Sample records for petroleum fuel dependency

  1. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  2. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  3. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  4. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  5. 48 CFR 908.7109 - Fuels and packaged petroleum products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Fuels and packaged petroleum products. 908.7109 Section 908.7109 Federal Acquisition Regulations System DEPARTMENT OF ENERGY....7109 Fuels and packaged petroleum products. Acquisitions of fuel and packaged petroleum products by DOE...

  6. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Petroleum-equivalent fuel economy calculation. 474.3 Section 474.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The...

  7. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  8. 10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample Petroleum-Equivalent Fuel Economy Calculations Example 1: An electric vehicle is...

  9. 10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample Petroleum-Equivalent Fuel Economy Calculations Example 1: An electric vehicle is...

  10. 10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample Petroleum-Equivalent Fuel Economy Calculations Example 1: An electric vehicle is...

  11. 10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample Petroleum-Equivalent Fuel Economy Calculations Example 1: An electric vehicle is...

  12. Feasibility of Technologies to Produce Coal-Based Fuels with Equal or Lower Greenhouse Gas Emissions than Petroleum Fuels

    DTIC Science & Technology

    2014-12-22

    the commercial viability of CTL fuels depends on coal being significantly cheaper than crude oil on an energy basis. Additionally, current...1990 1995 2000 2005 2010 2015 P ro d u ct S u p p li ed (M il li o n B a rr el s p er D a y ) Residual Fuel Oil Liquified Petroleum Gases Kerosene...Type Jet Fuel Finished Motor Gasoline Distillate Fuel Oil Aviation Gasoline 4 Independence and Security Act (EISA) of 2007 2 effectively prohibits

  13. Use of petroleum-based correlations and estimation methods for synthetic fuels

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1980-01-01

    Correlations of hydrogen content with aromatics content, heat of combustion, and smoke point are derived for some synthetic fuels prepared from oil and coal syncrudes. Comparing the results of the aromatics content with correlations derived for petroleum fuels shows that the shale-derived fuels fit the petroleum-based correlations, but the coal-derived fuels do not. The correlations derived for heat of combustion and smoke point are comparable to some found for petroleum-based correlations. Calculated values of hydrogen content and of heat of combustion are obtained for the synthetic fuels by use of ASTM estimation methods. Comparisons of the measured and calculated values show biases in the equations that exceed the critical statistics values. Comparison of the measured hydrogen content by the standard ASTM combustion method with that by a nuclear magnetic resonance (NMR) method shows a decided bias. The comparison of the calculated and measured NMR hydrogen contents shows a difference similar to that found with petroleum fuels.

  14. Alternative Fuels in Transportation : Workforce needs and opportunities in support of reducing reliance on petroleum fuels

    DOT National Transportation Integrated Search

    2016-01-01

    An overreliance on foreign oil and the negative impacts of using petroleum fuels on the worlds climate have prompted energy policies that support the diversification of transport fuels and aggressive work to transition to non-petroleum options. Th...

  15. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    NASA Astrophysics Data System (ADS)

    Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.

    2016-04-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.

  16. Alternative Fuels Data Center: City of Chicago Program Encourages Petroleum

    Science.gov Websites

    Displacement and Collaboration Between Departments City of Chicago Program Encourages Petroleum : City of Chicago Program Encourages Petroleum Displacement and Collaboration Between Departments on Facebook Tweet about Alternative Fuels Data Center: City of Chicago Program Encourages Petroleum

  17. Oxygenates for Advanced Petroleum-Based Diesel Fuels

    DTIC Science & Technology

    2001-02-01

    needed. Do not return it to the originator. iii Oxygenates for Advanced Petroleum-Based Diesel Fuels INTERIM REPORT TFLRF No. 351 by David W. Naegeli ...Blends,” 219th American Chemical Society Meeting, San Francisco, CA, March 26-30, 2000. 5. Naegeli , D.W. and Moses, C.A., “Effects of Fuel...Alternative Fuels in an Advanced Automotive Diesel Engine,” SAE Paper 2000- 01-2048. 25. Vertin, K.D., Ohi, J.M., Naegeli , D.W., Childress, K.H

  18. 10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations Appendix to Part 474 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample...

  19. Synthetic Fuels and Biofuels: Questionable Replacements for Petroleum

    DTIC Science & Technology

    2008-12-31

    Hardy, D.R. Biodiesels fuels: Use of Soy Oil as a Blending Stock for Middle Distillate Petroleum Fuels. Ind. Eng. Chem. Res. 2000, 39(10), 3945...BACKGROUND The world market supply of oil along with growing environmental concerns has led to an increase demand in production of biodiesel...which differs from the ASTM D975-06 specification for diesel fuel oils as shown in Table 1 [8,9], in addition to key property requirements that are

  20. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... natural gas or petroleum. 503.38 Section 503.38 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS... mixtures containing natural gas or petroleum. (a) Eligibility. Section 212(d) of the Act provides for a... proposes to use a mixture of natural gas or petroleum and an alternate fuel as a primary energy source; (2...

  1. Petroleum and Health Care: Evaluating and Managing Health Care's Vulnerability to Petroleum Supply Shifts

    PubMed Central

    Bednarz, Daniel; Bae, Jaeyong; Pierce, Jessica

    2011-01-01

    Petroleum is used widely in health care—primarily as a transport fuel and feedstock for pharmaceuticals, plastics, and medical supplies—and few substitutes for it are available. This dependence theoretically makes health care vulnerable to petroleum supply shifts, but this vulnerability has not been empirically assessed. We quantify key aspects of petroleum use in health care and explore historical associations between petroleum supply shocks and health care prices. These analyses confirm that petroleum products are intrinsic to modern health care and that petroleum supply shifts can affect health care prices. In anticipation of future supply contractions lasting longer than previous shifts and potentially disrupting health care delivery, we propose an adaptive management approach and outline its application to the example of emergency medical services. PMID:21778473

  2. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...

  3. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...

  4. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...

  5. Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan

    PubMed Central

    Yao, Pei-Hsuan; Shyu, Guey-Shin; Chang, Ying-Fang; Chou, Yu-Chen; Shen, Chuan-Chou; Chou, Chi-Su; Chang, Tsun-Kuo

    2015-01-01

    Leaded gasoline in Taiwan was gradually phased out from 1983 to 2000. However, it is unclear whether unleaded gasoline still contributes to atmospheric lead (Pb) exposure in urban areas. In this study, Pb isotopic compositions of unleaded gasolines, with octane numbers of 92, 95, 98, and diesel from two local suppliers in Taipei were determined by multi-collector inductively coupled plasma mass spectrometry with a two-sigma uncertainty of ± 0.02 %. Lead isotopic ratios of vehicle exhaust (208Pb/207Pb: 2.427, 206Pb/207Pb: 1.148, as estimated from petroleum fuels) overlap with the reported aerosol data. This agreement indicates that local unleaded petroleum fuels, containing 10–45 ng·Pb·g−1, are merely one contributor among various sources to urban aerosol Pb. Additionally, the distinction between the products of the two companies is statistically significant in their individual 208Pb/206Pb ratios (p-value < 0.001, t test). Lead isotopic characterization appears to be applicable as a “fingerprinting” tool for tracing the sources of Pb pollution. PMID:25918913

  6. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust... samples for the bag sample, the methanol sample (Figure N90-2), and the formaldehyde sample (Figure N90-3...

  7. Design Guidelines for Bus Transit Systems Using Liquefied Petroleum Gas (LPG) as an Alternative Fuel.

    DOT National Transportation Integrated Search

    1996-09-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG), and Methanol/Ethanol, are already being used in buses. At present, there do not exist co...

  8. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    NASA Astrophysics Data System (ADS)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  9. The influence of petroleum products on the methane fermentation process.

    PubMed

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Zero-sulfur diesel fuel from non-petroleum resources : the key to reducing U.S. oil imports.

    DOT National Transportation Integrated Search

    2012-09-01

    Zero-sulfur diesel fuel of the highest quality, the fuel used in this project, can be made by Fischer-Tropsch (FT) synthesis from many non-petroleum resources, including natural gas, which is increasingly abundant in the United States. Zero-sulfur FT...

  11. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  12. Short-Term Energy Outlook Model Documentation: Petroleum Products Supply Module

    EIA Publications

    2013-01-01

    The Petroleum Products Supply Module of the Short-Term Energy Outlook (STEO) model provides forecasts of petroleum refinery inputs (crude oil, unfinished oils, pentanes plus, liquefied petroleum gas, motor gasoline blending components, and aviation gasoline blending components) and refinery outputs (motor gasoline, jet fuel, distillate fuel, residual fuel, liquefied petroleum gas, and other petroleum products).

  13. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Liquefied petroleum gas systems. 393.69 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for the...

  14. Systemic molecular and cellular changes induced in rats upon inhalation of JP-8 petroleum fuel vapor.

    PubMed

    Hanas, Jay S; Bruce Briggs, G; Lerner, Megan R; Lightfoot, Stan A; Larabee, Jason L; Karsies, Todd J; Epstein, Robert B; Hanas, Rushie J; Brackett, Daniel J; Hocker, James R

    2010-05-01

    Limited information is available regarding systemic changes in mammals associated with exposures to petroleum/hydrocarbon fuels. In this study, systemic toxicity of JP-8 jet fuel was observed in a rat inhalation model at different JP-8 fuel vapor concentrations (250, 500, or 1000 mg/m(3), for 91 days). Gel electrophoresis and mass spectrometry sequencing identified the alpha-2 microglobulin protein to be elevated in rat kidney in a JP-8 dose-dependent manner. Western blot analysis of kidney and lung tissue extracts revealed JP-8 dependent elevation of inducible heat shock protein 70 (HSP70). Tissue changes were observed histologically (hematoxylin and eosin staining) in liver, kidney, lung, bone marrow, and heart, and more prevalently at medium or high JP-8 vapor phase exposures (500-1000 mg/m(3)) than at low vapor phase exposure (250 mg/m(3)) or non-JP-8 controls. JP-8 fuel-induced liver alterations included dilated sinusoids, cytoplasmic clumping, and fat cell deposition. Changes to the kidneys included reduced numbers of nuclei, and cytoplasmic dumping in the lumen of proximal convoluted tubules. JP-8 dependent lung alterations were edema and dilated alveolar capillaries, which allowed clumping of red blood cells (RBCs). Changes in the bone marrow in response to JP-8 included reduction of fat cells and fat globules, and cellular proliferation (RBCs, white blood cells-WBCs, and megakaryocytes). Heart tissue from JP-8 exposed animals contained increased numbers of inflammatory and fibroblast cells, as well as myofibril scarring. cDNA array analysis of heart tissue revealed a JP-8 dependent increase in atrial natriuretic peptide precursor mRNA and a decrease in voltage-gated potassium (K+) ion channel mRNA.

  15. Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel

    DOT National Transportation Integrated Search

    2017-11-09

    The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...

  16. Botanochemicals and chemurgy in the petroleum drought ahead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagby, M.O.; Buchanan, R.A.; Duke, J.A.

    1979-01-01

    Green plants, collectively, are still a major under-exploited resource. However, new crops and agricultural systems are being developed for the production of fuels and materials in addition to foods and fibers. Whole-plant oils and botanochemicals are being evaluated as annually renewable replacements for petroleum crude and petrochemicals, respectively. Plant derived fuel alcohols are becoming a viable supplement to gasoline and fuel oils. Polyisoprenes, terpenes, oils, waxes, alcohols, phenols, furfural, methane, and producer gas from plant sources can potentially displace petroleum derived feedstocks for the synthetic chemical industry. Moreover, new botanochemical processing methods offer prospects for reducing US dependence on importsmore » for many specialty plant-products traditionally produced by labor-intensive methods. Extraction of essential oils, pharmaceutical intermediates, tannins, and vegetable dyes may be integrated with botanochemical processing to allow exploitation of the varied US climate for domestic production of nearly every botanical now imported.« less

  17. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less

  18. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  19. Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project

    Science.gov Websites

    fuel to help lessen our dependence on imported foreign petroleum. " Seth Obetz, AMERIgreen Greater imported foreign petroleum." GPCC expects more stations will add their names to the list. When gas

  20. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Protection Association, Battery March Park, Quincy, MA 02269, as follows: (1) A fuel system installed before... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for the...

  1. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles.

    PubMed

    Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J

    2009-08-15

    Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.

  2. Alternative Fuels Data Center: Fuel Prices

    Science.gov Websites

    Report provides regional alternative and conventional fuel prices for biodiesel, compressed natural gas petroleum fuels (gasoline and diesel fuel) is the primary driver of liquid fuel prices. This is because the liquid fuels are used in non-dedicated vehicles and can be substituted out by petroleum fuels if their

  3. 31 CFR 561.319 - Petroleum products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum gases, pentanes plus, aviation gasoline, motor gasoline, naphtha-type jet fuel, kerosene-type jet fuel, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, special naphthas...

  4. 31 CFR 561.319 - Petroleum products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum gases, pentanes plus, aviation gasoline, motor gasoline, naphtha-type jet fuel, kerosene-type jet fuel, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, special naphthas...

  5. 31 CFR 561.319 - Petroleum products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum gases, pentanes plus, aviation gasoline, motor gasoline, naphtha-type jet fuel, kerosene-type jet fuel, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, special naphthas...

  6. Petroleum.

    ERIC Educational Resources Information Center

    McManus, T. R.; And Others

    1989-01-01

    This review of petroleum covers: crude oil; fuels, gaseous and liquid; lubricants, oils, and greases; asphalts, bitumens, tars, and pitches; hydrocarbons; physical properties; metals in oil; nonmetallic elements and heterocompounds; and analytical methods and apparatus. (MVL)

  7. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    EPA Science Inventory

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  8. Lessons Learned Using Fractions to Assess Risk at Petroleum Release Sites

    DTIC Science & Technology

    2004-04-01

    Jet Fuel Bioavailability Hydrocarbon fractions Total Petroleum Hydrocarbons Weathered petroleum Sequestration 16. SECURITY CLASSIFICATION OF: 17...requirements at sites that were contaminated with petroleum products such as gasoline, diesel fuel , jet fuel , heating oil, lubricants and used motor oils...December 2002. Four of the demonstration sites were contaminated with jet fuel (i.e., JP-4, JP-5 or JP-8). The Misawa Air Base site was contaminated with

  9. Dimethyl ether (DME) as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  10. Life-cycle analysis of alternative aviation fuels in GREET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, A.; Han, J.; Wang, M.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum

  11. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, A.; Han, J.; Wang, M.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with

  12. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2011-01-01 2011-01-01 false Permanent exemption for certain fuel mixtures containing...

  13. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2012-01-01 2012-01-01 false Permanent exemption for certain fuel mixtures containing...

  14. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2013-01-01 2013-01-01 false Permanent exemption for certain fuel mixtures containing...

  15. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2014-01-01 2014-01-01 false Permanent exemption for certain fuel mixtures containing...

  16. Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal ismore » to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.« less

  17. Petroleum marketing monthly, May 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-26

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published datamore » in the Petroleum Marketing Monthly.« less

  18. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  19. Engineering organisms for industrial fuel production.

    PubMed

    Berry, David A

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy. © 2010 Landes Bioscience

  20. Petroleum marketing monthly, September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum product sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensuresmore » the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.« less

  1. Special Issue in Honor of Professor S. Ted Oyama: 2014 ACS Distinguished Researcher Award in Petroleum Chemistry and Storch Award in Fuel Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravo-Suárez, Juan J.; Wang, Xianqin; Li, Wei

    This special issue of Topics in Catalysis honors Professor S. Ted Oyama for his Awards in Petroleum Chemistry and Fuel Science Research. These awards were celebrated at two American Chemical Society (ACS) symposia in 2014. First, the ACS’s Distinguished Research Award in Petroleum Chemistry Symposium, took place at the 247th ACS National Meeting in Dallas, TX, during March 17-19, 2014 and the second one, the ACS’s Storch Award in Fuel Science Symposium, took place at the 248th ACS National Meeting in San Francisco, CA, during August 10-12, 2014. Professor Oyama received the 2014 ACS Distinguished Research Award in Petroleum Chemistrymore » ‘‘for his substantial contributions to the field of heterogeneous catalysis’’ including the discovery of highly active transition metal phosphide catalysts for hydrotreatment of petroleum and coal-derived feedstocks and biomass refining, the development of new compositions, and the understanding of their reaction mechanisms by in situ spectroscopic techniques at high temperatures and pressures of reaction. In light of this recognition, Professor Oyama was also awarded the 2014 ACS Storch Award in Fuel Science ‘‘for his broad contributions to the field of fuel science’’ including the production of hydrogen by catalytic reforming, selective oxidation of hydrocarbons, biomass conversion, their reaction kinetics and mechanisms, and spectrokinetic methods to study catalysts in situ at reaction conditions and theory and application of inorganic membranes for separation of hydrogen and fuel-relevant gases. Finally, this special issue consists of contributions by catalysis researchers who participated in the two ACS symposia honoring Professor Oyama’s Awards.« less

  2. Petroleum marketing monthly, June 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Monthly statistics on purchases of crude oil and sales of petroleum products aremore » presented in five sections: Summary Statistics; Crude Oil Prices; Prices of Petroleum Products; Volumes of Petroleum Products; and Prime Supplier Sales Volumes of Petroleum Products for Local Consumption. The feature article is entitled ``The Second Oxygenated Gasoline Season.`` 7 figs., 50 tabs.« less

  3. What drives petroleum product prices

    EIA Publications

    2017-01-01

    This new section discusses the various factors that influence the prices of gasoline and distillate fuel oil—the two most-consumed petroleum products in the United States. Charts detailing prices, consumption, production, inventories, and trade for both petroleum products will be updated each month in the Short-Term Energy Outlook.

  4. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  5. Life cycle of petroleum biodegradation metabolite plumes, and implications for risk management at fuel release sites.

    PubMed

    Zemo, Dawn A; O'Reilly, Kirk T; Mohler, Rachel E; Magaw, Renae I; Espino Devine, Catalina; Ahn, Sungwoo; Tiwary, Asheesh K

    2017-07-01

    This paper summarizes the results of a 5-y research study of the nature and toxicity of petroleum biodegradation metabolites in groundwater at fuel release sites that are quantified as diesel-range "Total Petroleum Hydrocarbons" (TPH; also known as TPHd, diesel-range organics (DRO), etc.), unless a silica gel cleanup (SGC) step is used on the sample extract prior to the TPH analysis. This issue is important for site risk management in regulatory jurisdictions that use TPH as a metric; the presence of these metabolites may preclude site closure even if all other factors can be considered "low-risk." Previous work has shown that up to 100% of the extractable organics in groundwater at petroleum release sites can be biodegradation metabolites. The metabolites can be separated from the hydrocarbons by incorporating an SGC step; however, regulatory agency acceptance of SGC has been inconsistent because of questions about the nature and toxicity of the metabolites. The present study was conducted to answer these specific questions. Groundwater samples collected from source and downgradient wells at fuel release sites were extracted and subjected to targeted gas chromatography-mass spectrometry (GC-MS) and nontargeted two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-MS) analyses, and the metabolites identified in each sample were classified according to molecular structural classes and assigned an oral reference dose (RfD)-based toxicity ranking. Our work demonstrates that the metabolites identified in groundwater at biodegrading fuel release sites are in classes ranked as low toxicity to humans and are not expected to pose significant risk to human health. The identified metabolites naturally attenuate in a predictable manner, with an overall trend to an increasingly higher proportion of organic acids and esters, and a lower human toxicity profile, and a life cycle that is consistent with the low-risk natural attenuation paradigm adopted

  6. Substitution for petroleum products in Brasil: Urgent issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Araujo, J.L.; Ghirardi, A.

    Brazililan energy policy during the last decade has focused on the replacement of imported petroleum with domestic energy sources, combined with efforts at conservation. The substitution results, however, have been more spectacular by far. The strategy of replacement is based on two elements. first, to increase domestic petroleum exploration and production. Second, to promote non-petroleum fuels as alternatives to the industrial and transportation sectors, for the substitution of fuel oil and gasoline, respectively. A combination of the substitution strategy, the country's petroleum refining structure, and the composition of the substitution strategy, the country's petroleum refining structure, and the composition ofmore » demand, has resulted in large surpluses of both gasoline and fuel oil, while diesel has become the most used among petroleum products. The surpluses are not easily exportable because there is ample availability of fuel oil in the world market, and because the low octane number of the gasoline produced in Brasil is not compatible with the engines of cars elsewhere in the region and in the world. Furthermore, although gasoline might be upgraded, the question remains that prospects for the world market are not encouraging, and an export-based strategy does not seem justified in view of the growing surpluses. The objective of this analysis is to review the mechanisms of themajor petroleum-substitution programs currently in existence, identifying their past impact on the energy market and the possible consequences of changes in the goals and operating conditions of these programs, in the light of the new prospects for increased domestic oil production and self-sufficiency. 23 refs., 2 figs., 1 tab.« less

  7. Method of producing a colloidal fuel from coal and a heavy petroleum fraction

    DOEpatents

    Longanbach, James R.

    1983-08-09

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  8. Petroleum Vapor Intrusion

    EPA Pesticide Factsheets

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  9. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... an essential ingredient or principal raw material, such as sales of liquefied-petroleum-gas for the...

  10. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... an essential ingredient or principal raw material, such as sales of liquefied-petroleum-gas for the...

  11. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... an essential ingredient or principal raw material, such as sales of liquefied-petroleum-gas for the...

  12. Petroleum supply monthly, October 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-26

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products inmore » the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.« less

  13. Petroleum supply monthly, January 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products inmore » the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.« less

  14. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Classification of liquefied-petroleum-gas sales. 779.360... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... ultimate consumer of liquefied-petroleum-gas, whether delivered in portable cylinders or in bulk to the...

  15. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2008-10-15

    Liquid transportation fuels derived from coal and natural gas could helpthe United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTLfuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow.

  16. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    EPA Science Inventory

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  17. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    PubMed

    Mutlu, Esra; Nash, David G; King, Charly; Krantz, Todd Q; Preston, William T; Kooter, Ingeborg M; Higuchi, Mark; DeMarini, David; Linak, William P; Gilmour, M Ian

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this end, a program at the U.S. EPA assessed health effects of biodiesel emissions in rodent inhalation models. Commercially obtained soybean biodiesel (B100) and a 20% blend with petroleum diesel (B20) were compared to pure petroleum diesel (B0). Rats and mice were exposed independently for 4 h/day, 5 days/week for up to 6 weeks. Exposures were controlled by dilution air to obtain low (50 µg/m(3)), medium (150 µg/m(3)) and high (500 µg/m(3)) diesel particulate mass (PM) concentrations, and compared to filtered air. This article provides details on facilities, fuels, operating conditions, emission factors and physico-chemical characteristics of the emissions used for inhalation exposures and in vitro studies. Initial engine exhaust PM concentrations for the B100 fuel (19.7 ± 0.7 mg/m(3)) were 30% lower than those of the B0 fuel (28.0 ± 1.5 mg/m(3)). When emissions were diluted with air to control equivalent PM mass concentrations, B0 exposures had higher CO and slightly lower NO concentrations than B100. Organic/elemental carbon ratios and oxygenated methyl esters and organic acids were higher for the B100 than B0. Both the B0 and B100 fuels produced unimodal-accumulation mode particle-size distributions, with B0 producing lower concentrations of slightly larger particles. Subsequent papers in this series will describe the effects of these atmospheres on cardiopulmonary responses and in vitro genotoxicity studies.

  18. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration....720—Test Fuel Specifications for Liquefied Petroleum Gas Property Value Reference procedure 1 Propane... methods yield different results, use the results from ASTM D1267. 3 The test fuel must not yield a...

  19. 40 CFR 86.1513 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  20. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as if these were nonroad diesel engines. (e) You may request an exemption under this section by... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of..., LARGE NONROAD SPARK-IGNITION ENGINES Compliance Provisions § 1048.620 What are the provisions for...

  1. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as if these were nonroad diesel engines. (e) You may request an exemption under this section by... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of..., LARGE NONROAD SPARK-IGNITION ENGINES Compliance Provisions § 1048.620 What are the provisions for...

