Science.gov

Sample records for petten neutron beam

  1. Neutron diffraction facilities at the high flux reactor, Petten

    NASA Astrophysics Data System (ADS)

    Ohms, C.; Youtsos, A. G.; Bontenbal, A.; Mulder, F. M.

    2000-03-01

    The High Flux Reactor in Petten is equipped with twelve beam tubes for the extraction of thermal neutrons for applications in materials and medical science. Beam tubes HB4 and HB5 are equipped with diffractometers for residual stress and powder investigations. Recently at HB4 the Large Component Neutron Diffraction Facility has been installed. It is a unique facility with respect to its capability of handling heavy components up to 1000 kg in residual stress testing. Its basic features are described and the first applications on thick piping welds are shown. The diffractometer at HB5 can be set up for powder and stress measurements. Recent applications include temperature dependent measurements on phase transitions in intermetallic compounds and on Li ion energy storage materials.

  2. Monte Carlo based treatment planning systems for Boron Neutron Capture Therapy in Petten, The Netherlands

    NASA Astrophysics Data System (ADS)

    Nievaart, V. A.; Daquino, G. G.; Moss, R. L.

    2007-06-01

    Boron Neutron Capture Therapy (BNCT) is a bimodal form of radiotherapy for the treatment of tumour lesions. Since the cancer cells in the treatment volume are targeted with 10B, a higher dose is given to these cancer cells due to the 10B(n,α)7Li reaction, in comparison with the surrounding healthy cells. In Petten (The Netherlands), at the High Flux Reactor, a specially tailored neutron beam has been designed and installed. Over 30 patients have been treated with BNCT in 2 clinical protocols: a phase I study for the treatment of glioblastoma multiforme and a phase II study on the treatment of malignant melanoma. Furthermore, activities concerning the extra-corporal treatment of metastasis in the liver (from colorectal cancer) are in progress. The irradiation beam at the HFR contains both neutrons and gammas that, together with the complex geometries of both patient and beam set-up, demands for very detailed treatment planning calculations. A well designed Treatment Planning System (TPS) should obey the following general scheme: (1) a pre-processing phase (CT and/or MRI scans to create the geometric solid model, cross-section files for neutrons and/or gammas); (2) calculations (3D radiation transport, estimation of neutron and gamma fluences, macroscopic and microscopic dose); (3) post-processing phase (displaying of the results, iso-doses and -fluences). Treatment planning in BNCT is performed making use of Monte Carlo codes incorporated in a framework, which includes also the pre- and post-processing phases. In particular, the glioblastoma multiforme protocol used BNCT_rtpe, while the melanoma metastases protocol uses NCTPlan. In addition, an ad hoc Positron Emission Tomography (PET) based treatment planning system (BDTPS) has been implemented in order to integrate the real macroscopic boron distribution obtained from PET scanning. BDTPS is patented and uses MCNP as the calculation engine. The precision obtained by the Monte Carlo based TPSs exploited at Petten

  3. Neutronic feasibility studies for LEU conversion of the HFR Petten Reactor.

    SciTech Connect

    Hanan, N. A.; Deen, J. R.; Matos, J. E.

    2000-09-26

    Design and safety analyses to determine an optimum LEU fuel assembly design using U{sub 3}Si{sub 2}-Al fuel with up to 4.8 g/cm{sup 3} for conversion of the HFR Petten reactor were performed by the RERTR program in cooperation with the Joint Research Centre and NRG. Credibility of the calculational methods and models were established by comparing calculations with recent measurements by NRG for a core configuration setup for this purpose. This model and methodology were then used to study various LEU fissile loading and burnable poison options that would satisfy specific design criteria.

  4. Micromegas neutron beam monitor neutronics.

    PubMed

    Stephan, Andrew C; Miller, Laurence F

    2005-01-01

    The Micromegas is a type of ionising radiation detector that consists of a gas chamber sandwiched between two parallel plate electrodes, with the gas chamber divided by a Frisch grid into drift and amplification gaps. Investigators have applied it to a number of different applications, such as charged particle, X-ray and neutron detection. A Micromegas device has been tested as a neutron beam monitor at CERN and is expected to be used for that purpose at the Spallation Neutron Source (SNS) under construction in Oak Ridge, TN. For the Micromegas to function effectively as neutron beam monitor, it should cause minimal disruption to the neutron beam in question. Specifically, it should scatter as few neutrons as possible and avoid neutron absorption when it does not contribute to generating useful information concerning the neutron beam. Here, we present the results of Monte Carlo calculations of the effect of different types of wall materials and detector gases on neutron beams and suggest methods for minimising disruption to the beam. PMID:16381746

  5. Directionally positionable neutron beam

    SciTech Connect

    Bumgardner, H.M.; Dance, W.E.

    1981-11-10

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positionable on the axis of rotation of the enclosed housing but rotationally fixed with respect to the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center.

