Sample records for petrous bone

  1. [Petrous bone fracture. Our experience: 1999-2004].

    PubMed

    Ramírez Sabio, J B; de Paula Vernetta, C; García Sanchís, J M; Callejo García, F J; Cortés Andrés, O; Quilis Quesada, V; Dualde Beltrán, D; Marco Algarra, J

    2006-12-01

    To review the petrous bone fractures during the last five years (1999-2004) in our hospital, its manage, control, and analysis onf the associated factors. To analyse the managing protocoles and current bibliography. We review 266 temporal bone fractures, 74 with petrous bone association. We analyse these fractures by sex distribution, injurie severity, otorhinolaryngological clinical findings, production mechanism and radiological findings. The cases are discussed and compared with current bibliography. Petrous bone fractures must be always suspected in patients with head trauma, specially if it associates severity and otorrhagia. It is necessary a deep colaboration between neurosurgeons, radiologists and otorhinolaryngologists to obtain a good management, control and follow up of the patients.

  2. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum

    PubMed Central

    Margaryan, Ashot; Stenderup, Jesper; Lynnerup, Niels; Willerslev, Eske; Allentoft, Morten E.

    2017-01-01

    Large-scale genomic analyses of ancient human populations have become feasible partly due to refined sampling methods. The inner part of petrous bones and the cementum layer in teeth roots are currently recognized as the best substrates for such research. We present a comparative analysis of DNA preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (<10% endogenous DNA). In the remaining skeletons there is no systematic difference between the two substrates. A crude preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine to thymine deamination damage and lower proportions of mitochondrial/nuclear DNA in petrous bone compared to tooth cementum. Lastly, we show that petrous bones from ancient cremated individuals contain no measurable levels of authentic human DNA. Based on these findings we discuss the pros and cons of sampling the different elements. PMID:28129388

  3. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone.

    PubMed

    Pinhasi, Ron; Fernandes, Daniel; Sirak, Kendra; Novak, Mario; Connell, Sarah; Alpaslan-Roodenberg, Songül; Gerritsen, Fokke; Moiseyev, Vyacheslav; Gromov, Andrey; Raczky, Pál; Anders, Alexandra; Pietrusewsky, Michael; Rollefson, Gary; Jovanovic, Marija; Trinhhoang, Hiep; Bar-Oz, Guy; Oxenham, Marc; Matsumura, Hirofumi; Hofreiter, Michael

    2015-01-01

    The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of

  4. Petrous bone fractures violating otic capsule.

    PubMed

    Magliulo, Giuseppe; Ciniglio Appiani, Mario; Iannella, Giannicola; Artico, Marco

    2012-12-01

    This study presents our experience with a series of patients suffering from petrous bone fractures violating the otic capsule who underwent subtotal petrosectomy combined with eustachian tube, middle ear, and mastoid obliteration, with the goal of preventing cerebrospinal fluid (CSF) leak and meningitis. This study enrolled 26 patients between 1997 and 2011. The clinical symptoms, otoscopy, and preoperative and postoperative audiometry and facial function, as well as CSF leak or meningitis, were evaluated in each patient. The entire group underwent a subtotal petrosectomy using the technique described in detail by Fisch. In addition, each patient was interviewed using a questionnaire to evaluate the impact on quality of life. Intraoperatively, we found significant CSF leaks in 14 patients (42.5%). No patient reported other episodes of CSF leak or meningitis after the surgery. The patients' responses of facial nerve function were slightly worse than the House-Brackmann evaluation (50% versus 42.3%; p < 0.05). The vast majority (88.5%) of the patients experienced no social impact. Our findings suggest the importance of not underestimating the risk for CSF leak in the petrous bone fractures violating the otic capsule. Preoperative counseling regarding the various troublesome complications must adequately motivate candidates to undergo surgery by pointing out the positive impact of the proposed treatment.

  5. Immunohistochemical profile of various neurotransmitters, neurotrophins and MIB-1 in cholesteatomas of the petrous bone.

    PubMed

    Artico, Marco; Bronzetti, Elena; Lo Vasco, Vincenza Rita; Ionta, Brunella; Alicino, Valentina; D'Ambrosio, Anna; Magliulo, Giuseppe

    2008-01-01

    Compared to the normal epidermal epithelium, cholesteatomas have altered growth properties characterized by the excessive growth of keratinocytes leading to mucosal destruction. Either congenital or acquired, these lesions, which grow in the middle ear space, the petrous apex or the mastoid of temporal bones, are mostly considered benign skin tumoral lesions. However, many questions remain concerning their pathophysiology. Numerous studies have been proposed to identify those cholesteatoma lesions at risk of recurrence, a possible event that may cause hearing loss. We examined patients with petrous apex or mastoid cholesteatoma in order to analyze the expression of various neurotransmitters, neurotrophins and their receptors and the Ki-67 antigen for identification of a possible relationship between clinical outcome and histopathological behaviour in terms of the proliferative activity of cholesteatomas. Expression of the analyzed molecules was studied using immunohistochemical methods in seven adult patients with petrous apex cholesteatoma who underwent surgical removal of the lesion. Our results, in accordance with published data, confirm that Molecular Immunology Borstel-1 (MIB-1) and certain neurotransmitters could be useful in the prognostic evaluation of the risk of recurrence of aggressive forms of cholesteatoma.

  6. [Petrous plasmacytoma revealed by a painful peripheral facial palsy].

    PubMed

    Lagarde, J; Cret, C; Karlin, L; Ameri, A

    2011-01-01

    The classical hypothesis of Bell's palsy, tempting in cases of peripheral facial palsy of rapid onset, must nevertheless be evoked with caution particularly if an intense pain is present, which should lead to search for a tumor of the skull base, especially the petrous bone. A 43-year-old man presented a peripheral facial palsy of rapidly progressive onset. A petrous bone tumor was diagnosed on the CT scan, which revealed an aspect of a glomic tumor or a metastatic lesion. The final histological diagnosis was plasmacytoma. This type of tumor has been rarely reported in this location. The radiological features are not specific at all, underlying the importance of searching for some associated signs such as a monoclonal protein and performing a histological examination when the firm diagnosis of a systemic disease like multiple myeloma has not been possible. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Transsphenoidal and infralabyrinthine approach of the petrous apex cholesterol granuloma.

    PubMed

    Bruchhage, Karl-Ludwig; Wollenberg, Barbara; Leichtle, Anke

    2017-07-01

    Space-demanding or destructive changes in the petrous bone are often challenging differential diagnosis. Cholesterol granulomas of the petrous apex can clinically present in a combination of hearing loss, vertigo, tinnitus, chronic cephalgia, impairment of facial nerve function, neuralgic pain of the nervus trigeminus, or manifest diplopia by the nerve palsy of the nervus abducens. CT-morphologically cholesterol granulomas appear as soft-tissue density masses, which may display a discrete rim after intravenous administration of a contrast agent. The MRI, T1 as well as T2-weighted images show a strong signal in the area of the lesion. Depending on the individual anatomical conditions, the surgical access must be carefully chosen between transsphenoidal, transtemporal, infracochlear/-labyrinthine, or translabyrinthine. Here, we present the transsphenoidal and translabyrinthine access for the excision of cholesterol granulomas of the petrous apex. The different accesses are compared using a neuro-navigation-supported surgical technique with respect to its complications, drainage possibilities, outcomes, and recurrence of symptoms.

  8. CT venography: use in selecting a surgical approach for the treatment of petrous apex cholesterol granulomas.

    PubMed

    Isaacson, Brandon; Kutz, Joe Walter; Mendelsohn, Dianne; Roland, Peter S

    2009-04-01

    To demonstrate the use of computed tomographic (CT) venography in selecting a surgical approach for cholesterol granulomas. Retrospective case review. Tertiary referral center. Three patients presented with symptomatic petrous apex cholesterol granulomas with extensive bone erosion involving the jugular fossa. Computed tomographic venography was performed on each patient before selecting a surgical approach for drainage. Localization of the jugular bulb in relation to the petrous carotid artery and basal turn of the cochlea was ascertained in each subject. Three patients with large symptomatic cholesterol granulomas were identified. Conventional CT demonstrated extensive bone erosion involving the jugular fossa in each patient. The location of the jugular bulb and its proximity to the petrous carotid artery and basal turn of the cochlea could not be determined with conventional temporal bone CT and magnetic resonance imaging. Computed tomographic venography provided the exact location of the jugular bulb in all 3 patients. The favorable position of the jugular bulb in all 3 cases permitted drainage of these lesions using an infracochlear approach. Computed tomographic venography provided invaluable information in 3 patients with large symptomatic cholesterol granulomas. All 3 patients were previously thought to be unsuitable candidates for an infracochlear or infralabyrinthine approach because of the unknown location of the jugular bulb.

  9. [A case of petrous ridge meningioma manifested as pneumocephalus followed by Eustachian tube insufflation].

    PubMed

    Yamaguchi, Shinya; Gi, Hidefuku; Uno, Jyunji; Ikai, Yoshiaki; Inoha, Satoshi; Nagaoka, Shintarou; Nishio, Shunji

    2009-05-01

    A 50-year-old female, who had a headache after Eustachian tube insufflation for her ear congestion, came to our hospital. CT and MRI revealed pneumocephalus and petrous ridge meningioma which destroyed petrous bone and air cells. Eustachian tube insufflation was considered to make the air coming into the middle ear, mastoid air cell and then into the intracranial space destroying the tumor. At surgery, there was subdural hematoma around the tumor. Total removal of the tumor and the hematoma membrane was performed. Histologically, the tumor was transitional meningioma and the cluster of meningioma cells were noted in the subdural hematoma membrane.

  10. Cholesterol granuloma of the petrous apex: CT diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  11. Cholesterol granuloma of the petrous apex: establishment of a drainage route into the superior tympanic cavity--technical note.

    PubMed

    Kamiguchi, H; Kawase, T; Toya, S; Inoue, Y

    1996-09-01

    A 40-year-old male presented with a cholesterol granuloma of the petrous apex manifesting as progressive hearing loss and tinnitus. The lesion was treated via an extradural middle cranial fossa approach employing a new procedure to establish a drainage pathway into the superior tympanic cavity which preserved his hearing. The pathway was formed by a groove 5 mm wide and deep in the anterolateral aspect of the petrous bone, crossing the major petrosal nerve and carotid artery, running around the cochlea, crossing the tensor tympanic muscle, and entering the superior tympanic cavity above the orifice of the eustachian tube. This procedure is easy to perform without special techniques.

  12. Paraganglioma presenting as cholesterol granuloma of the petrous apex.

    PubMed

    Heman-Ackah, Selena E; Huang, Tina C

    2013-09-01

    We report the unique finding of a petrous apex cholesterol granuloma associated with a paraganglioma, also known as a glomus jugulare tumor, in a 52-year-old woman who presented to our department with pulsatile tinnitus, hearing loss, aural fullness, and disequilibrium. She had been treated for a petrous apex cholesterol granuloma 20 years earlier, at which time she had undergone drainage of the granuloma via subtotal petrous apicectomy. When she came to our facility approximately 20 years later, she had signs and symptoms consistent with a jugular paraganglioma, which was likely to have been present at the time of her initial presentation for the cholesterol granuloma. In fact, microscopic bleeding from the paraganglioma might have led to the formation of the cholesterol granuloma. The metachronous presentation of these two entities, which to our knowledge has not been reported previously in the literature, indicates the potential association of paragangliomas with the formation of cholesterol granulomas of the petrous apex.

  13. Contralateral transmaxillary corridor: an augmented endoscopic approach to the petrous apex.

    PubMed

    Patel, Chirag R; Wang, Eric W; Fernandez-Miranda, Juan C; Gardner, Paul A; Snyderman, Carl H

    2017-10-20

    OBJECTIVE The endoscopic endonasal approach (EEA) has been shown to be an effective means of accessing lesions of the petrous apex. Lesions that are lateral to the paraclival segment of the internal carotid artery (ICA) require lateralization of the paraclival segment of the ICA or a transpterygoid infrapetrous approach. In this study the authors studied the feasibility of adding a contralateral transmaxillary (CTM) corridor to provide greater access to the petrous apex with decreased need for manipulation of the ICA. METHODS Using image guidance, EEA and CTM extension were performed bilaterally on 5 cadavers. The anterior wall of the sphenoid sinus and rostrum were removed. The angle of the surgical approach from the axis of the petrous segment of the ICA was measured. Five illustrative clinical cases are presented. RESULTS The CTM corridor required a partial medial maxillectomy. When measured from the axis of the petrous ICA, the CTM corridor decreased the angle from 44.8° ± 2.78° to 20.1° ± 4.31°, a decrease of 24.7° ± 2.58°. Drilling through the CTM corridor allowed the drill to reach lateral aspects of the petrous apex that would have required lateralization of the ICA or would not have been accessible via EEA. The CTM corridor allowed us to achieve gross-total resection of the petrous apex region in 5 clinical cases with significant paraclival extension. CONCLUSIONS The CTM corridor is a feasible extension to the standard EEA to the petrous apex that offers a more lateral trajectory with improved access. This approach may reduce the risk and morbidity associated with manipulation of the paraclival ICA.

  14. Aneurysms of the petrous internal carotid artery: anatomy, origins, and treatment.

    PubMed

    Liu, James K; Gottfried, Oren N; Amini, Amin; Couldwell, William T

    2004-11-15

    Aneurysms arising in the petrous segment of the internal carotid artery (ICA) are rare. Although the causes of petrous ICA aneurysms remain unclear, traumatic, infectious, and congenital origins have been implicated in their development. These lesions can be detected incidentally on routine neuroimaging. Patients can also present with a wide spectrum of signs and symptoms, including cranial nerve palsies, Horner syndrome, pulsatile tinnitus, epistaxis, and otorrhagia. The treatment of petrous ICA aneurysms remains challenging. Treatment options include close observation, endovascular therapies, and surgical trapping with or without revascularization. Management dilemmas exist, particularly for incidental lesions found in asymptomatic patients. The authors review the literature and discuss the anatomy of the petrous ICA as well as the pathophysiological features of aneurysms arising in this region, and they propose a management paradigm with current treatment options.

  15. Temporal bone radiography using the orthopantomograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatezawa, T.

    1981-09-01

    Temporal bone radiographs obtained with an Orthopantomograph were compared with conventional radiographs. In acoustic neurinoma, cholesteatoma, otitis media, and middle fossa tumors, both methods demonstrated the abnormalities well. In two cases with lesions extending beyond the range of conventional projections, the broad orthopantomographic coverage was very valuable. Mastoid air cells, the mastoid process, petrous ridge, and internal auditory meatus were well demonstrated by both techniques. Orthopantomography was found to be superior in the demonstration of the petrous apex, while the superior semicircular canal was better demonstrated on the conventional views. Bilateral symmetry was particularly good and because of fewer films,more » radiation exposure was considerably less with orthopantomography. For many applications, orthopantomography is an adequate convenient substitute for conventional methods of examining the temporal bones.« less

  16. Endoscopic trans-sphenoidal removal of cholesterol granuloma of the petrous apex: case report and literature review.

    PubMed

    Dhanasekar, G; Jones, N S

    2011-02-01

    We report a case of cholesterol granuloma of the petrous apex which was surgically treated via an endoscopic trans-sphenoidal approach. Case report and review of the literature concerning cholesterol granulomas of the petrous apex and their management. The lesion was approached endoscopically via a bilateral sphenoidotomy with removal of the vomer. A large cholesterol granuloma was evacuated and marsupialised. The patient made an uneventful recovery. Trans-sphenoidal access to the petrous apex represents an alternative route for the drainage and ventilation of cholesterol granulomas. This approach is the technique of choice when the cholesterol granuloma abuts the posterior wall of the sphenoid sinus. The trans-sphenoid approach, unlike other lateral approaches to the petrous apex, spares cochlear and vestibular function and allows post-operative endoscopic follow up.

  17. Petrous apex cholesterol granuloma aeration: does it matter?

    PubMed

    Castillo, Michael P; Samy, Ravi N; Isaacson, Brandon; Roland, Peter S

    2008-04-01

    To determine whether aeration of surgically treated petrous apex cholesterol granulomas (PA CG) has any correlation with resolution of symptoms. Retrospective chart review. Twenty-six patients with a petrous apex cholesterol granuloma during a 16-year period were reviewed. Seventeen of 26 (65%) patients underwent surgical intervention. Preoperative symptoms included headache, facial weakness/twitching or numbness, vertigo, hearing loss, vision changes, and tinnitus. Postoperative symptoms resolved in 9 of the 16 patients (56%). Three patients had a postoperative headache. Facial nerve dysfunction persisted or recurred in four patients. One patient was lost to follow-up. Thirteen patients had postoperative imaging. All 13 (100%) patients demonstrated stable or increased size of PA CG with no evidence of aeration. Revision surgery was performed in four patients (25%) for facial nerve symptoms or persistent headaches. The extent of PA CG aeration on postoperative imaging had no correlation to symptom resolution or cyst enlargement. Revision surgery should not depend on imaging alone but primarily on patient symptoms and physical exam.

  18. Endoscopic Infracochlear Approach for Drainage of Petrous Apex Cholesterol Granulomas: A Case Series.

    PubMed

    Wick, Cameron C; Hansen, Alexander R; Kutz, Joe Walter; Isaacson, Brandon

    2017-07-01

    To describe the feasibility and technical nuances of a transcanal endoscopic infracochlear approach for drainage of petrous apex cholesterol granulomas. Retrospective case review. Tertiary care university hospital. A 32-year-old man with bilateral petrous apex cholesterol granulomas and a 54-year-old man with a left-sided petrous apex granuloma each with symptoms necessitating surgical intervention. Transcanal endoscopic infracochlear approach for drainage of the cholesterol granulomas. Operation efficacy, corridor size, and perioperative morbidity. All three cholesterol granulomas were successful drained without violating the cochlea, jugular bulb, or carotid artery. The dimensions of the infracochlear surgical corridor measured 5 mm × 6 mm, 3.5 mm × 3.5 mm, and 6 mm × 4 mm, respectively. All corridors facilitated visualization within the cyst and allowed lyses of adhesions for additional cyst content eradication. All patients had resolution of their acute symptoms. Two of the three subjects had serviceable hearing before and after their procedures. One patient required revision surgery 2-months after their initial procedure secondary to recurrent symptoms from acute hemorrhage within the cyst cavity. The infracochlear tract in this patient was noted to be patent. A transcanal endoscopic infracochlear approach is feasible for the management of cholesterol granuloma. The surgical access was wide enough to introduce the endoscope into the petrous apex cavity in each case. Further studies are needed to compare the efficacy and perioperative morbidity versus the traditional postauricular transtemporal approaches.

  19. Gradenigo's Syndrome in a Patient with Chronic Suppurative Otitis Media, Petrous Apicitis, and Meningitis.

    PubMed

    Taklalsingh, Nicholas; Falcone, Franco; Velayudhan, Vinodkumar

    2017-09-28

    BACKGROUND Gradenigo's syndrome includes the triad of suppurative otitis media, ipsilateral sixth (abducens) cranial nerve palsy and facial pain in the distribution of the fifth (trigeminal) cranial nerve. Gradenigo's syndrome is rare, and the diagnosis is easily overlooked. This case is the first to report Gradenigo's syndrome presenting with meningitis on a background of chronic suppurative otitis media (CSOM) and petrous apicitis (apical petrositis). CASE REPORT A 58-year-old male African American presented with headaches and confusion. Magnetic resonance imaging (MRI) of the head showed petrous apicitis with mastoiditis and abscess formation in the cerebellomedullary cistern (cisterna magna). The case was complicated by the development of palsy of the fourth (trochlear) cranial nerve, fifth (trigeminal) cranial nerve, and sixth (abducens) cranial nerve, with radiological changes indicating infection involving the seventh (facial) cranial nerve, and eighth (vestibulocochlear) cranial nerve. Cerebrospinal fluid (CSF) culture results were positive for Klebsiella pneumoniae, sensitive to ceftriaxone. The patient improved with surgery that included a left mastoidectomy and debridement of the petrous apex, followed by a ten-week course of antibiotics. Follow-up MRI showed resolution of the infection. CONCLUSIONS This report is of an atypical case of Gradenigo's syndrome. It is important to recognize that the classical triad of Gradenigo's syndrome, suppurative otitis media, ipsilateral sixth (abducens) cranial nerve palsy and facial pain in the distribution of the fifth (trigeminal) cranial nerve, may also involve chronic suppurative otitis media (CSOM), which may lead to involvement of other cranial nerves, petrous apicitis (apical petrositis), and bacterial meningitis.

  20. Ruptured petrous carotid pseudoaneurysm due to tuberculous otitis: endovascular treatment.

    PubMed

    Yagci, A B; Ardiç, F N; Oran, I; Bir, F; Karabulut, N

    2006-03-15

    We report the imaging findings and endovascular treatment in an unusual case of petrous internal carotid artery pseudoaneurysm due to primary tuberculous otitis. The aneurysm was recognized and ruptured during a surgical intervention for otitis. Successful endovascular treatment of the aneurysm was performed by occlusion of the parent vessel using detachable balloon and coils.

  1. Ruptured Petrous Carotid Pseudoaneurysm Due to Tuberculous Otitis: Endovascular Treatment

    PubMed Central

    Yagci, A.B.; Ardiç, F.N.; Oran, I.; Bir, F.; Karabulut, N.

    2006-01-01

    Summary We report the imaging findings and endovascular treatment in an unusual case of petrous internal carotid artery pseudoaneurysm due to primary tuberculous otitis. The aneurysm was recognized and ruptured during a surgical intervention for otitis. Successful endovascular treatment of the aneurysm was performed by occlusion of the parent vessel using detachable balloon and coils. PMID:20569552

  2. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones.

    PubMed

    Kulstein, Galina; Hadrys, Thorsten; Wiegand, Peter

    2018-01-01

    Short tandem repeat (STR) typing from skeletal remains can be a difficult task. Dependent on the environmental conditions of the provenance of the bones, DNA can be degraded and STR typing inhibited. Generally, dense and compact bones are known to preserve DNA better. Several studies already proved that femora and teeth have high DNA typing success rates. Unfortunately, these elements are not present in all cases involving skeletal remains. Processing partial or singular skeletal elements, it is favorable to select bone areas where DNA preservation is comparably higher. Especially, cranial bones are often accidentally discovered during criminal investigations. The cranial bone is composed of multiple parts. In this examination, we evaluated the potential of the petrous bone for human identification of skeletal remains in forensic case work. Material from different sections of eight unknown cranial bones and-where available-additionally other skeletal elements, collected at the DNA department of the Institute of Legal Medicine in Ulm, Germany, from 2010 to 2017, were processed with an optimized DNA extraction and STR typing strategy. The results highlight that STR typing from the petrous bones leads to reportable profiles in all individuals, even in cases where the analysis of the parietal bone failed. Moreover, the comparison of capillary electrophorese (CE) typing to massively parallel sequencing (MPS) analysis shows that MPS has the potential to analyze degraded human remains and is even capable to provide additional information about phenotype and ancestry of unknown individuals.

  3. Gradenigo’s Syndrome in a Patient with Chronic Suppurative Otitis Media, Petrous Apicitis, and Meningitis

    PubMed Central

    Taklalsingh, Nicholas; Falcone, Franco; Velayudhan, Vinodkumar

    2017-01-01

    Patient: Male, 58 Final Diagnosis: Bacterial meningitis Symptoms: Altered mental status • headache • neck stiffness • vomiting Medication: — Clinical Procedure: — Specialty: Infectious Diseases Objective: Rare disease Background: Gradenigo’s syndrome includes the triad of suppurative otitis media, ipsilateral sixth (abducens) cranial nerve palsy and facial pain in the distribution of the fifth (trigeminal) cranial nerve. Gradenigo’s syndrome is rare, and the diagnosis is easily overlooked. This case is the first to report Gradenigo’s syndrome presenting with meningitis on a background of chronic suppurative otitis media (CSOM) and petrous apicitis (apical petrositis). Case Report: A 58-year-old male African American presented with headaches and confusion. Magnetic resonance imaging (MRI) of the head showed petrous apicitis with mastoiditis and abscess formation in the cerebellomedullary cistern (cisterna magna). The case was complicated by the development of palsy of the fourth (trochlear) cranial nerve, fifth (trigeminal) cranial nerve, and sixth (abducens) cranial nerve, with radiological changes indicating infection involving the seventh (facial) cranial nerve, and eighth (vestibulocochlear) cranial nerve. Cerebrospinal fluid (CSF) culture results were positive for Klebsiella pneumoniae, sensitive to ceftriaxone. The patient improved with surgery that included a left mastoidectomy and debridement of the petrous apex, followed by a ten-week course of antibiotics. Follow-up MRI showed resolution of the infection. Conclusions: This report is of an atypical case of Gradenigo’s syndrome. It is important to recognize that the classical triad of Gradenigo’s syndrome, suppurative otitis media, ipsilateral sixth (abducens) cranial nerve palsy and facial pain in the distribution of the fifth (trigeminal) cranial nerve, may also involve chronic suppurative otitis media (CSOM), which may lead to involvement of other cranial nerves, petrous apicitis

  4. [Preliminary experience on endoscopic endonasal management of petrous apex cholesterol granuloma].

    PubMed

    Wang, Jin; Chen, Lei; Yang, Jing

    2015-05-01

    To explore the feasibility and related aspects on endoscopic endonasal management of petrous apex cholesterol granuloma. Retrospective data analysis was performed on 3 cases in which the endoscopic endonasal approach was used to manage this lesion between 2011 and 2014. Case information including radiological data, surgical technique, symptoms, and complications was reviewed. The main clinical manifestations in these 3 patients were tinnitus, hearing loss at the hearing threshold of 40-50 dBHL. After operation, all 3 patients showed disappearance of their tinnitus and improvement of the hearing threshold of 10-30 dBHL (follow-up 6-45 months). Permanent drainage route was performed in 1 case which communicated with sphenoid sinus. While the other 2 cases which drained to pharyngeal recess resulted in drainage route blocking within the 3-6 months after surgery, but without obvious symptoms. This procedure for the drainage of petrous apex cholesterol granuloma showed to be effective, safe and minimally invasive. Although there is no recurrence in short-term, however, long-term surveillance and large case series are necessary, especially to the maitainence of permanent drainage.

  5. Detailed anatomy knowledge: first step to approach petroclival meningiomas through the petrous apex. Anatomy lab experience and surgical series.

    PubMed

    Altieri, Roberto; Sameshima, Tetsuro; Pacca, Paolo; Crobeddu, Emanuela; Garbossa, Diego; Ducati, Alessandro; Zenga, Francesco

    2017-04-01

    Petroclival meningiomas are a challenge for neurosurgeons due to the complex anatomy of the region that is rich of vessels and nerves. A perfect and detailed knowledge of the anatomy is very demanding in neurosurgery, especially in skull base surgery. The authors describe the microsurgical anatomy to perform an anterior petrosectomy based on their anatomical and surgical experience and perform a literature review. The temporal bone is the most complex and fascinating bone of skull base. The apex is located in the angle between the greater wing of the sphenoid and the occipital bone. Removing the petrous apex exposes the clivus. The approach directed through the temporal bone in this anatomical area is referred to as an anterior petrosectomy. The area that must be drilled is the rhomboid fossa that is defined by the Kawase, premeatal, and postmeatal triangles. In Division of Neurosurgery - University of Turin, 130 patients, from August 2013 to September 2015, underwent surgical resection of intracranial meningiomas. In this group, we have operated 7 PCMs and 5 of these were approached performing an anterior petrosectomy with good results. In our conclusions, we feel that this surgery require an advanced knowledge of human anatomy and a specialized training in interpretation of radiological and microsurgical anatomy both in the dissection lab and in the operating room.

  6. Comparison of temporal bone fractures in children and adults.

    PubMed

    Kang, Ho Min; Kim, Myung Gu; Hong, Seok Min; Lee, Ho Yun; Kim, Tae Hyun; Yeo, Seung Geun

    2013-05-01

    Contrary to our expectation, that the clinical characteristics of temporal bone fracture would differ in children and adults, we found that the two groups were similar. Most studies of temporal bone fractures have been performed in adults. To our knowledge, no study has investigated differences in temporal bone fractures in children and adults. We therefore investigated differences in temporal bone fractures in adults and children by examining the manifestations and clinical symptoms of temporal bone fractures in pediatric patients. The demographic and clinical characteristics were assessed in 32 children and 186 adults with temporal bone fractures. All patients underwent computed tomography of the temporal bone. Causes of fracture, gender distribution, manifestations of temporal bone fracture, and clinical symptoms were similar in adults and children (p > 0.05 each). Petrous fracture, ear fullness, dizziness, and tinnitus were significantly more frequent in adults than in children (p < 0.05 each).

  7. Primary Ewing's Sarcoma of the Temporal Bone: A Rare Case Report and Literature Review.

    PubMed

    Gupta, Divya; Gulati, Achal; Purnima

    2017-09-01

    Ewing's sarcoma is a malignant, round cell tumor arising from the bones and primarily affecting children and adolescent, accounting for 3 % of all childhood malignancies. Although the long bones and the trunk are typically affected, rare cases of it involving isolated bones throughout the body have been reported. Involvement of the skull bones is rare, constituting 1-6 % of the total Ewing's sarcoma cases but those affecting the cranial bones are rarer still, constituting only 1 %. We describe an 8 months old infant having Ewing sarcoma, of the petrous and mastoid parts of temporal bone along with the occipital bone, whose clinical presentation mimicked mastoiditis with facial nerve palsy. We discuss the clinical and therapeutic course of an extensive primary Ewing sarcoma of the temporal bone, which was treated without performing surgery and review this entity's literature in detail.

  8. [Integration of the functional signal of intraoperative EMG of the facial nerve in to navigation model for surgery of the petrous bone].

    PubMed

    Strauss, G; Strauss, M; Lüders, C; Stopp, S; Shi, J; Dietz, A; Lüth, T

    2008-10-01

    PROBLEM DEFINITION: The goal of this work is the integration of the information of the intraoperative EMG monitoring of the facial nerve into the radiological data of the petrous bone. The following hypotheses are to be examined: (I) the N. VII can be determined intraoperatively with a high reliability by the stimulation-probe. A computer program is able to discriminate true-positive EMG signals from false-positive artifacts. (II) The course of the facial nerve can be registered in a three-dimensional area by EMG signals at a nerve model in the lab test. The individual items of the nerve can be combined into a route model. The route model can be integrated into the data of digital volume tomography (DVT). (I) Intraoperative EMG signals of the facial nerve were classified at 128 measurements by an automatic software. The results were correlated with the actual intraoperative situation. (II) The nerve phantom was designed and a DVT data set was provided. Phantom was registered with a navigation system (Karl Storz NPU, Tuttlingen, Germany). The stimulation probe of the EMG-system was tracked by the navigation system. The navigation system was extended by a processing unit (MiMed, Technische Universität München, Germany). Thus the classified EMG parameters of the facial route can be received, processed and be generated to a model of the facial nerve route. The operability was examined at 120 (10 x 12) measuring points. The evaluation of the examined algorithm for classification EMG-signals of the facial nerve resulted as correct in all measuring events. In all 10 attempts it succeeded to visualize the nerve route as three-dimensional model. The different sizes of the individual measuring points reflect the appropriate values of Istim and UEMG correctly. This work proves the feasibility of an automatic classification of an intraoperative EMG signal of the facial nerve by a processing unit. Furthermore the work shows the feasibility of tracking of the position of the

  9. Anatomic variation of the abducens nerve in a single cadaver dissection: the "petrobasilar canal".

    PubMed

    Pizzolorusso, Felice; Cirotti, Andrea; Pizzolorusso, Gianfranco

    2017-04-01

    Anatomic variations of the petrosphenoid ligament, Dorello's canal and the course of the abducens nerve have been extensively described over the past years. In the present report of a single cadaver dissection, we describe an unusual course of the abducens nerve at the level of the petrous bone. The right abducens nerve did not enter Dorello's canal, but ran below the petrous bone through a narrow canal in the petrobasilar suture, which we called the "petrobasilar canal". No anatomic variations of the left abducens nerve were noted.

  10. Petrous apex cholesterol granuloma: maintenance of drainage pathway, the histopathology of surgical management and histopathologic evidence for the exposed marrow theory.

    PubMed

    Hoa, Michael; House, John W; Linthicum, Fred H

    2012-08-01

    (1) To assess the maintenance of drainage pathway patency in patients who undergo surgical management of cholesterol granulomas, (2) to review the histopathologic and radiologic changes associated with surgical drainage of petrous apex (PA) cholesterol granulomas, and (3) to provide histopathologic evidence regarding the exposed marrow theory of PA cholesterol granulomas. Retrospective case review and histopathologic analysis. Tertiary referral center. Records of 17 patients with surgically managed PA cholesterol granulomas were reviewed. Histopathologic analysis was performed on temporal bones of 11 patients with PA cholesterol granulomas from the Temporal Bone repository at the House Research Institute. Surgical drainage of PA cholesterol granulomas; follow-up radiologic imaging (computed tomography or magnetic resonance imaging), when available. Primary outcome is demonstrated maintenance of a PA outflow drainage pathway after the surgical drainage procedure as assessed by radiologic imaging, available histopathology, and/or recurrence of symptoms indicating failure of maintenance. Other measures include need for revision surgery and histopathology findings. A majority (65%) of patients exhibited maintenance of their PA drainage pathway. Histopathologic evidence suggests that the PA drainage pathway can be maintained for many years after surgical drainage. Recurrence of symptoms was related to obstruction of the drainage pathway by fibrous tissue and/or granulomatous tissue. Placement of a stent improved the patient's chance of remaining symptom-free, with recurrence of symptoms and revision surgery required in only 2 stent cases (18%) as compared with 83% of those with no stent (p ≤ 0.035). Histopathologic evidence for the exposed marrow theory of PA cholesterol granulomas was found. The majority of patients who undergo surgical drainage of PA cholesterol granulomas remain symptom-free after surgical drainage. Histopathologic analysis of temporal bone

  11. Subtemporal-anterior transtentoral approach to middle cranial fossa microsurgical anatomy.

    PubMed

    Xu, Zhiming; Wang, Weimin; Zhang, Jingjing; Liu, Wei; Feng, Yugong; Li, Gang

    2014-11-01

    This study aimed to describe the topography of inferior and external dura mater of the middle cranial fossa through subtemporal-anterior transpetrosal approach and discuss the feasibility of improving the approach. Eight formalin-fixed adult cadaveric heads were studied, with the bones milled away in the lateral triangle region of the petrous bone, Kawase rhombus region, and inner triangle region of the petrous apex. The distances between the targets in these regions, as well as the angles after the dissection of zygomatic arch, were measured, and then the exposed petroclival and retrochiasmatic areas were observed under the microscope. There were significant variations in the distances between targets in the 3 milled regions among the specimens. After the dissection of zygomatic arch, the surgical view got an average increase of 12 degrees. The subtemporal anterior transpetrosal approach, as an improved subtemporal approach, can expose the lesions optimally, causing no injury to the hearing and reducing injuries to temporal lobe. On the other hand, the lateral bone of the petrous parts of the temporal bone is removed so as to improve the view to the retrochiasmatic area and expand the operative field.

  12. [Apical petrositis, osteomyelitis of the base of the skull bones and of the first cervical vertebra in a 5 year-old children following chicken pox].

    PubMed

    Bogomil'sky, M R; Polunin, M M; Zelikovich, E I; Soldatsky, Yu L; Burova, O V

    2016-01-01

    This publication was designed to describe a rare case of development of apicalpetrositis in a child presenting with acute otitis mediafollowing chicken pox experienced in the preceding period. We carried out the study with the use of computed tomography (CT) that demonstrated destruction of the temporal bone, bones of the base of the skull and of the first cervical vertebra. The treatment strategy chosen for the management of this condition that included antibiotic therapy and expectant observation proved justified and can be recommended as an algorithm of choice taking into consideration the difficulty of surgical approach to the apex of the petrous pyramid. However, this approach is associated with the high risk of disability arising from the potential injury to the craniocerebral nerves.

  13. Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.

    PubMed

    Kockro, Ralf A; Hwang, Peter Y K

    2009-05-01

    We have developed an interactive virtual model of the temporal bone for the training and teaching of cranial base surgery. The virtual model was based on the tomographic data of the Visible Human Project. The male Visible Human's computed tomographic data were volumetrically reconstructed as virtual bone tissue, and the individual photographic slices provided the basis for segmentation of the middle and inner ear structures, cranial nerves, vessels, and brainstem. These structures were created by using outlining and tube editing tools, allowing structural modeling either directly on the basis of the photographic data or according to information from textbooks and cadaver dissections. For training and teaching, the virtual model was accessed in the previously described 3-dimensional workspaces of the Dextroscope or Dextrobeam (Volume Interactions Pte, Ltd., Singapore), whose interfaces enable volumetric exploration from any perspective and provide virtual tools for drilling and measuring. We have simulated several cranial base procedures including approaches via the floor of the middle fossa and the lateral petrous bone. The virtual model suitably illustrated the core facts of anatomic spatial relationships while simulating different stages of bone drilling along a variety of surgical corridors. The system was used for teaching during training courses to plan and discuss operative anatomy and strategies. The Virtual Temporal Bone and its surrounding 3-dimensional workspace provide an effective way to study the essential surgical anatomy of this complex region and to teach and train operative strategies, especially when used as an adjunct to cadaver dissections.

  14. Transparent model of temporal bone and vestibulocochlear organ made by 3D printing.

    PubMed

    Suzuki, Ryoji; Taniguchi, Naoto; Uchida, Fujio; Ishizawa, Akimitsu; Kanatsu, Yoshinori; Zhou, Ming; Funakoshi, Kodai; Akashi, Hideo; Abe, Hiroshi

    2018-01-01

    The vestibulocochlear organ is composed of tiny complex structures embedded in the petrous part of the temporal bone. Landmarks on the temporal bone surface provide the only orientation guide for dissection, but these need to be removed during the course of dissection, making it difficult to grasp the underlying three-dimensional structures, especially for beginners during gross anatomy classes. We report herein an attempt to produce a transparent three-dimensional-printed model of the human ear. En bloc samples of the temporal bone from donated cadavers were subjected to computed tomography (CT) scanning, and on the basis of the data, the surface temporal bone was reconstructed with transparent resin and the vestibulocochlear organ with white resin to create a 1:1.5 scale model. The carotid canal was stuffed with red cotton, and the sigmoid sinus and internal jugular vein were filled with blue clay. In the inner ear, the internal acoustic meatus, cochlea, and semicircular canals were well reconstructed in detail with white resin. The three-dimensional relationships of the semicircular canals, spiral turns of the cochlea, and internal acoustic meatus were well recognizable from every direction through the transparent surface resin. The anterior semicircular canal was obvious immediately beneath the arcuate eminence, and the topographical relationships of the vestibulocochlear organ and adjacent great vessels were easily discernible. We consider that this transparent temporal bone model will be a very useful aid for better understanding of the gross anatomy of the vestibulocochlear organ.

  15. Cost effective use of audiograms after pediatric temporal bone fractures.

    PubMed

    Frisenda, Julia L; Schroeder, James W; Ryan, Maura E; Valika, Taher S; Billings, Kathleen R

    2015-11-01

    To identify the relationship of pediatric temporal fractures to the incidence and type of hearing loss present. To analyze the timing and utility of audiometric testing in children with temporal bone fractures. Retrospective case series of 50 pediatric patients with temporal bone fractures who were treated at an urban, tertiary care children's hospital from 2008 to 2014. A statistical analysis of predictors of hearing loss after temporal bone fracture was performed. Fifty-three fractures (69.7%) in 50 patients involved the petrous portion of the temporal bone. The mean age of patients was 7.13 years, and 39 (73.6%) were male. A fall was the most common mechanism of injury in 28 (52.8%) patients, followed by crush injury (n=14, 26.2%), and vehicular trauma (n=10, 18.9%). All otic capsule violating fractures were associated with a sensorineural hearing loss (n=4, 7.5%, p=0.002). Three of four otic capsule sparing fractures were associated with ossicular dislocation, with a corresponding mixed or conductive hearing loss on follow up audiometric testing. The majority of otic capsule sparing fracture patients (n=19/43, 44.2%) who had follow up audiograms had normal hearing, and those with otic capsule violating fractures were statistically more likely to have persistent hearing loss than those with otic capsule sparing fractures (p=0.01). Patients with otic capsule violating fractures or those with ossicular disruption are at higher risk for persistent hearing loss. Cost-saving may be accrued by selecting only those patients at high risk for persistent hearing loss for audiometric testing after temporal bone fractures. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone.

    PubMed

    Douka, Katerina; Slon, Viviane; Stringer, Chris; Potts, Richard; Hübner, Alexander; Meyer, Matthias; Spoor, Fred; Pääbo, Svante; Higham, Tom

    2017-06-01

    The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Case analysis of temporal bone lesions with facial paralysis as main manifestation and literature review.

    PubMed

    Chen, Wen-Jing; Ye, Jing-Ying; Li, Xin; Xu, Jia; Yi, Hai-Jin

    2017-08-23

    This study aims to discuss clinical characteristics, image manifestation and treatment methods of temporal bone lesions with facial paralysis as the main manifestation for deepening the understanding of such type of lesions and reducing erroneous and missed diagnosis. The clinical data of 16 patients with temporal bone lesions and facial paralysis as main manifestation, who were diagnosed and treated from 2009 to 2016, were retrospectively analyzed. Among these patients, six patients had congenital petrous bone cholesteatoma (PBC), nine patients had facial nerve schwannoma, and one patient had facial nerve hemangioma. All the patients had an experience of long-term erroneous diagnosis. The lesions were completely excised by surgery. PBC and primary facial nerve tumors were pathologically confirmed. Facial-hypoglossal nerve anastomosis was performed on two patients. HB grade VI was recovered to HB grade V in one patient. The anastomosis failed due to severe facial nerve fibrosis in one patient. Hence, HB remained at grade VI. Postoperative recovery was good for all patients. No lesion recurrence was observed after 1-6 years of follow-up. For the patients with progressive or complete facial paralysis, imaging examination should be perfected in a timely manner. Furthermore, PBC, primary facial nerve tumors and other temporal bone space-occupying lesions should be eliminated. Lesions should be timely detected and proper intervention should be conducted, in order to reduce operation difficulty and complications, and increase the opportunity of facial nerve function reconstruction.

  18. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach.

    PubMed

    Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro

    2017-07-01

    The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Closure of the middle ear with special reference to the development of the tegmen tympani of the temporal bone

    PubMed Central

    Rodríguez-Vázquez, José Francisco; Murakami, Gen; Verdugo-López, Samuel; Abe, Shin-ichi; Fujimiya, Mineko

    2011-01-01

    Closure of the middle ear is believed to be closely related to the evolutionary development of the mammalian jaw. However, few comprehensive descriptions are available on fetal development. We examined paraffin-embedded specimens of 20 mid-term human fetuses at 8–25 weeks of ovulation age (crown-rump length or CRL, 38–220 mm). After 9 weeks, the tympanic bone and the squamous part of the temporal bone, each of which was cranial or caudal to Meckel's cartilage, grew to close the lateral part of the tympanosquamosal fissure. At the same time, the cartilaginous tegmen tympani appeared independently of the petrous part of the temporal bone and resulted in the petrosquamosal fissure. Subsequently, the medial part of the tympanosquamosal fissure was closed by the descent of a cartilaginous inferior process of the tegmen tympani. When Meckel's cartilage changed into the sphenomandibular ligament and the anterior ligament of the malleus, the inferior process of the tegmen tympani interposed between the tympanic bone and the squamous part of the temporal bone, forming the petrotympanic fissure for the chorda tympani nerve and the discomalleolar ligament. Therefore, we hypothesize that, in accordance with the regression of Meckel's cartilage, the rapidly growing temporomandibular joint provided mechanical stress that accelerated the growth and descent of the inferior process of the tegmen tympani via the discomalleolar ligament. The usual diagram showing bony fissures around the tegmen tympani may overestimate the role of the tympanic bone in the fetal middle-ear closure. PMID:21477146

  20. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics.

    PubMed

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-12-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade.

  1. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

    PubMed Central

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-01-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757

  2. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    NASA Technical Reports Server (NTRS)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  3. Clival giant cell tumor - A rare case report and review of literature with respect to current line of management

    PubMed Central

    Patibandla, Mohana Rao; Thotakura, Amit Kumar; Rao, Marabathina Nageswara; Addagada, Gokul Chowdary; Nukavarapu, Manisha Chowdary; Panigrahi, Manas Kumar; Uppin, Shantiveer; Challa, Sundaram; Dandamudi, Srinivas

    2017-01-01

    Giant-cell tumor (GCT) involving the skull base is rare. Sphenoid bone is the most commonly involved bone followed by petrous temporal bone. Histopathology and radiological features of these lesions are similar to GCT involving bone elsewhere. Unlike other sites, skull base is not an ideal site for the radical surgery. Hence adjuvant treatment has pivotal role. Radiation therapy with intensity-modulated radiation therapy, stereotactic radiosurgery or chemotherapy with adriamycin are promising as described in some case reports. Bisphosphonates showed good control in local recurrence. In vitro studies with Zolendronate loaded bone cement and phase 2 trials of Denosumab showed hopeful results, may be useful in future. PMID:28413541

  4. Analysis of various tracts of mastoid air cells related to CSF leak after the anterior transpetrosal approach.

    PubMed

    Tamura, Ryota; Tomio, Ryosuke; Mohammad, Farrag; Toda, Masahiro; Yoshida, Kazunari

    2018-03-16

    OBJECTIVE The anterior transpetrosal approach (ATPA) was established in 1984 and has been particularly effective for petroclival tumors. Although some complications associated with this approach, such as venous hemorrhage in the temporal lobe and nervous disturbances, have been resolved over the years, the incidence rate of CSF leaks has not greatly improved. In this study, some varieties of air cell tracts that are strongly related to CSF leaks are demonstrated. In addition, other pre- and postoperative risk factors for CSF leakage after ATPA are discussed. METHODS Preoperative and postoperative target imaging of the temporal bone was performed in a total of 117 patients who underwent ATPA, and various surgery-related parameters were analyzed. RESULTS The existence of air cells at the petrous apex, as well as fluid collection in the mastoid antrum detected by a postoperative CT scan, were possible risk factors for CSF leakage. Tracts that directly connected to the antrum from the squamous part of the temporal bone and petrous apex, rather than through numerous air cells, were significantly related to CSF leak and were defined as "direct tract." All patients with a refractory CSF leak possessed "unusual tracts" that connected to the attic, tympanic cavity, or eustachian tube, rather than through the mastoid antrum. CONCLUSIONS Preoperative assessment of petrous pneumatization types is necessary to prevent CSF leaks. Direct and unusual tracts are particularly strong risk factors for CSF leaks.