  2. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as if these were nonroad diesel engines. (e) You may request an exemption under this section by... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of..., LARGE NONROAD SPARK-IGNITION ENGINES Compliance Provisions § 1048.620 What are the provisions for...

  3. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration....720—Test Fuel Specifications for Liquefied Petroleum Gas Item Value Reference procedure 1 Propane... test fuel must not yield a persistent oil ring when you add 0.3 ml of solvent residue mixture to a...

  4. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration....720—Test Fuel Specifications for Liquefied Petroleum Gas Item Value Reference procedure 1 Propane... test fuel must not yield a persistent oil ring when you add 0.3 ml of solvent residue mixture to a...

  5. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration....720—Test Fuel Specifications for Liquefied Petroleum Gas Item Value Reference procedure 1 Propane... test fuel must not yield a persistent oil ring when you add 0.3 ml of solvent residue mixture to a...

  6. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    EPA Science Inventory

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  7. Alternative Fuels Data Center

    Science.gov Websites

    Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of

  8. Petroleum - politics and power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brossard, E.B.

    1983-01-01

    Governments all over the world are politically maneuvering themselves into positions where they can use this precious resource as a tool to gain power. Notes the author, ''Even the largest oil company can be powerless against the smallest government.'' This thesis is the foundation of Brossard's investigation of the international oil industry and the power and politics that are involved in the struggle for dominance. Contents: The petroleum age; The Russian nobles and the Soviet Union; The Majors - big oil; The complex operations of the oil industry; U.S. government controls; Natural gas - the most efficient fuel; The Organizationmore » of Petroleum Exporting Countries; OPEC and the international market; Canadian petroleum; Alaska - the hope of the Lower 48.« less

  9. Low NO/x/ heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1980-01-01

    The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  10. Low NO(x) heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1979-01-01

    The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  11. Monthly Petroleum Product Price Report, October 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Data are reported on the prices of petroleum products for the period January 1980 through October 1981. The following products are included in the survey: gasoline, diesel fuels, residual fuels, aviation fuels, kerosene, liquefied petroleum gases heating oils, and No. 5 and No. 6 fuel oils. This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. Inmore » addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 States and the District of Columbia.« less

  12. Petroleum marketing monthly with data for May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures themore » accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.« less

  13. Biofuels: An Alternative to U.S. Air Force Petroleum Fuel Dependency

    DTIC Science & Technology

    2007-12-01

    Ethanol Production 1999-2012 11 Figure 6. Reducing the Cost of Cellulosic Ethanol Production 12 Figure 7. Biodiesel Production Process ...14 Figure 8. Biodiesel Production Capacity, 1999 to 2005 15 Figure 9. Jet Fuel From Algae Process 17...the goal of this biofuels program is to develop an affordable biodiesel alternative production process that will achieve a 60 percent greater energy

  14. Petroleum supply monthly, with data for September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products inmore » the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.« less

  15. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  16. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  17. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  18. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  19. 10 CFR 490.804 - Eligible reductions in petroleum consumption.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...

  20. FROM FIELD TO FUEL TANK: EXPLORING THE IMPLEMENTATION OF BIODIESEL AS A SUSTAINABLE ALTERNATIVE TO PETROLEUM DIESEL IN OREGON'S WILLAMETTE VALLEY

    EPA Science Inventory

    The technical challenge is to demonstrate the feasibility of the production and use of a renewable bio-based diesel fuel as an alternative to petroleum-based diesel. The innovative objectives of the project are to:

    • Demonstrate the engineering and economic feasib...

  1. Petroleum marketing annual 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    The Petroleum Marketing Annual (PMA) contains statistical data on a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the free-on-board (f.o.b.) and landed cost of imported crude oil, and the refiners acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented. For this publication, all estimates have been recalculated since their earlier publication in the Petroleummore » Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication dates.« less

  2. Alternative Fuels Data Center

    Science.gov Websites

    procedures to promote the cost-effective use of non-petroleum fuel vehicles and other fleet efficiency improvements. The policies must strive for the use of non-petroleum based fuels at least 90% of the time when

  3. Energy and public health: the challenge of peak petroleum.

    PubMed

    Frumkin, Howard; Hess, Jeremy; Vindigni, Stephen

    2009-01-01

    Petroleum is a unique and essential energy source, used as the principal fuel for transportation, in producing many chemicals, and for numerous other purposes. Global petroleum production is expected to reach a maximum in the near future and to decline thereafter, a phenomenon known as "peak petroleum." This article reviews petroleum geology and uses, describes the phenomenon of peak petroleum, and reviews the scientific literature on the timing of this transition. It then discusses how peak petroleum may affect public health and health care, by reference to four areas: medical supplies and equipment, transportation, energy generation, and food production. Finally, it suggests strategies for anticipating and preparing for peak petroleum, both general public health preparedness strategies and actions specific to the four expected health system impacts.

  4. Soybean-derived biofuels and home heating fuels.

    PubMed

    Mushrush, George W; Wynne, James H; Willauer, Heather D; Lloyd, Christopher L

    2006-01-01

    It is environmentally enticing to consider replacing or blending petroleum derived heating fuels with biofuels for many reasons. Major considerations include the soaring worldwide price of petroleum products, especially home heating oil, the toxicity of the petroleum-derived fuels and the environmental damage that leaking petroleum tanks afford. For these reasons, it has been suggested that domestic renewable energy sources be considered as replacements, or at the least, as blending stocks for home heating fuels. If recycled soy restaurant cooking oils could be employed for this purpose, this would represent an environmental advantage. Renewable plant sources of energy tend to be less toxic than their petroleum counterparts. This is an important consideration when tank leakage occurs. Home fuel oil storage tanks practically always contain some bottom water. This water environment has a pH value that factors into heating fuel stability. Therefore, the question is: would the biofuel help or exacerbate fuel stability and furnace maintenance issues?

  5. Benefits of VTOL aircraft in offshore petroleum logistics support

    NASA Technical Reports Server (NTRS)

    Wilcox, D. E.; Shovlin, M. D.

    1975-01-01

    The mission suitability and potential economic benefits of advanced VTOL aircraft were investigated for logistics support of petroleum operations in the North Sea and the Gulf of Mexico. Concepts such as the tilt rotor and lift/cruise fan are promising for future operations beyond 150 miles offshore, where their high cruise efficiency provides savings in trip time, fuel consumption, and capital investment. Depending upon mission requirements, the aircraft operating costs are reduced by as much as 20 percent to 50 percent from those of current helicopters.

  6. Fuel Chemistry Research | Transportation Research | NREL

    Science.gov Websites

    composition Comparing behavior, performance, and emissions impacts of different alternative fuels and fuel for petroleum displacement have a different chemical composition than traditional petroleum-based

  7. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as a...

  8. 40 CFR 86.113-94 - Fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.113-94 Fuel specifications. (a) [Reserved] (b) Petroleum diesel test fuel. (1) The petroleum fuels employed for testing diesel vehicles shall be clean and bright... test fuel is commercially available. (ii) Information acceptable to the Administrator is provided to...

  9. Job Creation and Petroleum Independence with E85 in Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walk, Steve

    Protec Fuel Management project objectives are to help design, build, provide, promote and supply biofuels for the greater energy independence, national security and domestic economic growth through job creations, infrastructure projects and supply chain business stimulants. Protec Fuel has teamed up with station owners to convert 5 existing retail fueling stations to include E85 fuel to service existing large number of fleet FFVs and general public FFVs. The stations are located in high flex fuel vehicle locations in the state of TX. Under the project name, “Job Creation and Petroleum Independence with E85 in Texas,” Protec Fuel identified and successfullymore » opened stations strategically located to maximize e85 fueling success for fleets and public. Protec Fuel and industry affiliates and FFV manufacturers are excited about these stations and the opportunities as they will help reduce emissions, increase jobs, economic stimulus benefits, energy independence and petroleum displacement.« less

  10. Monthly petroleum product price report. [January 1981-March 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riner, C.

    1982-03-01

    Data are reported on the prices of petroleum products for the period January 1981 through March 1982. The following products are included in the survey: gasoline, diesel fuels, No. 1 and No. 2 heating oils, No. 5 and No. 6 fuel oils, aviation fuels, residual fuels, kerosene and liquefied petroleum gases. Prices are also indexed according to ultimate consumer. This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary formore » the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this pubication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. The geographic coverage for this report is the 50 states and the District of Columbia. (DMC)« less

  11. Monthly petroleum product price report. [January 1981-May 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-01

    Data are reported on the prices of petroleum products for the period January 1981 through May 1982. The following products are included in the survey: gasoline, diesel fuels, No. 1 and No. 2 heating oils, No. 5 and No. 6 fuel oils, aviation fuels, residual fuels, kerosene, and liquefied petroleum gases. Prices are also indexed according to ultimate consumer. This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary formore » the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. The geographic coverage for this report is the 50 states and the District of Columbia. (DMC)« less

  12. Alternative Fuels (Briefing Charts)

    DTIC Science & Technology

    2009-06-19

    Fuels Focus  Various conversion processes  Upgraded to meet fuel specs Diverse energy sources Petroleum Crude Oil Petroleum based Single Fuel in the...feedstock for HRJ, plant cost for F-T) Courtesy AFRL, Dr. Tim Edwards Unclassified • Agricultural crop oils (canola, jatropha, soy, palm, etc...Products (Volume Anticipated / Required) World crude oil production reaches its peak Concerns about Global Warming dictates addressing worldwide carbon

  13. Future fuels and engines for railroad locomotives. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.; Stallkamp, J. A.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

  14. Petroleum marketing monthly, February 1999 with data for November 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-02-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Monthly statistics on purchases of crude oil and sales of petroleum products aremore » presented in the Petroleum Marketing Monthly in six sections: Initial Estimates; Summary Statistics; Crude Oil Prices; Prices of Petroleum Products; Volumes of Petroleum Products; and Prime Supplier Sales Volumes of Petroleum Products for Local Consumption. 7 figs., 50 tabs.« less

  15. Petroleum marketing monthly, March 1999 with data for December 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Monthly statistics on purchases of crude oil and sales of petroleum products aremore » presented in the Petroleum Marketing Monthly in five sections: summary statistics; crude oil prices; prices of petroleum products; volumes of petroleum products; and prime supplier sales volumes of petroleum products for local consumption. 7 figs., 50 tabs.« less

  16. Petroleum marketing monthly, April 1997 with data for January 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. 7 figs., 50 tabs.

  17. Petroleum marketing monthly, January 1998 with data for October 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. 7 figs., 50 tabs.

  18. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli

    PubMed Central

    Howard, Thomas P.; Middelhaufe, Sabine; Moore, Karen; Edner, Christoph; Kolak, Dagmara M.; Taylor, George N.; Parker, David A.; Lee, Rob; Smirnoff, Nicholas; Aves, Stephen J.; Love, John

    2013-01-01

    Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules. PMID:23610415

  19. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.

    2011-09-01

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks themore » projects according to cost, petroleum reduction, time frame, and popularity.« less

  20. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    EIA Publications

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  1. Trends of jet fuel demand and properties

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1984-01-01

    Petroleum industry forecasts predict an increasing demand for jet fuels, a decrease in the gasoline-to-distillate (heavier fuel) demand ratio, and a greater influx of poorer quality petroleum in the next two to three decades. These projections are important for refinery product analyses. The forecasts have not been accurate, however, in predicting the recent, short term fluctuations in jet fuel and competing product demand. Changes in petroleum quality can be assessed, in part, by a review of jet fuel property inspections. Surveys covering the last 10 years show that average jet fuel freezing points, aromatic contents, and smoke points have trends toward their specification limits.

  2. Future fuels and engines for railroad locomotives. Volume 2: Technical document

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was studied. The study takes two approaches: to determine the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives continue to be used.

  3. Short-Term Energy Outlook Model Documentation: Petroleum Product Prices Module

    EIA Publications

    2015-01-01

    The petroleum products price module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. average wholesale and retail price forecasts for motor gasoline, diesel fuel, heating oil, and jet fuel.

  4. Alternative Fuels Data Center

    Science.gov Websites

    must reduce petroleum-based fuel consumption on a per vehicle basis and across the fleet. For non reduction in petroleum-based fuel consumption by 15% (or 7.5% for exempt vehicles) by FY 2020. The Colorado Department of Personnel and Administration may consider certain vehicles to be exempt based on agency

  5. Freight Transportation Petroleum Conservation - Viability Evaluation

    DOT National Transportation Integrated Search

    1979-03-01

    This report develops a comprehensive perspective of current and near-term future energy demand in U.S. freight transportation. Synthesis of studies of many agencies indicate that the annual petroleum fuel demand for freight transportation in 1985 wil...

  6. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that thismore » synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.« less

  7. Zeolites Remove Sulfur From Fuels

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  8. Fuel quality processing study, volume 1

    NASA Astrophysics Data System (ADS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-04-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  9. Fuel quality processing study, volume 1

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  10. Evaluation of 90-day inhalation toxicity of petroleum and oil-shale diesel fuel marine (DFM). Final technical report, November 1977-January 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaworski, C.L.; MacEwen, J.D.; Vernot, E.H.

    1985-12-01

    Subchronic 90-day inhalation toxicity studies were conducted to compare the toxicity of petroleum and oil-shale-derived diesel fuel marine (DFM). Beagle dogs, Fischer 344 rats, and C57BL/6 mice were continuously exposed to DFM at concentrations of 50 mg/cu. m and 300 mg/cu. m. Unexposed controls were also maintained. All dogs and a portion of each rodent group were sacrificed and examined at exposure termination. The remaining rodents were held for observation up to 21 months postexposure. Male rats exposed to DFM for 90 days developed nephrotoxic changes characterized by hyaline degeneration, necrosis, and intratubular cysts. Subsequently, male rats exposed to 300more » mg/cu. m DFM developed mineralization and papillary hyperplasia. These postexposure renal changes were generally less severe in male rats exposed to 50 mg/cu. m Shale DFM and were absent in male rats exposed to 50 mg/cu. m Petroleum DFM. Female rats as well as dogs and mice exposed to DFM were free of significant renal damage. Mild reductions in body-weight gains and erythrocyte parameters were also noted in male rats exposed to DFM. Neither material produced significant tumor formation in any species tested. The results of this study are consistent with the effects noted in other hydrocarbon-fuel toxicity studies. Comparison of the effects observed in these studies with petroleum or shale suggest only minor differences between the two materials.« less

  11. Cooking Fuels in Lagos, Nigeria: Factors Associated with Household Choice of Kerosene or Liquefied Petroleum Gas (LPG)

    PubMed Central

    Okwor, Tochi J.; Adetona, Olorunfemi; Akinkugbe, Ayesha O.; Amadi, Casmir E.; Esezobor, Christopher; Adeyeye, Olufunke O.; Ojo, Oluwafemi; Nwude, Vivian N.; Mortimer, Kevin

    2018-01-01

    Cooking with dirty-burning fuels is associated with health risk from household air pollution. We assessed the prevalence of and factors associated with the use of cooking fuels, and attitudes and barriers towards use of liquefied petroleum gas (LPG). This was a cross-sectional, population-based survey conducted in 519 households in Lagos, Nigeria. We used a structured questionnaire to obtain information regarding choice of household cooking fuel and the attitudes towards the use of LPG. Kerosene was the most frequently used cooking fuel (n = 475, 91.5%; primary use n = 364, 70.1%) followed by charcoal (n = 159, 30.6%; primary use n = 88, 17%) and LPG (n = 86, 16.6%; primary use n = 63, 12.1%). Higher level of education, higher income and younger age were associated with LPG vs. kerosene use. Fuel expenditure on LPG was significantly lower than for kerosene (N (Naira) 2169.0 ± 1507.0 vs. N2581.6 ± 1407.5). Over 90% of non-LPG users were willing to switch to LPG but cited safety issues and high cost as potential barriers to switching. Our findings suggest that misinformation and beliefs regarding benefits, safety and cost of LPG are important barriers to LPG use. An educational intervention program could be a cost-effective approach to improve LPG adoption and should be formally addressed through a well-designed community-based intervention study. PMID:29614713

  12. Cooking Fuels in Lagos, Nigeria: Factors Associated with Household Choice of Kerosene or Liquefied Petroleum Gas (LPG).

    PubMed

    Ozoh, Obianuju B; Okwor, Tochi J; Adetona, Olorunfemi; Akinkugbe, Ayesha O; Amadi, Casmir E; Esezobor, Christopher; Adeyeye, Olufunke O; Ojo, Oluwafemi; Nwude, Vivian N; Mortimer, Kevin

    2018-03-31

    Cooking with dirty-burning fuels is associated with health risk from household air pollution. We assessed the prevalence of and factors associated with the use of cooking fuels, and attitudes and barriers towards use of liquefied petroleum gas (LPG). This was a cross-sectional, population-based survey conducted in 519 households in Lagos, Nigeria. We used a structured questionnaire to obtain information regarding choice of household cooking fuel and the attitudes towards the use of LPG. Kerosene was the most frequently used cooking fuel ( n = 475, 91.5%; primary use n = 364, 70.1%) followed by charcoal ( n = 159, 30.6%; primary use n = 88, 17%) and LPG ( n = 86, 16.6%; primary use n = 63, 12.1%). Higher level of education, higher income and younger age were associated with LPG vs. kerosene use. Fuel expenditure on LPG was significantly lower than for kerosene ( N (Naira) 2169.0 ± 1507.0 vs. N 2581.6 ± 1407.5). Over 90% of non-LPG users were willing to switch to LPG but cited safety issues and high cost as potential barriers to switching. Our findings suggest that misinformation and beliefs regarding benefits, safety and cost of LPG are important barriers to LPG use. An educational intervention program could be a cost-effective approach to improve LPG adoption and should be formally addressed through a well-designed community-based intervention study.

  13. Monthly petroleum product price report, November 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-03-03

    This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products (motor gasoline, diesel fuels, residual fuel oils, aviation fuels, kerosene, petrochemical feedstocks, heating oils, and liquefied petroleum gases). The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in thismore » publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia.« less

  14. Monthly petroleum product price report, December 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-03-30

    This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products (motor gasoline, diesel fuels, residual fuel oils, aviation fuels, kerosene, petrochemical feedstocks, heating oils, and liquefied petroleum gases). The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in thismore » publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia.« less

  15. 10 CFR 490.808 - Use of credits to offset petroleum reduction shortfall.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Use of credits to offset petroleum reduction shortfall. 490.808 Section 490.808 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.808 Use of credits to offset petroleum reduction shortfall...

  16. 10 CFR 490.808 - Use of credits to offset petroleum reduction shortfall.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Use of credits to offset petroleum reduction shortfall. 490.808 Section 490.808 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.808 Use of credits to offset petroleum reduction shortfall...

  17. 10 CFR 490.808 - Use of credits to offset petroleum reduction shortfall.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Use of credits to offset petroleum reduction shortfall. 490.808 Section 490.808 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.808 Use of credits to offset petroleum reduction shortfall...

  18. 10 CFR 490.808 - Use of credits to offset petroleum reduction shortfall.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Use of credits to offset petroleum reduction shortfall. 490.808 Section 490.808 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.808 Use of credits to offset petroleum reduction shortfall...

  19. 10 CFR 490.808 - Use of credits to offset petroleum reduction shortfall.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Use of credits to offset petroleum reduction shortfall. 490.808 Section 490.808 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.808 Use of credits to offset petroleum reduction shortfall...

  20. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Erik

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  1. Alternative Fuels Data Center: Idle Reduction

    Science.gov Websites

    Cities Annual Petroleum Savings Clean Cities Annual Petroleum Savings Incentive and Law Additions by Fuel /Technology Type Incentive and Law Additions by Fuel/Technology Type Incentive Additions by Policy Type Incentive Additions by Policy Type More Idle Reduction Data | All Maps & Data Case Studies Massachusetts

  2. Monthly petroleum-product price report. [January 1981 through June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Data are reported on the prices of petroleum products for the period January 1981 through June 1982. The following products are included in the survey: gasoline, diesel fuels, No. 1 and No. 2 heating oils, No. 5 and No. 6 fuel oils, aviation fuels, kerosene, and liquified petroleum gases. Prices are also indexed according to ultimate consumer. This report provides Congress and the pubilc with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Departmentmore » of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. The geographic coverage for this report is the 50 states and the District of Columbia. (DMC)« less

  3. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Mai, T.; Newes, E.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  4. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Mai, T.; Newes, E.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  5. Survey evidence on the importance of fuel availability to choice of alternative fuels and vehicles

    DOT National Transportation Integrated Search

    1997-11-11

    The effect of limited fuel availability on the demand for alternative fuels and : vehicles is a critical factor in the transition to alternative fuels. Because : petroleum fuels have been so dominant for so long, the relationship between fuel : avail...

  6. Characteristics and combustion of future hydrocarbon fuels. [aircraft fuels

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    As the world supply of petroleum crude oil is being depleted, the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulphur, nitrogen, and trace constituents. The result of this trend is described and the change in important crude oil characteristics, as related to aircraft fuels, is discussed. As available petroleum is further depleted, the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil, increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition flame radiation, and emissions.

  7. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  8. Petroleum Market Model of the National Energy Modeling System. Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcoholsmore » and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.« less

  9. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-03-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  10. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-05-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  11. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.

    PubMed

    Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D

    2014-01-13

    Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations.

  12. Aviation Fueling: A Cleaner, Greener Approach

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.; Shouse, Dale T.

    2010-01-01

    Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels sourced from halophytes, algae, cyanobacteria, and weeds using wastelands, waste water, and seawater have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solves the aviation CO2 emissions issue and do not compete with food or freshwater needs. They are not detrimental to the social or environmental fabric and use the existing fuels infrastructure. Cost and sustainable supply remains the major impediments to alternate fuels. Halophytes are the near-term solution to biomass/biofuels capacity at reasonable costs; they simply involve more farming, at usual farming costs. Biofuels represent a win-win approach, proffering as they do at least the ones we are studying massive capacity, climate neutral-to-some sequestration, and ultimately, reasonable costs.

  13. Alternative Fuels Data Center: Petroleum Reduction Planning Tool

    Science.gov Websites

    alternative fuel. Values found in Table 1. Fuel Cost Fuel_cost_current Fuel_cost_alt_new Fuel_cost_alt Fuel cost for old vehicle. Fuel cost for new vehicle using conventional vehicle Fuel cost for new vehicle *(Alt_GGE_factor_conv/Alt_GGE_factor)*Alt_GGE_factor*GHG_alt)] Yearly fuel cost savings resulting from fuel and vehicle

  14. Fuel oil and kerosene sales, 1994 (for microcomputers). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    Annual petroleum marketing data are available on this diskette which contains statistics from the Fuel Oil and Kerosene Sales 1994 report. Included are annual sales data on petroleum volumes of kerosene, distillate fuel oil, and residual fuel oil by state. Annual historic data at the national level are provided in summary tables.

  15. Fuel-conservative engine technology

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.; Mcaulay, J. E.; Reynolds, T. W.; Strack, W. C.

    1975-01-01

    Aircraft fuel consumption is discussed in terms of its efficient use, and the conversion of energy from sources other than petroleum. Topics discussed include: fuel from coal and oil shale, hydrogen deficiency of alternate sources, alternate fuels evaluation program, and future engines.

  16. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    PubMed

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Prohibitions against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary...

  18. 31 CFR 576.308 - Iraqi petroleum and petroleum products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Iraqi petroleum and petroleum products... SANCTIONS REGULATIONS General Definitions § 576.308 Iraqi petroleum and petroleum products. The term Iraqi petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in Iraq...

  19. Environmental hazard and risk characterisation of petroleum substances: a guided "walking tour" of petroleum hydrocarbons.

