprising all of Kaohsiung city and Kaohsiung county (local reference), except for 8 sparsely populated, rural districts. Having scrutinized all cancer death certificates, we have identified various statistically significantmore » excess deaths, as compared with the national and local reference, due to cancers at all sites. Cancer of the bone, brain, and bladder in boys and girls 0-9 yr and 10-19 yr of age in the 1981-1990 decade that followed the establishment of petrochemical production in the PIDs was studied. However, excess cancer deaths seemed to have clustered in the 10-19 yr age group, who had been potentially exposed to the petrochemical pollutants for the longest period of time from the youngest age. Almost all bone, brain, and bladder cancer deaths registered were within 3 km of the 3 complexes. Bone and brain cancers in particular occurred in girls in the PIDs more frequently than in boys, even though these are believed to occur more in males than females elsewhere. 32 refs., 1 fig., 6 tabs.« less

  15. Remediation of lead from lead electroplating industrial effluent using sago waste.

    PubMed

    Jeyanthi, G P; Shanthi, G

    2007-01-01

    Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.

  16. Nutrient loadings to streams of the continental United States from municipal and industrial effluent?

    USGS Publications Warehouse

    Maupin, Molly A.; Ivahnenko, Tamara

    2011-01-01

    Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.

  17. Assessment of microbial quality of fish processing industrial effluent in bar-mouth at Bhidia landing site, Veraval, Gujarat, India.

    PubMed

    Sivaraman, G K; Visnuvinayagam, S; Jha, Ashish Kumar; Renuka, V; Remya, S; Vanik, Deesha

    2016-07-01

    The present study was carried out to assess the microbial quality of fish processing industries effluent at Bhidia bar-mouth, Veraval, Gujarat during April, 2012 to March 2013. The total viable bacterial count (TVBC), total Enterobacteriaceae count, E. coli count (EC), Staphylococcus aureus and Fecal Streptococcal count in effluent ranged from 3.0 x 10(-1) to 6.8 x 10(6), 9.0 x 10(1) to 2.9 x 10(4), 0 to 0. 5 x 10(4), 0 to 0. 4 x 102 and 0.3 x 10(1) to 0. 1 x 10(4) cfu.(-1)respectively. Significantly higher load of TEC, E. coli, S.aureus, Fecal Streptococci, Total coliforms and Fecal coliforms were higher during summer whereas, TVBC was higher in the month of Sept.-Oct. Furthermore, the total coliform and fecal coliform counts were found to be higher with 1400+ /100 ml MPN value throughout the year of the study, except in the month of August. Overall occurrence of pathogenic strains of E. coli, S. aureus and Fecal streptococci were 41.67%, 25.00% and 66.67% respectively during this period. The antibiogram of the isolated E. coli isolates show that almost 50% were resistant to Cefazidime/Clavulanic acid (CAC), Amoxyclav (AMC), Ciprofloxacin (CIF) and Ampicillin (AMP). The present study indicated that the effluent of fish processing industry was heavily contaminated with E. coli, S. aureus and Fecal Streptococci which confirmed improper treatment of fish processing effluent. Moreover, the precedence of antibiotic resistant E. coli may pose threat to public health safety.

  18. Morphological, Physiological and Biochemical Impact of Ink Industry Effluent on Germination of Maize (Zea mays), Barley (Hordeum vulgare) and Sorghum (Sorghum bicolor).

    PubMed

    Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch

    2015-11-01

    The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water.

  19. Bioremediation of Mercury by Vibrio fluvialis Screened from Industrial Effluents.

    PubMed

    Saranya, Kailasam; Sundaramanickam, Arumugam; Shekhar, Sudhanshu; Swaminathan, Sankaran; Balasubramanian, Thangavel

    2017-01-01

    Thirty-one mercury-resistant bacterial strains were isolated from the effluent discharge sites of the SIPCOT industrial area. Among them, only one strain (CASKS5) was selected for further investigation due to its high minimum inhibitory concentration of mercury and low antibiotic susceptibility. In accordance with 16S ribosomal RNA gene sequences, the strain CASKS5 was identified as Vibrio fluvialis . The mercury-removal capacity of V. fluvialis was analyzed at four different concentrations (100, 150, 200, and 250  μ g/ml). Efficient bioremediation was observed at a level of 250  μ g/ml with the removal of 60% of mercury ions. The interesting outcome of this study was that the strain V. fluvialis had a high bioremediation efficiency but had a low antibiotic resistance. Hence, V. fluvialis could be successfully used as a strain for the ecofriendly removal of mercury.

  20. Ecotoxicological assessment of the impact of fluoride (F-) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent.

    PubMed

    Camargo, Julio A; Alonso, Álvaro

    2017-06-01

    We carried out field studies and laboratory experiments to assess the impact of fluoride (F - ) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent (the middle Duraton River, Central Spain). Fluoride concentrations and turbidity levels significantly increased downstream from the industrial effluent (with the highest values being 0.6 mg F - /L and 55.2 nephelometric turbidity unit). In addition, higher deposition of fine inorganic matter was evident at polluted sampling sites. Conversely, the abundance of P. acuta significantly declined (until its virtual disappearance) downstream from the industrial effluent. Toxicity bioassays showed that P. acuta is a relatively tolerant invertebrate species to fluoride toxicity, with estimated safe concentrations (expressed as LC 0.10 values for infinite hours of exposure) for juvenile and adult snails being 2.4 and 3.7 mg F - /L, respectively. Furthermore, juvenile snails (more sensitive than adult snails) did not show significant alterations in their behavior through 15 days of exposure to 2.6 mg F - /L: mean values of the proportion of test snails located on the water surface habitat, as well as mean values of the sliding movement rate (velocity) of test snails, never showed significant differences when comparing control and treatment glass vessels. It is concluded that instream habitat degradation, derived from increased turbidity levels, might be a major cause for significant reductions in the abundance of P. acuta downstream from the industrial effluent. The presence of the competing gastropod Ancylus fluviatilis could also affect negatively the recovery of P. acuta abundance.

  1. The impact of an industrial effluent on the water quality, submersed macrophytes and benthic macroinvertebrates in a dammed river of Central Spain.

    PubMed

    Gonzalo, Cristina; Camargo, Julio A

    2013-10-01

    This research was conducted in the middle Duratón River (Central Spain), in the vicinity of Burgomillodo Reservoir. An industrial effluent enters the river 300 m downstream from the dam. Fluoride and turbidity levels significantly increased downstream from the effluent, these levels being to some extent affected by differential water releases from the dam. The community of submersed macrophytes exhibited slighter responses and, accordingly, lower discriminatory power than the community of benthic macroinvertebrates, this indicating that metrics and indices based on macroinvertebrates may be more suitable for the biological monitoring of water pollution and habitat degradation in dammed rivers receiving industrial effluents. However, in relation to fluoride bioaccumulation at the organism level, macrophytes (Fontinalis antipyretica and Potamogeton pectinatus) were as suitable bioindicators of fluoride pollution as macroinvertebrates (Ancylus fluviatilis and Pacifastacus leniusculus). Fluoride bioaccumulation in both hard and soft tissues of these aquatic organisms could be used as suitable bioindicator of fluoride pollution (even lower than 1 mg F(-)L(-1)) in freshwater ecosystems. Echinogammarus calvus exhibited a great sensitivity to the toxicity of fluoride ions, with a 96 h LC₅₀ of 7.5 mg F(-)L(-1) and an estimated safe concentration of 0.56 mg F(-)L(-1). The great capacity of E. calvus to take up and retain fluoride during exposures to fluoride ions would be a major cause of its great sensitivity to fluoride toxicity. It is concluded that the observed fluoride pollution might be partly responsible for the absence of this native amphipod downstream from the industrial effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Considerations for Planning a Monitoring Campaign at Petrochemical Complexes: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Cuclis, A.

    2010-12-01

    An air quality monitoring campaign was developed for the late spring of 2009 near Houston area petrochemical facilities. The focus of the field campaign was to measure free radicals that contribute to the formation of ozone, however refinery and chemical plants monitored are also emitters of many different volatile organic compounds (vocs) and hazardous air pollutants (haps). The Houston area is home to the largest aggregation of petrochemical facilities in the U.S. Three specific geographical areas with industrial facilities were considered: Mont Belvieu, the Houston Ship Channel and the Texas City Industrial Complex. Previous experiences with field campaigns in the area led to the presumption that there would be little if any access inside the facilities. Considerations for which areas to focus on included: how close could the facility be approached, what were the directions of the prevailing winds, what kind of barriers to measurement existed (e.g. trees, buildings, highways, privately owned land, etc.), and what were the possible chemical interferences from other sources near the measurement sites? Close communications with the plant security, the local police, the Federal Bureau of Investigations (FBI), Homeland Security, the Federal Aviation Administration (FAA), and the Texas Commission on Environmental Quality (TCEQ) were required. Substantial delays can occur due to local concerns regarding homeland security and plant safety. Also, a system of communications is essential to coordinate the participating scientists operating stationary analyzers with the scientists who have analyzers mounted in ground vehicles and in aircraft. The researchers were provided with information regarding plant operations, types of equipment and potential pollutants. A wide variety of stationery and mobile ambient air monitoring techniques were used to measure formaldehyde and other volatile organic compounds. In order to identify likely formaldehyde sources the self

  3. Assessment of the effluent quality from a gold mining industry in Ghana.

    PubMed

    Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L

    2013-06-01

    The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.

  4. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    PubMed

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. SOURCE ASSESSMENT: NITROGEN FERTILIZER INDUSTRY WATER EFFLUENTS

    EPA Science Inventory

    The report describes a study of waterborne pollutants from the manufacture of nitrogen fertilizers. It includes an evaluation of the ammonia, ammonium nitrate, urea, and nitric acid manufacturing processes. Water effluents in a nitrogen fertilizer plant originate from a variety o...

  6. High Temperature Properties Test and Research of 9Cr1Mo (P9) Seamless Pipe Used in Petrochemical Industry

    NASA Astrophysics Data System (ADS)

    Wang, Qijiang; Zhou, Yedong; Zhang, Qinglian

    Production technical process of BaoSteel-produced 9Cr1Mo (P9) seamless pipe is presented, and creep property of isothermal annealed state of that steel is studied under the temperatures of 550 °C, 600 °C, 650 °C, 700 °C. Also, isothermal extrapolation method and Larson-Miller method are employed to extrapolate creep rupture strength of the steel at the creep time of 20000h, 40000h, 60000h and 100000h. The results show that high temperature properties of BaoSteel-produced 9Cr1Mo (P9) seamless pipe meets the API 530 standard of USA and the SH/T3037 standard of China's petrochemical industry, and the steel can be used in large scale petroleum cracking equipment. Meantime, the comparison of creep properties at 650 °C and transient elevated temperature properties at different temperatures between isothermal annealed state and normalized + tempered state of 9Cr1Mo (P9) seamless pipe as well as the microstructure analysis show that the normalized + tempered 9Cr1Mo (P9) seamless pipe presents better high temperature properties.

  7. English for Petrochemical Plant Operators.

    ERIC Educational Resources Information Center

    Bynum, Henri Sue

    The development of a program and curriculum for instruction in technical English for Saudi Arabian petrochemical plant operator trainees studying in the United States for two years was undertaken by the University of South Alabama's English Language Center. The program was designed to accommodate (1) the degree of skills and prior learning of the…

  8. Treatment of silica effluents: ultrafiltration or coagulation-decantation.

    PubMed

    Ndiaye, P I; Moulin, P; Dominguez, L; Millet, J C; Charbit, F

    2004-12-10

    In the electronics industry, the preparation of silicon plates generates effluents that contain a great amount of colloidal silica. Two processes--decantation and ultrafiltration--are studied with in view the treatment of the effluents released by the firm Rockwood Electronic Materials. The feasibility of each of the two processes is studied separately and their operating parameters optimized. Both processes allow the recovery of a great proportion of the initial effluent (over 89%) as transparent and colorless water that can be reused at the start of a line. In view of the results and of the compared advantages and disadvantages of the two processes, ultrafiltration will be selected for the industrial unit.

  9. Biological anoxic treatment of O₂-free VOC emissions from the petrochemical industry: a proof of concept study.

    PubMed

    Muñoz, Raúl; Souza, Theo S O; Glittmann, Lina; Pérez, Rebeca; Quijano, Guillermo

    2013-09-15

    An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O2 supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m(-3)h(-1) (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m(-3)h(-1). However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m(-3)h(-1), while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m(-3) (which entailed a loading rate increase from 3 to 6 g m(-3)h(-1)), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Bioremediation of Mercury by Vibrio fluvialis Screened from Industrial Effluents

    PubMed Central

    Saranya, Kailasam; Shekhar, Sudhanshu; Swaminathan, Sankaran; Balasubramanian, Thangavel

    2017-01-01

    Thirty-one mercury-resistant bacterial strains were isolated from the effluent discharge sites of the SIPCOT industrial area. Among them, only one strain (CASKS5) was selected for further investigation due to its high minimum inhibitory concentration of mercury and low antibiotic susceptibility. In accordance with 16S ribosomal RNA gene sequences, the strain CASKS5 was identified as Vibrio fluvialis. The mercury-removal capacity of V. fluvialis was analyzed at four different concentrations (100, 150, 200, and 250 μg/ml). Efficient bioremediation was observed at a level of 250 μg/ml with the removal of 60% of mercury ions. The interesting outcome of this study was that the strain V. fluvialis had a high bioremediation efficiency but had a low antibiotic resistance. Hence, V. fluvialis could be successfully used as a strain for the ecofriendly removal of mercury. PMID:28626761

  11. Impact of textile dyeing industries effluent on groundwater quality in Karur Amaravathi River basin, Tamil Nadu (India)--a field study.

    PubMed

    Rajamanickam, R; Nagan, S

    2010-10-01

    Karur is an industrial town located on the bank of river Amaravathi. There are 487 textile processing units in operation and discharge about 14610 kilo litres per day of treated effluent into the river. The groundwater quality in the downstream is deteriorated due to continuous discharge of effluent. In order to assess the present quality of groundwater, 13 open wells were identified in the river basin around Karur and samples were collected during pre-monsoon, post monsoon and summer, and analyzed for physico-chemical parameters. TDS, total alkalinity, total hardness, calcium, chlorides and sulphates exceeded the desirable limit. Amaravathi River water samples were also colleted at the upstream and downstream of Karur and the result shows the river is polluted. During summer season, there is no flow in the river and the river acts as a drainage for the effluent. Hence, there is severe impact on the groundwater quality in the downstream. The best option to protect the groundwater quality in the river basin is that the textile processing units should adopt zero liquid discharge (ZLD) system and completely recycle the treated effluent.

  12. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  13. Complete physico-chemical treatment for coke plant effluents.

    PubMed

    Ghose, M K

    2002-03-01

    Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.

  14. Pathogens Assessment in Reclaimed Effluent Used for Industrial Crops Irrigation

    PubMed Central

    Al-Sa’ed, R.

    2007-01-01

    Reuse of treated effluent is a highly valued water source in Palestine, however with limited success due to public health concerns. This paper assesses the potential pathogens in raw, treated and reclaimed wastewater at Albireh urban wastewater treatment facility, and provides scientific knowledge to update the Palestinian reuse guidelines. Laboratory analyses of collected samples over a period of 4 months have indicated that the raw wastewater from Albireh city contained high numbers of fecal coliforms and worm eggs while 31% of the samples were Salmonella positive. Treated effluent suitable for restricted irrigation demonstrated that the plant was efficient in removing indicator bacteria, where fecal coliforms and fecal streptococci removal averaged 99.64% and 93.44%, respectively. Although not disinfected, treated effluent was free of Salmonella and parasites, hence safe for restricted agricultural purposes. All samples of the reclaimed effluent and three samples of irrigated grass were devoid of microbial pathogens indicating a safe use in unrestricted agricultural utilization. Adequate operation of wastewater treatment facilities, scientific updating of reuse guidelines and launching public awareness campaigns are core factors for successful and sustainable large-scale wastewater reuse schemes in Palestine. PMID:17431318

  15. Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent

    USGS Publications Warehouse

    Maupin, M.A.; Ivahnenko, T.