  5. Pneumatic processes in the temporal bone of chimpanzee (Pan troglodytes) and gorilla (Gorilla gorilla).

    PubMed

    Sherwood, R J

    1999-08-01

    The ontogeny of human temporal bone pneumatization has been well studied from both comparative and clinical perspectives. While a difference in the extent of air cell distribution has been noted in our closest living relatives, chimpanzees and gorillas, the processes responsible have been relatively unexplored. To examine these processes, a large, age-graded series of hominoid skulls was radiographed and the progress of pneumatization recorded. Additionally, a subsample of 30 chimpanzees and 12 gorillas was subjected to high-resolution CT scanning. Neonatal specimens show a well-developed mastoid antrum, as well as a capacious hypotympanum extending into the petrous apex. In African apes, as in humans, the mastoid antrum serves as the focus for air cell expansion into the mastoid and immediately adjacent areas. In chimpanzees and gorillas, however, a pronounced lateral structure, described as the squamous antrum, serves as the focus of pneumatization for anterior structures such as the squamous and zygomatic. The diminution of this structure in Homo sapiens explains the difference in air cell distribution in these regions. Copyright 1999 Wiley-Liss, Inc.

  6. Expanding the endoscopic transpterygoid corridor to the petroclival region: anatomical study and volumetric comparative analysis.

    PubMed

    Freeman, Jacob L; Sampath, Raghuram; Quattlebaum, Steven Craig; Casey, Michael A; Folzenlogen, Zach A; Ramakrishnan, Vijay R; Youssef, A Samy

    2017-07-21

    OBJECTIVE The endoscopic endonasal transmaxillary transpterygoid (TMTP) approach has been the gateway for lateral skull base exposure. Removal of the cartilaginous eustachian tube (ET) and lateral mobilization of the internal carotid artery (ICA) are technically demanding adjunctive steps that are used to access the petroclival region. The gained expansion of the deep working corridor provided by these maneuvers has yet to be quantified. METHODS The TMTP approach with cartilaginous ET removal and ICA mobilization was performed in 5 adult cadaveric heads (10 sides). Accessible portions of the petrous apex were drilled during the following 3 stages: 1) before ET removal, 2) after ET removal but before ICA mobilization, and 3) after ET removal and ICA repositioning. Resection volumes were calculated using 3D reconstructions generated from thin-slice CT scans obtained before and after each step of the dissection. RESULTS The average petrous temporal bone resection volumes at each stage were 0.21 cm 3 , 0.71 cm 3 , and 1.32 cm 3 (p < 0.05, paired t-test). Without ET removal, inferior and superior access to the petrous apex was limited. Furthermore, without ICA mobilization, drilling was confined to the inferior two-thirds of the petrous apex. After mobilization, the resection was extended superiorly through the upper extent of the petrous apex. CONCLUSIONS The transpterygoid corridor to the petroclival region is maximally expanded by the resection of the cartilaginous ET and mobilization of the paraclival ICA. These added maneuvers expanded the deep window almost 6 times and provided more lateral access to the petroclival region with a maximum volume of 1.5 cm 3 . This may result in the ability to resect small-to-moderate sized intradural petroclival lesions up to that volume. Larger lesions may better be approached through an open transcranial approach.

  7. Gradenigo's syndrome--surgical management in a child.

    PubMed

    Humayun, Hassan Nabeel; Akhtar, Shabbir; Ahmed, Shakeel

    2011-04-01

    Otits media is a common problem. Some of its complications that were seen frequently in the preantibiotic era are rare today. We report a case of an 8 year boy who presented with earache, retro-orbital pain and diplopia secondary to a sixth nerve palsy--Gradenigo's syndrome. In this syndrome infection from the middle ear spreads medially to the petrous apex of the temporal bone. Work-up includes CT scan of the temporal bones. Timely management with intravenous antibiotics (+ surgery) is needed to prevent intra-cranial complications.

  8. Long-term Symptom-specific Outcomes for Patients With Petrous Apex Cholesterol Granulomas: Surgery Versus Observation.

    PubMed

    Stevens, Shawn M; Manning, Amy; Pensak, Myles L; Samy, Ravi N

    2017-02-01

    Review long-term symptom-specific outcomes for petrous apex cholesterol granulomas (PACG). Retrospective review. Tertiary center. Adults with PACG were assessed from 1998 to 2015. Symptomatic patients were stratified into surgical and observation subgroups. Resolution rates of individual symptoms and chief complaints were assessed as was the impact of surgical approach and stent usage on symptom-specific outcomes. Symptom recurrence rates were tabulated. Twenty-seven patients were included whose mean age was 44.8 ± 3.3 years. Fourteen and 13 patients stratified into the surgical and observation subgroups respectively. The surgical subgroup trended toward a longer follow-up period (mean 68.5 vs. 33.8 mo; p = 0.06). Overall, the most frequent symptoms encountered were headache (52%), aural fullness, tinnitus, and vestibular complaints (41% each). Visual complaints, retro-orbital pain, and cranial neuropathies were less common (18%, 15%, 11%). The overall symptom resolution rate was significantly higher in the surgical subgroup (48% vs. 26%, p = 0.03). In both subgroups, headache, retro-orbital pain, and visual complaints had the highest resolution rates. Vestibular complaints and tinnitus were very unlikely to resolve. Significantly more patients in the surgical group resolved their chief complaints (70% vs. 25%, p = 0.02). While approach type and stent usage did not significantly influence symptom outcomes, all patients with symptom recurrence (11%) were initially managed without stents. Symptom-specific outcomes were better in patients managed surgically for PACG. Individual symptom resolution rates were highly variable. Some symptoms were refractory regardless of management strategy. Surgical approach and stent usage did not significantly influence symptom outcomes.

  9. Carcinoma of the middle ear and external auditory canal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, S.S.; Kim, J.A.; Goodchild, N.

    1983-07-01

    Thirty-one patients with malignant tumors of the middle ear and external auditory canal (EAC) were observed at the University of Virginia Hospital from 1956 through 1980. Of 27 patients with carcinoma, 21 had squamous cell carcinoma, 4 had basal cell carcinoma and 2 had adenoid cystic carcinoma. The 27 patients with carcinoma are reviewed with regard to clinical presentation, treatment modality, results and complications. The majority (67%) of patients had a history of chronic ear drainage, 22% had a previous mastoidectomy or polypectomy and 7% had an associated cholesteatoma. Eighty percent of patients with carcinoma limited to EAC were alivemore » and well at 5 years, compared to 43% of patients with involvement of the middle ear. Fifty-six percent of patients without invasion of the petrous bone were alive at 5 years compared to only 20% of patients with petrous bone involvement. The data strongly suggest that survival depends on the extent of disease. The corrected disease free 5 year survival rates were 14% for patients who had surgery alone and 50% for those who had surgery and radiotherapy. Of the three patients with advanced disease who received radiotherapy alone, none survived five years.« less

  10. Petrous Apex Cholesterol Granulomas: Outcomes, Complications, and Hearing Results From Surgical and Wait-and-Scan Management.

    PubMed

    Grinblat, Golda; Vashishth, Ashish; Galetti, Francesco; Caruso, Antonio; Sanna, Mario

    2017-12-01

    1. To analyze the surgical outcomes in the management of petrous apex cholesterol granulomas (PACG) with a brief literature review.2. To evaluate the importance of wait-and-scan management option. Retrospective review. Quaternary referral center for otology and skull base surgery. Charts of 55 patients with at least 12 months of follow-up were analyzed for demographic, clinical, audiometric, and radiological features. Patients were divided into surgical group (SG) (n = 31) and wait-and-scan (n = 24) (WS) group. Surgical approach was chosen as per hearing status and PACG extension and relation to nearby neurovascular structures and included either drainage by transmastoid-infralabyrinthine approach (TM-IL)/transcanal-infracochlear approach (TC-IC) or resection by infratemporal fossa type B approach (ITF-B). The combination of ITF-B with trans-otic (TO) approach or TO approach solely was used in unserviceable hearing cases. Postoperative outcomes and complications were evaluated in SG. Postoperative symptom relief was observed in 24 patients (77.4%). Diplopia and paresthesia recovered in each case and improvement in headache, dizziness, tinnitus, and hearing loss was observed in 87.1% cases. Serviceable hearing was preserved in 24 of 26 cases. Postoperative complication rate was 32.2% including incidences of profound hearing loss, facial nerve paresis, carotid artery injury and intraoperative CSF leaks. Revision surgery was required in 3 (9.6%) cases, after TM-IL approach. Surgical drainage is preferable to more aggressive resection procedures, with the latter reserved for recurrent lesions or lesions with severe hearing loss/involvement of critical neurovascular structures. ITF-B approach provides adequate cyst and neurovascular control for resection, while avoiding brain retraction. An initial wait-and-scan approach can be used in most patients where symptoms and imaging justify so.

  11. Searching for the mother missed since the Second World War.

    PubMed

    Zupanič Pajnič, Irena; Petaros, Anja; Balažic, Jože; Geršak, Ksenija

    2016-11-01

    The aim of the study was to perform the genetic identification of a human cranium from a Second World War gravesite in Slovenia and find out if it belonged to the mother of a woman used as a family reference. Both genetic and anthropological examinations were carried out. The genetic examination was performed on 2 molars and petrous bone. Prior to DNA isolation 0.5 g of tooth and bone powder was decalcified. The DNA was purified in a Biorobot EZ1 (Qiagen) device. The nuclear DNA of the samples was quantified and short tandem repeat (STR) typing performed using two different autosomal and Y-STR kits. Up to 22.4 ng DNA/g of powder was obtained from samples analyzed. We managed to obtain nuclear DNA for successful STR typing from the left second molar and from the petrous bone. Full autosomal genetic profile including amelogenin locus revealed the male origin of the cranium that was further confirmed by the analyses of Y-STRs. The same conclusions were adopted after the anthropological analysis which identified the cranium as that of a very young Caucasoid male. The male origin of the cranium rejected the possibility of motherhood for the compared daughter. For traceability in the event of contamination, we created an elimination database including genetic profiles of the nuclear and Y-STRs of all persons that had been in contact with the analyzed cranium and no match was found. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  12. PubMed Central

    Zanoletti, E.; Borsetto, D.; Opocher, G.; Mazzoni, A.; Martini, A.

    2017-01-01

    SUMMARY Endolymphatic sac tumour (ELST) is infrequent, as emerges from small series reported in the literature. It is a slow-growing malignancy with local aggressiveness and a low risk of distant metastases. It is often misdiagnosed because of the late onset of symptoms and difficulty in obtaining a biopsy. Its frequency is higher in von Hippel-Lindau (VHL) disease (a genetic systemic syndrome involving multiple tumours), with a prevalence of around 25%. The diagnosis is based on radiology, with specific patterns on contrast-enhanced MRI and typical petrous bone erosion on bone CT scan. Our experience of ELST in the years between 2012-2015 concerns 7 cases, one of which was bilateral, in patients with VHL disease. Four of the 7 patients underwent 5 surgical procedures at our institution. Each case is described in detail, including clinical symptoms, and the intervals between symptom onset, diagnosis and therapy. Postoperative morbidity was low after early surgery on small tumours, whereas extensive surgery for large tumours was associated with loss of cranial nerve function (especially VII, IX, X). The critical sites coinciding with loss of neurological function were the fallopian canal, jugular foramen, petrous apex and intradural extension into the posterior cranial fossa. Early surgery on small ELST is advocated for patients with VHL disease, in whom screening enables a prompt diagnosis and consequently good prognosis. PMID:29165437

  13. Inner ear dysplasia is common in children with Down syndrome (trisomy 21).

    PubMed

    Blaser, Susan; Propst, Evan J; Martin, Daniel; Feigenbaum, Annette; James, Adrian L; Shannon, Patrick; Papsin, Blake C

    2006-12-01

    Middle and external ear anomalies are well recognized in Down syndrome (DS, trisomy 21). Inner ear anomalies are much less frequently described. This study reviews inner ear morphology on imaging to determine the prevalence of cochlear and vestibular anomalies in children with DS. The authors conducted a retrospective review of imaging features of (DS) inner ear structures. Fifty-nine sequential patients with DS with imaging of the inner ear were identified by a radiology report text search program. Quantitative biometric assessment of the inner ear was performed on patients with high-resolution computed tomography or magnetic resonance images of the petrous bone. Petrous imaging was performed for evaluation of inflammatory disease or hearing loss. Spinal imaging, which included petrous views, was performed in most cases to exclude C1 to 2 dislocation, a potential complication of DS. Measurements were compared with normative data. Inner ear dysplasia is much more common in DS than previously reported. Inner ear structures are universally hypoplastic. Vestibular malformations are particularly common and a small bony island of the lateral semicircular canal (<3 mm in diameter) appears highly typical. Additional findings in some patients were persistent lateral semicircular anlage with fusion of the lateral semicircular canal and vestibule into a single cavity, vestibular aqueduct and endolymphatic sac fossa enlargement, cochlear nerve canal hypoplasia, and stenosis or duplication of the internal auditory canal. Stenosis of the external meatus, poor mastoid pneumatization, middle ear and mastoid opacification, and cholesteatoma were common, as expected.

  14. Petrous apex cholesterol granuloma: importance of pedicled nasoseptal flap in addition to silicone T-tube for prevention of occlusion of drainage route in transsphenoidal approach--a technical note.

    PubMed

    Shibao, Shunsuke; Toda, Masahiro; Tomita, Toshiki; Saito, Katsuya; Ogawa, Kaoru; Kawase, Takeshi; Yoshida, Kazunari

    2015-01-01

    Recently, petrous apex cholesterol granulomas (CGs) have been treated via the endoscopic endonasal transsphenoidal approach (EEA) using a silicone tube, to prevent drainage route occlusion. Occlusion of the drainage route has led to problems with recurrence. The aim of this report is to describe the use of a surgical technique to prevent drainage route occlusion. In surgical technique, the posterolateral wall of the sphenoid sinus was opened by EEA. After cyst debridement, a vascularized nasoseptal flap with a width of approximately 4 cm was inserted into the lumen with a silicone T-tube with a diameter of 7 mm. This technique was used in two patients: the first patient during the second operation after recurrence following occlusion of the drainage route, and the second patient during the first operation. Opening of the cyst wall was confirmed endoscopically in both patients 12-24 months after surgery, even after removal of the T-tube. In conclusion, the use of a pedicled nasoseptal flap with a silicone tube is useful to prevent CG recurrence, by paranasal cavitization of the cystic cavity.

  15. Mastoidectomy simulation with combined visual and haptic feedback.

    PubMed

    Agus, Marco; Giachetti, Andrea; Gobbetti, Enrico; Zanetti, Gianluigi; Zorcolo, Antonio; John, Nigel W; Stone, Robert J

    2002-01-01

    Mastoidectomy is one of the most common surgical procedures relating to the petrous bone. In this paper we describe our preliminary results in the realization of a virtual reality mastoidectomy simulator. Our system is designed to work on patient-specific volumetric object models directly derived from 3D CT and MRI images. The paper summarizes the detailed task analysis performed in order to define the system requirements, introduces the architecture of the prototype simulator, and discusses the initial feedback received from selected end users.

  16. Endolymphatic sac tumour in von Hippel-Lindau disease: management strategies.

    PubMed

    Zanoletti, E; Girasoli, L; Borsetto, D; Opocher, G; Mazzoni, A; Martini, A

    2017-10-01

    Endolymphatic sac tumour (ELST) is infrequent, as emerges from small series reported in the literature. It is a slow-growing malignancy with local aggressiveness and a low risk of distant metastases. It is often misdiagnosed because of the late onset of symptoms and difficulty in obtaining a biopsy. Its frequency is higher in von Hippel-Lindau (VHL) disease (a genetic systemic syndrome involving multiple tumours), with a prevalence of around 25%. The diagnosis is based on radiology, with specific patterns on contrast-enhanced MRI and typical petrous bone erosion on bone CT scan. Our experience of ELST in the years between 2012-2015 concerns 7 cases, one of which was bilateral, in patients with VHL disease. Four of the 7 patients underwent 5 surgical procedures at our institution. Each case is described in detail, including clinical symptoms, and the intervals between symptom onset, diagnosis and therapy. Postoperative morbidity was low after early surgery on small tumours, whereas extensive surgery for large tumours was associated with loss of cranial nerve function (especially VII, IX, X). The critical sites coinciding with loss of neurological function were the fallopian canal, jugular foramen, petrous apex and intradural extension into the posterior cranial fossa. Early surgery on small ELST is advocated for patients with VHL disease, in whom screening enables a prompt diagnosis and consequently good prognosis. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  17. Primary tuberculous petrositis.

    PubMed

    Sethi, Ashwani; Sabherwal, Anup; Gulati, Achal; Sareen, Deepika

    2005-11-01

    Tuberculous osteomyelitis of the temporal bone is a rare and dangerous entity that should be included in the differential diagnosis of infectious processes of the base of the skull. We present the case of an 11-year-old child who presented with diplopia, ear discharge and hearing loss. The radiological and histopathological findings revealed tuberculous otitis with osteomyelitis and an abscess in the petrous apex. The child responded to anti-tuberculous chemotherapy. The diagnosis and management of tuberculous osteomyelitis are discussed and a brief review of the literature is presented.

  18. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  19. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  20. Skull base trauma: diagnosis and management.

    PubMed

    Samii, Madjid; Tatagiba, Marcos

    2002-03-01

    The singular anatomical relationship of the base of the skull is responsible for the particular problems that may arise after injury. Extensive dural laceration and severe neurovascular damage may accompany skull base injuries. Trauma to the anterior skull base is frequently related to the paranasal sinuses, and trauma to the middle and the posterior skull base usually affects the petrous bone. Injury to the anterior fossa including the paranasal sinuses may produce CSF leakage, damage the olfactory nerves, optic nerves, and orbita contents. Fractures may affect the carotid canal, injure the internal carotid artery and result in carotid-cavernous fistula. Trauma to the petrous bone may cause facial palsy and deafness, and CSF leakage with otorrhoea or paradoxal rhinoliquorrhoea. Trauma to the posterior fossa may lacerate the major venous sinuses, and affect the cranio-cervical stability. Each one of these injuries will need a particular strategy. Decision making for management as a whole must consider all aspects, including the fact that these injuries frequently involve polytraumatized patients. Decisions regarding the timing of surgery and the sequence of the surgical procedures must be made with great care. Modern surgical techniques and recent technologies including functional preservation of the olfactory nerves in frontobasal trauma, visual evoked potentials, assisted optic nerve decompression, facial nerve reconstruction, interventional technique for intravascular repair of vascular injuries, and recent developments in cochlea implants and brain stem implants, all contributed significantly to improve outcome and enhance the quality of life of patients. This article reviews basic principles of management of skull base trauma stressing the role of these advanced techniques.

  1. Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.

    PubMed

    Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo

    2012-09-27

    The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.

  2. Bone and fat connection in aging bone.

    PubMed

    Duque, Gustavo

    2008-07-01

    The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.

  3. Evolutionary Patterns of Bone Histology and Bone Compactness in Xenarthran Mammal Long Bones

    PubMed Central

    Straehl, Fiona R.; Scheyer, Torsten M.; Forasiepi, Analía M.; MacPhee, Ross D.; Sánchez-Villagra, Marcelo R.

    2013-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness. PMID:23874932

  4. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    PubMed

    Straehl, Fiona R; Scheyer, Torsten M; Forasiepi, Analía M; MacPhee, Ross D; Sánchez-Villagra, Marcelo R

    2013-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.

  5. Bone tumor

    MedlinePlus

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  6. Miscellaneous indications in bone scintigraphy: metabolic bone diseases and malignant bone tumors.

    PubMed

    Cook, Gary J R; Gnanasegaran, Gopinath; Chua, Sue

    2010-01-01

    The diphosphonate bone scan is ideally suited to assess many global, focal or multifocal metabolic bone disorders and there remains a role for conventional bone scintigraphy in metabolic bone disorders at diagnosis, investigation of complications, and treatment response assessment. In contrast, the role of bone scintigraphy in the evaluation of primary malignant bone tumors has reduced with the improvement of morphologic imaging, such as computed tomography and magnetic resonance imaging. However, an increasing role for (18)F-fluorodeoxyglucose positron emission tomography and positron emission tomography/computed tomography is emerging as a functional assessment at diagnosis, staging, and neoadjuvant treatment response assessment.

  7. Bone scan in metabolic bone diseases. Review.

    PubMed

    Abdelrazek, Saeid; Szumowski, Piotr; Rogowski, Franciszek; Kociura-Sawicka, Agnieszka; Mojsak, Małgorzata; Szorc, Małgorzata

    2012-08-25

    Metabolic bone disease encompasses a number of disorders that tend to present a generalized involvement of the whole skeleton. The disorders are mostly related to increased bone turnover and increased uptake of radiolabelled diphosphonate. Skeletal uptake of 99mTc-labelled diphosphonate depends primarily upon osteoblastic activity, and to a lesser extent, skeletal vascularity. A bone scan image therefore presents a functional display of total skeletal metabolism and has valuable role to play in the assessment of patients with metabolic bone disorders. However, the bone scan appearances in metabolic bone disease are often non-specific, and their recognition depends on increased tracer uptake throughout the whole skeleton. It is the presence of local lesions, as in metastatic disease, that makes a bone scan appearance obviously abnormal. In the early stages, there will be difficulty in evaluating the bone scans from many patients with metabolic bone disease. However, in the more severe cases scan appearances can be quite striking and virtually diagnostic.

  8. Upper Nasopharyngeal Corridor for Transnasal Endoscopic Drainage of Petroclival Cholesterol Granulomas: Alternative Access in Conchal Sphenoid Patients.

    PubMed

    Turan, Nefize; Baum, Griffin R; Holland, Christopher M; Ahmad, Faiz U; Henriquez, Oswaldo A; Pradilla, Gustavo

    2016-03-01

    Background Cholesterol granulomas arising at the petrous apex can be treated via traditional open surgical, endoscopic, and endoscopic-assisted approaches. Endoscopic approaches require access to the sphenoid sinus, which is technically challenging in patients with conchal sphenoidal anatomy. Clinical Presentation A 55-year-old woman presented with intermittent headaches and tinnitus. Formal audiometry demonstrated moderately severe bilateral hearing loss. CT of the temporal bones and sella revealed a well-demarcated expansile lytic mass. MRI of the face, orbit, and neck showed a right petrous apex mass measuring 22 × 18 × 19 mm that was hyperintense on T1- and T2-weighted images without enhancement, consistent with a cholesterol granuloma. The patient had a conchal sphenoidal anatomy. Operative Technique Herein, we present an illustrative case of a low-lying petroclival cholesterol granuloma in a patient with conchal sphenoidal anatomy to describe an alternative high nasopharyngeal corridor for endoscopic transnasal transclival access. Postoperative Course Postoperatively, the patient's symptoms recovered and no complications occurred. Follow-up imaging demonstrated a patent drainage tract without evidence of recurrence. Conclusion In patients with a conchal sphenoid sinus, endoscopic transnasal transclival access can be gained using a high nasopharyngeal approach. This corridor facilitates safe access to these lesions and others in this location.

  9. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength

    PubMed Central

    Baud’huin, Marc; Solban, Nicolas; Cornwall-Brady, Milton; Sako, Dianne; Kawamoto, Yoshimi; Liharska, Katia; Lath, Darren; Bouxsein, Mary L.; Underwood, Kathryn W.; Ucran, Jeffrey; Kumar, Ravindra; Pobre, Eileen; Grinberg, Asya; Seehra, Jasbir; Canalis, Ernesto; Pearsall, R. Scott; Croucher, Peter I.

    2012-01-01

    Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A–mFc) in vivo. mBMPR1A–mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A–mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A–mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders. PMID:22761317

  10. [Is bone biopsy necessary for the diagnosis of metabolic bone diseases? Necessity of bone biopsy].

    PubMed

    Ito, Akemi; Yajima, Aiji

    2011-09-01

    Histological analysis of undecalcified bone biopsy specimens is a valuable clinical and research tool for studying the etiology, pathogenesis and treatment of metabolic bone diseases. In case of osteoporosis, bone biopsy is not usually required for the diagnosis ; however, bone histomorphometry may be useful in rare cases with unusual skeletal fragility. Bone histomorphometry also provides valuable information on the mechanism of action, safety and efficacy of new anti-osteoporosis drugs. Bone histomorphometry is useful for the diagnosis and the assessment of treatment response in rickets/osteomalacia and in CKD-MBD (chronic kidney disease-mineral and bone disorders) . In Japan, bone biopsy is often performed to establish the diagnosis of Paget's disease of bone, especially to differentiate it from metastatic bone disease.

  11. Bone Biopsy

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging ... the limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided ...

  12. Perfluoroalkyl substances in human bone: concentrations in bones and effects on bone cell differentiation.

    PubMed

    Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J

    2017-07-28

    Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.

  13. Microarchitecture of irradiated bone: comparison with healthy bone

    NASA Astrophysics Data System (ADS)

    Bléry, Pauline; Amouriq, Yves; Guédon, Jeanpierre; Pilet, Paul; Normand, Nicolas; Durand, Nicolas; Espitalier, Florent; Arlicot, Aurore; Malard, Olivier; Weiss, Pierre

    2012-03-01

    The squamous cell carcinomas of the upper aero-digestive tract represent about ten percent of cancers. External radiation therapy leads to esthetic and functional consequences, and to a decrease of the bone mechanical abilities. For these patients, the oral prosthetic rehabilitation, including possibilities of dental implant placement, is difficult. The effects of radiotherapy on bone microarchitecture parameters are not well known. Thus, the purpose of this study is to assess the effects of external radiation on bone micro architecture in an experimental model of 25 rats using micro CT. 15 rats were irradiated on the hind limbs by a single dose of 20 Grays, and 10 rats were non irradiated. Images of irradiated and healthy bone were compared. Bone microarchitecture parameters (including trabecular thickness, trabecular number, trabecular separation, connectivity density and tissue and bone volume) between irradiated and non-irradiated bones were calculated and compared using a Mann and Whitney test. After 7 and 12 weeks, images of irradiated and healthy bone are different. Differences on the irradiated and the healthy bone populations exhibit a statistical significance. Trabecular number, connectivity density and closed porosity are less important on irradiated bone. Trabecular thickness and separation increase for irradiated bone. These parameters indicate a decrease of irradiated bone properties. Finally, the external irradiation induces changes on the bone micro architecture. This knowledge is of prime importance for better oral prosthetic rehabilitation, including implant placement.

  14. Bone healing and bone substitutes.

    PubMed

    Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason

    2002-02-01

    With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.

  15. Low Bone Density

    MedlinePlus

    ... Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone ... to people with normal bone density. Detecting Low Bone Density A bone density test will determine whether ...

  16. [The injection of acrylic bone cement prevents bone collapse in the intercalar bones lacking bony support: an experimental sheep semilunar bone model].

    PubMed

    Unsal, Murat; Tetik, Cihangir; Erol, Bülent; Cabukoğlu, Cengiz

    2003-01-01

    In a sheep semilunar bone model, we investigated whether collapse in the intercalar bones lacking bony support could be prevented by the injection of acrylic bone cement. The study included 16 limbs of eight sheep. Preoperatively, anteroposterior and lateral views of the carpal joints in the fore limbs were obtained. The animals were divided into four groups. In group 1 (n=3) no surgical procedure was performed in the right semilunar bones, whereas the periosteum on the contralateral side was elevated (group 2; n=3). The first two groups were left as controls. In Group 3 (n=5) the left semilunar bones were filled with acrylic bone cement following decancellation of the bone, while the right semilunar bones were left decancellated (group 4; n=5). The sheep were monitored for three months. Radiographs of the carpal joints were obtained to evaluate collapse occurrence in the semilunar bones. Thereafter, the animals were sacrificed and the semilunar bones were excised for biomechanical and histological examinations. Osteonecrosis and cartilage damage were sought and resistance to compressive forces was investigated. Radiologically, the extent of collapse was statistically significant in the semilunar bones in group 4 (p<0.05). The use of acrylic bone cement was found to prevent collapse in group 3, with no significant difference being noted between preoperative and postoperative semilunar bone heights (p>0.05). Biomechanically, the least resistance to compressive forces was measured in group 4 (p<0.05). Histologically, cartilage damage and osteonecrosis were only seen in group 4. Our data suggest that the use of acrylic bone cement prevents collapse in the semilunar bones, without inducing any cartilage damage or osteonecrosis.

  17. Muscle-Bone Interactions in Pediatric Bone Diseases.

    PubMed

    Veilleux, Louis-Nicolas; Rauch, Frank

    2017-10-01

    Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.

  18. Bone grafts.

    PubMed

    Hubble, Matthew J W

    2002-09-01

    Bone grafts are used in musculoskeletal surgery to restore structural integrity and enhance osteogenic potential. The demand for bone graft for skeletal reconstruction in bone tumor, revision arthroplasty, and trauma surgery, couple with recent advances in understanding and application of the biology of bone transplantation, has resulted in an exponential increase in the number of bone-grafting procedures performed over the last decade. It is estimated that 1.5 million bone-grafting procedures are currently performed worldwide each year, compared to a fraction of that number 20 years ago. Major developments also have resulted in the harvesting, storage, and use of bone grafts and production of graft derivatives, substitutes, and bone-inducing agents.

  19. Bone cysts: unicameral and aneurysmal bone cyst.

    PubMed

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Bone-Immune Cell Crosstalk: Bone Diseases

    PubMed Central

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma. PMID:26000310

  1. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.

  2. Re-evaluation of bone pain in patients with type 1 Gaucher disease suggests that bone crises occur in small bones as well as long bones.

    PubMed

    Baris, Hagit N; Weisz Hubshman, Monika; Bar-Sever, Zvi; Kornreich, Liora; Shkalim Zemer, Vered; Cohen, Ian J

    2016-09-01

    Bone crises in type 1 Gaucher disease are reported in long bones and occasionally in weight bearing bones and other bones, but rarely in small bones of the hands and feet. We retrospectively examined the incidence of bone pain in patients followed at the Rabin Medical Center, Israel, before and following the initiation of enzyme replacement therapy (ERT) and evaluated them for bone crises. Of 100 type I Gaucher disease patients, 30 (30%) experienced one or more bone crises. Small bone crises represented 31.5% of all bone crises and were always preceded by crises in other bones. While the incidence of long bone crises reduced after the initiation of ERT, small bone crises increased. Almost 60% of patients with bone crises were of the N370S/84GG genotype suggesting a greater susceptibility of N370S/84GG patients to severe bone complications. These patients also underwent the greatest number of splenectomies (70.6% of splenectomised patients). Splenectomised patients showed a trend towards increased long and small bone crises after surgery. Active investigation of acute pain in the hands and feet in patients in our cohort has revealed a high incidence of small bone crises. Physicians should consider imaging studies to investigate unexplained pain in these areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Bone and bone turnover.

    PubMed

    Crofton, Patricia M

    2009-01-01

    Children with cancer are exposed to multiple influences that may adversely affect bone health. Some treatments have direct deleterious effects on bone whilst others may have indirect effects mediated through various endocrine abnormalities. Most clinical outcome studies have concentrated on survivors of acute lymphoblastic leukaemia (ALL). There is now good evidence that earlier treatment protocols that included cranial irradiation with doses of 24 Gy or greater may result in growth hormone deficiency and low bone mineral density (BMD) in the lumbar spine and femoral neck. Under current protocols, BMD decreases during intensive chemotherapy and fracture risk increases. Although total body BMD may eventually return to normal after completion of chemotherapy, lumbar spine trabecular BMD may remain low for many years. The implications for long-term fracture risk are unknown. Risk factors for low BMD include high dose methotrexate, higher cumulative doses of glucocorticoids, male gender and low physical activity. BMD outcome in non-ALL childhood cancers has been less well studied but there is evidence that survivors of childhood brain or bone tumours, and survivors of bone marrow transplants for childhood malignancy, all have a high risk of long-term osteopenia. Long-term follow-up is required, with appropriate treatment of any endocrine abnormalities identified. Copyright (c) 2009 S. Karger AG, Basel.

  4. A study of 23 unicameral bone cysts of the calcaneus: open chip allogeneic bone graft versus percutaneous injection of bone powder with autogenous bone marrow.

    PubMed

    Park, Il-Hyung; Micic, Ivan Dragoljub; Jeon, In-Ho

    2008-02-01

    The treatment of unicameral bone cyst varies from percutaneous needle biopsy, aspiration and local injection of steroid, autologous bone marrow, or demineralized bone matrix to curettage and open bone-grafting. The purpose of this study was to compare the results of open chip allogeneic bone graft versus percutaneous injection of demineralized bone powder with autogenous bone marrow in management of calcaneal cysts. Twenty-three calcaneal unicameral cysts in 20 patients were treated. Lyophilized irradiated chip allogeneic bone (CAB) and autogenous bone marrow were used for treatment of 13 cysts in 11 patients, and 10 cysts in 9 patients were treated with percutaneous injection of irradiated allogeneic demineralized bone powder (DBP) and autogenous bone marrow. There were 11 males and 9 female patients with mean age of 17 years. The patients were followed for an average of 49.4 months. Complete healing was achieved in 9 cysts treated with chip allogeneic bone and in 5 cysts treated with powdered bone. Four cysts treated with CAB and 3 cysts treated with DBP healed with a defect. Two cysts treated with powdered bone and autogenous bone marrow were classified as persistent. No infections or pathological fractures were observed during the followup period. Percutaneous injection of a mixture of allogeneic bone powder with autogenous bone marrow is a minimal invasive method and could be an effective alternative in the treatment of unicameral calcaneal bone cysts. The postoperative morbidity was low, the hospital stay was brief, and patient's comfort for unrestricted activity was enhanced.

  5. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmio, Mirja, E-mail: Mirja.Nurmio@utu.fi; Department of Pediatrics, University of Turku; Joki, Henna, E-mail: Henna.Joki@utu.fi

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bonemore » physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.« less

  6. Healthy Bones Matter

    MedlinePlus

    ... Health Topics Kids Pages Healthy Bones Matter Healthy Bones Matter What you know about your bones Bones support your body and allow you to ... where you “deposit” and “withdraw” bone tissue. How bones grow Think of your bones as a “bank” ...

  7. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone.

    PubMed

    Qu, Huayi; Guo, Wei; Yang, Rongli; Li, Dasen; Tang, Shun; Yang, Yi; Dong, Sen; Zang, Jie

    2015-09-24

    The reconstruction of an intercalary bone defect after a tumor resection of a long bone remains a challenge to orthopedic surgeons. Though several methods have been adopted to enhance the union of long segmental allografts or retrieved segmental autografts to the host bones, still more progresses are required to achieve a better union rate. Several methods have been adopted to devitalize tumor bone for recycling usage, and the results varied. We describe our experiences of using devitalized tumor-bearing bones for the repairing of segmental defects after tumor resection. Twenty-seven eligible patients treated from February 2004 to May 2012 were included. The segmental tumor bone (mean length, 14 cm) was resected, and then devitalized in 20% sterile saline at 65 °C for 30 min after the tumor tissue was removed. The devitalized bone was implanted back into the defect by using nails or plates. Complete healing of 50 osteotomy ends was achieved at a median time of 11 months (interquartile range (IQR) 9-13 months). Major complications included bone nonunion in four bone junctions (7.4%), devitalized bone fracture in one patient (3.7%), deep infection in three patients (11.1%), and fixation failure in two patients (7.4%). The bone union rates at 1 and 2 years were 74.1 and 92.6%, respectively. The average functional score according to the Musculoskeletal Tumor Society (MSTS) 93 scoring system was 93 % (IQR 80-96.7%). Incubation in 20% sterile saline at 65 °C for 30 min is an effective method of devitalization of tumor-bearing bone. The retrieved bone graft may provide as a less expensive alternative for limb salvage. The structural bone and the preserved osteoinductivity of protein may improve bone union.

  8. Is cortical bone hip? What determines cortical bone properties?

    PubMed

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  9. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    PubMed

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  10. [Bone quantitative ultrasound].

    PubMed

    Matsukawa, Mami

    2016-01-01

    The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.

  11. Bone morphogenetic protein (BMP)1-3 enhances bone repair.

    PubMed

    Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan

    2011-04-29

    Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Bone banking.

    PubMed

    Howard, W

    1999-04-01

    The use of human organs and tissues for transplantation in Australia has increased significantly over the past 30 years. In 1997, the Australian Coordinating Committee on Organ Registries and Donation (ACCORD) reported a total number of 190 organ donors, 636 corneal donors and 1509 bone donors Australia wide. Of the 1509 bone donations, 143 came from cadaveric sources and 1366 were made by living donors. Bone transplantation is not as widely recognised as solid organ or corneal transplantation. Due to improved technology and surgical skills, the demand for bone transplantation has increased markedly. This Clinical Update will provide an overview of the physiological aspects of bone transplantation and explore bone banking, a key step in the complex and critical process of bone transplantation.

  13. [Osteostimulating effect of bone xenograft on bone tissue regeneration].

    PubMed

    Balin, V N; Balin, D V; Iordanishvili, A K; Musikin, M I

    2015-01-01

    The aim of experimental case-control study performed in 28 dogs divided in 2 groups was to assess local tissue reactions on bone xenograft transplantation; dynamics of bone remodeling and formation at the site of bone defect wall contacting with bone xenograft; dynamics and mechanisms of xenograft remodeling. Transplantation of xenograft in conventional bone defects did not cause inflammatory of destructive reactions because of high biocompatibility of the material. At transplantation site active fibrous bone trabeculae formation filling the spaces between xenograft participles was observed. On the 90th day newly formed bone showed lammelar structure. Simultaneously from the 42d day the invasion of cell elements from recipient bed into the material was seen leading to xenograft resorption. The observed dynamics may be assessed as gradual substitution of xenograft with newly formed host bone structures.

  14. Diabetes, Biochemical Markers of Bone Turnover, Diabetes Control, and Bone

    PubMed Central

    Starup-Linde, Jakob

    2012-01-01

    Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone markers and the similarities and differences of type 1- and type 2-diabetics regarding bone markers will be evaluated. A systematic literature search was conducted using PubMed, Embase, Cinahl, and SveMed+ with the search terms: “Diabetes mellitus,” “Diabetes mellitus type 1,” “Insulin dependent diabetes mellitus,” “Diabetes mellitus type 2,” “Non-insulin dependent diabetes mellitus,” “Bone,” “Bone and Bones,” “Bone diseases,” “Bone turnover,” “Hemoglobin A Glycosylated,” and “HbA1C.” After removing duplicates from this search 1,188 records were screened by title and abstract and 75 records were assessed by full text for inclusion in the review. In the end 43 records were chosen. Bone formation and resorption markers are investigated as well as bone regulating systems. T1D is found to have lower osteocalcin and CTX, while osteocalcin and tartrate-resistant acid are found to be lower in T2D, and sclerostin is increased and collagen turnover markers altered. Other bone turnover markers do not seem to be altered in T1D or T2D. A major problem is the lack of histomorphometric studies in humans linking changes in turnover markers to actual changes in bone turnover and further research is needed to strengthen this link. PMID:23482417

  15. No Bones (or Bone Treats) About It: Reasons Not to Give Your Dog Bones

    MedlinePlus

    ... bone treats or turkey/chicken bones during the holidays. Many dog owners know not to toss a ... dog a stocking full of bone treats this holiday season, you may want to reconsider. According to ...

  16. Bone Grafts

    MedlinePlus

    ... allograft bone comes from donors who have died. Tissue banks screen these donors and disinfect and test the donated bone to make sure it is safe to use. If the transplanted bone comes ... an autograft. Autograft bone often comes from your ribs, hips or a leg.

  17. Remnant Woven Bone and Calcified Cartilage in Mouse Bone: Differences between Ages/Sex and Effects on Bone Strength

    PubMed Central

    Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah

    2016-01-01

    Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic

  18. Bone marrow aspiration

    MedlinePlus

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  19. Biomechanical evaluation of bone screw fixation with a novel bone cement.

    PubMed

    Juvonen, Tiina; Nuutinen, Juha-Pekka; Koistinen, Arto P; Kröger, Heikki; Lappalainen, Reijo

    2015-07-30

    Bone cement augmentation is commonly used to improve the fixation stability of orthopaedic implants in osteoporotic bone. The aim of this study was to evaluate the effect of novel bone cements on the stability of bone screw fixation by biomechanical testing and to compare them with a conventional Simplex(®)P bone cement and requirements of the standards. Basic biomechanical properties were compared with standard tests. Adhesion of bone cements were tested with polished, glass blasted and corundum blasted stainless steel surfaces. Screw pullout testing with/without cement was carried out using a synthetic bone model and cancellous and cortical bone screws. All the tested bone cements fulfilled the requirements of the standard for biomechanical properties and improved the screw fixation stability. Even a threefold increase in shear and tensile strength was achieved with increasing surface roughness. The augmentation improved the screw pullout force compared to fixation without augmentation, 1.2-5.7 times depending on the cement and the screw type. The good biomechanical properties of novel bone cement for osteoporotic bone were confirmed by experimental testing. Medium viscosity of the bone cements allowed easy handling and well-controlled penetration of bone cement into osteoporotic bone. By proper parameters and procedures it is possible to achieve biomechanically stable fixation in osteoporotic bone. Based on this study, novel biostable bone cements are very potential biomaterials to enhance bone screw fixation in osteoporotic bone. Novel bone cement is easy to use without hand mixing using a dual syringe and thus makes it possibility to use it as required during the operation.

  20. Fatal carotid dissection after blunt head trauma.

    PubMed

    Tartara, F; Regolo, P; Servadei, F; Versari, P P; Giovanelli, M

    2000-06-01

    Occurrence of internal carotid artery injuries associated with skull base fracture has been reported. A. report a case of fatal intracranial carotid dissection related to petrous fracture involving the carotid canal. Identification of carotid lesions may be difficult and generally related to appearance of unexpected neurological deficit. Skull base fractures may be considered an indirect sign for detection of vascular injury. Patterns of the fracture are of paramount importance; routine CT scan may fail to detect basilar fractures and high definition fine-cut CT scan should be executed to carefully identify and evaluate fractures. Temporal and sphenoid bone fractures are common in head trauma and involvement of the course of the carotid artery is frequent. The involvement of the intracranial carotid artery course represents a direct risk factor for lesions of the petrous, lacerum and cavernous segments of the carotid artery. Early diagnosis of post-traumatic vascular injury may lead to prognosis improvement because of effectiveness of heparin anticoagulant therapy. Then vascular screening is recommendable in cases with complex fractures of the skull base and particularly fracturing along the course of the carotid artery. Magnetic resonance angiography may be considered the first line diagnostic tools for vascular screening. Angiography may be reserved for patients with a proven lesion or rapid neurological deterioration taking into account the possibility of interventional treatment.

  1. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    PubMed

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  2. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  3. Bone vascularization: a way to study bone microarchitecture?

    NASA Astrophysics Data System (ADS)

    Blery, P.; Autrusseau, F.; Crauste, E.; Freuchet, Erwan; Weiss, Pierre; Guédon, J.-P.; Amouriq, Y.

    2014-03-01

    Trabecular bone and its microarchitecture are of prime importance for health. Studying vascularization helps to better know the relationship between bone and vascular microarchitecture. This research is an animal study (nine Lewis rats), based on the perfusion of vascularization by a contrast agent (a mixture of 50% barium sulfate with 1.5% of gelatin) before euthanasia. The samples were studied by micro CT at a resolution of 9μm. Softwares were used to show 3D volumes of bone and vessels, to calculate bone and vessels microarchitecture parameters. This study aims to understand simultaneously the bone microarchitecture and its vascular microarchitecture.

  4. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.

    PubMed

    Hart, N H; Nimphius, S; Rantalainen, T; Ireland, A; Siafarikas, A; Newton, R U

    2017-09-01

    This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.

  5. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow.

    PubMed

    Rougraff, Bruce T; Kling, Thomas J

    2002-06-01

    The treatment of unicameral bone cysts varies from open bone-grafting procedures to percutaneous injection of corticosteroids or bone marrow. The purpose of this study was to evaluate the feasibility and effectiveness of percutaneous injection of a mixture of demineralized bone matrix and autogenous bone marrow for the treatment of simple bone cysts. Twenty-three patients with an active unicameral bone cyst were treated with trephination and injection of allogeneic demineralized bone matrix and autogenous bone marrow. The patients were followed for an average of fifty months (range, thirty to eighty-one months), at which time pain, function, and radiographic signs of resolution of the cyst were assessed. The average time until the patients had pain relief was five weeks, and the average time until the patients returned to full, unrestricted activities was six weeks. Bone-healing at the site of the injection was first seen radiographically at three to six months. No patient had a pathologic fracture during this early bone-healing stage. Cortical remodeling was seen radiographically by six to nine months, and after one year the response was usually complete, changing very little from then on. Five patients required a second injection because of recurrence of the cyst, and all five had a clinically and radiographically quiescent cyst after an average of thirty-six additional months of follow-up. Seven of the twenty-three patients had incomplete healing manifested by small, persistent radiolucent areas within the original cyst. None of these cysts increased in size or resulted in pain or fracture. Percutaneous injection of allogeneic demineralized bone matrix and autogenous bone marrow is an effective treatment for unicameral bone cysts.

  6. An oxidized implant surface may improve bone-to-implant contact in pristine bone and bone defects treated with guided bone regeneration: an experimental study in dogs.

    PubMed

    Gurgel, Bruno César de Vasconcelos; Gonçalves, Patrícia Furtado; Pimentel, Suzana Peres; Nociti, Francisco Humberto; Sallum, Enilson Antonio; Sallum, Antonio Wilson; Casati, Marcio Zaffalon

    2008-07-01

    The aim of the present study was to histometrically evaluate bone healing in the absence of bone defects and in the presence of surgically created bone defects treated by guided bone regeneration at oxidized and turned implant surfaces. Three months after dental extractions, standardized buccal dehiscence defects (height: 5 mm; width: 4 mm) were surgically created following implant site preparation in the mandible of 10 dogs. Oxidized-surface implants (OSI) and turned-surface implants (TSI) were inserted bilaterally, and the bone defects were treated by guided bone regeneration. After 3 months of healing, the animals were sacrificed, blocks were dissected, and undecalcified sections were obtained and processed for histometric analysis. The percentage of bone-to-implant contact (BIC) and bone density (BD) was evaluated inside the threads on the buccal (regenerated bone) and lingual sides (pristine bone) of the implants. Data were evaluated using two-way analysis of variance (P <0.05). New bone formation could be observed in OSI and TSI in the region of the defect creation. The BIC values observed in OSI for pristine and regenerated bone were 57.03% +/- 21.86% and 40.86% +/- 22.73%, respectively. TSI showed lower values of BIC in pristine bone (37.39% +/- 23.33%) and regenerated bone (3.52% +/- 4.87%). The differences between OSI and TSI were statistically significant. BD evaluation showed no statistically significant differences between OSI and TSI in pristine and regenerated bone. The oxidized implant surface promoted a higher level of BIC than the turned implant surface at pristine and regenerated bone.