    PubMed

    Bierkens, Johan; Geerts, Lieve

    2014-05-01

    Petroleum substances are used in large quantities, primarily as fuels. They are complex mixtures whose major constituents are hydrocarbons derived from crude oil by distillation and fractionation. Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the huge number of molecular components. This complex nature of petroleum products, with their varied number of constituents, all of them exhibiting different fate and effect characteristics, merits a dedicated hazard and risk assessment approach. From a regulatory perspective they pose a great challenge in a number of REACH processes, in particular in the context of dossier and substance evaluation but also for priority setting activities. In order to facilitate the performance of hazard and risk assessment for petroleum substances the European oil company association, CONCAWE, has developed the PETROTOX and PETRORISK spreadsheet models. Since the exact composition of many petroleum products is not known, an underlying assumption of the PETROTOX and PETRORISK tools is that the behaviour and fate of a total petroleum substance can be simulated based on the physical-chemical properties of representative structures mapped to hydrocarbon blocks (HBs) and on the relative share of each HB in the total mass of the product. To assess how differing chemical compositions affect the simulated chemical fate and toxicity of hydrocarbon mixtures, a series of model simulations were run using an artificial petroleum substance, containing 386 (PETROTOX) or 160 (PETRORISK) HBs belonging to different chemical classes and molecular weight ranges, but with equal mass assigned to each of them. To this artificial petroleum substance a guided series of subsequent modifications in mass allocation to a delineated number of HBs belonging to different chemical classes and carbon ranges was performed, in what we perceived as a guided "walking tour

  20. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    1991-12-01

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import moremore » petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.« less

  1. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billionmore » gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide

  2. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate...

  3. The United Nations Framework Classification for World Petroleum Resources

    USGS Publications Warehouse

    Ahlbrandt, T.S.; Blystad, P.; Young, E.D.; Slavov, S.; Heiberg, S.

    2003-01-01

    The United Nations has developed an international framework classification for solid fuels and minerals (UNFC). This is now being extended to petroleum by building on the joint classification of the Society of Petroleum Engineers (SPE), the World Petroleum Congresses (WPC) and the American Association of Petroleum Geologists (AAPG). The UNFC is a 3-dimansional classification. This: Is necessary in order to migrate accounts of resource quantities that are developed on one or two of the axes to the common basis; Provides for more precise reporting and analysis. This is particularly useful in analyses of contingent resources. The characteristics of the SPE/WPC/AAPG classification has been preserved and enhanced to facilitate improved international and national petroleum resource management, corporate business process management and financial reporting. A UN intergovernmental committee responsible for extending the UNFC to extractive energy resources (coal, petroleum and uranium) will meet in Geneva on October 30th and 31st to review experiences gained and comments received during 2003. A recommended classification will then be delivered for consideration to the United Nations through the Committee on Sustainable Energy of the Economic Commission for Europe (UN ECE).

  4. Fuel oil and kerosene sales 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12more » (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).« less

  5. Fuel oil and kerosene sales 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12more » (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).« less

  6. 77 FR 462 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... included in Table 1 for renewable diesel. Energy grasses: Based on our comparison of switchgrass and the..., representing at most a 6% change in the energy grass lifecycle impacts in comparison to the petroleum fuel... conversion of previously unfarmed land in other countries into cropland for energy grass-based renewable fuel...

  7. Computer model for refinery operations with emphasis on jet fuel production. Volume 1: Program description

    NASA Technical Reports Server (NTRS)

    Dunbar, D. N.; Tunnah, B. G.

    1978-01-01

    A FORTRAN computer program is described for predicting the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case.

  8. Transportation Fuels Markets, PADD 5

    EIA Publications

    2015-01-01

    This study examines supply, demand, and distribution of transportation fuels in Petroleum Administration for Defense District (PADD) 5, a region that includes the western states of California, Arizona, Nevada, Oregon, Washington, Alaska, and Hawaii. For this study, transportation fuels include gasoline, diesel fuel, and jet fuel.

  9. Non-targeted analysis of petroleum metabolites in groundwater using GC×GC-TOFMS.

    PubMed

    Mohler, Rachel E; O'Reilly, Kirk T; Zemo, Dawn A; Tiwary, Asheesh K; Magaw, Renae I; Synowiec, Karen A

    2013-09-17

    Groundwater at fuel release sites often contains nonpolar hydrocarbons that originate from both the fuel release and other environmental sources, as well as polar metabolites of petroleum biodegradation. These compounds, along with other polar artifacts, can be quantified as "total petroleum hydrocarbons" using USEPA Methods 3510/8015B, unless a silica gel cleanup step is used to separate nonpolar hydrocarbons from polar compounds prior to analysis. Only a limited number of these metabolites have been identified by traditional GC-MS methods, because they are difficult to resolve using single-column configurations. Additionally, the targeted use of derivatization limits the detection of many potential metabolites of interest. The objective of this research was to develop a nontargeted GC×GC-TOFMS approach to characterize petroleum metabolites in environmental samples gathered from fuel release sites. The method tentatively identified more than 760 unique polar compounds, including acids/esters, alcohols, phenols, ketones, and aldehydes, from 22 groundwater samples collected at five sites. Standards for 28 polar compounds indicate that effective limits of quantitation for most of these compounds in the groundwater samples range from 1 to 11 μg/L.

  10. Further studies of fuels from alternate sources - fire extinguishment experiments with JP-5 jet turbine fuel derived from shale. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazlett, R.N.; Affens, W.A.; McLaren, G.W.

    1978-05-01

    Fire extinguishment experiments with JP-5 jet fuels derived from shale crude oil and also from petroleum (for comparison) were conducted at NRL's Chesapeake Bay facility. The experiments were conducted in a 40-foot diameter circular pool using Aqueous Film Forming Foam (AFFF) as the fire extinguishing agent. The results with both types of fuel were similar, and it was concluded that the techniques and agents for AFFF application, which have been developed for petroleum fuel fires, can also be used for shale derived jet fuel.

  11. Effect of nitrogenous bases on the thermal stability of jet fuels

    NASA Technical Reports Server (NTRS)

    Englin, B. A.; Alekseyeva, M. P.; Gasanova, Z. I.; Isaev, A. V.; Skovorodin, G. B.; Borisova, S. M.

    1977-01-01

    Fuels from naphthenic petroleums were evaluated, and it was found that they had more N bases than those paraffinic ones (0.00024 and 0.000009% N, respectively). The removal of the N bases improved significantly the thermal stability and reduced the residue formation during oxidation of the fuel. The improvement depended on both content and composition of the bases. Thus, fuels with similar content of N bases (0.00058% N) and thermal stability had oxidation residues of 17.5 and 5.6 and sol. gum of 13 and 1.5 mg/100 ml, before and after removing the N bases, respectively.

  12. 48 CFR 908.7109 - Fuels and packaged petroleum products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... petroleum products. 908.7109 Section 908.7109 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908... with 951, to acquire such products from Defense sources, they shall do so in accordance with FPMR 41...

  13. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    equipment when supplying jet fuel not practicable or cost effective Unclassified 5 erna ve ue s ocus Petroleum Crude Oil (declining discovery / production...on Jet A/A-1 Approved fuels, DXXXX Unclassified 6 JP-8/5 (Commercial Jet Fuel, ASTM Spec) DARPA Alternative Jet Fuels • Agricultural crop oils ...canola, jatropha, soy, palm , etc.) Alternative fuels – University of North Dakota EERC – UOP – General Electric (GE) t i o n C o s t t i o n C o s t

  14. Risk-Based Evaluation of Total Petroleum Hydrocarbons in Vapor Intrusion Studies

    PubMed Central

    Brewer, Roger; Nagashima, Josh; Kelley, Michael; Heskett, Marvin; Rigby, Mark

    2013-01-01

    This paper presents a quantitative method for the risk-based evaluation of Total Petroleum Hydrocarbons (TPH) in vapor intrusion investigations. Vapors from petroleum fuels are characterized by a complex mixture of aliphatic and, to a lesser extent, aromatic compounds. These compounds can be measured and described in terms of TPH carbon ranges. Toxicity factors published by USEPA and other parties allow development of risk-based, air and soil vapor screening levels for each carbon range in the same manner as done for individual compounds such as benzene. The relative, carbon range makeup of petroleum vapors can be used to develop weighted, site-specific or generic screening levels for TPH. At some critical ratio of TPH to a targeted, individual compound, the overwhelming proportion of TPH will drive vapor intrusion risk over the individual compound. This is particularly true for vapors associated with diesel and other middle distillate fuels, but can also be the case for low-benzene gasolines or even for high-benzene gasolines if an adequately conservative, target risk is not applied to individually targeted chemicals. This necessitates a re-evaluation of the reliance on benzene and other individual compounds as a stand-alone tool to evaluate vapor intrusion risk associated with petroleum. PMID:23765191

  15. Energy Security Role of Biofuels in Evolving Liquid Fuel Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Maxwell; Uria-Martinez, Rocio; Leiby, Paul N.

    We explore the role of biofuels in mitigating the negative impacts of oil supply shocks on fuel markets under a range of oil price trajectories and biofuel blending mandate levels. Using a partial equilibrium model of US biofuels production and petroleum fuels trade, we discuss the adjustments in light-duty vehicle fuel mix, fuel prices, and renewable identification number (RIN) prices following each shock as well as the distribution of shock costs across market participants. Ethanol is used as both a complement (blend component in E10) and a substitute (in E15 and E85 blends) to gasoline. Results show that, during oilmore » supply shocks, the role of ethanol as a substitute dominates and allows some mitigation of the shock. As US petroleum imports decrease with growing US oil production, the net economic welfare effect of sudden oil price changes and the energy security role of biofuels becomes less clear than it has been in the past. Although fuel consumers lose when oil price increases due to an external shock, domestic fuel producers gain. In some cases, depending on import share and supply and demand elasticities, we show that the gain to producers could more than offset consumer losses. However, in most cases evaluated here, sudden oil-price increases remain costly.« less

  16. Energy Policy Act of 1992 : limited progress in acquiring alternative fuel vehicles and reaching fuel goals

    DOT National Transportation Integrated Search

    2000-02-01

    Since the passage of the Energy Policy Act of 1992, some, albeit limited, progress has been made in acquiring alternative fuel vehicles and reducing the consumption of petroleum fuels in transportation. DOE estimates about 1 million alternative fuel ...

  17. Petroleum Market Model of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-01

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcoholsmore » and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.« less

  18. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Treesearch

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  19. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    PubMed

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which

  20. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    PubMed

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  1. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    PubMed Central

    De Almeida, Darne G.; Soares Da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries. PMID:27843439

  2. EIA model documentation: Petroleum market model of the national energy modeling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-28

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supplymore » for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.« less

  3. Checklist for transition to new highway fuel(s).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risch, C.; Santini, D.J.

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s)more » of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.« less

  4. Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation

    NASA Technical Reports Server (NTRS)

    Dunbar, D. N.; Tunnah, B. G.

    1978-01-01

    The FORTRAN computing program predicts flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuels of varying end point and hydrogen content specifications. The program has a provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case.

  5. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.

    PubMed

    Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D

    2010-02-01

    Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an

  6. Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels

    NASA Astrophysics Data System (ADS)

    Klyus, Oleg; Bezyukov, O.

    2017-06-01

    The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.

  7. 40 CFR 86.1213-08 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1213-08 Fuel specifications. The test fuels listed in 40 CFR part... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fuel specifications. 86.1213-08...

  8. 40 CFR 86.1213-08 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1213-08 Fuel specifications. The test fuels listed in 40 CFR part... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fuel specifications. 86.1213-08...

  9. 40 CFR 86.1213-08 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1213-08 Fuel specifications. The test fuels listed in 40 CFR part... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fuel specifications. 86.1213-08...

  10. 40 CFR 86.1213-08 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1213-08 Fuel specifications. The test fuels listed in 40 CFR part... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fuel specifications. 86.1213-08...

  11. Determination of aromatics and olefins in wide-boiling petroleum fractions

    NASA Technical Reports Server (NTRS)

    Spakowski, A E; Evans, A; Hibbard, R R

    1950-01-01

    A chromatographic method is described herein for the analysis of aromatics and olefins in wide boiling petroleum fractions. The fuel is split into four fractions: nonaromatic, intermediate, pure aromatic, and wash. The analysis, which need be run only on the intermediate cut to determine aromatics in the fuel, is based on specific dispersion. With analysis times of less than 8 hours, accuracies of 1 percent were attained.

  12. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it maymore » adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.« less

  13. Thermal acidization and recovery process for recovering viscous petroleum

    DOEpatents

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  14. Alternative Fuels Data Center: Tools

    Science.gov Websites

    Calculator Compare cost of ownership and emissions for most vehicle models. mobile Petroleum Reduction ROI and payback period for natural gas vehicles and infrastructure. AFLEET Tool Calculate a fleet's , hydrogen, or fuel cell infrastructure. GREET Fleet Footprint Calculator Calculate your fleet's petroleum

  15. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  16. Unsupervised classification of petroleum Certified Reference Materials and other fuels by chemometric analysis of gas chromatography-mass spectrometry data

    PubMed Central

    de Carvalho Rocha, Werickson Fortunato; Schantz, Michele M.; Sheen, David A.; Chu, Pamela M.; Lippa, Katrice A.

    2017-01-01

    As feedstocks transition from conventional oil to unconventional petroleum sources and biomass, it will be necessary to determine whether a particular fuel or fuel blend is suitable for use in engines. Certifying a fuel as safe for use is time-consuming and expensive and must be performed for each new fuel. In principle, suitability of a fuel should be completely determined by its chemical composition. This composition can be probed through use of detailed analytical techniques such as gas chromatography-mass spectroscopy (GC-MS). In traditional analysis, chromatograms would be used to determine the details of the composition. In the approach taken in this paper, the chromatogram is assumed to be entirely representative of the composition of a fuel, and is used directly as the input to an algorithm in order to develop a model that is predictive of a fuel's suitability. When a new fuel is proposed for service, its suitability for any application could then be ascertained by using this model to compare its chromatogram with those of the fuels already known to be suitable for that application. In this paper, we lay the mathematical and informatics groundwork for a predictive model of hydrocarbon properties. The objective of this work was to develop a reliable model for unsupervised classification of the hydrocarbons as a prelude to developing a predictive model of their engine-relevant physical and chemical properties. A set of hydrocarbons including biodiesel fuels, gasoline, highway and marine diesel fuels, and crude oils was collected and GC-MS profiles obtained. These profiles were then analyzed using multi-way principal components analysis (MPCA), principal factors analysis (PARAFAC), and a self-organizing map (SOM), which is a kind of artificial neural network. It was found that, while MPCA and PARAFAC were able to recover descriptive models of the fuels, their linear nature obscured some of the finer physical details due to the widely varying composition of the

  17. Catalytic partial oxidation reforming of hydrocarbon fuels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S.

    1998-09-21

    The polymer electrolyte fuel cell (PEFC) is the primary candidate as the power source for light-duty transportation systems. On-board conversion of fuels (reforming) to supply the required hydrogen has the potential to provide the driving range that is typical of today's automobiles. Petroleum-derived fuels, gasoline or some distillate similar to it, are attractive because of their existing production, distribution, and retailing infrastructure. The fuel may be either petroleum-derived or other alternative fuels such as methanol, ethanol, natural gas, etc. [1]. The ability to use a variety of fuels is also attractive for stationary distributed power generation [2], such as inmore » buildings, or for portable power in remote locations. Argonne National Laboratory has developed a catalytic reactor based on partial oxidation reforming that is suitable for use in light-duty vehicles powered by fuel cells. The reactor has shown the ability to convert a wide variety of fuels to a hydrogen-rich gas at less than 800 C, temperatures that are several hundreds of degrees lower than alternative noncatalytic processes. The fuel may be methanol, ethanol, natural gas, or petroleum-derived fuels that are blends of various hydrocarbons such as paraffins, olefins, aromatics, etc., as in gasoline. This paper will discuss the results obtained from a bench-scale (3-kWe) reactor., where the reforming of gasoline and natural gas generated a product gas that contained 38% and 42% hydrogen on a dry basis at the reformer exit, respectively.« less

  18. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-12-01

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  19. Life cycle analysis of fuel production from fast pyrolysis of biomass.

    PubMed

    Han, Jeongwoo; Elgowainy, Amgad; Dunn, Jennifer B; Wang, Michael Q

    2013-04-01

    A well-to-wheels (WTW) analysis of pyrolysis-based gasoline was conducted and compared with petroleum gasoline. To address the variation and uncertainty in the pyrolysis pathways, probability distributions for key parameters were developed with data from literature. The impacts of two different hydrogen sources for pyrolysis oil upgrading and of two bio-char co-product applications were investigated. Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 55-64%) compared to the mean of petroleum fuels. Reforming pyrolysis oil for H2 increases the WTW GHG emissions reduction up to 112% (range of 97-126%), but reduces petroleum savings per unit of biomass used due to the dramatic decline in the liquid fuel yield. Thus, the hydrogen source causes a trade-off between GHG reduction per unit fuel output and petroleum displacement per unit biomass used. Soil application of biochar could provide significant carbon sequestration with large uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Monthly petroleum product price report. [January 1981-January 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riner, C.

    1982-01-01

    This report provides information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gasmore » plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia. Data are presented on the following: gasoline, No. 1 and No. 2 diesel fuels, No. 1 and No. 2 heating oils, residual fuel oil, aviation fuels, kerosene, and liquefied petroleum gases.« less

  1. Monthly petroleum product price report. [January 1981-February 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riner, C.

    1982-02-01

    This report provides information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gasmore » plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia. Data are presented on the following: gasoline, No. 1 and No. 2 diesel fuels, No. 1 and No. 2 heating oils, residual fuel oil, aviation fuels, kerosene, and liquefied petroleum gases.« less

  2. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  3. 31 CFR 576.308 - Iraqi petroleum and petroleum products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY... petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in Iraq, including any Iraqi-origin oil inventories, wherever located. ...

  4. 31 CFR 576.308 - Iraqi petroleum and petroleum products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY... petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in Iraq, including any Iraqi-origin oil inventories, wherever located. ...

  5. 31 CFR 576.308 - Iraqi petroleum and petroleum products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY... petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in Iraq, including any Iraqi-origin oil inventories, wherever located. ...

  6. Demonstration of alcohol as an aviation fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    A recently funded Southeastern Regional Biomass Energy Program (SERBEP) project with Baylor University will demonstrate the effectiveness of ethanols as an aviation fuel while providing several environmental and economic benefits. Part of this concern is caused by the petroleum industry. The basis for the petroleum industry to find an alternative aviation fuel will be dictated mainly by economic considerations. Three other facts compound the problem. First is the disposal of oil used in engines burning leaded fuel. This oil will contain too much lead to be burned in incinerators and will have to be treated as a toxic waste withmore » relatively high disposal fees. Second, as a result of a greater demand for alkalites to be used in the automotive reformulated fuel, the costs of these components are likely to increase. Third, the Montreal Protocol will ban in 1998 the use of Ethyl-Di-Bromide, a lead scavenger used in leaded aviation fuel. Without a lead scavenger, leaded fuels cannot be used. The search for alternatives to leaded aviation fuels has been underway by different organizations for some time. As part of the search for alternatives, the Renewable Aviation Fuels Development Center (RAFDC) at Baylor University in Waco, Texas, has received a grant from the Federal Aviation Administration (FAA) to improve the efficiencies of ethanol powered aircraft engines and to test other non-petroleum alternatives to aviation fuel.« less

  7. Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications

    NASA Astrophysics Data System (ADS)

    Lampert, J.

    In both natural gas and liquid petroleum gas (LPG), sulfur degrades the performance of the catalysts used in fuel reformers and fuel cells. In order to improve system performance, the sulfur must be removed to concentrations of less than 200 ppbv (in many applications to less than 20 ppbv) before the fuel reforming operation. Engelhard Corporation presents a unique approach to the desulfurization of natural gas and LPG. This new method catalytically converts the organic and inorganic sulfur species to sulfur oxides. The sulfur oxides are then adsorbed on a high capacity adsorbent. The sulfur compounds in the fuel are converted to sulfur oxides by combining the fuel with a small amount of air. The mixture is then heated from 250 to 270 °C, and contacted with a monolith supported sulfur tolerant catalyst at atmospheric pressure. When Engelhard Corporation demonstrated this catalytic approach in the laboratory, the result showed sulfur breakthrough to be less than 10 ppbv in the case of natural gas, and less than 150 ppbv for LPG. We used a simulated natural gas and LPG mixture, doped with a 50-170 ppmv sulfur compound containing equal concentrations of COS, ethylmercaptan, dimethylsulfide, methylethylsulfide and tetrahydrothiophene. There is no need for recycled H 2 as in the case for hydrodesulfurization.

  8. Fuel oil and kerosene sales 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-11-01

    This publication contains the 1991 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the third year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987, The 1991 edition marks the eighth annual presentation, of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey.

  9. Alternative Fuels Data Center: Propane Fueling Station Locations

    Science.gov Websites

    petroleum gas (propane) fueling stations near an address or ZIP code or along a route in the United States Location Map a Route Laws & Incentives Search Federal State Key Legislation Data & Tools Widgets

  10. Issues for Storing Plant-Based Alternative Fuels in Marine Environments

    DTIC Science & Technology

    2014-05-09

    of aerobic metabolites that exacerbated subsequent corrosion processes. 15. SUBJECT TERMS biodiesel , alternative fuel, seawater, corrosion, carbon...2013 Accepted 17 December 2013 Available online 24 December 2013 Keywords: Biodiesel Alternative fuel Seawater Corrosion Carbon steel...these experiments including soy- derived fatty acid methyl ester biodiesel (B100), U.S. military specified petroleum diesel (F-76) and petroleum jet

  11. Best Technical Approach for the Petroleum Quality Analysis (PQA) System

    DTIC Science & Technology

    1994-08-01

    two test methods for determination of water content in a fuel. The Karl Fischer titration method (ASTM D 1744) measures for total water, both...difficult to automate. ASTM D 664, "Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration," is simple to automate...release. distribution unlimnied 13. ABSTRACT (Maximum 2C3 words) Recent U.S. militar-y operations have identified a need for improved methods of fuel and

  12. Comparative Electrocardiographic, Autonomic, and Systemic Inflammatory Responses to Soy Biodiesel and Petroleum Diesel Emissions in Rats

    EPA Science Inventory

    CONTEXT: 8iodiesel fuel represents an alternative to high particulate matter (PM)-emitting petroleum-based diesel fuels, yet uncertainty remains regarding potential biodiesel combustion emission health impacts.OBJECTIVE: The purpose of this study was to compare cardiovascular res...

  13. 40 CFR 86.1513 - Fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Fuel specifications. 86.1513 Section 86.1513 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED..., and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1513 Fuel...

  14. Some effects of ingested petroleum on seawater-adapted ducks (Anas platyrhynchos)

    USGS Publications Warehouse

    Holmes, W.N.; Cronshaw, J.; Gorsline, J.

    1978-01-01

    Male Pekin ducks adapted to seawater and maintained under sheltered conditions (27?C) in the laboratory may consume considerable volumes of petroleum without showing overt symptoms of distress. Under these conditions, birds consuming petroleum-contaminated food have shown a persistent hyperphagia; this was most apparent among those given food contaminated with South Louisiana crude oil, least apparent among birds given No. 2 fuel oil, and intermediate among those that consumed food contaminated with Kuwait crude oil. When maintained at 27?C, some mortality occurred among the birds given South Louisiana crude oil (22.2%) and No. 2 fuel oil (35.7%), whereas none of the freshwater- and seawater-maintained birds given uncontaminated food and none of the birds given Kuwait crude oil died during this period. Following their exposure to chronic mild cold stress (3?C), mortality occurred in all groups of birds; the birds that had consumed petroleum-contaminated food tended to die earlier and in larger numbers than either the seawater- or freshwater-maintained control birds. These effects suggest that the mortality in all groups of birds was due primarily to the additive effects of a series of nonspecific stressors. Thus, at autopsy, birds that had succumbed to the effects of these stressors frequently showed adrenal hypertrophy and severe involution of the lymphoepithelial tissues. The consumption of petroleum-contaminated food seemed to constitute only one of a series of environmental stressors, and, among birds that were already exposed to stressors such as hypertonic drinking water and persistent cold, the ingestion of petroleum seemed to render them more vulnerable and death frequently ensued.

  15. Some effects of ingested petroleum on seawater-adapted ducks (Anas platyrhynchos)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, W.N.; Cronshaw, J.; Gorsline, J.