  6. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  7. Neutron beam design, development, and performance for neutron capture therapy

    SciTech Connect

    Harling, O.K.; Bernard, J.A. ); Zamenhof, R.G. )

    1990-01-01

    The report presents topics presented at a workshop on neutron beams and neutron capture therapy. Topics include: neutron beam design; reactor-based neutron beams; accelerator-based neutron beams; and dosimetry and treatment planning. Individual projects are processed separately for the databases. (CBS)

  8. Neutron filters for producing monoenergetic neutron beams

    SciTech Connect

    Harvey, J.A.; Hill, N.W.; Harvey, J.R.

    1982-01-01

    Neutron transmission measurements have been made on high-purity, highly-enriched samples of /sup 58/Ni (99.9%), /sup 60/Ni (99.7%), /sup 64/Zn (97.9%) and /sup 184/W (94.5%) to measure their neutron windows and to assess their potential usefulness for producing monoenergetic beams of intermediate energies from a reactor. Transmission measurements on the Los Alamos Sc filter (44.26 cm Sc and 1.0 cm Ti) have been made to determine the characteristics of the transmitted neutron beam and to measure the total cross section of Sc at the 2.0 keV minimum. When corrected for the Ti and impurities, a value of 0.35 +- 0.03 b was obtained for this minimum.

  9. Design of a rotating facility for extracorporal treatment of an explanted liver with disseminated metastases by boron neutron capture therapy with an epithermal neutron beam.

    PubMed

    Nievaart, V A; Moss, R L; Kloosterman, J L; van der Hagen, T H J J; van Dam, H; Wittig, A; Malago, M; Sauerwein, W

    2006-07-01

    In 2001, at the TRIGA reactor of the University of Pavia (Italy), a patient suffering from diffuse liver metastases from an adenocarcinoma of the sigmoid was successfully treated by boron neutron capture therapy (BNCT). The procedure involved boron infusion prior to hepatectomy, irradiation of the explanted liver at the thermal column of the reactor, and subsequent reimplantation. A complete response was observed. This encouraging outcome stimulated the Essen/Petten BNCT group to investigate whether such an extracorporal irradiation could be performed at the BNCT irradiation facility at the HFR Petten (The Netherlands), which has very different irradiation characteristics than the Pavia facility. A computational study has been carried out. A rotating PMMA container with a liver, surrounded by PMMA and graphite, is simulated using the Monte Carlo code MCNP. Due to the rotation and neutron moderation of the PMMA container, the initial epithermal neutron beam provides a nearly homogeneous thermal neutron field in the liver. The main conditions for treatment as reported from the Pavia experiment, i.e. a thermal neutron fluence of 4 x 10(12) +/- 20% cm(-2), can be closely met at the HFR in an acceptable time, which, depending on the defined conditions, is between 140 and 180 min. PMID:16808623

  10. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    SciTech Connect

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-10-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today`s technology.

  11. Production of Epithermal Neutron Beams for BNCT

    SciTech Connect

    Colangelo, P.; Colonna, N.; Santorelli, P.; Variale, V.; Paticchio, V.; Maggipinto, G.

    1999-12-31

    Boron Neutron Capture Therapy, a promising modality for the treatment of malignant tumors, relies on the use of neutron beams of suitable energy and intensity. For deep-seated tumors, simulations indicate that the optimal neutron energy is in the epithermal region, and in particular between 1 and 10 keV. Therapeutic neutron beams of high spectral purity could be produced with low-energy accelerators, through a suitable neutron producing reaction. In this talk we present an overview of some recently investigated reactions for the production of intense epithermal neutron beams for BNCT, and their potential use towards the setup of an hospital-based BNCT facility.

  12. Shaping micron-sized cold neutron beams

    NASA Astrophysics Data System (ADS)

    Ott, Frédéric; Kozhevnikov, Sergey; Thiaville, André; Torrejón, Jacob; Vázquez, Manuel

    2015-07-01

    In the field of neutron scattering, the need for micro-sized (1-50 μm) thermal or cold neutron beams has recently appeared, typically in the field of neutron imaging to probe samples with a high spatial resolution. We discuss various possibilities of producing such micro-sized neutron beams. The advantages and drawbacks of the different techniques are discussed. We show that reflective optics offers the most flexible way of producing tiny neutron beams together with an enhanced signal to background ratio. The use of such micro beams is illustrated by the study of micrometric diameter magnetic wires.

  13. Dose homogeneity in boron neutron capture therapy using an epithermal neutron beam

    SciTech Connect

    Konijnenberg, M.W.; Dewit, L.G.H.; Mijnheer, B.J.