  7. Vitamin K, bone turnover, and bone mass in girls.

    PubMed

    Kalkwarf, Heidi J; Khoury, Jane C; Bean, Judy; Elliot, James G

    2004-10-01

    Vitamin K has been suggested to have a role in bone metabolism, and low vitamin K intake has been related to low bone density and increased risk of osteoporotic fracture. The objective of this study was to determine whether phylloquinone (vitamin K(1)) intake and biochemical indicators of vitamin K status are related to bone mineral content (BMC) and markers of bone formation and bone resorption in girls. Vitamin K status [plasma phylloquinone concentration and percentage of undercarboxylated osteocalcin (%ucOC)] was measured at baseline in a study of 245 healthy girls aged 3-16 y. Cross-linked N-telopeptide of type 1 collagen (NTx) breakdown, osteocalcin, and bone-specific alkaline phosphatase were measured to reflect bone resorption and formation. BMC of the total body, lumbar spine, and hip and dietary phylloquinone intake were measured annually for 4 y. Phylloquinone intake (median: 45 microg/d) was not consistently associated with bone turnover markers or BMC. Better vitamin K status (high plasma phylloquinone and low %ucOC) was associated with lower bone resorption and formation. Plasma phylloquinone was inversely associated with NTx and osteocalcin concentrations (P < 0.05), and %ucOC was positively associated with NTx and bone-specific alkaline phosphatase concentrations (P < 0.05). Indicators of vitamin K status were not consistently associated with current BMC or gain in BMC over the 4-y study period. Better vitamin K status was associated with decreased bone turnover in healthy girls consuming a typical US diet. Randomized phylloquinone supplementation trials are needed to further understand the potential benefits of phylloquinone on bone acquisition in growing children.

  8. Roles of leptin in bone metabolism and bone diseases.

    PubMed

    Chen, Xu Xu; Yang, Tianfu

    2015-09-01

    Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.

  9. Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats

    PubMed Central

    2012-01-01

    Background Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. Methods 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 μg/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. Results Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. Conclusions A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling. PMID:22443362

  10. Penetrating brain injury caused by nail guns: two case reports and a review of the literature.

    PubMed

    Luo, Wei; Liu, Hai; Hao, Shuyu; Zhang, Ying; Li, Jingsheng; Liu, Baiyun

    2012-01-01

    To the best of the authors' knowledge, there are few case reports of penetrating brain injuries (PBI) caused by nail guns and these have usually involved incomplete penetration of the skull. Complete penetration of a nail into the intracranial cavity is extremely rare. Here, two such cases are presented. In the first, the nail entered through the right temporal bone, lodged in the right temporal lobe and was removed via craniotomy with intra-operative ultrasound guidance. In the second, the nail destroyed the left parietal bone, damaged the left internal capsule and lodged in the left temporal lobe near the left petrous apex and the brain stem. According to the latest literature retrieval, this is the first reported case of nail-gun injury to the internal capsule. The position of the nail precluded removal without further neurologic damage. Treatment strategies designed to optimize outcome, with or without surgery, and possible complications are discussed in this report.

  11. Bone grafts, bone substitutes and orthobiologics

    PubMed Central

    Roberts, Timothy T.; Rosenbaum, Andrew J.

    2012-01-01

    The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics. PMID:23247591

  12. Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers

    PubMed Central

    Sheikh, Zeeshan; Javaid, Mohammad Ahmad; Hamdan, Nader; Hashmi, Raheel

    2015-01-01

    Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration. PMID:28788032

  13. Assessment of an improved bone washing protocol for deceased donor human bone.

    PubMed

    Eagle, M J; Man, J; Rooney, P; Hogg, P; Kearney, J N

    2015-03-01

    NHSBT Tissue Services issues bone to surgeons in the UK in two formats, fresh-frozen unprocessed bone from living donors and processed bone from deceased donors. Processed bone may be frozen or freeze dried and all processed bone is currently subjected to a washing protocol to remove blood and bone marrow. In this study we have improved the current bone washing protocol for cancellous bone and assessed the success of the protocol by measuring the removal of the bone marrow components: soluble protein, DNA and haemoglobin at each step in the process, and residual components in the bone at the end of the process. The bone washing protocol is a combination of sonication, warm water washes, centrifugation and chemical (ethanol and hydrogen peroxide) treatments. We report that the bone washing protocol is capable of removing up to 99.85 % soluble protein, 99.95 % DNA and 100 % of haemoglobin from bone. The new bone washing protocol does not render any bone cytotoxic as shown by contact cytotoxicity assays. No microbiological cell growth was detected in any of the wash steps. This process is now in use for processed cancellous bone issued by NHSBT.

  14. Oxytocin and bone

    PubMed Central

    Sun, Li; Zaidi, Mone; Zallone, Alberta

    2014-01-01

    One of the most meaningful results recently achieved in bone research has been to reveal that the pituitary hormones have profound effect on bone, so that the pituitary-bone axis has become one of the major topics in skeletal physiology. Here, we discuss the relevant evidence about the posterior pituitary hormone oxytocin (OT), previously thought to exclusively regulate parturition and breastfeeding, which has recently been established to directly regulate bone mass. Both osteoblasts and osteoclasts express OT receptors (OTR), whose stimulation enhances bone mass. Consistent with this, mice deficient in OT or OTR display profoundly impaired bone formation. In contrast, bone resorption remains unaffected in OT deficiency because, even while OT stimulates the genesis of osteoclasts, it inhibits their resorptive function. Furthermore, in addition to its origin from the pituitary, OT is also produced by bone marrow osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. In turn, the power of estrogen to increase bone mass is OTR-dependent. Therefore, OTR−/− mice injected with 17β-estradiol do not show any effects on bone formation parameters, while the same treatment increases bone mass in wild-type mice. These findings together provide evidence for an anabolic action of OT in regulating bone mass and suggest that bone marrow OT may enhance the bone-forming action of estrogen through an autocrine circuit. This established new physiological role for OT in the maintenance of skeletal integrity further suggests the potential use of this hormone for the treatment of osteoporosis. PMID:25209411

  15. Bone metastasis target redox-responsive micell for the treatment of lung cancer bone metastasis and anti-bone resorption.

    PubMed

    Ye, Wei-Liang; Zhao, Yi-Pu; Cheng, Ying; Liu, Dao-Zhou; Cui, Han; Liu, Miao; Zhang, Bang-Le; Mei, Qi-Bing; Zhou, Si-Yuan

    2018-01-16

    In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and -15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.

  16. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects.

    PubMed

    Usui, Yuki; Aoki, Kaoru; Narita, Nobuyo; Murakami, Narumichi; Nakamura, Isao; Nakamura, Koichi; Ishigaki, Norio; Yamazaki, Hiroshi; Horiuchi, Hiroshi; Kato, Hiroyuki; Taruta, Seiichi; Kim, Yoong Ahm; Endo, Morinobu; Saito, Naoto

    2008-02-01

    Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.

  17. Bone repair using a new injectable self-crosslinkable bone substitute.

    PubMed

    Fellah, Borhane H; Weiss, Pierre; Gauthier, Olivier; Rouillon, Thierry; Pilet, Paul; Daculsi, Guy; Layrolle, Pierre

    2006-04-01

    A new injectable and self-crosslinkable bone substitute (IBS2) was developed for filling bone defects. The IBS2 consisted of a chemically modified polymer solution mixed with biphasic calcium phosphate (BCP) ceramic particles. The polymer hydroxypropylmethyl cellulose was functionalized with silanol groups (Si-HPMC) and formed a viscous solution (3 wt %) in alkaline medium. With a decrease in pH, self-hardening occurred due to the formation of intermolecular -Si-O- bonds. During setting, BCP particles, 40 to 80 microm in diameter, were added to the polymer solution at a weight ratio of 50/50. The resulting injectable material was bilaterally implanted into critically sized bone defects at the distal femoral epiphyses of nine New Zealand White rabbits. The IBS2 filled the bone defects entirely and remained in place. After 8 weeks, bone had grown centripetally and progressed towards the center of the defects. Newly formed bone, ceramic, and nonmineralized tissue ratios were 24.6% +/- 5.6%, 21.6% +/- 5.8%, and 53.7% +/- 0.1%, respectively. Mineralized and mature bone was observed between and in contact with the BCP particles. The bone/ceramic apposition was 73.4% +/- 10.6%. The yield strength for the IBS2-filled defects was 16.4 +/- 7.2 MPa, significantly higher than for the host trabecular bone tissue (2.7 +/- 0.4 MPa). This study showed that BCP particles supported the bone healing process by osteoconduction while the Si-HPMC hydrogel created intergranular space for bone ingrowth. This new injectable and self-crosslinkable bone substitute could be used conveniently in orthopedic surgery for filling critical-size bone defects. Copyright 2006 Orthopaedic Research Society

  18. Bone Cancer

    MedlinePlus

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  19. Management of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow.

    PubMed

    Datta, N K; Das, K P; Alam, M S; Kaiser, M S

    2014-07-01

    Unicameral bone cyst is a common benign bone tumor and most frequent cause of the pathological fracture in children. We have started a prospective study for that treatment of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow in the department of Orthopaedics, Bangabandhu Sheikh Mujib Medical University (BSMMU) during May 1999 to April 2012. Aim of this study was to see Freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow a satisfactory graft material in the treatment of unicameral bone cyst as well as factors such as patients age, sex, cyst size and site of lesion influence on cyst healing. A total 35 patients of unicameral bone cyst were operated. In this study out of 35 patients, male were 22(62.86%) and female were 13(37.14). Male Female ratio 22:13(1.70:1) Age of the patients ranging from 2 years 6 month to 20 years, mean age 12.18 years more common 11 years to 20 years 29(82.86%) patients. Common bones sites involvements are proximal end of Humerus 20(57.14%), proximal end of Femur 7(20 %), proximal end of Tibia 3(8.57%), Calcanium 2(5.71%), proximal end of Ulna 1(2.86%), shaft of Radius 1(2.86%) and Phalanx 1(2.86%). Final clinical outcome of unicameral bone cyst treated by thorough curettage of cavity and tightly filled with freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow in which healed (success rate) 88.57% (31) and recurrence rate is 11.43% (4). P value is <0.001. Follow up period was 6 month to 11 years. From our study it was realized that freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow is useful graft material for healing of the lesional area as well as restoring structural integrity for the treatment of unicameral bone cyst.

  20. Comparison of the osteogenic potential of bone dust and iliac bone chip.

    PubMed

    Ye, Shuai; Seo, Kyu-Bum; Park, Byung-Hyun; Song, Kyung-Jin; Kim, Jung-Ryul; Jang, Kyu-Yun; Chae, Young Ju; Lee, Kwang-Bok

    2013-11-01

    There is no comparative study of the in vitro and in vivo osteogenic potential of iliac bone chips (autogenous iliac cancellous bone chips) compared with bone dusts generated during the decortication process with a high-speed burr in spine fracture or fusion surgery. To compare the osteogenic potential of three sizes of bone dusts with iliac bone chips and to determine whether bone dusts can be used as a bone graft substitute. In vitro and in vivo study. Bone chips were harvested from the posterior superior iliac spine and bone dusts from the vertebrae of 15 patients who underwent spinal fracture surgery. Bone dust was divided into three groups: small (3 mm), middle (4 mm), and large (5 mm) according to the size of the burr tip. A comparison was made using a cell proliferation assay, alkaline phosphatase (ALP) activity, the degree of mineralization in an in vitro model, and radiographic and histologic studies (the change of absorbable area and tissue density) after implantation of the various materials into back muscles of nude mice. Although all three bone dust groups were less active with regard to cell proliferation, ALP activity, and the degree of mineralization, than were bone chips, they still exhibited osteogenic potential. Furthermore, there was no significant difference among the three bone dust groups. The three bone dust groups did show greater absorbable area and change of the tissue density than did the iliac bone chip group. Again, there was no significant difference among the three bone dust groups in this regard. Histologically, specimens from the bone dust groups had a higher osteoclast cell number than specimens from the iliac bone chip group. The osteogenic potential of bone dusts is lower than that of iliac bone chips, and the absorption speed of bone dusts in vivo is faster than that of iliac bone chips. The increased resorption speed appeared to result from an increase in osteoclast cell number. Therefore, caution needs to be used when

  1. Dependence of Long Bone Flexural Properties on Bone Mineral Distribution

    NASA Technical Reports Server (NTRS)

    Katz, BethAnn; Cleek, Tammy M.; Whalen, Robert T.; Connolly, James P. (Technical Monitor)

    1995-01-01

    The objective of this study is to assess whether a non-invasive determination of long bone cross-sectional areal properties using bone densitometry accurately estimates true long bone flexural properties. In this study, section properties of two pairs of human female embalmed tibiae were compared using two methods: special analysis of bone densitometry data, and experimental determination of flexural regidities from bone surface strain measurements during controlled loading.

  2. Bone Diseases

    MedlinePlus

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  3. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...

  4. Paget's disease of bone resembling bone metastasis from gastric cancer.

    PubMed

    Shimoyama, Yasuyuki; Kusano, Motoyasu; Shimoda, Yoko; Ishihara, Shingo; Toyomasu, Yoshitaka; Ohno, Tetsuro; Mochiki, Erito; Sano, Takaaki; Hirato, Junko; Mori, Masatomo

    2011-08-01

    A 74-year-old man had an endoscopic type 0'-IIc tumor in the upper gastric body on the greater curvature and biopsy showed the tumor to be a well-differentiated adenocarcinoma (Group 5). He was referred to us for endoscopic submucosal dissection (ESD). Endoscopy revealed fold convergency, fold swelling, and fusion of the fold, indicating tumor invasion into the submucosa, which was outside the indications for ESD. In addition, there was an increase of serum bone-type alkaline phosphatase (ALP-III and ALP-IV) and urinary cross-linked N-terminal telopeptide of type I collagen (a bone metabolism marker), while (18)F-fluorodeoxyglucose positron emission tomography showed increased uptake in the left pelvis and Th10, suggesting bone metastases. We first diagnosed gastric cancer with bone metastases; however, the symptoms suggested pathological bone fracture and no bone pain. Therefore, a computed tomography-guided aspiration bone biopsy was performed to exclude the possibility of Paget's disease of bone. Biopsy specimens revealed no tumor and a mosaic pattern. No increased uptake of (18)F-FAMT (L-[3-(18)F] α-methyltyrosine) supported a diagnosis of no bone metastases from gastric cancer. We finally diagnosed gastric cancer accompanied by Paget's disease of bone and performed a laparoscopy-assisted proximal gastrectomy. The pathological diagnosis was U less 0-IIb, and U post 0-IIc ypT1a (M) N0H0P0M0 yp stage IA. In gastric cancer patients with suspected bone metastasis, we also need to consider Paget's disease of bone.

  5. Experiment K305: Quantitative analysis of selected bone parameters. Supplement 2: Bone elongation rate and bone mass in metaphysis of long bones

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Kimmel, D. B.; Smith, C.; Dell, R. B.

    1981-01-01

    The proximal humeral metaphysis of rats from time periods recovery plus zero days (R+0), recovery plus six days (R+6), and recovery plus twenty nine days (R+29) was analyzed. The volume of calcified cartilage and bone in flight and synchronous controls was reduced in groups R+0 and R+6, but was normal in group R+29. The number of functional bone cells (osteoblasts and osteoclasts) was decreased in proportion to the amount of bone in the early groups, and was normal in the last group. The fatty marrow volume was increased only in flight animals of groups R+0 and R+6, but was normal in the R+29 group. Accumulation of excess fatty marrow was seen only in flight animals. The decreased amount of bone and calcified cartilage is believed to be the result of a temporarily slowed or arrested production of calcified cartilage as a substrate for bone formation. This would have resulted from slowed bone elongation during flight and synchronous control conditions. Bone elongation returned to normal by twenty nine days after return.

  6. An Ambulatory Surgery Service Feasibility Study at Madigan Army Medical Center, Tacoma, Washington

    DTIC Science & Technology

    1978-08-01

    sturmdorf) Benign Intraoral lesions Cervical cone Branchial arch appendages, Colpotomy, diagnostic excision Cryotherapy (alone)" Basla cell CA...petrous pyramid, atti- ceantrotomy, closure of fistula, exteneeration of air cells of petrous pyramid, mastoid antrotomy, removal of outer attic wall...here admission forms will be filled out. Patients will then take those forms to the Admissions Office and return to that clinic for stamin up of 1

  7. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone

    PubMed Central

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-01-01

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone. PMID:28788390

  8. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone.

    PubMed

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-11-19

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant's location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map ( n = 10) with conventional surgery without assistance ( n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient's safety during BAP surgery in the temporal bone.

  9. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots.

    PubMed

    Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W

    2016-01-01

    Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation.

  10. Bone Area Histomorphometry.

    PubMed

    Andronowski, Janna M; Crowder, Christian

    2018-05-21

    Quantifying the amount of cortical bone loss is one variable used in histological methods of adult age estimation. Measurements of cortical area tend to be subjective and additional information regarding bone loss is not captured considering cancellous bone is disregarded. We describe whether measuring bone area (cancellous + cortical area) rather than cortical area may improve histological age estimation for the sixth rib. Mid-shaft rib cross-sections (n = 114) with a skewed sex distribution were analyzed. Ages range from 16 to 87 years. Variables included: total cross-sectional area, cortical area, bone area, relative bone area, relative cortical area, and endosteal area. Males have larger mean total cross-sectional area, bone area, and cortical area than females. Females display a larger mean endosteal area and greater mean relative measure values. Relative bone area significantly correlates with age. The relative bone area variable will provide researchers with a less subjective and more accurate measure than cortical area. © 2018 American Academy of Forensic Sciences.

  11. [Bone morphogenetic proteins (BMP): clinical application for reconstruction of bone defects].

    PubMed

    Sierra-García, Gerardo Daniel; Castro-Ríos, Rocío; Gónzalez-Horta, Azucena; Lara-Arias, Jorge; Chávez-Montes, Abelardo

    2016-01-01

    Since the introduction of bone morphogenetic proteins, their use has become an invaluable ally for the treatment of bone defects. These proteins are potent growth factors, related to angiogenic and osteogenic activity. The osteoinductive capacity of recombinant bone morphogenetic protein (rhBMP) in the formation of bone and cartilage has been confirmed in in vitro studies and evaluated in clinical trials. To obtain a therapeutic effect, administration is systemic, by injection over the physiological dose. Among the disadvantages, ectopic bone formation or high morbidity in cases of spinal fusion is observed. In this review, the roles of bone morphogenetic proteins in bone repair and clinical applications are analyzed. These findings represent advances in the study of bone regeneration and application of growth factors for more predictable results.

  12. Engineering bone grafts with enhanced bone marrow and native scaffolds.

    PubMed

    Hung, Ben P; Salter, Erin K; Temple, Josh; Mundinger, Gerhard S; Brown, Emile N; Brazio, Philip; Rodriguez, Eduardo D; Grayson, Warren L

    2013-01-01

    The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds. © 2013 S. Karger AG, Basel

  13. Bone lesion biopsy

    MedlinePlus

    Bone biopsy; Biopsy - bone ... the cut, then pushed and twisted into the bone. Once the sample is obtained, the needle is ... sample is sent to a lab for examination. Bone biopsy may also be done under general anesthesia ...

  14. Osteoclasts prefer aged bone.

    PubMed

    Henriksen, K; Leeming, D J; Byrjalsen, I; Nielsen, R H; Sorensen, M G; Dziegiel, M H; Martin, T John; Christiansen, C; Qvist, P; Karsdal, M A

    2007-06-01

    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of aged bones. Osteoclasts resorb aging bone in order to repair damage and maintain the quality of bone. The mechanism behind the targeting of aged bone for remodeling is not clear. We investigated whether bones endogenously possess the ability to control osteoclastic resorption. To biochemically distinguish aged and young bones; we measured the ratio between the age-isomerized betaCTX fragment and the non-isomerized alphaCTX fragment. By measurement of TRACP activity, CTX release, number of TRACP positive cells and pit area/pit number, we evaluated osteoclastogenesis as well as osteoclast resorption on aged and young bones. We found that the alphaCTX/betaCTX ratio is 3:1 in young compared to aged bones, and we found that both alpha and betaCTX are released by osteoclasts during resorption. Osteoclastogenesis was augmented on aged compared to young bones, and the difference was enhanced under low serum conditions. We found that mature osteoclasts resorb more on aged than on young bone, despite unchanged adhesion and morphology. These data indicate that the age of the bone plays an important role in controlling osteoclast-mediated resorption, with significantly higher levels of osteoclast differentiation and resorption on aged bones when compared to young bones.

  15. Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.

    PubMed

    Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd

    2018-05-14

    The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.

  16. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    PubMed

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  17. [Is bone biopsy necessary for the diagnosis of metabolic bone diseases? Non- invasive assessment of bone turn over markers could define the cause of metabolic bone diseases].

    PubMed

    Suzuki, Atsushi

    2011-09-01

    Recent advances of the measurement of bone turn over markers contribute to non-invasive assessment of bone-metabolic disorders. We can detect the cause of the metabolic disorders with bone turn over markers and hormonal profiles more easily than before. Today, we can diagnose and treat metabolic bone diseases without invasive procedure such as bone biopsy.

  18. Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms

    PubMed Central

    Atkins, Ayelet; Dean, Mason N.; Habegger, Maria Laura; Motta, Phillip J.; Ofer, Lior; Repp, Felix; Shipov, Anna; Weiner, Steve; Currey, John D.; Shahar, Ron

    2014-01-01

    A remarkable property of tetrapod bone is its ability to detect and remodel areas where damage has accumulated through prolonged use. This process, believed vital to the long-term health of bone, is considered to be initiated and orchestrated by osteocytes, cells within the bone matrix. It is therefore surprising that most extant fishes (neoteleosts) lack osteocytes, suggesting their bones are not constantly repaired, although many species exhibit long lives and high activity levels, factors that should induce considerable fatigue damage with time. Here, we show evidence for active and intense remodeling occurring in the anosteocytic, elongated rostral bones of billfishes (e.g., swordfish, marlins). Despite lacking osteocytes, this tissue exhibits a striking resemblance to the mature bone of large mammals, bearing structural features (overlapping secondary osteons) indicating intensive tissue repair, particularly in areas where high loads are expected. Billfish osteons are an order of magnitude smaller in diameter than mammalian osteons, however, implying that the nature of damage in this bone may be different. Whereas billfish bone material is as stiff as mammalian bone (unlike the bone of other fishes), it is able to withstand much greater strains (relative deformations) before failing. Our data show that fish bone can exhibit far more complex structure and physiology than previously known, and is apparently capable of localized repair even without the osteocytes believed essential for this process. These findings challenge the unique and primary role of osteocytes in bone remodeling, a basic tenet of bone biology, raising the possibility of an alternative mechanism driving this process. PMID:25331870

  19. Bone morphogenetic protein and bone metastasis, implication and therapeutic potential.

    PubMed

    Ye, Lin; Mason, Malcolm D; Jiang, Wen G

    2011-01-01

    Bone metastasis is one of the most common and severe complications in advanced malignancies, particularly in the three leading cancers; breast cancer, prostate cancer and lung cancer. It is currently incurable and causes severe morbidities, including bone pain, hypercalcemia, pathological fracture, spinal cord compression and consequent paralysis. However, the mechanisms underlying the development of bone metastasis remain largely unknown. Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and are pluripotent factors involved in the regulation of embryonic development and postnatal homeostasis of various organs and tissues, by controlling cellular differentiation, proliferation and apoptosis. Since they are potent regulators for bone formation, there is an increasing interest to investigate BMPs and their roles in bone metastasis. BMPs have been implicated in various neoplasms, at both primary and secondary tumors, particularly skeletal metastasis. Recently studies have also suggested that BMP signaling and their antagonists play pivotal roles in bone metastasis. In this review, we discuss the current knowledge of aberrations of BMPs which have been indicated in tumor progression, and particularly in the development of bone metastasis.

  20. Bone Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The danger of disuse osteoporosis under weightless condition in space led to extensive research into measurements of bone stiffness and mass by the Biomedical Research Division of Ames and Stanford University. Through its Technology Utilization Program, NASA funded an advanced SOBSA, a microprocessor-controlled bone probe system. SOBSA determines bone stiffness by measuring responses to an electromagnetic shaker. With this information, a physician can identify bone disease, measure deterioration and prescribe necessary therapy. The system is now undergoing further testing.

  1. Disorders of Bone Remodeling

    PubMed Central

    Feng, Xu; McDonald, Jay M.

    2013-01-01

    The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms. PMID:20936937

  2. Bone Marrow Diseases

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  3. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  4. Serum markers of bone metabolism show bone loss in hibernating bears

    USGS Publications Warehouse

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.

  5. Overexpression of bone sialoprotein leads to an uncoupling of bone formation and bone resorption in mice.

    PubMed

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-11-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.

  6. Overexpression of Bone Sialoprotein Leads to an Uncoupling of Bone Formation and Bone Resorption in Mice

    PubMed Central

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-01-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP. PMID:18597627

  7. Micro-CT evaluation of bone defects: applications to osteolytic bone metastases, bone cysts, and fracture.

    PubMed

    Buie, Helen R; Bosma, Nick A; Downey, Charlene M; Jirik, Frank R; Boyd, Steven K

    2013-11-01

    Bone defects can occur in various forms and present challenges to performing a standard micro-CT evaluation of bone quality because most measures are suited to homogeneous structures rather than ones with spatially focal abnormalities. Such defects are commonly associated with pain and fragility. Research involving bone defects requires quantitative approaches to be developed if micro-CT is to be employed. In this study, we demonstrate that measures of inter-microarchitectural bone spacing are sensitive to the presence of focal defects in the proximal tibia of two distinctly different mouse models: a burr-hole model for fracture healing research, and a model of osteolytic bone metastases. In these models, the cortical and trabecular bone compartments were both affected by the defect and were, therefore, evaluated as a single unit to avoid splitting the defects into multiple analysis regions. The burr-hole defect increased mean spacing (Sp) by 27.6%, spacing standard deviation (SpSD) by 113%, and maximum spacing (Spmax) by 72.8%. Regression modeling revealed SpSD (β=0.974, p<0.0001) to be a significant predictor of the defect volume (R(2)=0.949) and Spmax (β=0.712, p<0.0001) and SpSD (β=0.271, p=0.022) to be significant predictors of the defect diameter (R(2)=0.954). In the mice with osteolytic bone metastases, spacing parameters followed similar patterns of change as reflected by other imaging technologies, specifically bioluminescence data which is indicative of tumor burden. These data highlight the sensitivity of spacing measurements to bone architectural abnormalities from 3D micro-CT data and provide a tool for quantitative evaluation of defects within a bone. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children

    PubMed Central

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata

    2018-01-01

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers—bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)—were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP (p = 0.002) and CTX-I (p = 0.027), and slightly lower spine BMC (p = 0.067) and BMD (p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities. PMID:29414859

  9. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    PubMed

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  10. The dynamics of adult haematopoiesis in the bone and bone marrow environment.

    PubMed

    Ho, Miriel S H; Medcalf, Robert L; Livesey, Stephen A; Traianedes, Kathy

    2015-08-01

    This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system. © 2015 John Wiley & Sons Ltd.

  11. Study on clinical application of nano-hydroxyapatite bone in bone defect repair.

    PubMed

    Zhu, Weimin; Wang, Daping; Xiong, Jianyi; Liu, Jianquan; You, Wei; Huang, Jianghong; Duan, Li; Chen, Jielin; Zeng, Yanjun

    2015-01-01

    To study the clinical effect of bone defect treated with nano-hydroxyapatite(Nano-HA) artificial bone. From September 2009 to June 2012, 27 cases of bone defect were analyzed retrospectively. The position of bone defect included humerus, radius, ulna, femur, tibia and calcaneus. The range of bone defect was from 0.3 × 1.0 cm to 3 × 6.5 cm. Among them, there were 22 cases with fractures and 5 cases with tumors. All patients were treated with Nano-HA artificial bone. The ability of bone defect repair was evaluated by X-ray exams performed preoperatively and postoperatively. HSS scores were adopted for final evaluation at the latest follow-up. The patients were followed up from 11 to 26 months (average of 18.5 months). No general side effects occurred. X-ray photo showed an integrity interface between Nano-HA and bone. Primary healing was obtained in all cases without any complication. The Nano-HA artificial bone had a good biocompatibility and could be an ideal artificial bone in the reconstruction of bone defect.

  12. [Bone diseases].

    PubMed

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw.

  13. Preparation of autogenous bone grafts in two different bone mills.

    PubMed

    Erpenstein, H; Diedrich, P; Borchard, R

    2001-12-01

    The purpose of this study was to evaluate the performance of two bone mills (R Quetin Bone Mill and Micro Knochenmühle, Aesculap) for the grinding of autogenous bone (intraoral, cortical) according to the following criteria: (1) loss of bone during the grinding process, (2) particle size of the chips, (3) variability in chip size, (4) technical handling, and (5) cost-benefit ratio. The amount of material loss was determined by harvesting 30 bone cores from the mandibular symphysis of a pig. Each specimen was weighed before and after the grinding procedure on scales with an accuracy of 0.1 mg. The size and variability of the bone particles were determined histomorphometrically. Twenty-seven bone specimens from different patients were analyzed. Eight were ground with the Aesculap and 12 with the Quetin mill. Seven specimens harvested with a Brånemark implant bur served as controls. A histologic section was prepared from each specimen, and 10 bone particles per section were subjected to histomorphometric analysis. The Quetin mill was superior in all points to the Aesculap mill for the requirements of a periodontal practice.

  14. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: A study in 417 older women.

    PubMed

    Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter

    2016-02-01

    We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Modulation of bone resorption by phosphorylation state of bone sialoprotein.

    PubMed

    Curtin, Paul; McHugh, Kevin P; Zhou, Hai-Yan; Flückiger, Rudolf; Goldhaber, Paul; Oppenheim, Frank G; Salih, Erdjan

    2009-07-28

    We have determined transmembrane protein tyrosine phosphorylation (outside-in signaling) in cultured osteoclasts and macrophages in response to added native purified bone sialoprotein (nBSP) and its dephosphorylated form (dBSP). There were selective/differential and potent inhibitory effects by dBSP and minimal effect by nBSP on intracellular tyrosine phosphorylation in macrophages and osteoclasts. Further studies on the downstream gene expression effects led to identification of a large number of differentially expressed genes in response to nBSP relative to dBSP in both macrophages and osteoclasts. These studies were extended to a bone resorption model using live mouse neonatal calvarial bone organ cultures stimulated by parathyroid hormone (PTH) to undergo bone resorption. Inclusion of nBSP in such cultures showed no effect on type I collagen telopeptide fragment release, hence overall bone resorption, whereas addition of dBSP abolished the PTH-induced bone resorption. The inhibition of bone resorption by dBSP was shown to be unique since in complementary experiments use of integrin receptor binding ligand, GRGDS peptide, offered only partial reduction on overall bone resorption. Quantitative RANKL analysis indicated that mechanistically the PTH-induced bone resorption was inhibited by dBSP via down-regulation of the osteoblastic RANKL production. This conclusion was supported by the RANKL analysis in cultured MC3T3-E1 osteoblast cells. Overall, these studies provided direct evidence for the involvement of covalently bound phosphates on BSP in receptor mediated "outside-in" signaling via transmembrane tyrosine phosphorylation with concurrent effects on downstream gene expressions. The use of a live bone organ culture system augmented these results with further evidence that links the observed in vivo variable state of phosphorylation with bone remodeling.

  16. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    PubMed

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  17. Development of electrospun bone-mimetic matrices for bone regenerative applications

    NASA Astrophysics Data System (ADS)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  18. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action

    PubMed Central

    Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U.

    2017-01-01

    This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone’s ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone’s complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation. PMID:28860414

  19. Bone remodelling: its local regulation and the emergence of bone fragility.

    PubMed

    Martin, T John; Seeman, Ego

    2008-10-01

    Bone modelling prevents the occurrence of damage by adapting bone structure - and hence bone strength - to its loading circumstances. Bone remodelling removes damage, when it inevitably occurs, in order to maintain bone strength. This cellular machinery is successful during growth, but fails during advancing age because of the development of a negative balance between the volumes of bone resorbed and formed during remodelling by the basic multicellular unit (BMU), high rates of remodelling during midlife in women and late in life in both sexes, and a decline in periosteal bone formation. together resulting in bone loss and structural decay each time a remodelling event occurs. The two steps in remodelling - resorption of a volume of bone by osteoclasts and formation of a comparable volume by osteoblasts - are sequential, but the regulatory events leading to these two fully differentiated functions are not. Reparative remodelling is initiated by damage producing osteocyte apoptosis, which signals the location of damage via the osteocyte canalicular system to endosteal lining cells which forms the canopy of a bone-remodelling compartment (BRC). Within the BRC, local recruitment of osteoblast precursors from the lining cells, the marrow and circulation, direct contact with osteoclast precursors, osteoclastogenesis and molecular cross-talk between precursors, mature cells, cells of the immune system, and products of the resorbed matrix, titrate the birth, work and lifespan of the cells of this multicellular remodelling machinery to either remove or form a net volume of bone appropriate to the mechanical requirements.

  20. Does Guided Bone Regeneration Prevent Unfavorable Bone Shapes in Distraction Gap?

    PubMed

    Demetoglu, Umut; Alkan, Alper; Kiliç, Erdem; Ozturk, Mustafa; Bilge, Suheyb

    2018-03-01

    Complications related to distraction osteogenesis can cause degradation of newly regenerated bone. Additionally, an unfavorable shape of the regenerated bone at the distraction gap can reduce the quantity of regenerated bone. The aim of the present study was to report on the prevention of unfavorable shapes of regenerated bone using guided bone regeneration during distraction. Bilateral alveolar distraction was performed in 10 beagle dog mandibles. One side of the mandible formed the experimental group and the other side served as the control group. In the experimental group, guided bone regeneration was performed simultaneously with distraction osteogenesis. In the control group, only alveolar distraction was applied. At the end of a 1-week latent period, all mandibles were distracted 10 mm (1 mm/day). After the distraction period, 3 months were allowed for consolidation. After consolidation, all the dogs were euthanized, and the shape of the regenerated bone was determined to be either favorable or unfavorable. Densitometric evaluation and area measurements were performed using computed tomography scans. Statistical evaluation was performed using the independent t test, with a significance level of P < .05. In the experimental group, no unfavorable bone shape developed in the distraction gap, and the new bone had a surface and volume similar to those of the segments. In contrast, in the control group, 4 mandibles had an unfavorable bone shape in the distraction gap and 4 showed favorable bone healing with no defect. The surface area of the regenerating bone in the experimental group was significantly greater than that in the control group. Also, the surface area differed significantly between the experimental and control groups (P < .05). However, the densitometric values did not differ between the 2 groups (P < .05). Concomitant use of guided bone regeneration with distraction osteogenesis could be an optimal method for generating a favorable bone shape

  1. Characterisation of Bone Beneficial Components from Australian Wallaby Bone

    PubMed Central

    Lao, Weiguo; Jin, Xingliang; Tan, Yi; Xiao, Linda; Padula, Matthew P.; Bishop, David P.; Reedy, Brian; Ong, Madeleine; Kamal, Mohammad A.; Qu, Xianqin

    2016-01-01

    Background: Osteoporosis is a condition in which the bones become brittle, increasing the risk of fractures. Complementary medicines have traditionally used animal bones for managing bone disorders, such as osteoporosis. This study aimed to discover new natural products for these types of conditions by determining mineral and protein content of bone extracts derived from the Australian wallaby. Methods: Inductively coupled plasma-mass spectrometry and Fourier transform infrared spectroscopic analysis were used for mineral tests, proteome analysis was using LC/MS/MS and the effects of wallaby bone extracts (WBE)s on calcium deposition and alkaline phosphatase activity were evaluated in osteogenic cells derived from adipose tissue-derived stem cells (ADSCs). Results: Concentrations of calcium and phosphorus were 26.21% and 14.72% in WBE respectively. Additionally, minerals found were wide in variety and high in concentration, while heavy metal concentrations of aluminium, iron, zinc and other elements were at safe levels for human consumption. Proteome analysis showed that extracts contained high amounts of bone remodelling proteins, such as osteomodulin, osteopontin and osteoglycin. Furthermore, in vitro evaluation of WBEs showed increased deposition of calcium in osteoblasts with enhanced alkaline phosphatase activity in differentiated adipose-derived stem cells. Conclusion: Our results demonstrate that wallaby bone extracts possess proteins and minerals beneficial for bone metabolism. WBEs may therefore be used for developing natural products for conditions such as osteoporosis and further investigation to understand biomolecular mechanism by which WBEs prevent osteoporosis is warranted. PMID:28930133

  2. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones.

    PubMed

    Pieske, Oliver; Wittmann, Alexandra; Zaspel, Johannes; Löffler, Thomas; Rubenbauer, Bianka; Trentzsch, Heiko; Piltz, Stefan

    2009-12-15

    Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF) as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG) or demineralized-bone-matrix (DBM). From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10) or DBM-augmentation (n = 10). At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014). Mean duration of follow-up was 56.6 months (ICABG-group) and 41.2 months (DBM-group). All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20%) whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146). No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20%) (p = 0.146). Pain intensity were comparable in both groups (p = 0.326). However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031). With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160 euro/case). Nevertheless, this study demonstrated that the

  3. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  4. Bone microarchitecture and estimated bone strength in men with active acromegaly.

    PubMed

    Silva, Paula P B; Amlashi, Fatemeh G; Yu, Elaine W; Pulaski-Liebert, Karen J; Gerweck, Anu V; Fazeli, Pouneh K; Lawson, Elizabeth; Nachtigall, Lisa B; Biller, Beverly M K; Miller, Karen K; Klibanski, Anne; Bouxsein, Mary; Tritos, Nicholas A

    2017-11-01

    Both acromegaly and adult growth hormone deficiency (GHD) are associated with increased fracture risk. Sufficient data are lacking regarding cortical bone microarchitecture and bone strength, as assessed by microfinite element analysis (µFEA). To elucidate both cortical and trabecular bone microarchitecture and estimated bone strength in men with active acromegaly or GHD compared to healthy controls. Cross-sectional study at a clinical research center, including 48 men (16 with acromegaly, 16 with GHD and 16 healthy controls). Areal bone mineral density (aBMD), cortical and trabecular bone microarchitecture and estimated bone strength (µFEA) at the radius and tibia. aBMD was not different between the 3 groups at any skeletal site. At the radius, patients with acromegaly had greater cortical area ( P  < 0.0001), cortical thickness ( P  = 0.0038), cortical pore volume ( P  < 0.0001) and cortical porosity ( P  = 0.0008), but lower trabecular bone density ( P  = 0.0010) compared to controls. At the tibia, patients with acromegaly had lower trabecular bone density ( P  = 0.0082), but no differences in cortical bone microstructure. Compressive strength and failure load did not significantly differ between groups. These findings persisted after excluding patients with hypogonadism. Bone microarchitecture was not deficient in patients with GHD. Both cortical and trabecular microarchitecture are altered in men with acromegaly. Our data indicate that GH excess is associated with distinct effects in cortical vs trabecular bone compartments. Our observations also affirm the limitations of aBMD testing in the evaluation of patients with acromegaly. © 2017 European Society of Endocrinology.

  5. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  6. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone.

    PubMed

    Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min

    2017-08-01

    Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption. Copyright © 2017 Endocrine Society

  7. Flexoelectricity in Bones.

    PubMed

    Vasquez-Sancho, Fabian; Abdollahi, Amir; Damjanovic, Dragan; Catalan, Gustau

    2018-03-01

    Bones generate electricity under pressure, and this electromechanical behavior is thought to be essential for bone's self-repair and remodeling properties. The origin of this response is attributed to the piezoelectricity of collagen, which is the main structural protein of bones. In theory, however, any material can also generate voltages in response to strain gradients, thanks to the property known as flexoelectricity. In this work, the flexoelectricity of bone and pure bone mineral (hydroxyapatite) are measured and found to be of the same order of magnitude; the quantitative similarity suggests that hydroxyapatite flexoelectricity is the main source of bending-induced polarization in cortical bone. In addition, the measured flexoelectric coefficients are used to calculate the (flexo)electric fields generated by cracks in bone mineral. The results indicate that crack-generated flexoelectricity is theoretically large enough to induce osteocyte apoptosis and thus initiate the crack-healing process, suggesting a central role of flexoelectricity in bone repair and remodeling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Is bone transplantation the gold standard for repair of alveolar bone defects?

    PubMed

    Raposo-Amaral, Cassio Eduardo; Bueno, Daniela Franco; Almeida, Ana Beatriz; Jorgetti, Vanda; Costa, Cristiane Cabral; Gouveia, Cecília Helena; Vulcano, Luiz Carlos; Fanganiello, Roberto D; Passos-Bueno, Maria Rita; Alonso, Nivaldo

    2014-01-01

    New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.

  9. Time course of disassociation of bone formation signals with bone mass and bone strength in sclerostin antibody treated ovariectomized rats.

    PubMed

    Ma, Yanfei L; Hamang, Matthew; Lucchesi, Jonathan; Bivi, Nicoletta; Zeng, Qianqiang; Adrian, Mary D; Raines, Sarah E; Li, Jiliang; Kuhstoss, Stuart A; Obungu, Victor; Bryant, Henry U; Krishnan, Venkatesh

    2017-04-01

    Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation

    PubMed Central

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-01-01

    ABSTRACT Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. PMID:26157160

  11. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  12. Human fetal bone cells in delivery systems for bone engineering.

    PubMed

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  13. [Morphological analysis of bone dynamics and metabolic bone disease. Effect of loading on bone tissue].

    PubMed

    Sakai, Akinori

    2011-04-01

    We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.

  14. Anorexia Nervosa and Bone

    PubMed Central

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  15. [Comparative studies on the material performances of natural bone-like apatite from different bone sources].

    PubMed

    Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang

    2014-04-01

    The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.

  16. Cancer-associated bone disease.

    PubMed

    Rizzoli, R; Body, J-J; Brandi, M-L; Cannata-Andia, J; Chappard, D; El Maghraoui, A; Glüer, C C; Kendler, D; Napoli, N; Papaioannou, A; Pierroz, D D; Rahme, M; Van Poznak, C H; de Villiers, T J; El Hajj Fuleihan, G

    2013-12-01

    Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and

  17. Cancer-associated bone disease

    PubMed Central

    Body, J.-J.; Brandi, M.-L.; Cannata-Andia, J.; Chappard, D.; El Maghraoui, A.; Glüer, C.C.; Kendler, D.; Napoli, N.; Papaioannou, A.; Pierroz, D.D.; Rahme, M.; Van Poznak, C.H.; de Villiers, T.J.; El Hajj Fuleihan, G.

    2016-01-01

    Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and

  18. Proteomics in bone research

    PubMed Central

    Zhang, Hengwei; Recker, Robert; Lee, Wai-Nang Paul; Xiao, Gary Guishan

    2010-01-01

    Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets. PMID:20121480

  19. Hearing loss in pediatric temporal bone fractures: Evaluating two radiographic classification systems as prognosticators.

    PubMed

    Bhindi, A; Carpineta, L; Al Qassabi, B; Waissbluth, S; Ywakim, R; Manoukian, J J; Nguyen, L H P

    2018-06-01

    Temporal bone fractures (TBF) are traditionally classified by their angle of fracture relative to the petrous ridge, and more recently by whether or not they violate the otic-capsule. This study compared rates of hearing loss (HL) and signs of otologic dysfunction among fracture types of both classification systems, within the pediatric population. Pediatric patients were retrospectively characterized from a previously identified cohort of TBF patients, diagnosed from 2000 to 2014. CT scans were reviewed and TBFs were classified first as longitudinal (L), transverse (T) or mixed (M), and then as otic-capsule sparing (OCS) or otic-capsule violating (OCV). Medical records were reviewed, and rates of HL and presenting signs were compared among L, T and M fractures, and OCS and OCV fractures. Forty-three patients with 47 TBFs met the inclusion criteria. Eighteen, 4 and 25 TBFs were classified as L, T and M fractures, respectively. Thirty-three and 9 were classified as OCS, and OCV, respectively. Among 24 cases of HL: 20, 3, and 1 were conductive HL (CHL), sensorineural HL (SNHL) and mixed HL, respectively. Two cases of SNHL were found among OCV fractures, with none in OCS fractures (estimated difference 0.22; 95% confidence interval 0.01-0.60). Similar rates of CHL were found across L, T and M fractures (range 36-50%), and across OCV and OCS fractures (range 42-44%). Hemotympanum was the most common presenting sign, found in 68% of TBFs and 80% of CHL cases. There were no significant differences in the incidence of signs or symptoms between fracture types. In our cohort, both the traditional and otic-capsule radiographic classification systems failed to predict the incidence of CHL and other otologic signs in the pediatric population. Though OCV fractures conferred an increased risk for developing SNHL, we found a lower incidence than anticipated given violation to the bony labyrinth. Copyright © 2018. Published by Elsevier B.V.

  20. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.

    PubMed

    Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T

    2006-02-01

    The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.

  1. Your Bones

    MedlinePlus

    ... part of the foot is similar to the hand, with five bones. Each toe has three tiny bones, except for your big toe, which has just two. This brings the bone total in both feet and ankles to 52! Most people don't use their toes and feet for grabbing stuff or writing, but they do use them for two very ...

  2. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated

  3. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  4. [Comparative study on graft of autogeneic iliac bone and tissue engineered bone].

    PubMed

    Shen, Bing; Xie, Fu-lin; Xie, Qing-fang

    2002-11-01

    To compare the clinical results of repairing bone defect of limbs with tissue engineering technique and with autogeneic iliac bone graft. From July 1999 to September 2001, 52 cases of bone fracture were randomly divided into two groups (group A and B). Open reduction and internal fixation were performed in all cases as routine operation technique. Autogeneic iliac bone was implanted in group A, while tissue engineered bone was implanted in group B. Routine postoperative treatment in orthopedic surgery was taken. The operation time, bleeding volume, wound healing and drainage volume were compared. The bone union was observed by the X-ray 1, 2, 3, and 5 months after operation. The sex, age and disease type had no obvious difference between groups A and B. all the wounds healed with first intention. The swelling degree of wound and drainage volume had no obvious difference. The operation time in group A was longer than that in group B (25 minutes on average) and bleeding volume in group A was larger than that in group B (150 ml on average). Bone union completed within 3 to 7 months in both groups. But there were 2 cases of delayed union in group A and 1 case in group B. Repair of bone defect with tissue engineered bone has as good clinical results as that with autogeneic iliac bone graft. In aspect of operation time and bleeding volume, tissue engineered bone graft is superior to autogeneic iliac bone.