    1978-10-01

    Male Pekin ducks adapted to seawater and maintained under sheltered conditions (27{degrees}C) in the laboratory may consume considerable volumes of petroleum without showing overt symptoms of distress. Under these conditions, birds consuming petroleum-contaminated food have shown a persistent hyperphagia; this was most apparent among those given food contaminated with South Louisiana crude oil, least apparent among birds given No. 2 fuel oil, and intermediate among those that consumed food contaminated with Kuwait crude oil. When maintained at 27{degrees}C, some mortality occurred among the birds given South Louisiana crude oil (22.2%) and No. 2 fuel oil (35.7%), whereas none of themore » freshwater- and seawater-maintained birds given uncontaminated food and none of the birds given Kuwait crude oil died during this period. Following their exposure to chronic mild cold stress (3{degrees}C), mortality occurred in all groups of birds; the birds that had consumed petroleum-contaminated food tended to die earlier and in larger numbers than either the seawater- or freshwater-maintained control birds. These effects suggest that the mortality in all groups of birds was due primarily to the additive effects of a series of nonspecific stressors. Thus, at autopsy, birds that had succumbed to the effects of these stressors frequently showed adrenal hypertrophy and severe involution of the lymphoepithelial tissues. The consumption of petroleum-contaminated food seemed to constitute only one of a series of environmental stressors, and, among birds that were already exposed to stressors such as hypertonic drinking water and persistent cold, the ingestion of petroleum seemed to render them more vulnerable and death frequently ensued.« less

  16. Lubricity of biobased diesel fuels and additives

    USDA-ARS?s Scientific Manuscript database

    Modern diesel engines rely on the fuel itself to lubricate moving parts in the fuel and engine systems. Prior to the late 1990s, diesel fuel from petroleum provided sufficient lubricity to effectively reduce wear in injectors and fuel pumps. Increasingly stringent limitations on the sulfur content o...

  17. Computer model for refinery operations with emphasis on jet fuel production. Volume 2: Data and technical bases

    NASA Technical Reports Server (NTRS)

    Dunbar, D. N.; Tunnah, B. G.

    1978-01-01

    The FORTRAN computing program predicts the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case. The report has sufficient detail for the information of most readers.

  18. Areal extent of petroleum-related compounds from a gasoline and diesel-fuel leak in ground water at a site in Yakima, Washington, 1984-89

    USGS Publications Warehouse

    Wagner, R.J.

    1995-01-01

    A gasoline and diesel-fuel leak was discovered in the early 1980's at a service station in Yakima, Washington, and an attempt to recover the flee-floating petroleum product was unsuccessful. From 1984 through 1989, data were collected from observation wells drilled near the site of the leak and from nearby domestic wells during three separate studies. Between February 1985 and November 1986, benzene, toluene, xylenes, and other soluble compounds of petroleum origin were found at concentrations that exceeded standards for drinking water in all samples from observation wells within 300 feet of the service station. These compounds also were found in smaller concentrations in some samples from domestic wells as far as 1,500 feet downgradient of the service station. Concentrations of these soluble compounds in ground-water samples collected in March 1989 had decreased, and areal distribution of the compounds was smaller than when monitoring began in 1984.

  19. The Future of Low-Carbon Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Yang, Christopher; Yeh, Sonia

    2011-11-01

    Petroleum fuel uses make up essentially all of transportation fuel usage today and will continue to dominate transportation fuel usage well into future without any major policy changes. This chapter focuses on low-carbon transportation fuels, specifically, biofuels, electricity and hydrogen, that are emerging options to displace petroleum based fuels. The transition to cleaner, lower carbon fuel sources will need significant technology advancement, and sustained coordination efforts among the vehicle and fuel industry and policymakers/regulators over long period of time in order to overcome market barriers, consumer acceptance, and externalities of imported oil. We discuss the unique infrastructure challenges, and compare resource, technology, economics and transitional issues for each of these fuels. While each fuel type has important technical and implementation challenges to overcome (including vehicle technologies) in order to contribute a large fraction of our total fuel demand, it is important to note that a portfolio approach will give us the best chance of meeting stringent environmental and energy security goals for a sustainable transportation future.

  20. Study of variation grain size in desulfurization process of calcined petroleum coke

    NASA Astrophysics Data System (ADS)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  1. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability of...

  2. Liquid Fuels and Natural Gas in the Americas Analysis Brief

    EIA Publications

    2014-01-01

    This report examines the major energy trends and developments of the past decade in the Americas, focusing on liquid fuels and natural gas—particularly, reserves and resources, production, consumption, trade, and investment. The Americas, which include North America, Central America, the Caribbean, and South America, account for a significant portion of global supply, demand, and trade of both liquid fuels and natural gas. Liquid fuels include all petroleum and petroleum products, natural gas liquids, biofuels, and liquids derived from other hydrocarbon sources.

  3. EIA model documentation: Petroleum Market Model of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-30

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). The PMM models petroleum refining activities, the marketing of products, the production of natural gas liquids and domestic methanol, projects petroleum provides and sources of supplies for meeting demand. In addition, the PMMmore » estimates domestic refinery capacity expansion and fuel consumption.« less

  4. FY2013 Progress Report for Fuel & Lubricant Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  5. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stork, Kevin

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  6. Petroleum market shares. Progress report on the retailing of gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1974-08-06

    The report is comprised of three major sections: data currently available from industry; data comparisons; and descriptions and rationale for an FEA market share monitoring program. The latter part of this report is a rationale and description of FEA's development of capabilities to monitor changes of both petroleum marketing and distribution. The objective is to provide an ongoing system that reliably measures market shares. Included in the text are discussions of: Previously reported data on gasoline sales; survey of nonbranded independent marketers; company direct sales and independent marketers; gasoline and diesel fuel; and other petroleum products. (GRA)

  7. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.

    PubMed

    Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David

    2013-02-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Development of burnup dependent fuel rod model in COBRA-TF

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN

  9. The Impact of Petroleum, Synthetic and Cryogenic Fuels on Civil Aviation.

    DTIC Science & Technology

    1982-06-01

    purposes at any given time: Lightest Coverage 1. Conclusions - The broad outlook on aviation fuels. 2. Recommendations - Actions suggested by the study ...disruptions mayadopted. occ:ur in any ten-year period and one such disruption is almost sure to occur in five years One office has studied about thirty...research organizations, study groups and during a major disruption will be dependent on the Strategic others, all are in good agreement that by 1990

  10. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... fuel as its primary energy source, OFP may prohibit, by order, the use in that unit of petroleum or... 10 Energy 4 2012-01-01 2012-01-01 false Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants. 504.7 Section 504.7 Energy DEPARTMENT OF ENERGY (CONTINUED...

  11. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fuel as its primary energy source, OFP may prohibit, by order, the use in that unit of petroleum or... 10 Energy 4 2014-01-01 2014-01-01 false Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants. 504.7 Section 504.7 Energy DEPARTMENT OF ENERGY (CONTINUED...

  12. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fuel as its primary energy source, OFP may prohibit, by order, the use in that unit of petroleum or... 10 Energy 4 2013-01-01 2013-01-01 false Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants. 504.7 Section 504.7 Energy DEPARTMENT OF ENERGY (CONTINUED...

  13. Volatile hydrocarbons and fuel oxygenates: Chapter 12

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.

    2014-01-01

    Petroleum hydrocarbons and fuel oxygenates are among the most commonly occurring and widely distributed contaminants in the environment. This chapter presents a summary of the sources, transport, fate, and remediation of volatile fuel hydrocarbons and fuel additives in the environment. Much research has focused on the transport and transformation processes of petroleum hydrocarbons and fuel oxygenates, such as benzene, toluene, ethylbenzene, and xylenes and methyl tert‐butyl ether, in groundwater following release from underground storage tanks. Natural attenuation from biodegradation limits the movement of these contaminants and has received considerable attention as an environmental restoration option. This chapter summarizes approaches to environmental restoration, including those that rely on natural attenuation, and also engineered or enhanced remediation. Researchers are increasingly combining several microbial and molecular-based methods to give a complete picture of biodegradation potential and occurrence at contaminated field sites. New insights into the fate of petroleum hydrocarbons and fuel additives have been gained by recent advances in analytical tools and approaches, including stable isotope fractionation, analysis of metabolic intermediates, and direct microbial evidence. However, development of long-term detailed monitoring programs is required to further develop conceptual models of natural attenuation and increase our understanding of the behavior of contaminant mixtures in the subsurface.

  14. Potential for Electrified Vehicles to Contribute to U.S. Petroleum and Climate Goals and Implications for Advanced Biofuels.

    PubMed

    Meier, Paul J; Cronin, Keith R; Frost, Ethan A; Runge, Troy M; Dale, Bruce E; Reinemann, Douglas J; Detlor, Jennifer

    2015-07-21

    To examine the national fuel and emissions impacts from increasingly electrified light-duty transportation, we reconstructed the vehicle technology portfolios from two national vehicle studies. Using these vehicle portfolios, we normalized assumptions and examined sensitivity around the rates of electrified vehicle penetration, travel demand growth, and electricity decarbonization. We further examined the impact of substituting low-carbon advanced cellulosic biofuels in place of petroleum. Twenty-seven scenarios were benchmarked against a 50% petroleum-reduction target and an 80% GHG-reduction target. We found that with high rates of electrification (40% of miles traveled) the petroleum-reduction benchmark could be satisfied, even with high travel demand growth. The same highly electrified scenarios, however, could not satisfy 80% GHG-reduction targets, even assuming 80% decarbonized electricity and no growth in travel demand. Regardless of precise consumer vehicle preferences, emissions are a function of the total reliance on electricity versus liquid fuels and the corresponding greenhouse gas intensities of both. We found that at a relatively high rate of electrification (40% of miles and 26% by fuel), an 80% GHG reduction could only be achieved with significant quantities of low-carbon liquid fuel in cases with low or moderate travel demand growth.

  15. Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability

    NASA Astrophysics Data System (ADS)

    Sinor, J. E.

    1994-05-01

    This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

  16. Updating the U.S. Life Cycle GHG Petroleum Baseline to 2014 with Projections to 2040 Using Open-Source Engineering-Based Models.

    PubMed

    Cooney, Gregory; Jamieson, Matthew; Marriott, Joe; Bergerson, Joule; Brandt, Adam; Skone, Timothy J

    2017-01-17

    The National Energy Technology Laboratory produced a well-to-wheels (WTW) life cycle greenhouse gas analysis of petroleum-based fuels consumed in the U.S. in 2005, known as the NETL 2005 Petroleum Baseline. This study uses a set of engineering-based, open-source models combined with publicly available data to calculate baseline results for 2014. An increase between the 2005 baseline and the 2014 results presented here (e.g., 92.4 vs 96.2 g CO 2 e/MJ gasoline, + 4.1%) are due to changes both in modeling platform and in the U.S. petroleum sector. An updated result for 2005 was calculated to minimize the effect of the change in modeling platform, and emissions for gasoline in 2014 were about 2% lower than in 2005 (98.1 vs 96.2 g CO 2 e/MJ gasoline). The same methods were utilized to forecast emissions from fuels out to 2040, indicating maximum changes from the 2014 gasoline result between +2.1% and -1.4%. The changing baseline values lead to potential compliance challenges with frameworks such as the Energy Independence and Security Act (EISA) Section 526, which states that Federal agencies should not purchase alternative fuels unless their life cycle GHG emissions are less than those of conventionally produced, petroleum-derived fuels.

  17. Alternative Fuels Data Center

    Science.gov Websites

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean Cities provides

  18. Tactical Fuel and Energy Strategy for The Future Modular Force

    DTIC Science & Technology

    2009-05-18

    product of the anaerobic digestion (decomposition without oxygen) of organic matter such as animal manure , sewage, and municipal solid waste. It is...supplement petroleum-based fuels and thereby decrease petroleum-based fuel requirements. The Army can stage itself through additional and increased R&D...Energy situation and to begin to develop flexible options and recommend choices and investments that will yield a balanced strategy. At this stage

  19. Alternative Fuels Data Center: Propane Vehicle Emissions

    Science.gov Websites

    compared to conventional gasoline and diesel fuel. When used as a vehicle fuel, propane can offer life , processing, manufacturing, distribution, use, and disposal or recycling. When comparing fuels, a life cycle GREET model estimates the life cycle petroleum use and GHG emissions for multiple fuels. When this model

  20. Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue

    DOEpatents

    Longanbach, J.R.

    1981-11-13

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  1. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  2. Fuel oil and kerosene sales 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate salesmore » rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.« less

  3. 40 CFR 600.107-08 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specifications. (a) The test fuel specifications for gasoline, diesel, methanol, and methanol-petroleum fuel... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American Society for...

  4. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bus fuel and the repair and servicing of trucks and buses used in over-the-road commercial transportation (including parts and accessories for such vehicles). (b) Sales or repairs of tanks. Sales or repairs of tanks for the storage of liquefied-petroleum-gas are recognized as retail in the industry...

  5. Carboxyhaemoglobin in women exposed to different cooking fuels.

    PubMed Central

    Behera, D; Dash, S; Yadav, S P

    1991-01-01

    Blood carboxyhaemoglobin levels were estimated by double wavelength spectrophotometry in non-smoking women living in Chandigarh and its environs and related to the cooking fuel they used. Twenty nine used kerosene, 28 biomass fuel, and 30 liquified petroleum gas; the 27 control subjects had not done any cooking for seven days. The carboxyhaemoglobin concentrations were significantly higher in the women using the three types of fuel (mean (SEM) concentration 7.49% [corrected] (0.67%) for kerosene, 15.74% (0.83%) for biomass fuel, and 17.16% (0.62%) for liquified petroleum gas, compared with 3.52% (0.33%) in the control subjects. It is concluded that cooking with any of the three fuels causes indoor air pollution. It is important to have better designed houses with adequate ventilation and stove vents that are cleaned regularly if pollution is to be reduced. PMID:2068690

  6. Cluster Analysis of Indonesian Province Based on Household Primary Cooking Fuel Using K-Means

    NASA Astrophysics Data System (ADS)

    Huda, S. N.

    2017-03-01

    Each household definitely provides installations for cooking. Kerosene, which is refined from petroleum products once dominated types of primary fuel for cooking in Indonesia, whereas kerosene has an expensive cost and small efficiency. Other household use LPG as their primary cooking fuel. However, LPG supply is also limited. In addition, with a very diverse environments and cultures in Indonesia led to diversity of the installation type of cooking, such as wood-burning stove brazier. The government is also promoting alternative fuels, such as charcoal briquettes, and fuel from biomass. The use of other fuels is part of the diversification of energy that is expected to reduce community dependence on petroleum-based fuels. The use of various fuels in cooking that vary from one region to another reflects the distribution of fuel basic use by household. By knowing the characteristics of each province, the government can take appropriate policies to each province according each character. Therefore, it would be very good if there exist a cluster analysis of all provinces in Indonesia based on the type of primary cooking fuel in household. Cluster analysis is done using K-Means method with K ranging from 2-5. Cluster results are validated using Silhouette Coefficient (SC). The results show that the highest SC achieved from K = 2 with SC value 0.39135818388151. Two clusters reflect provinces in Indonesia, one is a cluster of more traditional provinces and the other is a cluster of more modern provinces. The cluster results are then shown in a map using Google Map API.

  7. Fuel oil and kerosene sales 1991. [USA, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-11-01

    This publication contains the 1991 survey results of the Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the third year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987, The 1991 edition marks the eighth annual presentation, of the results of the ongoing Annual Fuel Oil and Kerosene Sales Report'' survey.

  8. Renewable Fuel Solutions for Petroleum Refineries

    DOT National Transportation Integrated Search

    1995-03-01

    This National Renewable Energy Laboratory (NREL) factsheet, one in a series, : BioFacts: Fueling a Stronger Economy, explains how biomass research is helping : to produce new ways to condition synthesis gas (syngas) produced from refinery : byproduct...

  9. Comparison of the properties of some synthetic crudes with petroleum crudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1979-01-01

    Physical properties and chemical compositions of six synthetic crudes were determined. The results were compared to those of typical petroleum crudes, with the interest being the feasibility of making jet fuels from oil shale and coal syncrudes. The specific gravity, viscosity, and pour point were measured, showing that these crudes would be described as heavier rather than lighter crudes. The boiling range distribution of the crudes was determined by distillation and by gas chromatography. In addition, gel permeation chromatograms were obtained, giving a unique molecular weight distribution profile for each crude. Analyses for carbon, hydrogen, nitrogen and sulfur concentrations were performed, as well as for hydrocarbon group type and trace element concentrations. It was found that the range in concentration of vanadium, an element whose presence in turbine fuels is of major concern, was lower than that of petroleum crudes. Sodium and potassium, other elements of concern, were present in comparatively high concentrations.

  10. Fuels characterization studies. [jet fuels

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  11. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Marano, John; Sathaye, Jayant

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel

  12. Washington State petroleum markets data book. [Contains Glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerberg, B.; Anderson, M.

    1992-01-01

    The Data Book is a resource for policymakers and analysis who work on energy issues. It is also for Washington citizens who are interested in knowing more about the role petroleum plays in Washington State. The Data Book is organized into four parts and four appendixes. Each part discusses a particular aspect of the petroleum market: supply (crude and refined products, refinery production, and distribution); consumption (by sector and by fuel); prices (crude and refined products, spot and transaction, wholesale and retail); and reliability of supply (stocks, reserves, emergencies, and the environment). Each part is followed by tables of supportingmore » data. The appendixes contain related and supporting tables, a glossary of technical terms, and a list of the sources of data for each part of the book.« less

  13. Diatoms: a fossil fuel of the future.

    PubMed

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Reducing power production costs by utilizing petroleum coke. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbreath, K.C.

    1998-07-01

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it maymore » adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.« less

  15. Aviation turbine fuels: An assessment of alternatives

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.

  16. The problem of liquid fuels (for aircraft engines)

    NASA Technical Reports Server (NTRS)

    Gallo, Gino

    1924-01-01

    The crisis which troubles the world market for liquid fuel in general and for carburants in particular is doubtless one of the most serious ever experienced by modern industry. It is a national crisis of economic and political independence for countries like Italy and France. The solutions suggested for meeting the lack of liquid fuel may be summed up under two general headings: the economical use of the petroleum now available; creation of petroleum substitutes from natural sources within the country. The process of cracking is described at length.

  17. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  18. Human Resource Local Content in Ghana's Upstream Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Benin, Papa

    Enactment of Ghana's Petroleum (Local Content and Local Participation) Regulations, 2013 (L.I. 2204) was intended to regulate the percentage of local products, personnel, financing, and goods and services rendered within Ghana's upstream petroleum industry value chain. Five years after the inception of Ghana's upstream oil and gas industry, a gap is evident between the requirements of L.I. 2204 and professional practice. Drawing on Lewin's change theory, a cross-sectional study was conducted to examine the extent of differences between the prevailing human resource local content and the requirements of L.I. 2204 in Ghana's upstream petroleum industry. The extent to which training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its upstream petroleum industry was also examined. Survey data were collected from 97 management, technical, and other staff in 2 multinational petroleum companies whose oil and gas development plans have been approved by the Petroleum Commission of Ghana. To answer the research questions and test their hypotheses, one-way ANOVA was performed with staff category (management, technical, and other) as the independent variable and prevalent local content as the dependent variable. Results indicated that prevailing local content in Ghana's upstream petroleum industry meets the requirements of L.I. 2204. Further, training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its offshore petroleum industry. Findings may encourage leaders within multinational oil companies and the Petroleum Commission of Ghana to organize educational seminars that equip indigenous Ghanaians with specialized skills for working in Ghana's upstream petroleum industry.

  19. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B

    2014-07-01

    This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.

  20. 10 CFR 503.32 - Lack of alternate fuel supply at a cost which does not substantially exceed the cost of using...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... substantially exceed the cost of using imported petroleum. 503.32 Section 503.32 Energy DEPARTMENT OF ENERGY... fuel supply at a cost which does not substantially exceed the cost of using imported petroleum. (a... alternate fuel supply at a cost which does not substantially exceed the cost of using imported petroleum. To...

  1. 10 CFR 503.32 - Lack of alternate fuel supply at a cost which does not substantially exceed the cost of using...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... substantially exceed the cost of using imported petroleum. 503.32 Section 503.32 Energy DEPARTMENT OF ENERGY... fuel supply at a cost which does not substantially exceed the cost of using imported petroleum. (a... alternate fuel supply at a cost which does not substantially exceed the cost of using imported petroleum. To...

  2. Guidance Document for Alternative Diesel Fuels Proposed as Drop-In Fuels to Displace Diesel Fuels as Specified By ASTM Specification D975

    DTIC Science & Technology

    2014-07-01

    Interfacial Tension .................................9 3.2.10 Compatibility with Petroleum Diesel and Biodiesel ...Shorthand indication of percentage of biodiesel in a biodiesel blend CFPP – ASTM D6371 Cold Filter Plugging Point DOE – United States Department of...approved in 1949. However, as we have learned with biodiesel , the properties in D975 are not always sufficient to describe a fuel (or fuel component

  3. National Institute for Petroleum and Energy Research quarterly technical report for April 1--June 30, 1993. Volume 1, Fuels research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Progress reports are presented for the following fuels researches: Development of analytical methodology for analysis of heave crudes; and thermochemistry and thermophysical properties of organic nitrogen and diheteroatom-containing compounds. Some of the accomplishments are: Topical reports summarizing GC/MS methodology for determination of amines in petroleum and catalytic cracking behavior of compound type in Wilmington 650{degrees} F+ resid were completed; density measurements between 320 K and 550 K were completed for 8-methylquinoline; high-temperature heat-capacities and critical temperature (near 800 K) for 8-methylquinoline were determined; vapor-pressure measurements were completed for 2,6-dimethylpyridine; and a series of enthalpy-of-combustion measurement was completed for 1,10-phenanthroline, phenazine,more » 2-methylquinoline, and 8-methylquinoline.« less

  4. Soil- and groundwater-quality data for petroleum hydrocarbon compounds within Fuels Area C, Ellsworth Air Force Base, South Dakota, 2014

    USGS Publications Warehouse

    Bender, David A.; Rowe, Barbara L.

    2015-01-01

    Ellsworth Air Force Base is an Air Combat Command located approximately 10 miles northeast of Rapid City, South Dakota. Ellsworth Air Force Base occupies about 6,000 acres within Meade and Pennington Counties, and includes runways, airfield operations, industrial areas, housing, and recreational facilities. Fuels Area C within Ellsworth Air Force Base is a fuels storage area that is used to support the mission of the base. In fall of 2013, the U.S. Geological Survey began a study in cooperation with the U.S. Air Force, Ellsworth Air Force Base, to estimate groundwater-flow direction, select locations for permanent monitoring wells, and install and sample monitoring wells for petroleum hydrocarbon compounds within Fuels Area C. Nine monitoring wells were installed for the study within Fuels Area C during November 4–7, 2014. Soil core samples were collected during installation of eight of the monitoring wells and analyzed for benzene, toluene, ethylbenzene, total xylenes, naphthalene,m- and p-xylene, o-xylene, and gasoline- and diesel-range organic compounds. Groundwater samples were collected from seven of the nine wells (two of the monitoring wells did not contain enough water to sample or were dry) during November 19–21, 2014, and analyzed for select physical properties, benzene, toluene, ethylbenzene, total xylenes, naphthalene, m- and p-xylene, o-xylene, and gasoline- and diesel-range organic compounds. This report describes the nine monitoring well locations and presents the soil- and groundwater-quality data collected in 2014 for this study.

  5. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  6. Petroleum Plantations for Fuel and Materials.

    ERIC Educational Resources Information Center

    Calvin, Melvin

    1979-01-01

    Several alternatives to long-range fuel production are given. The carbon dioxide problem resulting from the burning of coal is discussed. Emphasis is given to the topic of hydrocarbon producing plants, such as those in the genus Euphorbia, and the economics of oil production from them. (SA)

  7. Investigation of combustion characteristics of methane-hydrogen fuels

    NASA Astrophysics Data System (ADS)

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  8. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  9. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, W.; Heath, Garvin; Sandor, Debra

    2013-04-01

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect tomore » four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.« less

  10. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum products...