    1995-06-01

    Simulation models based on the neutron and photon Monte Carlo code MCNP were used to study the therapeutic possibilities of the HB11 epithermal neutron beam at the High Flux Reactor in Petten. Irradiations were simulated in two types of phantoms filled with water or tissue-equivalent material for benchmark treatment planning calculations. In a cuboid phantom the influence of different field sizes on the thermal-neutron-induced dose distribution was investigated. Various shapes of collimators were studied to test their efficacy in optimizing the thermal-neutron distribution over a planning target volume and healthy tissues. Using circular collimators of 8, 12 and 15 cm diameter it was shown that with the 15-cm field a relatively larger volume within 85% of the maximum neutron-induced dose was obtained than with the 8- or 12-cm-diameter field. However, even for this large field the maximum diameter of this volume was 7.5 cm. In an ellipsoid head phantom the neutron-induced dose was calculated assuming the skull to contain 10 ppm {sup 10}B, the brain 5 ppm {sup 10}B and the tumor 30 ppm {sup 10}B. It was found that with a single 15-cm-diameter circular beam a very inhomogeneous dose distribution in a typical target volume was obtained. Applying two equally weighted opposing 15-cm-diameter fields, however, a dose homogeneity within {+-} 10% in this planning target volume was obtained. The dose in the surrounding healthy brain tissue is 30% at maximum of the dose in the center of the target volume. Contrary to the situation for the 8-cm field, combining four fields of 15 cm diameter gave no large improvement of the dose homogeneity over the target volume or a lower maximum dose in the healthy brain. Therapy with BNCT on brain tumors must be performed either with an 8-cm four-field irradiation or with two opposing 15- or 12-cm fields to obtain an optimal dose distribution. 27 refs., 10 figs., 3 tabs.

  14. Neutron beam testing of triblades

    SciTech Connect

    Michalak, Sarah E; Du Bois, Andrew J; Storlie, Curtis B; Rust, William N; Du Bois, David H; Modl, David G; Quinn, Heather M; Blanchard, Sean P; Manuzzato, Andrea

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  15. Intermediate energy neutron beams from the MURR

    SciTech Connect

    Brugger, R.M.; Herleth, W.H. )

    1990-01-01

    Several reactors in the United States are potential candidates to deli1ver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, ideal beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  16. Beam characterization at the Neutron Radiography Reactor

    SciTech Connect

    Sarah W. Morgan; Jeffrey C. King; Chad L. Pope

    2013-12-01

    The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum.

  17. Neutron fan beam source for neutron radiography purpose

    SciTech Connect

    Le Tourneur, P.; Bach, P.; Dance, W. E.

    1999-06-10

    The development of the DIANE neutron radiography system included a sealed-tube neutron generator for this purpose and the optimization of the system's neutron beam quality in terms of divergence and useful thermal neutron yield for each 14-MeV neutron produced. Following this development, the concept of a DIANE fan beam source is herewith introduced. The goal which drives this design is one of economy: by simply increasing the aperture dimension of a conventional DIANE beam in one plane of its collimator axis to a small-angle, fan-shaped output, the useful beam area for neutron radiography would be substantially increased. Thus with the same source, the throughput, or number of objects under examination at any given time, would be augmented significantly. Presented here are the design of this thermal neutron source and the initial Monte Carlo calculations. Taking into account the experience with the conventional DIANE neutron radiography system, these result are discussed and the potential of and interest in such a fan-beam source are explored.

  18. Neutron beam imaging at neutron spectrometers at Dhruva

    SciTech Connect

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-05

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 10{sup 6}-10{sup 7} n/cm{sup 2}/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  19. Design of multidirectional neutron beams for boron neutron capture synovectomy

    SciTech Connect

    Gierga, D.P.; Yanch, J.C.; Shefer, R.E.

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  20. Beam characterization at the neutron radiography reactor

    NASA Astrophysics Data System (ADS)

    Morgan, Sarah

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This thesis characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model's energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  1. Procedural and practical applications of radiation measurements for BNCT at the HFR Petten

    NASA Astrophysics Data System (ADS)

    Moss, R. L.; Stecher-Rasmussen, F.; Rassow, J.; Morrissey, J.; Voorbraak, W.; Verbakel, W.; Appelman, K.; Daquino, G. G.; Muzi, L.; Wittig, A.; Bourhis-Martin, E.; Sauerwein, W.

    2004-01-01

    Since October 1997, a clinical trial of Boron Neutron Capture Therapy (BNCT) for glioblastoma patients has been in progress at the High Flux Reactor, Petten, the Netherlands. The trial is a European Organisation for Research and Treatment of Cancer (EORTC) protocol (#11 961) and, as such, must be conducted following the highest quality management and procedures, according to good clinical practice and also other internationally accepted codes. The complexity of BNCT involves not only strict international procedures, but also a variety of techniques to measure the different aspects of the irradiation involved when treating the patient. Applications include: free beam measurements using packets of activation foils; in-phantom measurements for beam calibration using ionisation chambers, pn-diodes and activation foils; monitoring of the irradiation beam during patient treatment using fission chambers and GM-counters; boron in blood measurements using prompt gamma ray spectroscopy; radiation protection of the patient and staff using portable radiation dosimeters and personal dosimeters; and in vivo measurements of the boron in the patient using a prompt gamma ray telescope. The procedures and applications of such techniques are presented here, with particular emphasis on the importance of the quality assurance/quality control procedures and its reporting.