    2011-01-01

    Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  16. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers.

    PubMed

    Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-08-05

    Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28±13.15mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The U.S. Chemical Industry, the Raw Materials It Uses

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The raw materials used by the industry are considered in this section of the annual chemical industry report, including data covering: natural gas, lead, mercury, phosphate rock, potash, salt, petroleum products including petrochemical feedstocks. (PR)

  18. Energy Industry

    DTIC Science & Technology

    2007-01-01

    Coal Power Plant , Dickerson, MD Consol Corporation, Morgantown and Wanna, WV Chevron Corporation, San Ramon, CA Valero Refinery , Benicia, CA Pacific...important petrochemical industry Cons: Reliance on imports from volatile regions Greenhouse gas emissions Policy Recommendations: Limit number...nuclear power, and reduce hazardous emissions through the development of cleaner burning technologies and use of alternative fuels. Specifically, the

  19. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  20. Cluster analysis of fine particulate matter (PM2.5) emissions and its bioreactivity in the vicinity of a petrochemical complex.

    PubMed

    Chuang, Hsiao-Chi; Shie, Ruei-Hao; Chio, Chia-Pin; Yuan, Tzu-Hsuen; Lee, Jui-Huan; Chan, Chang-Chuan

    2018-05-01

    This study evaluated associations between the bioreactivity of PM 2.5 in vitro and emission sources in the vicinity of a petrochemical complex in Taiwan. The average PM 2.5 was 30.2 μg/m 3 from 9 February to 23 March 2016, and the PM 2.5 was clustered in long-range transport (with major local source) (12.8 μg/m 3 ), and major (17.3 μg/m 3 ) and minor industrial emissions (4.7 μg/m 3 ) using a k-means clustering model. A reduction in cell viability and increases in the cytotoxicity-related lactate dehydrogenase (LDH), oxidative stress-related 8-isoprostane, and inflammation-related interleukin (IL)-6 occurred due to PM 2.5 in a dose-dependent manner. The PM 2.5 from major industrial emissions was significantly correlated with increased 8-isoprostane and IL-6, but this was not observed for long-range transport or minor industrial emissions. The bulk metal concentration was 9.52 ng/m 3 in PM 2.5 . We further observed that As, Ba, Cd, and Se were correlated with LDH in the long-range transport group. Pb in PM 2.5 from the major industrial emissions was correlated with LDH, whereas Pb and Se were correlated with 8-isoprostane. Sr was correlated with cell viability in the minor industrial emissions group. We demonstrated a new approach to investigate particle bioreactivity, which suggested that petrochemical-emitted PM 2.5 should be a concern for surrounding residents' health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    PubMed

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  2. Voluntary GHG reduction of industrial sectors in Taiwan.

    PubMed

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Industrial Energy in Transition: A Petrochemical Perspective

    ERIC Educational Resources Information Center

    Wishart, Ronald S.

    1978-01-01

    An industrial development involves the conversion of biomass, through fermentation, to useful chemical products and the gasification of municiple wastes to produce steam for electricity generation. These gases may also serve as chemical feedstocks. (Author/MA)

  4. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  5. The effect of the feeding pattern of complex industrial wastewater on activated sludge characteristics and the chemical and ecotoxicological effluent quality.

    PubMed

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-04-01

    Research has demonstrated that the feeding pattern of synthetic wastewater plays an important role in sludge characteristics during biological wastewater treatment. Although considerable research has been devoted to synthetic wastewater, less attention has been paid to industrial wastewater. In this research, three different feeding strategies were applied during the treatment of tank truck cleaning (TTC) water. This industry produces highly variable wastewaters that are often loaded with hazardous chemicals, which makes them challenging to treat with activated sludge (AS). In this study, it is shown that the feeding pattern has a significant influence on the settling characteristics. Pulse feeding resulted in AS with a sludge volume index (SVI) of 68 ± 15 mL gMLSS -1 . Slowly and continuously fed AS had to contend with unstable SVI values that fluctuated between 100 and 600 mL gMLSS -1 . These fluctuations were clearly caused by the feeding solution. The obtained settling characteristics are being supported by the microscopic analysis, which revealed a clear floc structure for the pulse fed AS. Ecotoxicological effluent assessment with bacteria, Crustacea and algae identified algae as the most sensitive organism for all effluents from all different reactors. Variable algae growth inhibitions were measured between the different reactors. The chemical and ecotoxicological effluent quality was comparable between the reactors.

  6. Strategies for decolorization and detoxification of pulp and paper mill effluent.

    PubMed

    Garg, Satyendra K; Tripathi, Manikant

    2011-01-01

    The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various

  7. Economic analysis of the final effluent limitations, new source performance standards and pretreatment standards for the steam electric power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the economic analysis of final effluent limitation guidelines, New Source Performance Standards, and pretreatment standards being promulgated for the steam-electric power plant point source category. It describes the costs of the final regulations, assesses the effects of these costs on the electric utility industry, and examines the cost-effectiveness of the regulations.

  8. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  9. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2017-09-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp ., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  10. Desulfurization: Critical step towards enhanced selenium removal from industrial effluents.

    PubMed

    Staicu, Lucian C; Morin-Crini, Nadia; Crini, Grégorio

    2017-04-01

    Selenium (Se) removal from synthetic solutions and from real Flue Gas Desulfurization (FGD) wastewater generated by a coal-fired power plant was studied for the first time using a commercial iron oxide impregnated strong base anion exchange resin, Purolite ® FerrIX A33E. In synthetic solutions, the resin showed high affinity for selenate and selenite, while sulfate exhibited a strong competition for both oxyanions. The FGD wastewater investigated is a complex system that contains Se (∼1200 μg L -1 ), SO 4 2- (∼1.1 g L -1 ), Cl - (∼9.5 g L -1 ), and Ca 2+ (∼5 g L -1 ), alongside a broad spectrum of toxic trace metals including Cd, Cr, Hg, Ni, and Zn. The resin performed poorly against Se in the raw FGD wastewater and showed moderate to good removal of several trace elements such as Cd, Cr, Hg, and Zn. In FGD effluent, sulfate was identified as a powerful competing anion for Se, having high affinity for the exchange active sites of the resin. The desulfurization of the FGD effluent using BaCl 2 led to the increase in Se removal from 3% (non-desulfurized effluent) to 80% (desulfurized effluent) by combined precipitation and ion exchange treatment. However, complete desulfurization using equimolar BaCl 2 could not be achieved due to the presence of bicarbonate that acts as a sulfate competitor for barium. In addition to selenium and sulfate removal, several toxic metals were efficiently removed (Cd: 91%; Cr: 100%; Zn: 99%) by the combined (desulfurization and ion exchange) treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Environmental assessment for the proposed effluent limitations guidelines, pretreatment standards, and new source performance standards for the centralized waste treatment industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    This report assesses the water quality related benefits that would be expected if the US Environmental Protection Agency (EPA) adopts the proposed effluent limitations, guidelines and pretreatment standards for the Centralized Waste Treatment (CWT) Industry. EPA estimates that under baseline conditions 205 CWT facilities discharge approximately 5.22 million lbs/year of metal and organic pollutants.

  12. Biotreatment of Petrochemical Wastewater: A Case Study from Northern Tunisia.

    PubMed

    Jemli, Meryem; Zaghden, Hatem; Rezgi, Fatma; Kchaou, Sonia; Aloui, Fathi; Sayadi, Sami

    2017-03-01

      A full-scale study has been conducted to assess the bioaugmentation efficiency of trickling filter process to treat petrochemical wastewater from a lubricant industry recycling waste oils. During 45 weeks, the organic loading rate (OLR) in the trickling filter was increased stepwise from 0.9 to 4 kg of chemical oxygen demand (COD)/(m3·day) at the end of the upgrading period as the flow rate (FR) reached the value of 30 m3/day. The removal, obtained in terms of percentage, for COD ranged from 60 to 84.5 and greater than 98 for total n-alkane (TNA), while those of total kjeldahl nitrogen (TKN) and total phosphor (TP) were about 32 and 55, respectively. The analytical profile index (API) of trickling biofilm has confirmed that 5 strains are closely related to Acinobacter junii, Stenotrophomonas maltophilia, Vibrio vulnificus, Vibrio metschnikovi, Pseudomona slulzeri and Trichosporon spp2.

  13. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.

    PubMed

    Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M

    2018-03-01

    The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.

  14. Biomonitoring of genotoxicity using micronuclei assay in native population of Astyanax jacuhiensis (Characiformes: Characidae) at sites under petrochemical influence.

    PubMed

    de Lemos, Clarice Torres; Iranço, Fábio de Almeida; de Oliveira, Nânci Cristina D'Avila; de Souza, Getúlio Dornelles; Fachel, Jandyra Maria Guimarães

    2008-11-15

    Bom Jardim brook is a small stream that flows through an area under the influence of a Petrochemical Complex, demanding control over its quality, so a genotoxic evaluation was performed. This study was conducted in situ, based on previous analysis on the same subject. These were performed both in vitro, with Salmonella typhimurium and human lymphocytes, and in vivo, using bioassays with fish exposed to water from the study area. The purpose of this research was to assess the quality of the aquatic environment and possible effects from petrochemical pollution to surrounding native populations. Micronuclei (MNE) and nuclear abnormalities (NA) frequencies in peripheral blood of Astyanax jacuhiensis, a native fish species collected from the study area, were used as biomarkers. Study period was from summer/99 to spring/2001, using samples obtained seasonally at two ponds upstream from the industrial area (BJN and BJPa) and two sites in Bom Jardim brook (BJ002 and BJ000), which are subject to Complex influence. MNE and NA frequencies found in individuals from BJ002 and BJ000 were similar, showing positive genotoxic responses related to control sites BJN and BJPa. No differential sensitivity could be verified for micronuclei induction between genders of A. jacuhiensis in the studied population. This study showed that sites subject to petrochemical influence were under higher genotoxic impact. Biomarkers adequacy to the case and the sensitivity of A. jacuhiensis for water monitoring could be also inferred.

  15. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    PubMed

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2018-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  16. Rapid analysis of effluents generated by the dairy industry for fat determination by preconcentration in nylon membranes and attenuated total reflectance infrared spectroscopy measurement.

    PubMed

    Moliner Martínez, Y; Muñoz-Ortuño, M; Herráez-Hernández, R; Campíns-Falcó, P

    2014-02-01

    This paper describes a new approach for the determination of fat in the effluents generated by the dairy industry which is based on the retention of fat in nylon membranes and measurement of the absorbances on the membrane surface by ATR-IR spectroscopy. Different options have been evaluated for retaining fat in the membranes using milk samples of different origin and fat content. Based on the results obtained, a method is proposed for the determination of fat in effluents which involves the filtration of 1 mL of the samples through 0.45 µm nylon membranes of 13 mm diameter. The fat content is then determined by measuring the absorbance of band at 1745 cm(-1). The proposed method can be used for the direct estimation of fat at concentrations in the 2-12 mg/L interval with adequate reproducibility. The intraday precision, expressed as coefficients of variation CVs, were ≤ 11%, whereas the interday CVs were ≤ 20%. The method shows a good tolerance towards conditions typically found in the effluents generated by the dairy industry. The most relevant features of the proposed method are simplicity and speed as the samples can be characterized in a few minutes. Sample preparation does not involve either additional instrumentation (such as pumps or vacuum equipment) or organic solvents or other chemicals. Therefore, the proposed method can be considered a rapid, simple and cost-effective alternative to gravimetric methods for controlling fat content in these effluents during production or cleaning processes. © 2013 Published by Elsevier B.V.

  17. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.

    PubMed

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding

  19. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay.

    PubMed

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-06-01

    Anthropogenic activities usually contaminate water environments, and have led to the eutrophication of many estuaries and shifts in microbial communities. In this study, the temporal and spatial changes of the microbial community in an industrial effluent receiving area in Hangzhou Bay were investigated by 454 pyrosequencing. The bacterial community showed higher richness and biodiversity than the archaeal community in all sediments. Proteobacteria dominated in the bacterial communities of all the samples; Marine_Group_I and Methanomicrobia were the two dominant archaeal classes in the effluent receiving area. PCoA and AMOVA revealed strong seasonal but minor spatial changes in both bacterial and archaeal communities in the sediments. The seasonal changes of the bacterial community were less significant than those of the archaeal community, which mainly consisted of fluctuations in abundance of a large proportion of longstanding species rather than the appearance and disappearance of major archaeal species. Temperature was found to positively correlate with the dominant bacteria, Betaproteobacteria, and negatively correlate with the dominant archaea, Marine_Group_I; and might be the primary driving force for the seasonal variation of the microbial community. Copyright © 2016. Published by Elsevier B.V.

  20. Hazardous effects of effluent from the chrome plating industry: 70 kDa heat shock protein expression as a marker of cellular damage in transgenic Drosophila melanogaster (hsp70-lacZ).

    PubMed Central

    Mukhopadhyay, Indranil; Saxena, Daya Krishna; Chowdhuri, Debapratim Kar

    2003-01-01

    Hazardous effects of an effluent from the chrome plating industry were examined by exposing transgenic Drosophila melanogaster (hsp70-lacZ) to various concentrations (0.05, 0.1, 1.0, 10.0, and 100.0 micro L/mL) of the effluent through diet. The emergence pattern of adult flies was affected, along with impaired reproductive performance at the higher dietary concentrations of the effluent. Interestingly, the effect of the effluent was more pronounced in male than in female flies. The effect of the effluent on development of adult flies was concurrent with the expression pattern of the heat shock protein 70 gene (hsp70), both in larval tissues and in the reproductive organs of adult flies. We observed a dose- and time-dependent expression of hsp70 in third instar larvae exposed for different time intervals. Absence of hsp70 expression in larvae exposed to 0.1 micro L/mL of the effluent indicated that this is the highest nontoxic concentration for Drosophila. The stress gene assay in the reproductive organs of adult flies revealed hsp70 expression in the testis of male flies only. However, trypan blue dye exclusion tests in these tissues indicate tissue damage in the male accessory gland of adult flies, which was further confirmed by ultrastructural observations. In the present study we demonstrate the utility of transgenic Drosophila as an alternative animal model for evaluating hazardous effects of the effluent from the chrome plating industry and further reveal the cytoprotective role of hsp70 and its expression as an early marker in environmental risk assessment. PMID:14644668

  1. Environmental and health impacts of effluents from textile industries in Ethiopia: the case of Gelan and Dukem, Oromia Regional State.