  11. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum products...

  12. Nuclear fuel particles and method of making nuclear fuel compacts therefrom

    DOEpatents

    DeVelasco, Rubin I.; Adams, Charles C.

    1991-01-01

    Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.

  13. Preface for small-molecule activation: Carbon-containing fuels

    DOE PAGES

    Fujita, Etsuko; Goldman, Alan S.

    2015-06-01

    For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. Thus, this transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather bymore » the tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.« less

  14. Potential Coverage of Alternative Fuel Industries Under EPACT Section 501

    DOT National Transportation Integrated Search

    1996-01-01

    The Energy Policy Act (EPACT) has a goal of replacing ten percent of : transportation petroleum fuel with alternative fuels and replacement fuels by : the year 2000, and 30 percent by 2010. Sections 501 and 507 of EPACT encourage : and mandate use of...

  15. Unconventional fossil-based fuels : economic and environmental trade-offs

    DOT National Transportation Integrated Search

    2008-01-01

    Both high import payments for petroleum motor fuels and concerns regarding emissions of carbon dioxide (CO2) are motivating interest in possible fuel substitutes. In this report, RAND researchers assess the potential future production levels, product...

  16. Combining micro-structures and micro-algae to increase lipid production for bio-fuel

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert

    2011-03-01

    3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.

  17. Using Conventional Monitoring Wells to Collect Data Necessary to Understand Petroleum Vapor Intrusion (PVI)

    EPA Science Inventory

    Recent work has clearly established that the possibility for vapor intrusion of petroleum hydrocarbons is greatly reduced by aerobic biodegradation of the hydrocarbons in unsaturated soil. The rate and extent of aerobic biodegradation of benzene (or any other fuel hydrocarbon) in...

  18. Distinguishing petroleum (crude oil and fuel) from smoke exposure within populations based on the relative levels of benzene, toluene, ethylbenzene, and xylenes (BTEX), styrene and 2,5-dimethylfuran by pattern recognition using artificial neural networks

    PubMed Central

    Chambers, D.M.; Reese, C.M.; Thornburg, L.G.; Sanchez, E.; Rafson, J.P.; Blount, B.C.; Ruhl, J.R.E.; De Jesús, V.R.

    2017-01-01

    Studies of human exposure to petroleum (crude oil and fuel) often involve monitoring volatile monoaromatic compounds because of their toxicity and prevalence. Monoaromatic compounds such as benzene, toluene, ethylbenzene, and xylenes (BTEX) associated with these sources have been well studied and have established reference concentrations (RfC) and reference doses (RfD). However, BTEX exposure levels for the general population are primarily from tobacco smoke, where smokers have blood levels up to 8 times higher on average than nonsmokers. Therefore, in assessing petroleum exposure, it is essential to identify exposure to tobacco smoke as well as other types of smoke exposure (e.g., cannabis, wood) because many smoke volatile organic compounds are also found in petroleum products such as crude oil, and fuel. This work describes a method using partition theory and artificial neural network (ANN) pattern recognition to accurately categorize exposure source based on BTEX and 2,5-dimethylfuran blood levels. For this evaluation three categories were created and include crude oil/fuel, other/nonsmoker, and smoker. A method for using surrogate signatures (i.e., relative VOC levels derived from the source material) to train the ANN was investigated where blood levels among cigarette smokers from the National Health and Nutrition Examination Survey (NHANES) were compared with signatures derived from machine-generated cigarette smoke. Use of surrogate signatures derived from machine-generated cigarette smoke did provide a sufficient means with which to train the ANN. As a result, surrogate signatures were used for assessing crude oil/fuel exposure because there is limited blood level data on individuals exposed to either crude oil or fuel. Classification agreement between using an ANN model trained with relative VOC levels and using the 2,5-dimethylfuran smoking biomarker cutpoint blood level of 0.014 ng/mL was up to 99.8 % for nonsmokers and 100.0% for smokers. For the

  19. Carbon taxes and the petroleum wealth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosendahl, K.E.

    1995-12-31

    A global carbon tax may have considerable impact on the petroleum wealth of fossil fuel producers. However, it is not clear to what extent such a tax eventually will decrease the producer prices, rather than increase the consumer prices. Thus, an interesting question is: How will the tax burden be shared between producers and consumers? This question is of course of major importance for countries with relatively large petroleum reserves, like for instance the OPEC-countries as well as Norway. In this study we are addressing this question, trying to reveal how different carbon taxes may change the petroleum wealth, bothmore » for the average producer and for Norway in particular. Even if a global climate treaty at present seems a bit distant, several OECD-countries are or have been discussing a carbon tax to restrict their emissions of CO{sub 2}. Hence, there is a fair possibility that such a tax, or eventually some quota restrictions, will be imposed in at least the main countries of the OECD-area, which stands for almost 60 percent of the worlds oil consumption. The size of this tax is difficult to foresee, and in addition, the tax may not be constant over time. However, some concrete proposals of a carbon tax have been put forward in e.g. the EU and the US, and several research projects have come up with appropriate suggestions (see e.g. Manne and Richels and Oliveira Martins et al.).« less

  20. The use of modified tyre derived fuel for compression ignition engines.

    PubMed

    Pilusa, T J

    2017-02-01

    This study investigated physical and chemical modification of tyre-derived fuel oil (TDFO) obtained from pyrolysis of waste tyres and rubber products for application as an alternative fuel for compression ignition engines (CIE's). TDFO collected from a local waste tyre treatment facility was refined via a novel "oxidative gas-phase fractional distillation over 13× molecular sieves" to recover the light to medium fractions of the TDFO while oxidising and capturing some sulphur compounds in a gas phase. This was followed by desulphurization and chemical modification to improve cetane number, kinematic viscosity and fuel stability. The resulting fuel was tested in an ADE407T truck engine to compare its performance with petroleum diesel fuel. It was discovered that gas phase oxidative fractional distillation reduces the low boiling point sulphur compounds in TDFO such as mercaptans. Using petroleum diesel fuel as a reference, it was observed that the produced fuel has a lower cetane number, flash point and viscosity. On storage the fuel tends to form fibrous microstructures as a result of auto-oxidation of asphaltenes present in the fuel. Mixtures of alkyl nitrate, vinyl acetate, methacrylic anhydride, methyl-tert butyl ether, n-hexane and n-heptane were used to chemically modify the fuel in accordance with the minimum fuel specifications as per SANS 342. The engine performance tests results did not show any sign of engine ceasing or knocking effect. The power-torque trend was very consistent and compared well with petroleum diesel fuelled engine. The levels of total sulphur are still considerably high compared to other cleaner fuel alternatives derived from zero sulphur sources. Copyright © 2016. Published by Elsevier Ltd.

  1. Dermal uptake of petroleum substances.

    PubMed

    Jakasa, Ivone; Kezic, Sanja; Boogaard, Peter J

    2015-06-01

    Petroleum products are complex substances comprising varying amounts of linear and branched alkanes, alkenes, cycloalkanes, and aromatics which may penetrate the skin at different rates. For proper interpretation of toxic hazard data, understanding their percutaneous absorption is of paramount importance. The extent and significance of dermal absorption of eight petroleum substances, representing different classes of hydrocarbons, was evaluated. Literature data on the steady-state flux and permeability coefficient of these substances were evaluated and compared to those predicted by mathematical models. Reported results spanned over 5-6 orders of magnitude and were largely dependent on experimental conditions in particular on the type of the vehicle used. In general, aromatic hydrocarbons showed higher dermal absorption than more lipophilic aliphatics with similar molecular weight. The results showed high variation and were largely influenced by experimental conditions emphasizing the need of performing the experiments under "in use" scenario. The predictive models overestimated experimental absorption. The overall conclusion is that, based on the observed percutaneous penetration data, dermal exposure to petroleum hydrocarbons, even of aromatics with highest dermal absorption is limited and highly unlikely to be associated with health risks under real use scenarios. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Ecosystem effects and the management of petroleum-contaminated soils on subantarctic islands.

    PubMed

    Errington, Ingrid; King, Catherine K; Wilkins, Daniel; Spedding, Tim; Hose, Grant C

    2018-03-01

    Human activity in the Polar Regions has resulted in petroleum contamination of soils. In this context, subantarctic islands are a unique management challenge for climatic, biological and logistical reasons. In this review we identify the main abiotic factors affecting petroleum-contaminated soils in the subantarctic environment, the primary effects of such contamination on biota, and lessons learned with regards to remediation techniques in this region. The sensitivity of biota to contamination depends on organism life stage, on soil properties, and on the degree of contaminant weathering. Initial studies using species endemic to subantarctic islands suggest that for fresh diesel fuel, sensitivities may range between 103 and 20 000 mg total petroleum hydrocarbons (TPH) kg -1 soil. Diesel that has undergone a short period of weathering is generally more toxic, with sensitivities ranging between 52 and 13 000 mg TPH kg -1 soil for an earthworm and a grass respectively (based on EC 20 and IC 50 values). A sufficient body of data from which to develop remediation targets for existing spills in the region does not yet exist for the region, but there has been a recent increase in research attention to address this data gap. A range of remediation methods have also now been trialled, and techniques such as in-ground aeration and nutrient addition have achieved some success. Passive management techniques such as permeable reactive barriers and phytoremediation are in preliminary stages of investigation for the region and show promise, not least because they cause less collateral disturbance than other methods. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Jet Fuel Thermal Stability

    NASA Technical Reports Server (NTRS)

    Taylor, W. F. (Editor)

    1979-01-01

    Various aspects of the thermal stability problem associated with the use of broadened-specification and nonpetroleum-derived turbine fuels are addressed. The state of the art is reviewed and the status of the research being conducted at various laboratories is presented. Discussions among representatives from universities, refineries, engine and airframe manufacturers, airlines, the Government, and others are presented along with conclusions and both broad and specific recommendations for future stability research and development. It is concluded that significant additional effort is required to cope with the fuel stability problems which will be associated with the potentially poorer quality fuels of the future such as broadened specification petroleum fuels or fuels produced from synthetic sources.

  4. U.S. Virgin Islands Petroleum Price-Spike Preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.

    2012-06-01

    This NREL technical report details a plan for the U.S. Virgin Islands (USVI) to minimize the economic damage caused by major petroleum price increases. The assumptions for this plan are that the USVI will have very little time and money to implement it and that the population will be highly motivated to follow it because of high fuel prices. The plan's success, therefore, is highly dependent on behavior change. This plan was derived largely from a review of the actions taken and behavior changes made by companies and commuters throughout the United States in response to the oil price spikemore » of 2008. Many of these solutions were coordinated by or reported through the 88 local representatives of the U.S. Department of Energy's Clean Cities program. The National Renewable Energy Laboratory provides technical and communications support for the Clean Cities program and therefore serves as a de facto repository of these solutions. This plan is the first publication that has tapped this repository.« less

  5. Evaluation of Ultra Clean Fuels from Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Abbott; Edward Casey; Etop Esen

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  6. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  7. Overview of the vapor generation and analysis parameters of the petroleum- and shale-derived fuel studies conducted in thomas dome exposure chambers at the toxic hazards research unit, Wright-Patterson Air Force Base (Dayton), Ohio, 1973-1983. Final report, January 1973-December 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leahy, H.F.

    1994-05-01

    Over a decade ago (1973-1983), a series of long-term inhalation exposures were performed to study the toxicity of a number of aviation and marine fuels derived from petroleum and compare results with those derived from shale. These included JP-4, JP-5, and diesel fuel marine, as well as some specialty petroleum derived fuels W-7, JP-8, and JP-TS. The Thomas Domes located in the Armstrong Laboratory at Wright-Patterson Air Force Base (Dayton), Ohio, were ideally suited for these studies because of both the large capacity for inhalation exposure of the mixed animal complement and the convenience of entry without interrupting continuous exposures.more » The target total hydrocarbon (TH) concentrations ranged from 0.05 to 5.0 mg/L. The concentration levels of TH vapors were limited by the effective vapor pressure of the type of fuel and, if exceeded, the formation of condensate aerosols in the exposure chamber. The Th vapor generation and analytical equipment is described. Advances in gas chromatographic technology during the period covered provided a variety of qualitative pictures of the fuel, vapor, and waste TH components. Hydrocarbons above C14 existed only in very low concentrations in any of the vapors.« less

  8. Low NOx heavy fuel combustor concept program, phase 1

    NASA Technical Reports Server (NTRS)

    Cutrone, M. B.

    1981-01-01

    Combustion tests were completed with seven concepts, including three rich/lean concepts, three lean/lean concepts, and one catalytic combustor concept. Testing was conducted with ERBS petroleum distillate, petroleum residual, and SRC-II coal-derived liquid fuels over a range of operating conditions for the 12:1 pressure ratio General Electric MS7001E heavy-duty turbine. Blends of ERBS and SRC-II fuels were used to vary fuel properties over a wide range. In addition, pyridine was added to the ERBS and residual fuels to vary nitrogen level while holding other fuel properties constant. Test results indicate that low levels of NOx and fuel-bound nitrogen conversion can be achieved with the rich/lean combustor concepts for fuels with nitrogen contents up to 1.0% by weight. Multinozzle rich/lean Concept 2 demonstrated dry low Nox emissions within 10-15% of the EPA New Source Performance Standards goals for SRC-II fuel, with yields of approximately 15%, while meeting program goals for combustion efficiency, pressure drop, and exhaust gas temperature profile. Similar, if not superior, potential was demonstrated by Concept 3, which is a promising rich/lean combustor design.

  9. Hydro and geothermal electricity as an alternative for industrial petroleum consumption in Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendis, M.; Park, W.; Sabadell, A.

    This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to themore » Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.« less

  10. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  11. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  12. World petroleum supplies

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A number of conclusions by political conservatives about the fate of world petroleum supplies have been emerging lately. Among the most recent of them arose from discussions, held at the 1983 spring meeting of the American Association for the Advancement of Science (AAAS), which focused on the environment and resource study entitled “The Global 2000 Report” (New Scientist, June 9, 1983). Fred Singer, representing the Heritage Foundation of Washington, D.C., criticized the report, which predicted shortages in the near future, saying that the current world-wide oil glut will continue beyond the year 2000. Alternatives to the use of petroleum are a part of the cause. Singer argued that conservation, nuclear energy, and other petroleum substitutes will continue to suppress the demand for petroleum. In addition, according to other evaluations, exploration for petroleum and natural gas has not really begun.

  13. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  14. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  15. Environmental Quality Research-Fate of Toxic Jet Fuel Components in Aquatic Systems

    DTIC Science & Technology

    1981-12-01

    literature suggests that the maximum growt rate of Chlorella vulgaris is almost certainly between 1.5 and 2.5 days at water temperatures near 25°C...the results of an investigation of the potential toxic effects of the jet fuel JP-4 (petroleum-based and shale-based) on the aqueous environ- ment... investigated included fuel/ H 2 0 ratios and mixing times. Hydrocarbon composition of the WSF of JP-4, both petroleum e.nd shale-derived, appears to be

  16. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process energy 6 F Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual... biomass and petroleum 4 G Biodiesel, heating oil Canola/Rapeseed oil Trans-Esterification using natural gas or biomass for process energy 4 H Biodiesel, renewable diesel, jet fuel and heating oil Soy bean...

  17. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.; Hettinger, D.; Mosey, G.

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuelmore » retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.« less

  18. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  20. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.

    PubMed

    Płaza, Grazyna A; Jangid, Kamlesh; Lukasik, Krystyna; Nałecz-Jawecki, Grzegorz; Berry, Christopher J; Brigmon, Robin L

    2008-10-01

    The aim of the study was to investigate petroleum waste remediation and toxicity reduction by five bacterial strains: Ralstonia picketti SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (I'-1a), Bacillus sp. (T-1), and Bacillus sp. (T'-1), previously isolated from petroleum-contaminated soils. Petroleum hydrocarbons were significantly degraded (91%) by the mixed bacterial cultures in 30 days (reaching up to 29% in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3-fold after 30 days. This work shows the influence of bacteria on hydrocarbon degradation and associated toxicity, and its dependence on the specific microorganisms present. The ability of these mixed cultures to degrade hydrocarbons and reduce toxicity makes them candidates for environmental restoration applications at other hydrocarbon-contaminated environments.

  1. Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for

    Science.gov Websites

    substantial petroleum reductions and cost savings. The University has also purchased a mobile fueling station , particularly because the university chose to implement a relatively unique mobile trailer to fuel their shuttle . The mobile fueling station was the only upfront cost, but Worku says the resulting time efficiencies

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology willmore » provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.« less

  3. 46 CFR 148.04-15 - Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture). 148.04-15 Section 148.04-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Certain Material § 148.04-15 Petroleum coke, uncalcined; petroleum coke, uncalcined and...

  4. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  5. Alternative transportation fuels: Infrastructure requirements and environmental impacts for ethanol and hydrogen

    NASA Astrophysics Data System (ADS)

    Wakeley, Heather L.

    Alternative fuels could replace a significant portion of the 140 billion gallons of annual US gasoline use. Considerable attention is being paid to processes and technologies for producing alternative fuels, but an enormous investment in new infrastructure will be needed to have substantial impact on the demand for petroleum. The economics of production, distribution, and use, along with environmental impacts of these fuels, will determine the success or failure of a transition away from US petroleum dependence. This dissertation evaluates infrastructure requirements for ethanol and hydrogen as alternative fuels. It begins with an economic case study for ethanol and hydrogen in Iowa. A large-scale linear optimization model is developed to estimate average transportation distances and costs for nationwide ethanol production and distribution systems. Environmental impacts of transportation in the ethanol life cycle are calculated using the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. An EIO-LCA Hybrid method is developed to evaluate impacts of future fuel production technologies. This method is used to estimate emissions for hydrogen production and distribution pathways. Results from the ethanol analyses indicate that the ethanol transportation cost component is significant and is the most variable. Costs for ethanol sold in the Midwest, near primary production centers, are estimated to be comparable to or lower than gasoline costs. Along with a wide range of transportation costs, environmental impacts for ethanol range over three orders of magnitude, depending on the transport required. As a result, intensive ethanol use should be encouraged near ethanol production areas. Fossil fuels are likely to remain the primary feedstock sources for hydrogen production in the near- and mid-term. Costs and environmental impacts of hydrogen produced from natural gas and transported by pipeline are comparable to gasoline. However, capital costs are prohibitive and

  6. Natural attenuation of petroleum hydrocarbons-a study of biodegradation effects in groundwater (Vitanovac, Serbia).

    PubMed

    Marić, Nenad; Matić, Ivan; Papić, Petar; Beškoski, Vladimir P; Ilić, Mila; Gojgić-Cvijović, Gordana; Miletić, Srđan; Nikić, Zoran; Vrvić, Miroslav M

    2018-01-20

    The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O 2 , NO 3 - , Mn, Fe, SO 4 2- , HCO 3 - ), δ 13 C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ 13 C values of DIC ranged from - 15.83 to - 2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes-the activity of biodegradation mechanisms in field conditions.

  7. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications

    NASA Astrophysics Data System (ADS)

    de Wild, P. J.; Nyqvist, R. G.; de Bruijn, F. A.; Stobbe, E. R.

    Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20 ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG.

  8. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    PubMed

    Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A

    2007-06-21

    Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

  9. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  10. Heat transfer correlations for kerosene fuels and mixtures and physical properties for Jet A fuel

    NASA Technical Reports Server (NTRS)

    Ackerman, G. H.; Faith, L. E.

    1972-01-01

    Heat transfer correlations are reported for conventional Jet A fuel for both laminar and turbulent flow in circular tubes. Correlations were developed for cooling in turbine engines, but have broader applications in petroleum and chemical processing, and other industrial applications.

  11. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Heath, G.; Sandor, D.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehiclesmore » in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.« less

  12. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasolinemore » fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible

  13. Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.

    2012-04-01

    Emission rates and composition of known hazardous air pollutants in the exhaust gas from a commercial agriculture tractor, burning a range of biodiesel blends operating at two different load conditions were investigated to better understand the emission characteristics of biodiesel fuel. Ultra-Low Sulfur Petroleum Diesel (ULSD) fuel was blended with soybean oil and beef tallow based biodiesel to examine fuels containing 0% (B0), 50% (B50) and 100% (B100) soybean oil based biodiesel, and 50% (B50T) and 100% (B100T) beef tallow biodiesel. Samples were collected using a dilution source sampler to simulate atmospheric dilution. Particulate matter and exhaust gases were analyzed for carbonyls, Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons (PAHs) to determine their respective emission rates. This analysis is focused on the emissions of organic compounds classified by the US EPA as air toxics and include 2,2,4 trimethylpentane, benzene, toluene, ethylbenzene, m-, p- and o-xylene, formaldehyde, acetaldehyde and methylethyl ketone. Emission rates of 2,2,4 trimethylpentane, toluene, ethylbenzene, m-, p- and o-xylene decreased more than 90% for B50, B100 and B100T blends; decreases in emission rates of benzene, formaldehyde and acetaldehyde were more modest, producing values between 23 and 67%, and methyl ethyl ketone showed decreases not exceeding 7% for the studied biodiesel blends. PAHs emission rates were reduced by 66% for B50, 84% for B100, and by 89% for B100T. The overall emissions of toxic organic compounds were calculated and expressed as benzene equivalents. The largest contributors of toxic risk were found to be formaldehyde and acetaldehyde. Reductions in formaldehyde emissions were 23% for B50 and 42% for B100 soybean, and 40% for B100T beef tallow compared to B0. Similarly, acetaldehyde reductions were 34% for B50 and 53% for B100 soybean biodiesel and 42% for B100T beef tallow biodiesel.

  14. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Logistics Agency. (a) Agencies shall be governed by the provisions of this § 101-26.602 in satisfying... petroleum products from or through the Defense Logistics Agency. (b) The Defense Logistics Agency has been...

  15. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Logistics Agency. (a) Agencies shall be governed by the provisions of this § 101-26.602 in satisfying... petroleum products from or through the Defense Logistics Agency. (b) The Defense Logistics Agency has been...

  16. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Logistics Agency. (a) Agencies shall be governed by the provisions of this § 101-26.602 in satisfying... petroleum products from or through the Defense Logistics Agency. (b) The Defense Logistics Agency has been...

  17. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Logistics Agency. (a) Agencies shall be governed by the provisions of this § 101-26.602 in satisfying... petroleum products from or through the Defense Logistics Agency. (b) The Defense Logistics Agency has been...

  18. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Logistics Agency. (a) Agencies shall be governed by the provisions of this § 101-26.602 in satisfying... petroleum products from or through the Defense Logistics Agency. (b) The Defense Logistics Agency has been...

  19. Reformulated diesel fuel and method

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  20. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  1. A life-cycle comparison of alternative automobile fuels.

    PubMed

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  2. A Life-Cycle Comparison of Alternative Automobile Fuels.

    PubMed

    MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable

  3. Future petroleum geologist: discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, G.D.

    1987-07-01

    Robert R. Berg's (1986) article, ''The Future Petroleum Geologist,'' summarizes the findings of the 13-member AAPG Select Committee on The Future Petroleum Geologist appointed by President William L. Fisher in July 1985. While this undertaking is laudable, particularly considering present circumstance in the petroleum industry, the committee has apparently overlooked a vital aspect concerning the future knowledge requirements of the petroleum geologist. Specifically, the Select Committee makes no mention of the need for computer literacy in its list of educational training categories. Obviously, AAPG is well aware of both the interest in computers by its membership and the increasing needmore » for training and familiarity in this discipline. The Select Committee on The Future Petroleum Geologist, while undertaking a difficult and potentially controversial task, has omitted an important aspect of the background requirements for generations of future petroleum geologists; the committee should consider an amendment to their recommendations to reflect this increasingly important field study.« less

  4. Beyond the petroleum system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoon, L.B.; Sanchez, R.M.O.

    1995-12-01

    The first joint AAPG/AMGP (Association of Mexican Petroleum Geologists) Hedberg Conference on {open_quotes}Geologic Aspects of Petroleum Systems{close_quotes} was held October 2-6, 1994, in Mexico City, Mexico. This research conference attracted nearly 150 geoscientists from 15 countries; 41 papers and 27 posters were presented. The opposite response occurred when the petroleum-system concept was presented more than 20 yr ago; it was largely overlooked. In the past decade, however, interest in this concept as an exploration tool has been growing rapidly. The research conference addressed the concept itself, its elements and processes, the tools and methods used to identify a petroleum system,more » and many case studies. We summarize responses by the participants to the following three questions: First, what is gained from using the petroleum-system concept? Second, in what new directions will the petroleum-system concept take us in the future? Third, has anything new come out of this research conference?« less

  5. EPA's Final Action Denying Petitions for Reconsideration of the 2013 Renewable Fuel Standards

    EPA Pesticide Factsheets

    These September 2016 letters from EPA denies the petition from Monroe Energy LLC, American Petroleum Institute, American Fuel and Petrochemical Manufacturers, regarding certain issues of the 2013 Renewable Fuel Standards Annual Rule.