  2. Neutron beam imaging with GEM detectors

    NASA Astrophysics Data System (ADS)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  3. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  4. A white beam neutron spin splitter

    SciTech Connect

    Krist, T.; Klose, F.; Felcher, G.P.

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  5. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  6. Neutron resonance averaging with filtered beams

    SciTech Connect

    Chrien, R.E.

    1985-01-01

    Neutron resonance averaging using filtered beams from a reactor source has proven to be an effective nuclear structure tool within certain limitations. These limitations are imposed by the nature of the averaging process, which produces fluctuations in radiative intensities. The fluctuations have been studied quantitatively. Resonance averaging also gives us information about initial or capture state parameters, in particular the photon strength function. Suitable modifications of the filtered beams are suggested for the enhancement of non-resonant processes.

  7. A Comparison of Neutron Beams for BNCT

    SciTech Connect

    Blue, Thomas E.; Woollard, Jeffrey E.

    2001-06-17

    The potential of the Ohio State University Research Reactor (OSURR) with a fission converter plate (FCP) for clinical boron neutron capture therapy (BNCT) is evaluated. The evaluation used design methods that were developed for the analysis of the OSU design of an accelerator-based neutron source (ABNS) for BNCT. The paper compares an FCP epithermal neutron beam, which is based on the OSURR, with the ABNS. Neutron and gamma-ray absorbed dose rates and the boron-10 specific absorbed dose rate were calculated. A major goal of the analysis was to determine if a 500-kW reactor with an FCP can produce a neutron field with sufficient intensity to allow a patient to be treated in an acceptable treatment time with adequate beam quality. The answer obtained was positive, provided that the patient is treated with at least four fractions. Although the quality of the neutron field for the FCP is slightly inferior to that of the ABNS, it was judged to be acceptable.

  8. Neutron beam characterization at the Intense Pulsed Neutron Source.

    SciTech Connect

    Iverson, E. B.

    1998-05-18

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen neutron scattering instruments and test facilities. The moderators at IPNS are of cryogenic methane (CH{sub 4}); one of liquid methane at 100 K, and two of solid methane at 30 K. These moderators produce intense beams of both cold and thermal neutrons. The moderators are each of a different physical configuration in order to tailor their performance for the instruments and facilities that operate on the neutron beams. As part of the ongoing operation of IPNS, as well as new enhancements to the target, moderator, and reflector systems, we have performed experiments characterizing the energy and time distribution of neutrons in the various beams. These measurements provide absolutely normalized energy spectra using foil activation techniques joined with time-of-flight measurements, and energy-dependent time distributions using a time-focused crystal analyzer. The IPNS accelerator system delivers 14 {micro}A of 450 MeV protons, in 100 ns pulses at 30 Hz, to a target composed of water-cooled depleted uranium disks. The solid methane ''H'' moderator is 100 by 100 by 45 mm in size, centerline poisoned with 0.25 mg/mm{sup 2} gadolinium, and decoupled from the graphite reflector with 0.5 mm of cadmium. The liquid methane ''F'' moderator, which is viewed from both faces, is also 100 by 100 by 45 mm in size, gadolinium poisoned 16 mm below each of the two viewed surfaces, and decoupled from the graphite reflector with cadmium. The solid methane ''C'' moderator has a re-entrant ''grooved'' geometry. The moderator is 100 by 100 by 80 mm overall, with 40 mm deep 12 mm wide horizontal grooves in the viewed surface. These grooves cover 50% of the viewed surface area. The ''C'' moderator is unpoisoned, but is decoupled from the graphite reflector with 0.5 mm of cadmium.

  9. The New Uppsala Neutron Beam Facility

    SciTech Connect

    Pomp, S.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Prokofiev, A.V.; Bystroem, O.; Ekstroem, C.; Haag, N.; Jonsson, O.; Reistad, D.; Renberg, P.-U.; Wessman, D.; Ziemann, V.; Nilsson, L.; Olsson, N.; Tippawan, U.

    2005-05-24

    A new quasi-monoenergetic neutron beam facility has been constructed at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Key features include an energy range of 20 to 175 MeV, high fluxes, and the possibility of large-area fields. Besides cross-section measurements, the new facility has been designed specifically to provide optimal conditions for testing of single-event effects in electronics and for dosimetry development. First results of the beam characterization measurements performed in early 2004 are reported.

  10. SPALLATION NEUTRON SOURCE BEAM CURRENT MONITOR ELECTRONICS.

    SciTech Connect

    KESSELMAN,M.; DAWSON,W.C.

    2002-05-06

    This paper will discuss the present electronics design for the beam current monitor system to be used throughout the Spallation Neutron Source (SNS) under construction at Oak Ridge National Laboratory. The beam is composed of a micro-pulse structure due to the 402.5MHz RF, and is chopped into mini-pulses of 645ns duration with a 300ns gap, providing a macro-pulse of 1060 mini-pulses repeating at a 60Hz rate. Ring beam current will vary from about 15ma peak during studies, to about 50Amps peak (design to 100 amps). A digital approach to droop compensation has been implemented and initial test results presented.