    PubMed

    Dadi, Diriba; Stellmacher, Till; Senbeta, Feyera; Van Passel, Steven; Azadi, Hossein

    2017-01-01

    This study focuses on four textile industries (DH-GEDA, NOYA, ALMHADI, and ALSAR) established between 2005 and 2008 in the peri-urban areas of Dukem and Gelan. The objectives of the study were to generate baseline information regarding the concentration levels of selected pollutants and to analyze their effects on biophysical environments. This study also attempts to explore the level of exposure that humans and livestock have to polluted effluents and the effects thereof. The findings of this study are based on data empirically collected from two sources: laboratory analysis of sample effluents from the four selected textile plants and quantitative as well as qualitative socioeconomic data collection. As part of the latter, a household survey and focus group discussions (FGDs) with elderly and other focal persons were employed in the towns of Dukem and Gelan. The results of the study show that large concentrations of biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), total suspended solids (TSS), and pH were found in all the observed textile industries, at levels beyond the permissible discharge limit set by the national Environmental Protection Authority (EPA). Furthermore, sulfide (S 2) , R-phosphate (R-PO 4 3 ), and Zn were found in large concentrations in DH-GEDA and ALMHADI, while high concentrations were also identified in samples taken from ALSAR and ALMHADI. In spite of the clear-cut legal tools, this study shows that the local environment, people, and their livestock are exposed to highly contaminated effluents. We therefore recommend that the respective federal and regional government bodies should reexamine the compliance to and actual implementation of the existing legal procedures and regulations and respond appropriately.

  2. Industry and Education: A Winning Combination.

    ERIC Educational Resources Information Center

    Payne, John H.; Williams-Foster, Cathy

    1997-01-01

    Describes how the petrochemical employers of Texas City, Texas developed a fully accredited two-year associate degree program at the local community college tailored to train process operators for entry into the refining and chemical industry. Discusses planning; scholarship funds; vendor and community support; student population; outcomes of the…

  3. Fundamental studies of hydrogen attack in carbon-0.5molybdenum steel and weldments applied in petroelum and petrochemical industries

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one

  4. Biosorption of simulated dyed effluents by inactivated fungal biomasses.

    PubMed

    Prigione, Valeria; Varese, Giovanna Cristina; Casieri, Leonardo; Marchisio, Valeria Filipello

    2008-06-01

    Treatment of dyed effluents presents several problems mainly due to the toxicity and recalcitrance of dyestuffs. Innovative technologies, such as biosorption, are needed as alternatives to conventional methods to find inexpensive ways of removing dyes from large volumes of effluents. Inactivated biomasses do not require a continuous supply of nutrients and are not sensitive to the toxicity of dyes or toxic wastes. They can also be regenerated and reused in many cycles and are both safe and environment-friendly. The sorption capacities (SC) of autoclaved biomasses of three Mucorales fungi (Cunninghamella elegans, Rhizomucor pusillus and Rhizopus stolonifer), cultured on two different media, were evaluated against simulated effluents containing concentrations of 1000 and 5000 ppm of a single dye and a mix of 10 industrial textile dyes in batch experiments. SC values of up to 532.8 mg of dye g(-1) dry weight of biomass were coupled with high effluent decolourisation percentages (up to 100%). These biomasses may thus prove to be extremely powerful candidates for dye biosorption from industrial wastewaters. Even better results were obtained when a column system with the immobilised and inactivated biomass of one fungus was employed.

  5. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    PubMed

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model.

  6. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream.

    PubMed

    Moser, Harald; Pölz, Walter; Waclawek, Johannes Paul; Ofner, Johannes; Lendl, Bernhard

    2017-01-01

    The implementation of a sensitive and selective as well as industrial fit gas sensor prototype based on wavelength modulation spectroscopy with second harmonic detection (2f-WMS) employing an 8-μm continuous-wave distributed feedback quantum cascade laser (CW-DFB-QCL) for monitoring hydrogen sulfide (H 2 S) at sub-ppm levels is reported. Regarding the applicability for analytical and industrial process purposes aimed at petrochemical environments, a synthetic methane (CH 4 ) matrix of up to 1000 ppmv together with a varying H 2 S content was chosen as the model environment for the laboratory-based performance evaluation performed at TU Wien. A noise-equivalent absorption sensitivity (NEAS) for H 2 S targeting the absorption line at 1247.2 cm -1 was found to be 8.419 × 10 -10  cm -1  Hz -1/2 , and a limit of detection (LOD) of 150 ppbv H 2 S could be achieved. The sensor prototype was then deployed for on-site measurements at the petrochemical research hydrogenation platform of the industrial partner OMV AG. In order to meet the company's on-site safety regulations, the H 2 S sensor platform was installed in an industry rack and equipped with the required safety infrastructure for protected operation in hazardous and explosive environments. The work reports the suitability of the sensor prototype for simultaneous monitoring of H 2 S and CH 4 content in the process streams of a research hydrodesulfurization (HDS) unit. Concentration readings were obtained every 15 s and revealed process dynamics not observed previously.

  7. Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid-liquid microextraction with gas chromatography-mass spectrometry.

    PubMed

    Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz

    2018-06-01

    We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bioremediation of industrial waste by using bat guano.

    PubMed

    Gadhikar, Y A; Zade, V S; Khadse, T

    2007-04-01

    The present investigation is an attempt to study the effect of bat guano with its rich microbial flora on bioremediation of industrial waste effluents. The results revealed that within a period of 15 days, there was a remarkable reduction in the Chemical Oxygen Demand (COD) values up to 50%-70%, thus stabilizing the industrial effluents. In addition to this,values of various physico-chemical parameters were notably found to reduce suggesting that industrial effluents can be effectively treated by bat guano.

  9. Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus.

    PubMed

    Mishra, Abhishek; Malik, Anushree

    2012-10-15

    Toxic impacts of heavy metals in the environment have lead to intensive research on various methods of heavy metal remediation. However, in spite of abundant work on heavy metals removal from simple synthetic solutions, a very few studies demonstrate the potential of microbial strains for the treatment of industrial effluents containing mixtures of metals. In the present study, the efficiency of an environmental isolate (Aspergillus lentulusFJ172995), for simultaneous removal of chromium, copper and lead from a small-scale electroplating industry effluent was investigated. Initial studies with synthetic solutions infer that A. lentulus has a remarkable tolerance against Cr, Cu, Pb and Ni. During its growth, a significant bioaccumulation of individual metal was recorded. After 5 d of growth, the removal of metals from synthetic solutions followed the trend Pb(2+) (100%) > Cr(3+) (79%) > Cu(2+) (78%), > Ni(2+) (42%). When this strain was applied to the treatment of multiple metal containing electroplating effluent (after pH adjustment), the metal concentrations decreased by 71%, 56% and 100% for Cr, Cu and Pb, respectively within 11 d. Based on our results, we propose that the simultaneous removal of hazardous metals from industrial effluents can be accomplished using A. lentulus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Monitoring the fate and behavior of TiO2 nanoparticles: Simulated in a WWTP with industrial dye-stuff effluent according to OECD 303A.

    PubMed

    Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N

    2017-07-03

    The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO 2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO 2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO 2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO 2 NPs on the treatment process efficiency was then investigated. Addition of TiO 2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO 2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO 2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the

  11. [Development and perspective of bio-based chemical fiber industry].

    PubMed

    Li, Zengjun

    2016-06-25

    Bio-based fiber is environment friendly, reproducible, easily biodegradable. Therefore, rapid development of bio-based fiber industry is an obvious in progress to replace petrochemical resources, develop sustainable economy, build resource saving and environment friendly society. This article describes the current development of bio-based fiber industry, analyzes existing problems, indicates the trends and objectives of bio-based fiber materials technology innovation and recommends developing bio-based fibers industry of our country.

  12. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  13. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    PubMed

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pollution control of industrial wastewater from soap and oil industries: a case study.

    PubMed

    Abdel-Gawad, S; Abdel-Shafy, M

    2002-01-01

    Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.

  15. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry.

    PubMed

    Makoś, Patrycja; Fernandes, Andre; Boczkaj, Grzegorz

    2017-09-29

    The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing Basidiomycetes strains.

    PubMed

    Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F

    2013-04-01

    The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. © 2013 The Society for Applied Microbiology.

  17. Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Pratiwi, Diah; Indrianingsih, A. W.; Darsih, Cici; Hernawan

    2017-12-01

    Batik is product of traditional Indonesia culture that developed into a large textile industry. Synthetic dyes which widely used in textile industries including batik. Colour can be removed from wastewater effluent by chemical, physical, and biology methods. Bioremediation is one of the methods that used for processing colored effluent. Isolated White-rot fungi Ganoderma lucidum was used for bioremediation process for batik effluent. G. lucidum was developed by G. lucidum cultivation on centers of mushroom farmer Media Agro Merapi Kaliurang, Yogyakarta. The batik effluent was collected from a private small and medium Batik enterprises located at Petir, Rongkop, Gunungkidul Regency. The aim of the study were to optimize decolorization of Naphtol Black (NB) using G. lucidum. The effect of process parameters like incubation time and dye concentration on dye decolorization and COD degradation was studied. G. lucidum were growth at pH 5-6 and temperature 25°C at various Naphtol Black dye with concentration 20 ppm, 50 ppm, and 100 ppm for 30 day incubation time. The result from this study increased decolorization in line with the increasing of COD degradation. Increasing percentage of decolorization and COD degradation gradually increased with incubation time and dye concentration. The maximum decolorization and COD reduction were found to be 60,53% and 81,03%. G. lucidum had potential to decolorized and degraded COD for NB dye effluent on higher concentration.

  18. State of the art: wastewater management in the beverage industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, M.E.; Scaief, J.F.; Cochrane, M.W.

    The water pollution impact caused by the wastes from the beverage industry and the methods available to combat the associated problems were studied. The size of each industry is discussed along with production processes, wastewater sources and effluent characteristics. Wastewater management techniques are described in terms of in-plant recycling, by-product recovery and end-of-pipe treatment along with the economics of treatment. The malt liquor, malting, soft drinks and flavoring industries primarily dispose of their effluents in municipal sewers. In-plant recycling and by-product recovery techniques have been developed in these industries to reduce their raw waste load. The wine and brandy andmore » distilled spirits industries in many cases must treat their own effluents so they have developed wastewater management systems including industry-owned treatment plants that yield good effluents. The technology to adequately treat rum distillery wastewater has not been demonstrated. The information basis for this study was a literature search, an effluent guidelines report done for EPA, limited site visits, personal communications and an unpublished report conducted for EPA that included questionaire surveys of the industries.« less

  19. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe{sub 3}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriyaprabha, R., E-mail: sooriyarajendran@gmail.com; Khan, Samreen Heena; Pathak, Bhawana

    2016-04-13

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe{sub 3}O{sub 4}, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from themore » industrial effluent. Fe{sub 3}O{sub 4} is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe{sub 3}O{sub 4} nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe{sub 3}O{sub 4} nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe{sub 3}O{sub 4} proved

  20. Exposure of composite tannery effluent on snail, Pila globosa: A comparative assessment of toxic impacts of the untreated and membrane treated effluents.

    PubMed

    Bhattacharya, Priyankari; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-04-01

    Effluent from tannery industries can significantly affect the aquatic environment due to the presence of a variety of recalcitrant components. The present study focuses on a comparative assessment of the toxic impacts of an untreated tannery effluent and membrane treated effluents using snail, Pila globosa as an aquatic model. Composite tannery effluent collected from a common effluent treatment plant was selected as the untreated effluent. To investigate the effect of treated effluents on the aquatic organism the effluent was treated by two ways, viz. a single stage microfiltration (MF) using ceramic membrane and a two-step process involving MF followed by reverse osmosis (RO). The whole body tissue, gonad and mantle of P. globosa were subjected to enzyme assays like superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-GPx), glutathione S- transferase (GST), etc. for assessing toxic impact. Changes in the biochemical parameters like protein, carbohydrate and amino acid were observed including histological studies of gonad and mantle tissue upon treatment with tannery effluents. To examine potential DNA damage due to the exposure of the effluent, comet assay was conducted. The study revealed that with an exposure to the untreated effluent, activity of the antioxidant enzymes increased significantly while the protein and carbohydrate content reduced largely in the whole body tissue, gonad as well as mantle tissues of P. globosa. Histological study indicated considerable damage in the gonad and mantle tissues following exposure to the untreated effluent. Comet assay using hemolymph of P. globosa following exposure to tannery effluent, showed significant genotoxicity. Interestingly, compared to the untreated effluent, damaging effect was reduced in molluscs tissues when exposed to MF treated effluent and even lesser when exposed to MF+RO treated effluent. Apart from the reduced activities of oxidative stress enzymes, the

  1. The Sequential Application of Macroalgal Biosorbents for the Bioremediation of a Complex Industrial Effluent

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models. PMID:25061756

  2. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    PubMed

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Bioplastic production using wood mill effluents as feedstock.

    PubMed

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  4. Cost effectiveness analysis of effluent limitations guidelines and standards for the centralized waste treament industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, W.

    1998-12-01

    EPA has proposed effluent limitations guidelines and standards for the centralized waste treatment (CWT) industry. This report investigates the cost-effectiveness of all possible combinations of proposed control options for the three subcategories of CWT operations. EPA considered three control options for metals, two for oils and two for organics, with 12 possible combinations of these options. The report measures cost-effectiveness through a comparison of compliance costs to the quantity of pollutants removed under each combination of control options. The effectiveness of the regulations is measured in terms of reductions in the pounds of pollutants discharged to surface waters, weighted tomore » account for the pollutants` toxicity. Some pollutants removed are specifically addressed by the regulation, while others and not directly regulated but are removed incidentally as a result of controlling for other pollutants.« less

  5. Comparison between Thermal Desorption Tubes and Stainless Steel Canisters Used for Measuring Volatile Organic Compounds in Petrochemical Factories

    PubMed Central

    Chang, Cheng-Ping; Lin, Tser-Cheng; Lin, Yu-Wen; Hua, Yi-Chun; Chu, Wei-Ming; Lin, Tzu-Yu; Lin, Yi-Wen; Wu, Jyun-De

    2016-01-01

    Objective: The purpose of this study was to compare thermal desorption tubes and stainless steel canisters for measuring volatile organic compounds (VOCs) emitted from petrochemical factories. Methods: Twelve petrochemical factories in the Mailiao Industrial Complex were recruited for conducting the measurements of VOCs. Thermal desorption tubes and 6-l specially prepared stainless steel canisters were used to simultaneously perform active sampling of environmental air samples. The sampling time of the environmental air samples was set up on 6h close to a full work shift of the workers. A total of 94 pairwise air samples were collected by using the thermal adsorption tubes and stainless steel canisters in these 12 factories in the petrochemical industrial complex. To maximize the number of comparative data points, all the measurements from all the factories in different sampling times were lumped together to perform a linear regression analysis for each selected VOC. Pearson product–moment correlation coefficient was used to examine the correlation between the pairwise measurements of these two sampling methods. A paired t-test was also performed to examine whether the difference in the concentrations of each selected VOC measured by the two methods was statistically significant. Results: The correlation coefficients of seven compounds, including acetone, n-hexane, benzene, toluene, 1,2-dichloroethane, 1,3-butadiene, and styrene were >0.80 indicating the two sampling methods for these VOCs’ measurements had high consistency. The paired t-tests for the measurements of n-hexane, benzene, m/p-xylene, o-xylene, 1,2-dichloroethane, and 1,3-butadiene showed statistically significant difference (P-value < 0.05). This indicated that the two sampling methods had various degrees of systematic errors. Looking at the results of six chemicals and these systematic errors probably resulted from the differences of the detection limits in the two sampling methods for these VOCs

  6. Comparison between Thermal Desorption Tubes and Stainless Steel Canisters Used for Measuring Volatile Organic Compounds in Petrochemical Factories.