  6. Transportation Fuels Markets, PADD 1 and PADD 3

    EIA Publications

    2016-01-01

    This study examines supply, consumption, and distribution of transportation fuels in Petroleum Administration for Defense Districts (PADDs) 1 and 3, or the U.S. East Coast and the Gulf Coast, respectively. The East Coast region includes states from Maine to Florida along the U.S. Atlantic Coast. The Gulf Coast region comprises states between New Mexico in the west to Alabama in the east along the Gulf of Mexico. For this study, transportation fuels include gasoline, diesel fuel and jet fuel. Residual fuel oil supply is also analyzed where applicable.

  7. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    Science.gov Websites

    Petroleum Reduction Planning Tool AFLEET Tool All Tools Vehicle Cost Calculator Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Cost Calculator Vehicle 0 City 0 Hwy (mi/gal) 0 City 0 Hwy (kWh/100m) Gasoline Vehicle 0 City 0 Hwy (mi

  8. Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    NASA Astrophysics Data System (ADS)

    McKechnie, Jon; Pourbafrani, Mohammad; Saville, Bradley A.; MacLean, Heather L.

    2015-12-01

    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr-1 to 240 000 t yr-1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached.

  9. Satisfaction of the Automotive Fleet Fuel Demand and Its Impact on the Oil Refining Industry

    DOT National Transportation Integrated Search

    1980-12-01

    Because virtually all transportation fuels are based on petroleum, it is essential to include petroleum refining in any assessment of potential changes in the transportation system. A number of changes in the automotive fleet have been proposed to im...

  10. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuzhuo; Wang, Duanchao; Li, Mengmeng; Xiang, Wei-Ning; Achal, Varenyam

    2014-03-01

    Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

  11. Evaluation of sub-chronic toxic effects of petroleum ether, a laboratory solvent in Sprague-Dawley rats

    PubMed Central

    Parasuraman, Subramani; Sujithra, Jeyabalan; Syamittra, Balakrishnan; Yeng, Wong Yeng; Ping, Wu Yet; Muralidharan, Selvadurai; Raj, Palanimuthu Vasanth; Dhanaraj, Sokkalingam Arumugam

    2014-01-01

    Background: In general, organic solvents are inhibiting many physiological enzymes and alter the behavioural functions, but the available scientific knowledge on laboratory solvent induced organ specific toxins are very limited. Hence, the present study was planned to determine the sub-chronic toxic effects of petroleum ether (boiling point 40–60°C), a laboratory solvent in Sprague-Dawley (SD) rats. Materials and Methods: The SD rats were divided into three different groups viz., control, low exposure petroleum ether (250 mg/kg; i.p.) and high exposure petroleum ether (500 mg/kg; i.p.) administered group. The animals were exposed with petroleum ether once daily for 2 weeks. Prior to the experiment and end of the experiment animals behaviour, locomotor and memory levels were monitored. Before initiating the study animals were trained for 2 weeks for its learning process and its memory levels were evaluated. Body weight (BW) analysis, locomotor activity, anxiogenic effect (elevated plus maze) and learning and memory (Morris water navigation task) were monitored at regular intervals. On 14th day of the experiment, few ml of blood sample was collected from all the experimental animals for estimation of biochemical parameters. At the end of the experiment, all the animals were sacrificed, and brain, liver, heart, and kidney were collected for biochemical and histopathological analysis. Results: In rats, petroleum ether significantly altered the behavioural functions; reduced the locomotor activity, grip strength, learning and memory process; inhibited the regular body weight growth and caused anxiogenic effects. Dose-dependent organ specific toxicity with petroleum ether treated group was observed in brain, heart, lung, liver, and kidney. Extrapyramidal effects that include piloerection and cannibalism were also observed with petroleum ether administered group. These results suggested that the petroleum ether showed a significant decrease in central nervous system

  12. Assessment of petroleum streams for thyroid toxicity.

    PubMed

    Fowles, Jeff R; Banton, Marcy I; Boogaard, Peter J; Ketelslegers, Hans B; Rohde, Arlean M

    2016-07-08

    The thyroid gland, and its associated endocrine hormones, is a growing area of interest in regulatory toxicology due to its important role in metabolism, growth and development. This report presents a review of the toxicology data on chemically complex petroleum streams for thyroid hormone effects. Toxicological summaries and studies from all available published and un-published sources were considered, drawing upon the European REACH regulatory submissions for 19 petroleum streams, with in depth review of 11 individual study reports and 31 published papers on related products or environmental settings. Findings relevant to thyroid pathology or thyroid hormone homeostasis were specifically sought, summarized, and discussed. A total of 349 studies of 28-days or longer duration were considered in the review, including data on mice, rats, rabbits, dogs, humans, and fish. The thyroid was almost invariably not a target organ in these studies. Three rodent studies did find thyroid effects; one on a jet fuel product (JP-8), and two studies on a heavy fuel oil product (F-179). The JP-8 product differs from other fuels due to the presence of additives, and the finding of reduced T4 levels in mice in the study occurred at a dose that is above that expected to occur in environmental settings (e.g. 2000mg/kg). The finding for F-179 involved thyroid inflammation at 10-55mg/kg that co-occurred with liver pathology in rats, indicating a possible secondary effect with questionable relevance to humans. In the few cases where findings did occur, the polycyclic aromatic hydrocarbon (PAH) content was higher than in related substances, and, in support of one possible adverse outcome pathway, one in-vitro study reported reduced thyroid peroxidase (TPO) activity with exposure to some PAH compounds (pyrene, benzo(k)fluoranthene, and benzo(e)pyrene). However, it could not be determined from the data available for this review, whether these specific PAH compounds were substantially higher

  13. 31 CFR 576.206 - Protection granted to the Development Fund for Iraq, Iraqi Petroleum and Petroleum Products, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fund for Iraq, Iraqi Petroleum and Petroleum Products, and the Central Bank of Iraq. 576.206 Section... Prohibitions § 576.206 Protection granted to the Development Fund for Iraq, Iraqi Petroleum and Petroleum... petroleum and petroleum products, and interests therein, but only until title passes to the initial...

  14. Synthesis and analysis of jet fuel from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Gallagher, J. P.; Collins, T. A.; Nelson, T. J.; Pedersen, M. J.; Robison, M. G.; Wisinski, L. J.

    1976-01-01

    Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.

  15. How to access and exploit natural resources sustainably: petroleum biotechnology.

    PubMed

    Sherry, Angela; Andrade, Luiza; Velenturf, Anne; Christgen, Beate; Gray, Neil D; Head, Ian M

    2017-09-01

    As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially-mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost...

  17. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost...

  18. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost...

  19. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost...

  20. Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kast, James; Marcinkoski, Jason; Vijayagopal, Ram

    Medium and heavy duty (MD and HD respectively) vehicles are responsible for 26 percent of the total U.S. transportation petroleum consumption [1]. Hydrogen fuel cells have demonstrated value as part of a portfolio of strategies for reducing petroleum use and emissions from MD and HD vehicles. [2] [3], but their performance and range capabilities, and associated component sizing remain less clear when compared to other powertrains. This paper examines the suitability of converting a representative sample of MD and HD diesel trucks into Fuel Cell Electric Trucks (FCETs), while ensuring the same truck performance, in terms of range, payload, acceleration,more » speed, gradeability and fuel economy.« less

  1. Coprocessing of plastics with coal and petroleum resid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, H.; Curtis, C.W.

    1995-12-31

    Waste plastics have become an increasing problem in the United States since land filling is no longer considered a feasible disposal method. Since plastics are petroleum-derived materials, coprocessing then with coal to produce transportation fuels is a feasible alternative. In this study, catalytic coprocessing reactions were performed using Blind Canyon bituminous coal, Manji petroleum resid, and waste plastics. Model polymers including polystyrene, low density polyethylene (LDPE) and polyethylene tereplithalare (PET) were selected because they represent a substantial portion of the waste plastics generated in the United States. Coprocessing reactions of coal, resid, and polymer as well as reactions of individualmore » components and combinations of two components were performed at 430{degrees}C for one hour with an initial H{sub 2} pressure of 8.5 MPa introduced at ambient temperature with presulfided NiMo/Al{sub 2}O{sub 3} as catalyst. Coprocessing all three materials resulted in a substantial improvement in the total conversion compared to the coal plus polymer reaction and slightly less conversion than the resid plus polymer combinations.« less

  2. Do petroleum-based protective coatings add fuel value to slash

    Treesearch

    James L. Murphy; Charles W. Philpot

    1965-01-01

    Asphalts and wax emulsions have been recommended as protective coatings to help obtain clean, safe burns in slash disposal work. Fuel value determinations in the laboratory indicate that such coatings add little to the fuel value of slash.

  3. PM trend study for the 1998 - 2012 period: Impact of Transport and Petroleum-based Fuels in Santiago Chile

    NASA Astrophysics Data System (ADS)

    Castillo, M. A.; Jhun, I.; Moreno, F.; Oyola, P.; Koutrakis, P.

    2013-05-01

    Santiago is the capital city of Chile and the combination of adverse climatic and geographical conditions, a continuously growing vehicle fleet, and an increasing number of industries, has made Santiago one of the most polluted cities in South America, and has been declared saturated zone for PM10 since 1996. Although there have been important reductions in the PM emissions due the implementation of the "Atmospheric Prevention and Decontamination Plan for the Metropolitan Region" (PPDA) however the efforts have not been enough to meet the actual standards. Currently is approved a standard for PM2.5, where the annual average is 20 μg/m3 and daily average 24 hr is 50 μg/m3. One of the PM2.5 sources are the traffic emission and one of the measures targeted in PPDA has been to regulate this source. In the last 20 years two of the main interventions have been the elimination of Lead in gasoline (2001) and the steadily reduced diesel sulfur content from 5,000 to 50 ppm. In this study we analyzed 14 years of PM2.5 mass and species concentration time's series, from April 1998 to August 2012, elemental chemical analysis was made for approximately 60% of samples using XRF technique at DRI Lab (USA). One of the objectives is evaluate the impact of fuel-related interventions and petroleum-based fuels (PBFs) sales. When was analyzed de lead concentration we found that is present in the environment despite of that was eliminated of gasoline 20 years ago. We analyzed the impact of diesel sulfur on ambient sulfur content, and was constructed a model to verify the relationship between ambient sulfur and diesel sulfur content after controlling for other covariates. The relation between ambient concentration and diesel content sulfur is linear, when the reduction of sulfur in diesel was from 1500 to 50 ppm the concentration decreased from 1.59 to 1.08 μg/m3. To determinate the impact of PBFs sales (gasoline, kerosene, petroleum) on PM2.5 concentration, we estimated PM2

  4. 40 CFR 600.107-08 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specifications for gasoline, diesel, methanol, and methanol-petroleum fuel mixtures are given in § 86.113 of this.... Copies may be obtained from the American Society for Testing and Materials, 100 Barr Harbor Drive, P.O...

  5. Petroleum Processing Wastes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1978-01-01

    Presents a literature review of the petroleum processing wastes, covering publications of 1977. This review covers studies such as the use of activated carbon in petroleum and petrochemical waste treatment. A list of 15 references is also presented. (HM)

  6. Water footprint of U.S. transportation fuels.

    PubMed

    Scown, Corinne D; Horvath, Arpad; McKone, Thomas E

    2011-04-01

    In the modern global economy, water and energy are fundamentally connected. Water already plays a major role in electricity generation and, with biofuels and electricity poised to gain a significant share of the transportation fuel market, water will become significantly more important for transportation energy as well. This research provides insight into the potential changes in water use resulting from increased biofuel or electricity production for transportation energy, as well as the greenhouse gas and freshwater implications. It is shown that when characterizing the water impact of transportation energy, incorporating indirect water use and defensible allocation techniques have a major impact on the final results, with anywhere between an 82% increase and a 250% decrease in the water footprint if evaporative losses from hydroelectric power are excluded. The greenhouse gas impact results indicate that placing cellulosic biorefineries in areas where water must be supplied using alternative means, such as desalination, wastewater recycling, or importation can increase the fuel's total greenhouse gas footprint by up to 47%. The results also show that the production of ethanol and petroleum fuels burden already overpumped aquifers, whereas electricity production is far less dependent on groundwater.

  7. Petroleum: An Energy Profile 1999

    EIA Publications

    1999-01-01

    Explains in layman's terms the major components and operations of the U.S. petroleum industry that include: petroleum products, resources and reserves, drilling and exploration, refining, storage and transportation, imports, exports, and petroleum marketing.

  8. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs.

    PubMed

    Varjani, Sunita J; Gnansounou, Edgard

    2017-12-01

    Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Petroleum and individual polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, Peter H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    Crude petroleum, refined-petroleum products, and individual polycyclic aromatic hydrocarbons (PAHs) contained within petroleum are found throughout the world. their presence has been detected in living and nonliving components of ecosystems. Petroleum can be an environmental hazard for wild animals and plants. Individual PAHs are also hazardous to wildlife, but they are most commonly associated with human illnesses. Because petroleum is a major environmental source of these PAHs, petroleum and PAHs are jointly presented in this chapter. Composition, sources, environmental fate, and toxic effects on all living components of aquatic and terrestrial environments are addessed.

  10. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  11. Petroleum 1996: Issues and Trends

    EIA Publications

    1997-01-01

    Examines historical trends and focuses on major petroleum issues and the events they represent. It analyzes different dimensions of the petroleum industry and related markets in terms of how they relate to the volatility in petroleum markets.

  12. Hydrogen for the subsonic transport. [aircraft design and fuel requirements

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.; Snow, D. B.

    1975-01-01

    Relations between air travel and fuel requirements are examined. Alternate fuels considered in connection with problems related to a diminishing supply of petroleum include synthetic jet fuel, methane, and hydrogen. A cruise flight of a subsonic aircraft on a hydrogen-fueled jet engine was demonstrated in 1957. However, more development work is required to provide a sound engineering base for a complete air transportation system using hydrogen as fuel. Aircraft designs for alternate fuels are discussed, giving attention to hydrogen-related technology already available and new developments which are needed.

  13. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  14. Installation Restoration Program Phase 2. Confirmation/Quantification Stage 2. Bulk Fuel Storage Area Fuel Spill Investigation.

    DTIC Science & Technology

    1987-10-01

    discharged from these wells was containerized and transported to the base oil separator plant for treatment. It is estimated that approximately 25 percent...and 29). The fly ash is probably associated with the power plant tc the west of the Bulk Fuel Storage Area. Just below the fill, at 13 to 15 feet, is...been widely used in petroleum refineries and fuel terminals in response to similar spill impact situations. Although the collect ion/recov- ery

  15. Compatibility of elastomers in alternate jet fuels

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  16. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags

    USDA-ARS?s Scientific Manuscript database

    Pyrolysis of HDPE waste grocery bags followed by distillation resulted in a liquid hydrocarbon mixture that consisted of saturated aliphatic paraffins (96.8%), aliphatic olefins (2.6%), and aromatics (0.6%) that corresponded to the boiling range of conventional petroleum diesel fuel (#1 diesel 182–2...

  17. Microbial degradation of petroleum hydrocarbons.

    PubMed

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fuel Competition in Power Generation and Elasticities of Substitution

    EIA Publications

    2012-01-01

    This report analyzes the competition between coal, natural gas and petroleum used for electricity generation by estimating what is referred to by economists as the elasticity of substitution among the fuels.

  19. Fundamentals of Petroleum.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic information on petroleum is presented in this book prepared for naval logistics officers. Petroleum in national defense is discussed in connection with consumption statistics, productive capacity, world's resources, and steps in logistics. Chemical and geological analyses are made in efforts to familiarize methods of refining, measuring,…

  20. TRANSPORTATION FUEL FROM CELLULOSIC BIOMASS: A COMPARATIVE ASSESSMENT OF ETHANOL AND METHANOL OPTIONS

    EPA Science Inventory

    Future sources of renewable fuel energy will be needed to supplement or displace petroleum. Biomass can be converted to ethanol or methanol, either having good properties as motor fuel, but distinctly different production technology. Those technologies are compared in terms of ...

  1. Biodegradation of effluent contaminated with diesel fuel and gasoline.

    PubMed

    Vieira, P A; Vieira, R B; de França, F P; Cardoso, V L

    2007-02-09

    We studied the effects of fuel concentration (diesel and gasoline), nitrogen concentration and culture type on the biodegradation of synthetic effluent similar to what was found at inland fuel distribution terminals. An experimental design with two levels and three variables (2(3)) was used. The mixed cultures used in this study were obtained from lake with a history of petroleum contamination and were named culture C(1) (collected from surface sediment) and C(2) (collected from a depth of approximately 30cm). Of the parameters studied, the ones that had the greatest influence on the removal of total petroleum hydrocarbons (TPH) were a nitrogen concentration of 550mg/L and a fuel concentration of 4% (v/v) in the presence of culture C(1). The biodegradability study showed a TPH removal of 90+/-2% over a process period of 49 days. Analysis using gas chromatography identified 16 hydrocarbons. The aromatic compounds did not degrade as readily as the other hydrocarbons that were identified.

  2. Fuel oil and kerosene sales 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  3. Catalytic combustion of residual fuels

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  4. Chemical Principles Revisited: Petroleum Chemistry.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents an historical review of the role of petroleum in world history and information on the chemistry of petroleum. It is suggested that petroleum chemistry be discussed since within the next two decades oil and gas will provide the major portion of U.S. energy. (Author/SA)

  5. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    NASA Astrophysics Data System (ADS)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  6. Effect of petroleum products inhalation on some haematological indices of fuel attendants in Calabar metropolis, Nigeria.

    PubMed

    Okoro, A M; Ani, E J; Ibu, J O; Akpogomeh, B A

    2006-01-01

    The Haematotoxic implications of exposure to petroleum fumes through inhalation in human subjects were investigated. A total of 400 subjects (200 males and 200 females) aged between 18-30 years participated. Each gender was further categorized into two groups of 100 each for control and test, respectively. The test group was again subdivided into test 1 (T1) and test 2 (T2) in both sexes. T1 subjects were exposed to petroleum fumes for two years and below while T2 subjects were exposed for more than two years. Samples of blood were collected daily and subjected to haematological analysis. The results obtained showed that in males and females, red blood cell counts (10(6) /mm3) was significantly [P < 0.001] decreased in T1 (4.4 +/- 0.13) and T2 (3.85 +/- 0.07) compared to control (4.76 +/- 0.01). White blood cell counts, haematocrit, haemoglobin concentration and mean corpusclular haemoglobin concentration (MCHC) were significantly [P < 0.01] decreased in both sexes of test groups when compared with control. There was also a significant [P < 0.001] decrease in mean corpuscular haemoglobin (MCH) and mean corpuscular volume (MCV) in test 2 males compared with control. Most subjects exposed for longer than two years (T2) had significantly [P < 0.001] lower values of red blood cell count, haemoglobin concentration and haematocrit than those exposed for less than two years. The odds/odds ratio that a subject would become anaemic progressively rose from less than 1 in the control to greater than 1 or infinity on exposure to petroleum fumes. These results indicate that the petroleum fumes cause a reduction in haematological indices which worsens with prolonged exposure.

  7. American Chemical Society division of fuel chemistry Henry H. Storch award.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chemistry

    American Chemical Society Division of Fuel Chemistry Henry H. Storch Award ... The purpose of the Henry H. Storch Award is to recognize distinguished contributions worldwide to fundamental or engineering research on the chemistry and utilization of all hydrocarbon fuels, with the exception of petroleum. ... The award was established in 1964 by the American Chemical Society Division of Fuel Chemistry and administered by the Division until 1985.

  8. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.

    PubMed

    Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M

    2009-08-01

    A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.

  9. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  10. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource

    NASA Astrophysics Data System (ADS)

    Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    The worldwide plastic generation expanded over years because of the variety applications of plastics in numerous sectors that caused the accumulation of plastic waste in the landfill. The growing of plastics demand definitely affected the petroleum resources availability as non-renewable fossil fuel since plastics were the petroleum-based material. A few options that have been considered for plastic waste management were recycling and energy recovery technique. Nevertheless, several obstacles of recycling technique such as the needs of sorting process that was labour intensive and water pollution that lessened the process sustainability. As a result, the plastic waste conversion into energy was developed through innovation advancement and extensive research. Since plastics were part of petroleum, the oil produced through the pyrolysis process was said to have high calorific value that could be used as an alternative fuel. This paper reviewed the thermal and catalytic degradation of plastics through pyrolysis process and the key factors that affected the final end product, for instance, oil, gaseous and char. Additionally, the liquid fuel properties and a discussion on several perspectives regarding the optimization of the liquid oil yield for every plastic were also included in this paper.

  11. Fuel properties of biodiesel from alternative feedstocks

    USDA-ARS?s Scientific Manuscript database

    Defined as monoalkyl esters of long-chain fatty acids prepared from plant oils, animal fats, or other lipids, advantages of biodiesel over conventional petroleum diesel fuel include derivation from renewable and domestic feedstocks, superior lubricity and biodegradability, higher cetane number and f...

  12. Scenario-based modelling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications.

    PubMed

    Vasudevan, M; Nambi, Indumathi M; Suresh Kumar, G

    2016-06-15

    Knowledge about distribution of dissolved plumes and their influencing factors is essential for risk assessment and remediation of light non-aqueous phase liquid contamination in groundwater. Present study deals with the applicability of numerical model for simulating various hydro-geological scenarios considering non-uniform source distribution at a petroleum contaminated site in Chennai, India. The complexity associated with the hydrogeology of the site has limited scope for on-site quantification of petroleum pipeline spillage. The change in fuel composition under mass-transfer limited conditions was predicted by simultaneously comparing deviations in aqueous concentrations and activity coefficients (between Raoult's law and analytical approaches). The effects of source migration and weathering on the dissolution of major soluble fractions of petroleum fuel were also studied in relation to the apparent change in their activity coefficients and molar fractions. The model results were compared with field observations and found that field conditions were favourable for biodegradation, especially for the aromatic fraction (benzene and toluene (nearly 95% removal), polycyclic aromatic hydrocarbons (up to 65% removal) and xylene (nearly 45% removal). The results help to differentiate the effect of compositional non-ideality from rate-limited dissolution towards tailing of less soluble compounds (alkanes and trimethylbenzene). Although the effect of non-ideality decreased with distance from the source, the assumption of spatially varying residual saturation could effectively illustrate post-spill scenario by estimating the consequent decrease in mass transfer rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Petroleum Sector (NAICS 324)

    EPA Pesticide Factsheets

    Find relevant environmental regulations for the petroleum industry (NAICS 324), including National Emission Standards for Hazardous Air Pollutants (NESHAP)s for petroleum refineries and gasoline dispensing & effluent guidelines for oil and gas extraction

  14. Clean air program : design guidelines for bus transit systems using hydrogen as an alternative fuel

    DOT National Transportation Integrated Search

    1999-04-01

    Alternative fuels such as Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and alcohol fuels (methanol, and ethanol) are already being used in commercial vehicles and transit buses in revenue service. Hydrogen...