  11. Spatial characterization of BNCT beams.

    PubMed

    Marek, M; Viererbl, L

    2004-11-01

    The space distribution of the epithermal neutron flux was determined for the epithermal neutron beams of several NCT facilities in USA (FCB at MIT), Europe (HFR at JRC, Petten; FiR at VTT, Espoo; LVR-15 at NRI, Rez) and Japan (JRR-4 at JAERI, Tokai). Using p-n diodes with (6)Li radiator and the set of Bonner sphere spectrometer (BSS) the beams were quantified in-air. Axial beam profiles along the beam axes and the radial distributions at two distances from the beam aperture were measured. Except for the well-collimated HFR beam, the spatial characteristics of the other studied beams were found generally similar, which results from their similar designs. PMID:15308191

  12. Spallation neutron source beam loss monitor system

    NASA Astrophysics Data System (ADS)

    Gassner, D.; Witkover, R.; Cameron, P.; Power, J.

    2000-11-01

    The Spallation Neutron Source facility to be built at ORNL is designed to accumulate 2×1014 protons at 1.0 GeV and deliver them to the experimental target in one bunch at 60 Hz. To achieve this goal and protect the machine from excessive radiation activation, an uncontrolled loss criteria of 1 part in 104 (1 W/m) has been specified. Measured losses will be conditioned to provide machine tuning data, a beam abort trigger, and logging of loss history. The design of the distributed loss monitor system utilizing argon-filled glass ionization chambers and scintillator-photomultipliers will be presented.

  13. Search for Neutron Anti-Neutron Oscillation using Cold Neutron Beams with Focusing Optics

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirohiko; NNBar Collaboration

    2014-09-01

    The electric charge of neutrons is experimentally known as less than 10-21 e and considered as exactly zero and the transition between neutron and anti-neutron is allowed in terms of the conservation of the electric charge but is considered forbidden according to the empirical conservation law of the baryon number. On the other hand, the existence of physical processes which violates the conservation of the baryon number is required in the Sakharov's conditions to explain the baryon assymmetry in the big-bang cosmology. The search for the neutron antineutron (n n) oscillation offers information the baryon number violation with the Δ (B - L) = 2 complementary to the attempts with Δ (B - L) = 0 . The sensitivity to the n n oscillation has been improved by searching for the instability of nuclei via n n oscillation in large-scale deep-underground experiments, which are now limited by the background. On the other hand, the improvement of accelerator-driven neutron sources and transport optics of slow neutron beams have introduced new possibility to improve the sensitivity to n n by orders of magnitude. In this paper, we discuss the experimental sensitivity to n n oscillation with accelerator-based neutron sources and neutron focusing optics.

  14. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    SciTech Connect

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L; Kelsey, Charles T; Duran, Michael A; Tovesson, Fredrik K

    2010-01-01

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  15. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  16. A multitask neutron beam line for spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.

    2011-08-01

    Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.

  17. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect

    Iverson, Erik B; Baxter, David V; Muhrer, Guenter; Ansell, Stuart; Gallmeier, Franz X; Dalgliesh, Robert; Lu, Wei; Kaiser, Helmut

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  18. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  19. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  20. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images. PMID:26609685

  1. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  2. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  3. Fast neutron beams--prospects for the coming decade.

    PubMed

    Blomgren, J

    2007-01-01

    The present status of neutron beam production techniques above 20 MeV is discussed. Presently, two main methods are used; white beams and quasi-monoenergetic beams. The performances of these two techniques are discussed, as well as the use of such facilities for measurements of nuclear data for fundamental and applied research. Recently, two novel ideas on how to produce extremely intense neutron beams in the 100-500 MeV range have been proposed. Decay in flight of beta delayed neutron-emitting nuclei could provide beam intensities five orders of magnitudes larger than present facilities. A typical neutron energy spectrum would be essentially monoenergetic, i.e., the energy spread is about 1 MeV with essentially no low-energy tail. A second option would be to produce beams of (6)He and dissociate the (6)He nuclei into alpha particles and neutrons. The basic features of these concepts are outlined, and the potential for improved nuclear data research is discussed. PMID:17502317

  4. Neutron transport study of a beam port based dynamic neutron radiography facility

    NASA Astrophysics Data System (ADS)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  5. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  6. Fast ion beam chopping system for neutron generators

    NASA Astrophysics Data System (ADS)

    Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.

    2005-02-01

    Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.

  7. Fast ion beam chopping system for neutron generators

    SciTech Connect

    Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.

    2005-02-01

    Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.