  5. Absence of bone sialoprotein (BSP) impairs cortical defect repair in mouse long bone.

    PubMed

    Malaval, Luc; Monfoulet, Laurent; Fabre, Thierry; Pothuaud, Laurent; Bareille, Reine; Miraux, Sylvain; Thiaudiere, Eric; Raffard, Gerard; Franconi, Jean-Michel; Lafage-Proust, Marie-Hélène; Aubin, Jane E; Vico, Laurence; Amédée, Joëlle

    2009-11-01

    Matrix proteins of the SIBLING family interact with bone cells and with bone mineral and are thus in a key position to regulate bone development, remodeling and repair. Within this family, bone sialoprotein (BSP) is highly expressed by osteoblasts, hypertrophic chondrocytes and osteoclasts. We recently reported that mice lacking BSP (BSP-/-) have very low trabecular bone turnover. In the present study, we set up an experimental model of bone repair by drilling a 1 mm diameter hole in the cortical bone of femurs in both BSP-/- and +/+ mice. A non-invasive MRI imaging and bone quantification procedure was designed to follow bone regeneration, and these data were extended by microCT imaging and histomorphometry on undecalcified sections for analysis at cellular level. These combined approaches revealed that the repair process as reflected in defect-refilling in the cortical area was significantly delayed in BSP-/- mice compared to +/+ mice. Concomitantly, histomorphometry showed that formation, mineralization and remodeling of repair (primary) bone in the medulla were delayed in BSP-/- mice, with lower osteoid and osteoclast surfaces at day 15. In conclusion, the absence of BSP delays bone repair at least in part by impairing both new bone formation and osteoclast activity.

  6. Differentiating human bone from animal bone: a review of histological methods.

    PubMed

    Hillier, Maria L; Bell, Lynne S

    2007-03-01

    This review brings together a complex and extensive literature to address the question of whether it is possible to distinguish human from nonhuman bone using the histological appearance of cortical bone. The mammalian species included are rat, hare, badger, racoon dog, cat, dog, pig, cow, goat, sheep, deer, horse, water buffalo, bear, nonhuman primates, and human and are therefore not exhaustive, but cover those mammals that may contribute to a North American or Eurasian forensic assemblage. The review has demonstrated that differentiation of human from certain nonhuman species is possible, including small mammals exhibiting Haversian bone tissue and large mammals exhibiting plexiform bone tissue. Pig, cow, goat, sheep, horse, and water buffalo exhibit both plexiform and Haversian bone tissue and where only Haversian bone tissue exists in bone fragments, differentiation of these species from humans is not possible. Other primate Haversian bone tissue is also not distinguishable from humans. Where differentiation using Haversian bone tissue is undertaken, both the general microstructural appearance and measurements of histological structures should be applied. Haversian system diameter and Haversian canal diameter are the most optimal and diagnostic measurements to use. Haversian system density may be usefully applied to provide an upper and lower limit for humans.

  7. Bone scintiscanning updated.

    PubMed

    Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I

    1976-03-01

    Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.

  8. Pathologic bone tissues in a Turkey vulture and a nonavian dinosaur: implications for interpreting endosteal bone and radial fibrolamellar bone in fossil dinosaurs.

    PubMed

    Chinsamy, Anusuya; Tumarkin-Deratzian, Allison

    2009-09-01

    We report on similar pathological bone microstructure in an extant turkey vulture (Cathartes aura) and a nonavian dinosaur from Transylvania. Both these individuals exhibit distinctive periosteal reactive bone deposition accompanied by endosteal bone deposits in the medullary cavity. Our findings have direct implications on the two novel bone tissues recently described among nonavian dinosaurs, radial fibrolamellar bone tissue and medullary bone tissue. On the basis of the observed morphology of the periosteal reactive bone in the turkey vulture and the Transylvanian dinosaur, we propose that the radial fibrolamellar bone tissues observed in mature dinosaurs may have had a pathological origin. Our analysis also shows that on the basis of origin, location, and morphology, pathologically derived endosteal bone tissue can be similar to medullary bone tissues described in nonavian dinosaurs. As such, we caution the interpretation of all endosteally derived bone tissue as homologous to avian medullary bone. (c) 2009 Wiley-Liss, Inc.

  9. Long bone reconstruction using multilevel lengthening of bone defect fragments.

    PubMed

    Borzunov, Dmitry Y

    2012-08-01

    This paper presents experimental findings to substantiate the use of multilevel bone fragment lengthening for managing extensive long bone defects caused by diverse aetiologies and shows its clinical introduction which could provide a solution for the problem of reducing the total treatment time. Both experimental and clinical multilevel lengthening to bridge bone defect gaps was performed with the use of the Ilizarov method only. The experimental findings and clinical outcomes showed that multilevel defect fragment lengthening could provide sufficient bone formation and reduction of the total osteosynthesis time in one stage as compared to traditional Ilizarov bone transport. The method of multilevel regeneration enabled management of critical-size defects that measured on average 13.5 ± 0.7 cm in 78 patients. The experimental and clinical results proved the efficiency of the Ilizarov non-free multilevel bone plasty that can be recommended for practical use.

  10. Denosumab for bone diseases: translating bone biology into targeted therapy.

    PubMed

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  11. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fränzle, Andrea, E-mail: a.fraenzle@dkfz.de; Giske, Kristina; Bretschi, Maren

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approachmore » is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way

  12. Hypercalciuric Bone Disease

    NASA Astrophysics Data System (ADS)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  13. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  14. Changes in bone microstructure and toughness during the healing process of long bones

    NASA Astrophysics Data System (ADS)

    Ishimoto, T.; Nakano, T.; Umakoshi, Y.; Tabata, Y.

    2009-05-01

    It is of great importance to understand how bone defects regain the microstructure and mechanical function of bone and how the microstructure affects the mechanical function during the bone healing process. In the present study on long bone defects, we investigated the relationship between the recovery process of fracture toughness and biological apatite (BAp)/collagen (Col) alignment as an index of the bone microstructure to clarify the bone toughening mechanisms. A 5-mm defect introduced in the rabbit ulna was allowed to heal naturally and a three-point bending test was conducted on the regenerated site to assess bone toughness. The bone toughness was quite low at the early stage of bone regeneration but increased during the postoperative period. The change in toughness agreed well with the characteristics of the fracture surface morphology, which reflected the history of the crack propagation. SEM and microbeam X-ray diffraction analyses indicated that the toughness was dominated by the degree and orientation of the preferred BAp/Col alignment, i.e. bundles aligned perpendicular to the crack propagation clearly contributed to the bone toughening owing to extra energy consumption for resistance to crack propagation. In conclusion, regenerated bone improves fracture toughness by reconstructing the preferred BAp/Col alignment along the bone longitudinal axis during the healing process of long bones.

  15. Bone Balance within a Cortical BMU: Local Controls of Bone Resorption and Formation

    PubMed Central

    Smith, David W.; Gardiner, Bruce S.; Dunstan, Colin

    2012-01-01

    Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the ‘integration of information’ occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors

  16. Cytology of Bone.

    PubMed

    Barger, Anne M

    2017-01-01

    Cytology of bone is a useful diagnostic tool. Aspiration of lytic or proliferative lesions can assist with the diagnosis of inflammatory or neoplastic processes. Bacterial, fungal, and protozoal organisms can result in significant osteomyelitis, and these organisms can be identified on cytology. Neoplasms of bone including primary bone tumors such as osteosarcoma, chondrosarcoma, fibrosarcoma, synovial cell sarcoma, and histiocytic sarcoma and tumors of bone marrow including plasma cell neoplasia and lymphoma and metastatic neoplasia can result in significant bone lysis or proliferation and can be diagnosed effectively with cytology. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Bone Graft Alternatives

    MedlinePlus

    ... Spine Treatment Spondylolisthesis BLOG FIND A SPECIALIST Treatments Bone Graft Alternatives Patient Education Committee Patient Education Committee ... procedure such as spinal fusion. What Types of Bone Grafts are There? Bone grafts that are transplanted ...

  18. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells.

    PubMed

    Streicher, Carmen; Heyny, Alexandra; Andrukhova, Olena; Haigl, Barbara; Slavic, Svetlana; Schüler, Christiane; Kollmann, Karoline; Kantner, Ingrid; Sexl, Veronika; Kleiter, Miriam; Hofbauer, Lorenz C; Kostenuik, Paul J; Erben, Reinhold G

    2017-07-25

    Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.

  19. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate, (the distal tibial metaphysis (DTM), to ovariectomy (OVX) and OVX plus a prostaglandin E(2) treatment, and compare the site's response to previous findings reported for another site, the proximal tibial metaphysis (PTM). Thirty five 3-month old female Sprague-Dawley rats were divided into five groups; basal, sham OVX, and OVX+0, +1, or +6 mg PGE(2)/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20 micrometer thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months POST OVX there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE(2)/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE(2)/kd/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation, without altering bone resportion. Futhermore, After PGE(2) admimnistration, the DTM, a cancellous bone site with a closed growth plate, increased bone formation more than did the cancellous bone in the PTM.

  20. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate (the distal tibial metaphysis, DTM) to ovariectomy (OVX) and OVX plus a prostaglandin E2 (PGE2) treatment, and compare the site's response to previous findings reported for another site (the proximal tibial metaphysis, PTM). Thirty-five 3-month old female Sprague-Dawley rats were divided into five groups: basal, sham-OVX, and OVX+0, +1, or +6 mg PGE2/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20-micron-thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months post-OVX; there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE2/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE2/kg/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation without altering bone resorption. Furthermore, after PGE2 administration, the DTM, a cancellous bone site with a closed growth plate, inereased bone formation more than did the cancellous bone in the PTM.

  1. Restoration of small bone defects at craniotomy using autologous bone dust and fibrin glue.

    PubMed

    Matsumoto, K; Kohmura, E; Kato, A; Hayakawa, T

    1998-10-01

    Bone gaps or burr holes often result in small but undesirable scalp or skin depressions after craniotomy. Whereas a number of reports have discussed cranioplasties to avoid large bone defects, little has been written about the problem of small bone defects which, despite their minor size, could result in bothersome cosmetic problems. This study was designed to assess a simple method to repair burr hole defects and bridge bone gaps with autologous bone dust and fibrin glue. Bone dust was collected when burr holes were created or craniectomy was performed. After replacement of the bone flap, the burr holes or bone gap were filled with a mixture of bone dust and fibrin glue. The mixture of bone dust and fibrin glue was easily shaped to fit bone defects, resulting in favorable cosmetic outcomes 1 to 5 years after operation.

  2. [Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats].

    PubMed

    Liu, Yuan; Yu, Jiang; Bai, Jie; Gu, Jin-song; Cai, Bin; Zhou, Xia

    2013-12-01

    To study the effects of cuttlefish bone-bone morphogenetic protein (BMP) composite material on osteogenesis and revascularization of bone defect in rats. The cuttlefish bone was formed into cylinder with the diameter of about 5 mm and height of about 2 mm after the shell was removed, and then it was soaked in the recombinant human BMP 2 to make a cuttlefish bone-BMP (CBB) composite material. Thirty SD rats, with a defect of skull in every rat, were divided into the CBB and pure cuttlefish bone (PCB) groups according to the random number table, with 15 rats in each group. The rats in the group CBB and group PCB were transplanted with the corresponding material to repair the skull defect. At post transplantation week (PTW) 4, 6, and 8, 5 rats from every group were sacrificed by exsanguination, and ink perfusion was performed. One day later, all the transplants and part of the skull surrounding the defect were harvested, and general observation was conducted at the same time. The specimens were paraffin sectioned for HE staining and Masson staining. The area of microvessel and the area of newborn bone were observed and analyzed through histopathological techniques and image collection system. Data were processed with the analysis of variance of factorial design and LSD test. The correlation between the area of microvessel and the area of newborn bone of the group CBB was analyzed with Pearson correlation analysis. (1) The general observation of the transplant region showed that the transplants were encapsulated by a capsule of fibrous connective tissue. The texture of capsule was soft and relatively thick at PTW 4. The texture was tenacious and thin, but rather compact at PTW 6 and 8. The transplants became gelatinous at PTW 4, and similar to the cartilage tissue at PTW 6 and 8. (2) Histological observation showed that the structure of the transplants in two groups was damaged at PTW 4. A moderate quantity of inflammatory cell infiltration could be observed. The

  3. The Lyme Disease Pathogen Borrelia burgdorferi Infects Murine Bone and Induces Trabecular Bone Loss.

    PubMed

    Tang, Tian Tian; Zhang, Lucia; Bansal, Anil; Grynpas, Marc; Moriarty, Tara J

    2017-02-01

    Lyme disease is caused by members of the Borrelia burgdorferi sensu lato species complex. Arthritis is a well-known late-stage pathology of Lyme disease, but the effects of B. burgdorferi infection on bone at sites other than articular surfaces are largely unknown. In this study, we investigated whether B. burgdorferi infection affects bone health in mice. In mice inoculated with B. burgdorferi or vehicle (mock infection), we measured the presence of B. burgdorferi DNA in bones, bone mineral density (BMD), bone formation rates, biomechanical properties, cellular composition, and two- and three-dimensional features of bone microarchitecture. B. burgdorferi DNA was detected in bone. In the long bones, increasing B. burgdorferi DNA copy number correlated with reductions in areal and trabecular volumetric BMDs. Trabecular regions of femora exhibited significant, copy number-correlated microarchitectural disruption, but BMD, microarchitectural, and biomechanical properties of cortical bone were not affected. Bone loss in tibiae was not due to increased osteoclast numbers or bone-resorbing surface area, but it was associated with reduced osteoblast numbers, implying that bone loss in long bones was due to impaired bone building. Osteoid-producing and mineralization activities of existing osteoblasts were unaffected by infection. Therefore, deterioration of trabecular bone was not dependent on inhibition of osteoblast function but was more likely caused by blockade of osteoblastogenesis, reduced osteoblast survival, and/or induction of osteoblast death. Together, these data represent the first evidence that B. burgdorferi infection induces bone loss in mice and suggest that this phenotype results from inhibition of bone building rather than increased bone resorption. Copyright © 2017 Tang et al.

  4. Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Pennline, James A.

    2009-01-01

    Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.

  5. Dietary Pseudopurpurin Improves Bone Geometry Architecture and Metabolism in Red-Bone Guishan Goats

    PubMed Central

    Han, TieSuo; Li, Peng; Wang, JianGuo; Liu, GuoWen; Wang, Zhe; Ge, ChangRong; Gao, ShiZheng

    2012-01-01

    Red-colored bones were found initially in some Guishan goats in the 1980s, and they were designated red-boned goats. However, it is not understood what causes the red color in the bone, or whether the red material changes the bone geometry, architecture, and metabolism of red-boned goats. Pseudopurpurin was identified in the red-colored material of the bone in red-boned goats by high-performance liquid chromatography–electrospray ionization–mass spetrometry and nuclear magnetic resonance analysis. Pseudopurpurin is one of the main constituents of Rubia cordifolia L, which is eaten by the goats. The assessment of the mechanical properties and micro-computed tomography showed that the red-boned goats displayed an increase in the trabecular volume fraction, trabecular thickness, and the number of trabeculae in the distal femur. The mean thickness, inner perimeter, outer perimeter, and area of the femoral diaphysis were also increased. In addition, the trabecular separation and structure model index of the distal femur were decreased, but the bone mineral density of the whole femur and the mechanical properties of the femoral diaphysis were enhanced in the red-boned goats. Meanwhile, expression of alkaline phosphatase and osteocalcin mRNA was higher, and the ratio of the receptor activator of the nuclear factor kappa B ligand to osteoprotegerin was markedly lower in the bone marrow of the red-boned goats compared with common goats. To confirm further the effect of pseudopurpurin on bone geometry, architecture, and metabolism, Wistar rats were fed diets to which pseudopurpurin was added for 5 months. Similar changes were observed in the femurs of the treated rats. The above results demonstrate that pseudopurpurin has a close affinity with the mineral salts of bone, and consequently a high level of mineral salts in the bone cause an improvement in bone strength and an enhancement in the structure and metabolic functions of the bone. PMID:22624037

  6. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep.

    PubMed

    Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin

    2014-11-01

    Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.

  7. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation.

    PubMed

    Schwartz, Z; Mellonig, J T; Carnes, D L; de la Fontaine, J; Cochran, D L; Dean, D D; Boyan, B D

    1996-09-01

    Demineralized freeze-dried bone allograft (DFDBA) has been used extensively in periodontal therapy. The rationale for use of DFDBA includes the fact that proteins capable of inducing new bone; i.e., bone morphogenetic proteins, can be isolated from bone grafts. Commercial bone banks have provided DFDBA to the dental practitioner for many years; however, these organizations have not verified the osteoinductive capacity of their DFDBA preparations. The aim of this study was to determine the ability of commercial DFDBA preparations to induce new bone formation. DFDBA with particle sizes ranging from 200 to 500 microns was received from six bone banks using various bone production methods. Different lots of DFDBA from the same tissue bank were sometimes available. A total of 14 lots were examined. The surface area of bone particles in each sample was measured morphometrically and the pH of a solution containing the particles after suspension in distilled water determined. Samples from each DFDBA lot were implanted intramuscularly (10 mg) or subcutaneously (20 mg) into three different animals and tissue biopsies harvested after 4 weeks. One sample from each tissue bank was implanted and harvested after 8 weeks. At harvest, each area where DFDBA had been implanted was excised and examined by light microscopy. The ability of DFDBA to produce new bone was evaluated and the amount of residual bone particles measured. The results show that bone particles from all tissue banks had a variety of shapes and sizes, both before implantation and after 1 or 2 months of implantation. The pH of particle suspensions also varied between batches, as well as between tissue banks. None of the DFDBA induced new bone formation when implanted subcutaneously. Intramuscular implants from three banks induced new bone formation after 1 and 2 months. DFDBA from two banks caused new bone formation only after 2 months. However, DFDBA from one bank did not induce new bone at all. Particle size before

  8. Limb bone morphology, bone strength, and cursoriality in lagomorphs

    PubMed Central

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D

    2014-01-01

    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which ‘cursorial specialization’ affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high ‘displacement advantage’, permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with

  9. Angiogenesis after sintered bone implantation in rat parietal bone.

    PubMed

    Ohtsubo, S; Matsuda, M; Takekawa, M

    2003-01-01

    We studied the effect of bone substitutes on revascularization and the restart of blood supply after sintered bone implantation in comparison with synthetic hydroxyapatite implantation and fresh autogenous bone transplantation (control) in rat parietal bones. Methods for the study included the microvascular corrosion cast method and immunohistochemical techniques were also used. The revascularization of the control group was the same as that for usual wound healing in the observations of the microvascular corrosion casts. The sintered bone implantation group was quite similar to that of the control group. In the synthetic hydroxyapatite group, immature newly-formed blood vessels existed even on the 21st day after implantation and the physiological process of angiogenesis was interrupted. Immunohistochemically, vascular endothelial growth factor (VEGF), which activates angiogenesis, appeared at the early stages of both the control group and the sintered bone implantation group. VEGF reduced parallel with the appearance of the transforming growth factor factor-beta-1 (TGF-beta-1), which obstructs angiogenesis, and the angiogenesis passed gradually into the mature stage. In the hydroxyapatite implantation group, TGF-beta-1 appeared at the early stage of the implants. The appearance of VEGF lagged and it existed around the pores of hydroxyapatite even on the 21st day of the implantation. Proliferation and wandering of endothelial cells continued without any maturing of the vessels. These findings suggest that the structure and the components of the implant material affect angiogenesis after implantation as well as new bone formation.

  10. Uremic toxin and bone metabolism.

    PubMed

    Iwasaki, Yoshiko; Yamato, Hideyuki; Nii-Kono, Tomoko; Fujieda, Ayako; Uchida, Motoyuki; Hosokawa, Atsuko; Motojima, Masaru; Fukagawa, Masafumi

    2006-01-01

    Patients with end-stage renal disease (ESRD) develop various kinds of abnormalities in bone and mineral metabolism, widely known as renal osteodystrophy (ROD). Although the pathogenesis of ESRD may be similar in many patients, the response of the bone varies widely, ranging from high to low turnover. ROD is classified into several types, depending on the status of bone turnover, by histomorphometric analysis using bone biopsy samples [1,2]. In the mild type, bone metabolism is closest to that of persons with normal renal function. In osteitis fibrosa, bone turnover is abnormally activated. This is a condition of high-turnover bone. A portion of the calcified bone loses its lamellar structure and appears as woven bone. In the cortical bone also, bone resorption by osteoclasts is active, and a general picture of bone marrow tissue infiltration and the formation of cancellous bone can be observed. In osteomalacia, the bone surface is covered with uncalcified osteoid. This condition is induced by aluminum accumulation or vitamin D deficiency. The mixed type possesses characteristics of both osteitis fibrosa and osteomalacia. The bone turnover is so markedly accelerated that calcification of the osteoid cannot keep pace. In the adynamic bone type, bone resorption and bone formation are both lowered. While bone turnover is decreased, there is little osteoid. The existence of these various types probably accounts for the diversity in degree of renal impairment, serum parathyroid hormone (PTH) level, and serum vitamin D level in patients with ROD. However, all patients share a common factor, i.e., the presence of a uremic condition.

  11. Bone's mechanostat: a 2003 update.

    PubMed

    Frost, Harold M

    2003-12-01

    The still-evolving mechanostat hypothesis for bones inserts tissue-level realities into the former knowledge gap between bone's organ-level and cell-level realities. It concerns load-bearing bones in postnatal free-living bony vertebrates, physiologic bone loading, and how bones adapt their strength to the mechanical loads on them. Voluntary mechanical usage determines most of the postnatal strength of healthy bones in ways that minimize nontraumatic fractures and create a bone-strength safety factor. The mechanostat hypothesis predicts 32 things that occur, including the gross anatomical bone abnormalities in osteogenesis imperfecta; it distinguishes postnatal situations from baseline conditions at birth; it distinguishes bones that carry typical voluntary loads from bones that have other chief functions; and it distinguishes traumatic from nontraumatic fractures. It provides functional definitions of mechanical bone competence, bone quality, osteopenias, and osteoporoses. It includes permissive hormonal and other effects on bones, a marrow mediator mechanism, some limitations of clinical densitometry, a cause of bone "mass" plateaus during treatment, an "adaptational lag" in some children, and some vibration effects on bones. The mechanostat hypothesis may have analogs in nonosseous skeletal organs as well. Copyright 2003 Wiley-Liss, Inc.

  12. Kaempferol stimulates bone sialoprotein gene transcription and new bone formation.

    PubMed

    Yang, Li; Takai, Hideki; Utsunomiya, Tadahiko; Li, Xinyue; Li, Zhengyang; Wang, Zhitao; Wang, Shuang; Sasaki, Yoko; Yamamoto, Hirotsugu; Ogata, Yorimasa

    2010-08-15

    Kaempferol is a typical flavonol-type flavonoid that is present in a variety of vegetables and fruits, and has a protective effect on postmenopausal bone loss. Bone sialoprotein (BSP) is thought to function in the initial mineralization of bone and could be crucial for osteoblast differentiation, bone matrix mineralization and tumor metastasis. In the present study we investigated the regulation of BSP transcription by kaempferol in rat osteoblast-like UMR106 cells, and the effect of kaempferol on new bone formation. Kaempferol (5 microM) increased BSP and Osterix mRNA levels at 12 h and up-regulated Runx2 mRNA expression at 6 h. Kaempferol increased luciferase activity of the construct pLUC3, which including the promoter sequence between nucleotides -116 to +60. Transcriptional stimulation by kaempferol abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, and FRE elements. Gel shift analyses showed that kaempferol increased nuclear protein binding to CRE and FRE elements, whereas the CCAAT-protein complex did not change after kaempferol stimulation. Twelve daily injections of 5 microM kaempferol directly into the periosteum of parietal bones of newborn rats increased new bone formation. These data suggest that kaempferol increased BSP gene transcription mediated through inverted CCAAT, CRE, and FRE elements in the rat BSP gene promoter, and could induce osteoblast activities in the early stage of bone formation. (c) 2010 Wiley-Liss, Inc.

  13. Broken Bones (For Parents)

    MedlinePlus

    ... Safe Videos for Educators Search English Español Broken Bones KidsHealth / For Parents / Broken Bones Print en español Huesos rotos What Is a Broken Bone? A broken bone, also called a fracture, is ...

  14. A novel bone scraper for intraoral harvesting: a device for filling small bone defects.

    PubMed

    Zaffe, Davide; D'Avenia, Ferdinando

    2007-08-01

    To evaluate histologically the morphology and characteristics of bone chips harvested intraorally by Safescraper, a specially designed cortical bone collector. Bone chips harvested near a bone defect or in other intraoral sites were grafted into a post-extractive socket or applied in procedures for maxillary sinus floor augmentation or guided bone regeneration. Core biopsies were performed at implant insertion. Undecalcified specimens embedded in PMMA were studied by histology, histochemistry and SEM. Intraoral harvesting by Safescraper provided a simple, clinically effective regenerative procedure with low morbidity for collecting cortical bone chips (0.9-1.7 mm in length, roughly 100 microm thick). Chips had an oblong or quadrangular shape and contained live osteocytes (mean viability: 45-72%). Bone chip grafting produced newly formed bone tissue suitable for implant insertion. Trabecular bone volume measured on biopsies decreased with time (from 45-55% to 23%). Grafted chips made up 50% or less of the calcified tissue in biopsies. Biopsies presented remodeling activities, new bone formation by apposition and live osteocytes (35% or higher). In conclusion, Safescraper is capable of collecting adequate amounts of cortical bone chips from different intraoral sites. The procedure is effective for treating alveolar defects for endosseous implant insertion and provides good healing of small bone defects after grafting with bone chips. The study indicates that Safescraper is a very useful device for in-office bone harvesting procedures in routine peri-implant bone regeneration.

  15. Facts about Broken Bones

    MedlinePlus

    ... Safe Videos for Educators Search English Español Broken Bones KidsHealth / For Kids / Broken Bones Print en español ... las fracturas de huesos What Is a Broken Bone? A broken bone , also called a fracture (say: ...

  16. Bone Density Development of the Temporal Bone Assessed by Computed Tomography.

    PubMed

    Takahashi, Kuniyuki; Morita, Yuka; Ohshima, Shinsuke; Izumi, Shuji; Kubota, Yamato; Horii, Arata

    2017-12-01

    The temporal bone shows regional differences in bone development. The spreading pattern of acute mastoiditis shows age-related differences. In infants, it spreads laterally and causes retroauricular swelling, whereas in older children, it tends to spread medially and causes intracranial complications. We hypothesized that bone maturation may influence the spreading pattern of acute mastoiditis. Eighty participants with normal hearing, aged 3 months to 42 years, participated in this study. Computed tomography (CT) values (Hounsfield unit [HU]) in various regions of the temporal bone, such as the otic capsule (OC), lateral surface of the mastoid cavity (LS), posterior cranial fossa (PCF), and middle cranial fossa (MCF), were measured as markers of bone density. Bone density development curves, wherein CT values were plotted against age, were created for each region. The age at which the CT value exceeded 1000 HU, which is used as an indicator of bone maturation, was calculated from the development curves and compared between the regions. The OC showed mature bone at birth, whereas the LS, PCF, and MCF showed rapid maturation in early childhood. However, there were significant regional differences in the ages of maturation: 1.7, 3.9, and 10.8 years for the LS, PCF, and MCF, respectively. To our knowledge, this is the first report to show regional differences in the maturation of temporal bone, which could partly account for the differences in the spreading pattern of acute mastoiditis in individuals of different ages.

  17. Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration

    PubMed Central

    Kruger, Thomas E.; Miller, Andrew H.; Wang, Jinxi

    2013-01-01

    Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds αvβ 3 and αvβ 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration. PMID:23653530

  18. Collagen scaffolds in bone sialoprotein-mediated bone regeneration.

    PubMed

    Kruger, Thomas E; Miller, Andrew H; Wang, Jinxi

    2013-01-01

    Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds α v β 3 and α v β 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration.

  19. Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration

    PubMed Central

    Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin

    2017-01-01

    The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K0.5Na0.5NbO3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials. PMID:28900517

  20. Skeletal development of mice lacking bone sialoprotein (BSP)--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    PubMed

    Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc

    2014-01-01

    Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing

  1. Hake fish bone as a calcium source for efficient bone mineralization.

    PubMed

    Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta

    2016-01-01

    Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.

  2. Unicameral bone cysts treated by injection of bone marrow or methylprednisolone.

    PubMed

    Chang, C H; Stanton, R P; Glutting, J

    2002-04-01

    In 79 consecutive patients with unicameral bone cysts we compared the results of aspiration and injection of bone marrow with those of aspiration and injection of steroid. All were treated by the same protocol. The only difference was the substance injected into the cysts. The mean radiological follow-up to detect activity in the cyst was 44 months (12 to 108). Of the 79 patients, 14 received a total of 27 injections of bone marrow and 65 a total of 99 injections of steroid. Repeated injections were required in 57% of patients after bone marrow had been used and in 49% after steroid. No complications were noted in either group. In this series no advantage could be shown for the use of autogenous injection of bone marrow compared with injection of steroid in the management of unicameral bone cysts.

  3. Well-Designed Bone-Seeking Radiolabeled Compounds for Diagnosis and Therapy of Bone Metastases

    PubMed Central

    2015-01-01

    Bone-seeking radiopharmaceuticals are frequently used as diagnostic agents in nuclear medicine, because they can detect bone disorders before anatomical changes occur. Furthermore, their effectiveness in the palliation of metastatic bone cancer pain has been demonstrated in the clinical setting. With the aim of developing superior bone-seeking radiopharmaceuticals, many compounds have been designed, prepared, and evaluated. Here, several well-designed bone-seeking compounds used for diagnostic and therapeutic use, having the concept of radiometal complexes conjugated to carrier molecules to bone, are reviewed. PMID:26075256

  4. Bone healing in children.

    PubMed

    Lindaman, L M

    2001-01-01

    Just as pediatric fractures and bones are basically similar to adult fractures and bones, pediatric bone healing is basically similar to adult bone healing. They both go through the three same phases of inflammation, reparation, and remodeling. It is those differences between pediatric and adult bone, however, that affect the differences in the healing of pediatric bone. Because pediatric bone can fail in compression, less initial stability and less callus formation is required to achieve a clinically stable or healed fracture. The greater subperiosteal hematoma and the stronger periosteum all contribute to a more rapid formation of callous strong enough to render the fracture healed more rapidly than the adult. Genes and hormones that are necessary for the initial formation of the skeleton are the same as, or at least similar in most instances, to those necessary for the healing of fractures. This osteogenic environment of the pediatric bone means that these fracture healing processes are already ongoing in the child at the time of the fracture. In the adult, these factors must be reawakened, leading to the slower healing time in the adult. Once the fracture is healed, the still-growing pediatric bone can correct any "sins" of fracture alignment or angulation leaving the bone with no signs of having ever been broken. The final result is bone that is, in the child's words, "as good as new."

  5. Appliance-induced osteopenia of dentoalveolar bone in the rat: effect of reduced bone strains on serum bone markers and the multifunctional hormone leptin.

    PubMed

    Vinoth, Jayaseelan K; Patel, Kaval J; Lih, Wei-Song; Seow, Yian-San; Cao, Tong; Meikle, Murray C

    2013-12-01

    To understand, in greater detail, the molecular mechanisms regulating the complex relationship between mechanical strain and alveolar bone metabolism during orthodontic treatment, passive cross-arch palatal springs were bonded to the maxillary molars of 6-wk-old rats, which were killed after 4 and 8 d. Outcome measures included serum assays for markers of bone formation and resorption and for the multifunctional hormone leptin, and histomorphometry of the inter-radicular bone. The concentration of the bone-formation marker alkaline phosphatase (ALP) was significantly reduced at both time points in the appliance group, accompanied by a 50% reduction in inter-radicular bone volume; however, osteocalcin (bone Gla protein) levels remained unaffected. Bone collagen deoxypyridinoline (DPD) crosslinks increased 2.3-fold at 4 d only, indicating a transient increase in bone resorption; in contrast, the level of the osteoclast-specific marker, tartrate-resistant acid phosphatase 5b (TRACP 5b), was unchanged. Leptin levels closely paralleled ALP reductions at both time points, suggesting an important role in the mechanostat negative-feedback loop required to normalize bone mass. These data suggest that an orthodontic appliance, in addition to remodeling the periodontal ligament (PDL)-bone interface, may exert unexpected side-effects on the tooth-supporting alveolar bone, and highlights the importance of recognizing that bone strains can have negative, as well as positive, effects on bone mass. © 2013 Eur J Oral Sci.

  6. Biophotonics and Bone Biology

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more serious side effects of extended space flight is an accelerated bone loss. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It is well known that bone remodeling responds to mechanical forces. We are developing two-photon microscopy techniques to study bone tissue and bone cell cultures to better understand the fundamental response mechanism in bone remodeling. Osteoblast and osteoclast cell cultures are being studied, and the goal is to use molecular biology techniques in conjunction with Fluorescence Lifetime Imaging Microscopy (FLIM) to study the physiology of in-vitro cell cultures in response to various stimuli, such as fluid flow induced shear stress and mechanical stress. We have constructed a two-photon fluorescence microscope for these studies, and are currently incorporating FLIM detection. Current progress will be reviewed. This work is supported by the NASA John Glenn Biomedical Engineering Consortium.

  7. [Bone mineral density, biochemical bone turnover markers and factors associated with bone health in young Korean women].

    PubMed

    Park, Young Joo; Lee, Sook Ja; Shin, Nah Mee; Shin, Hyunjeong; Kim, Yoo Kyung; Cho, Yunjung; Jeon, Songi; Cho, Inhae

    2014-10-01

    This study was done to assess the bone mineral density (BMD), biochemical bone turnover markers (BTMs), and factors associated with bone health in young Korean women. Participants were 1,298 women, ages 18-29, recruited in Korea. Measurements were BMD by calcaneus quantitative ultrasound, BTMs for Calcium, Phosphorus, Osteocalcin, and C-telopeptide cross-links (CTX), body composition by physical measurements, nutrients by food frequency questionnaire and psychosocial factors associated with bone health by self-report. The mean BMD (Z-score) was -0.94. 8.7% women had lower BMD (Z-score≤-2) and 14.3% women had higher BMD (Z-score≥0) than women of same age. BTMs were not significantly different between high-BMD (Z-score≥0) and low-BMD (Z-score<0) women. However, Osteocalcin and CTX were higher in women preferring caffeine intake, sedentary lifestyle and alcoholic drinks. Body composition and Calcium intake were significantly higher in high-BMD. Low-BMD women reported significantly higher susceptibility and barriers to exercise in health beliefs, lower bone health self-efficacy and promoting behaviors. Results of this study indicate that bone health of young Korean women is not good. Development of diverse strategies to intervene in factors such as exercise, nutrients, self-efficacy, health beliefs and behaviors, shown to be important, are needed to improve bone health.

  8. Reconstruction of the mandible bone by treatment of resected bone with pasteurization.

    PubMed

    Uehara, Masataka; Inokuchi, Tsugio; Sano, Kazuo; Sumita, Yoshinori; Tominaga, Kazuhiro; Asahina, Izumi

    2012-11-01

    The results of long-term follow-up for reimplantation of the mandibular bone treated with pasteurization are reported. Mandibulectomy was performed for mandibular malignancy in 3 cases. The resected bones were subsequently reimplanted after treatment with pasteurization in 3 cases to eradicate tumor cells involved in the resected bone. Although postoperative infection was observed in 2 of 3 cases, reimplantation of the resected mandibular bone treated by pasteurization was finally successful. Ten to 22 years of follow-up was carried out. Pasteurization was able to devitalize tumor cells involved in the resected bone and to preserve bone-inductive activity. Reimplantation of pasteurization could be a useful strategy for reconstruction of the mandible in patients with mandibular malignancy.

  9. HIV and Bone Metabolism

    PubMed Central

    Ofotokun, Ighovwerha; Weitzmann, M. Neale

    2013-01-01

    The skeleton is an organ whose integrity is maintained by constant lifelong renewal involving coordinated removal of worn bone by osteoclasts and resynthesis of new bone by osteoblasts. In young adult humans and animals this process is homeostatic with no net gain or loss of bone mass. With natural aging and exacerbated by numerous pathological conditions, bone removal exceeds bone formation, disrupting homeostasis and resulting in bone loss. Over time, skeletal decline reaches clinical significance with development of osteopenia and eventually osteoporosis, conditions that dramatically increase bone fragility and the risk of fracture. Bone fractures can be devastating with significant morbidity and mortality. Over the last decade, it has become clear that skeletal renewal is strongly influenced by the immune system, a consequence of deep integration and centralization of common cell types and cytokine mediators, which we have termed the “immuno-skeletal interface.” Consequently, dysregulated skeletal renewal and bone loss is a common feature of inflammatory conditions associated with immune activation. Interestingly, bone loss is also associated with conditions of immunodeficiency, including infection by the human immunodeficiency virus (HIV) that leads to acquired immunodeficiency syndrome (AIDS). Disruptions to the immuno-skeletal interface drive skeletal deterioration contributing to a high rate of bone fracture in HIV infection. This review examines current knowledge concerning the prevalence and etiology of skeletal complications in HIV infection, the effect of antiretroviral therapies (ART) on the skeleton, and how disruption of the immuno-skeletal interface may underlie bone loss in HIV infection and ART. PMID:21616037

  10. Engineering a humanized bone organ model in mice to study bone metastases.

    PubMed

    Martine, Laure C; Holzapfel, Boris M; McGovern, Jacqui A; Wagner, Ferdinand; Quent, Verena M; Hesami, Parisa; Wunner, Felix M; Vaquette, Cedryck; De-Juan-Pardo, Elena M; Brown, Toby D; Nowlan, Bianca; Wu, Dan Jing; Hutmacher, Cosmo Orlando; Moi, Davide; Oussenko, Tatiana; Piccinini, Elia; Zandstra, Peter W; Mazzieri, Roberta; Lévesque, Jean-Pierre; Dalton, Paul D; Taubenberger, Anna V; Hutmacher, Dietmar W

    2017-04-01

    Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.

  11. Treatment for unicameral bone cysts in long bones: an evidence based review.

    PubMed

    Donaldson, Sandra; Chundamala, Josie; Yandow, Suzanne; Wright, James G

    2010-03-20

    The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009) was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments.

  12. Treatment for unicameral bone cysts in long bones: an evidence based review

    PubMed Central

    Donaldson, Sandra; Chundamala, Josie; Yandow, Suzanne; Wright, James G.

    2010-01-01

    The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009) was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments. PMID:21808696

  13. A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss

    PubMed Central

    Lozano, Alysia; Wright, Courtney; Vardanyan, Anna; King, Tamara; Largent-Milnes, Tally M.; Nelson, Mark; Jimenez-Andrade, Juan Miguel; Mantyh, Patrick W; Vanderah, Todd W.

    2010-01-01

    Aims Cannabinoid CB2 agonists have been shown to alleviate behavioral signs of inflammatory and neuropathic pain in animal models. AM1241, a CB2 agonist, does not demonstrate central nervous system side-effects seen with CB1 agonists such as hypothermia and catalepsy. Metastatic bone cancer causes severe pain in patients and is treated with analgesics such as opiates. Recent reports suggest that sustained opiates can produce paradoxical hyperalgesic actions and enhance bone destruction in a murine model of bone cancer. In contrast, CB2 selective agonists have been shown to reduce bone loss associated with a model of osteoporosis. Here we tested whether a CB2 agonist administered over a 7 day period inhibits bone cancer-induced pain as well as attenuates cancer-induced bone degradation. Main Methods A murine bone cancer model was used in which osteolytic sarcoma cells were injected into the intramedullary space of the distal end of the femur. Behavioral and radiographic image analysis was performed at days 7, 10 and 14 after injection of tumor cells into the femur. Key Findings Osteolytic sarcoma within the femur produced spontaneous and touch evoked behavioral signs of pain within the tumor-bearing limb. The systemic administration of AM1241 acutely or for 7 days significantly attenuated spontaneous and evoked pain in the inoculated limb. Sustained AM1241 significantly reduced bone loss and decreased the incidence of cancer-induced bone fractures. Significance These findings suggest a novel therapy for cancer-induced bone pain, bone loss and bone fracture while lacking many unwanted side effects seen with current treatments for bone cancer pain. PMID:20176037

  14. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.

    PubMed

    Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C

    2009-01-01

    Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  15. Bone Remodeling Monitor

    NASA Technical Reports Server (NTRS)

    Foucar, Charlie; Goldberg, Leslie; Hon, Bodin; Moore, Shannon; Williams, Evan

    2009-01-01

    The impact of bone loss due to different mechanical loadings in microgravity is a major concern for astronauts upon reintroduction to gravitational forces in exploration missions to the Moon and Mars. it has been shown that astronauts not only lose bone at differing rates, with levels up to 2% per month, but each astronaut will respond to bone loss treatments differently. Pre- and post-flight imaging techniques and frozen urine samples for post-flight laboratory immunoassays To develop a novel, non-invasive, highly . sensitive, portable, intuitive, and low-powered device to measure bone resorption levels in 'real time' to provide rapid and Individualized feedback to maximize the efficacy of bone loss countermeasures 1. Collect urine specimen and analyze the level of bone resorption marker, DPD (deoxypridinoline) excreted. 2. Antibodies specific to DPD conjugated with nanoshells and mixed with specimen, the change in absorbance from agglutination is measured by an optical device. 3. The concentration of DPD is displayed and recorded on a PDA

  16. Disorders of bone and bone mineral metabolism.

    PubMed

    Komoroski, Monica; Azad, Nasrin; Camacho, Pauline

    2014-01-01

    Metabolic bone disorders are very common in the general population and untreated, they can cause a variety of neurologic symptoms. These diseases include osteoporosis, vitamin D deficiency, Paget's disease, and alterations in calcium, phosphorus, and magnesium metabolism. Diagnosis is made through analysis of metabolic bone blood chemistries as well as radiologic studies such as dual energy X-ray absorptiometry (DXA) scans, bone scans, and X-rays. Treatment options have advanced significantly in the past decade for osteoporosis and Paget's disease and mainly include antiresorptive therapy. New recommendations for treatment of primary hyperparathyroidism are discussed as well as therapy for calcium, phosphorus, and mineral disorders. © 2014 Elsevier B.V. All rights reserved.

  17. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    PubMed

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.

  18. The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models.

    PubMed

    Hsu, Jui-Ting; Fuh, Lih-Jyh; Tu, Ming-Gene; Li, Yu-Fen; Chen, Kuan-Ting; Huang, Heng-Li

    2013-04-01

    This study investigated how the primary stability of a dental implant as measured by the insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ) is affected by varying thicknesses of cortical bone and strengths of trabecular bone using synthetic bone models. Four synthetic cortical shells (with thicknesses of 0, 1, 2, and 3 mm) were attached to four cellular rigid polyurethane foams (with elastic moduli of 137, 47.5, 23, and 12.4 MPa) and one open-cell rigid polyurethane foam which mimic the osteoporotic bone (with an elastic modulus 6.5 MPa), to represent the jawbones with various cortical bone thicknesses and strengths of trabecular bone. A total of 60 bone specimens accompanied with implants was examined by a torque meter, Osstell resonance frequency analyzer, and Periotest electronic device. All data were statistically analyzed by two-way analysis of variance. In addition, second-order nonlinear regression was utilized to assess the correlations of the primary implant stability with the four cortex thicknesses and five strengths of trabecular bone. ITV, ISQ, and PTV differed significantly (p < .05) and were strongly correlated with the thickness of cortical bone (R(2) > 0.9) and the elastic modulus of trabecular bone (R(2) = 0.74-0.99). The initial stability at the time of implant placement is influenced by both the cortical bone thickness and the strength of trabecular bone; however, these factors are mostly nonlinearly correlated with ITV, PTV, and ISQ. Using ITV and PTV seems more suitable for identifying the primary implant stability in osteoporotic bone with a thin cortex. © 2011 Wiley Periodicals, Inc.

  19. The Digital Astronaut Project Computational Bone Remodeling Model (Beta Version) Bone Summit Summary Report

    NASA Technical Reports Server (NTRS)

    Pennline, James; Mulugeta, Lealem

    2013-01-01

    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur [1-3]. The most commonly used countermeasure against bone loss in microgravity has been prescribed exercise [4]. However, data has shown that existing exercise countermeasures are not as effective as desired for preventing bone loss in long duration, 4 to 6 months, spaceflight [1,3,5,6]. This spaceflight related bone loss may cause early onset of osteoporosis to place the astronauts at greater risk of fracture later in their lives. Consequently, NASA seeks to have improved understanding of the mechanisms of bone demineralization in microgravity in order to appropriately quantify this risk, and to establish appropriate countermeasures [7]. In this light, NASA's Digital Astronaut Project (DAP) is working with the NASA Bone Discipline Lead to implement well-validated computational models to help predict and assess bone loss during spaceflight, and enhance exercise countermeasure development. More specifically, computational modeling is proposed as a way to augment bone research and exercise countermeasure development to target weight-bearing skeletal sites that are most susceptible to bone loss in microgravity, and thus at higher risk for fracture. Given that hip fractures can be debilitating, the initial model development focused on the femoral neck. Future efforts will focus on including other key load bearing bone sites such as the greater trochanter, lower lumbar, proximal femur and calcaneus. The DAP has currently established an initial model (Beta Version) of bone loss due to skeletal unloading in femoral neck region. The model calculates changes in mineralized volume fraction of bone in this segment and relates it to changes in bone mineral density (vBMD) measured by Quantitative Computed Tomography (QCT). The model is governed by equations describing changes in bone volume fraction (BVF), and rates of

  20. Automated trabecular bone histomorphometry

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S. S.

    1985-01-01

    The toxicity of alpha-emitting bone-seeking radionuclides and the relationship between bone tumor incidence and the local dosimetry of radionuclides in bone are investigated. The microdistributions of alpha-emitting radionuclides in the trabecular bone from the proximal humerus, distal humerus, proximal ulna, proximal femur, and distal femur of six young adult beagles injected with Am-241 (three with 2.8 micro-Ci/kg and three with 0.9 micro-Ci/kg) are estimated using a computer-controlled microscope photometer system; the components of the University of Utah Optical Track Scanner are described. The morphometric parameters for the beagles are calculated and analyzed. It is observed that the beagles injected with 0.9 micro-Ci of Am-241/kg showed an increase in the percentage of bone and trabecular bone thickness, and a reduction in the width of the bone marrow space and surface/volume ratio. The data reveal that radiation damage causes abnormal bone structure.

  1. Exercise for Your Bone Health

    MedlinePlus

    ... Exercise for Your Bone Health Exercise for Your Bone Health Vital at every age for healthy bones, ... who have been diagnosed with osteoporosis. The Best Bone Building Exercise The best exercise for your bones ...

  2. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].

    PubMed

    Suda, Hiromi Kimura

    2015-10-01

    Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.