  15. PETRORISK: a risk assessment framework for petroleum substances.

    PubMed

    Redman, Aaron D; Parkerton, Thomas F; Comber, Mike H I; Paumen, Miriam Leon; Eadsforth, Charles V; Dmytrasz, Bhodan; King, Duncan; Warren, Christopher S; den Haan, Klaas; Djemel, Nadia

    2014-07-01

    PETRORISK is a modeling framework used to evaluate environmental risk of petroleum substances and human exposure through these routes due to emissions under typical use conditions as required by the European regulation for the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Petroleum substances are often complex substances comprised of hundreds to thousands of individual hydrocarbons. The physicochemical, fate, and effects properties of the individual constituents within a petroleum substance can vary over several orders of magnitude, complicating risk assessment. PETRORISK combines the risk assessment strategies used on single chemicals with the hydrocarbon block approach to model complex substances. Blocks are usually defined by available analytical characterization data on substances that are expressed in terms of mass fractions for different structural chemical classes that are specified as a function of C number or boiling point range. The physicochemical and degradation properties of the blocks are determined by the properties of representative constituents in that block. Emissions and predicted exposure concentrations (PEC) are then modeled using mass-weighted individual representative constituents. Overall risk for various environmental compartments at the regional and local level is evaluated by comparing the PECs for individual representative constituents to corresponding predicted no-effect concentrations (PNEC) derived using the Target Lipid Model. Risks to human health are evaluated using the overall predicted human dose resulting from multimedia environmental exposure to a substance-specific derived no-effect level (DNEL). A case study is provided to illustrate how this modeling approach has been applied to assess the risks of kerosene manufacture and use as a fuel. © 2014 SETAC.

  16. Alternative Fuel Sources for Military Aviation

    DTIC Science & Technology

    2009-04-01

    also in the research process. In addition, the fact that he did not use my first draft to start his fIreplace during the Christmas holidays made me...the Air Force successfully completed a test flight of a B-52 that used a 50150 mix of JP-8 and synthetic fuel made by the FT process. 18 Despite the...However, soybeans, rapeseed (canola), and sunflowers have shown promise as a biofuel feedstock when mixed with petroleum fuels. The following process

  17. Volatile Fuel Hydrocarbons and MTBE in the Environment

    NASA Astrophysics Data System (ADS)

    Cozzarelli, I. M.; Baehr, A. L.

    2003-12-01

    Petroleum hydrocarbons (hydrocarbons that result from petroleum products such as oil, gasoline, or diesel fuel) are among the most commonly occurring and widely distributed contaminants in the environment. Volatile hydrocarbons are the lighter fraction of the petroleum hydrocarbons and, together with fuel oxygenates, are most often released from crude oil and liquid petroleum products produced from crude oil. The demand for crude oil stems from the world's ever-growing energy need. From 1970 to 1999, primary energy production of the world grew by 76% (Energy Information Administration, 2001), with fossil fuels (crude oil, natural gas, and coal) accounting for ˜85% of all energy produced worldwide (Figure 1). World crude oil production reached a record 68 million barrels (bbl) per day (1.08×1010 L d-1) in 2000. The world's dependence on oil as an energy source clearly is identified as contributing to global warming and worsening air and water quality. (7K)Figure 1. World primary energy production by source from 1970 to 1999 (Energy Information Administration, 2001). Petroleum products are present in Earth's subsurface as solids, liquids, or gases. This chapter presents a summary of the environmental problems and issues related to the use of liquid petroleum, or oil. The focus is on the sources of volatile hydrocarbons and fuel oxygenates and the geochemical behavior of these compounds when they are released into the environment. Although oxygenates currently in commercial use include compounds other than methyl t-butyl ether (MTBE), such as ethanol (ETOH), most of the information presented here focuses on MTBE because of its widespread occurrence. The environmental impact of higher molecular weight hydrocarbons that also originate from petroleum products is described in (Chapter 9.13, Abrajano et al.).Crude oil occurs within the Earth and is a complex mixture of natural compounds composed largely of hydrocarbons containing only hydrogen and carbon atoms. The minor

  18. An alternative transportation fuels update : a case study of the developing E85 industry.

    DOT National Transportation Integrated Search

    2011-10-01

    As the United States imports more than half of its oil and overall consumption continues to climb, : the 1992 Energy Policy Act established the goal of having alternative fuels replace at least ten : percent of petroleum fuels used in the trans...

  19. Petroleum geology and total petroleum systems of the Widyan Basin and Interior Platform of Saudi Arabia and Iraq

    USGS Publications Warehouse

    Fox, James E.; Ahlbrandt, Thomas S.

    2002-01-01

    The Widyan Basin-Interior Platform Province (2023) ranks 17th in the world, exclusive of the United States, with 62.5 billion barrels of oil equivalent of total petroleum endowment (cumulative production plus remaining petroleum plus estimated mean undiscovered volumes). Mean estimates of undiscovered petroleum for the province, which includes both Paleozoic and Jurassic petroleum systems as well as portions of three additional total petroleum systems from adjacent provinces, are 21.22 billion barrels of oil, 94.75 trillion cubic feet of gas (15.8 billion barrels of oil equivalent), and 6.85 billion barrels of natural gas liquids. The Paleozoic total petroleum system is dominantly gas prone, whereas the volumetrically larger Jurassic total petroleum system is oil prone - resulting in the characterization of the province as an oil province. The discovery maturity for the province is a relatively low 31 percent, meaning that much of the province petroleum potential lies in the future.

  20. Fuel oil and kerosene sales 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil andmore » Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.« less

  1. CHARACTERISTICS OF SPILLED OILS, FUELS, AND PETROLEUM PRODUCTS: 1. COMPOSITION AND PROPERTIES OF SELECTED OILS

    EPA Science Inventory

    Multicomponent composition and corresponding physical properties data of crude oils and petroleum products are needed as input to environmental fate simulations. Complete sets of such data, however, are not available in the literature due to the complexity and expense of making t...

  2. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals.

    PubMed

    Park, Soyoung; Kim, Ki Seob; Kim, Jeong-Tae; Kang, Daeseok; Sung, Kijune

    2011-01-01

    The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study. A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb, 200 mg/kg for Cu, 12 mg/kg for Cd, and 160 mg/kg for Ni. Three plant species, Brassica campestris, Festuca arundinacea, and Helianthus annuus, were selected for the phytodegradation experiment. Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA. The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B. campestris, E arundinacea, and H. annuus, enhancing percentage degradation to 86%, 64%, and 85% from 45%, 54%, and 66%, respectively. The effect of HA was also observed in the degradation of n-alkanes within 30 days. The rates of removal of n-alkanes in soil planted with B. campestris and H. annuus were high for n-alkanes in the range of C11-C28. A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA. The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA. The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals.

  3. Production of renewable diesel fuel from biologically based feedstocks.

    DOT National Transportation Integrated Search

    2014-09-01

    Renewable diesel is an emerging option to achieve the goal set by the Federal Renewable Fuel Standard of displacing 20% of our nations petroleum consumption with : renewable alternatives by 2022. It involves converting readily available vegetable ...

  4. 40 CFR 600.206-08 - Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an electric...

  5. 40 CFR 600.206-08 - Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an electric...

  6. Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints

    PubMed Central

    Ferreiro-González, Marta; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.

    2017-01-01

    Characterization of petroleum-derived products is an area of continuing importance in environmental science, mainly related to fuel spills. In this study, a non-separative analytical method based on E-Nose (Electronic Nose) is presented as a rapid alternative for the characterization of several different petroleum-derived products including gasoline, diesel, aromatic solvents, and ethanol samples, which were poured onto different surfaces (wood, cork, and cotton). The working conditions about the headspace generation were 145 °C and 10 min. Mass spectroscopic data (45–200 m/z) combined with chemometric tools such as hierarchical cluster analysis (HCA), later principal component analysis (PCA), and finally linear discriminant analysis (LDA) allowed for a full discrimination of the samples. A characteristic fingerprint for each product can be used for discrimination or identification. The E-Nose can be considered as a green technique, and it is rapid and easy to use in routine analysis, thus providing a good alternative to currently used methods. PMID:29113069

  7. 77 FR 75868 - Regulation of Fuels and Fuel Additives: Modifications to the Transmix Provisions Under the Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...EPA is amending the requirements under EPA's diesel sulfur program related to the sulfur content of locomotive and marine (LM) diesel fuel produced by transmix processors and pipeline facilities. These amendments will reinstate the ability of locomotive and marine diesel fuel produced from transmix by transmix processors and pipeline operators to meet a maximum 500 parts per million (ppm) sulfur standard outside of the Northeast Mid-Atlantic Area and Alaska and expand this ability to within the Northeast Mid-Atlantic Area provided that: the fuel is used in older technology locomotive and marine engines that do not require 15 ppm sulfur diesel fuel, and the fuel is kept segregated from other fuel. These amendments will provide significant regulatory relief for transmix processors and pipeline operators to allow the petroleum distribution system to function efficiently while continuing to transition the market to virtually all ultra-low sulfur diesel fuel (ULSD, i.e. 15 ppm sulfur diesel fuel) and the environmental benefits it provides.

  8. Alternative designs for petroleum product storage tanks for groundwater protection.

    PubMed

    Oke Adeleke, Samson

    In developing countries, there are numerous occurrences of petroleum product spillage in groundwater. The current practice of burying storage tanks beneath the surface without adequate safety devices facilitates this phenomenon. Underground tanks rust and leak, and spilled petroleum products migrate downward. The movement of the oil in the soil depends on its viscosity and quantity, the permeability of the soil/rock, and the presence of fractures within the rock. The oil spreads laterally in the form of a thin pancake due to its lower specific gravity, and soluble components dissolve in water. The pollution plume of petroleum products and dissolved phases moves in the direction of groundwater flow in the aquifer within the pores of soil and sediments or along fractures in basement complex areas. Most communities reply heavily on groundwater for potable and industrial supplies. However, the sustainability of this resource is under threat in areas where there are filling stations as a result of significant groundwater contamination from petroleum product spillage. Drinking water becomes unpalatable when it contains petroleum products in low concentrations, and small quantities may contaminate large volumes of water. Considering the losses incurred from spillage, the cost of cleaning the aquifer, and the fact that total cleansing and attenuation is impossible, the need to prevent spillage and if it happens to prevent it from getting into the groundwater system is of paramount importance. This paper proposes alternative design procedures with a view to achieving these objectives.

  9. Future petroleum energy resources of the world

    USGS Publications Warehouse

    Ahlbrandt, T.S.

    2002-01-01

    and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  10. 40 CFR 86.1313-2004 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...

  11. 40 CFR 86.1313-2004 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...

  12. 40 CFR 86.1313-2004 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...

  13. 40 CFR 86.1313-2004 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... Administrator in exhaust and evaporative emission testing of petroleum-fueled Otto-cycle engines, except that...

  14. Portable Fuel Quality Analyzer

    DTIC Science & Technology

    2014-01-27

    other transportation industries, such as trucking. The PFQA could also be used in fuel blending operations performed at petroleum, ethanol and biodiesel plants. ...Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per...24476 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The

  15. The effect of oil-water-rock partitioning on the occurrence of alkylphenols in petroleum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.; Larter, S.; Jones, M.

    1997-05-01

    Low molecular weight (C{sub 0}-C{sub 3}) alkylphenols are ubiquitous constituents of crude oils and formation waters of petroleum systems, and they represent legislatively monitored pollutants in produced oils and waters from offshore petroleum facilities. Their origin and the controls on their abundance are uncertain. Analysis of forty-four oils from various petroleum provinces, together with laboratory partitioning experiments, has provided further information on these controls. Although phenols are clearly partitioned between oil and water in petroleum systems, the consistency of most nondegraded petroleum phenol distributions (despite the apparent decrease of phenol concentrations in petroleums with increasing secondary migration distance) requires phenolmore » partitioning between petroleum, water, and solid phases-chiefly kerogen in the carrier bed. The retention of significant phenol concentrations in petroleums that have migrated tens of kilometres does indicate that petroleum typically only equilibrates with minor volumes of rock and associated waters. Laboratory experiments indicate that oils which have migrated approximately 25 km in the North Sea Tampen Spur through Jurassic sandstones may have equilibrated with less than 20 vol of rock and water, and possibly much less than 1 vol, depending on the sorbing phases within the rock (i.e., mineral or organic matter) and the wetting phase (oil or water). We conclude, supporting the hypothesis of Ioppolo-Armanios et al. (1995), that although ortho-substituted isomers dominate the phenol distributions of many petroleums, this reflects catalytic alkylation/isomerisation of unknown alkylphenol precursors in source rocks, rather than selective removal of meta- and para-substituted alkylphenol isomers from petroleum by water washing. 35 refs., 7 figs., 2 tabs.« less

  16. 40 CFR 600.206-08 - Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., highway, and combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value exists for an...

  17. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... primary energy source. In assessing whether the unit is technically capable of using a mixture of petroleum or natural gas and coal or another alternate fuel as a primary energy source, for purposes of this... technically capable of using the mixture as a primary energy source under § 504.6(c), this certification...

  18. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... primary energy source. In assessing whether the unit is technically capable of using a mixture of petroleum or natural gas and coal or another alternate fuel as a primary energy source, for purposes of this... technically capable of using the mixture as a primary energy source under § 504.6(c), this certification...

  19. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... primary energy source. In assessing whether the unit is technically capable of using a mixture of petroleum or natural gas and coal or another alternate fuel as a primary energy source, for purposes of this... technically capable of using the mixture as a primary energy source under § 504.6(c), this certification...

  20. Vehicle conversion to hybrid gasoline/alternative fuel operation

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.

    1982-01-01

    The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).

  1. Biodiesel: A fuel, a lubricant, and a solvent

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is well-known as a biogenic alternative to conventional diesel fuel derived from petroleum. It is produced from feedstocks such as plant oils consisting largely of triacylglycerols through transesterification with an alcohol such as methanol. The properties of biodiesel are largely compet...

  2. Jet Propellant 8 versus Alternative Jet Fuels: A Life-Cycle Perspective

    DTIC Science & Technology

    2011-01-01

    United States imports.26 The CBTL process uses three existing technologies to convert coal and biomass into liquid fuel: gasification , FT synthesis...and carbon capture and storage. Gasification converts coal and biomass into CO and H2, a mixture commonly referred to as “syngas.” FT synthesis...com- pare petroleum-derived jet fuel (i.e., JP-8) to an alternative jet fuel derived from a coal- biomass -to-liquid (CBTL) process. The EIO- LCA

  3. 77 FR 42297 - National Petroleum Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... DEPARTMENT OF ENERGY National Petroleum Council AGENCY: Department of Energy, Office of Fossil... National Petroleum Council. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that... Matters Discussion of Any Other Business Properly Brought Before the National Petroleum Council...

  4. 76 FR 53889 - National Petroleum Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... DEPARTMENT OF ENERGY National Petroleum Council AGENCY: Department of Energy, Office of Fossil... Petroleum Council. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public... Properly Brought Before the National, Petroleum Council, Adjournment. Public Participation: The meeting is...

  5. Fuel oil and kerosene sales, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-22

    Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2more » percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.« less

  6. Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation

    Science.gov Websites

    anxiety. More recently, the company has been exploring dedicated-propane vehicles in Kansas City to ensure technologies and petroleum-use reduction strategies, then deployed bi-fuel vans; currently exploring dedicated

  7. Improved oxidative stability of biodiesel fuels : antioxidant research and development.

    DOT National Transportation Integrated Search

    2011-01-01

    Biodiesel is a domestic, renewable fuel that is gaining wide acceptance, especially in Europe. : When blended with conventional petroleum diesel, biodiesel reduces hydrocarbon, particulate : and carbon monoxide emissions, while having minimal to no e...

  8. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  9. Petroleum supply monthly, April 1991. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-29

    Data presented in the PSM (Petroleum Supply Monthly) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated,more » the data reported by these sectors approximately represent the consumption of petroleum products in the United States. The tables and figures in the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. Industry terminology and product definitions are listed alphabetically in the Glossary. 14 figs., 65 tabs.« less

  10. Pannonian Basin Province, Central Europe (Province 4808) -Petroleum Geology, Total Petroleum Systems, and Petroleum Resource Assessment

    USGS Publications Warehouse

    Dolton, Gordon L.

    2006-01-01

    This report deals with the Pannonian Basin Province of Central Europe and summarizes the petroleum geology, which was the basis for assessment, and presents results of that assessment. The Pannonian Basin Province consists of a large compound extensional basin of Neogene age overlying Paleogene basins and interior elements of the greater Alpine foldbelt. Within it, six total petroleum systems (TPS) are defined and six assessment units established for estimation of undiscovered oil and gas resources. Other speculative TPSs were identified but not included for quantitative assessment within this study.

  11. 21 CFR 178.3720 - Petroleum wax, synthetic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Petroleum wax, synthetic. 178.3720 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3720 Petroleum wax, synthetic. Synthetic petroleum wax may be safely used in applications and under the same conditions where naturally derived petroleum wax...

  12. 21 CFR 178.3720 - Petroleum wax, synthetic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Petroleum wax, synthetic. 178.3720 Section 178.3720... Certain Adjuvants and Production Aids § 178.3720 Petroleum wax, synthetic. Synthetic petroleum wax may be safely used in applications and under the same conditions where naturally derived petroleum wax is...

  13. 78 FR 40131 - National Petroleum Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... DEPARTMENT OF ENERGY National Petroleum Council AGENCY: Office of Fossil Energy, Department of... Petroleum Council. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public... Administrative Matters Discussion of Any Other Business Properly Brought Before the National Petroleum Council...

  14. Alternative Fuels Data Center: Hydrogen Related Links

    Science.gov Websites

    to promote understanding of hydrogen technology and to create a marketplace for pollution-free make a swift transition to pollution-free renewable energy sources and clean, petroleum-free of fuel cells and related pollution-free, efficient energy generation, storage and utilization

  15. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  16. 21 CFR 172.888 - Synthetic petroleum wax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  17. Fuel Price Effects on Readiness

    DTIC Science & Technology

    2014-05-01

    Wide Fuel Management 1. DLA’s Role DLA-E has the mission of acquiring, storing, selling, and distributing energy including petroleum, natural gas ...energy, and installations also use energy in the form of electricity (11 percent), natural gas (8 percent), and coal (2 percent). See Schwartz, Blakely...have also excluded liquefied propane gas (LPG), from this study. 10 through four IDIQ

  18. Quantifying the Impact of Vehicle and Motor Fuel Provisions from the Energy Policy Act on the Sustainability and Resilience of U.S. Cities: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steward, Darlene; Sears, Ted

    The Energy Policy Act (EPAct) of 1992, with later amendments, was enacted with the goal of reducing U.S. petroleum consumption by building a core market for alternative fuels and vehicles. The U.S. Department of Energy manages three federal programs related to EPAct; the Sustainable Federal Fleets Program, the State and Alternative Fuel Provider Program, and Clean Cities. Federal agencies and State and Alternative Fuel Provider Fleets are required to submit annual reports that document their compliance with the legislation. Clean Cities is a voluntary program aimed at building partnerships and providing technical expertise to encourage cities to reduce petroleum usemore » in transportation. This study reviews the evolution of these three programs in relation to alternative fuel and vehicle markets and private sector adoption of alternative fueled vehicles to assess the impact of the programs on reduction in petroleum use and greenhouse gas emissions both within the regulated fleets and through development of alternative fuel and vehicle markets. The increased availability of alternative fuels and use of alternative fuels in regulated fleets is expected to improve cities' ability to respond to and quickly recover from both local disasters and short- and long-term regional or national fuel supply interruptions. Our analysis examines the benefits as well as potential drawbacks of alternative fuel use for the resiliency of U.S. cities.« less

  19. Data and Tools | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    researchers, developers, investors, and others interested in the viability, analysis, and development of , energy use, and emissions. Alternative Fuels Data Center Tools Collection of tools-calculators -makers reduce petroleum use. FASTSim: Future Automotive Systems Technology Simulator Simulation tool that

  20. Current situation of development of petroleum substituting energies (USA)

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Trends in development of petroleum substituting energies in the U.S.A. are described. Among non-fossil fuel based energies currently available, nuclear power generation (7%), biomass power generation (4%), and hydraulic power generation (3%) account for a large part. The future for the nuclear energy is opaque. Biomasses are anticipated to be the largest regenerative energy source. Solar energy was regarded to be a future energy source, but its cost effect is not still good. While geothermal power generation produces 0.1% of the entire energy, its future is bright. Ocean energies of all types of form such as sea water thermal energy conversion and wave energy were not treated as a substituting energy in the U.S.A. Multi-fuel vehicles using gasoline, methanol, and ethanol are estimated to account for 25% of vehicle operations in the U.S.A. by 2000. Electric vehicles for practical use would be a hybrid type combining electric motors and gasoline engines.

  1. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    PubMed

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... annual covercrops Fermentation using natural gas, biomass, or biogas for process energy 6 F Biodiesel...-Esterification Hydrotreating Excluding processes that co-process renewable biomass and petroleum 4 G Biodiesel... Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual covercrops; Algal oil...

  3. LPG as a Fuel for Diesel Engines-Experimental Investigations

    NASA Astrophysics Data System (ADS)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  4. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...

  5. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...

  6. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...

  7. 40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel distribution. (c) Vehicle preconditioning. (1) The vehicle fuel tanks are to be filled with fuel that meets the specifications in § 86.113. Fuel tanks shall be filled to 10 percent of nominal fuel.... (2) Within one minute of obtaining the initial FID (or HFID) reading, the dispensed fuel nozzle shall...

  8. Improved oxidative stability of biodiesel fuels : antioxidant research and development : [summary].

    DOT National Transportation Integrated Search

    2007-03-21

    Biodiesel is a domestic, renewable fuel that is gaining wide acceptance, : especially in Europe. When blended with conventional petroleum diesel, biodiesel : reduces hydrocarbon, particulate and carbon monoxide emissions, while having minimal : to no...

  9. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA

    USGS Publications Warehouse

    Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani

    2014-01-01

    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.

  10. Alternative Fuels Data Center: Propane Basics

    Science.gov Websites

    released, the liquid propane vaporizes and turns into gas that is used in combustion. An odorant, ethyl petroleum gas (LPG) or propane autogas, propane is a cleaner-burning alternative fuel that's been used for decades to power light-, medium- and heavy-duty propane vehicles. Propane is a three-carbon alkane gas

  11. Petroleum supply monthly, February 1991. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated,more » the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 12 figs., 54 tabs.« less

  12. Winter fuels report, week ending November 12, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-18

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricingmore » data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.« less

  13. Geochemical controls on vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  14. Geochemical controls of vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  15. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exhaust emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy...

  16. [Study on the constituents of petroleum ether fraction of Buxus microphylla].

    PubMed

    Dai, Zhi-Kai; Liang, Jun; Su, Xiao-Jian; Xu, Qing; Zhang, Hui-Qin

    2009-07-01

    To study the chemical constituents from the petroleum ether fraction of Buxus microphylla. The petroleum ether fraction of Buxus microphylla was isolated and identified by silica gel column chromatography. And the anticancer activity of different chemical constituents was measured by MTT reduction test. Eight compounds were isolated and identified as lupeol (1), butulin (3), beta-sitosterol (4), stigmasterol (5), dibutyl phthalate (6), 3beta, 30-dihydroxy-lup-20 (29) ene (7), daucosterol (8). Compound 7 inhibited KB cells' proliferation in a dose-dependent manner. Compounds 2 - 5, 7, 8 are isolated from this genus for the first time. Compound 7 has certainly anticancer effects.

  17. Identification of ester metabolites from petroleum hydrocarbon biodegradation in groundwater using GC×GC-TOFMS.

    PubMed

    O'Reilly, Kirk T; Mohler, Rachel E; Zemo, Dawn A; Ahn, Sungwoo; Tiwary, Asheesh K; Magaw, Renae I; Devine, Catalina Espino; Synowiec, Karen A

    2015-09-01

    In an effort to understand the nature and toxicity of petroleum hydrocarbon degradation metabolites, 2-dimensional gas chromatography linked to a time-of-flight mass spectrometer (GC×GC-TOFMS) was used to conduct nontargeted analysis of the extracts of 61 groundwater samples collected from 10 fuel release sites. An unexpected result was the tentative identification of 197 unique esters. Although esters are known to be part of specific hydrocarbon degradative pathways, they are not commonly considered or evaluated in field studies of petroleum biodegradation. In addition to describing the compounds identified, the present study discusses the role for nontargeted analysis in environmental studies. Overall, the low toxicological profile of the identified esters, along with the limited potential for exposure, renders them unlikely to pose any significant health risk. © 2015 The Authors. Published by Wiley Periodicals, Inc., on behalf of SETAC.