  8. Two-dimensional differential calibration method for a neutron dosemeter using a thermal neutron beam.

    PubMed

    Matsumoto, Tetsuro; Harano, Hideki; Masuda, Akihiko; Nishiyama, Jun; Matsue, Hideaki; Uritani, Akira; Nunomiya, Tomoya

    2013-08-01

    A new thermal neutron calibration method to experimentally determine the energy response function of a neutron detector using a pulse parallel beam and the time-of-flight (TOF) technique is developed. The calibration method was experimentally demonstrated for a (3)He proportional counter and an electric personal dosemeter using a pulsed thermal neutron beam from the research reactor JRR-3M. The responses of the detectors were successfully obtained as a function of neutron energy. However, detailed information on the detector structure is required to obtain the spatial response distribution for the detector. The authors further propose an improved calibration method obtaining the spatial response distribution using a pulsed narrow beam, the TOF technique and a beam scanning technique. PMID:23509397

  9. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  10. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  11. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  12. Lyoluminescence dosimetry in photon and fast neutron beams.

    PubMed

    Puite, K J; Crebolder, D L

    1977-11-01

    The lyoluminescence (LL) technique using mannose, a monosaccharide, is described. Dose-response curves for 60Co-gamma-rays (5 rad to 120 krad), fission neutrons, 5.3 MeV and 15 MeV neutrons (100 rad to 20 krad) have been measured. The close tissue-equivalence of mannose makes this material well suited for dosimetric use in low energy X-ray fields for radiotherapy and radiobiology. It also provides a cheap, simple and reproducible dosemeter in industrial applications of radiation (sprouting inhibition of onions and potatoes; control of insect infestation). After correction for the gamma contamination of the neutron beam the LL signal per rad in ICRU muscle tissue from the neutron irradiations has been derived and the relative effectiveness of the LL signal for fast neutrons in mannose has been calculated as 0.34 +/- 0.03 (fission neutrons), 0.63 +/- 0.07 (5.3 MeV neutrons) and 0.74 +/- 0.05 (15 MeV neutrons). These results are compared with data from other systems. It is concluded that mannose can be used as a transfer system in neutron dosimetry, if its variation in sensitivity with neutron energy is taken into account. PMID:594143

  13. Fast slit-beam extraction and chopping for neutron generator

    NASA Astrophysics Data System (ADS)

    Kalvas, T.; Hahto, S. K.; Gicquel, F.; King, M.; Vainionpää, J. H.; Reijonen, J.; Leung, K. N.; Miller, T. G.

    2006-03-01

    High-intensity fast white neutron pulses are needed for pulsed fast neutron transmission spectroscopy (PFNTS). A compact tritium-tritium fusion reaction neutron generator with an integrated ion beam chopping system has been designed, simulated, and tested for PFNTS. The design consists of a toroidal plasma chamber with 20 extraction slits, concentric cylindrical electrodes, chopper plates, and a central titanium-coated beam target. The total ion beam current is 1A. The beam chopping is done at 30keV energy with a parallel-plate deflector integrated with an Einzel lens. Beam pulses with 5ns width can be achieved with a 15ns rise/fall time ±1500V sweep on the chopper plates. The neutrons are produced at 120keV energy. A three-dimensional simulation code based on Vlasov iteration was developed for simulating the ion optics of this system. The results with this code were found to be consistent with other simulation codes. So far we have measured 50ns ion beam pulses from the system.

  14. Fast slit-beam extraction and chopping for neutron generator

    SciTech Connect

    Kalvas, T.; Hahto, S.K.; Gicquel, F.; King, M.; Vainionpaeae, J.H.; Reijonen, J.; Leung, K.N.; Miller, T.G.

    2006-03-15

    High-intensity fast white neutron pulses are needed for pulsed fast neutron transmission spectroscopy (PFNTS). A compact tritium-tritium fusion reaction neutron generator with an integrated ion beam chopping system has been designed, simulated, and tested for PFNTS. The design consists of a toroidal plasma chamber with 20 extraction slits, concentric cylindrical electrodes, chopper plates, and a central titanium-coated beam target. The total ion beam current is 1 A. The beam chopping is done at 30 keV energy with a parallel-plate deflector integrated with an Einzel lens. Beam pulses with 5 ns width can be achieved with a 15 ns rise/fall time {+-}1500 V sweep on the chopper plates. The neutrons are produced at 120 keV energy. A three-dimensional simulation code based on Vlasov iteration was developed for simulating the ion optics of this system. The results with this code were found to be consistent with other simulation codes. So far we have measured 50 ns ion beam pulses from the system.

  15. Tailoring phase-space in neutron beam extraction

    NASA Astrophysics Data System (ADS)

    Weichselbaumer, S.; Brandl, G.; Georgii, R.; Stahn, J.; Panzner, T.; Böni, P.

    2015-09-01

    In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.