    PubMed

    Chang, Cheng-Ping; Lin, Tser-Cheng; Lin, Yu-Wen; Hua, Yi-Chun; Chu, Wei-Ming; Lin, Tzu-Yu; Lin, Yi-Wen; Wu, Jyun-De

    2016-04-01

    The purpose of this study was to compare thermal desorption tubes and stainless steel canisters for measuring volatile organic compounds (VOCs) emitted from petrochemical factories. Twelve petrochemical factories in the Mailiao Industrial Complex were recruited for conducting the measurements of VOCs. Thermal desorption tubes and 6-l specially prepared stainless steel canisters were used to simultaneously perform active sampling of environmental air samples. The sampling time of the environmental air samples was set up on 6 h close to a full work shift of the workers. A total of 94 pairwise air samples were collected by using the thermal adsorption tubes and stainless steel canisters in these 12 factories in the petrochemical industrial complex. To maximize the number of comparative data points, all the measurements from all the factories in different sampling times were lumped together to perform a linear regression analysis for each selected VOC. Pearson product-moment correlation coefficient was used to examine the correlation between the pairwise measurements of these two sampling methods. A paired t-test was also performed to examine whether the difference in the concentrations of each selected VOC measured by the two methods was statistically significant. The correlation coefficients of seven compounds, including acetone, n-hexane, benzene, toluene, 1,2-dichloroethane, 1,3-butadiene, and styrene were >0.80 indicating the two sampling methods for these VOCs' measurements had high consistency. The paired t-tests for the measurements of n-hexane, benzene, m/p-xylene, o-xylene, 1,2-dichloroethane, and 1,3-butadiene showed statistically significant difference (P-value < 0.05). This indicated that the two sampling methods had various degrees of systematic errors. Looking at the results of six chemicals and these systematic errors probably resulted from the differences of the detection limits in the two sampling methods for these VOCs. The comparison between the

  7. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents.

    PubMed

    Karas, Panagiotis; Metsoviti, Aria; Zisis, Vasileios; Ehaliotis, Constantinos; Omirou, Michalis; Papadopoulou, Evangelia S; Menkissoglou-Spiroudi, Urania; Manta, Stella; Komiotis, Dimitri; Karpouzas, Dimitrios G

    2015-10-15

    Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides. In the absence of effective depuration methods, they are discharged in municipal wastewater treatment plants or spread to land. Modified biobeds could be an applicable solution for their treatment. We studied the dissipation of thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ), used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom substrate (SMS) in various volumetric ratios. Pesticide sorption was also determined. TBZ and IMZ showed higher persistence especially in the anaerobically digested sewage sludge (DT50=32.3-257.6d), in contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine (QI) which did not persist and dimethyl ethoxyquinoline (EQNL, minor metabolite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation capacity with TBZ and IMZ DT50s of ca. 28 d compared to DT50s of >50 d in the other substrates. TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current disposal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, whereas SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry via accelerated dissipation even of recalcitrant fungicides. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Health risk evaluation in a population exposed to chemical releases from a petrochemical complex in Thailand.

    PubMed

    Kampeerawipakorn, Ormrat; Navasumrit, Panida; Settachan, Daam; Promvijit, Jeerawan; Hunsonti, Potchanee; Parnlob, Varabhorn; Nakngam, Netnapa; Choonvisase, Suppachai; Chotikapukana, Passaornrawan; Chanchaeamsai, Samroeng; Ruchirawat, Mathuros

    2017-01-01

    Emissions from petrochemical industries may contain toxic and carcinogenic compounds that can pose health risk to human populations. The scenario may be worse in developing countries where management of such exposure-health problems is typically not well-implemented and the public may not be well-informed about such health risk. In Thailand, increasing incidences of respiratory diseases and cancers have been reported for the population around a major petrochemical complex, the Map Ta Phut Industrial Estate (MTPIE). This study aimed to systematically investigate an exposure-health risk among these populations. One-hundred and twelve healthy residents living nearby MTPIE and 50 controls located approximately 40km from MTPIE were recruited. Both external and internal exposure doses to benzene and 1,3-butadiene, known to be associated with the types of cancer that are of concern, were measured because they represent exposure to industrial and/or traffic-related emissions. Health risk was assessed using the biomarkers of early biological effects for cancer and inflammatory responses, as well as biomarkers of exposure for benzene and 1,3-butadiene. The exposure levels of benzene and 1,3-butadiene were similar for both the exposed and control groups. This was confirmed by a non-significant difference in the levels of specific urinary metabolites for benzene (trans,trans-muconic acid, t,t-MA) and 1,3-butadiene (monohydroxy-butyl mercapturic acid, MHBMA). Levels of 8-hydroxydeoxyguanosine (8-OHdG) and DNA strand breaks between the two groups were not statistically significantly different. However, functional biomarkers, interleukin-8 (IL-8) expression was significantly higher (p<0.01) and DNA repair capacity was lower (p<0.05) in the exposed residents compared to the control subjects. This suggests that the exposed residents may have a higher risk for development of diseases such as cancer compared to controls. However, the increased expression of IL-8 and lower DNA repair

  9. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    PubMed Central

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  10. Technology transfer through a network of standard methods and recommended practices - The case of petrochemicals

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Karvounis, Sotirios

    2012-12-01

    Technology transfer may take place in parallel with cooperative action between companies participating in the same organizational scheme or using one another as subcontractor (outsourcing). In this case, cooperation should be realized by means of Standard Methods and Recommended Practices (SRPs) to achieve (i) quality of intermediate/final products according to specifications and (ii) industrial process control as required to guarantee such quality with minimum deviation (corresponding to maximum reliability) from preset mean values of representative quality parameters. This work deals with the design of the network of SRPs needed in each case for successful cooperation, implying also the corresponding technology transfer, effectuated through a methodological framework developed in the form of an algorithmic procedure with 20 activity stages and 8 decision nodes. The functionality of this methodology is proved by presenting the path leading from (and relating) a standard test method for toluene, as petrochemical feedstock in the toluene diisocyanate production, to the (6 generations distance upstream) performance evaluation of industrial process control systems (ie., from ASTM D5606 to BS EN 61003-1:2004 in the SRPs network).

  11. Manatee use of power plant effluents in Brevard County, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shane, S.H.

    The relationship between manatees and power plants was investigated at 2 power plants on the Indian River in Brevard County, Florida from January 1978-February 1980. Manatee presence in the power plant effluent zones was correlated with cold air and water temperatures. When air temperatures were below 16 C most manatees in the country were found in the effluent zones. Manatees in the effluent zones move with the wind-blown warm water plume, demonstrating a sensitivity to small changes in water temperature. Some individuals were frequently resighted at 1 plant, while others moved between the 2 plants. Because industrial warm water sourcesmore » are less reliable than natural warm water refuges, it is recommended that no new artificial warm water effluents be constructed north of the species' traditional winter range. 16 references, 3 figures, 1 table.« less

  12. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Safety culture assessment in petrochemical industry: a comparative study of two algerian plants.

    PubMed

    Boughaba, Assia; Hassane, Chabane; Roukia, Ouddai

    2014-06-01

    To elucidate the relationship between safety culture maturity and safety performance of a particular company. To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of Fernández-Muñiz et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance.

  14. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    USDA-ARS?s Scientific Manuscript database

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  15. Evaluation of toxic and genotoxic potential of a wet gas scrubber effluent obtained from wooden-based biomass furnaces: A case study in the red ceramic industry in southern Brazil.

    PubMed

    Bortolotto, Tiago; da Silva, Jaqueline; Sant'Ana, Alex Célio; Tomazi, Kamila Osowski; Geremias, Reginaldo; Angioletto, Elídio; Pich, Claus Tröger

    2017-09-01

    Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC 50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under

  17. Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing

    EPA Science Inventory

    Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...

  18. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    PubMed

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  19. Safety Culture Assessment in Petrochemical Industry: A Comparative Study of Two Algerian Plants

    PubMed Central

    Boughaba, Assia; Hassane, Chabane; Roukia, Ouddai

    2014-01-01

    Background To elucidate the relationship between safety culture maturity and safety performance of a particular company. Methods To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of Fernández-Muñiz et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. Results The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. Conclusion The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance. PMID:25180135

  20. Laboratory testing protocol for the impact of dispersed petrochemicals on seagrass.

    PubMed

    Wilson, K G; Ralph, P J

    2012-11-01

    To improve the effectiveness of oil spill mitigation, we developed a rapid, logistically simple protocol to detect petrochemical stress on seagrass. Sections of leaf blades from Zostera muelleri subsp. capricorni were exposed to the water accommodated fraction (WAF) of non-dispersed and dispersed Tapis crude oil and fuel oil (IFO-380) for 5h. Photosynthetic health was monitored by assessing changes in effective quantum yield of photosystem II (ΔF/F(m)(')) and chlorophyll a pigment concentrations. Loss of total petroleum hydrocarbons (TPH) was measured using an oil-in-water fluorometer, whilst GC-MS analyses quantified the hydrocarbon components within each treatment. Few significant differences were detected in the chlorophyll a pigment analyses; however, ΔF/F(m)(') appeared sensitive to petrochemical exposure. Dispersing both types of oil resulted in a substantial increase in the TPH of the WAF and was generally correlated with a greater physiological impact to the seagrass health, compared with the oil alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. 89. ARAIII. Petrochem oilfired gas heater installed in reactor building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. ARA-III. Petro-chem oil-fired gas heater installed in reactor building (ARA-608). View is at floor level. Shows hand rails around heater pit and top of pit extending upwards through ceiling. January 20, 1959. Ineel photo no. 59-321. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  2. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.

  3. Requalification of a Brazilian Trichoderma Collection and Screening of Its Capability to Decolourise Real Textile Effluent.

    PubMed

    Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N; Magalhães, Oliane; Paiva, Laura M; Moreira, Keila A; Lima, Nelson; Souza-Motta, Cristina M

    2017-04-01

    Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma , have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view.

  4. Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry.

    PubMed

    Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S

    2011-02-01

    Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions.

  5. A Mössbauer spectroscopic study of an industrial catalyst for dehydrogenation of etylbenzene to styrene

    NASA Astrophysics Data System (ADS)

    Jiang, K. Y.; Fan, Q.; Zhao, Z. J.; Mao, L. S.; Yang, X. L.

    Iron oxide catalyst with spinel structure used for dehydrogenation of ethylbenzene is one kind of importantcatalyst in petrochemical industry. In this work several series of industrial catalyst were prepared with differentcomponents and differentmanufacturing processes. Mössbauer Spectroscopy has been used to determine the optimal components and the better manufacturing process for spinel structure formation. The results may prove useful for producing the industrial dehydrogenation catalyst with better catalytic property.

  6. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium.

    PubMed

    Sani, R K; Azmi, W; Banerjee, U C

    1998-01-01

    Decolorization of several dyes (Red HE-8B, Malachite Green, Navy Blue HE-2R, Magenta, Crystal Violet) and an industrial effluent with growing cells of Phanerochaete chrysosporium in shake and static culture was demonstrated. All the dyes and the industrial effluent were decolorized to some extent with varying percentages of decolorization (20-100%). The rate of decolorization was very rapid with Red HE-8B, an industrial dye. Decolorization rates for all the dyes in static condition were found to be less than the shake culture and also dependent on biomass concentration.

  7. Decoloration and detoxification of effluents by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; da Conceição Pereira, Maria; Higa, Marcela C.

    2016-07-01

    Three distinct textile samples were investigated for color and toxicity (S1-chemical/textile industry; S2-final textile effluent; S3 - standard textile produced effluent-untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism.

  8. Analysis of sugar mill effluent and its influence on germination and growth of African marigold ( Tagetes erecta L.)

    NASA Astrophysics Data System (ADS)

    Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal

    2017-12-01

    Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.

  9. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    PubMed

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Toxicity reduction in industrial effluents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    Wastewater treatment technology is undergoing a profound transformation as a result of the fundamental changes in regulations and permit requirements. Established design procedures and criteria which have served the industry well for decades are no longer useful. Toxicity reduction requirements have forced reconsideration of design standards and caused practicing environmental engineers to seek additional training in the biological sciences. Formal academic programs have not traditionally provided the cross-training between biologists and engineers which is necessary to address these issues. This book describes not only the process of identifying the toxicity problem, but also the treatment technologies which are applicable tomore » reduction or elimination of toxicity. The information provided in this book is a compilation of the experience of ECK-ENFELDER INC. in serving the environmental needs of major industry, and the experience of the individual contributors in research and consultations.« less

  11. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    PubMed

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Sequencing Batch Reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater.

    PubMed

    Malakahmad, Amirhossein; Hasani, Amirhesam; Eisakhani, Mahdieh; Isa, Mohamed Hasnain

    2011-07-15

    Petrochemical factories which manufacture vinyl chloride monomer and poly vinyl chloride (PVC) are among the largest industries which produce wastewater contains mercury and cadmium. The objective of this research is to evaluate the performance of a lab-scale Sequencing Batch Reactor (SBR) to treat a synthetic petrochemical wastewater containing mercury and cadmium. After acclimatization of the system which lasted 60 days, the SBR was introduced to mercury and cadmium in low concentrations which then was increased gradually to 9.03±0.02 mg/L Hg and 15.52±0.02 mg/L Cd until day 110. The SBR performance was assessed by measuring Chemical Oxygen Demand, Total and Volatile Suspended Solids as well as Sludge Volume Index. At maximum concentrations of the heavy metals, the SBR was able to remove 76-90% of Hg(2+) and 96-98% of Cd(2+). The COD removal efficiency and MLVSS (microorganism population) in the SBR was affected by mercury and cadmium concentrations in influent. Different species of microorganisms such as Rhodospirilium-like bacteria, Gomphonema-like algae, and sulfate reducing-like bacteria were identified in the system. While COD removal efficiency and MLVSS concentration declined during addition of heavy metals, the appreciable performance of SBR in removal of Hg(2+) and Cd(2+) implies that the removal in SBR was not only a biological process, but also by the biosorption process of the sludge. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Heat conversion alternative petrochemical complexes efficiency

    NASA Astrophysics Data System (ADS)

    Mrakin, A. N.; Selivanov, A. A.; Morev, A. A.; Batrakov, P. A.; Kulbyakina, A. V.; Sotnikov, D. G.

    2017-08-01

    The paper presents the energy and economic efficiency calculation results of the petrochemical complexes based upon the sulfur oil shales processing by solid (ash) heat-carrier low-temperature carbonization plants by Galoter technology. The criterion for such enterprises fuel efficiency determining was developed on the base of the exergy methodology taking into account the recurrent publications consolidation. In this case, in supplying the consumers with paving bitumen, motor benzol, thiophene, toluene, 2-methylthiophene, xylene, gas sulfur, complex thermodynamic effectiveness was founded to amount to 53 %, and if ash residue realization is possible then it was founded to be to 70 %. The project economic attractiveness determining studies depending on the feedstock cost, its delivery way and investments amount changing were conducted.

  14. A Mössbauer spectroscopic study of an industrial catalyst for dehydrogenation of etylbenzene to styrene

    NASA Astrophysics Data System (ADS)

    Jiang, K. Y.; Fan, Q.; Zhao, Z. J.; Mao, L. S.; Yang, X. L.

    2006-01-01

    Iron oxide catalyst with spinel structure used for dehydrogenation of ethylbenzene is one kind of important catalyst in petrochemical industry. In this work several series of industrial catalyst were prepared with different components and different manufacturing processes. Mössbauer Spectroscopy has been used to determine the optimal components and the better manufacturing process for spinel structure formation. The results may prove useful for producing the industrial dehydrogenation catalyst with better catalytic property.

  15. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus.