  3. Biochemical markers of bone turnover in children with clinical bone fragility.

    PubMed

    Bowden, Sasigarn A; Akusoba, Chiazor I; Hayes, John R; Mahan, John D

    2016-06-01

    The role of biochemical bone turnover markers (BTMs) in assessing low bone mass and monitoring bisphosphonate treatment in pediatric patients with clinical bone fragility is not well established. The aim of the study was to examine the correlations of BTMs and the bone mineral density (BMD), and evaluate the effects of bisphosphonates therapy on BTMs in children with clinical bone fragility. Clinical data of 115 patients with clinical bone fragility (mean age 9.7±5.8 years), 102 of whom received bisphosphonates, were studied. Serum alkaline phosphatase (ALP), osteocalcin (OC), urine pyridinoline (PD) and deoxypyridinoline (DPD), BMD at baseline and subsequent years were analyzed. There was a significant negative correlation between urine PD and lumbar BMD (slope=-0.29, p<0.001). There were no correlations between BTMs and lumbar BMD Z-score. There was a significant positive correlation between serum OC and serum ALP, urine PD and DPD (p<0.001). Serum OC, urine PD and DPD index, as expressed as measured value/upper limit of normal value for age, decreased during the first 3 years of bisphosphonate therapy. In children with clinical bone fragility, BTMs correlated with each other, but not with lumbar BMD Z-score. While they were not reliable predictors of degree of low BMD, the bone markers showed suppression during bisphosphonate therapy and may be helpful in monitoring the response to therapy.

  4. Percutaneous osteoplasty with a bone marrow nail for fractures of long bones: experimental study.

    PubMed

    Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio; Cao, Guang; Sahara, Shinya; Tanihata, Hirohiko; Takasaka, Isao; Minamiguchi, Hiroyuki; Nakai, Tomoki

    2010-09-01

    To develop percutaneous osteoplasty with the use of a bone marrow nail for fixation of long-bone fractures, and to evaluate its feasibility and safety in vivo and in vitro. Six long bones in three healthy swine were used in the in vivo study. Acrylic cement was injected through an 11-gauge bone biopsy needle and a catheter into a covered metallic stent placed within the long bone, creating a bone marrow nail. In the in vitro study, we determined the bending, tug, and compression strengths of the acrylic cement nails 9 cm long and 8 mm in diameter (N = 10). The bending strength of the artificially fractured bones (N = 6) restored with the bone marrow nail and cement augmentation was then compared with that of normal long bones (N = 6). Percutaneous osteoplasty with a bone marrow nail was successfully achieved within 1 hour for all swine. After osteoplasty, all swine regained the ability to run until they were euthanized. Blood tests and pathologic findings showed no adverse effects. The mean bending, tug, and compression strengths of the nail were 91.4 N/mm(2) (range, 75.0-114.1 N/mm(2)), 20.9 N/mm(2) (range, 6.6-30.4 N/mm(2)), and 103.0 N/mm(2) (range, 96.3-110.0 N/mm(2)), respectively. The bending strength ratio of artificially fractured bones restored with bone marrow nail and cement augmentation to normal long bone was 0.32. Percutaneous osteoplasty with use of a bone marrow nail and cement augmentation appears to have potential in treating fractures of non-weight-bearing long bones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  5. Comparison of ossification of demineralized bone, hydroxyapatite, Gelfoam, and bone wax in cranial defect repair.

    PubMed

    Papay, F A; Morales, L; Ahmed, O F; Neth, D; Reger, S; Zins, J

    1996-09-01

    Demineralized bone allografts in the repair of calvarial defects are compared with other common bone fillers. This study uses a video-digitizing radiographic analysis of calvarial defect ossification to determine calcification of bone defects and its relation to postoperative clinical examination and regional controls. The postoperative clinical results at 3 months demonstrated that bony healing was greatest in bur holes filled with demineralized bone and hydroxyapatite. Radiographic analysis demonstrated calcification of demineralized bone-filled defects compared to bone wax- and Gelfoam-filled regions. Hydroxyapatite granules are radiographically dense, thus not allowing accurate measurement of true bone healing. The results suggest that demineralized bone and hydroxyapatite provide better structural support via bone healing to defined calvarial defects than do Gelfoam and bone wax.

  6. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    NASA Technical Reports Server (NTRS)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  7. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  8. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration

    PubMed Central

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. PMID:23836972

  9. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration.

    PubMed

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

  10. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    PubMed

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  11. Fortified tuna bone powder supplementation increases bone mineral density of lactating rats and their offspring.

    PubMed

    Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Krishnamra, Nateetip

    2018-03-01

    Breastfeeding leads to bone calcium loss for milk production, resulting in progressive maternal osteopenia. Calcium supplement from natural sources has been postulated to be more beneficial to bone health than purified CaCO 3 because natural sources also contain other nutrients such as certain amino acids that might enhance calcium metabolism. Herein, we examined the effect of calcium supplementation from tuna bone powder and CaCO 3 on bones of dams and the offspring. Both forms of calcium supplement, i.e. tuna bone powder and CaCO 3 , increased maternal bone mineral density (BMD). However, bone histomorphometry revealed that only tuna bone had beneficial effect on maternal bone microstructure, i.e. increased bone formation, decreased bone resorption and increased in bone volume. Regarding the mechanical properties, the decreased ultimate load in non-supplement lactating mothers was restored to the load seen in nulliparous animals by calcium supplementation. Moreover, both tuna bone and CaCO 3 supplementation in mothers led to increased milk calcium concentration and consequently increased BMD in the growing offspring. Calcium supplement from tuna bone powder was effective in preventing maternal osteopenia. Tuna bone, which is a readily available fishing industrial waste, is a good alternative source of calcium supplement that increases BMD in both lactating mothers and the neonates. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling.

    PubMed

    Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R

    2004-06-25

    Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling.

  13. Interventions for treating simple bone cysts in the long bones of children.

    PubMed

    Zhao, Jia-Guo; Wang, Jia; Huang, Wan-Jie; Zhang, Peng; Ding, Ning; Shang, Jian

    2017-02-04

    Simple bone cysts, also known as a unicameral bone cysts or solitary bone cysts, are the most common type of benign bone lesion in growing children. Cysts may lead to repeated pathological fracture (fracture that occurs in an area of bone weakened by a disease process). Occasionally, these fractures may result in symptomatic malunion. The main goals of treatment are to decrease the risk of pathological fracture, enhance cyst healing and resolve pain. Despite the numerous treatment methods that have been used for simple bone cysts in long bones of children, there is no consensus on the best procedure. This is an update of a Cochrane review first published in 2014. To assess the effects (benefits and harms) of interventions for treating simple bone cysts in the long bones of children, including adolescents.We intended the following main comparisons: invasive (e.g. injections, curettage, surgical fixation) versus non-invasive interventions (e.g. observation, plaster cast, restricted activity); different categories of invasive interventions (i.e. injections, curettage, drilling holes and decompression, surgical fixation and continued decompression); different variations of each category of invasive intervention (e.g. different injection substances: autologous bone marrow versus steroid). We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, the China National Knowledge Infrastructure Platform, trial registers, conference proceedings and reference lists. Date of last search: April 2016. Randomised and quasi-randomised controlled trials evaluating methods for treating simple bone cysts in the long bones of children. Two review authors independently screened search results and performed study selection. We resolved differences in opinion between review authors by discussion and by consulting a third review author. Two review authors independently assessed risk of bias and

  14. National Bone Health Alliance: an innovative public-private partnership improving America's bone health.

    PubMed

    Lee, David B; Lowden, Mia Rochelle; Patmintra, Valerie; Stevenson, Katie

    2013-12-01

    The U.S. National Bone Health Alliance (NBHA) is a public-private partnership launched in 2010 that brings together its 56 partners from the government, nonprofit, and for-profit sectors to collectively promote bone health and prevent disease; improve bone disease diagnosis and treatment; and enhance bone research, surveillance, and evaluation. NBHA is driven to achieve its 20/20 vision to reduce fractures 20 % by the year 2020 through projects including 2Million2Many, an osteoporosis awareness campaign; Fracture Prevention CENTRAL, an online resource center providing support to sites interested in launching a secondary fracture prevention program; bone turnover marker standardization project; and working groups in rare bone disease and the clinical diagnosis of osteoporosis. NBHA provides a platform to coordinate messaging among individuals and organizations on subjects important to bone health; pool funding and efforts around shared priorities; and work together towards the goals and recommendations of the National Action Plan on Bone Health.

  15. Broken bone

    MedlinePlus

    ... However, DO NOT move the person if a head, neck, or back injury is suspected. CHECK BLOOD CIRCULATION ... There is a suspected broken bone in the head, neck, or back. There is a suspected broken bone ...

  16. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    PubMed

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  17. Is fatty acid composition of human bone marrow significant to bone health?

    PubMed

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells.

    PubMed

    Alasmari, Abeer; Lin, Shih-Chun; Dibart, Serge; Salih, Erdjan

    2016-08-01

    Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is "uncharted territory". This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be "independent of bone remodeling stages". In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a "live or in vivo" bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.

  19. Aging and Bone

    PubMed Central

    Boskey, A.L.; Coleman, R.

    2010-01-01

    Bones provide mechanical and protective function, while also serving as housing for marrow and a site for regulation of calcium ion homeostasis. The properties of bones do not remain constant with age; rather, they change throughout life, in some cases improving in function, but in others, function deteriorates. Here we review the modifications in the mechanical function and shape of bones, the bone cells, the matrix they produce, and the mineral that is deposited on this matrix, while presenting recent theories about the factors leading to these changes. PMID:20924069

  20. Dose in bone and tissue near bone-tissue interface from electron beam.

    PubMed

    Shiu, A S; Hogstrom, K R

    1991-08-01

    This work has quantitatively studied the variation of dose both within bone and in unit density tissue near bone-tissue interfaces. Dose upstream of a bone-tissue interface is increased because of an increase in the backscattered electrons from the bone. The magnitude of this effect was measured using a thin parallel-plate ionization chamber upstream of a polymethyl methacrylate (PMMA)-hard bone interface. The electron backscatter factor (EBF) increased rapidly with bone thickness until a full EBF was achieved. This occurred at approximately 3.5 mm at 2 MeV and 6 mm at 13.1 MeV. The full EBF at the interface ranged from approximately 1.018 at 13.1 MeV to 1.05 at 2 MeV. It was also observed that the EBF had a dependence on the energy spectrum at the interface. The penetration of the backscattered electrons in the upstream direction of PMMA was also measured. The dose penetration fell off rapidly in the upstream direction of the interface. Dose enhancement to unit density tissue in bone was measured for an electron beam by placing thermoluminescent dosimeters (TLDs) in a PMMA-bone-PMMA phantom. The maximum dose enhancement in bone was approximately 7% of the maximum dose in water. However, the pencil-beam algorithm of Hogstrom et al. predicted an increase of only 1%, primarily owing to the inverse-square correction. Film was also used to measure the dose enhancement in bone. The film plane was aligned either perpendicular or parallel to the central axis of the beam. The film data indicated that the maximum dose enhancement in bone was approximately 8% for the former film alignment (which was similarly predicted by the TLD measurements) and 13% for the latter film alignment. These results confirm that the X ray film is not suitable to be irritated "edge on" in an inhomogeneous phantom without making perturbation corrections resulting from the film acting as a long narrow inhomogeneous cavity within the bone. In addition, the results give the radiotherapist a basis for

  1. Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem

    2015-01-01

    Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.

  2. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.

    PubMed

    Rindone, Alexandra N; Nyberg, Ethan; Grayson, Warren L

    2017-05-11

    Millions of patients worldwide require bone grafts for treatment of large, critically sized bone defects from conditions such as trauma, cancer, and congenital defects. Tissue engineered (TE) bone grafts have the potential to provide a more effective treatment than current bone grafts since they would restore fully functional bone tissue in large defects. Most bone TE approaches involve a combination of stem cells with porous, biodegradable scaffolds that provide mechanical support and degrade gradually as bone tissue is regenerated by stem cells. 3D-printing is a key technique in bone TE that can be used to fabricate functionalized scaffolds with patient-specific geometry. Using 3D-printing, composite polycaprolactone (PCL) and decellularized bone matrix (DCB) scaffolds can be produced to have the desired mechanical properties, geometry, and osteoinductivity needed for a TE bone graft. This book chapter will describe the protocols for fabricating and characterizing 3D-printed PCL:DCB scaffolds. Moreover, procedures for culturing adipose-derived stem cells (ASCs) in these scaffolds in vitro will be described to demonstrate the osteoinductivity of the scaffolds.

  3. Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration.

    PubMed

    Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo

    2017-04-17

    The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/β-TCP composite block bone grafts. After formation of calvarial defects 8 mm in diameter, PCL/PLGA/β-TCP composite block bone grafts and BCP were implanted into bone defects of 32 rats. Although PCL/PLGA/β-TCP composite block bone grafts were not superior in bone regeneration ability compared to BCP, the results showed relatively similar performance. Furthermore, PCL/PLGA/β-TCP composite block bone grafts showed better ability to maintain bone defects and to support barrier membranes than BCP. Therefore, within the limitations of this study, PCL/PLGA/β-TCP composite block bone grafts could be considered as an alternative to synthetic bone grafts available for clinical use.

  4. Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology

    PubMed Central

    Bodle, Josephine C.; Hanson, Ariel D.

    2011-01-01

    This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267

  5. Bone allografting in children

    NASA Astrophysics Data System (ADS)

    Sadovoy, M. A.; Kirilova, I. A.; Podorognaya, V. T.; Matsuk, S. A.; Novoselov, V. P.; Moskalev, A. V.; Bondarenko, A. V.; Afanasev, L. M.; Gubina, E. V.

    2017-09-01

    A total of 522 patients with benign and intermediate bone tumors of various locations, aged 1 to 15 years, were operated in the period from 1996 to 2016. To diagnose skeleton tumors, we used clinical observation, X-ray, and, if indicated, tomography and tumor site biopsy. In the extensive bone resection, we performed bone reconstruction with the replacement of a defect with an allograft (bone strips, deproteinized and spongy grafts), sometimes in the combination with bone autografting. After segmental resection, the defects were filled with bone strips in the form of matchstick grafts; the allografts were received from the Laboratory for Tissue Preparation and Preservation of the Novosibirsk Research Institute of Traumatology and Orthopedics. According to the X-ray data, a complete reorganization of bone grafts occurred within 1.5 to 3 years. The long-term result was assessed as good.

  6. Bone disease in thyrotoxicosis

    PubMed Central

    Reddy, P. Amaresh; Harinarayan, C. V.; Sachan, Alok; Suresh, V.; Rajagopal, G.

    2012-01-01

    Thyrotoxicosis, a clinical syndrome characterized by manifestations of excess thyroid hormone, is one of the commonly-recognised conditions of the thyroid gland. Thyrotoxicosis causes acceleration of bone remodelling and though it is one of the known risk factors for osteoporosis, the metabolic effects of thyroxine on bone are not well discussed. Studies show that thyroid hormones have effects on bone, both in vitro and in vivo. Treatment of thyrotoxicosis leads to reversal of bone loss and metabolic alterations, and decreases the fracture risk. There are limited studies in India as to whether these changes are fully reversible. In this review we discuss about the effects of thyrotoxicosis (endogenous and exogenous) on bone and mineral metabolism, effects of subclinical thyrotoxicosis on bone and mineral metabolism and effects of various forms of treatment in improving the bone mineral density in thyrotoxicosis. PMID:22561612

  7. Bone disease in thyrotoxicosis.

    PubMed

    Reddy, P Amaresh; Harinarayan, C V; Sachan, Alok; Suresh, V; Rajagopal, G

    2012-03-01

    Thyrotoxicosis, a clinical syndrome characterized by manifestations of excess thyroid hormone, is one of the commonly-recognised conditions of the thyroid gland. Thyrotoxicosis causes acceleration of bone remodelling and though it is one of the known risk factors for osteoporosis, the metabolic effects of thyroxine on bone are not well discussed. Studies show that thyroid hormones have effects on bone, both in vitro and in vivo. Treatment of thyrotoxicosis leads to reversal of bone loss and metabolic alterations, and decreases the fracture risk. There are limited studies in India as to whether these changes are fully reversible. In this review we discuss about the effects of thyrotoxicosis (endogenous and exogenous) on bone and mineral metabolism, effects of subclinical thyrotoxicosis on bone and mineral metabolism and effects of various forms of treatment in improving the bone mineral density in thyrotoxicosis.

  8. Local treatment of cancellous bone grafts with BMP-7 and zoledronate increases both the bone formation rate and bone density

    PubMed Central

    2011-01-01

    Background and purpose The remodeling of morselized bone grafts in revision surgery can be enhanced by an anabolic substance such as a bone morphogenetic protein (BMP). On the other hand, BMPs boost catabolism and might cause a premature resorption, both of the graft and of the new-formed bone. Bisphosphonates inactivate osteoclasts and can be used to control the resorption. We studied a combination of both drugs as a local admix to a cancellous allograft. Methods Cancellous bone allografts were harvested and freeze-dried. Either saline, BMP-7, the bisphosphonate zoledronate, or a combination of BMP-7 and zoledronate were added in solution. The grafts were placed in bone conduction chambers and implanted in the proximal tibia of 34 rats. The grafts were harvested after 6 weeks and evaluated by histomorphometry. Results Bone volume/total volume (BV/TV) was 50% in the grafts treated with the combination of BMP-7 and zoledronate and 16% in the saline controls (p < 0.001). In the zoledronate group BV/TV was 56%, and in the BMP group it was 14%. The ingrowth distance of new bone into the graft was 3.5 mm for the combination of BMP-7 and zoledronate and 2.6 mm in the saline control (p = 0.002). The net amount of retained remodeled bone was more than 4 times higher when BMP-7 and zoledronate were combined than in the controls. Interpretation An anabolic drug like BMP-7 can be combined with an anti-catabolic bisphosphonate as local bone graft adjunct, and the combination increases the amount of remaining bone after remodeling is complete. PMID:21434769

  9. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    PubMed Central

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  10. Bone vascularization and bone micro-architecture characterizations according to the μCT resolution

    NASA Astrophysics Data System (ADS)

    Crauste, E.; Autrusseau, F.; Guédon, Jp.; Pilet, P.; Amouriq, Y.; Weiss, P.; Giumelli, B.

    2015-03-01

    Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper [12], we started to investigate the relationships between bone and vessels and proposed some indices of characterization for the vessels issued from those used for the bone. Our main objective in this paper is to qualify the classical values used for bone as well as those we proposed for vessels according to different acquisition parameters and for several thresholding methods used to separate bone vessels and background. This study is also based on vessels perfusion by a contrast agent (barium sulfate mixed with gelatin) before euthanasia on rats. Femurs and tibias as well as mandibles were removed after rat's death and were imaged by microCT (Skyscan 1272, Bruker, Belgium) with a resolution ranging from 18 to 3μm. The so obtained images were analyzed with various softwares (NRecon Reconstruction, CtAn, and CtVox from Bruker) in order to calculate bone and vessels micro-architecture parameters (density of bone/blood within the volume), and to know if the results both for bone and vascular micro-architecture are constant along the chosen pixel resolution. The result is clearly negative. We found a very different characterization both for bone and vessels with the 3μm acquisition. Tibia and mandibles bones were also used to show results that can be visually assessed. The largest portions of the vascular tree are orthogonal to the obtained slices of the bone. Therefore, the contrast agent appears as cylinders of various sizes.

  11. Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium.

    PubMed

    Sawada, K; Caballé-Serrano, J; Schuldt Filho, G; Bosshardt, D D; Schaller, B; Buser, D; Gruber, R

    2015-08-01

    The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Histomorphological evaluation of Compound bone of Granulated Ricinus in bone regeneration in rabbits

    NASA Astrophysics Data System (ADS)

    Pavan Mateus, Christiano; Orivaldo Chierice, Gilberto; Okamoto, Tetuo

    2011-09-01

    Histological evaluation is an effective method in the behavioral description of the qualitative and quantitative implanted materials. The research validated the performance of Compound bone of Granulated Ricinus on bone regeneration with the histomorphological analysis results. Were selected 30 rabbits, females, divided into 3 groups of 10 animals (G1, G2, G3) with a postoperative time of 45, 70 and 120 days respectively. Each animal is undergone 2 bone lesions in the ilium, one implemented in the material: Compound bone of Granulated Ricinus and the other for control. After the euthanasia, the iliac bone was removed, identified and subjected to histological procedure. The evaluation histological, histomorphological results were interpreted and described by quantitative and qualitative analysis based facts verified in the three experimental groups evaluating the rate of absorption of the material in the tissue regeneration, based on the neo-bone formation. The histomorphologic results classified as a material biocompatible and biologically active. Action in regeneration by bone resorption occurs slowly and gradually. Knowing the time and rate of absorption and neo-formation bone biomaterial, which can be determined in the bone segment applicable in the clinical surgical area.

  13. Differential diagnoses of cerebral hemiatrophy in childhood: a review of literature with illustrative report of two cases.

    PubMed

    Uduma, Felix Uduma; Emejulu, Jude-Kennedy C; Motah, Mathieu; Okere, Philip C N; Ongolo, Pierre C; Muna, W

    2013-03-20

    Childhood cerebral hemiatrophy is an uncommon clinical entity. Its aetiologies are diverse but can generally be grouped into congenital and acquired. The congenital type is intrauterine in origin while the acquired type occurs early in life, usually before two year of life. When childhood cerebral hemiatrophy occurs, it evokes a spectrum of compensatory calvarial sequlae. These include ipsilateral calvarial thickening, diploe widening, hyper-pneumatization of paranasal sinues/ mastoids, elevation of petrous bone and small middle cranial fossa. MRI is very effective in high lightening brain atrophy, associated parenchymal changes and even the above enumerated skull changes. Our two case reports of left hemi-cerebral atrophy in male Cameroonian children seen in our MRI practice aptly demonstrated some of the aforementioned radiological features of childhood cerebral hemiatrophy noted in literature review.

  14. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  15. Gut microbiota-bone axis.

    PubMed

    Villa, Christopher R; Ward, Wendy E; Comelli, Elena M

    2017-05-24

    The gut microbiota (GM) is an important regulator of body homeostasis, including intestinal and extra-intestinal effects. This review focuses on the GM-bone axis, which we define as the effect of the gut-associated microbial community or the molecules they synthesize, on bone health. While research in this field is limited, findings from preclinical studies support that gut microbes positively impact bone mineral density and strength parameters. Moreover, administration of beneficial bacteria (probiotics) in preclinical models has demonstrated higher bone mineralization and greater bone strength. The preferential bacterial genus that has shown these beneficial effects in bone is Lactobacillus and thus lactobacilli are among the best candidates for future clinical intervention trials. However, their effectiveness is dependent on stage of development, as early life constitutes an important time for impacting bone health, perhaps via modulation of the GM. In addition, sex-specific difference also impacts the efficacy of the probiotics. Although auspicious, many questions regarding the GM-bone axis require consideration of potential mechanisms; sex-specific efficacy; effective dose of probiotics; and timing and duration of treatment.

  16. [THE IMPORTANCE OF "MILK BONES" TO "WISDOM BONES" - COW MILK AND BONE HEALTH - LESSONS FROM MILK ALLERGY PATIENTS].

    PubMed

    Nachshon, Liat; Katz, Yitzhak

    2016-03-01

    The necessity of milk consumption in the western diet is a subject of intense controversy. One of the main benefits of milk is that it is the main source of dietary calcium. Calcium is a major bone mineral, mandatory for bone health. Its supply is derived exclusively from external dietary sources. During the growth period, an increased calcium supply is needed for the process of bone mass accumulation. An optimal bone mass achieved by the end of the growth period may be protective later in life against the bone mass loss that commonly occurs. This in turn, can be preventative against the occurrence of osteoporosis and the development of spontaneous bone fractures. Over the past several decades, an increased incidence of osteoporosis has been documented in western countries, leading to high rates of morbidity and mortality in the middle-aged and geriatric population. Many studies have investigated the dietary calcium requirements for different ages, to achieve and maintain proper bone health. Based on their results, guidelines concerning calcium intake in every stage of life have been published by national and international organizations. In the western diet, it is difficult to achieve the recommended calcium intake without milk consumption. Moreover, calcium bioavailability for intestinal absorption is high. Several studies have recently raised doubts concerning the amounts of calcium intake in the western diet and its effectiveness in preventing osteoporosis. The main disadvantage of these studies is their being based on the patient's past memory recall of milk consumption. Patients with IgE-mediated cow's milk protein allergy are a unique population. Their lifetime negligible milk consumption is undisputed. A recent study investigated for the first time, the bone density of young adults with milk allergy at the end of their growth period. Their severe reduction in bone mineral density and dietary calcium intake defines them as a high risk group for the

  17. Effects of bone drilling on local temperature and bone regeneration: an in vivo study.

    PubMed

    Karaca, Faruk; Aksakal, Bünyamin; Köm, Mustafa

    2014-01-01

    The aim of this study was to examine the influence of bone drilling on local bone temperature and bone regeneration and determine optimal drilling speed and pressure in an animal model. The study included 12 skeletally mature New Zealand white rabbits, weighing between 2.8 to 3.2 kg. Rabbits were divided into 2 groups and euthanized at the end of Day 21 (Group A) and Day 42 (Group B). The same drilling protocol was used in both groups. Three drill holes with different pressure (5, 10 and 20 N) were made in each rabbit tibias using 3 different rotational drill speeds (230, 370 and 570 rpm). During drilling, local temperature was recorded. Rabbit tibia underwent histopathological exam for bone regeneration. Bone temperature was affected by drilling time and depth. Lower drill speeds reduced the bone temperature and revealed better bone regeneration when compared to the drilled bones at higher drill speeds. Titanium boron nitride coating on the drill bits had no significant effects on bone temperature and structure. Bone regeneration was superior in Group B rabbits that had drilling at 230 rpm and 20 N. Our results suggested that lower drilling speed with higher pressure is necessary for better bone regeneration. The optimal drilling speed is 230 rpm and optimal drilling pressure 20 N.

  18. Development of an injectable pseudo-bone thermo-gel for application in small bone fractures.

    PubMed

    Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Kumar, Pradeep; Marimuthu, Thashree; du Toit, Lisa C; Pillay, Viness

    2017-03-30

    A pseudo-bone thermo-gel was synthesized and evaluated for its physicochemical, mechanical and rheological properties, with its application to treat small bone fractures. The pseudo-bone thermo-gel was proven to have thermo-responsive properties, behaving as a solution in temperatures below 25°C, and forming a gelling technology when maintained at physiological conditions. Poly propylene fumerate (PPF), Pluronic F127 and PEG-PCL-PEG were strategically blended, obtaining a thermo-responsive delivery system, to mimic the mechanical properties of bone with sufficient matrix hardness and resilience. A Biopharmaceutics Classification System (BCS) class II drug, simvastatin, was loaded in the pseudo-bone thermo-gel, selected for its bone healing properties. In vitro release analysis was undertaken on a series of experimental formulations, with the ideal formulations obtaining its maximum controlled drug release profile up to 14days. Ex vivo studies were undertaken on an induced 4mm diameter butterfly-fractured osteoporotic human clavicle bone samples. X-ray, ultrasound as well as textural analysis, undertaken on the fractured bones before and after treatment displayed significant bone filling, matrix hardening and matrix resilience properties. These characteristics of the pseudo-bone thermo-gel thus proved significant potential for application in small bone fractures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Injection of demineralized bone matrix with bone marrow concentrate improves healing in unicameral bone cyst.

    PubMed

    Di Bella, Claudia; Dozza, Barbara; Frisoni, Tommaso; Cevolani, Luca; Donati, Davide

    2010-11-01

    Unicameral bone cysts are benign lesions that usually spontaneously regress with skeletal maturity; however, the high risk of pathologic fractures often justifies treatment that could reinforce a weakened bone cortex. Various treatments have been proposed but there is no consensus regarding the best procedure. We compared the healing rates and failures of two methods of cure based on multiple injections of corticosteroid or a single injection of demineralized bone matrix (DBM) in association with bone marrow concentrate (BMC). We retrospectively reviewed 184 patients who had one of the two treatments for unicameral bone cysts with cortical erosion. Clinical records were reviewed for treatment failures and radiographs for healing in all patients. The minimum followup was 12 months for the Steroids Group (mean, 48 months; range, 12-120 months) and 12 months for the DBM + BMC Group (mean, 20 months; range, 12-28 months). After one treatment we observed a lower healing rate of cysts treated with multiple injections of steroids compared with the healing after the first injection of DBM + BMC (21% versus 58%, respectively). At last followup, 38% healed with steroids and 71% with DBM + BMC. The rate of failure after one steroid injection was higher than after a single injection of BDM + BMC (63% versus 24%, respectively). We observed no difference in fracture rates after treatment between the two groups. A single injection of DBM added with autologous bone marrow concentrate appears to provide a higher healing rate with a lower number of failures compared with a single injection of steroids.

  20. Bone Cancer—Health Professional Version

    Cancer.gov

    There are several types of bone cancer. Osteosarcoma usually starts in osteoblasts, a type of bone cell that becomes new bone tissue. Ewing sarcoma arises from a primordial bone marrow–derived mesenchymal stem cell. Find evidence-based information on bone cancer including treatment, research, genetics, and statistics.

  1. Novel microinjector for carrying bone substitutes for bone regeneration in periodontal diseases.

    PubMed

    Tsai, Hsiao-Cheng; Li, Yi-Chen; Young, Tai-Horng; Chen, Min-Huey

    2016-01-01

    Traditionally, guide bone regeneration (GBR) was a widely used method for repairing bone lost from periodontal disease. There were some disadvantages associated with the GBR method, such as the need for a stable barrier membrane and a new creative cavity during the surgical process. To address these disadvantages, the purpose of this study was to evaluate a novel microinjector developed for dental applications. The microinjector was designed to carry bone graft substitutes to restore bone defects for bone regeneration in periodontal diseases. The device would be used to replace the GBR method. In this study, the injected force and ejected volume of substitutes (including air, water, and ethanol) were defined by Hooke's law (n = 3). The optimal particle size of bone graft substitutes was determined by measuring the recycle ratio of bone graft substitutes from the microinjector (n = 3). Furthermore, a novel agarose gel model was used to evaluate the feasibility of the microinjector. The current study found that the injected force was less than 0.4 N for obtaining the ejected volume of approximately 2 mL, and when the particle size of tricalcium phosphate (TCP) was smaller than 0.5 mm, 80% TCP could be ejected from the microinjector. Furthermore, by using an agarose model to simulate the periodontal soft tissue, it was also found that bone graft substitutes could be easily injected into the gel. The results confirmed the feasibility of this novel microinjector for dental applications to carry bone graft substitutes for the restoration of bone defects of periodontal disease. Copyright © 2015. Published by Elsevier B.V.

  2. Mesenchymal stem cells for bone repair and metabolic bone diseases.

    PubMed

    Undale, Anita H; Westendorf, Jennifer J; Yaszemski, Michael J; Khosla, Sundeep

    2009-10-01

    Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases.

  3. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia

    PubMed Central

    Tamma, Roberto; Sun, Li; Cuscito, Concetta; Lu, Ping; Corcelli, Michelangelo; Li, Jianhua; Colaianni, Graziana; Moonga, Surinder S.; Di Benedetto, Adriana; Grano, Maria; Colucci, Silvia; Yuen, Tony; New, Maria I.; Zallone, Alberta; Zaidi, Mone

    2013-01-01

    Although hyponatremia is known to be associated with osteoporosis and a high fracture risk, the mechanism through which bone loss ensues has remained unclear. As hyponatremic patients have elevated circulating arginine-vasopressin (AVP) levels, we examined whether AVP can affect the skeleton directly as yet another component of the pituitary-bone axis. Here, we report that the two Avp receptors, Avpr1α and Avpr2, coupled to Erk activation, are expressed in osteoblasts and osteoclasts. AVP injected into wild-type mice enhanced and reduced, respectively, the formation of bone-resorbing osteoclasts and bone-forming osteoblasts. Conversely, the exposure of osteoblast precursors to Avpr1α or Avpr2 antagonists, namely SR49059 or ADAM, increased osteoblastogenesis, as did the genetic deletion of Avpr1α. In contrast, osteoclast formation and bone resorption were both reduced in Avpr1α−/− cultures. This process increased bone formation and reduced resorption resulted in a profound enhancement of bone mass in Avpr1α−/− mice and in wild-type mice injected with SR49059. Collectively, the data not only establish a primary role for Avp signaling in bone mass regulation, but also call for further studies on the skeletal actions of Avpr inhibitors used commonly in hyponatremic patients. PMID:24167258

  4. Growth hormone and bone health.

    PubMed

    Bex, Marie; Bouillon, Roger

    2003-01-01

    Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle. Copyright 2003 S. Karger AG, Basel

  5. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  6. Reconstruction of Canine Mandibular Bone Defects Using a Bone Transport Reconstruction Plate

    PubMed Central

    Elsalanty, Mohammed E.; Zakhary, Ibrahim; Akeel, Sara; Benson, Byron; Mulone, Timothy; Triplett, Gilbert R.; Opperman, Lynne A.

    2010-01-01

    Objectives Reconstruction of mandibular segmental bone defects is a challenging task. This study tests a new device used for reconstructing mandibular defects based on the principle of bone transport distraction osteogenesis. Methods Thirteen beagle dogs were divided into control and experimental groups. In all animals, a 3 cm defect was created on one side of the mandible. In eight control animals, the defect was stabilized with a reconstruction plate without further reconstruction and the animals were sacrificed two to three months after surgery. The remaining five animals were reconstructed with a bone transport reconstruction plate (BTRP), comprising a reconstruction plate with attached intraoral transport unit, and were sacrificed after one month of consolidation. Results Clinical evaluation, cone-beam CT densitometry, three-dimensional histomorphometry, and docking site histology revealed significant new bone formation within the defect in the distracted group. Conclusion The physical dimensions and architectural parameters of the new bone were comparable to the contralateral normal bone. Bone union at the docking site remains a problem. PMID:19770704

  7. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation.

    PubMed

    Stein, Koen; Prondvai, Edina

    2014-02-01

    We present novel findings on sauropod bone histology that cast doubt on general palaeohistological concepts concerning the true nature of woven bone in primary cortical bone and its role in the rapid growth and giant body sizes of sauropod dinosaurs. By preparing and investigating longitudinal thin sections of sauropod long bones, of which transverse thin sections were published previously, we found that the amount of woven bone in the primary complex has been largely overestimated. Using comparative cellular and light-extinction characteristics in the two section planes, we revealed that the majority of the bony lamina consists of longitudinally organized primary bone, whereas woven bone is usually represented only by a layer a few cells thin in the laminae. Previous arguments on sauropod biology, which have been based on the overestimated amount, misinterpreted formation process and misjudged role of woven bone in the plexiform bone formation of sauropod dinosaurs, are thereby rejected. To explain the observed pattern in fossil bones, we review the most recent advances in bone biology concerning bone formation processes at the cellular and tissue levels. Differentiation between static and dynamic osteogenesis (SO and DO) and the revealed characteristics of SO- versus DO-derived bone tissues shed light on several questions raised by our palaeohistological results and permit identification of these bone tissues in fossils with high confidence. By presenting the methods generally used for investigating fossil bones, we show that the major cause of overestimation of the amount of woven bone in previous palaeohistological studies is the almost exclusive usage of transverse sections. In these sections, cells and crystallites of the longitudinally organized primary bone are cut transversely, thus cells appear rounded and crystallites remain dark under crossed plane polarizers, thereby giving the false impression of woven bone. In order to avoid further confusion in

  8. Autoinflammatory bone diseases.

    PubMed

    Stern, Sara M; Ferguson, Polly J

    2013-11-01

    Autoinflammatory bone disease is a new branch of autoinflammatory diseases caused by seemingly unprovoked activation of the innate immune system leading to an osseous inflammatory process. The inflammatory bone lesions in these disorders are characterized by chronic inflammation that is typically culture negative with no demonstrable organism on histopathology. The most common autoinflammatory bone diseases in childhood include chronic nonbacterial osteomyelitis (CNO), synovitis, acne, pustulosis, hyperostosis, osteitis syndrome, Majeed syndrome, deficiency of interleukin-1 receptor antagonist, and cherubism. In this article, the authors focus on CNO and summarize the distinct genetic autoinflammatory bone syndromes. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  10. Scaffold Design for Bone Regeneration

    PubMed Central

    Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.

    2014-01-01

    The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250

  11. Predicting Bone Mechanical Properties of Cancellous Bone from DXA, MRI, and Fractal Dimensional Measurements

    NASA Technical Reports Server (NTRS)

    Harrigan, Timothy P.; Ambrose, Catherine G.; Hogan, Harry A.; Shackleford, Linda; Webster, Laurie; LeBlanc, Adrian; Lin, Chen; Evans, Harlan

    1997-01-01

    This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.

  12. [Bone remodeling and modeling/mini-modeling.

    PubMed

    Hasegawa, Tomoka; Amizuka, Norio

    Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.

  13. Biochemical markers of bone turnover in diagnosis of myeloma bone disease.

    PubMed

    Dizdar, Omer; Barista, Ibrahim; Kalyoncu, Umut; Karadag, Omer; Hascelik, Gulsen; Cila, Aysenur; Pinar, Asli; Celik, Ismail; Kars, Ayse; Tekuzman, Gulten

    2007-03-01

    This study was designed to explore the value of markers of bone turnover, macrophage inflammatory protein-1alpha (MIP-1alpha), and osteopontin (OPN) in the diagnosis of myeloma bone disease. Twenty-five patients with newly diagnosed and untreated multiple myeloma (MM), and 22 age-, sex-, and bone mineral density-matched control subjects were enrolled. Levels of MIP-1alpha, OPN, carboxy-terminal telopeptide of Type-1 collagen (C-telopeptide or Ctx), deoxypyridinoline (DPD), Type-1 collagen propeptide (T1Pro), and bone-specific alkaline phosphatase (BALP) were assessed in both groups. Twenty-two of the patients had bone involvement documented by skeletal surveys and lumbar spinal magnetic resonance imaging. Levels of serum Ctx, OPN, MIP-1alpha, and urine DPD were significantly higher in MM patients with bone disease than in controls (P<0.01). Serum Ctx levels were elevated in 90.9% of patients with MM and 40.9% of controls (P<0.001). Urine DPD levels were elevated in 90.4% of the patients and 31.8% of the controls (P<0.001). The serum OPN and MIP-1alpha levels of the patients were significantly correlated with beta2-microglobulin and lactate dehydrogenase levels (P<0.05). Our study indicates that Ctx and DPD are sensitive markers of bone disease in MM, and higher than normal values suggest presence of bone disease rather than benign osteoporosis in MM. The utility of OPN and MIP-1alpha needs to be further investigated. Copyright (c) 2006 Wiley-Liss, Inc.

  14. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  15. How tough is bone? Application of elastic-plastic fracture mechanics to bone.

    PubMed

    Yan, Jiahau; Mecholsky, John J; Clifton, Kari B

    2007-02-01

    Bone, with a hierarchical structure that spans from the nano-scale to the macro-scale and a composite design composed of nano-sized mineral crystals embedded in an organic matrix, has been shown to have several toughening mechanisms that increases its toughness. These mechanisms can stop, slow, or deflect crack propagation and cause bone to have a moderate amount of apparent plastic deformation before fracture. In addition, bone contains a high volumetric percentage of organics and water that makes it behave nonlinearly before fracture. Many researchers used strength or critical stress intensity factor (fracture toughness) to characterize the mechanical property of bone. However, these parameters do not account for the energy spent in plastic deformation before bone fracture. To accurately describe the mechanical characteristics of bone, we applied elastic-plastic fracture mechanics to study bone's fracture toughness. The J integral, a parameter that estimates both the energies consumed in the elastic and plastic deformations, was used to quantify the total energy spent before bone fracture. Twenty cortical bone specimens were cut from the mid-diaphysis of bovine femurs. Ten of them were prepared to undergo transverse fracture and the other 10 were prepared to undergo longitudinal fracture. The specimens were prepared following the apparatus suggested in ASTM E1820 and tested in distilled water at 37 degrees C. The average J integral of the transverse-fractured specimens was found to be 6.6 kPa m, which is 187% greater than that of longitudinal-fractured specimens (2.3 kPa m). The energy spent in the plastic deformation of the longitudinal-fractured and transverse-fractured bovine specimens was found to be 3.6-4.1 times the energy spent in the elastic deformation. This study shows that the toughness of bone estimated using the J integral is much greater than the toughness measured using the critical stress intensity factor. We suggest that the J integral method is

  16. Altered bone turnover during spaceflight

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Morey, E. R.; Liu, C.; Baylink, D. J.

    1982-01-01

    Modifications in calcium metabolism during spaceflight were studied, using parameters that reflect bone turnover. Bone formation rate, medullary area, bone length, bone density, pore size distribution, and differential bone cell number were evaluated in growing rate both immediately after and 25 days after orbital spaceflights aboard the Soviet biological satellites Cosmos 782 and 936. The primary effect of space flight on bone turnover was a reversible inhibition of bone formation at the periosteal surface. A simultaneous increase in the length of the periosteal arrest line suggests that bone formation ceased along corresponding portions of that surface. Possible reasons include increased secretion of glucocorticoids and mechanical unloading of the skeleton due to near-weightlessness, while starvation and immobilization are excluded as causes.

  17. Bone Metabolism on ISS Missions

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  18. Epigenetics of bone diseases.

    PubMed

    Michou, Laetitia

    2017-12-12

    Histone deacetylation, DNA methylation, and micro-RNAs (miRNAs) are the three main epigenetic mechanisms that regulate gene expression. All the physiological processes involved in bone remodeling are tightly regulated by epigenetic factors. This review discusses the main epigenetic modifications seen in tumoral and non-tumoral bone diseases, with emphasis on miRNAs. The role for epigenetic modifications of gene expression in the most common bone diseases is illustrated by drawing on the latest publications in the field. In multifactorial bone diseases such as osteoporosis, many epigenetic biomarkers, either alone or in combination, have been associated with bone mineral density or suggested to predict osteoporotic fractures. In addition, treatments designed to modulate bone remodeling by selectively targeting the function of specific miRNAs are being evaluated. Advances in the understanding of epigenetic regulation shed new light on the pathophysiology of other non-tumoral bone diseases, including genetic conditions inherited on a Mendelian basis. Finally, in the area of primary and metastatic bone tumors, the last few years have witnessed considerable progress in elucidating the epigenetic regulation of oncogenesis and its local interactions with bone tissue. These new data may allow the development of epigenetic outcome predictors, which are in very high demand, and of innovative therapeutic agents acting via miRNA modulation. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  19. Deficiency of ATP6V1H Causes Bone Loss by Inhibiting Bone Resorption and Bone Formation through the TGF-β1 Pathway

    PubMed Central

    Duan, Xiaohong; Liu, Jin; Zheng, Xueni; Wang, Zhe; Zhang, Yanli; Hao, Ying; Yang, Tielin; Deng, Hongwen

    2016-01-01

    Vacuolar-type H +-ATPase (V-ATPase) is a highly conserved, ancient enzyme that couples the energy of ATP hydrolysis to proton transport across vesicular and plasma membranes of eukaryotic cells. Previously reported mutations of various V-ATPase subunits are associated with increased bone density. We now show that haploinsufficiency for the H subunit of the V1 domain (ATP6V1H) is associated with osteoporosis in humans and mice. A genome-wide SNP array analysis of 1625 Han Chinese found that 4 of 15 tag SNPs (26.7%) within ATP6V1H were significantly associated with low spine bone mineral density. Atp6v1h+/- knockout mice generated by the CRISPR/Cas9 technique had decreased bone remodeling and a net bone matrix loss. Atp6v1h+/- osteoclasts showed impaired bone formation and increased bone resorption. The increased intracellular pH of Atp6v1h+/- osteoclasts downregulated TGF-β1 activation, thereby reducing induction of osteoblast formation but the bone mineralization was not altered. However, bone formation was reduced more than bone resorption. Our data provide evidence that partial loss of ATP6V1H function results in osteoporosis/osteopenia. We propose that defective osteoclast formation triggers impaired bone formation by altering bone remodeling. In the future, ATP6V1H might, therefore, serve as a target for the therapy of osteoporosis. PMID:27924156

  20. Method for fusing bone

    DOEpatents

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  1. [Prefabrication of bone transplants].

    PubMed

    Jagodzinski, M; Kokemüller, H; Jehn, P; Vogt, P; Gellrich, N-C; Krettek, C

    2015-03-01

    Prefabrication of bone transplants is a promising option for large defects of the long bones, especially if there is compromised vascularization of the defect. This is especially true for postinfection bone defects and other types of atrophic nonunion. The generation of a foreign body membrane (Masquelet's technique) has been investigated in order to ameliorate the response of the host tissue surrounding the defect. In an experimental animal study, a blood vessel within a bone construct could be used to generate customized, vascularized osteogenic constructs that can be used to treat large bone defects in the future.

  2. Smoking and Bone Health

    MedlinePlus

    ... Home Osteoporosis Smoking and Bone Health Smoking and Bone Health Many of the health problems caused by ... Last Reviewed 2016-05 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 AMS Circle Bethesda, ...

  3. Are bone turnover markers capable of predicting callus consolidation during bone healing?

    PubMed

    Klein, P; Bail, H J; Schell, H; Michel, R; Amthauer, H; Bragulla, H; Duda, G N

    2004-07-01

    The aim of this study was to determine the ability of the following bone turnover markers to monitor the course of callus consolidation during bone healing: Carboxy-terminal propeptide of procollagen type I (PICP), skeletal alkaline phosphatase (sALP), and amino-terminal propeptide of type III procollagen (PIlINP). Since interfragmentary movements have been proven to possess the ability to document the progression of bone healing in experimental studies, correlations between bone turnover markers and interfragmentary movements in vivo were investigated. Therefore, two different types of osteosyntheses representing different mechanical situations at the fracture site were compared in an ovine osteotomy model. Blood samples were taken preoperatively and postoperatively in weekly intervals over a nine-week healing period. At the same intervals, interfragmentary movements were measured in all sheep. After nine weeks, animals were sacrificed and the tibiae were evaluated both mechanically and histologically. Wide interindividual ranges were observed for all bone turnover markers. The systemic PICP level did not increase with callus consolidation. The bone-healing model seemed to influence the systemic level of PIIINP and sALP but no general correlation between bone turnover markers and interfragmentary movements could be detected. No differences between the different types of osteosyntheses and thus the different mechanical situations were observed. All analyzed markers failed as general predictors for the course of callus consolidation during bone healing.

  4. Biomaterials and bone mechanotransduction

    NASA Technical Reports Server (NTRS)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  5. Biophotonics and Bone Biology

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.

  6. Bone morphogenic protein: an elixir for bone grafting--a review.

    PubMed

    Shah, Prasun; Keppler, Louis; Rutkowski, James

    2012-12-01

    Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor beta superfamily. This literature review focuses on the molecular biology of BMPs, their mechanism of action, and subsequent applications. It also discusses uses of BMPs in the fields of dentistry and orthopedics, research on methods of delivering BMPs, and their role in tissue regeneration. BMP has positive effects on bone grafts, and their calculated and timely use with other growth factors can provide extraordinary results in fractured or nonhealing bones. Use of BMP introduces new applications in the field of implantology and bone grafting. This review touches on a few unknown facts about BMP and this ever-changing field of research to improve human life.