  16. Determination of the neutron and photon spectra of a clinical fast neutron beam.

    PubMed

    Moyers, M F; Horton, J L

    1990-01-01

    A simple technique to determine the neutron and photon spectra of a clinical fast neutron beam is described. This technique involves making narrow beam attenuation measurements with a pair of ionization chambers and an iterative fitting program to analyze the data. A method is also described for determining the first-guess neutron spectrum for input into the iterative program. The results of the analysis yield spectra suitable for use in dose calculation algorithms and dosimetry protocols. Presented here is the first-known published photon spectrum from a clinical machine. PMID:2120558

  17. Low-energy beam transport studies supporting the Spallation Neutron Source 1-MW beam operationa

    SciTech Connect

    Han, Baoxi; Kalvas, T.; Tarvainen, O.; Welton, Robert F; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2012-01-01

    The H- injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the Spallation Neutron Source 1-MW beam operation with ~38 mA beam current in the linac at 60 Hz with a pulse length of up to ~1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: 1) inconsistent dependence of the post-RFQ beam current on the ion source tilt angle, and 2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  18. Monochromatic neutron beam production at Brazilian nuclear research reactors

    NASA Astrophysics Data System (ADS)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  19. Analysis of epithermal neutron beam experiments at the HIFAR reactor

    SciTech Connect

    Harrington, B.V.; Constantine, G.

    1995-01-01

    A calculated model of the entire core of the DIDO class reactor HIFAR has been used to analyze epithermal neutron beam experiments. In the experiments, an off-center fuel element was replaced by a dummy fuel element voided by a dry liner in which an aluminium spectrum shifter was suspended at core center to extract the beam. Various combinations of the filter materials aluminum, iron, sulfur, titanium, and cadmium were inserted near the top of the dry liner, and liquid argon was placed in a cryostat above the dummy element. Reaction rates were measured in a fission chamber, sandwiched between various thicknesses of polyethylene, in order to assess the accuracy of the calculational model for different regions of the neutron energy spectrum of the beam. The neutron source distribution of the HIFAR core was obtained from a three-dimensional diffusion calculation, with burnup-dependent fuel compositions and fission products included, using the AUS modular code scheme. Argon cross sections were generated from ENDL-84 data and resonance parameters taken from Neutron Cross Sections (1984). A whole-core MCNP source calculation was used to analyze the experiments giving good agreement between measured and calculated reaction rates. This whole-core model of HIFAR may be applied with confidence to predict the performance of filtered beams for boron neutron capture therapy and also to other HIFAR calculations.

  20. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy

    SciTech Connect

    Musolino, S.V. ); McGinley, P.H. ); Greenwood, R.C. ); Kliauga, P. ); Fairchild, R.G. )

    1991-07-01

    An epithermal neutron filter using iron, aluminum, and sulfur was evaluated to determine if the therapeutic performance could be improved with respect to aluminum--sulfur-based filters. An empirically optimized filter was developed that delivered a 93% pure beam of 24-keV epithermal neutrons. It was expected that a thick filter using iron with a density thickness {gt}200 g/cm{sup 2} would eliminate the excess gamma contamination found in Al--S filters. This research showed that prompt gamma production from neutron interactions in iron was the dominant dose component. Dosimetric parameters of the beam were determined from the measurement of absorbed dose in air, thermal neutron flux in a head phantom, neutron and gamma spectroscopy, and microdosimetry.

  1. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  2. Characteristics of the new THOR epithermal neutron beam for BNCT.

    PubMed

    Tung, C J; Wang, Y L; Hsu, F Y; Chang, S L; Liu, Y-W H

    2004-11-01

    A characterization of the new Tsing Hua open-pool reactor (THOR) epithermal neutron beam designed for boron neutron capture therapy (BNCT) has been performed. The facility is currently under construction and expected in completion in March 2004. The designed epithermal neutron flux for 1 MW power is 1.7x10(9)n cm(-2)s(-1) in air at the beam exit, accompanied by photon and fast neutron absorbed dose rates of 0.21 and 0.47 mGys(-1), respectively. With (10)B concentrations in normal tissue and tumor of 11.4 and 40 ppm, the calculated advantage depth dose rate to the modified Snyder head phantom is 0.53RBE-Gymin(-1) at the advantage depth of 85 mm, giving an advantage ratio of 4.8. The dose patterns determined by the NCTPlan treatment planning system using the new THOR beam for a patient treated in the Harvard-MIT clinical trial were compared with results of the MITR-II M67 beam. The present study confirms the suitability of the new THOR beam for possible BNCT clinical trials. PMID:15308158

  3. Design of a Thermal Neutron Beam for a New Neutron Imaging Facility at Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Dastjerdi, Mohammad Hossein Choopan; Khalafi, Hossein

    A new neutron imaging facility will be built around the Tehran Research Reactor (TRR). The TRR is an open pool light water moderated5 MW research reactor with six beam tubes. The neutron energy spectrum near the reactor core at the entrance of the beam tube was measured by the foil activation method using the SAND-II code and calculated by the MCNP Monte Carlo code. There was a good similarity between calculated and simulated spectra. The principal component of this facility is its neutron collimator. The collimator is a beam-forming assembly which determines the geometric properties of the beam. In addition, it may contain filters to modify the energy spectrum or to reduce the gamma ray content of the beam. The optimum thickness of filters, the position of the aperture and other details of the neutron collimator were calculated using MCNP Monte Carlo simulations. In this design, the L/D ratio of this facility had the value of 120. The thermal neutron flux at the image plane was about 7.8×106 n/cm2.s and n/γ ratio about 106 n/cm2.μSv.