    PubMed

    Zoppellari, Francesca; Bardi, Laura

    2013-09-25

    Whey and scotta are effluents coming from cheese and ricotta processing respectively. Whey contains minerals, lipids, lactose and proteins; scotta contains mainly lactose. Whey can be reused in several ways, such as protein extraction or animal feeding, while nowadays scotta is just considered as a waste; moreover, due to very high volumes of whey produced in the world, it poses serious environmental and disposal problems. Alternative destinations of these effluents, such as biotechnological transformations, can be a way to reach both goals of improving the added value of the agroindustrial processes and reducing their environmental impact. In this work we investigated the way to produce bioethanol from lactose of whey and scotta and to optimize the fermentation yields. Kluyveromyces marxianus var. marxianus was chosen as lactose-fermenting yeast. Batch, aerobic and anaerobic, fermentations and semicontinuous fermentations in dispersed phase and in packed bed reactor were carried out of row whey, scotta and mix 1:1 whey:scotta at a laboratory scale. Different temperatures (28-40°C) were also tested to check whether the thermotolerance of the chosen yeast could be useful to improve the ethanol yield. The best performances were reached at low temperatures (28°C); high temperatures are also compatible with good ethanol yields in whey fermentations, but not in scotta fermentations. Semicontinuous fermentations in dispersed phase gave the best fermentation performances, particularly with scotta. Then both effluents can be considered suitable for ethanol production. The good yields obtained from scotta allow us to transform this waste in a source. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India.

    PubMed

    Dsikowitzky, Larissa; Nordhaus, Inga; Sujatha, C H; Akhil, P S; Soman, Kunjupilai; Schwarzbauer, Jan

    2014-07-01

    The Cochin Backwaters in India are part of the Vembanad-Kol system, which is a protected wetland and one of the largest estuarine ecosystems in South Asia. The backwaters are a major supplier of fisheries resources and are developed as tourist destination. Periyar River discharges into the northern arm of the system and receives effluents from chemical, petrochemical and metal processing industries which release huge amounts of wastewaters after little treatment. We investigated water and sediment contamination in the industrial vicinity and at one station further away including organic and inorganic contaminants. In total 83 organic contaminants were found, e.g. well known priority pollutants such as endosulfan, hexachlorobenzene, DDT, hexachlorocyclohexane and their metabolites, which likely stem from the industrial manufacturing of organochlorine pesticides. Furthermore, several benzothiazole, dibenzylamine and dicyclohexylamine derivatives were detected, which indicated inputs from rubber producing facilities. Several of these compounds have not been reported as environmental contaminants so far. A comparison of organic contaminant and trace hazardous element concentrations in sediments with reported sediment quality guidelines revealed that adverse effects on benthic species are likely at all stations. The chemical assessment was combined with an investigation of macrobenthic diversity and community composition. Benthic organisms were completely lacking at the site with the highest trace hazardous element concentrations. Highest species numbers, diversity indices and abundances were recorded at the station with the greatest distance to the industrial area. Filter feeders were nearly completely lacking, probably leading to an impairment of the filter function in this area. This study shows that a combination of chemical and biological methods is an innovative approach to achieve a comprehensive characterization of industrial contamination, to evaluate

  17. Requalification of a Brazilian Trichoderma Collection and Screening of Its Capability to Decolourise Real Textile Effluent

    PubMed Central

    Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N.; Magalhães, Oliane; Paiva, Laura M.; Moreira, Keila A.; Lima, Nelson; Souza-Motta, Cristina M.

    2017-01-01

    Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma, have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view. PMID:28368305

  18. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  19. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  20. Genotoxicity evaluation of effluents from textile industries of the region Fez-Boulmane, Morocco: a case study.

    PubMed

    Giorgetti, Lucia; Talouizte, Hakima; Merzouki, Mohammed; Caltavuturo, Leonardo; Geri, Chiara; Frassinetti, Stefania

    2011-11-01

    In order to investigate the biological hazard of effluents from textile industries of Fez-Boulmane region in Morocco, mutagenicity and phytotoxicity tests were performed on different biological systems. Moreover, the efficiency of a Sequencing Batch Reactor (SBR) system, working by activated sludge on a laboratory scale, was estimated by comparing the ecotoxicity results observed before and after wastewater treatment. Evaluation of the genotoxic potential was investigated by means of classic mutagenicity tests on D7 strain of Saccharomyces cerevisiae and by phytotoxicity tests on Allium sativum L., Vicia faba L. and Lactuca sativa L., estimating micronuclei presence, mitotic index and cytogenetic anomalies. The results obtained by testing untreated wastewater demonstrated major genotoxicity effects in S. cerevisiae and various levels of phytotoxicity in the three plant systems, while after SBR treatment no more ecotoxicological consequences were observed. These data confirm the effectiveness of the SBR system in removing toxic substances from textile wastewaters in Fez-Boulmane region. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.

  2. Removal of heavy metal from industrial effluents using Baker's yeast

    NASA Astrophysics Data System (ADS)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  3. Opportunities for the chemical industry in space, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The chemical/petrochemical industry devotes a large percentage of its gross income to research and development, with much of its R and D of a long-term nature. As the chemical industry is examined as a candidate for space investigations, it is readily apparent that research and development in the space environment may lead to attractive commercial opportunities. The advantages of low gravity manufacturing, with a particular emphasis on chemical catalysts, are presented herein specifically for the chemical industry. Research from the Skylab program and Apollo Soyuz test project is reviewed, including acoustic levitation, crystal growth, and container less melts. Space processing of composite materials, alloys, and coatings is also discussed.

  4. Prevalence and risk factors of gallbladder polypoid lesions in Chinese petrochemical employees

    PubMed Central

    Mao, Yu-Shan; Mai, Yi-Feng; Li, Fu-Jun; Zhang, Yan-Ming; Hu, Ke-Min; Hong, Zhong-Li; Zhu, Zhong-Wei

    2013-01-01

    AIM: To investigate the prevalence and risk factors of polypoid lesions of the gallbladder (PLGs) in petrochemical employees in Ningbo, Zhejiang Province, China. METHODS: All active and retired employees aged 20-90 years (n = 11098) of a refinery and chemical plant in eastern China were requested to participate in a health survey. The participants were subjected to interview, physical examination, laboratory assessments and ultrasonography. All the participants were invited to have a physical examination after a face-to-face interview. Fasting blood samples were obtained from the antecubital vein, and the samples were used for the analysis of biochemical values. Abdominal ultrasonography was conducted. RESULTS: A total of 10461 (7331 men and 3130 women) current and former petrochemical employees attended for screening. The overall prevalence of post-cholecystectomy, gallstones and PLGs was 0.9%, 5.2% and 7.4%, respectively. Compared with the increased prevalence of either gallstones or post-cholecystectomy in older persons, PLGs were more common in the middle-aged, peaking in those aged 40-59 years. Excluding the patients with gallstones, gallstones mixed with PLGs, or those who had undergone cholecystectomy, in the remaining 9828 participants, the prevalence of PLGs in men (8.9%) was significantly higher than that in women (5.5%, P < 0.001). The analyzed risk factors with increased OR for the development of PLGs were male gender (OR = 1.799, P < 0.001), age ≥ 30 years (OR = 2.699, P < 0.001) and hepatitis B surface antigen (HBsAg) positivity (OR = 1.374, P = 0.006). CONCLUSION: PLGs are not rare among Chinese petrochemical employees. Male gender, HBsAg positivity, and middle age are risk factors for developing PLGs. PMID:23885152

  5. Prevalence and risk factors of gallbladder polypoid lesions in Chinese petrochemical employees.

    PubMed

    Mao, Yu-Shan; Mai, Yi-Feng; Li, Fu-Jun; Zhang, Yan-Ming; Hu, Ke-Min; Hong, Zhong-Li; Zhu, Zhong-Wei

    2013-07-21

    To investigate the prevalence and risk factors of polypoid lesions of the gallbladder (PLGs) in petrochemical employees in Ningbo, Zhejiang Province, China. All active and retired employees aged 20-90 years (n = 11098) of a refinery and chemical plant in eastern China were requested to participate in a health survey. The participants were subjected to interview, physical examination, laboratory assessments and ultrasonography. All the participants were invited to have a physical examination after a face-to-face interview. Fasting blood samples were obtained from the antecubital vein, and the samples were used for the analysis of biochemical values. Abdominal ultrasonography was conducted. A total of 10461 (7331 men and 3130 women) current and former petrochemical employees attended for screening. The overall prevalence of post-cholecystectomy, gallstones and PLGs was 0.9%, 5.2% and 7.4%, respectively. Compared with the increased prevalence of either gallstones or post-cholecystectomy in older persons, PLGs were more common in the middle-aged, peaking in those aged 40-59 years. Excluding the patients with gallstones, gallstones mixed with PLGs, or those who had undergone cholecystectomy, in the remaining 9828 participants, the prevalence of PLGs in men (8.9%) was significantly higher than that in women (5.5%, P < 0.001). The analyzed risk factors with increased OR for the development of PLGs were male gender (OR = 1.799, P < 0.001), age ≥ 30 years (OR = 2.699, P < 0.001) and hepatitis B surface antigen (HBsAg) positivity (OR = 1.374, P = 0.006). PLGs are not rare among Chinese petrochemical employees. Male gender, HBsAg positivity, and middle age are risk factors for developing PLGs.

  6. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    PubMed

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  7. Effect of metal ions and petrochemicals on bioremediation of chlorpyrifos in aerobic sequencing batch bioreactor (ASBR).

    PubMed

    Khalid, Saira; Hashmi, Imran; Jamal Khan, Sher; Qazi, Ishtiaq A; Nasir, Habib

    2016-10-01

    Application of chlorpyrifos (CP) has increased its environmental concentration. Increasing CP concentration has increased chances of adverse health effects. Its removal from environment has attained researcher's attention. CP degrading bacterial strains were isolated from wastewater and agricultural soil. Finally, selected five bacterial strains were identified using 16S rRNA nucleotide sequence analysis as Pseudomonas kilonensis SRK1, Serratia marcescens SRK2, Bacillus pumilus SRK4, Achromobacter xylosoxidans SRK5, and Klebsiella sp. T13. Interaction studies among bacterial strains demonstrated possibility for development of five membered bacterial consortium. Biodegradation potential of bacterial consortium was investigated in the presence of petrochemicals and trace metals. About 98 % CP removal was observed in sequencing batch reactors at inoculum level, 10 %; pH, 7; CP concentration, 400 mgL -1 , and HRT, 48 h. Experimental data has shown an excellent fit to first order growth model. Among all petrochemicals only toluene (in low concentration) has stimulatory effect on biodegradation of CP. Addition of petrochemicals (benzene, toluene, and xylene) in high concentration (100 mg L -1 ) inhibited bacterial activity and decreased CP removal. At low concentration i.e., 1 mg L -1 of inorganic contaminants (Cu, Hg, and Zn) >96 % degradation was observed. Addition of Cu(II) in low concentration has stimulated CP removal efficiency. Hg(II) in all concentrations has strongly inhibited biodegradation rate except at 1 mgL -1 . In simulated pesticide, wastewater CP removal efficiency decreased to 77.5 %. Outcomes of study showed that both type and concentration of petrochemicals and trace metals influenced biodegradation of CP.

  8. Potential of biosorbent developed from fruit peel of Trewia nudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds.

    PubMed

    Bhattacharya, Priyankari; Banerjee, Priya; Mallick, Kwonit; Ghosh, Sourja; Majumdar, Swachchha; Mukhopadhyay, Aniruddha; Bandyopadhyay, Sibdas

    2013-01-01

    Chromium (VI) removal efficiency of a biosorbent prepared from fruit peel of Trewia nudiflora plant was studied. The effect of pH, sorbent dose, initial metal concentration and temperature was studied with synthetic Cr⁺⁶ solution in batch mode. About 278 mg/g of Cr⁺⁶ sorption was obtained at 293 K at an optimum pH of 2.0 and biosorbent dose of 0.75 g/L. Equilibrium sorption data with varying initial concentration of Cr⁺⁶ (22-248 mg/L) at three different temperatures (293-313 K) were analyzed by various isotherms. Biosorption kinetics and thermodynamics were described using standard model equations. Encouraging results were obtained by the application of the biosorptive treatment for removal of Cr⁺⁶ from wastewater collected from common effluent treatment plant of tannery industry. In addition, C⁺⁶r desorption behavior was studied on different systems. Biosorbent was characterized by FESEM, FT-IR and XRD, etc. Effect of the biosorptive treatement with respect to the phytotoxicity of Cr⁺⁶ was analyzed by studying the seed germination behavior and enzyme activity of a pulse seed (Vigna radiata L.). Different concentrations of Cr⁺⁶ solution in both synthetic medium, as well as, in tannery effluent was employed and the results were compared with that of biosorbent treated medium. The study showed that due to efficient removal of Cr⁺⁶ from aqueous phase, considerable enhancement of seed germination, as well as, increase in root length was obtained for the biosorbent treated solutions which were close to that of the control values. Significant decrease (P < 0.01) in POD activity was observed in seeds irrigated with biosorbent treated wastewater compared to untreated wastewater. The study showed that the novel biosorbent prepared might be utilized for abatement of heavy metal toxicity, i.e., Cr⁺⁶ from industrial effluent.

  9. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    ERIC Educational Resources Information Center

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  10. Preliminary assessment of industrial needs for an advanced ocean technology

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Maher, K. M.; Balon, J. E.; Coyle, A. G.; Henkener, J. A.

    1979-01-01

    A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed.

  11. Lymphohaematopoietic malignancy around all industrial complexes that include major oil refineries in Great Britain.

    PubMed

    Wilkinson, P; Thakrar, B; Walls, P; Landon, M; Falconer, S; Grundy, C; Elliott, P

    1999-09-01

    To examine the incidence of lymphohaematopoietic malignancy around industrial complexes that include major oil refineries in Great Britain after recent public and scientific concern of possible carcinogenic hazards of emissions from the petrochemical industry. Small area study of the incidence of lymphohaematopoietic malignancies, 1974-91, within 7.5 km of all 11 oil refineries (grouped into seven sites) in Great Britain that were operational by the early 1970s and processed more than two million tonnes of crude oil in 1993. Combined analysis of data from all seven sites showed no significant (p < 0.05) increase in risk of these malignancies within 2 km or 7.5 km. Hodgkin's lymphoma, but no other malignancy, showed evidence (p = 0.02) of a decline in risk with distance from refineries, but there was an apparent deficit of cases of multiple myeloma near the refineries (p = 0.04). There was no evidence of association between residence near oil refineries and leukaemias, or non-Hodgkin's lymphoma. A weak positive association was found between risk of Hodgkin's disease and proximity to major petrochemical industry, and a negative association with multiple myeloma, which may be chance findings within the context of multiple statistical testing.