  7. Oral Health and Bone Disease

    MedlinePlus

    ... Oral Health and Bone Disease Oral Health and Bone Disease Osteoporosis and tooth loss are health concerns ... for Healthy Bones Resources For Your Information Skeletal Bone Density and Dental Concerns The portion of the ...

  8. Is there a relation between local bone quality as assessed on panoramic radiographs and alveolar bone level?

    PubMed

    Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde

    2008-03-01

    The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.

  9. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    PubMed

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  10. Space flight and bone formation.

    PubMed

    Doty, St B

    2004-12-01

    Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.

  11. Space flight and bone formation

    NASA Technical Reports Server (NTRS)

    Doty, St B.

    2004-01-01

    Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.

  12. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2.

    PubMed

    Egashira, Kazuhiro; Sumita, Yoshinori; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi

    2018-01-01

    Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation

  13. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2

    PubMed Central

    Egashira, Kazuhiro; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi

    2018-01-01

    Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation

  14. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study.

    PubMed

    Ross, P D; Kress, B C; Parson, R E; Wasnich, R D; Armour, K A; Mizrahi, I A

    2000-01-01

    The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD.

  15. INF-γ encoding plasmid administration triggers bone loss and disrupts bone marrow microenvironment.

    PubMed

    Agas, Dimitrios; Gusmão Silva, Guilherme; Laus, Fulvio; Marchegiani, Andrea; Capitani, Melania; Vullo, Cecilia; Catone, Giuseppe; Lacava, Giovanna; Concetti, Antonio; Marchetti, Luigi; Sabbieti, Maria Giovanna

    2017-02-01

    IFN-γ is a pleotropic cytokine produced in the bone microenvironment. Although IFN-γ is known to play a critical role on bone remodeling, its function is not fully elucidated. Consistently, outcomes on the effects of IFN-γ recombinant protein on bone loss are contradictory among reports. In our work we explored, for the first time, the role of IFN-γ encoding plasmid (pIFN-γ) in a mouse model of osteopenia induced by ovariectomy and in the sham-operated counterpart to estimate its effects in skeletal homeostasis. Ovariectomy produced a dramatic decrease of bone mineral density (BMD). pINF-γ injected mice showed a pathologic bone and bone marrow phenotype; the disrupted cortical and trabecular bone microarchitecture was accompanied by an increased release of pro-inflammatory cytokine by bone marrow cells. Moreover, mesenchymal stem cells' (MSCs) commitment to osteoblast was found impaired, as evidenced by the decline of osterix-positive (Osx + ) cells within the mid-diaphyseal area of femurs. For instance, a reduction and redistribution of CXCL12 cells have been found, in accordance with bone marrow morphological alterations. As similar effects were observed both in sham-operated and in ovariectomized mice, our studies proved that an increased IFN-γ synthesis in bone marrow might be sufficient to induce inflammatory and catabolic responses even in the absence of pathologic predisposing substrates. In addition, the obtained data might raise questions about pIFN-γ's safety when it is used as vaccine adjuvant. © 2017 Society for Endocrinology.

  16. Segmenting Bone Parts for Bone Age Assessment using Point Distribution Model and Contour Modelling

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Singh Mann, Kulwinder, Dr.

    2018-01-01

    Bone age assessment (BAA) is a task performed on radiographs by the pediatricians in hospitals to predict the final adult height, to diagnose growth disorders by monitoring skeletal development. For building an automatic bone age assessment system the step in routine is to do image pre-processing of the bone X-rays so that features row can be constructed. In this research paper, an enhanced point distribution algorithm using contours has been implemented for segmenting bone parts as per well-established procedure of bone age assessment that would be helpful in building feature row and later on; it would be helpful in construction of automatic bone age assessment system. Implementation of the segmentation algorithm shows high degree of accuracy in terms of recall and precision in segmenting bone parts from left hand X-Rays.

  17. Marginal bone loss around non-submerged implants is associated with salivary microbiome during bone healing.

    PubMed

    Duan, Xiao-Bo; Wu, Ting-Xi; Guo, Yu-Chen; Zhou, Xue-Dong; Lei, Yi-Ling; Xu, Xin; Mo, An-Chun; Wang, Yong-Yue; Yuan, Quan

    2017-06-01

    Marginal bone loss during bone healing exists around non-submerged dental implants. The aim of this study was to identify the relationship between different degrees of marginal bone loss during bone healing and the salivary microbiome. One hundred patients were recruited, and marginal bone loss around their implants was measured using cone beam computed tomography during a 3-month healing period. The patients were divided into three groups according to the severity of marginal bone loss. Saliva samples were collected from all subjected and were analysed using 16S MiSeq sequencing. Although the overall structure of the microbial community was not dramatically altered, the relative abundance of several taxonomic groups noticeably changed. The abundance of species in the phyla Spirochaeta and Synergistetes increased significantly as the bone loss became more severe. Species within the genus Treponema also exhibited increased abundance, whereas Veillonella, Haemophilus and Leptotrichia exhibited reduced abundances, in groups with more bone loss. Porphyromonasgingivalis, Treponemadenticola and Streptococcus intermedius were significantly more abundant in the moderate group and/or severe group. The severity of marginal bone loss around the non-submerged implant was associated with dissimilar taxonomic compositions. An increased severity of marginal bone loss was related to increased proportions of periodontal pathogenic species. These data suggest a potential role of microbes in the progression of marginal bone loss during bone healing.

  18. Bone Cancer—Patient Version

    Cancer.gov

    Bone cancer is rare and includes several types. Some bone cancers, including osteosarcoma and Ewing sarcoma, are seen most often in children and young adults. Start here to find information on bone cancer treatment, research, and statistics.

  19. Androgens and bone health.

    PubMed

    Hansen, K A; Tho, S P

    1998-01-01

    Osteoporosis is one of the most common metabolic bone diseases in the adult population and its prevalence will continue to rise as our population grows older. In both sexes, hypogonadism is associated with accelerated loss of bone and development of osteoporosis. Adrenal and gonadal androgen levels decline with advancing age in both sexes. Androgens act by either directly binding to androgen receptors, or by aromatization of androgens to estrogens and subsequently interacting with estrogen receptors. Both pathways are important for skeletal health. Direct androgen binding to an androgen receptor may play a more important role in early skeletal development and determination of sexual dimorphic traits. While bone remodeling, which is important in maintaining healthy bone through life, is primarily stimulated by estrogen, studies in the rat and human support the complex action of androgens and estrogens in bone modeling and remodeling, and hence the development and maintenance of healthy bone. In postmenopausal females, the addition of androgens to hormone replacement therapy results in significant additional improvement in bone mineral density compared to estrogen replacement alone. Accumulating evidence indicate that androgens play an important role in the health of bone and the potential benefit of adding these agents to hormone replacement regimens.

  20. [Cytokines in bone diseases. Anti-cytokine therapies for bone and joint diseases].

    PubMed

    Tanaka, Yoshiya

    2010-10-01

    The efficacy of biologics targeting inflammatory cytokines such as TNF and IL-6 for bone and joint diseases has been emerging. Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic synovitis and bone damage. By the use of TNF-inhibitors, clinical remission, structural remission and functional remission have become possible during the treatment of RA. Especially, the progress of joint and bone destruction is completely suppressed by TNF-inhibitors in the vast majority of RA patients. On the other hand, anti-RANKL antibody inhibits joint destruction as well as systemic osteoporosis, though no effects on synovitis of RA. Thus, differential efficacy of different therapies in bone destruction and osteoporosis would warrant further study to clarify the mechanisms of bone and joints diseases.

  1. Computed tomography analysis of guinea pig bone: architecture, bone thickness and dimensions throughout development.

    PubMed

    Witkowska, Agata; Alibhai, Aziza; Hughes, Chloe; Price, Jennifer; Klisch, Karl; Sturrock, Craig J; Rutland, Catrin S

    2014-01-01

    The domestic guinea pig, Cavia aperea f. porcellus, belongs to the Caviidae family of rodents. It is an important species as a pet, a source of food and in medical research. Adult weight is achieved at 8-12 months and life expectancy is ∼5-6 years. Our aim was to map bone local thickness, structure and dimensions across developmental stages in the normal animal. Guinea pigs (n = 23) that had died of natural causes were collected and the bones manually extracted and cleaned. Institutional ethical permission was given under the UK Home Office guidelines and the Veterinary Surgeons Act. X-ray Micro Computed Tomography (microCT) was undertaken on the left and right scapula, humerus and femur from each animal to ascertain bone local thickness. Images were also used to undertake manual and automated bone measurements, volumes and surface areas, identify and describe nutrient, supratrochlear and supracondylar foramina. Statistical analysis between groups was carried out using ANOVA with post-hoc testing. Our data mapped a number of dimensions, and mean and maximum bone thickness of the scapula, humerus and femur in guinea pigs aged 0-1 month, 1-3 months, 3-6 months, 6 months-1 year and 1-4 years. Bone dimensions, growth rates and local bone thicknesses differed between ages and between the scapula, humerus and femur. The microCT and imaging software technology showed very distinct differences between the relative local bone thickness across the structure of the bones. Only one bone showed a singular nutrient foramen, every other bone had between 2 and 5, and every nutrient canal ran in an oblique direction. In contrast to other species, a supratrochlear foramen was observed in every humerus whereas the supracondylar foramen was always absent. Our data showed the bone local thickness, bone structure and measurements of guinea pig bones from birth to 4 years old. Importantly it showed that bone development continued after 1 year, the point at which most guinea pigs have

  2. [Guided bone regeneration: general survey].

    PubMed

    Cosyn, Jan; De Bruyn, Hugo

    2009-01-01

    The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.

  3. Healing bone lesion defects using injectable CaSO4 /CaPO4 -TCP bone graft substitute compared to cancellous allograft bone chips in a canine model.

    PubMed

    Hall, Deborah J; Turner, Thomas M; Urban, Robert M

    2018-04-16

    CaSO 4 /CaPO 4 -TCP bone graft substitute has been shown to be effective for treatment of bone lesion defects, but its mechanical, histological, and radiographic characteristics have not been studied in direct comparison with a conventional treatment such as cancellous allograft bone. Thirteen canines had a critical-size axial defect created bilaterally into the proximal humerus. CaSO 4 /CaPO 4 -TCP bone graft substitute (PRO-DENSE™, Wright Medical Technology) was injected into the defect in one humerus, and an equal volume of freeze-dried cancellous allograft bone chips was placed in the contralateral defect. The area fraction of new bone, residual graft, and fibrous tissue and the compressive strength and elastic modulus of bone within the defects were determined after 6, 13, or 26 weeks and correlated with radiographic changes. The data were analyzed using Friedman and Mann-Whitney tests. There was more bone in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at all three time points, and the difference at 13 weeks was significant (p = 0.025). The new bone was significantly stronger and stiffer in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at 13 (p = 0.046) and 26 weeks (p = 0.025). At 26 weeks, all defects treated with CaSO 4 /CaPO 4 -TCP bone graft substitute demonstrated complete healing with new bone, whereas healing was incomplete in all defects treated with cancellous allograft chips. The CaSO 4 /CaPO 4 -TCP bone graft substitute could provide faster and significantly stronger healing of bone lesions compared to the conventional treatment using freeze-dried cancellous allograft bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  4. Bone cell communication factors and Semaphorins

    PubMed Central

    Negishi-Koga, Takako; Takayanagi, Hiroshi

    2012-01-01

    Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell–cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis. PMID:24171101

  5. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    PubMed Central

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon

    2013-01-01

    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction. PMID:23824910

  6. [The biological role of exosomes in bone remodeling and bone diseases.

    PubMed

    Urabe, Fumihiko; Yoshioka, Yusuke; Ochiya, Takahiro

    Exosomes are about 100nm membrane vesicles, and released from almost all cell types. They carry and transfer a wide variety of molecules, such as mRNAs, microRNAs, proteins, and lipids, as modulators of intercellular communication. Various studies have shown that this exosome-mediated intercellular communication lead to proliferation, invasion and metastasis of cancer cells. In addition to that, emerging data suggest that exosomes are also involved in physiological processes of bone remodeling and bone diseases. Increasing understanding of the working mechanism of exosomes will provide us with new therapeutic and diagnostic opportunities. Here we summarize the current research on exosomes in bone remodeling and bone diseases.

  7. [Long-term effects of 7-year growth hormone substitution on bone metabolism, bone density, and bone quality in growth hormone-deficient adults].

    PubMed

    Wilhelm, Birgit; Kann, Peter Herbert

    2004-10-15

    Subnormal bone mineral density (BMD) and increased fracture risk are described in patients with growth hormone deficiency (GHD). Growth hormone (GH) has been reported to have beneficial effects on bone in GHD. The aim of this study was to investigate the long-term effects of GH replacement therapy on bone metabolism, BMD, and bone quality in patients with GHD. 20 adult patients with GHD (eleven male, nine female, mean age 42.5 years) were included in the study and randomized to either GH or placebo in a dose of 0.25 U/kg body weight/week. After 6 months all patients received GH. After a 1-year double-blind, placebo-controlled study the patients were followed for another 72 months in an open study. The patients were compared to 20 age- und sex-matched healthy controls. Bone turnover was determined by ICTP (type I collagen carboxyterminal cross-linked telopeptide) as parameter of bone resorption and PICP (carboxyterminal propeptide of type I procollagen) as marker of bone formation. BMD was measured at the lumbar spine by dual-photon absorptiometry (DPA) and at the forearm by single-photon absorptiometry (SPA). Apparent phalangeal ultrasound transmission velocity (APU) was assessed as parameter of bone quality independent of BMD. At the beginning of the study BMD at both measuring sites was lower in patients with GHD than in healthy controls. During the 1st year of GH replacement therapy BMD decreased, followed by a continuous increase in BMD (about 12%) up to 60 months which remained unchanged thereafter, building up a plateau. After 72 months no significant difference between the patients and the healthy controls could be detected. Concerning parameters of bone turnover, first ICTP as marker of bone resorption showed a significant increase, later on the marker of bone formation increased as well. APU decreased during the first 6 months of treatment, but had returned to its baseline value after 24 months and remained unchanged throughout the rest of the study. BMD

  8. Talking Bones.

    ERIC Educational Resources Information Center

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  9. Otosclerosis: Temporal Bone Pathology.

    PubMed

    Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J

    2018-04-01

    Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients.

    PubMed

    Harries, M; Taylor, A; Holmberg, L; Agbaje, O; Garmo, H; Kabilan, S; Purushotham, A

    2014-08-01

    Bone is the most common metastatic site associated with breast cancer. Using a database of women with breast cancer treated at Guy's Hospital, London 1976-2006 and followed until end 2010, we determined incidence of and survival after bone metastases. We calculated cumulative incidence of bone metastases considering death without prior bone metastases as a competing risk. Risk of bone metastases was modelled through Cox-regression. Survival after bone metastases diagnosis was calculated using Kaplan-Meier methodology. Of the 7064 women, 589 (22%) developed bone metastases during 8.4 years (mean). Incidence of bone metastases was significantly higher in younger women, tumour size >5 cm, higher tumour grade, lobular carcinoma and ≥ four positive nodes, but was not affected by hormone receptor status. Median survival after bone metastases diagnosis was 2.3 years in women with bone-only metastases compared with <1 year in women with visceral and bone metastases. There was a trend for decreased survival for patients who developed visceral metastases early, and proportionately fewer patients in this group. Incidence of bone metastases has decreased but bone metastases remain a highly relevant clinical problem due to the large number of patients being diagnosed with breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Prospective assessment of bone turnover and clinical bone diseases after allogeneic hematopoietic stem-cell transplantation.

    PubMed

    Petropoulou, Anna D; Porcher, Raphael; Herr, Andrée-Laure; Devergie, Agnès; Brentano, Thomas Funck; Ribaud, Patricia; Pinto, Fernando O; Rocha, Vanderson; Peffault de Latour, Régis; Orcel, Philippe; Socié, Gérard; Robin, Marie

    2010-06-15

    Bone complications after hematopoietic stem-cell transplantation (HSCT) are relatively frequent. Evaluation of biomarkers of bone turnover and dual energy x-ray absorptiometry (DEXA) are not known in this context. We prospectively evaluated bone mineral density, biomarkers of bone turnover, and the cumulative incidence of bone complications after allogeneic HSCT. One hundred forty-six patients were included. Bone mineral density was measured by DEXA 2-month and 1-year post-HSCT. The markers of bone turnover were serum C-telopeptide (C-TP), 5 tartrate-resistant acid phosphatase (bone resorption), and osteocalcin (bone formation) determined pre-HSCT and 2 months and 1 year thereafter. Potential association between osteoporosis at 2 months, osteoporotic fracture or avascular necrosis and, individual patient's characteristics and biologic markers were tested. C-TP was high before and 2 months after transplant. At 2 months, DEXA detected osteoporosis in more than half the patients tested. Male sex, median age less than or equal to 15 years, and abnormal C-TP before HSCT were risk factors significantly associated with osteoporosis. Three-year cumulative incidences of fractures and avascular necrosis were 8% and 11%, respectively. Children were at higher risk of fracture, whereas corticosteroid treatment duration was a significant risk factor for developing a clinical bone complication post-HSCT. Bone complications and osteoporosis are frequent after HSCT. Bone biologic markers and DEXA showed that subclinical bone abnormalities appeared early post-HSCT. The risk factors, age, gender, and C-TP easily available at the time of transplantation were identified. Biphosphonates should probably be given to patients with those risk factors.

  12. Bone Marrow Aspirate Concentrate in Animal Long Bone Healing: An Analysis of Basic Science Evidence.

    PubMed

    Gianakos, Arianna; Ni, Amelia; Zambrana, Lester; Kennedy, John G; Lane, Joseph M

    2016-01-01

    Long bone fractures that fail to heal or show a delay in healing can lead to increased morbidity. Bone marrow aspirate concentrate (BMAC) containing bone mesenchymal stem cells (BMSCs) has been suggested as an autologous biologic adjunct to aid long bone healing. The purpose of this study was to systematically review the basic science in vivo evidence for the use of BMAC with BMSCs in the treatment of segmental defects in animal long bones. The PubMed/MEDLINE and EMBASE databases were screened in July 14-25, 2014. The following search criteria were used: [("bmac" OR "bone marrow aspirate concentrate" OR "bmc" OR "bone marrow concentrate" OR "mesenchymal stem cells") AND ("bone" OR "osteogenesis" OR "fracture healing" OR "nonunion" OR "delayed union")]. Three authors extracted data and analyzed for trends. Quality of evidence score was given to each study. Results are presented as Hedge G standardized effect sizes with 95% confidence intervals. The search yielded 35 articles for inclusion. Of studies reporting statistics, 100% showed significant increase in bone formation in the BMAC group on radiograph. Ninety percent reported significant improvement in earlier bone healing on histologic/histomorphometric assessment. Eighty-one percent reported a significant increase in bone area on micro-computed tomography. Seventy-eight percent showed a higher torsional stiffness for the BMAC-treated defects. In the in vivo studies evaluated, BMAC confer beneficial effects on the healing of segmental defects in animal long bone models when compared with a control. Proof-of-concept has been established for BMAC in the treatment of animal segmental bone defects.

  13. Defect nonunion of a metatarsal bone fracture in a cow: successful management with bone plating and autogenous cancellous bone graft.

    PubMed

    Raghunath, M; Singh, N; Singh, T; Gopinathan, A; Mohindroo, J; Atri, K

    2013-01-01

    A two-and-half-year-old cow was presented with a defect nonunion of the right metatarsal III/IV bone following a severely comminuted open fracture two months previously. The animal underwent open fixation using a 4.5 mm, broad, 10-hole, dynamic compression plate and autogenous cancellous bone graft collected from the contralateral iliac shaft. The animal started partial weight bearing after the third postoperative day and resumed complete weight bearing after the 10th day. Fracture healing was complete and the implants were removed after the 120th postoperative day. Stable fixation by means of a bone plate in conjunction with a cancellous bone graft facilitated complete healing and restoration of the bone column of the defect and the metatarsal fracture. The animal made a complete recovery.

  14. Ankle arthrodesis with bone graft after distal tibia resection for bone tumors.

    PubMed

    Campanacci, Domenico Andrea; Scoccianti, Guido; Beltrami, Giovanni; Mugnaini, Marco; Capanna, Rodolfo

    2008-10-01

    Treatment of distal tibial tumors is challenging due to the scarce soft tissue coverage of this area. Ankle arthrodesis has proven to be an effective treatment in primary and post-traumatic joint arthritis, but few papers have addressed the feasibility and techniques of ankle arthrodesis in tumor surgery after long bone resections. Resection of the distal tibia and reconstruction by ankle fusion using non-vascularized structural bone grafts was performed in 8 patients affected by malignant (5 patients) or aggressive benign (3 patients) tumors. Resection length of the tibia ranged from 5 to 21 cm. Bone defects were reconstructed with cortical structural autografts (from contralateral tibia) or allografts or both, plus autologous bone chips. Fixation was accomplished by antegrade nailing (6 cases) or plating (2~cases). All the arthrodesis successfully healed. At followup ranging from 23 to 113 months (average 53.5), all patients were alive. One local recurrence was observed with concomitant deep infection (a below-knee amputation was performed). Mean functional MSTS score of the seven available patients was 80.4% (range, 53 to 93). Resection of the distal tibia and arthrodesis of the ankle with non-vascularized structural bone grafts, combined with autologous bone chips, can be an effective procedure in bone tumor surgery with durable and satisfactory functional results. In shorter resections, autologous cortical structural grafts can be used; in longer resections, allograft structural bone grafts are needed.

  15. Injection of Unicameral Bone Cysts with Bone Marrow Aspirate and Demineralized Bone Matrix Avoids Open Curettage and Bone Grafting in a Retrospective Cohort.

    PubMed

    Gundle, Kenneth R; Bhatt, Etasha M; Punt, Stephanie E; Bompadre, Viviana; Conrad, Ernest U

    2017-01-01

    Many treatment options exist for unicameral bone cysts (UBC), without clear evidence of superiority. Meta-analyses have been limited by small numbers of patients in specific anatomic and treatment subgroups. The purpose of this study was to report the outcomes of injecting bone marrow aspirate and demineralized bone matrix (BMA/DBM) for the treatment of proximal humerus UBC. Fifty-one patients with proximal humerus lesions treated by BMA/DBM injection were retrospectively reviewed from a single academic medical center. The mean number of injections performed per patient was 2.14 (range 1-5). Eleven patients underwent only one injection (22%), an additional 19 patients completed treatment after two injections (37%), four patients healed after three injections (8%), and one patient healed after four injections (2%). The cumulative success rate of serial BMA/DBM injections was 22% (11/51), 58% (30/51), 67% (34/51), and 69% (35/51). Eleven patients (22%) ultimately underwent open curettage and bone grafting, and five patients (10%) were treated with injection of calcium phosphate bone substitute. A BMA/DBM injection strategy avoided an open procedure in 78% of patients with a proximal humerus UBC. The majority of patients underwent at least 2 injection treatments. Level IV retrospective cohort study.

  16. Injection of Unicameral Bone Cysts with Bone Marrow Aspirate and Demineralized Bone Matrix Avoids Open Curettage and Bone Grafting in a Retrospective Cohort

    PubMed Central

    Gundle, Kenneth R.; Bhatt, Etasha M.; Punt, Stephanie E.; Bompadre, Viviana; Conrad, Ernest U.

    2017-01-01

    Background: Many treatment options exist for unicameral bone cysts (UBC), without clear evidence of superiority. Meta-analyses have been limited by small numbers of patients in specific anatomic and treatment subgroups. The purpose of this study was to report the outcomes of injecting bone marrow aspirate and demineralized bone matrix (BMA/DBM) for the treatment of proximal humerus UBC. Methods: Fifty-one patients with proximal humerus lesions treated by BMA/DBM injection were retrospectively reviewed from a single academic medical center. Results: The mean number of injections performed per patient was 2.14 (range 1-5). Eleven patients underwent only one injection (22%), an additional 19 patients completed treatment after two injections (37%), four patients healed after three injections (8%), and one patient healed after four injections (2%). The cumulative success rate of serial BMA/DBM injections was 22% (11/51), 58% (30/51), 67% (34/51), and 69% (35/51). Eleven patients (22%) ultimately underwent open curettage and bone grafting, and five patients (10%) were treated with injection of calcium phosphate bone substitute. Conclusion: A BMA/DBM injection strategy avoided an open procedure in 78% of patients with a proximal humerus UBC. The majority of patients underwent at least 2 injection treatments. Level of Evidence: Level IV retrospective cohort study. PMID:28694887

  17. [Black bone disease of the skull and facial bones].

    PubMed

    Laure, B; Petraud, A; Sury, F; Bayol, J-C; Marquet-Van Der Mee, N; de Pinieux, G; Goga, D

    2009-11-01

    We report the case of a patient with a craniofacial black bone disease. This was discovered accidentally during a coronal approach. A 38-year-old patient was referred to our unit for facial palsy having appeared 10 years before. Rehabilitation of the facial palsy was performed with a lengthening temporal myoplasty and lengthening of the upper eyelid elevator. An unusual black color of the skull was observed at incision of the coronal approach. Subperiostal dissection of skull and malars confirmed the presence of a black bone disease. A postoperative history revealed minocycline intake (200mg per day) during 3 years. This craniofacial black bone disease was caused by minocycline intake. The originality of this case is to see directly the entire craniofacial skeleton black. This abnormal pigmentation may affect various organs or tissues. Bone pigmentation is irreversible unlike that of the mouth mucosa or of the skin. This abnormal pigmentation is usually discovered accidentally.

  18. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  19. Occurrence and pattern of long bone fractures in growing dogs with normal and osteopenic bones.

    PubMed

    Kumar, K; Mogha, I V; Aithal, H P; Kinjavdekar, P; Singh, G R; Pawde, A M; Kushwaha, R B

    2007-11-01

    A retrospective study was undertaken to record the occurrence and pattern of long bone fractures, and the efficacy of Intramedullary (IM) Steinmann pin fixing in growing dogs. All the records of growing dogs during a 10-year-period were screened to record the cause of trauma, the age and sex of the animal, the bone involved, the type and location of the fracture, the status of fixation, alignment, maintenance of fixation and fracture healing. The results were analysed and comparisons were made between growing dogs with normal and osteopenic bones. Among the 310 cases of fractures recorded, the bones were osteopenic in 91 cases (29%). Minor trauma was the principal cause of fracture in dogs with osteopenia (25%), and indigenous breeds were most commonly affected (38%). Fractures in dogs with osteopenic bones were most commonly recorded in the age group of 2-4 months (53%), whereas fractures in normal dogs were almost equally distributed between 2 and 8 months of age. Male dogs were affected significantly more often in both groups. In osteopenic bones, most fractures were recorded in the femur (56%), and they were distributed equally along the length of the bone. Whereas in normal bones, fractures were almost equally distributed in radius/ulna, femur and tibia, and were more often recorded at the middle and distal third of long bones. Oblique fractures were most common in both groups; however, comminuted fractures were more frequent in normal bones, whereas incomplete fractures were more common in osteopenic bones. Ninety-nine fracture cases treated with IM pinning (66 normal, 33 osteopenic) were evaluated for the status of fracture reduction and healing. In a majority of the cases (61%) with osteopenic bones, the diameter of the pin was relatively smaller than the diameter of the medullary cavity (<70-75%), whereas in 68% of the cases in normal bones the pin diameter was optimum. The status of fracture fixing was satisfactory to good in significantly more

  20. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture.

    PubMed

    Kim, Yoon Jeong; Henkin, Jeffrey

    2015-04-01

    Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.

  1. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  2. In vitro simulation of pathological bone conditions to predict clinical outcome of bone tissue engineered materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong Thuy Thi

    According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted

  3. Bone Disease after Kidney Transplantation

    PubMed Central

    Bouquegneau, Antoine; Salam, Syrazah; Delanaye, Pierre; Eastell, Richard

    2016-01-01

    Bone and mineral disorders occur frequently in kidney transplant recipients and are associated with a high risk of fracture, morbidity, and mortality. There is a broad spectrum of often overlapping bone diseases seen after transplantation, including osteoporosis as well as persisting high– or low–turnover bone disease. The pathophysiology underlying bone disorders after transplantation results from a complex interplay of factors, including preexisting renal osteodystrophy and bone loss related to a variety of causes, such as immunosuppression and alterations in the parathyroid hormone-vitamin D-fibroblast growth factor 23 axis as well as changes in mineral metabolism. Management is complex, because noninvasive tools, such as imaging and bone biomarkers, do not have sufficient sensitivity and specificity to detect these abnormalities in bone structure and function, whereas bone biopsy is not a widely available diagnostic tool. In this review, we focus on recent data that highlight improvements in our understanding of the prevalence, pathophysiology, and diagnostic and therapeutic strategies of mineral and bone disorders in kidney transplant recipients. PMID:26912549

  4. [Polarized microscopic observation of the collagen change in bone healing during bone lengthening].

    PubMed

    Zou, Pei; Li, Junhui; Li, Zhuyi

    2006-01-01

    To investigate the feature and regularity of the collagen change in bone healing during bone lengthening. Bone lengthening model was made in the middle segment of the rabbit tibia. Five days after the model was established, the bone was lengthened 1.5 mm per day for 14 days. The rabbits were put to death after elongation, 7, 14, 21, 30, 40, 50, 60 and 70 days after elongation. The distracted area of the bone was imbedded with paraffin. After being stained by the picric acid-sirius red staining, the slice was observed under polarized microscope. The features of the collagen change in the distracted bone were as follows: (1) In the fibrous tissue of the distracted area during lengthening period and the early stage after lengthening, there was not only collagen III but also much collagen I. (2) Collagen I , II and III were observed in the cartilage. (3) Collagen I, II and III were also observed in the pseudo-growth plate. (4) Collagen I took the dominance during lengthening period and the late stage after lengthening. New bone formation in bone lengthening is under the distracted force, so the collagen changes have different features compared with that in fracture healing. Collagen I, II and III can be identified by picric acid-sirius red staining and polarized microscope, so a new method for studying the collagen typing in bone repairing is provided.

  5. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  6. Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry.

    PubMed

    Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  7. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    PubMed Central

    Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw. PMID:24818151

  8. The potential role of free chitosan in bone trauma and bone cancer management.

    PubMed

    Tan, Mei L; Shao, Peng; Friedhuber, Anna M; van Moorst, Mallory; Elahy, Mina; Indumathy, Sivanjah; Dunstan, Dave E; Wei, Yongzhong; Dass, Crispin R

    2014-09-01

    Bone defects caused by fractures or cancer-mediated destruction are debilitating. Chitosan is commonly used in scaffold matrices for bone healing, but rarely as a free drug. We demonstrate that free chitosan promotes osteoblast proliferation and osteogenesis in mesenchymal stem cells, increases osteopontin and collagen I expression, and reduces osteoclastogenesis. Chitosan inhibits invasion of endothelial cells, downregulating uPA/R, MT1-MMP, cdc42 and Rac1. Better healing of bone fractures with greater trabecular bone formation was observed in mice treated with chitosan. Chitosan induces apoptosis in osteotropic prostate and breast cancer cells via caspase-2 and -3 activation, and reduces their establishment in bone. Chitosan is pro-apoptotic in osteosarcoma cells, but not their normal counterpart, osteoblasts, or chondrosarcoma cells. Systemic delivery of chitosan does not perturb angiogenesis, bone volume or instinctive behaviour in pregnant mice, but decreases foetal length and changes pancreatic secretory acini. With certain controls in place, chitosan could be useful for bone trauma management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Assessment of Bone Quality in Osteoporosis Treatment with Bone Anabolic Agents: Really Something New?

    PubMed

    Ulivieri, Fabio M; Caudarella, Renata; Camisasca, Marzia; Cabrini, Daniela M; Merli, Ilaria; Messina, Carmelo; Piodi, Luca P

    2018-04-20

    Osteoporosis is a chronic pathologic condition, particularly of the elderly, in which a reduction of bone mineral density (BMD) weakens bone, leading to the so-called fragility fractures, most often of spine and femur. The gold standard exam for the quantitative measurement of BMD is the dual X-ray photon absorptiometry (DXA), a radiological method. However, a relevant number of fragility fractures occurs in the range of normal BMD values, meaning that also qualitative aspects of bone play a role, namely bone architecture and bone geometry. Bone structure is investigated by microCT and histomorphometry, which necessitate an invasive approach with a biopsy, usually taken at the iliac crest, not the typical site of fragility fractures. New tools, trabecular bone score (TBS) and hip structural analysis (HSA), obtained during DXA, can supply informations about bone structure of spine and femur, respectively, in a not invasive way. Therapy of osteoporosis is based on two types of drugs leading to an increase of BMD: antiresorptive and anabolic treatments. The antiresorptive drugs inhibit the osteoclasts, whereas teriparatide and, in part, strontium ranelate ameliorate bone structure. The present review deals with the relation between the anabolic drugs for osteoporosis and the cited new tools which investigate bone architecture and geometry, in order to clarify if they represent a real advantage in monitoring efficacy of osteoporosis' treatment. Data from the studies show that increases of TBS and HSA values after anabolic therapy are small and very close to their least significant change at the end of the usual period of treatment. Therefore, it is questionable if TBS and HSA are really helpful in monitoring bone quality and in defining reduction of individual fragility fracture risk during osteoporosis treatment with bone anabolic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices.

    PubMed

    Lu, Helen H; Kofron, Michelle D; El-Amin, Saadiq F; Attawia, Mohammed A; Laurencin, Cato T

    2003-06-13

    Over 800,000 bone grafting procedures are performed in the United States annually, creating a demand for viable alternatives to autogenous bone, the grafting standard in osseous repair. The objective of this study was to examine the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype and in vitro bone formation by muscle-derived cells. Specifically, we evaluated the ability of bone morphogenetic protein-7 (BMP-7), delivered from a poly(lactide-co-glycolide) (PLAGA) matrix, to induce the differentiation of cells derived from rabbit skeletal muscle into osteoblast-like cells and subsequently form mineralized tissue. Results confirmed that muscle-derived cells attached and proliferated on the PLAGA substrates. BMP-7 released from PLAGA induced the muscle-derived cells to increase bone marker expression and form mineralized cultures. These results demonstrate the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype by muscle-derived cells and present a new paradigm for bone tissue engineering.

  11. Octacalcium phosphate collagen composite facilitates bone regeneration of large mandibular bone defect in humans.

    PubMed

    Kawai, Tadashi; Suzuki, Osamu; Matsui, Keiko; Tanuma, Yuji; Takahashi, Tetsu; Kamakura, Shinji

    2017-05-01

    Recently it was reported that the implantation of octacalcium phosphate (OCP) and collagen composite (OCP-collagen) was effective at promoting bone healing in small bone defects after cystectomy in humans. In addition, OCP-collagen promoted bone regeneration in a critical-sized bone defect of a rodent or canine model. In this study, OCP-collagen was implanted into a human mandibular bone defect with a longer axis of approximately 40 mm, which was diagnosed as a residual cyst with apical periodontitis. The amount of OCP-collagen implanted was about five times greater than the amounts implanted in previous clinical cases. Postoperative wound healing was satisfactory and no infection or allergic reactions occurred. The OCP-collagen-treated lesion was gradually filled with radio-opaque figures, and the alveolar region occupied the whole of the bone defect 12 months after implantation. This study suggests that OCP-collagen could be a useful bone substitute material for repairing large bone defects in humans that might not heal spontaneously. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Bone Metabolism in Anorexia Nervosa

    PubMed Central

    Fazeli, Pouneh K.; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN), a psychiatric disorder predominantly affecting young women, is characterized by self-imposed chronic nutritional deprivation and distorted body image. AN is associated with a number of medical co-morbidities including low bone mass. The low bone mass in AN is due to an uncoupling of bone formation and bone resorption, which is the result of hormonal adaptations aimed at decreasing energy expenditure during periods of low energy intake. Importantly, the low bone mass in AN is associated with a significant risk of fractures and therefore treatments to prevent bone loss are critical. In this review, we discuss the hormonal determinants of low bone mass in AN and treatments that have been investigated in this population. PMID:24419863

  13. Electromechanical Properties of Bone Tissue.

    NASA Astrophysics Data System (ADS)

    Regimbal, Raymond L.

    Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P < 0.01). In agreement with that shown in model protein-hydroxyapatite systems, it is suggested here that inorganic phosphate ions in solution compete with organic acid groups (e.g. carboxyl and phosphate of collagen, sialoprotein, ...) for positively charged sites on the bone mineral surface and effectively uncouple the bone mineral and organic phase double layers. Mechanically, this uncoupling is manifested as a loss of tissue rigidity when monitoring the midspan deflection of bone beams subject to constant load for a 3 day period. While it is thus

  14. [Encounter of cancer cells with bone. Histological examination of bone metastasis].

    PubMed

    Kanda, Hiroaki

    2011-03-01

    Management of the cancer bone metastasis is important clinical problem. The mechanism (s) of bone metastasis has been studied mainly by animal models and in vitro system. There might be discrepancy between model systems and in vivo human clinical materials. But there is surprisingly rare study of histological examination of human skeletal metastasis, since it is hard to obtain human materials without modification by chemotherapy or irradiation. There are many surgical materials suitable for this examination in our hospital and we have been examined histological features of them. Stromal cells between metastatic cancer cells and OCs (osteoclasts) and÷or OBs (osteoblasts) might play a role in bone metastasis, since these cells are frequently accompanied with OCs÷OBs. We called these stromal cells as "fibroblast-like cells" and examined their nature and roles in bone metastasis. We hope these fibroblast-like cells might become the target of anti bone metastasis therapy, same as osteoclasts targeted by bisphosphonates.

  15. Ultrasonic Wave Properties in Bone Axis Direction of Bovine Cortical Bone

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazufumi; Yaoi, Yuichiro; Yamato, Yu; Yanagitan, Takahiko; Matsukawa, Mami; Yamazaki, Kaoru

    2008-05-01

    Quantitative ultrasonography (QUS) is a good method for measuring elastic properties of bone in vivo. Bovine cortical bone has two typical microstructures, plexiform and Haversian. In this study, the relationship between the speed of sound (SOS) and the hydroxyapatite (HAp) crystallite orientation in the axial direction was investigated in two different aged bovine cortical bones. The dependence of attenuation on anatomical position was also investigated. Two ring-permanent hyphen shaped cortical bone samples were obtained from 36- and 24-month-old bovine femurs. SOS was measured with a conventional ultrasonic pulse system. The integrated intensity of the (0002) peak obtained by X-ray diffraction was determine to evaluate the amount of preferred orientation. Regardless of the age of the bovine femurs, a significant correlation between SOS and the preferred orientation of HAp crystallites was observed in parts of the plexiform structure, and the gradient of the relationship showed a similar tendency. Attenuation seemed to depend on bone microstructure.

  16. Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing.

    PubMed

    Monfoulet, Laurent; Malaval, Luc; Aubin, Jane E; Rittling, Susan R; Gadeau, Alain P; Fricain, Jean-Christophe; Chassande, Olivier

    2010-02-01

    Bone healing is a complex multi-step process, which depends on the position and size of the lesion, and on the mechanical stability of the wounded area. To address more specifically the mechanisms involved in cortical bone healing, we created drill-hole defects in the cortex of mouse femur, a lesion that triggers intramembranous repair, and compared the roles of bone sialoprotein (BSP) and osteopontin (OPN), two proteins of the extracellular matrix, in the repair process. Bone regeneration was analyzed by ex vivo microcomputerized X-ray tomography and histomorphometry of bones of BSP-deficient, OPN-deficient and wild-type mice. In all mouse strains, the cortical gap was bridged with woven bone within 2 weeks and no mineralized tissue was observed in the marrow. Within 3 weeks, lamellar cortical bone filled the gap. The amount and degree of mineralization of the woven bone was not affected by OPN deficiency, but cortical bone healing was delayed in BSP-deficient mice due to delayed mineralization. Gene expression studies showed a higher amount of BSP transcripts in the repair bone of OPN-deficient mice, suggesting a possible compensation of OPN function by BSP in OPN-null mice. Our data suggest that BSP, but not OPN, plays a role in primary bone formation and mineralization of newly formed bone during the process of cortical bone healing. (c) 2009 Elsevier Inc. All rights reserved.

  17. Osteoporosis: Peak Bone Mass in Women

    MedlinePlus

    ... Osteoporosis: Peak Bone Mass in Women Osteoporosis: Peak Bone Mass in Women Bones are the framework for ... that affect peak bone mass. Factors Affecting Peak Bone Mass A variety of genetic and environmental factors ...

  18. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration. PMID:27622106

  19. Comparative study between cortical bone graft versus bone dust for reconstruction of cranial burr holes

    PubMed Central

    Worm, Paulo V.; Ferreira, Nelson P.; Faria, Mario B.; Ferreira, Marcelo P.; Kraemer, Jorge L.; Collares, Marcus V. M.

    2010-01-01

    Background: As a consequence of the progressive evolution of neurosurgical techniques, there has been increasing concern with the esthetic aspects of burr holes. Therefore, the objective of this study was to compare the use of cortical bone graft and bone dust for correcting cranial deformities caused by neurosurgical trephines. Methods: Twenty-three patients were enrolled for cranial burr hole reconstruction with a 1-year follow-up. A total of 108 burr holes were treated; 36 burr holes were reconstructed with autogenous cortical bone discs (33.3%), and the remaining 72 with autogenous wet bone powder (66.6%). A trephine was specifically designed to produce this coin-shaped bone plug of 14 mm in diameter, which fit perfectly over the burr holes. The reconstructions were studied 12 months after the surgical procedure, using three-dimensional quantitative computed tomography. Additionally, general and plastic surgeons blinded for the study evaluated the cosmetic results of those areas, attributing scores from 0 to 10. Results: The mean bone densities were 987.95 ± 186.83 Hounsfield units (HU) for bone fragment and 473.55 ± 220.34 HU for bone dust (P < 0.001); the mean cosmetic scores were 9.5 for bone fragment and 5.7 for bone dust (P < 0.001). Conclusions: The use of autologous bone discs showed better results than bone dust for the reconstruction of cranial burr holes because of their lower degree of bone resorption and, consequently, better cosmetic results. The lack of donor site morbidity associated with procedural low cost qualifies the cortical autograft as the first choice for correcting cranial defects created by neurosurgical trephines. PMID:21206899

  20. Comparative study between cortical bone graft versus bone dust for reconstruction of cranial burr holes.

    PubMed

    Worm, Paulo V; Ferreira, Nelson P; Faria, Mario B; Ferreira, Marcelo P; Kraemer, Jorge L; Collares, Marcus V M

    2010-12-22

    As a consequence of the progressive evolution of neurosurgical techniques, there has been increasing concern with the esthetic aspects of burr holes. Therefore, the objective of this study was to compare the use of cortical bone graft and bone dust for correcting cranial deformities caused by neurosurgical trephines. Twenty-three patients were enrolled for cranial burr hole reconstruction with a 1-year follow-up. A total of 108 burr holes were treated; 36 burr holes were reconstructed with autogenous cortical bone discs (33.3%), and the remaining 72 with autogenous wet bone powder (66.6%). A trephine was specifically designed to produce this coin-shaped bone plug of 14 mm in diameter, which fit perfectly over the burr holes. The reconstructions were studied 12 months after the surgical procedure, using three-dimensional quantitative computed tomography. Additionally, general and plastic surgeons blinded for the study evaluated the cosmetic results of those areas, attributing scores from 0 to 10. The mean bone densities were 987.95 ± 186.83 Hounsfield units (HU) for bone fragment and 473.55 ± 220.34 HU for bone dust (P < 0.001); the mean cosmetic scores were 9.5 for bone fragment and 5.7 for bone dust (P < 0.001). The use of autologous bone discs showed better results than bone dust for the reconstruction of cranial burr holes because of their lower degree of bone resorption and, consequently, better cosmetic results. The lack of donor site morbidity associated with procedural low cost qualifies the cortical autograft as the first choice for correcting cranial defects created by neurosurgical trephines.

  1. Bone disease in primary hyperparathyroidism

    PubMed Central

    Bandeira, Francisco; Cusano, Natalie E.; Silva, Barbara C.; Cassibba, Sara; Almeida, Clarissa Beatriz; Machado, Vanessa Caroline Costa; Bilezikian, John P.

    2015-01-01

    Bone disease in severe primary hyperparathyroidism (PHPT) is described classically as osteitis fibrosa cystica (OFC). Bone pain, skeletal deformities and pathological fractures are features of OFC. Bone mineral density is usually extremely low in OFC, but it is reversible after surgical cure. The signs and symptoms of severe bone disease include bone pain, pathologic fractures, proximal muscle weakness with hyperreflexia. Bone involvement is typically characterized as salt-and-pepper appearance in the skull, bone erosions and bone resorption of the phalanges, brown tumors and cysts. In the radiography, diffuse demineralization is observed, along with pathological fractures, particularly in the long bones of the extremities. In severe, symptomatic PHPT, marked elevation of the serum calcium and PTH concentrations are seen and renal involvement is manifested by nephrolithiasis and nephrocalcinosis. A new technology, recently approved for clinical use in the United States and Europe, is likely to become more widely available because it is an adaptation of the lumbar spine DXA image. Trabecular bone score (TBS) is a gray-level textural analysis that provides an indirect index of trabecular microarchitecture. Newer technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have provided further understanding of the microstructural skeletal features in PHPT. PMID:25166047

  2. Dietary coral calcium and zeolite protects bone in a mouse model for postmenopausal bone loss.

    PubMed

    Banu, Jameela; Varela, Erika; Guerra, Juan M; Halade, Ganesh; Williams, Paul J; Bahadur, Ali N; Hanaoka, Kokichi; Fernandes, Gabriel

    2012-12-01

    In patients diagnosed with osteoporosis, calcium is lost from bones making them weaker and easily susceptible to fractures. Supplementation of calcium is highly recommended for such conditions. However, the source of calcium plays an important role in the amount of calcium that is assimilated into bone. We hypothesize that naturally occurring coral calcium and zeolite may prevent ovariectomy-induced bone loss. We have measured bone loss in ovariectomized mice supplemented with coral calcium and Zeolite. Female C57BL/6 mice were either sham-operated or ovariectomized and fed diets containing coral calcium or zeolite for 6 months. Serum was analyzed for bone biochemical markers and cytokines. Bones were analyzed using dual x-ray absorbtiometry, peripheral quantitative computed tomography, and micro-computed tomography densitometry. In the distal femoral metaphysis, total bone and cortical bone mass was restored and the endocortical surface was significantly decreased in coral calcium and zeolite fed ovariectomized (OVX) mice. Trabecular number and the ratio of bone volume to total volume was higher in OVX mice after coral calcium and zeolite feeding, while trabecular separation decreased in the different treatment OVX groups. Coral calcium protected bone to a lesser extent in the proximal tibia and lumbar vertebrae. Overall, coral calcium and zeolite may protect postmenopausal bone loss. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. What's a Funny Bone?