  18. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  19. Clean Air Program : Design Guidelines for Bus Transit Systems Using Liquefied Natural Gas (LNG) as an Alternative Fuel

    DOT National Transportation Integrated Search

    1997-03-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Natural Gas (LNG), Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), and Methanol/Ethanol, are already being used. At present, t...

  20. Chapter 32: Geology and petroleum potential of the Arctic Alaska petroleum province

    USGS Publications Warehouse

    Bird, K.J.; Houseknecht, D.W.

    2011-01-01

    The Arctic Alaska petroleum province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald Arch orogenic belt and south of the northern (outboard) margin of the Beaufort Rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America with total known resources (cumulative production plus proved reserves) of c. 28 BBOE. The province constitutes a significant part of a displaced continental fragment, the Arctic Alaska microplate, that was probably rifted from the Canadian Arctic margin during formation of the Canada Basin. Petroleum prospective rocks in the province, mostly Mississippian and younger, record a sequential geological evolution through passive margin, rift and foreland basin tectonic stages. Significant petroleum source and reservoir rocks were formed during each tectonic stage but it was the foreland basin stage that provided the necessary burial heating to generate petroleum from the source rocks. The lion's share of known petroleum resources in the province occur in combination structural-stratigraphic traps formed as a consequence of rifting and located along the rift shoulder. Since the discovery of the super-giant Prudhoe Bay accumulation in one of these traps in the late 1960s, exploration activity preferentially focused on these types of traps. More recent activity, however, has emphasized the potential for stratigraphic traps and the prospect of a natural gas pipeline in this region has spurred renewed interest in structural traps. For assessment purposes, the province is divided into a Platform assessment unit (AU), comprising the Beaufort Rift shoulder and its relatively undeformed flanks, and a Fold-and-Thrust Belt AU, comprising the deformed area north of the Brooks Range and Herald Arch tectonic belt. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil (BBO) and 122 trillion

  1. Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock

    USDA-ARS?s Scientific Manuscript database

    Hydrotreated renewable jet fuel (HRJ) derived from crop oils has been commercially demonstrated but full-scale production has been hindered by feedstock costs that make the product more costly than petroleum-based fuels. Maintaining low feedstock costs while developing crops attractive to farmers to...

  2. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Isoparaffinic petroleum hydrocarbons, synthetic... hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production... isoparaffinic petroleum hydrocarbons, produced by synthesis from petroleum gases consist of a mixture of liquid...

  3. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production... isoparaffinic petroleum hydrocarbons, produced by synthesis from petroleum gases consist of a mixture of liquid...

  4. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  5. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  6. Clean air program : design guidelines for bus transit systems using electric and hybrid electric propulsion as an alternative fuel

    DOT National Transportation Integrated Search

    2003-03-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including : Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and : Methanol/Ethanol, are already being used. At presen...

  7. Propulsion and Energetics Panel Working Group 13 on Alternative Jet Engine Fuels. Volume 2. Main Report

    DTIC Science & Technology

    1982-07-01

    twenty years the only economically available fuels for aircraft gas turbine engines will be those from the processing of conventional crude petroleum...alternative fuels in new aircraft engines. i.e. problems ir, combustors. turbines . and afterburners. and methods for their solution. - Fuel system...required expertise assigned to each task group. The three areas were. Supply and demand scenarios for aviation turbine fuels in the NATO Nations for the

  8. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, T. S.; Taylor, C. H.; Moore, J. S.

    % to 76% higher than in the No Program case. On-road medium- and heavy-duty vehicle stock could be as much as 39% higher. The resulting petroleum savings in 2035 were estimated to be as high as 3.1 million barrels per day, and reductions in GHG emissions were estimated to be as high as 500 million metric tons of CO2 equivalent per year. The benefits of continuing to invest government resources in advanced vehicle and fuel cell technologies would have significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.« less

  9. Fuel-Flexible Engines for Portable-Power Applications

    DTIC Science & Technology

    2009-05-31

    military grade, JP8, respectively. Repeated testing procedures elucidated the need for better measurement and control of the glow plug intensity ...different fuels that are currently available for market consumption. While petroleum- based fuels are being tested in this research, the researchers are...0.8 210 15 TA4, TA7 Gasoline C8-H18 0.75 280 15.1 TA7 Light Diesel C8-H18 0.85 210 15 TA7 Medium Diesel C14-H30 0.85 210 15 TA7 Heavy Diesel C21-H44

  10. Tumorigenic Evaluation of Jet Fuels JP-TS and JP-7.

    DTIC Science & Technology

    1991-04-01

    DTIC AL-TR-1991 0020 3 ELECTE0 AD-A252 012 JUN 2 6 1992• • TUMORIGENIC EVALUATION OF JET FUELS JP-TS AND JP-7 E. R. Kinkead C. L. Gaworski C. D...Evaluation of Jet Fuels JP-TS and JP-7. The research described in this report began in March 1981 and was completed in February 1991 under U.S. Air Force...of jet engines in military and commercial aircraft has led to the development of a number of petroleum distillate fuels with special properties. These

  11. Geostatistics and petroleum geology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.

    1988-01-01

    The book reviewed is designed as a practical guide to geostatistics or kriging for the petroleum geologists. The author's aim in the book is to explain geostatistics as a working tool for petroleum geologists through extensive use of case-study material mostly drawn from his own research in gas potential evaluation in West Virginia. Theory and mathematics are pared down to immediate needs.

  12. Alternative Fuels and Their Potential Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  13. Bioremediation of petroleum-contaminated soil: A Review

    NASA Astrophysics Data System (ADS)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  14. Diversifying bio-petro fuel sources for future energy sustainability and its challenges

    NASA Astrophysics Data System (ADS)

    Othman, M. R.; Helwani, Z.; Idris, I.

    2018-04-01

    Petroleum has been important in the energy industry since 19th century when the refining of paraffin from crude oil began. The industry recently appears to be in a downtown and fragile moment despite the price of oil is slowly rising. Renewable alternatives such as biofuels have gained increasing traction while petroleum fuel seemingly concedes to bio-fuels due to the rising public concern on the environment and stricter emission regulations. To be a strategic fuel in the energy security matrix, both fossil and bio-fuels options should be considered. However, the use of bio-fuels to achieve a degree of carbon neutrality is not without challenges. Among the challenges are land development and socio-political issue, carbon neutrality due to ILUC, high 2G bio-fuel feedstock and production cost, competing technology from electric vehicles and the impending fourth industrial revolution, NOx emissions and variation in biodiesel quality. This paper briefly reviews the potential of fuels source diversification and the challenges and how they can raise up to the challenges in order to be sustainable and attractive. In order to achieve this objective, first carbon credit through carbon trading needs to continue to stabilize the energy price. Second, 1G bio-fuel needs to forgo the use of natural, peat forest, rubber estate since these are an effective carbon sink and oxygen source. Third, advanced bio-fuels with high yield, process economics and sustainability need to be innovated. Fourth, the quality and standard bio-fuel that reduces NOx emission need to be improved. Finally and most importantly, carbon capture technology needs to be deployed immediately in fossil fuel power plants.

  15. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value...

  16. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value...

  17. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy, CO2 emissions, and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy value...

  18. Petroleum and the Environment: Teaching about Petroleum and the Future of Energy Resources

    ERIC Educational Resources Information Center

    Hudson, Travis; Camphire, Geoffrey

    2005-01-01

    Students live in a world that is powered by petroleum and other energy resources to an unsurpassed degree. The United States today consumes more than 24% of all the energy used in the world--and about 60% of this energy is provided by petroleum (oil and natural gas). The availability of abundant, inexpensive energy is the main reason that the…

  19. A comparative study of the rheological and sensory properties of a petroleum-free and a petroleum-based cosmetic cream.

    PubMed

    Wang, Fan C; Marangoni, Alejandro G

    A petroleum-free skin cream was developed using food-grade ingredients. The rheological and sensorial properties of this petroleum-free skin cream were compared to a commercially available petroleum-based skin cream. Specifically, large-amplitude oscillatory shear (LAOS) characterization of the two skin creams was performed. The petroleum-free skin cream showed similar linear and nonlinear viscoelastic rheological properties, comparable skin hydration functions, and consumer acceptance as the commercially available skin cream. A schematic diagram aiming to correlate the physical and sensorial properties of skin cream was also proposed at the end of the work. Results of this work could provide the cosmetic industry necessary information for the development of alternatives for petroleum-based skin creams.

  20. Discrimination of petroleum fluorescence spectra.

    PubMed

    Stelmaszewski, Adam

    2007-01-01

    This paper presents studies of the total spectra (fluorescence-excitation matrix) of petroleum with regard to the utilization of fluorescence for determining petroleum pollutants. Thorough testing of one group, comprising almost forty lubricating oils in the form of their hexane solutions, points out their discrimination.

  1. Harmonisation of microbial sampling and testing methods for distillate fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, G.C.; Hill, E.C.

    1995-05-01

    Increased incidence of microbial infection in distillate fuels has led to a demand for organisations such as the Institute of Petroleum to propose standards for microbiological quality, based on numbers of viable microbial colony forming units. Variations in quality requirements, and in the spoilage significance of contaminating microbes plus a tendency for temporal and spatial changes in the distribution of microbes, makes such standards difficult to implement. The problem is compounded by a diversity in the procedures employed for sampling and testing for microbial contamination and in the interpretation of the data obtained. The following paper reviews these problems andmore » describes the efforts of The Institute of Petroleum Microbiology Fuels Group to address these issues and in particular to bring about harmonisation of sampling and testing methods. The benefits and drawbacks of available test methods, both laboratory based and on-site, are discussed.« less

  2. Embryotoxic effects of benzo[a]pyrene, chrysene and 7,12-dimethylbenz[a]-anthracene in petroleum hydrocarbon mixtures in mallard ducks

    USGS Publications Warehouse

    Hoffman, D.J.; Gay, M.L.

    1981-01-01

    Studies with different avian species have revealed that surface applications of microliter amounts of some crude and fuel oils that coat less than 70% of the egg surface result in considerable reduction in hatching with teratogenicity and stunted growth. Other stUdies have shown that the embryo toxicity is dependent on the aromatic hydrocarbon content, further suggesting that the toxicity is due to causes other than asphyxia. In the present study the effects of three polycyclic aromatic hydrocarbons identified in petroleum were examined on mallard (Anas platyrhynchos) embryo development. Addition of benzo[a]pyrene (BaP), chrysene, or 7,7 2-dimethylbenz[ a]anthracene (DMBA) to a synthetic petroleum hydrocarbon mixture of known composition and relatively low embryotoxicity resulted in embryo toxicity that was enhanced or equal to that of crude oil when 10 :I was applied externally to eggs at 72 h of development. The order of ability to enhance embryo toxicity was DMBA > BaP > chrysene. The temporal pattern of embryonic death was similar to that reported after exposure to crude oil, with additional mortality occurring after outgrowth of the chorioallantois. Retarded growth, as reflected by embryonic body weight, crown-rump length, and bill length, was accompanied by teratogenicity. Abnormal embryos exhibited extreme stunting; eye, brain, and bill defects; and incomplete ossification. Gas chromatographic-mass spectral analysis of externally treated eggs showed the passage of aromatic hydrocarbons including chrysene through the shell and shell membranes to the developing embryos. These findings suggest that the presence of polycyclic aromatic hydrocarbons in petroleum, including BaP, chrysene, and DMBA, significantly enhances the overall embryotoxicity in avian species.

  3. Petroleum: An energy profile. [CONTAINS GLOSSARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-08-01

    This publication is intended as a general reference about petroleum: its origins, production, refining, marketing, and use. This report presents an overview of refined petroleum products and their use, crude oil reserves and production, refining technology and US refining capacity, the development and operation of petroleum markets, and foreign trade. A statistical supplement, an appendix describing refining operations, a glossary, and bibliographic references for additional sources of information are also included. 36 figs., 4 tabs.

  4. Impact of 50% Synthesized Iso-Paraffins (SIP) on F-76 Fuel Coalescence

    DTIC Science & Technology

    2013-12-16

    petroleum JP-5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic...manufactured scaled down filter/coalescer and separator to simulate the performance of a full-scale filter separator system. This test is designed to predict...5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic hydrocarbons

  5. Evaluation of 90-Day Inhalation Toxicity of Petroleum and Oil Shale Diesel Fuel Marine (DFM)

    DTIC Science & Technology

    1985-12-01

    developed mineralization and papillary hyperplasia . These stexposure renal changes were generally less severe in qjje rats exposed to S0 T Shale DEN and...exposure incluled mild pulmonary inflammatory lesions in subjects assigned to tho Shale DFM study (Table 8). Mice exposed to Petroleum DFM did not...exhibit significant pulmonary inflammatory changes. Liver inflammatory changes consisting of multifocal accumulations of chronic inflammatory cells were

  6. 49 CFR 192.11 - Petroleum gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the requirements...

  7. 49 CFR 192.11 - Petroleum gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Petroleum gas systems. 192.11 Section 192.11... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS General § 192.11 Petroleum gas systems. (a) Each plant that supplies petroleum gas by pipeline to a natural gas distribution system must meet the requirements...

  8. Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum

    Science.gov Websites

    . Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1 Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug

  9. Dependence of the pour point of diesel fuels on the properties of the initial components

    NASA Technical Reports Server (NTRS)

    Ostashov, V. M.; Bobrovskiy, S. A.

    1979-01-01

    An analytical expression is obtained for the dependence of the pour point of diesel fuels on the pour point and weight relationship of the initial components. For determining the pour point of a multicomponent fuel mixture, it is assumed that the mixture of two components has the pour point of a separate equivalent component, then calculating the pour point of this equivalent component mixed with a third component, etc.

  10. Assessing phototoxicity of petroleum using the bivalve Mulinia lateralis and the mysid Mysidopsis bahia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelletier, M.; Champlin, D.; Burgess, R.

    1995-12-31

    One of the major inputs of PAHs in the marine environment is petroleum products. A large and often catastrophic source of petroleum is an oil spill, which releases concentrated quantities of PAHs into the water column. Intermediate molecular weight compounds remain in the water column for a relatively extended length of time. These compounds include phototoxic PAHs such as anthracene, fluoranthene, pyrene, and their substituted derivatives. Assessments of the environmental impact of marine oil spills have not included phototoxicity tests using pelagic larvae of benthic invertebrates. In this study, the photoreactive toxicity of individual PAHs, including anthracene, pyrene, and fluoranthene,more » were determined using the bivalve, Mulinia lateralis and the mysid, Mysidopsis bahia. Ultraviolet light exposures increased toxicity relative to fluorescent light for both species but a particularly dramatic response was seen using M. lateralis embryos. This species was relatively insensitive when exposed under fluorescent lights, but exhibited up to a 4,000 fold increase in toxicity under ultraviolet lights. Exposures with different types of petroleum (e.g., fuel oil {number_sign}2 and crude oil) under fluorescent and ultraviolet light will demonstrate the utility of this bivalve and mysid for assessing oil spill-related acute and sublethal toxicity in the marine environment.« less

  11. Petroleum resource potential GIS of northern Afghanistan

    USGS Publications Warehouse

    Steinshouer, Douglas W.; Klett, Timothy R.; Ulmishek, Gregory F.; Wandrey, Craig J.; Wahl, Ronald R.; Hill, Ronald J.; Pribil, Michael J.; Pawlewicz, Mark J.; King, J. David; Agena, Warren F.; Taylor, David J.; Amirzada, Abdulla; Selab, Amir Mohammad; Mutteh, Abdul-Salam; Haidari, Ghulam Naqshband; Wardak, Moeengul Gullabudeen

    2006-01-01

    The CD-ROM contains an ESRI ArcReader format GIS project presenting the results of a petroleum resource assessment of Northern Afghanistan, and other data used in the petroleum assessment. Geologic, structural, field, well, political, and other GIS layers covering Afghanistan, Northern Afghanistan and adjacent areas, along with associated geochemical and other data tables pertinent to a petroleum assessment are included. The purpose of this GIS is to provide the basic data layers and tables required to support the petroleum assessment, data for further exploration and development, and an index of known data.

  12. Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, A S; Mueller, C J; Buchholz, B A

    2004-02-10

    Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}.more » Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.« less

  13. Unit: Petroleum, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    This is a National Trial Print of a unit on petroleum developed for the Australian Science Education Project. The package contains the teacher's edition of the written material and a script for a film entitled "The Extraordinary Experience of Nicholas Nodwell" emphasizing the uses of petroleum and petroleum products in daily life and…

  14. Job Prospects for Petroleum Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1988-01-01

    Describes petroleum engineering as one area in industry where job opportunities are few but where the worst of the declines has been seen. Discusses the causes of the decline. Lists several areas where petroleum engineers have found alternatives including environmental projects, water supply projects, and computer applications. (CW)

  15. Explaining EIA Crude Oil and Petroleum Product Price Data and Comparing with Other U.S. Government Data Sources, 2001 to 2010

    EIA Publications

    2012-01-01

    This article describes the sampling frames and basic data collection methods for petroleum price data reported by Energy Information Administration (EIA) and other Government agencies. In addition, it compares and contrasts annual average prices reported by EIA with comparable prices from the Bureau of Labor Statistics (BLS) CPI (Consumer Price Indexes) for the retail prices of residential No. 2 distillate, on-highway diesel fuel and motor gasoline (all grades.) Further, it compares refiner wholesale/resale prices for No. 2 fuel oil, No. 2 diesel fuel, motor gasoline (all grades,) kerosene-type jet fuel and residual fuel oil reported by EIA with comparable prices from the BLS PPI (Producer Price Index.) A discussion of the various crude oil prices and spot/futures prices published by EIA and other Government agencies is also included in the article.

  16. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Vijlee, Shazib Z.

    Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The

  17. Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P.; Splitter, Derek A.

    The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less

  18. Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine

    DOE PAGES

    Szybist, James P.; Splitter, Derek A.

    2018-01-02

    The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less

  19. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Safety engineering in handling fuels and lubricants in civil aviation

    NASA Astrophysics Data System (ADS)

    Protoereiskii, Aleksandr Stepanovich

    The book is concerned with methods of improving working conditions, work hygiene, safety engineering, and fire and explosion prevention during the storage and handling of petroleum products at fuel and lubricant storage facilities. The discussion covers methods of protection against static and atmospheric discharges, lightning protection, safety engineering in fuel and lubricant laboratories, and methods of fire prevention and fire extinction. Attention is also given to methods for administering first aid in case of accidents and poisoning.

  1. 29 CFR 794.132 - “Petroleum products”.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false âPetroleum productsâ. 794.132 Section 794.132 Labor... WHOLESALE OR BULK PETROLEUM DISTRIBUTORS UNDER SECTION 7(b)(3) OF THE FAIR LABOR STANDARDS ACT Exemption... § 794.132 “Petroleum products”. A sale by an enterprise engaged in the wholesale or bulk distribution of...

  2. 29 CFR 794.132 - “Petroleum products”.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 794.132 “Petroleum products”. A sale by an enterprise engaged in the wholesale or bulk distribution of petroleum products will be included in the 25 percent limitation under the exemption only if it is made to a customer who engages in the distribution, in bulk and for resale, of “petroleum products”. The term...

  3. Low NOx Heavy Fuel Combustor Concept Program

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1981-01-01

    The development of the technology required to operate an industrial gas turbine combustion system on minimally processed, heavy petroleum or residual fuels having high levels of fuel-bound nitrogen (FBN) while producing acceptable levels of exhaust emissions is discussed. Three combustor concepts were designed and fabricated. Three fuels were supplied for the combustor test demonstrations: a typical middle distillate fuel, a heavy residual fuel, and a synthetic coal-derived fuel. The primary concept was an air staged, variable-geometry combustor designed to produce low emissions from fuels having high levels of FBN. This combustor used a long residence time, fuel-rich primary combustion zone followed by a quick-quench air mixer to rapidly dilute the fuel rich products for the fuel-lean final burnout of the fuel. This combustor, called the rich quench lean (RQL) combustor, was extensively tested using each fuel over the entire power range of the model 570 K engine. Also, a series of parameteric tests was conducted to determine the combustor's sensitivity to rich-zone equivalence ratio, lean-zone equivalence ratio, rich-zone residence time, and overall system pressure drop. Minimum nitrogen oxide emissions were measured at 50 to 55 ppmv at maximum continuous power for all three fuels. Smoke was less than a 10 SAE smoke number.

  4. Transportation Fuels and the Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Gabbard, Alex

    2004-11-01

    An energy analysis of transportation fuels is performed for comparing automobiles and fuels currently in the marketplace as real world benchmarks projected as "hydrogen economy" requirements. Comparisons are made for ideal case average energy values at Standard Temperature and Pressure (STP) at 20°C, 1 atmosphere with no loses. "Real world" benchmarks currently in the marketplace illuminate the challenges to be met if an equivalent "hydrogen economy" is to become reality. The idea of a "hydrogen economy" is that, at some time in the future, world energy needs will be supplied in part or totally from hydrogen; in part as compared to the current "petroleum economy" that is the source of most of the world's transportation fuels and only a portion of total energy use, or hydrogen as the source of all energy consumption.

  5. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    PubMed

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  6. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  7. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  8. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  9. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  10. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  11. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  12. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  13. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  14. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  15. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  16. Japanese Resource Dependence.

    DTIC Science & Technology

    1982-03-01

    56% 78% 86% Coal 36 68 80 Crude Oil 98 99 99 Natural Gas -- 78 78 Iron Ore 92 98 98 Copper 86 93 94 Lead 55 64 79 Zinc 36 55 79 Tin 99 98 98 Aluminum...represented by energy resources (oil, gas , coal): The availabilty of adequate energy supplies is of great significance to the minerals and metals production...liquefied natural/petroleum gas , natural gas , and uranium. To meet the country’s energy needs, virtually all forms of mineral fuels were imported to

  17. Effect of Aromatic Concentration of a Fischer-Tropsch Fuel on Thermal Stability

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer­ Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of Fischer-Tropsch fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  18. Petroleum Marketing Practices Act amendments of 1994. Introduced in the Senate of the United States, One Hundred Third Congress, Second Session, September 29, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bill (S. 338) proposes to amend the Petroleum Marketing Practices Act to clarify federal standards governing the termination and nonrenewal of franchise and franchise relationships for the sale of motor fuel. The legislative text of the Bill is given with amendments.

  19. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.

    PubMed

    Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M

    2010-10-01

    Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.

  20. Emissions of metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs) from Portland cement manufacturing plants: inter-kiln variability and dependence on fuel-types.

    PubMed

    Zemba, Stephen; Ames, Michael; Green, Laura; Botelho, Maria João; Gossman, David; Linkov, Igor; Palma-Oliveira, José

    2011-09-15

    Emissions from Portland cement manufacturing facilities may increase health risks in nearby populations and are thus subject to stringent regulations. Direct testing of pollutant concentrations in exhaust gases provides the best basis for assessing the extent of these risks. However, these tests (i) are often conducted under stressed, rather than typical, operating conditions, (ii) may be limited in number and duration, and (iii) may be influenced by specific fuel-types and attributes of individual kilns. We report here on the results of more than 150 emissions-tests conducted of two kilns at a Portland cement manufacturing plant in Portugal. The tests measured various regulated metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs). Stack-gas concentrations of pollutants were found to be highly variable, with standard deviations on the order of mean values. Emission rates of many pollutants were higher when coal was used as the main kiln fuel (instead of petroleum coke). Use of various supplemental fuels, however, had little effect on stack emissions, and few statistically significant differences were observed when hazardous waste was included in the fuel mix. Significant differences in emissions for some pollutants were observed between the two kilns despite their similar designs and uses of similar fuels. All measured values were found to be within applicable regulatory limits. Published by Elsevier B.V.