  12. Simultaneous biofiltration of BTEX and Hg° from a petrochemical waste stream.

    PubMed

    Leili, Mostafa; Farjadfard, Sima; Sorial, George A; Ramavandi, Bahman

    2017-12-15

    A biofiltration system was developed to treat benzene, toluene, ethylbenzene, and xylene (BTEX) and Hg° vapour from a petrochemical waste stream during overhaul maintenance. The biofilter compost bed was inoculated with a microbial consortium provided by a petrochemical wastewater treatment plant. The effect of the a BTEX concentration (192.6-973.8 g/m 3 h) and empty bed residence time (EBRT) of 20-100 s were studied under the conditions of steady state, transient, shock BTEX-loading, and off-restart. The findings revealed that during a biofilter start-up, an increase in the influent BTEX concentration to around 334.3 g/m 3 h did not notably affect the biofiltration function at an EBRT of 100 s, and the removal efficiency was higher than 98%. Further, the low EBRT of 60 s did not have adverse effects on the BTEX and Hg° biofiltration (the removal efficiency in both was >93%). For the biofiltration system, the BTEX and Hg° critical attenuation capacity were obtained as 663 g BTEX /m 3 h and 12.6 g Hg° /m 3 h respectively. A maximum attenuation capacity of 774.5 g BTEX /m 3 h was achieved in the biofilter when the BTEX loading rate was 973.8 g BTEX /m 3 h. The parameters of k m and r max of the Michaelis-Menten kinetic model were obtained as 0.099 g/m 3 and 0.578 g/m 3 min respectively. Both BTEX and mercury vapours were completely mass balanced during a continuous biofiltration test. In general, the developed treatment system exhibited a good performance in the treatment of the BTEX stream containing Hg° vapour in the off-gas of a petrochemical company. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Controlled decomposition and oxidation: A treatment method for gaseous process effluents

    NASA Technical Reports Server (NTRS)

    Mckinley, Roger J. B., Sr.

    1990-01-01

    The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.

  14. Determination of thimerosal in pharmaceutical industry effluents and river waters by HPLC coupled to atomic fluorescence spectrometry through post-column UV-assisted vapor generation.

    PubMed

    Acosta, Gimena; Spisso, Adrián; Fernández, Liliana P; Martinez, Luis D; Pacheco, Pablo H; Gil, Raúl A

    2015-03-15

    A high performance liquid chromatography coupled with atomic fluorescence spectrometry method for the determination of thimerosal (sodium ethylmercury thiosalicylate, C9H9HgNaO2S), ethylmercury, and inorganic mercury is proposed. Mercury vapor is generated by the post-column reduction of mercury species in formic acid media using UV-radiation. Thimerosal is quantitatively converted to Hg(II) followed by the reduction of Hg(II) to Hg(0). This method is applied to the determination of thimerosal (THM), ethylmercury (EtHg) and inorganic Hg in samples of a pharmaceutical industry effluent, and in waters of the San Luis River situated in the west side of San Luis city (Middle West, Argentine) where the effluents are dumped. The limit of detections, calculated on the basis of the 3σ criterion, where 0.09, 0.09 and 0.07 μg L(-1) for THM, EtHg(II) and for Hg(II), respectively. Linearity was attained from levels close to the detection limit up to at least 100 μg L(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Industrial Base Assessment of Alternative Fuels for Military Use

    DTIC Science & Technology

    2010-06-07

    emissions power plant in Mattoon, Illinois. The project is a government-industry partnership. DOE’s total expenditure is projected to be $1.073B. Of...and NETL o “The firms most capable of overseeing the design, construction, and operation of CTL plants are the major petrochemical companies, which...production ( refinery )-10%, production transport & distribution-1%, vehicle operation-81%. 26 (24) Figure 23. Life Cycle GHG Emissions for

  16. Industrial Cogeneration--What it is, How it Works, Its Potential.

    DTIC Science & Technology

    1980-04-29

    plant . Therefore, where industrial cogenerated electricity replaces central power- plant generated electricity, fewer emissions should be pro- duced...States Utilities Company plant located in the center of a petrochem - ical complex near Baton Rouge, Louisiana. Since 1929 the plant has produced steam and...utility emissions . Furthermore, since many existing utility plants burn oil, cogeneration might also lead to greater oil use than would otherwise be the

  17. Applications of multi-spectral imaging: failsafe industrial flame detector

    NASA Astrophysics Data System (ADS)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  18. NO2 and SO2 dispersion modeling and relative roles of emission sources over Map Ta Phut industrial area, Thailand.

    PubMed

    Chusai, Chatinai; Manomaiphiboon, Kasemsan; Saiyasitpanich, Phirun; Thepanondh, Sarawut

    2012-08-01

    Map Ta Phut industrial area (MA) is the largest industrial complex in Thailand. There has been concern about many air pollutants over this area. Air quality management for the area is known to be difficult, due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant, transportation, and residential) contribute to air quality degradation in the area. In this study, a dispersion study of NO2 and SO2 was conducted using the AERMOD model. The area-specific emission inventories of NOx and SO2 were prepared, including both stack and nonstack sources, and divided into 11 emission groups. Annual simulations were performed for the year 2006. Modeled concentrations were evaluated with observations. Underestimation of both pollutants was Jbund, and stack emission estimates were scaled to improve the modeled results before quantifying relative roles of individual emission groups to ambient concentration overfour selected impacted areas (two are residential and the others are highly industrialized). Two concentration measures (i.e., annual average area-wide concentration or AC, and area-wide robust highest concentration or AR) were used to aggregately represent mean and high-end concentrations Jbfor each individual area, respectively. For AC-NO2, on-road mobile emissions were found to be the largest contributor in the two residential areas (36-38% of total AC-NO2), while petrochemical-industry emissions play the most important role in the two industrialized areas (34-51%). For AR-NO2, biomass burning has the most influence in all impacted areas (>90%) exceptJor one residential area where on-road mobile is the largest (75%). For AC-SO2, the petrochemical industry contributes most in all impacted areas (38-56%). For AR-SO2, the results vary. Since the petrochemical industry was often identified as the major contributor despite not being the largest emitter, air quality workers should pay special attention to this emission group

  19. NO2 and SO2dispersion modeling and relative roles of emission sources over Map Ta Phut industrial area, Thailand.

    PubMed

    Chusai, Chatinai; Manomaiphiboon, Kasemsan; Saiyasitpanich, Phirun; Thepanondh, Sarawut

    2012-08-01

    Map Ta Phut industrial area (MA) is the largest industrial complex in Thailand. There has been concern about many air pollutants over this area. Air quality management for the area is known to be difficult, due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant, transportation, and residential) contribute to air quality degradation in the area. In this study, a dispersion study of NO 2 and SO 2 was conducted using the AERMOD model. The area-specific emission inventories of NO x and SO 2 were prepared, including both stack and nonstack sources, and divided into 11 emission groups. Annual simulations were performed for the year 2006. Modeled concentrations were evaluated with observations. Underestimation of both pollutants was found, and stack emission estimates were scaled to improve the modeled results before quantifying relative roles of individual emission groups to ambient concentration over four selected impacted areas (two are residential and the others are highly industrialized). Two concentration measures (i.e., annual average area-wide concentration or AC, and area-wide robust highest concentration or AR) were used to aggregately represent mean and high-end concentrations for each individual area, respectively. For AC-NO 2 , on-road mobile emissions were found to be the largest contributor in the two residential areas (36-38% of total AC-NO 2 ), while petrochemical-industry emissions play the most important role in the two industrialized areas (34-51%). For AR-NO 2 , biomass burning has the most influence in all impacted areas (>90%) except for one residential area where on-road mobile is the largest (75%). For AC-SO 2 , the petrochemical industry contributes most in all impacted areas (38-56%). For AR-SO 2 , the results vary. Since the petrochemical industry was often identified as the major contributor despite not being the largest emitter, air quality workers should pay special attention to this

  20. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales).

    PubMed

    Chia, Mathias A; Musa, Rilwan I

    2014-03-01

    The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing.

  1. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    PubMed Central

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  2. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    PubMed

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  3. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    PubMed

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    PubMed

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.

  5. Development of a Polyphenol Oxidase Biosensor from Jenipapo Fruit Extract (Genipa americana L.) and Determination of Phenolic Compounds in Textile Industrial Effluents.

    PubMed

    Antunes, Rafael Souza; Ferraz, Denes; Garcia, Luane Ferreira; Thomaz, Douglas Vieira; Luque, Rafael; Lobón, Germán Sanz; Gil, Eric de Souza; Lopes, Flávio Marques

    2018-05-15

    In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo ( Genipa americana L.) fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry. The calibration curve presented a linear interval from 10 to 310 µM (r² = 0.9982) and a limit of detection of 7 µM. Biosensor stability was evaluated throughout 15 days, and it exhibited 88.22% of the initial response. The amount of catechol standard recovered post analysis varied between 87.50% and 96.00%. Moreover, the biosensor was able to detect phenolic compounds in a real sample, and the results were in accordance with standard spectrophotometric assays. Therefore, the innovatively-designed biosensor hereby proposed is a promising tool for phenolic compound detection and quantification when environmental contaminants are concerned.

  6. Air quality impacted by local pollution sources and beyond - Using a prominent petro-industrial complex as a study case.

    PubMed

    Chen, Sheng-Po; Wang, Chieh-Heng; Lin, Wen-Dian; Tong, Yu-Huei; Chen, Yu-Chun; Chiu, Ching-Jui; Chiang, Hung-Chi; Fan, Chen-Lun; Wang, Jia-Lin; Chang, Julius S

    2018-05-01

    The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality. Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO 2 ) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO 2 and wind parameters. The SO 2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO 2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Simultaneously bio treatment of textiles and food industries effluent at difference ratios with the aid of e-beam radiation

    NASA Astrophysics Data System (ADS)

    Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah

    2012-09-01

    The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.

  8. A Review of Industrial Heat Exchange Optimization

    NASA Astrophysics Data System (ADS)

    Yao, Junjie

    2018-01-01

    Heat exchanger is an energy exchange equipment, it transfers the heat from a working medium to another working medium, which has been wildly used in petrochemical industry, HVAC refrigeration, aerospace and so many other fields. The optimal design and efficient operation of the heat exchanger and heat transfer network are of great significance to the process industry to realize energy conservation, production cost reduction and energy consumption reduction. In this paper, the optimization of heat exchanger, optimal algorithm and heat exchanger optimization with different objective functions are discussed. Then, optimization of the heat exchanger and the heat exchanger network considering different conditions are compared and analysed. Finally, all the problems discussed are summarized and foresights are proposed.

  9. Silage effluent management: a review.

    PubMed

    Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D

    2014-10-01

    Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of

  10. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  11. Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout.

    PubMed

    Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas

    2009-01-01

    Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.

  12. Investigation of the potential of Cyperus alternifolius in the phytoremediation of palm oil mill effluent

    NASA Astrophysics Data System (ADS)

    Sa'at, Siti Kamariah Md; Zaman, Nastaein Qamaruz; Yusoff, Suffian Mohd; Ismail, Hirun Azaman

    2017-10-01

    Phytoremediation is an emerging technology nowadays due to demand in environmental sustainability which requires cost-effective solutions in terms of capital and operational cost. The treatment gain attention due to their potential in wastewater treatment especially in organics, nutrients, and heavy metal removal of domestics, agricultural, and industrial wastewater treatment. Plant functions in phytoremediation make the plant selection as an essential element. The plant should have the ability to tolerate with the toxic effluent and able to uptake the contaminant. Cyperus alternifolius (umbrella grass) was chosen as aquatic plant due to the ability to tolerance in municipal and industrial effluent sources with strong and dense root systems. Thus, the objectives of this study are to determine the potential and effectiveness of Cyperus alternifolius in the palm oil mill effluent treatment especially in the removal of organics (COD), nutrients (NH3-N and TP) and suspended solid. The batch experiment was run using Cyperus alternifolius to determine their potential of aerobic pond effluent for 21 days of treatment. Cyperus alternifolius treatment shows the great removal of COD and TSS with 96% and 91%, respectively at the end of 21 days of treatment. Nutrients removal achieved the maximum removal of 92% NH3-N and 99% TP shows after 11 days of treatment and percentage slowly decrease until the end of 21 days of treatment. Cyperus alternifolius had shown potential in the palm oil mill effluent treatment and can be combined with ponding treatment to enhance to water quality prior discharge.

  13. Industrial waste pollution

    NASA Technical Reports Server (NTRS)

    Jensen, L. D.

    1972-01-01

    The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena

  14. Contaminant Characterization of Effluent from Pennsylvania Brine Treatment, Inc., Josephine Facility: Implications for Disposal of Oil and Gas Flowback Fluids from Brine Treatment Plants

    EPA Pesticide Factsheets

    The PBT-Josephine Facility accepts only wastewater from the oil and gas industry. This report describes the concentrations of selected contaminants in the effluent water and compares the contaminant effluent concentrations to state and federal standards.

  15. Kent and Riegel's Handbook of industrial chemistry and biotechnology. 11th ed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, James A.

    2007-07-01

    This handbook provides extensive information on plastics, rubber, adhesives, textile fibers, pharmaceutical chemistry, synthetic organic chemicals, soaps and detergents, as well as various other major classes of industrial chemistry. There is detailed coverage of coal utilization technology, dyes and dye intermediates, chlor-alkali and heavy chemicals, paints and pigments, chemical explosives, propellants, petroleum and petrochemicals, natural gas, industrial gases, synthetic nitrogen products, fats and oils, sulfur and sulfuric acid, phosphorous and phosphates, wood products, and sweeteners. The chapter on coal is entitled: coal technology for power, liquid fuels and chemicals. 100 ills.

  16. Dairy shed effluent treatment and recycling: Effluent characteristics and performance.

    PubMed

    Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru

    2016-09-15

    Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act

    NASA Astrophysics Data System (ADS)

    Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia

    1992-03-01

    This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.

  18. Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry.

    PubMed

    Buyukkamaci, Nurdan; Koken, Emre

    2010-11-15

    Excessive water consumption in pulp and paper industry results in high amount of wastewater. Pollutant characteristics of the wastewater vary depending on the processes used in production and the quality of paper produced. However, in general, high organic material and suspended solid contents are considered as major pollutants of pulp and paper industry effluents. The major pollutant characteristics of pulp and paper industry effluents in Turkey were surveyed and means of major pollutant concentrations, which were grouped in three different pollution grades (low, moderate and high strength effluents), and flow rates within 3000 to 10,000m(3)/day range with 1000m(3)/day steps were used as design parameters. Ninety-six treatment plants were designed using twelve flow schemes which were combinations of physical treatment, chemical treatment, aerobic and anaerobic biological processes. Detailed comparative cost analysis which includes investment, operation, maintenance and rehabilitation costs was prepared to determine optimum treatment processes for each pollution grade. The most economic and technically optimal treatment processes were found as extended aeration activated sludge process for low strength effluents, extended aeration activated sludge process or UASB followed by an aeration basin for medium strength effluents, and UASB followed by an aeration basin or UASB followed by the conventional activated sludge process for high strength effluents. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. 40 CFR 463.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Finishing Water Subcategory § 463.33 Effluent limitations guidelines representing the degree of effluent reduction...

  20. 40 CFR 463.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.23 Effluent limitations guidelines representing the degree of effluent reduction...

  1. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.

    PubMed

    Hadad, H R; Mufarrege, M M; Pinciroli, M; Di Luca, G A; Maine, M A

    2010-04-01

    Typha domingensis had become the dominant species after 2 years of operation of a wetland constructed for metallurgical effluent treatment. Therefore, the main purpose of this study was to investigate its ability to tolerate the effluent and to maintain the contaminant removal efficiency of the constructed wetland. Plant, sediment, and water at the inlet and outlet of the constructed wetland and in two natural wetlands were sampled. Metal concentration (Cr, Ni, and Zn) and total phosphorus were significantly higher in tissues of plants growing at the inlet in comparison with those from the outlet and natural wetlands. Even though the chlorophyll concentration was sensitive to effluent toxicity, biomass and plant height at the inlet and outlet were significantly higher than those in the natural wetlands. The highest root and stele cross-sectional areas, number of vessels, and biomass registered in inlet plants promoted the uptake, transport, and accumulation of contaminants in tissues. The modifications recorded accounted for the adaptability of T. domingensis to the conditions prevailing in the constructed wetland, which allowed this plant to become the dominant species and enabled the wetland to maintain a high contaminant retention capacity.