    MedlinePlus

    ... for Educators Search English Español What's a Funny Bone? KidsHealth / For Kids / What's a Funny Bone? Print Have you ever hit the inside of ... prickly kind of dull pain? That's your funny bone! It doesn't really hurt as much as ...

  4. A predictive bone drilling force model for haptic rendering with experimental validation using fresh cadaveric bone.

    PubMed

    Lin, Yanping; Chen, Huajiang; Yu, Dedong; Zhang, Ying; Yuan, Wen

    2017-01-01

    Bone drilling simulators with virtual and haptic feedback provide a safe, cost-effective and repeatable alternative to traditional surgical training methods. To develop such a simulator, accurate haptic rendering based on a force model is required to feedback bone drilling forces based on user input. Current predictive bone drilling force models based on bovine bones with various drilling conditions and parameters are not representative of the bone drilling process in bone surgery. The objective of this study was to provide a bone drilling force model for haptic rendering based on calibration and validation experiments in fresh cadaveric bones with different bone densities. Using a commonly used drill bit geometry (2 mm diameter), feed rates (20-60 mm/min) and spindle speeds (4000-6000 rpm) in orthognathic surgeries, the bone drilling forces of specimens from two groups were measured and the calibration coefficients of the specific normal and frictional pressures were determined. The comparison of the predicted forces and the measured forces from validation experiments with a large range of feed rates and spindle speeds demonstrates that the proposed bone drilling forces can predict the trends and average forces well. The presented bone drilling force model can be used for haptic rendering in surgical simulators.

  5. Joint cartilage thickness and automated determination of bone age and bone health in juvenile idiopathic arthritis.

    PubMed

    Twilt, Marinka; Pradsgaard, Dan; Spannow, Anne Helene; Horlyck, Arne; Heuck, Carsten; Herlin, Troels

    2017-08-10

    BoneXpert is an automated method to calculate bone maturation and bone health index (BHI) in children with juvenile idiopathic arthritis (JIA). Cartilage thickness can also be seen as an indicator for bone health and arthritis damage. The objective of this study was to evaluate the relation between cartilage thickness, bone maturation and bone health in patients with JIA. Patients with JIA diagnosed according ILAR criteria included in a previous ultrasonography (US) study were eligible if hand radiographs were taken at the same time as the US examination. Of the 95 patients 67 met the inclusion criteria. Decreased cartilage thickness was seen in 27% of the examined joints. Decreased BHI was seen in half of the JIA patient, and delayed bone maturation was seen in 33% of patients. A combination of decreased BHI and bone age was seen in 1 out of 5 JIA patients. Decreased cartilage thickness in the knee, wrist and MCP joint was negatively correlated with delayed bone maturation but not with bone health index. Delayed bone maturation and decreased BHI were not related to a thinner cartilage, but a thicker cartilage. No relation with JADAS 10 was found. The rheumatologist should remain aware of delayed bone maturation and BHI in JIA patients with cartilage changes, even in the biologic era.

  6. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  7. Computed tomography analysis of guinea pig bone: architecture, bone thickness and dimensions throughout development

    PubMed Central

    Witkowska, Agata; Alibhai, Aziza; Hughes, Chloe; Price, Jennifer; Klisch, Karl; Sturrock, Craig J.

    2014-01-01

    The domestic guinea pig, Cavia aperea f. porcellus, belongs to the Caviidae family of rodents. It is an important species as a pet, a source of food and in medical research. Adult weight is achieved at 8–12 months and life expectancy is ∼5–6 years. Our aim was to map bone local thickness, structure and dimensions across developmental stages in the normal animal. Guinea pigs (n = 23) that had died of natural causes were collected and the bones manually extracted and cleaned. Institutional ethical permission was given under the UK Home Office guidelines and the Veterinary Surgeons Act. X-ray Micro Computed Tomography (microCT) was undertaken on the left and right scapula, humerus and femur from each animal to ascertain bone local thickness. Images were also used to undertake manual and automated bone measurements, volumes and surface areas, identify and describe nutrient, supratrochlear and supracondylar foramina. Statistical analysis between groups was carried out using ANOVA with post-hoc testing. Our data mapped a number of dimensions, and mean and maximum bone thickness of the scapula, humerus and femur in guinea pigs aged 0–1 month, 1–3 months, 3–6 months, 6 months–1 year and 1–4 years. Bone dimensions, growth rates and local bone thicknesses differed between ages and between the scapula, humerus and femur. The microCT and imaging software technology showed very distinct differences between the relative local bone thickness across the structure of the bones. Only one bone showed a singular nutrient foramen, every other bone had between 2 and 5, and every nutrient canal ran in an oblique direction. In contrast to other species, a supratrochlear foramen was observed in every humerus whereas the supracondylar foramen was always absent. Our data showed the bone local thickness, bone structure and measurements of guinea pig bones from birth to 4 years old. Importantly it showed that bone development continued after 1 year, the point at which most

  8. SILICON AND BONE HEALTH

    PubMed Central

    JUGDAOHSINGH, R.

    2009-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health. PMID:17435952

  9. Calcium, vitamin D, and your bones

    MedlinePlus

    Osteoporosis - calcium; Osteoporosis - low bone density ... Your body needs calcium to keep your bones dense and strong. Low bone density can cause your bones to become brittle and fragile. These weak bones can break easily, even without ...

  10. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  11. [Histological diagnosis of bone tumors: Guidelines of the French committee of bone pathologists reference network on bone tumors (RESOS)].

    PubMed

    Galant, Christine; Bouvier, Corinne; Larousserie, Frédérique; Aubert, Sébastien; Audard, Virginie; Brouchet, Anne; Marie, Béatrice; Guinebretière, Jean-Marc; de Pinieux du Bouexic, Gonzague

    2018-04-01

    The management of patients having a bone lesion requires in many cases the realization of a histological sample in order to obtain a diagnosis. However, with the technological evolution, CT-guided biopsies are performed more frequently, often in outpatient clinics. Interpretation of these biopsies constitutes new challenges for the pathologists within the wide spectrum of bone entities. The purpose of the document is to propose guidelines based on the experience of the French committee of bone pathologists of the reference network on bone tumors (RESOS) regarding the indications and limitations of the diagnosis on restricted material. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  12. Histologic and morphologic evaluation of explanted bone anchors from bone-anchored hearing aids.

    PubMed

    Mlynski, Robert; Goldberg, Eva; Ebmeyer, Joerg; Scheich, Matthias; Gattenlöhner, Stefan; Schwager, Konrad; Hagen, Rudolf; Shehata-Dieler, Wafaa

    2009-05-01

    Bone-anchored hearing aids are a standard option in rehabilitation of patients with conductive or mixed hearing loss, and also CROS fitting. However, the skin-penetrating bone anchor repeatedly gives reason for discussion about the risk of infection of surrounding tissues as a major cause of malfunction. In the present study, explanted bone anchors with surrounding bone and soft tissue were examined and compared with the morphology of lost implants. The anchors originated from five patients. Two needed explantation due to deafness with the need of cochlea implantation. A third patient underwent explantation due to meningeal irritation by the bone anchor. Another patient lost the implant due to mechanical stress shortly after implantation. The last implant was lost in a child without apparent reason. All implants were clinically free of infection and had been stable for a median implantation period of 12 months. During the explantation procedure, the fixtures were recovered together with the attached soft tissue and bone. The specimens were examined by light microscopy or scanning electron microscopy (SEM). Sectioning for light microscopy was performed with a diamond-coated saw microtome. Histopathologic examination of the surrounding skin and subcutaneous soft tissue showed slight inflammation in one case only. The bone was regularly vital, presenting no signs of inflammation. The threads of the fixtures were filled with bone, with particularly strong attachment to the flank of traction. The SEM investigation exposed the ultrastructural interaction of bone with the implant surface. Filiform- and podocyte-like processes of osteocytes attach to the implant; lost implants did not reflect these features. Implant integration involves both osseointegration as well as soft tissue integration. Titanium oxide as the active implant surface promotes this integration even in unstable implants. The morphologic analysis exposed structural areas of the implant with weak bone

  13. [Experimental study of repairing bone defect with tissue engineered bone seeded with autologous red bone marrow and wrapped by pedicled fascial flap].

    PubMed

    Yang, Xinming; Shi, Wei; Du, Yakun; Meng, Xianyong; Yin, Yanlin

    2009-10-01

    To investigate the effect of repairing bone defect with tissue engineered bone seeded with the autologous red bone marrow (ARBM) and wrapped by the pedicled fascial flap and provide experimental foundation for clinical application. Thirty-two New Zealand white rabbits (male and/or female) aged 4-5 months old and weighing 2.0-2.5 kg were used to make the experimental model of bilateral 2 cm defect of the long bone and the periosteum in the radius. The tissue engineered bone was prepared by seeding the ARBM obtained from the rabbits on the osteoinductive absorbing material containing BMP. The left side of the experimental model underwent the implantation of autologous tissue engineered bone serving as the control group (group A). While the right side was designed as the experimental group (group B), one 5 cm x 3 cm fascial flap pedicled on the nameless blood vessel along with its capillary network adjacent to the bone defect was prepared using microsurgical technology, and the autologous tissue engineered bone wrapped by the fascial flap was used to fill the bone defect. At 4, 8, 12, and 16 weeks after operation, X-ray exam, absorbance (A) value test, gross morphology and histology observation, morphology quantitative analysis of bone in the reparative area, vascular image analysis on the boundary area were conducted. X-ray films, gross morphology observation, and histology observation: group B was superior to group A in terms of the growth of blood vessel into the implant, the quantity and the speed of the bone trabecula and the cartilage tissue formation, the development of mature bone structure, the remodeling of shaft structure, the reopen of marrow cavity, and the absorbance and degradation of the implant. A value: there was significant difference between two groups 8, 12, and 16 weeks after operation (P < 0.05), and there were significant differences among those three time points in groups A and B (P < 0.05). For the ratio of neonatal trabecula area to the

  14. Architecture and Microstructure of Cortical Bone in Reconstructed Canine Mandibles after Bone Transport Distraction Osteogenesis

    PubMed Central

    Zapata, Uriel; Halvachs, Emily K.; Dechow, Paul C.; Elsalanty, Mohammed E.; Opperman, Lynne A.

    2011-01-01

    Purpose Reconstruction of the canine mandible using bone transport distraction osteogenesis has been shown to be a suitable method for correcting segmental bone defects produced by cancer, gunshots, and trauma. Although the mechanical quality of the new regenerate cortical bone seems to be related to the mineralization process, several questions regarding the micro-structural patterns of the new bony tissue remain unanswered. The purpose of this study was to quantify any microstructural differences that may exist between the regenerate and control cortical bone. Methods Five adult American foxhound dogs underwent unilateral bone transport distraction of the mandible to repair 30–35 mm bone defects. Animals were sacrificed 12 weeks after the beginning of the consolidation period. Fourteen cylindrical cortical samples were extracted from the superior, medial, and inferior aspects of the lingual and buccal plates of the reconstructed aspect of the mandible and 21 specimens were collected similarly from the contralateral aspect of the mandible. The specimens were evaluated using histomorphometric and micro-computed tomography techniques to compare their microstructure. Results Except for differences in Haversian canal area, histomorphometric analyses suggested no statistical differences in microstructure between regenerate and control cortical bone. Morphological evaluation suggested a consistent level of anisotropy possibly related to the distraction vector. Conclusions After 12 weeks consolidation, bone created during bone transport distraction osteogenesis is comparable to native bone in microstructure, architecture, and mechanical properties. It is proposed that after enough time, the properties of the regenerate bone will be identical to that of native bone. PMID:21927873

  15. Sex differences in parameters of bone strength in new recruits: beyond bone density.

    PubMed

    Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S

    2008-11-01

    Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.

  16. MiRNAs in bone diseases.

    PubMed

    Moore, Benjamin T; Xiao, Peng

    2013-01-01

    MicroRNAs (miRNAs), which mainly inhibit protein expression by targeting the 3'UTR (untranslated region) of mRNAs, are known to play various roles in the pathogenesis of many different types of diseases. Specifically, in bone diseases, recent emphasis has been placed on the involvement of miRNAs in the differentiation and proliferation of bone and cartilage cells, particularly with regards to how these mechanisms contribute to bone homeostasis. In this review, we summarize miRNAs that are important in the differentiation and proliferation of bone cells, and specific miRNAs associated with bone diseases, such as osteoporosis, osteoarthritis and rheumatoid arthritis. This review also provides the perspective that miRNA studies will identify not only new mechanisms in basic bone research, but also potential novel diagnostic biomarkers and drug targets for bone diseases.

  17. Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

    PubMed Central

    Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi

    2015-01-01

    We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106

  18. BONE BANKS.

    PubMed

    de Alencar, Paulo Gilberto Cimbalista; Vieira, Inácio Facó Ventura

    2010-01-01

    Bone banks are necessary for providing biological material for a series of orthopedic procedures. The growing need for musculoskeletal tissues for transplantation has been due to the development of new surgical techniques, and this has led to a situation in which a variety of hospital services have been willing to have their own source of tissue for transplantation. To increase the safety of transplanted tissues, standards for bone bank operation have been imposed by the government, which has limited the number of authorized institutions. The good performance in a bone bank depends on strict control over all stages, including: formation of well-trained harvesting teams; donor selection; conducting various tests on the tissues obtained; and strict control over the processing techniques used. Combination of these factors enables greater scope of use and numbers of recipient patients, while the incidence of tissue contamination becomes statistically insignificant, and there is traceability between donors and recipients. This paper describes technical considerations relating to how a bone bank functions, the use of grafts and orthopedic applications, the ethical issues and the main obstacles encountered.

  19. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.

    PubMed

    Ye, Xinhai; Yin, Xiaofan; Yang, Dawei; Tan, Jian; Liu, Guangpeng

    2012-07-01

    Tissue engineering approaches using the combination of porous ceramics and bone marrow mesenchymal stem cells (BMSCs) represent a promising bone substitute for repairing large bone defects. Nevertheless, optimal conditions for constructing tissue-engineered bone have yet to be determined. It remains unclear if transplantation of predifferentiated BMSCs is superior to undifferentiated BMSCs or freshly isolated bone marrow mononucleated cells (BMNCs) in terms of new bone formation in vivo. The aim of this study was to investigate the effect of in vitro osteogenic differentiation (β-glycerophosphate, dexamethasone, and l-ascorbic acid) of human BMSCs on the capability to form tissue-engineered bone in unloaded conditions after subcutaneous implantation in nude mice. After isolation from human bone marrow aspirates, BMNCs were divided into three parts: one part was seeded onto porous beta-tricalcium phosphate ceramics immediately and transplanted in a heterotopic nude mice model; two parts were expanded in vitro to passage 2 before cell seeding and in vivo transplantation, either under osteogenic conditions or not. Animals were sacrificed for micro-CT and histological evaluation at 4, 8, 12, 16, and 20 weeks postimplantation. The results showed that BMSCs differentiated into osteo-progenitor cells after induction, as evidenced by the altered cell morphology and elevated alkaline phosphatase activity and calcium deposition, but their clonogenicity, proliferating rate, and seeding efficacy were not significantly affected by osteogenic differentiation, compared with undifferentiated cells. Extensive new bone formed in the pores of all the scaffolds seeded with predifferentiated BMSCs at 4 weeks after implantation, and maintained for 20 weeks. On the contrary, scaffolds containing undifferentiated BMSCs revealed limited bone formation only in 1 out of 6 cases at 8 weeks, and maintained for 4 weeks. For scaffolds with BMNCs, woven bone was observed sporadically only in one

  20. Postradiation atrophy of mature bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erguen, H.; Howland, W.J.

    1980-01-01

    The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographicmore » evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecting demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less

  1. Postradiation atrophy of mature bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergun, H.; Howland, W.J.

    1980-01-01

    The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographicmore » evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecing demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less

  2. Mineralized three-dimensional bone constructs

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R. (Inventor); Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor)

    2011-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  3. Mineralized Three-Dimensional Bone Constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2013-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  4. Zoledronate promotes bone formation by blocking osteocyte-osteoblast communication during bone defect healing.

    PubMed

    Cui, Pingping; Liu, Hongrui; Sun, Jing; Amizuka, Norio; Sun, Qinfeng; Li, Minqi

    2018-01-01

    Nitrogen-containing bisphosphonates (N-BPs) are potent antiresorptive drugs and their actions on osteoclasts have been studied extensively. Recent studies have suggested that N-BPs also target bone-forming cells. However, the precise mechanism of N-BPs in osteoblasts is paradoxical, and the specific role of osteocytes is worthy of in-depth study. Here, we investigated the cellular mechanisms of N-BPs regulating bone defect healing by zoledronate (ZA). Bone histomorphometry confirmed an increase in new bone formation by systemic ZA administration. ZA induced more alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-positive osteoclasts residing on the bone surface. Inexplicably, ZA increased SOST expression in osteocytes embedded in the bone matrix, which was not compatible with the intense osteoblast activity on the bone surface. ZA induced heterogeneous osteocytes and disturbed the distribution of the osteocytic-canalicular system (OLCS). Furthermore, according to the degree of OLCS regularity, dentin matrix protein 1 reactivity had accumulated around osteocytes in the ZA group, but it was distributed evenly in the OLCS of the control group. The control group showed a dense array of the gap junction protein connexin 43. However, connexin 43 was extremely sparse after ZA administration. In summary, ZA treatment reduces gap junction connections and blocks cellular communication between osteocytes and osteoblasts. Retaining SOST expression in osteocytes leads to activation of the Wnt signaling pathway and subsequent bone formation.

  5. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    PubMed

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  6. Solitary haemangioma of the shaft of long bones: resection and reconstruction with autologous bone graft.

    PubMed

    Li, Zhaoxu; Tang, Jicun; Ye, Zhaoming

    2013-04-01

    Bone haemangiomas are uncommon lesions, occurring in the skull or spine. A solitary haemangioma in the diaphysis of a long bone is rare. We retrospectively investigated six patients who presented with a solitary haemangioma in a long bone diaphysis. After segmental bone resection, the bone defect was replaced by a bone autograft. Patients were reviewed clinically and with radiographs. The mean follow-up was 6 years (range : 1-20 years). At the time of latest follow-up, no patient had a recurrence. Postoperative complications were one wound necrosis and one superficial wound infection. Union of the gap filling graft with the host bone was achieved in all patients at an average of 4 months (range: 3-8 months). The average Musculoskeletal Tumor Society functional score was 77% (range: 53%-90%) of normal at 6 months postoperatively, and 97% (range: 95%-99%) at the last follow-up evaluation. Segmental resection for solitary haemangioma and reconstruction with autologous bone graft can be considered as a suitable treatment option.

  7. [Biomaterials in bone repair].

    PubMed

    Puska, Mervi; Aho, Allan J; Vallittu, Pekka K

    2013-01-01

    In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.

  8. Finite element analysis of functionally graded bone plate at femur bone fracture site

    NASA Astrophysics Data System (ADS)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  9. Progress in the clinical imaging research of bone diseases on ankle and foot sesamoid bones and accessory ossicles

    PubMed Central

    Li, Xiaozhong; Shi, Lenian; Liu, Taiyun; Wang, Lin

    2012-01-01

    Summary Sesamoid bones and accessory ossicles are research focuses of foot and ankle surgery. Pains of the foot and ankle are related to sesamoid bones and accessory ossicles. The specific anatomical and functional relationship of sesamoid bones and accessory ossicles can cause such bone diseases as the dislocation of sesamoid bones and accessory bones, infection, inflammation and necrosis of sesamoid bones, cartilage softening, tenosynovitis of sesamoid bones and the sesamoid bone syndrome. However, these bone diseases are often misdiagnosed or mistreated. In patients with trauma history, relevant diseases of sesamoid bones and accessory ossicles as above mentioned are highly probable to be misdiagnosed as avulsion fractures. In such cases, radiographic findings may provide a basis for clinical diagnosis. PMID:25343083

  10. Building better bone: The weaving of biologic and engineering strategies for managing bone loss.

    PubMed

    Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J

    2017-09-01

    Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs.

    PubMed

    Wikesjö, Ulf M E; Xiropaidis, Andreas V; Qahash, Mohammed; Lim, Won Hee; Sorensen, Rachel G; Rohrer, Michael D; Wozney, John M; Hall, Jan

    2008-11-01

    Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. TPO implants coated with rhBMP-2 exhibited dose-dependent bone remodelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3+/-10.8%versus 71.7+/-7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4+/-10.6%versus 68.2+/-11.0%, p<0.03]. rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.

  12. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Print What It Is Bone marrow aspirations and biopsies are performed to examine bone marrow, the spongy liquid part of the bone where blood cells are ... you might also feel the pressure of the biopsy needle pushing in. Some ... sharp cramp as the liquid bone marrow is withdrawn for the aspiration or ...

  13. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  14. Bone augmentation for cancellous bone- development of a new animal model.

    PubMed

    Klein, Karina; Zamparo, Enrico; Kronen, Peter W; Kämpf, Katharina; Makara, Mariano; Steffen, Thomas; von Rechenberg, Brigitte

    2013-07-02

    Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (Ø 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative

  15. The influence of vegan diet on bone mineral density and biochemical bone turnover markers.

    PubMed

    Ambroszkiewicz, Jadwiga; Klemarczyk, Witold; Gajewska, Joanna; Chełchowska, Magdalena; Franek, Edward; Laskowska-Klita, Teresa

    2010-01-01

    Vegetarian diets can be healthy when they are well balanced and if a variety of foods is consumed. However, elimination of animal products from the diet (vegan diets) decreases the intake of some essential nutrients and may influence the bone metabolism. This is especially important in childhood and adolescence, when growth and bone turnover are most intensive. The aim of the study was to assess the effect of vegan diet on bone density (BMD) density and serum concentrations of bone metabolism markers. We examined a family on vegan diet which consisted of parents and two children. Dietary constituents were analysed using a nutritional program. Total and regional BMD were measured by dual-energy X-ray absorptiometry. Concentrations of calcium and phosphate in serum obtained from fasting patients were determined by colorimetric methods, 25-hydroxyvitamin D by the chemiluminescence method and bone turnover markers by specific enzyme immunoassays. In studied vegans, the dietary intake of phosphate was adequate while calcium and vitamin D were below the recommended range. Concentrations of calcium, phosphate and bone turnover markers in the serum of all subjects were within the physiological range, but 25-hydroxyvitamin D level was low. Age-matched Z-score total BMD was between -0.6 and 0.3 in adults, however in children it was lower (-0.9 and -1.0). Z-score BMD lumbar spine (L2-L4) was between -0.9 to -1.9 in parents and -1.5 to -1.7 in children. Our results suggest that an inadequate dietary intake of calcium and vitamin D may impair the bone turnover rate and cause a decrease in bone mineral density in vegans. The parameters of bone density and bone metabolism should be monitored in vegans, especially children, in order to prevent bone abnormalities.

  16. [New methods for the evaluation of bone quality. Bone anabolic agents and bone quality.

    PubMed

    Yamamoto, Norio; Tsuchiya, Hiroyuki

    Teriparatide(TPTD)products that can be used clinically in Japan include a daily subcutaneous injection form produced by genetic engineering and a weekly subcutaneous injectable TPTD acetate form produced by chemical synthesis. Published reports indicate that both forms exhibit excellent antifracture efficacy, and as the only anabolic agents that promote osteogenesis, TPTD products now occupy a prominent position. However, the two forms differ considerably, not only in frequency of administration, but also in mechanism of action. The daily form stimulates osteogenesis and accompanying resorption through more radical high bone turnover, and early in the course of treatment, intracortical porosity and apatite crystallization decrease, while immature collagen crosslinking increases. However, because daily formulations also produce an increase in cortical surface area or cortical thickness, the effects are counterbalanced, and bone strength is maintained. In contrast, the weekly form prioritizes osteogenesis, and by concurrently lowering turnover below pretreatment levels, improves trabecular bone mass and structure, and enhances strength without leading to cortical porosity and other undesirable phenomena. Abaloparatide, a PTHrP(1-34)analog that is homologous with the biologically active site of PTH drugs, is currently under development, and we eagerly anticipate further clarification of the mechanism of action of each formulation on bone.

  17. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    PubMed

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  18. Hydroxyapatite/collagen bone-like nanocomposite.

    PubMed

    Kikuchi, Masanori

    2013-01-01

    Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.

  19. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  20. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.

    PubMed

    Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong

    2017-11-01

    To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.

  1. Drinking water fluoridation and bone.

    PubMed

    Allolio, B; Lehmann, R

    1999-01-01

    Drinking water fluoridation has an established role in the prevention of dental caries, but may also positively or negatively affect bone. In bone fluoride is incorporated into hydroxylapatite to form the less soluble fluoroapatite. In higher concentrations fluoride stimulates osteoblast activity leading to an increase in cancellous bone mass. As optimal drinking water fluoridation (1 mg/l) is widely used, it is of great interest, whether long-term exposition to artificial water fluoridation has any impact on bone strength, bone mass, and -- most importantly -- fracture rate. Animal studies suggest a biphasic pattern of the effect of drinking water fluoridation on bone strength with a peak strength at a bone fluoride content of 1200 ppm followed by a decline at higher concentrations eventually leading to impaired bone quality. These changes are not paralleled by changes in bone mass suggesting that fluoride concentrations remain below the threshold level required for activation of osteoblast activity. Accordingly, in most epidemiological studies in humans bone mass was not altered by optimal drinking water fluoridation. In contrast, studies on the effect on hip fracture rate gave conflicting results ranging from an increased fracture incidence to no effect, and to a decreased fracture rate. As only ecological studies have been performed, they may be biased by unknown confounding factors -- the so-called ecological fallacy. However, the combined results of these studies indicate that any increase or decrease in fracture rate is likely to be small. It has been calculated that appropriately designed cohort studies to solve the problem require a sample size of >400,000 subjects. Such studies will not be performed in the foreseeable future. Future investigations in humans should, therefore, concentrate on the effect of long-term drinking water fluoridation on bone fluoride content and bone strength.

  2. Bone strain magnitude is correlated with bone strain rate in tetrapods: implications for models of mechanotransduction

    PubMed Central

    Aiello, B. R.; Iriarte-Diaz, J.; Blob, R. W.; Butcher, M. T.; Carrano, M. T.; Espinoza, N. R.; Main, R. P.; Ross, C. F.

    2015-01-01

    Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar–canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction. PMID:26063842

  3. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    PubMed

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  4. Inflammation, Fracture and Bone Repair

    PubMed Central

    Loi, Florence; Córdova, Luis A.; Pajarinen, Jukka; Lin, Tzu-hua; Yao, Zhenyu; Goodman, Stuart B.

    2016-01-01

    The reconstitution of lost bone is a subject that is germane to many orthopaedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk amongst inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair. PMID:26946132

  5. Bone formation: roles of genistein and daidzein

    USDA-ARS?s Scientific Manuscript database

    Bone remodeling consists of a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis is the result of increased bone resorption and decreased bone formation causing a decreased bone mass density, loss of bone microarchitecture, and an increased risk of fractu...

  6. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments.

    PubMed

    Kwakwa, Kristin A; Vanderburgh, Joseph P; Guelcher, Scott A; Sterling, Julie A

    2017-08-01

    Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes.

  7. Challenges of Estimating Fracture Risk with DXA: Changing Concepts About Bone Strength and Bone Density.

    PubMed

    Licata, Angelo A

    2015-07-01

    Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.

  8. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.

    PubMed

    Abshagen, K; Schrodi, I; Gerber, T; Vollmar, B

    2009-11-01

    One of the major challenges in the application of bone substitutes is adequate vascularization and biocompatibility of the implant. Thus, the temporal course of neovascularization and the microvascular inflammatory response of implants of NanoBone (fully synthetic nanocrystalline bone grafting material) were studied in vivo by using the mouse dorsal skinfold chamber model. Angiogenesis, microhemodynamics, and leukocyte-endothelial cell interaction were analyzed repetitively after implantation in the center and in the border zone of the implant up to 15 days. Both NanoBone granules and plates exhibited high biocompatibility comparable to that of cancellous bone, as indicated by a lack of venular leukocyte activation after implantation. In both synthetic NanoBone groups, signs of angiogenesis could be observed even at day 5 after implantation, whereas granules showed higher functional vessel density compared with NanoBone plates. The angiogenic response of the cancellous bone was markedly accelerated in the center of the implant tissue. Histologically, implant tissue showed an ingrowth of vascularized fibrous tissue into the material combined with an increased number of foreign-body giant cells. In conclusion, NanoBone, particularly in granular form, showed high biocompatibility and high angiogenic response, thus improving the healing of bone defects. Our results underline that, beside the composition and nanostructure, the macrostructure is also of importance for the incorporation of the biomaterial by the host tissue. (c) 2008 Wiley Periodicals, Inc.

  9. Bone x-ray

    MedlinePlus

    ... different views of the bone may be uncomfortable. Why the Test is Performed A bone x-ray ... neoplasia (MEN) II Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Paget's disease Primary hyperparathyroidism Rickets Risks There ...

  10. Role of RANKL in bone diseases.

    PubMed

    Anandarajah, Allen P

    2009-03-01

    Bone remodeling is a tightly regulated process of osteoclast-mediated bone resorption, balanced by osteoblast-mediated bone formation. Disruption of this balance can lead to increased bone turnover, resulting in excessive bone loss or extra bone formation and consequent skeletal disease. The receptor activator of nuclear factor kappaB ligand (RANKL) (along with its receptor), the receptor activator of nuclear factor kappaB and its natural decoy receptor, osteoprotegerin, are the final effector proteins of osteoclastic bone resorption. Here, I provide an overview of recent studies that highlight the key role of RANKL in the pathophysiology of several bone diseases and discuss the novel therapeutic approaches afforded by the modulation of RANKL.

  11. Prostaglandin E2 Prevents Bone Loss and Adds Extra Bone to Immobilized Distal Femoral Metaphysis in Female Rats

    NASA Technical Reports Server (NTRS)

    Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.

  12. [Metabolic status and bone mineral density in patients with pseudarthrosis of long bones in hyperhomocysteinemia].

    PubMed

    Bezsmertnyĭ, Iu O

    2013-06-01

    In article described research of the metabolic status and bone mineral density in 153 patients with with pseudarthrosis of long bones, in individuals with consolidated fractures and healthy people. The violations of reparative osteogenesis at hyperhomocysteinemia are accompanied by disturbances of the functional state of bone tissue, inhibition of biosynthetic and increased destruction processes, reduced bone mineral density in the formation of osteopenia and osteoporosis. The degree and direction of change of bone depends on the type of violation of reparative osteogenesis.

  13. The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: a consensus paper of the Belgian Bone Club.

    PubMed

    Cavalier, E; Bergmann, P; Bruyère, O; Delanaye, P; Durnez, A; Devogelaer, J-P; Ferrari, S L; Gielen, E; Goemaere, S; Kaufman, J-M; Toukap, A Nzeusseu; Reginster, J-Y; Rousseau, A-F; Rozenberg, S; Scheen, A J; Body, J-J

    2016-07-01

    The exact role of biochemical markers of bone turnover in the management of metabolic bone diseases remains a topic of controversy. In this consensus paper, the Belgian Bone Club aimed to provide a state of the art on the use of these biomarkers in different clinical or physiological situations like in postmenopausal women, osteoporosis in men, in elderly patients, in patients suffering from bone metastasis, in patients with chronic renal failure, in pregnant or lactating women, in intensive care patients, and in diabetics. We also gave our considerations on the analytical issues linked to the use of these biomarkers, on potential new emerging biomarkers, and on the use of bone turnover biomarkers in the follow-up of patients treated with new drugs for osteoporosis.

  14. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering

    PubMed Central

    Winkler, T.; Sass, F. A.; Schmidt-Bleek, K.

    2018-01-01

    Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.

  15. TARGETING POLYMER THERAPEUTICS TO BONE

    PubMed Central

    Low, Stewart; Kopeček, Jindřich

    2012-01-01

    An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides an unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems. PMID:22316530

  16. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain

    NASA Technical Reports Server (NTRS)

    Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.

    1997-01-01

    Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.

  17. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.

    PubMed

    Karim, Lamya; Vashishth, Deepak

    2012-01-01

    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.

  18. Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility

    PubMed Central

    Karim, Lamya; Vashishth, Deepak

    2012-01-01

    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage. PMID:22514706

  19. Multiphasic modelling of bone-cement injection into vertebral cancellous bone.

    PubMed

    Bleiler, Christian; Wagner, Arndt; Stadelmann, Vincent A; Windolf, Markus; Köstler, Harald; Boger, Andreas; Gueorguiev-Rüegg, Boyko; Ehlers, Wolfgang; Röhrle, Oliver

    2015-01-01

    Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution μCT image data. The multiphasic model is based on the Theory of Porous Media, providing the theoretical basis to describe within one set of coupled equations the interaction of an elastically deformable solid skeleton, of liquid bone cement and the displacement of liquid bone marrow. The simulation results are validated against an experiment, in which bone cement was injected into a human vertebra under realistic conditions. The major advantage of this comprehensive modelling approach is the fact that one can not only predict the complex cement flow within an entire vertebra but is also capable of taking into account solid deformations in a fully coupled manner. The presented work is the first step towards the ultimate and future goal of extending this framework to a clinical tool allowing for pre-operative cement distribution predictions by means of numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Removal of bone in CT angiography by multiscale matched mask bone elimination.

    PubMed

    Gratama van Andel, H A F; Venema, H W; Streekstra, G J; van Straten, M; Majoie, C B L M; den Heeten, G J; Grimbergen, C A

    2007-10-01

    For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed for use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.

  1. Clinical application of bone morphogenetic proteins for bone healing: a systematic review.

    PubMed

    Krishnakumar, Gopal Shankar; Roffi, Alice; Reale, Davide; Kon, Elizaveta; Filardo, Giuseppe

    2017-06-01

    This paper documents the existing evidence on bone morphogenetic proteins (BMPs) use for the treatment of bone fractures, non-union, and osteonecrosis, through a review of the clinical literature, underlying potential and limitations in terms of cost effectiveness and risk of complications. A systematic review was performed on the PubMed database using the following string: (bone morphogenetic proteins OR BMPs) and (bone repair OR bone regeneration) including papers from 2000 to 2016. The search focused on clinical trials dealing with BMPs application to favor bone regeneration in bone fractures, non-union, and osteonecrosis, in English language, with level of evidence I, II, III, and IV. Relevant data (type of study, number of patients, BMPs delivery material, dose, site, follow-up, outcome, and adverse events) were extracted and analyzed. Forty-four articles met the inclusion criteria: 10 randomized controlled trials (RCTs), 7 comparative studies, 18 case series, and 9 case reports. rhBMP-2 was documented mainly for the treatment of fractures, and rhBMP-7 mainly for non-unions and osteonecrosis. Mixed results were found among RCTs and comparative papers: 11 reported positive results for BMPs augmentation, 3 obtained no significant effects, and 2 showed negative results. The only study comparing the two BMPs showed a better outcome with rhBMP-2 for non-union treatment. Clinical evidence on BMPs use for the treatment of fractures, non-union, and osteonecrosis is still controversial, with the few available reports being mainly of low quality. While positive findings have been described in many studies, mixed results are still present in the literature in terms of efficacy and adverse events. The difficulties in drawing clear conclusions are also due to the studies heterogeneity, mainly in terms of different BMPs applied, with different concomitant treatments for each bone pathology. Therefore, further research with well-designed studies is needed in order to

  2. Hypervitaminosis A and bone.

    PubMed

    Binkley, N; Krueger, D

    2000-05-01

    Animal, human, and in vitro data all indicate that excess vitamin A stimulates bone resorption and inhibits bone formation. This combination would be expected to produce bone loss and to contribute to osteoporosis development and may occur with relatively low vitamin A intake. It is possible that unappreciated hypervitaminosis A contributes to osteoporosis pathogenesis.

  3. The response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.

    1999-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During spaceflight bone is lost principally from the bones most loaded in the 1-g environment, and some redistribution of bone from the lower extremities to the head appears to take place. Although changes in calcitropic hormones have been demonstrated during skeletal unloading (PTH and 1,25(OH)2D decrease), it remains unclear whether such changes account for or are in response to the changes in bone formation and resorption. Bed rest studies with human volunteers and hindlimb elevation studies with rats have provided useful data to help explain the changes in bone formation during spaceflight. These models of skeletal unloading reproduce a number of the conditions associated with microgravity, and the findings from such studies confirm many of the observations made during spaceflight. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. Such investigations couple biophysics to biochemistry to cell and molecular biology. Although studies with cell cultures have revealed biochemical responses to mechanical loads comparable to that seen in intact bone, it seems likely that matrix-cell interactions underlie much of the mechanocoupling. The role for systemic hormones such as PTH, GH, and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs, and TGF-beta in modulating the cellular response to load remains unclear. As the mechanism(s) by which bone responds to mechanical load with increased bone formation are further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, with

  4. Topography of Acoustical Properties of Long Bones: From Biomechanical Studies to Bone Health Assessment

    PubMed Central

    Tatarinov, Alexey; Sarvazyan, Armen

    2010-01-01

    The article presents a retrospective view on the assessment of long bones condition using topographical patterns of the acoustic properties. The application of ultrasonic point-contact transducers with exponential waveguides on a short acoustic base for detailed measurements in human long bones by the surface transmission was initiated during the 1980s in Latvia. The guided wave velocity was mapped on the surface of the long bones and the topographical patterns reflected the biomechanical peculiarities. Axial velocity profiles obtained in vivo by measurements along the medial surface of tibia varied due to aging, hypokinesia, and physical training. The method has been advanced at Artann Laboratories (West Trenton, NJ) by the introduction of multifrequency data acquisition and axial scanning. The model studies carried out on synthetic phantoms and in bone specimens confirmed the potential to evaluate separately changes of the bone material properties and of the cortical thickness by multifrequency acoustic measurements at the 0.1 to 1 MHz band. The bone ultrasonic scanner (BUSS) is an axial mode ultrasonometer developed to depict the acoustic profile of bone that will detect the onset of bone atrophy as a spatial process. Clinical trials demonstrated a high sensitivity of BUSS to osteoporosis and the capability to assess early stage of osteopenia. PMID:18599416

  5. Decreases in bone blood flow and bone material properties in aging Fischer-344 rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.; Hogan, Harry A.; Delp, Michael D.

    2002-01-01

    The purpose of this study was to quantify precisely aging-induced changes in skeletal perfusion and bone mechanical properties in a small rodent model. Blood flow was measured in conscious juvenile (2 months old), adult (6 months old), and aged (24 months old) male Fischer-344 rats using radiolabeled microspheres. There were no significant differences in bone perfusion rate or vascular resistance between juvenile and adult rats. However, blood flow was lower in aged versus adult rats in the forelimb bones, scapulas, and femurs. To test for functional effects of this decline in blood flow, bone mineral density and mechanical properties were measured in rats from these two age groups. Bone mineral density and cross-sectional moment of inertia in femoral and tibial shafts and the femoral neck were significantly larger in the aged versus adult rats, resulting in increased (+14%-53%) breaking strength and stiffness. However, intrinsic material properties at midshaft of the long bones were 12% to 25% lower in the aged rats. Although these data are consistent with a potential link between decreased perfusion and focal alterations in bone remodeling activity related to clinically relevant bone loss, additional studies are required to establish the mechanisms for this putative relationship.

  6. Global deletion of tetraspanin CD82 attenuates bone growth and enhances bone marrow adipogenesis.

    PubMed

    Bergsma, Alexis; Ganguly, Sourik S; Dick, Daniel; Williams, Bart O; Miranti, Cindy K

    2018-05-18

    CD82 is a widely expressed member of the tetraspanin family of transmembrane proteins known to control cell signaling, adhesion, and migration. Tetraspanin CD82 is induced over 9-fold during osteoclast differentiation in vitro; however, its role in bone homeostasis is unknown. A globally deleted CD82 mouse model was used to assess the bone phenotype. Based on microCT and 4-point bending tests, CD82-deficient bones are smaller in diameter and weaker, but display no changes in bone density. Histomorphometry shows a decrease in size, erosion perimeter, and number of osteoclasts in situ, with a corresponding increase in trabecular surface area, specifically in male mice. Male-specific alterations are observed in trabecular structure by microCT and in vitro differentiated osteoclasts are morphologically abnormal. Histomorphometry did not reveal a significant reduction in osteoblast number; however, dynamic labeling reveals a significant decrease in bone growth. Consistent with defects in OB function, OB differentiation and mineralization are defective in vitro, whereas adipogenesis is enhanced. There is a corresponding increase in bone marrow adipocytes in situ. Thus, combined defects in both osteoclasts and osteoblasts can account for the observed bone phenotypes, and suggests a role for CD82 in both bone mesenchyme and myeloid cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    PubMed

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  8. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments

    PubMed Central

    Kwakwa, Kristin A.; Vanderburgh, Joseph P.; Guelcher, Scott A.

    2018-01-01

    Purpose of Review Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. Recent Findings 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. Summary 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes. PMID:28646444

  9. Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: an experimental study in dogs.

    PubMed

    Boix, Damien; Gauthier, Olivier; Guicheux, Jérôme; Pilet, Paul; Weiss, Pierre; Grimandi, Gaël; Daculsi, Guy

    2004-05-01

    The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. Third and fourth mandibular premolars were extracted from three beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, titanium implants were immediately placed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and biphasic calcium phosphate ceramic granules. The right defects were left unfilled as controls. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. No post-surgical complications were observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (P<0.05) increase in terms of the number of threads in contact with bone, bone-to-implant contact, and peri-implant bone density of approximately 8.6%, 11.0%, and 14.7%, respectively. In addition, no significant difference was observed when number of threads, bone-to-implant contact, and bone density in the filled defects were compared to the no-defect sites. It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increases bone regeneration around immediately placed implants.

  10. A Comparative Analysis of Recombinant Human Bone Morphogenetic Protein-2 with a Demineralized Bone Matrix versus Iliac Crest Bone Graft for Secondary Alveolar Bone Grafts in Patients with Cleft Lip and Palate: Review of 501 Cases.

    PubMed

    Hammoudeh, Jeffrey A; Fahradyan, Artur; Gould, Daniel J; Liang, Fan; Imahiyerobo, Thomas; Urbinelli, Leo; Nguyen, JoAnna T; Magee, William; Yen, Stephen; Urata, Mark M

    2017-08-01

    Alveolar cleft reconstruction using iliac crest bone graft is considered standard of care for children with complete cleft lip and palate at the time of mixed dentition. Harvesting bone may result in donor-site morbidity and additional operating time and length of hospitalization. Recombinant human bone morphogenetic protein (rhBMP)-2 with a demineralized bone matrix is an alternative bone source for alveolar cleft reconstruction. The authors investigated the outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction by reviewing postoperative surgical complications and cleft closure. A retrospective chart review was conducted for 258 rhBMP-2/demineralized bone matrix procedures (mean follow-up, 2.9 years) and 243 iliac crest bone graft procedures (mean follow-up, 4.1 years) on 414 patients over a 12-year period. The authors compared complications, canine eruption, and alveolar cleft closure between the two groups. In the rhBMP-2/demineralized bone matrix group, one patient required prolonged intubation because of intraoperative airway swelling not thought to be caused by rhBMP-2, 36 reported facial swelling and one required outpatient steroids as treatment, and 12 had dehiscence; however, half of these complications resolved without intervention. Twenty-three of the 228 rhBMP-2/demineralized bone matrix patients and 28 of the 242 iliac crest bone graft patients required repeated surgery for alveolar cleft repair. Findings for canine tooth eruption into the cleft site through the graft were similar between the groups. The rhBMP-2/demineralized bone matrix appears to be an acceptable alternative for alveolar cleft repair. The authors found no increase in serious adverse events with the use of this material. Local complications, such as swelling and minor wound dehiscence, predominantly improved without intervention. Therapeutic, III.

  11. BONE REGENERATION AFTER DEMINERALIZED BONE MATRIX AND CASTOR OIL (RICINUS COMMUNIS) POLYURETHANE IMPLANTATION

    PubMed Central

    Leite, Fábio Renato Manzolli; Ramalho, Lizeti Toledo de Oliveira

    2008-01-01

    Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial. PMID:19089203

  12. Immunolocalization of markers for bone formation during guided bone regeneration in osteopenic rats

    PubMed Central

    TERA, Tábata de Mello; NASCIMENTO, Rodrigo Dias; do PRADO, Renata Falchete; SANTAMARIA, Mauro Pedrine; JARDINI, Maria Aparecida Neves

    2014-01-01

    Objective The aim of this paper was to evaluate the repair of onlay autogenous bone grafts covered or not covered by an expanded polytetrafluoroethylene (e-PTFE) membrane using immunohistochemistry in rats with induced estrogen deficiency. Material and Methods Eighty female rats were randomly divided into two groups: ovariectomized (OVX) and with a simulation of the surgical procedure (SHAM). Each of these groups was again divided into groups with either placement of an autogenous bone graft alone (BG) or an autogenous bone graft associated with an e-PTFE membrane (BGM). Animals were euthanized on days 0, 7, 21, 45, and 60. The specimens were subjected to immunohistochemistry for bone sialoprotein (BSP), osteonectin (ONC), and osteocalcin (OCC). Results All groups (OVX+BG, OVX+BMG, SHAM+BG, and SHAM+BMG) showed greater bone formation, observed between 7 and 21 days, when BSP and ONC staining were more intense. At the 45-day, the bone graft showed direct bonding to the recipient bed in all specimens. The ONC and OCC showed more expressed in granulation tissue, in the membrane groups, independently of estrogen deficiency. Conclusions The expression of bone forming markers was not negatively influenced by estrogen deficiency. However, the markers could be influenced by the presence of the e-PTFE membrane. PMID:25591022

  13. [Secondary osteoporosis or secondary contributors to bone loss in fracture. Endocrinological aspects of bone metabolism].

    PubMed

    Fukumoto, Seiji

    2013-09-01

    Bone works to play essential roles in mineral metabolism and hematopoiesis as well as to support our body and protect internal organs as a hard tissue. In order to accomplish these multiple functions, bone needs to communicate with other organs. Endocrine system functions as one of the communication pathways between bone and other organs. It has been known that bone is a target organ of many hormones. In addition, it has been established that bone itself produces hormones and works as an endocrine organ.

  14. The bone scan.

    PubMed

    Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason

    2012-01-01

    Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A Spontaneous 3D Bone-On-a-Chip for Bone Metastasis Study of Breast Cancer Cells.

    PubMed

    Hao, Sijie; Ha, Laura; Cheng, Gong; Wan, Yuan; Xia, Yiqiu; Sosnoski, Donna M; Mastro, Andrea M; Zheng, Si-Yang

    2018-03-01

    Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone-on-a-chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co-culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone-on-a-chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Regulation of Bone Metabolism by Serotonin.