  2. Biodegradation of Endocrine-Disrupting Chemicals and Residual Organic Pollutants of Pulp and Paper Mill Effluent by Biostimulation.

    PubMed

    Chandra, Ram; Sharma, Pooja; Yadav, Sangeeta; Tripathi, Sonam

    2018-01-01

    Effluent discharged from the pulp and paper industry contains various refractory and androgenic compounds, even after secondary treatment by activated processes. Detailed knowledge is not yet available regarding the properties of organic pollutants and methods for their bioremediation. This study focused on detecting residual organic pollutants of pulp and paper mill effluent after biological treatment and assessing their degradability by biostimulation. The major compounds identified in the effluent were 2,3,6-trimethylphenol, 2-methoxyphenol (guaiacol), 2,6-dimethoxyphenol (syringol), methoxycinnamic acid, pentadecane, octadecanoic acid, trimethylsilyl ester, cyclotetracosane, 5,8-dimethoxy-6-methyl-2,4-bis(phenylmethyl)napthalen-1-ol, and 1,2-benzendicarboxylic acid diisononyl ester. Most of these compounds are classified as endocrine-disrupting chemicals and environmental toxicants. Some compounds are lignin monomers that are metabolic products from secondary treatment of the discharged effluent. This indicated that the existing industrial process could not further degrade the effluent. Supplementation by carbon (glucose 1.0%) and nitrogen (peptone 0.5%) bio-stimulated the degradation process. The degraded sample after biostimulation showed either disappearance or generation of metabolic products under optimized conditions, i.e., a stirring rate of 150 rpm and temperature of 37 ± 1°C after 3 and 6 days of bacterial incubation. Isolated potential autochthonous bacteria were identified as Klebsiella pneumoniae IITRCP04 (KU715839), Enterobacter cloacae strain IITRCP11 (KU715840), Enterobacter cloacae IITRCP14 (KU715841), and Acinetobacter pittii strain IITRCP19 (KU715842). Lactic acid, benzoic acid, and vanillin, resulting from residual chlorolignin compounds, were generated as potential value-added products during the detoxification of effluent in the biostimulation process, supporting the commercial importance of this process.

  3. Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane

    PubMed Central

    Bejaoui, Imen; Mouelhi, Meral; Hamrouni, Béchir

    2017-01-01

    Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI) removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL) and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG) depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI) from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI) water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ), and the solute permeability coefficient (Ps). The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution. PMID:28819360

  4. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays.

    PubMed

    Rodrigues, Fernando Postalli; Angeli, José Pedro Friedmann; Mantovani, Mário Sérgio; Guedes, Carmen Luisa Barbosa; Jordão, Berenice Quinzani

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.

  5. Silica removal in industrial effluents with high silica content and low hardness.

    PubMed

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  6. 40 CFR 427.63 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.63 Effluent limitations guidelines representing the degree of effluent...

  7. 40 CFR 427.62 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.62 Effluent limitations guidelines representing the degree of effluent...

  8. 40 CFR 427.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Millboard Subcategory § 427.53 Effluent limitations guidelines representing the degree of effluent...

  9. 40 CFR 427.62 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.62 Effluent limitations guidelines representing the degree of effluent...

  10. 40 CFR 427.52 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Millboard Subcategory § 427.52 Effluent limitations guidelines representing the degree of effluent...

  11. 40 CFR 427.63 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.63 Effluent limitations guidelines representing the degree of effluent...

  12. 40 CFR 427.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Millboard Subcategory § 427.53 Effluent limitations guidelines representing the degree of effluent...

  13. 40 CFR 427.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Millboard Subcategory § 427.53 Effluent limitations guidelines representing the degree of effluent...

  14. 40 CFR 427.63 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.63 Effluent limitations guidelines representing the degree of effluent...

  15. 40 CFR 427.52 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Millboard Subcategory § 427.52 Effluent limitations guidelines representing the degree of effluent...

  16. 40 CFR 429.143 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.143 Effluent limitations representing the degree of effluent reduction...

  17. 40 CFR 429.142 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.142 Effluent limitations representing the degree of effluent...

  18. 40 CFR 429.141 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.141 Effluent limitations representing the degree of effluent reduction...

  19. Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.

    PubMed

    Tripathi, Smriti; Tripathi, B D

    2011-07-01

    The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Batch study of manganese removal from mine effluent using mixture of ferromanganese ore and humus

    NASA Astrophysics Data System (ADS)

    Kamal, Norinsafrina Mustaffa; Aziz, Hamidi Abdul; Sulaiman, Shamsul Kamal; Hussin, Hashim

    2017-10-01

    Environmental problem related to mining industry always associates with high heavy metal contents in mine effluent. Manganese is among the metals that need to be reduced before the mine effluent entering receiving waterways. In this batch study, mixture of ferromanganese ore and humus had been applied to remove manganese from mine effluent. Effect of particle size of ferromanganese ore, dosage, mix ratio, pH and contact time had been studied to examine the effectiveness of the mixture in removing manganese. Results from the study have shown that optimum manganese removal was 93.54% by using particle size of 0.25-0.5 mm of ferromanganese ore, 3g of dosage mixture, mix ratio of 20%;80%, solution pH of 7 and 210 minutes (3.5 hours) of contact time. Thus, it is proven that mixture of ferromanganese ore and humus has potential to be used for removal of manganese in mine effluent.

  1. 40 CFR 427.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.33 Effluent limitations guidelines representing the degree of effluent...

  2. 40 CFR 427.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.43 Effluent limitations guidelines representing the degree of effluent...

  3. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  4. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  5. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  6. 40 CFR 426.62 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.62 Effluent limitations guidelines representing the degree of effluent...

  7. 40 CFR 426.62 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.62 Effluent limitations guidelines representing the degree of effluent...

  8. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  9. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...

  10. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable...

  11. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable...

  12. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction attainable...

  13. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction attainable...

  14. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction attainable...

  15. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable...

  16. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable...

  17. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction attainable...

  18. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable...

  19. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable...

  20. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable...

  1. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable...

  2. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction attainable...

  3. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable...

  4. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction attainable...

  5. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable...

  6. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction attainable...

  7. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction attainable...

  8. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction attainable...

  9. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction attainable...

  10. 40 CFR 424.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Slag Processing Subcategory § 424.32 Effluent limitations guidelines representing the degree of effluent reduction...

  11. Partial characterization of an effluent produced by cooking of Jumbo squid (Dosidicus gigas) mantle muscle.

    PubMed

    Rosas-Romero, Zaidy G; Ramirez-Suarez, Juan C; Pacheco-Aguilar, Ramón; Lugo-Sánchez, Maria E; Carvallo-Ruiz, Gisela; García-Sánchez, Guillermina

    2010-01-01

    Jumbo squid (Dosidicus gigas) mantle muscle was cooked simulating industrial procedures (95 degrees C x 25 min, 1.2:5 muscle:water ratio). The effluent produced was analyzed for chemical and biochemical oxygen demands (COD and BOD(5), respectively), proximate analysis, flavor-related compounds (free amino acids, nucleotides and carbohydrates) and SDS-PAGE. The COD and BOD(5) exhibited variation among samplings (N=3) (27.4-118.5 g O(2)/L for COD and 11.3-26.7 g O(2)/L for BOD(5)). The effluent consisted of 1% total solids, 75% of which represented crude protein. Sixty percent of the total free amino acid content, which imparts flavor in squid species, corresponded to glutamic acid, serine, glycine, arginine, alanine, leucine and lysine. The nucleotide concentration followed this order, Hx>ADP>AMP>ATP>IMP>HxR. The variation observed in the present work was probably due to physiological maturity differences among the squid specimens (i.e., juvenile versus mature). Solids present in squid cooking effluent could be recovered and potentially used as flavor ingredients in squid-analog production by the food industry.

  12. Kinetic studies for Ni(II) biosorption from industrial wastewater by Cassia fistula (Golden Shower) biomass.

    PubMed

    Hanif, Muhammad Asif; Nadeem, Raziya; Zafar, Muhammad Nadeem; Akhtar, Kalsoom; Bhatti, Haq Nawaz

    2007-07-16

    The present study explores the ability of Cassia fistula waste biomass to remove Ni(II) from industrial effluents. C. fistula biomass was found very effective for Ni(II) removal from wastewater of Ghee Industry (GI), Nickel Chrome Plating Industry (Ni-Cr PI), Battery Manufacturing Industry (BMI), Tanner Industry: Lower Heat Unit (TILHU), Tannery Industry: Higher Heat Unit (TIHHU), Textile Industry: Dying Unit (TIDU) and Textile Industry: Finishing Unit (TIFU). The initial Ni(II) concentration in industrial effluents was found to be 34.89+/-0.01, 183.56+/-0.08, 21.19+/-0.01, 43.29+/-0.03, 47.26+/-0.02, 31.38+/-0.01 and 31.09+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. After biosorption the final Ni(II) concentration in industrial effluents was found to be 0.05+/-0.01, 17.26+/-0.08, 0.03+/-0.01, 0.05+/-0.01, 0.1+/-0.01, 0.07+/-0.01 and 0.06+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. The % sorption Ni(II) ability of C. fistula from seven industries included in present study tend to be in following order: TILHU (99.88)>GI (99.85) approximately BMI (99.85)>TIFU (99.80)>TIHHU (99.78)>TIDU (99.77)>Ni-Cr PI (90.59). Sorption kinetic experiments were performed in order to investigate proper sorption time for Ni(II) removal from wastewater. Batch metal ion uptake capacity experiments indicated that sorption equilibrium reached much faster in case of industrial wastewater samples (480min) in comparison to synthetic wastewater (1440min) using same biosorbent. The kinetic data were analyzed in term of pseudo-first-order and pseudo-second-order expressions. Pseudo-second-order model described well the sorption kinetics of Ni(II) onto C. fistula biomass from industrial effluents in comparison to pseudo-first-order kinetic model. Due to unique high Ni(II) sorption capacity of C. fistula waste biomass it can be concluded that it is an excellent biosorbent for Ni(II) uptake from industrial effluents.

  13. 40 CFR 429.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Preserving-Water Borne or Nonpressure Subcategory § 429.73 Effluent limitations representing the degree of effluent...

  14. 40 CFR 429.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Preserving-Water Borne or Nonpressure Subcategory § 429.73 Effluent limitations representing the degree of effluent...

  15. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...

  16. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...

  17. 40 CFR 414.83 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.83 Effluent limitations representing the degree of effluent reduction attainable by the...

  18. 40 CFR 414.63 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.63 Effluent limitations representing the degree of effluent reduction attainable by the...

  19. 40 CFR 464.37 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Ferrous Casting Subcategory § 464.37 Effluent limitations guidelines representing the degree of effluent...

  20. 40 CFR 440.93 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.93 Effluent limitations representing the degree of effluent reduction...

  1. 40 CFR 440.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.73 Effluent limitations representing the degree of effluent reduction...

  2. 40 CFR 440.25 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.25 Effluent limitations representing the degree of effluent reduction...

  3. 40 CFR 440.45 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.45 Effluent limitations representing the degree of effluent reduction...

  4. 40 CFR 440.55 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...

  5. 40 CFR 440.95 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.95 Effluent limitations representing the degree of effluent reduction...

  6. 40 CFR 440.65 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.65 Effluent limitations representing the degree of effluent reduction...

  7. 40 CFR 440.45 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.45 Effluent limitations representing the degree of effluent reduction...

  8. 40 CFR 440.45 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.45 Effluent limitations representing the degree of effluent reduction...

  9. 40 CFR 440.93 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.93 Effluent limitations representing the degree of effluent reduction...

  10. 40 CFR 440.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.73 Effluent limitations representing the degree of effluent reduction...

  11. 40 CFR 440.65 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.65 Effluent limitations representing the degree of effluent reduction...

  12. 40 CFR 440.55 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...

  13. 40 CFR 440.65 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.65 Effluent limitations representing the degree of effluent reduction...

  14. 40 CFR 440.25 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.25 Effluent limitations representing the degree of effluent reduction...

  15. 40 CFR 440.75 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.75 Effluent limitations representing the degree of effluent reduction...

  16. 40 CFR 440.55 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...

  17. 40 CFR 440.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.73 Effluent limitations representing the degree of effluent reduction...

  18. 40 CFR 440.93 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.93 Effluent limitations representing the degree of effluent reduction...

  19. 40 CFR 440.25 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.25 Effluent limitations representing the degree of effluent reduction...

  20. 40 CFR 440.95 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.95 Effluent limitations representing the degree of effluent reduction...

  1. 40 CFR 440.95 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.95 Effluent limitations representing the degree of effluent reduction...

  2. 40 CFR 440.75 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.75 Effluent limitations representing the degree of effluent reduction...

  3. 40 CFR 440.75 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.75 Effluent limitations representing the degree of effluent reduction...

  4. 40 CFR 414.41 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Thermoplastic... concentration listed in the following table. Effluent characteristics BPT Effluent Limitations 1 Maximum for any...

  5. 40 CFR 414.51 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Thermosetting... concentration listed in the following table. Effluent characteristics BPT effluent limitations 1 Maximum for any...

  6. 40 CFR 447.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.13 Effluent limitations guidelines representing the degree of effluent...

  7. 40 CFR 447.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.12 Effluent limitations guidelines representing the degree of effluent...

  8. 40 CFR 447.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.12 Effluent limitations guidelines representing the degree of effluent...

  9. 40 CFR 447.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.13 Effluent limitations guidelines representing the degree of effluent...

  10. 40 CFR 447.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.13 Effluent limitations guidelines representing the degree of effluent...

  11. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by the...

  12. 40 CFR 414.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.72 Effluent limitations representing the degree of effluent reduction attainable by the...

  13. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by the...

  14. 40 CFR 414.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.72 Effluent limitations representing the degree of effluent reduction attainable by the...

  15. 40 CFR 414.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.72 Effluent limitations representing the degree of effluent reduction attainable by the...

  16. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by the...

  17. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by the...

  18. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by the...

  19. 40 CFR 414.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.72 Effluent limitations representing the degree of effluent reduction attainable by the...

  20. 40 CFR 414.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.72 Effluent limitations representing the degree of effluent reduction attainable by the...

  1. 40 CFR 446.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PAINT FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.13 Effluent limitations guidelines representing the degree of effluent reduction...

  2. 40 CFR 446.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PAINT FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.13 Effluent limitations guidelines representing the degree of effluent reduction...

  3. 40 CFR 440.112 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent reduction...

  4. 40 CFR 440.112 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent reduction...

  5. 40 CFR 440.15 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.15 Effluent limitations representing the degree of effluent reduction attainable...

  6. 40 CFR 440.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent reduction...

  7. 40 CFR 440.15 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.15 Effluent limitations representing the degree of effluent reduction attainable...

  8. 40 CFR 440.15 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.15 Effluent limitations representing the degree of effluent reduction attainable...

  9. 40 CFR 440.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent reduction...

  10. 40 CFR 440.35 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...

  11. 40 CFR 440.35 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...

  12. 40 CFR 414.31 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Other Fibers... concentration listed in the following table. Effluent characteristics BPT effluent limitations 1 Maximum for any...

  13. 40 CFR 414.21 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Rayon Fibers... concentration listed in the following table. Effluent characteristics BPT effluent limitations 1 Maximum for any...

  14. 40 CFR 434.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... representing the degree of effluent reduction attainable by application of the best available technology... application of the best available technology economically achievable: BAT Effluent Limitations Pollutant or...

  15. 40 CFR 434.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... representing the degree of effluent reduction attainable by application of the best available technology... application of the best available technology economically achievable: BAT Effluent Limitations Pollutant or...

  16. 40 CFR 434.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology...

  17. 40 CFR 434.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... representing the degree of effluent reduction attainable by application of the best available technology... application of the best available technology economically achievable: BAT Effluent Limitations Pollutant or...

  18. 40 CFR 434.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... representing the degree of effluent reduction attainable by application of the best available technology... application of the best available technology economically achievable: BAT Effluent Limitations Pollutant or...

  19. 40 CFR 434.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology...

  20. NMR shielding and a thermodynamic study of the effect of environmental exposure to petrochemical solvent on DPPC, an important component of lung surfactant

    NASA Astrophysics Data System (ADS)

    Monajjemi, M.; Afsharnezhad, S.; Jaafari, M. R.; Abdolahi, T.; Nikosade, A.; Monajemi, H.

    2007-12-01

    The chemical and petrochemical industries are the major air polluters. Millions of workers are exposed to toxic chemicals on the job, and it is becoming more toxic, causing much damage to respiratory system, today. One of the main components of lung alveoli is a surfactant. DPPC (Dipalmitolphosphatidylcholine) is the predominant lipid component in the lung surfactant, which is responsible for lowering surface tension in alveoli. In this article, we used an approximate model and ab initio computations to describe interactions between DPPC and some chemical solvents, such as benzene, toluene, heptane, acetone, chloroform, ether, and ethanol, which cause lung injuries and lead to respiratory distress such as ARDS. The effect of these solvents on the conformation and disordering of the DPPC head group was investigated by calculations at the Hatree-Fock level using the 6-31G basis set with the Onsager continuum solvation, GAIO, and frequency models. The simulation model was confirmed by accurate NMR measurements as concerns conformational energy. Water can be the most suitable solvent for DPPC. Furthermore, this study shows that ethanol has the most destructive effect on the conformation and lipid disorder of the DPPC head group of the lung surfactant in our model. Our finding will be useful for detecting the dysfunction of DPPC in the lung surfactant caused by acute or chronic exposures to air toxics from petrochemical organic solvent emission source and chronic alcohol consumption, which may lead to ARDS.

  1. 40 CFR 445.23 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS LANDFILLS POINT SOURCE CATEGORY RCRA Subtitle D Non-Hazardous Waste Landfill § 445.23 Effluent limitations representing the degree of effluent reduction attainable by the...

  2. Adsorption of Heavy Metals in Industrial Wastewater by Magnetic Nano-particles

    NASA Astrophysics Data System (ADS)

    Tu, Y.; You, C.

    2010-12-01

    Industrial wastewater containing heavy metals is of great concern because of their toxic impact to living species and environments. Removal of metal ions from industrial effluent using nano-particles is an area of extensive research. This study collected wastewaters and effluents from 11 industrial companies in tanning, electronic plating, printed circuit board manufacturing, semi-conductor, and metal surface treatment industry and studied in detailed the major and trace element compositions to develop potential fingerprinting technique for pollutant source identification. The results showed that electronic plating and metal surface treatment industry produce high Fe, Mn, Cr, Zn, Ni and Mo wastewater. The tanning industry and the printed circuit board manufacturing industry released wastewater with high Fe and Cr, Cu and Ni, respectively. For semi-conductor industry, significant dissolved In was detected in wastewater. The absorption experiments to remove heavy metals in waters were conducted using Fe3O4 nano-particles. Under optimal conditions, more than 99 % dissolved metals were removed in a few minutes.

  3. Job strain (demands and control model) as a predictor of cardiovascular risk factors among petrochemical personnel

    PubMed Central

    Habibi, Ehsanollah; Poorabdian, Siamak; Shakerian, Mahnaz

    2015-01-01

    Background: One of the practical models for the assessment of stressful working conditions due to job strain is job demand and control model, which explains how physical and psychological adverse consequences, including cardiovascular risk factors can be established due to high work demands (the amount of workload, in addition to time limitations to complete that work) and low control of the worker on his/her work (lack of decision making) in the workplace. The aim of this study was to investigate how certain cardiovascular risk factors (including body mass index [BMI], heart rate, blood pressure, cholesterol and smoking) and the job demand and job control are related to each other. Materials and Methods: This prospective cohort study was conducted on 500 workers of the petrochemical industry in south of Iran, 2009. The study population was selected using simple random statistical method. They completed job demand and control questionnaire. The cardiovascular risk factors data was extracted from the workers hygiene profiles. Chi-square (χ2) test and hypothesis test (η) were used to assess the possible relationship between different quantified variables, individual demographic and cardiovascular risk factors. Results: The results of this study revealed that a significant relationship can be found between job demand control model and cardiovascular risk factors. Chi-square test result for the heart rate showed the highest (χ2 = 145.078) relationship, the corresponding results for smoking and BMI were χ2 = 85.652 and χ2 = 30.941, respectively. Subsequently, hypothesis testing results for cholesterol and hypertension was 0.469 and 0.684, respectively. Discussion: Job strain is likely to be associated with an increased risk of cardiovascular risk factors among male staff in a petrochemical company in Iran. The parameters illustrated in the Job demands and control model can act as acceptable predictors for the probability of job stress occurrence followed by showing

  4. Definition and GIS-based characterization of an integral risk index applied to a chemical/petrochemical area.

    PubMed

    Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L

    2006-08-01

    A risk map of the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain) was designed following a two-stage procedure. The first step was the creation of a ranking system (Hazard Index) for a number of different inorganic and organic pollutants: heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated aromatic hydrocarbons (PAHs) by applying self-organizing maps (SOM) to persistence, bioaccumulation and toxicity properties of the chemicals. PCBs seemed to be the most hazardous compounds, while the light PAHs showed the minimum values. Subsequently, an Integral Risk Index was developed taking into account the Hazard Index and the concentrations of all pollutants in soil samples collected in the assessed area of Tarragona. Finally, a risk map was elaborated by representing the spatial distribution of the Integral Risk Index with a geographic information system (GIS). The results of the present study seem to indicate that the development of an integral risk map might be useful to help in making-decision processes concerning environmental pollutants.

  5. [Evaluation of treatment technology of odor pollution source in petrochemical industry].

    PubMed

    Mu, Gui-Qin; Sui, Li-Hua; Guo, Ya-Feng; Ma, Chuan-Jun; Yang, Wen-Yu; Gao, Yang

    2013-12-01

    Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil.

  6. Effect of inoculum-substrate ratio on acclimatization of pharmaceutical effluent in an anaerobic batch reactor.

    PubMed

    Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R

    2008-07-01

    Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on

  7. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    PubMed

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  8. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  9. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.

    PubMed

    Ma, Dehua; Chen, Lujun; Liu, Rui

    2017-10-01

    Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright

  10. 40 CFR 426.57 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology. 426.57 Section 426.57 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.57 Effluent limitations guidelines representing the degree of effluent reduction...

  11. 40 CFR 426.87 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology. 426.87 Section 426.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Glass Container Manufacturing Subcategory § 426.87 Effluent limitations guidelines representing the degree of effluent reduction...

  12. 40 CFR 426.107 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology. 426.107 Section 426.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Glass Tubing (Danner) Manufacturing Subcategory § 426.107 Effluent limitations guidelines representing the degree of effluent...

  13. 40 CFR 455.64 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Repackaging of Agricultural Pesticides... effluent reduction attainable by the application of the best available technology economically achievable...

  14. 40 CFR 430.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Fine and Lightweight Papers from Purchased Pulp Subcategory § 430.113 Effluent limitations... existing point source subject to this subpart shall achieve the following effluent limitations representing...

  15. 40 CFR 426.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology (BCT). 426.47 Section 426.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Plate Glass Manufacturing Subcategory § 426.47 Effluent limitations guidelines representing the degree of effluent reduction...

  16. 40 CFR 440.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently... degree of effluent reduction attainable by the application of the best practicable control technology...

  17. 40 CFR 440.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... effluent reduction attainable by the application of the best practicable control technology currently... degree of effluent reduction attainable by the application of the best practicable control technology...

  18. 40 CFR 463.17 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best conventional pollutant... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact... effluent reduction attainable by the application of the best conventional pollutant control technology...

  19. 40 CFR 463.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact... effluent reduction attainable by the application of the best available technology economically achievable...

  20. Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium.

    PubMed

    Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar

    2011-08-01

    Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.

  1. Synergism of Pseudomonas aeruginosa and Fe0 for treatment of heavy metal contaminated effluents using small scale laboratory reactor.

    PubMed

    Singh, Rajesh; Bishnoi, Narsi R; Kirrolia, Anita; Kumar, Rajender

    2013-01-01

    In this study Pseudomonas aeruginosa a metal tolerant strain was not only applied for heavy metal removal but also to the solublization performance of the precipitated metal ions during effluent treatment. The synergistic effect of the isolate and Fe(0) enhanced the metal removal potential to 72.97% and 87.63% for Cr(VI) and cadmium, respectively. The decrease in cadmium ion removal to 43.65% (aeration+stirring reactors), 21.33% (aerated reactors), and 18.95% (without aerated+without stirring) with an increase in incubation period not only indicate the presence of soluble less toxic complexes, but also help in exploration of the balancing potential for valuable metal recovery. A relatively best fit and significant values of the correlation coefficient 0.912, 0.959, and 0.9314 for mixed effluent (Paint Industry effluent+CETP Wazirpur, effluent), CETP, Wazirpur, and control effluents, respectively, indicating first-order formulation and provide a reasonable description of COD kinetic data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. 40 CFR 424.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...

  3. 40 CFR 430.114 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best available technology economically... effluent reduction attainable by the application of the best available technology economically achievable... representing the degree of effluent reduction attainable by the application of the best available technology...

  4. 40 CFR 435.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Effluent limitations guidelines... economically achievable (BAT). 435.43 Section 435.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Coastal Subcategory § 435.43 Effluent limitations guidelines representing the degree of effluent reduction...

  5. 40 CFR 435.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Effluent limitations guidelines... economically achievable (BAT). 435.43 Section 435.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Coastal Subcategory § 435.43 Effluent limitations guidelines representing the degree of effluent reduction...

  6. 40 CFR 435.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Effluent limitations guidelines... control technology (BCT). 435.44 Section 435.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Coastal Subcategory § 435.44 Effluent limitations guidelines representing the degree of effluent reduction...

  7. 40 CFR 435.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Effluent limitations guidelines... control technology (BCT). 435.44 Section 435.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Coastal Subcategory § 435.44 Effluent limitations guidelines representing the degree of effluent reduction...

  8. 40 CFR 435.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Effluent limitations guidelines... economically achievable (BAT). 435.43 Section 435.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Coastal Subcategory § 435.43 Effluent limitations guidelines representing the degree of effluent reduction...

  9. 40 CFR 435.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Effluent limitations guidelines... control technology (BCT). 435.44 Section 435.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Coastal Subcategory § 435.44 Effluent limitations guidelines representing the degree of effluent reduction...

  10. 40 CFR 458.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... Thermal Process Subcategory § 458.23 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...

  11. 40 CFR 458.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... Channel Process Subcategory § 458.33 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...

  12. 40 CFR 458.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... Furnace Process Subcategory § 458.13 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...

  13. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  14. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  15. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  16. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  17. 40 CFR 430.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Dissolving Sulfite Subcategory § 430.42 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or... [BPT effluent limitations for dissolving sulfite pulp facilities where viscose grade pulp is produced...

  18. 40 CFR 430.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.123 Effluent... existing point source subject to this subpart shall achieve the following effluent limitations representing...

  19. 40 CFR 409.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...

  20. 40 CFR 409.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...

  1. 40 CFR 409.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...

  2. 40 CFR 420.137 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best control technology for... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY... effluent reduction attainable by the application of the best control technology for conventional pollutants...

  3. 40 CFR 430.22 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Bleached... [BPT effluent limitations for bleached kraft facilities where market pulp is produced] Pollutant or... effluent limitations for bleached kraft facilities where paperboard, coarse paper, and tissue paper are...

  4. 40 CFR 409.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...

  5. 40 CFR 409.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...

  6. 40 CFR 440.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... degree of effluent reduction attainable by the application of the best practicable control technology... degree of effluent reduction attainable by the application of the best practicable control technology...

  7. 40 CFR 440.142 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...

  8. 40 CFR 440.142 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...

  9. 40 CFR 440.142 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...

  10. 40 CFR 430.34 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biocides are used must achieve the following effluent limitations representing the degree of effluent...-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart C [BAT effluent limitations for...

  11. 40 CFR 430.14 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biocides are used must achieve the following effluent limitations representing the degree of effluent...-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart A [BAT effluent limitations] Pollutant...

  12. 40 CFR 430.44 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... biocides are used must achieve the following effluent limitations representing the degree of effluent...-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart D [BAT effluent limitations for...

  13. 40 CFR 430.52 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... [Bisulfite liquor/surface condensers; BPT effluent limitations for papergrade sulfite facilities where blow... range of 5.0 to 9.0 at all times. Subpart E [Bisulfite liquor/barometric condensers; BPT effluent... [Acid sulfite liquor/surface condensers; BPT effluent limitations for papergrade sulfite facilities...

  14. 40 CFR 430.52 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... [Bisulfite liquor/surface condensers; BPT effluent limitations for papergrade sulfite facilities where blow... range of 5.0 to 9.0 at all times. Subpart E [Bisulfite liquor/barometric condensers; BPT effluent... [Acid sulfite liquor/surface condensers; BPT effluent limitations for papergrade sulfite facilities...

  15. 40 CFR 408.202 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  16. 40 CFR 408.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  17. 40 CFR 408.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  18. 40 CFR 408.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  19. 40 CFR 408.202 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  20. 40 CFR 408.312 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  1. 40 CFR 408.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  2. 40 CFR 408.312 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  3. 40 CFR 408.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  4. 40 CFR 408.202 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  5. 40 CFR 408.312 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  6. 40 CFR 408.312 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  7. 40 CFR 408.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  8. 40 CFR 408.202 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  9. 40 CFR 408.202 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  10. 40 CFR 408.312 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... representing the degree of effluent reduction attainable by the application of the best practicable control... effluent reduction attainable by the application of the best practicable control technology currently...

  11. 40 CFR 424.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...

  12. 40 CFR 424.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...

  13. 40 CFR 424.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...

  14. 40 CFR 424.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Open Electric... representing the degree of effluent reduction attainable by the application of the best available technology...

  15. 40 CFR 430.114 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... degree of effluent reduction attainable by the application of the best available technology economically... effluent reduction attainable by the application of the best available technology economically achievable... representing the degree of effluent reduction attainable by the application of the best available technology...

  16. 40 CFR 463.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best practicable control... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY... degree of effluent reduction attainable by the application of the best practicable control technology...

  17. 78 FR 7442 - Accreditation and Approval of Chemical and Petrochemical Inspections, LP, as a Commercial Gauger...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable... approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable... Chemical and Petrochemical Inspections, LP, as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and...

  18. Whole Effluent Toxicity (WET)

    EPA Pesticide Factsheets

    Whole Effluent Toxicity (WET) describes the aggregate toxic effect of an aqueous sample (e.g., whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (e.g., lethality, impaired growth, or reproduction).

  19. Hazard zoning around electric substations of petrochemical industries by stimulation of extremely low-frequency magnetic fields.

    PubMed

    Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein

    2015-05-01

    Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations.

  20. 40 CFR 430.44 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Dissolving Sulfite Subcategory § 430.44 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration, viscose, or cellophane pulps are produced... discharged in kgal per ton of product. Subpart D [BAT effluent limitations for dissolving sulfite pulp...