    PubMed

    Lavoie, Brigitte; Lian, Jane B; Mawe, Gary M

    2017-01-01

    The processes of bone growth and turnover are tightly regulated by the actions of various signaling molecules, including hormones, growth factors, and cytokines. Imbalances in these processes can lead to skeletal disorders such as osteoporosis or high bone mass disease. It is becoming increasingly clear that serotonin can act through a number of mechanisms, and at different locations in the body, to influence the balance between bone formation and resorption. Its actions on bone metabolism can vary, based on its site of synthesis (central or peripheral) as well as the cells and subtypes of receptors that are activated. Within the central nervous system, serotonergic neurons act via the hypothalamus to suppress sympathetic input to the bone. Since sympathetic input inhibits bone formation, brain serotonin has a net positive effect on bone growth. Gut-derived serotonin is thought to inhibit bone growth by attenuating osteoblast proliferation via activation of receptors on pre-osteoblasts. There is also evidence that serotonin can be synthesized within the bone and act to modulate bone metabolism. Osteoblasts, osteoclasts, and osteocytes all have the machinery to synthesize serotonin, and they also express the serotonin-reuptake transporter (SERT). Understanding the roles of serotonin in the tightly balanced system of bone modeling and remodeling is a clinically relevant goal. This knowledge can clarify bone-related side effects of drugs that affect serotonin signaling, including serotonin-specific reuptake inhibitors (SSRIs) and receptor agonists and antagonists, and it can potentially lead to therapeutic approaches for alleviating bone pathologies.

  17. Cell interactions in bone tissue engineering.

    PubMed

    Pirraco, R P; Marques, A P; Reis, R L

    2010-01-01

    Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and new bottom-up approaches are needed. The study of the cellular interactions between the cells relevant for bone biology can be of essential importance to that. In living bone, cells are in a context where communication with adjacent cells is almost permanent. Many fundamental works have been addressing these communications nonetheless, in a bone TE approach, the 3D perspective, being part of the microenvironment of a bone cell, is as crucial. Works combining the study of cell-to-cell interactions in a 3D environment are not as many as expected. Therefore, the bone TE field should not only gain knowledge from the field of fundamental Biology but also contribute for further understanding the biology of bone. In this review, a summary of the main works in the field of bone TE, aiming at studying cellular interactions in a 3D environment, and how they contributed towards the development of a functional engineered bone tissue, is presented.

  18. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  19. Interaction betwen Lead and Bone Protein to Affect Bone Calcium Level Using UV-Vis Spectroscopy

    NASA Astrophysics Data System (ADS)

    Noor, Z.; Azharuddin, A.; Aflanie, I.; Kania, N.; Suhartono, E.

    2018-05-01

    This present study aim to evaluate the interactions between lead (Pb) and with bone protein by UV-Vis approach. In addition, this prsent study also aim to investigate the effect of Pb on bone calcium (Ca) level. The present study was a true experimental study design to examine the impact of Pb exposure in bone of male rats (Rattus novergicus). The study involved 5 groups, P1 was the control group, while the other (P2-P5) were the case group with exposure of Pb in different concentration within 4 weeks. At the end of the exposure, the interaction between Pb and protein was determined using UV-Vis spectrophotometric method, and the Ca level was determined using permanganometric method. The results shows that that there is an interaction between Pb and bone protein. The result also shows that the value of the binding constant of Protein-Pb is 32.71. It means Pb have an high affinity to bind with bone protein, which promote a further reaction to induced the release of bone Ca from the bone protein. In conclusion, this present study found an obvious relationship between Pb and bone protein which promote a further reaction to increase the releasing of bone calcium.

  20. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers.

    PubMed

    Kruger, Thomas E; Miller, Andrew H; Godwin, Andrew K; Wang, Jinxi

    2014-02-01

    The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. High-dose bone morphogenetic protein-induced ectopic abdomen bone growth.

    PubMed

    Deutsch, Harel

    2010-02-01

    Infuse [bone morphogenetic protein (BMP)] is increasingly used in spinal fusion surgery. The authors report a rare complication of BMP use. This is a case report. A 55-year-old male underwent a thoracic T8 to the pelvis fusion for degenerative lumbar disc disease and pseudarthrosis at another institution. The procedure involved an anterior and posterior approach with the use of multiple units of BMP. The patient presented to our institution with complaints of weight loss, pain, tenderness, and increasing solid growth in the left lower quadrant several months after his surgery. A computed tomography revealed ectopic bone growth in the retroperitoneal area and pelvis contiguous to the anterior lumbar exposure. The anterior wound was re-explored, and a large sheet of ectopic bone was removed from the retroperitoneal space. We report a rare case of extraspinal ectopic bone growth because of the use of multiple packages of BMP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Calcar bone graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargar, W.L.; Paul, H.A.; Merritt, K.

    1986-01-01

    A canine model was developed to investigate the use of an autogeneic iliac bone graft to treat the calcar deficiency commonly found at the time of revision surgery for femoral component loosening. Five large male mixed-breed dogs had bilateral total hip arthroplasty staged at three-month intervals, and were sacrificed at six months. Prior to cementing the femoral component, an experimental calcar defect was made, and a bicortical iliac bone graft was fashioned to fill the defect. Serial roentgenograms showed the grafts had united with no resorption. Technetium-99 bone scans showed more uptake at three months than at six months inmore » the graft region. Disulfine blue injection indicated all grafts were perfused at both three and six months. Thin section histology, fluorochromes, and microradiographs confirmed graft viability in all dogs. Semiquantitative grading of the fluorochromes indicated new bone deposition in 20%-50% of each graft at three months and 50%-80% at six months. Although the calcar bone graft was uniformly successful in this canine study, the clinical application of this technique should be evaluated by long-term results in humans.« less

  3. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration.

    PubMed

    Stegen, Steve; van Gastel, Nick; Carmeliet, Geert

    2015-01-01

    Bone has the unique capacity to heal without the formation of a fibrous scar, likely because several of the cellular and molecular processes governing bone healing recapitulate the events during skeletal development. A critical component in bone healing is the timely appearance of blood vessels in the fracture callus. Angiogenesis, the formation of new blood vessels from pre-existing ones, is stimulated after fracture by the local production of numerous angiogenic growth factors. The fracture vasculature not only supplies oxygen and nutrients, but also stem cells able to differentiate into osteoblasts and in a later phase also the ions necessary for mineralization. This review provides a concise report of the regulation of angiogenesis by bone cells, its importance during bone healing and its possible therapeutic applications in bone tissue engineering. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Comparative study of new bone formation capability of zirconia bone graft material in rabbit calvarial.

    PubMed

    Kim, Ik-Jung; Shin, Soo-Yeon

    2018-06-01

    The purpose of this study was to compare the new bone formation capability of zirconia with those of other synthetic bone grafts. Twelve rabbits were used and four 6-mm diameter transcortical defects were formed on each calvaria. Each defect was filled with Osteon II (Os), Tigran PTG (Ti), and zirconia (Zi) bone grafts. For the control group, the defects were left unfilled. The rabbits were sacrificed at 2, 4, and 8 weeks. Specimens were analyzed through micro computed tomography (CT) and histomorphometric analysis. The Ti and Zi groups showed significant differences in the amount of newly formed bone between 2 and 4 weeks and between 2 and 8 weeks ( P <.05). The measurements of total bone using micro CT showed significant differences between the Os and Ti groups and between the Os and Zi groups at 2 and 8 weeks ( P <.05). Comparing by week in each group, the Ti group showed a significant difference between 4 and 8 weeks. Histomorphometric analysis also showed significant differences in new bone formation between the control group and the experimental groups at 2, 4, and 8 weeks ( P <.05). In the comparison of newly formed bone, significant differences were observed between 2 and 4 weeks and between 2 and 8 weeks ( P <.05) in all groups. Zirconia bone graft material showed satisfactory results in new bone formation and zirconia could be used as a new synthetic bone graft material.

  5. [Preliminary result of allogenic bone and autogeneic-iliac bone in comminuted fracture reparation in rabbits].

    PubMed

    Wang, Zhi-qiang; Li, Qi-jia; Wang, Qi

    2002-11-01

    To observe the difference of the fracture reparation using autogeneic-iliac bone and allogenic bone. Comminuted fracture of humerus in two sides were made in rabbits. Autogeneic-iliac bone was implanted in one side, while allogenic bone of equal capacity was implanted in the other side. General observation, X-ray, and HE histologic section were done when the rabbits were put to death in different stages. One week after implantation, the graft had been enclosed by connective tissue without infiltration of the inflammatory cells. At the 2nd week, the graft had been enclosed in osteoplastic granulation tissue, and the cartilage callus had formed. At the 3rd week, there had been broken sequestrum among the callus; the cartilage had actively formed the bone; and the medulla had been making. At the 4th week, the sequestrum had disappeared, and the mature callus had appeared; the osteoblasts had arranged in a line around the edge of the mature callus. At the 5th week, the callus was strong, compact and approached mature bones. At the 6th week, there had been the compact lamellar structures and the complete haversian's systems. There was no significant difference between callus of two sides by using image quantitative analysis in the 3rd, 4th week (P > 0.05). The allogenic bone has good histocompatibility and bone conduction effect, and can be used for bone transplantation substitute with autogenous-iliac bone.

  6. Method for fusing bone

    DOEpatents

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1996-03-12

    The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  7. Low bone mineral mass is associated with decreased bone formation and diet in girls with Rett syndrome.

    PubMed

    Motil, Kathleen J; Barrish, Judy O; Neul, Jeffrey L; Glaze, Daniel G

    2014-09-01

    The aim of the present study was to characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of girls with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Total body bone mineral content (BMC) and bone mineral density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and sex, showed significant positive associations with total body BMD z scores. The present study suggests decreased bone formation instead of increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium, and phosphorus intakes may offer an opportunity to improve bone health in RTT.

  8. [Benign bone tumors. General principles].

    PubMed

    Hillmann, A; Gösling, T

    2014-10-01

    Benign bone tumors and tumor-like lesions are much more frequent than malignant bone tumors among the total number of tumors of the skeleton. This article gives a presentation of the characteristics and treatment modalities of benign bone tumors. In this article in-house treatment principles are compared with those in the currently available literature. Benign bone tumors are frequently found incidentally; however, the term benign does not always signify that a purely observational role is needed. Benign bone tumors differ in their biological behavior and can be latent, active or aggressive which determines the treatment approach. Some benign bone tumors are just as aggressive locally as malignant tumors. The most important diagnostic feature is still conventional radiography and a thorough systematic analysis is necessary. Therapy options range from ignore, wait and see up to wide resection. In contrast to malignant tumors the radicalism of resection can be weighed against the accompanying local control and loss of function. The treatment of benign bone tumors depends on the histological type and the biological activity. Most benign bone tumors are diagnosed incidentally and do not necessitate any treatment.

  9. Yeast-incorporated gallium attenuates glucocorticoid-induced bone loss in rats by inhibition of bone resorption.

    PubMed

    Ren, Zhaozhou; Yang, Liqing; Xue, Feng; Meng, Qingjie; Wang, Kejia; Wu, Xian; Ji, Chao; Jiang, Teng; Liu, Da; Zhou, Long; Zhang, Jing; Fu, Qin

    2013-06-01

    Glucocorticoids (GC) are potent anti-inflammatory agents and widely used for the treatment of many immune-mediated and inflammatory diseases, whereas GC-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis and significantly increases the patients' morbidity and mortality. GIOP is characterized as diminished osteogenesis and accelerated bone resorption. Yeast-incorporated gallium (YG) as an organic compound not only reduces elements-associated toxicity, but also maintains its therapeutic effect on improving bone loss or promoting fracture healing in ovariectomized female rats. The aim of this study was to examine whether YG could prevent GC-induced bone loss. Five-month-old male Sprague-Dawley rats were randomly divided into three groups (n = 6): two groups were administered dexamethasone (0.1 mg/kg/day) or vehicle (PBS) subcutaneously for 5 weeks; one other group was received dexamethasone subcutaneously and YG (120 μg/kg/day) orally. Trabecular bone microarchitectural parameters, bone mineral density (BMD), bone strength, body weight, and serum biochemical markers of bone resorption and formation were examined. Compared to the GC alone group, treatment with YG not only prevented microarchitectural deterioration of trabecular bone volume relative to tissue volume, trabecular number, and trabecular separation, but also significantly improved BMD, mechanical strength, and body weight in GC-treated rats. Moreover, YG decreased tartrate-resistant acid phosphatase 5b level but failed to change alkaline phosphatase level in GC-treated rats. This is the first study to show that YG prominently attenuates bone loss and microarchitectural deterioration and inhibits the increased bone resorption in GIOP. It implies that YG might be an alternative therapy for prevention of GC-induced bone loss in humans.

  10. Evaluation of centrifuged bone marrow on bone regeneration around implants in rabbit tibia.

    PubMed

    Betoni, Walter; Queiroz, Thallita P; Luvizuto, Eloá R; Valentini-Neto, Rodolpho; Garcia-Júnior, Idelmo R; Bernabé, Pedro F E

    2012-12-01

    To evaluate the bone regeneration of cervical defects produced around titanium implants filled with blood clot and filled with centrifuged bone marrow (CBM) by means of histomorphometric analysis. Twelve rabbits received 2 titanium implants in each right tibia, with the upper cortical prepared with a 5-mm drill and the lower cortex with a 3-mm-diameter drill. Euthanasia was performed to allow analysis at 7, 21, and 60 days after operation. The samples were embedded in light curing resin, cut and stained with alizarin red and Stevenel blue for a histomorphometric analysis of the bone-to-implant contact (BIC) and the bone area around implant (BA). The values obtained were statistically analyzed using the nonparametric Kruskal-Wallis test (P = 0.05). At 60 days postoperation, the groups had their cervical defects completely filled by neoformed bone tissue. There was no statistically significant difference between the groups regarding BIC and BA during the analyzed periods. There was no difference in the bone repair of periimplant cervical defects with or without the use of CBM.

  11. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  12. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  13. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  14. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  15. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  16. Intrinsic material properties of cortical bone.

    PubMed

    Lopez Franco, Gloria E; Blank, Robert D; Akhter, Mohammed P

    2011-01-01

    The G171V mutation (high bone mass, HBM) is autosomal dominant and is responsible for high bone mass in humans. Transgenic HBM mice in which the human LRP5 G171V gene is inserted also show a similar phenotype with greater bone mass and biomechanical performance than wild-type mice, as determined by whole bone testing. Whole bone mechanics, however, depend jointly on bone mass, architecture, and intrinsic bone tissue mechanical properties. To determine whether the HBM mutation affects tissue-level biomechanical performance, we performed nano-indentation testing of unembedded cortical bone from HBM mice and their nontransgenic (NTG) littermates. Femora from 17-week-old mice (female, 8 mice/genotype) were subjected to nano-indentation using a Triboscope (Hysitron, Minneapolis, MN, USA). For each femoral specimen, approximately 10 indentations were made on the midshaft anterior surface with a target force of either 3 or 9 mN at a constant loading rate of 400 mN/s. The load-displacement data from each test were used to calculate indentation modulus and hardness for bone tissue. The intrinsic material property that reflected the bone modulus was greater (48%) in the HBM as compared to the NTG mice. Our results of intrinsic properties are consistent with the published structural and material properties of the midshaft femur in HBM and NTG mice. The greater intrinsic modulus in HBM reflects greater bone mineral content as compared to NTG (wild-type, WT) mice. This study suggests that the greater intrinsic property of cortical bone is derived from the greater bone mineral content and BMD, resulting in greater bone strength in HBM as compared to NTG (WT) mice.

  17. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  18. Effects of bovine lactoferrin in surgically created bone defects on bone regeneration around implants.

    PubMed

    Görmez, Ulaş; Kürkcü, Mehmet; E Benlidayi, Mehmet; Ulubayram, Kezban; Sertdemir, Yaşar; Dağlioğlu, Kenan

    2015-03-01

    The aim of this experimental study was to evaluate the effect of bovine lactoferrin (bLF)-loaded gelatin microspheres (GM) used in combination with anorganic bovine bone on bone regeneration in surgically created bone defects around tooth implants. Twenty-four uniform bone defects were created in the frontal bone via an extraoral approach in 12 domestic pigs. Twenty-four implants were placed at the center of the defects. In eight animals one of these defects was filled with 0.3 mL anorganic bovine bone while the other was left empty. In four animals, all defects were filled with 3 mg/defect bLF-loaded GM and anorganic bovine bone. All the defects were covered with collagen membranes. All animals were sacrificed after 10 weeks of healing, and the implants with the surrounding bone defects were removed en bloc. Undecalcified sections were prepared for histomorphometric analysis. The mean total area of hard tissue was 26.9 ± 6.0% in the empty defect group, 31.8 ± 8.4% in the graft group, and 47.6 ± 5.0% in the lactoferrin group (P < 0.001). The mean area of newly formed bone was 26.9 ± 6.0% in the empty defect group, 22.4 ± 8.2% in the graft group, and 46.1 ± 5.1% in the lactoferrin group (P < 0.001). The mean residual graft area was 9.4 ± 3.2% in the graft group and 1.5 ± 0.6% in the lactoferrin group (P < 0.001). The mean proportion of bone-implant contact in the defect region was 21.9 ± 8.4% in the empty defect group, 26.9 ± 10.1% in the graft group and 29.9 ± 10.3% in the lactoferrin group (P = 0.143). These data indicate that a combination of 3 mg bLF-loaded GM and bovine-derived HA promotes bone regeneration in defects around implants.

  19. Bone Disease in Axial Spondyloarthritis.

    PubMed

    Van Mechelen, Margot; Gulino, Giulia Rossana; de Vlam, Kurt; Lories, Rik

    2018-05-01

    Axial spondyloarthritis is a chronic inflammatory skeletal disorder with an important burden of disease, affecting the spine and sacroiliac joints and typically presenting in young adults. Ankylosing spondylitis, diagnosed by the presence of structural changes to the skeleton, is the prototype of this disease group. Bone disease in axial spondyloarthritis is a complex phenomenon with the coexistence of bone loss and new bone formation, both contributing to the morbidity of the disease, in addition to pain caused by inflammation. The skeletal structural changes respectively lead to increased fracture risk and to permanent disability caused by ankylosis of the sacroiliac joints and the spine. The mechanism of this new bone formation leading to ankylosis is insufficiently known. The process appears to originate from entheses, specialized structures that provide a transition zone in which tendon and ligaments insert into the underlying bone. Growth factor signaling pathways such as bone morphogenetic proteins, Wnts, and Hedgehogs have been identified as molecular drivers of new bone formation, but the relationship between inflammation and activation of these pathways remains debated. Long-standing control of inflammation appears necessary to avoid ankylosis. Recent evidence and concepts suggest an important role for biomechanical factors in both the onset and progression of the disease. With regard to new bone formation, these processes can be understood as ectopic repair responses secondary to inflammation-induced bone loss and instability. In this review, we discuss the clinical implications of the skeletal changes as well as the underlying molecular mechanisms, the relation between inflammation and new bone formation, and the potential role of biomechanical stress.

  20. Exercise, lifestyle, and your bones

    MedlinePlus

    Osteoporosis - exercise; Low bone density - exercise; Osteopenia - exercise ... To build up bone density, the exercise must make your muscles pull on your bones. These are called weight-bearing exercises. Some of them are: ...

  1. Clinical utility of bone turnover markers in the management of common metabolic bone diseases in adults.

    PubMed

    Glendenning, Paul; Chubb, S A Paul; Vasikaran, Samuel

    2018-06-01

    Bone turnover marker (BTMs) concentrations in blood and urine reflect bone-remodelling activity, and may be useful adjuncts in the diagnosis and management of metabolic bone diseases. Newer biomarkers, mainly bone regulatory proteins, are currently being investigated to elucidate their role in bone metabolism and disease and may in future be useful in clinical diagnosis and management of metabolic bone disease. BTM concentrations increase around menopause in women, and at a population level the degree of increase in BTMs reflect bone loss. However, lack of adequate data precludes their use in individual patients for fracture risk assessment in clinical practice. The rapid and large changes in BTMs following anti-resorptive and anabolic therapies for osteoporosis treatment indicate they may be useful for monitoring therapy in clinical practice. The offset of drug effect on BTMs could be helpful for adjudicating the duration of bisphosphonate drug holidays. BTMs may offer useful additional data in skeletal diseases that are typically characterised by increased bone remodelling: chronic kidney disease (CKD), primary hyperparathyroidism (PHPT) and Paget's disease. In CKD, bone specific alkaline phosphatase (bAP) is currently endorsed for use for the assessment of mineral bone disease. The role of BTMsin predicting the bone mineral density response to successful parathyroidectomy in PHPT shows some utility but the data are not consistent and studies are limited in size and/or duration. In Paget's disease of bone, BTMs are used to confirm diagnosis, evaluate extent of disease or degree of activity and for monitoring the response to bisphosphonate treatment. Whilst BTMs are currently used in specific clinical practice instances when investigating or managing metabolic bone disease, further data are needed to consolidate their clinical use where evidence of utility is limited. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Management strategy for unicameral bone cyst.

    PubMed

    Chuo, Chin-Yi; Fu, Yin-Chih; Chien, Song-Hsiung; Lin, Gau-Tyan; Wang, Gwo-Jaw

    2003-06-01

    The management of a unicameral bone cyst varies from percutaneous needle biopsy, aspiration, and local injection of steroid, autogenous bone marrow, or demineralized bone matrix to the more invasive surgical procedures of conventional curettage and grafting (with autogenous or allogenous bone) or subtotal resection with bone grafting. The best treatment for a unicameral bone cyst is yet to be identified. Better understanding of the pathology will change the concept of management. The aim of treatment is to prevent pathologic fracture, to promote cyst healing, and to avoid cyst recurrence and re-fracture. We retrospectively reviewed 17 cases of unicameral bone cysts (12 in the humerus, 3 in the femur, 2 in the fibula) managed by conservative observation, curettage and bone grafting with open reduction and internal fixation, or continuous decompression and drainage with a cannulated screw. We suggest percutaneous cannulated screw insertion to promote cyst healing and prevent pathologic fracture. We devised a protocol for the management of unicameral bone cysts.

  3. Papineau debridement, Ilizarov bone transport, and negative-pressure wound closure for septic bone defects of the tibia.

    PubMed

    Karargyris, Orestis; Polyzois, Vasilios D; Karabinas, Panayiotis; Mavrogenis, Andreas F; Pneumaticos, Spyros G

    2014-08-01

    Ilizarov pioneered bone transport using a circular external fixator. Papineau described a staged technique for the treatment for infected pseudarthrosis of the long bones. This article presents a single-stage Papineau technique and Ilizarov bone transport, and postoperative negative-pressure wound dressing changes for septic bone defects of the tibia. We studied the files of seven patients (mean age, 32 years) with septic bone defects of the tibia treated with a Papineau technique and Ilizarov bone transport in a single stage, followed by postoperative negative-pressure wound dressing changes. All patients had septic pseudarthrosis and skin necrosis of the tibia. The technique included a single-stage extensive surgical debridement of necrotic bone, open bone grafting with cancellous bone autograft and bone transport, and postoperative negative-pressure wound dressing changes for wound closure. The mean time from the initial injury was 6 months (range, 4-8 months). The mean follow-up was 14 months (range, 10-17 months). All patients experienced successful wound healing at a mean of 29 days. Six patients experienced successful bone regeneration and union at the docking side at a mean of 6 months. One patient experienced delayed union at the docking site, which was treated with autologous cancellous bone grafting. Two patients experienced pin track infection, which was successfully treated with antibiotics and pin site dressing changes. All patients were able to return to their work and previous levels of activity, except one patient who had a stiff ankle joint and had to change his job. No patient experienced recurrence of infection, or fracture of the regenerated or transported bone segment until the period of this study. The combined Papineau and Ilizarov bone transport technique with negative-pressure wound closure provides for successful eradication of the infection, reconstruction of the bone defect, and soft-tissue closure. A single-stage surgical treatment is

  4. Digital electronic bone growth stimulator

    DOEpatents

    Kronberg, James W.

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  5. Pregnancy, Breastfeeding, and Bone Health

    MedlinePlus

    ... Pregnancy, Breastfeeding and Bone Health Pregnancy, Breastfeeding and Bone Health Both pregnancy and breastfeeding cause changes in, ... and Breastfeeding Women For Your Information Pregnancy and Bone Health During pregnancy, the baby growing in its ...

  6. Blood and Bone Marrow Donation

    MedlinePlus

    ... who's waiting for a stem cell transplant. Risks Bone marrow donation The most serious risk associated with ... or her health insurance. What you can expect Bone marrow donation Collecting stem cells from bone marrow ...

  7. Understanding the Structure of Bones

    MedlinePlus

    ... bend. The same organization is true of bone. Collagen rods in bone are similar to the steel ... These minerals give the bones strength while the collagen rods provide resiliency. Diseases that interfere with the ...

  8. Bone sialoprotein and its transcriptional regulatory mechanism.

    PubMed

    Ogata, Y

    2008-04-01

    Bone sialoprotein is a mineralized tissue-specific noncollagenous protein that is glycosylated, phosphorylated and sulfated. The temporo-spatial deposition of bone sialoprotein into the extracellular matrix of bone, and the ability of bone sialoprotein to nucleate hydroxyapatite crystal formation, indicates a potential role for bone sialoprotein in the initial mineralization of bone, dentin and cementum. Bone sialoprotein is also expressed in breast, lung, thyroid and prostate cancers. We used osteoblast-like cells (rat osteosarcoma cell lines ROS17/2.8 and UMR106, rat stromal bone marrow RBMC-D8 cells and human osteosarcoma Saos2 cells), and breast and prostate cancer cells to investigate the transcriptional regulation of bone sialoprotein. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene, we conducted northern hybridization, transient transfection analyses with chimeric constructs of the bone sialoprotein gene promoter linked to a luciferase reporter gene and gel mobility shift assays. Bone sialoprotein transcription is regulated by hormones, growth factors and cytokines through tyrosine kinase, mitogen-activated protein kinase and cAMP-dependent pathways. Microcalcifications are often associated with human mammary lesions, particularly with breast carcinomas. Expression of bone sialoprotein by cancer cells could play a major role in the mineral deposition and in preferred bone homing of breast cancer cells. Bone sialoprotein protects cells from complement-mediated cellular lysis, activates matrix metalloproteinase 2 and has an angiogenic capacity. Therefore, regulation of the bone sialoprotein gene is potentially important in the differentiation of osteoblasts, bone matrix mineralization and tumor metastasis. This review highlights the function and transcriptional regulation of bone sialoprotein.

  9. Localization of congenital tegmen tympani defects.

    PubMed

    Tóth, Miklós; Helling, Kai; Baksa, Gábor; Mann, Wolf

    2007-12-01

    This study sets out to demonstrate the normal developmental steps of the tegmen tympani and thus explains the typical localization of congenital tegmental defects. For this study, 79 macerated and formalin-fixed human temporal bones from 14th fetal week to adults were observed and prepared. Macroscopic and microscopic examination of the prenatal and postnatal changes of the tegmen tympani during its development. Temporal bones from 14th fetal week to adults underwent descriptive anatomic studies to understand the normal development of the tegmen tympani and to find a possible cause of its congenital defects. The medial part of the tegmen tympani develops from the otic capsule during chondral ossification, thus forming the tegmental process of the petrous part. The lateral part shows membranous ossification. The tegmental process cases a temporary bony dehiscence lateral to the geniculate ganglion between the 23rd and 25th fetal week. Congenital defects develop near the geniculate ganglion and seem to be due to an incomplete development of tegmental process of otic capsule. Because of that, congenital lesion of the tegmen tympani can be defined as an inner ear defect.

  10. Cellular bone matrices: viable stem cell-containing bone graft substitutes

    PubMed Central

    Skovrlj, Branko; Guzman, Javier Z.; Al Maaieh, Motasem; Cho, Samuel K.; Iatridis, James C.; Qureshi, Sheeraz A.

    2015-01-01

    BACKGROUND CONTEXT Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. PURPOSE To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. STUDY DESIGN Areview of literature. METHODS A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. RESULTS Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs’ survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. CONCLUSIONS Cellular bone matrices may

  11. Cellular bone matrices: viable stem cell-containing bone graft substitutes.

    PubMed

    Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A

    2014-11-01

    Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery

  12. Postradiation atrophy of mature bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergun, H.; Howland, W.J.

    1980-01-01

    The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. The differentiationmore » of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less

  13. [Development, physiology, and cell activity of bone].

    PubMed

    de Baat, P; Heijboer, M P; de Baat, C

    2005-07-01

    Bones are of crucial importance for the human body, providing skeletal support, serving as a home for the formation of haematopoietic cells, and reservoiring calcium and phosphate. Long bones develop by endochondral ossification. Flat bones develop by intramembranous ossification. Bone tissue contains hydroxyapatite and various extracellular proteins, producing bone matrix. Two biological mechanisms, determining the strength of bone, are modelling and remodelling. Modelling can change bone shape and size through bone formation by osteoblasts at some sites and through bone destruction by osteoclasts at other sites. Remodelling is bone turnover, also performed by osteoclasts and osteoblasts. The processes of modelling and remodelling are induced by mechanical loads, predominantly muscle loads. Osteoblasts develop from mesenchymal stem cells. Many stimulating factors are known to activate the differentiation. Mature osteoblasts synthesize bone matrix and may further differentiate into osteocytes. Osteocytes maintain structural bone integrity and allow bone to adapt to any mechanical and chemical stimulus. Osteoclasts derive from haematopoietic stem cells. A number of transcription and growth factors have been identified essential for osteoclast differentiation and function. Finally, there is a complex interaction between osteoblasts and osteoclasts. Bone destruction starts by attachment of osteoclasts to the bone surface. Following this, osteoclasts undergo specific morphological changes. The process of bone destruction starts by acid dissolution of hydroxyapatite. After that osteoclasts start to destruct the organic matrix.

  14. Feasibility of simultaneous measurement of bone formation and bone resorption markers to assess bone turnover rate in postmenopausal women: an EPOLOS study.

    PubMed

    Łukaszkiewicz, Jacek; Karczmarewicz, Elzbieta; Płudowski, Paweł; Jaworski, Maciej; Czerwiński, Edward; Lewiński, Andrzej; Marcinowska-Suchowierska, Ewa; Milewicz, Andrzej; Spaczyński, Marek; Lorenc, Roman S

    2008-12-01

    One of the most important risk factors for osteoporotic fractures in postmenopausal women is elevated bone turnover (EBT), occurring in 25-30% of this population. This study's aim was to find a correlation between bone resorption and bone formation markers to assess bone turnover rate and qualify an individual postmenopausal woman as a possible EBT subject. Three hundred twenty postmenopausal women (> or = one year after the last menstruation, < or = 70 years old) were enrolled at seven clinical sites in this cross-sectional observational study conducted within the EPOLOS. The group was a random sample of the population. The study was performed in a referral center involved in the diagnosis and treatment of osteoporosis. The exclusion criteria included pregnancy, cancer, fracture in the last year, and overweight (> 100 kg). Bone mineral density (BMD) measurements of the lumbar spine, total hip, trochanter, and femoral neck regions were performed. Bone resorption and formation rates were evaluated by serum levels of C-terminal telopeptide of type I collagen (CTX) and osteocalcin (OC), respectively. Using logistic regression to correlate the concentrations of CTX and OC it was possible not only to distinguish the EBT subgroup, but also to construct a simple nomogram for easy classification of individual patients as possible EBT subjects. EBT patients showed generally decreased BMD values and increased bone formation and resorption rates. Evaluation of both CTX and OC levels enables a more proper indication for EBT. The proposed nomogram may assist in evaluating outcome from the two markers of bone turnover.

  15. What Is a Bone Marrow Transplant?

    MedlinePlus

    ... Print this page My Cart What is a bone marrow transplant? A bone marrow transplant is a ... blood.” – Edmund Waller, MD, PHD What is a bone marrow transplant? A bone marrow transplant is a ...

  16. [Establishing bone bank at Varazdin General Hospital].

    PubMed

    Jaklin, Gordana; Cesarec, Marijan; Grgurović, Denis; Mlakar, Stanislav

    2007-12-01

    Bone bank has to supply patients of our Department of Orthopedics and patients from Department of Traumatology with necessary bone grafts. The paper describes in detail the establishment of Bone bank at Varazdin General Hospital. At Varazdin General Hospital, Department of Transfusion Medicine, in cooperation with Department of Surgery and Department of Orthopedics has been working on developing tissue banking for already 10 years. Primarily, surgical bone remnants and femoral bone heads are collected from live donors and then transplanted. Since 2004, bone tissue has also been collected by means of explantation and then transplanted. In 2004 and 2005, as many as 170 packages of bone tissue were collected at our institution, 40 of which were with spongiosa collected through explantation, and 130 bone remnants. As many as 61 bone remnants and 21 spongiosa were transplanted. Contamination rate of bone grafts was 15.8%. All contamination allografts were destroyed. Bone grafts were used for revision hip arthroplasty, corrective osteotomy and spondylodesis. In the last two years, we have developed a computer program for Bone Bank managing, and have improved our Quality Management System. Bone Bank is a service that retrieves, tests, stores and distributes bone grafts and allows a secure system for supplying surgeons and their patients with necessary bone grafts.

  17. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a mushroom... polyethylene. It is used to cover the severed end of a long bone, such as the humerus or tibia, to control bone...

  18. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a mushroom... polyethylene. It is used to cover the severed end of a long bone, such as the humerus or tibia, to control bone...

  19. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a mushroom... polyethylene. It is used to cover the severed end of a long bone, such as the humerus or tibia, to control bone...

  20. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a mushroom... polyethylene. It is used to cover the severed end of a long bone, such as the humerus or tibia, to control bone...

  1. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a mushroom... polyethylene. It is used to cover the severed end of a long bone, such as the humerus or tibia, to control bone...

  2. DYSAPOPTOSIS OF OSTEOBLASTS AND OSTEOCYTES INCREASES CANCELLOUS BONE FORMATION BUT EXAGGERATES BONE POROSITY WITH AGE

    PubMed Central

    Jilka, Robert L.; O’Brien, Charles A.; Roberson, Paula K.; Bonewald, Lynda F.; Weinstein, Robert S.; Manolagas, Stavros C.

    2013-01-01

    Skeletal aging is accompanied by decreased cancellous bone mass and increased formation of pores within cortical bone. The latter accounts for a large portion of the increase in non-vertebral fractures after age 65 in humans. We selectively deleted Bak and Bax, two genes essential for apoptosis, in two types of terminally differentiated bone cells: the short-lived osteoblasts that elaborate the bone matrix, and the long-lived osteocytes that are immured within the mineralized matrix and choreograph the regeneration of bone. Attenuation of apoptosis in osteoblasts increased their working lifespan and thereby cancellous bone mass in the femur. In long-lived osteocytes, however, it caused dysfunction with advancing age and greatly magnified intracortical femoral porosity associated with increased production of receptor activator of nuclear factor-κB ligand and vascular endothelial growth factor. Increasing bone mass by artificial prolongation of the inherent lifespan of short-lived osteoblasts, while exaggerating the adverse effects of aging on long-lived osteocytes, highlights the seminal role of cell age in bone homeostasis. In addition, our findings suggest that distress signals produced by old and/or dysfunctional osteocytes are the culprits of the increased intracortical porosity in old age. PMID:23761243

  3. Force-induced bone growth and adaptation: A system theoretical approach to understanding bone mechanotransduction

    NASA Astrophysics Data System (ADS)

    Maldonado, Solvey; Findeisen, Rolf

    2010-06-01

    The modeling, analysis, and design of treatment therapies for bone disorders based on the paradigm of force-induced bone growth and adaptation is a challenging task. Mathematical models provide, in comparison to clinical, medical and biological approaches an structured alternative framework to understand the concurrent effects of the multiple factors involved in bone remodeling. By now, there are few mathematical models describing the appearing complex interactions. However, the resulting models are complex and difficult to analyze, due to the strong nonlinearities appearing in the equations, the wide range of variability of the states, and the uncertainties in parameters. In this work, we focus on analyzing the effects of changes in model structure and parameters/inputs variations on the overall steady state behavior using systems theoretical methods. Based on an briefly reviewed existing model that describes force-induced bone adaptation, the main objective of this work is to analyze the stationary behavior and to identify plausible treatment targets for remodeling related bone disorders. Identifying plausible targets can help in the development of optimal treatments combining both physical activity and drug-medication. Such treatments help to improve/maintain/restore bone strength, which deteriorates under bone disorder conditions, such as estrogen deficiency.

  4. Genistein supplementation increases bone turnover but does not prevent alcohol-induced bone loss in male mice

    USDA-ARS?s Scientific Manuscript database

    Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy prote...

  5. Progesterone as a bone-trophic hormone.

    PubMed

    Prior, J C

    1990-05-01

    Experimental, epidemiological, and clinical data indicate that progesterone is active in bone metabolism. Progesterone appears to act directly on bone by engaging an osteoblast receptor or indirectly through competition for a glucocorticoid osteoblast receptor. Progesterone seems to promote bone formation and/or increase bone turnover. It is possible, through estrogen-stimulated increased progesterone binding to the osteoblast receptor, that progesterone plays a role in the coupling of bone resorption with bone formation. A model of the interdependent actions of progesterone and estrogen on appropriately-"ready" cells in each bone multicellular unit can be tied into the integrated secretions of these hormones within the ovulatory cycle. Figure 5 is an illustration of this concept. It shows the phases of the bone remodeling cycle in parallel with temporal changes in gonadal steroids across a stylized ovulatory cycle. Increasing estrogen production before ovulation may reverse the resorption occurring in a "sensitive" bone multicellular unit while gonadal steroid levels are low at the time of menstrual flow. The bone remodeling unit would then be ready to begin a phase of formation as progesterone levels peaked in the midluteal phase. From this perspective, the normal ovulatory cycle looks like a natural bone-activating, coherence cycle. Critical analysis of the reviewed data indicate that progesterone meets the necessary criteria to play a causal role in mineral metabolism. This review provides the preliminary basis for further molecular, genetic, experimental, and clinical investigation of the role(s) of progesterone in bone remodeling. Much further data are needed about the interrelationships between gonadal steroids and the "life cycle" of bone. Feldman et al., however, may have been prophetic when he commented; "If this anti-glucocorticoid effect of progesterone also holds true in bone, then postmenopausal osteoporosis may be, in part, a progesterone deficiency

  6. What Is Breast in the Bone?

    PubMed

    Shemanko, Carrie S; Cong, Yingying; Forsyth, Amanda

    2016-10-22

    The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%-50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural "recycling" of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle.

  7. Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone

    PubMed Central

    Gupta, Anil Kumar; Kumar, Praganesh; Keshav, Kumar; Singh, Anant

    2015-01-01

    Background: Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs. Materials and Methods: Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001. Results: In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response. Conclusions: We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone. PMID:26806973

  8. Bone Repair and Military Readiness

    DTIC Science & Technology

    2013-10-19

    prototype in animal models. By addressing the shortcomings of current PMMA bone cement, the development of the novel silorane bone cement will result in a...heat generation. We have developed a silorane based resin superior to polymethyl methacrylate ( PMMA ) with many improved properties such as significantly...treatment of patients. By addressing the shortcomings of current PMMA bone cement, the development of the novel silorane bone cement will result in a

  9. Articulated Bone Block for Posterior Cruciate Ligament Reconstruction Using Bone-Patellar Tendon-Bone Autograft: Surgical Technique to Facilitate Graft Passage.

    PubMed

    Cugat, Ramón; Alentorn-Geli, Eduard; Cuscó, Xavier; Navarro, Jordi; Steinbacher, Gilbert; Álvarez-Díaz, Pedro; Seijas, Roberto; Barastegui, David; García-Balletbó, Montse

    2018-02-01

    Posterior cruciate ligament reconstruction using the transtibial technique provides successful clinical outcomes. However, a bone-patellar tendon-bone (BTB) autograft with the transtibial technique has not been used by some surgeons because of concerns with graft passage from the tibial to the femoral tunnels (sharp turn) that can damage graft fibers. In the present surgical technique, an arthroscopic, transtibial, single-bundle technique for posterior cruciate ligament reconstruction using the BTB autograft with an easy and effective technical tip to facilitate graft passage is presented. Once the BTB is harvested, the femoral bone block is divided into 2 equal-sized blocks providing an articulated structure while preserving the tendon component. This facilitates the passage of the BTB tendon once it is entered in the posterior tibia and the graft has to make a sharp turn to reach the femoral tunnel. This easy and effective technique tip may avoid graft damage during the sharp turn, while maintaining all the advantages of a BTB autograft (bone-to-bone healing, own tissue with fast incorporation, and strong fixation and stability).

  10. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    PubMed

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  11. Unicameral (simple) bone cysts.

    PubMed

    Baig, Rafath; Eady, John L

    2006-09-01

    Since their original description by Virchow, simple bone cysts have been studied repeatedly. Although these defects are not true neoplasms, simple bone cysts may create major structural defects of the humerus, femur, and os calcis. They are commonly discovered incidentally when x-rays are taken for other reasons or on presentation due to a pathologic fracture. Various treatment strategies have been employed, but the only reliable predictor of success of any treatment strategy is the age of the patient; those being older than 10 years of age heal their cysts at a higher rate than those under age 10. The goal of management is the formation of a bone that can withstand the stresses of use by the patient without evidence of continued bone destruction as determined by serial radiographic follow-up. The goal is not a normal-appearing x-ray, but a functionally stable bone.

  12. [Subchondral bone in osteoarthritis: a review].

    PubMed

    Pang, Jian; Cao, Yue-long; Shi, Yin-yu

    2011-08-01

    Osteoarthritis (OA) is the most prevalent of joint diseases,and its pathology is characterized by the degeneration of cartilage, sclerosis of subchondral bone, and osteophyte formation. Localization of the early lesions of OA has not been clarified, but many researchers have focused on cartilage and have considered that changes in subchondral bone occur subsequently to the degeneration of cartilage. However, a low bone mineral density, particularly in the knee joint with OA, high bone turnover, and efficacy of bone resorption inhibitors for OA have recently been reported, suggesting that subchondral bone plays an important role in the pathogenesis of OA. This review aims to make a conclusion about advancement in research of subchondral bone in osteoarthritis.

  13. Purinergic signalling in bone

    PubMed Central

    Rumney, Robin M. H.; Wang, Ning; Agrawal, Ankita; Gartland, Alison

    2012-01-01

    Purinergic signaling in bone was first proposed in the early 1990s with the observation that extracellular ATP could modulate events crucial to the normal functioning of bone cells. Since then the expression of nearly all the P2Y and P2X receptors by osteoblasts and osteoclasts has been reported, mediating multiple processes including cell proliferation, differentiation, function, and death. This review will highlight the most recent developments in the field of purinergic signaling in bone, with a special emphasis on recent work resulting from the European Framework 7 funded collaboration ATPBone, as well as Arthritis Research UK and Bone Research Society supported projects. PMID:23049524

  14. [New methods for the evaluation of bone quality. Assessment of bone structural property using imaging.

    PubMed

    Ito, Masako

    Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo . For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available as well as DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone.

  15. Low Bone Mineral Mass Is Associated with Decreased Bone Formation and Diet in Females with Rett Syndrome

    PubMed Central

    Motil, Kathleen J.; Barrish, Judy O.; Neul, Jeffrey L.; Glaze, Daniel G.

    2014-01-01

    Objective To characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of females with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Methods Total body bone mineral content (BMC) and density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Results Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z-scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and gender, showed significant positive associations with total body BMD z-scores. Conclusion This study suggests decreased bone formation rather than increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium and phosphorus intakes may offer an opportunity to improve bone health in RTT. PMID:25144778

  16. Longitudinal study of bone loss in pre- and perimenopausal women: evidence for bone loss in perimenopausal women.

    PubMed

    Chapurlat, R D; Garnero, P; Sornay-Rendu, E; Arlot, M E; Claustrat, B; Delmas, P D

    2000-01-01

    Bone loss before and around the time of menopause is not well characterized by longitudinal studies. We measured bone mineral density at various skeletal sites--total body, femoral neck, trochanter, anteroposterior (AP) and lateral spine, and forearm--with dual-energy X-ray absorptiometry in a large prospective cohort of 272 untreated pre- and perimenopausal women aged 31-59 years, at 1 year intervals for 3 years. Sex steroids and the following markers of bone remodeling were measured: serum osteocalcin (OC), procollagen I carboxyterminal extension peptide, bone alkaline phosphatase (BAP) and urinary crosslinks (CTX and NTX). Seventy-six women were classified as perimenopausal and 196 as premenopausal. Over the 3 years, premenopausal women had no significant bone loss at any site and a small but significant increase in bone mineral density at the trochanter, total hip, AP spine and radius. Perimenopausal women significantly lost bone from cancellous and cortical sites, i.e., the femoral neck, trochanter and lumbar spine. In perimenopausal women with increased follicle stimulating hormone, the rate of bone loss at the femoral neck correlated negatively with OC and BAP. In perimenopausal women, serum estradiol levels decreased during the 3 years of follow-up and bone loss from the trochanter and the AP spine was correlated with serum estradiol after 3 years. In conclusion, among premenopausal women there is no bone loss. In contrast, there is a rapid and diffuse bone loss in perimenopausal women, related to decreased estrogen secretion. Bone markers may be useful to identify these women losing bone.

  17. Prebiotics and Bone.

    PubMed

    Whisner, Corrie M; Weaver, Connie M

    2017-01-01

    Recent advancements in food science have resulted in the extraction and synthesis of novel dietary fibers or prebiotics. Subsequently, great interest has emerged in developing strategies to improve metabolic conditions like osteoporosis by modulating the intestinal microbiome with fiber. Prebiotics have been shown to increase calcium absorption in the lower gut of both animals and humans as well as improve measures of bone mineral density and strength in rodent models. Fewer data are available in humans, but data from growing children and postmenopausal women suggest that prebiotics have both short- and long-term effects that beneficially affect bone turnover and mineral accretion in the skeleton. Currently, the exact mechanism by which these products elicit their effects on bone is poorly understood, but emerging data suggest that the gut microbiota may be involved in one or more direct and indirect pathways. The most well-accepted mechanism is through microbial fermentation of prebiotics which results in the production of short-chain fatty acids and a concomitant decrease in pH which increases the bioavailability of calcium in the colon. While other mechanisms may be eliciting a prebiotic effect on bone, the current data suggest that novel dietary fibers may be an affordable and effective method of maximizing mineral accretion in growing children and preventing bone loss in later years when osteoporosis is a greater risk. This chapter will discuss the dynamic role of prebiotics in bone health by discussing the current state of the art, addressing gaps in knowledge and their role in public health.

  18. Implications of combined Ovariectomy/Multi-Deficiency Diet on rat bone with age-related variation in Bone Parameters and Bone Loss at Multiple Skeletal Sites by DEXA

    PubMed Central

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C.; Zahner, Daniel; Hemdan, Nasr Y.; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Background Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Material/Methods Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. Results BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below −5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Conclusions Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk. PMID:23446183

  19. Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in bone parameters and bone loss at multiple skeletal sites by DEXA.

    PubMed

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Hemdan, Nasr Y; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-02-28

    Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below -5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk.

  20. Symmetry analysis of talus bone

    PubMed Central

    Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.

    2014-01-01

    Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391