  4. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy

    SciTech Connect

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    1998-09-01

    The {sup 7}Li(p,n){sup 7}Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF{sub 3}, {sup 7}LiF, and D{sub 2}O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo {ital N}-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF{sub 3} or {sup 7}LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to {approximately}50{percent} higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a {sup 7}LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq. {copyright} {ital 1998 American Association of Physicists in Medicine.}

  5. Physics with Ultracold and Thermal Neutron Beams

    SciTech Connect

    Steyerl, Albert

    2004-08-10

    This project has been focused on a measurement of the mean lifetime {tau}{sub n} of the free neutron with a precision better than 0.1%. The neutron {beta}-decay n {yields} p + e{sup -} + {bar {nu}}{sub e} + 783 keV into a proton, electron and electron antineutrino is the prototype semi-leptonic weak decay, involving both leptons and hadrons in the first generation of elementary particles. Within the standard V-A theory of weak interaction, it is governed by only two constants: the vector coupling constant g{sub V}, and axial vector constant g{sub A}. The neutron lifetime has been measured many times over decades, and the present (2004) world-average, {tau}{sub n} = 885.7 {+-} 0.8 s, has a weighted error of {approx}0.1% while individual uncertainties are typically 2-10 seconds for high precision data. The highest precision claimed by an individual measurement is {approx}0.15%. An improvement is required to resolve issues of the Standard Model of the electro-weak interaction as well as of astrophysics and of Big Bang theories. The focus in astrophysics is the solar neutrino deficit problem, which requires a precise value of g{sub A}. Big Bang theories require a precise {tau}{sub n}-value to understand the primordial He/H ratio. The strong interest of particle physicists in {tau}{sub n} is mainly based on a possible difficulty with the Cabibbo Kobayashi Maskawa (CKM) matrix, which describes the mixing of quark mass states by the weak interaction. Nuclear, neutron, and pion decay data, probing the mixing amplitude V{sub ud} within the first quark generation, in combination with K and B meson decay data, which probe the second and third generation (V{sub us} and V{sub ub}), indicate a departure from the unitarity demanded by all gauge-invariant theories. The deviation of the first-row sum |V{sub ud}|{sup 2} + |V{sub us}|{sup 2} + |V{sub ub}|{sup 2} from unity is on the 2.3 sigma level. Including a new value for V{sub us} would remove the discrepancy; but the authors of

  6. Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization

    SciTech Connect

    David W. Freeman

    2000-06-04

    A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community.

  7. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  8. Simulation of spatial fuel assay using HANARO neutron beam

    PubMed

    Lee; Chang; Lee; Kim

    2000-10-01

    A sensitivity simulation of neutron tomography was performed for the analysis of the spatial distribution of nuclear materials in the HANARO fuel rod. The internal distribution of the nuclear materials in the fuel rod is very important for the increase of the safety and economics of fuel burnup in the reactor. The neutron radiography facility installed at HANARO will be used for the spatial fuel analysis with a real-time image processing system. Monte Carlo simulation was performed to study the feasibility and sensitivity of the HANARO neutron beam for the spatial fuel assay and to find the optimum conditions for neutron detection. From the sensitivity simulation, the location of the nuclear materials in the rod was evident as expected. PMID:11003495

  9. Characteristics of proton beams and secondary neutrons arising from two different beam nozzles

    NASA Astrophysics Data System (ADS)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-10-01

    A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.

  10. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  11. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. PMID:24448270

  12. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  13. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  14. Neutron capture studies of 206Pb at a cold neutron beam

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Belgya, T.; Borella, A.; Kopecky, S.; Mengoni, A.; Quétel, C. R.; Szentmiklósi, L.; Trešl, I.; Wynants, R.

    2013-11-01

    Gamma-ray transitions following neutron capture in 206Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in 206Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed -rays have been incorporated into a decay scheme for neutron capture in 206Pb . Partial capture cross sections for 206Pb(n,) at thermal energy have been derived relative to the cross section for the 1884keV transition after neutron capture in 14N . From the average crossing sum a total thermal neutron capture cross section of mb was derived for the 206Pb(n,) reaction. The thermal neutron capture cross section for 206Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of mb was determined for the 207Pb(n,) reaction.

  15. Beam intensity increases at the intense pulsed neutron source accelerator

    SciTech Connect

    Potts, C.; Brumwell, F.; Norem, J.; Rauchas, A.; Stipp, V.; Volk, G.

    1985-01-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has managed a 40% increase in time average beam current over the last two years. Currents of up to 15.6..mu..A (3.25 x 10/sup 12/ protons at 30 Hz) have been successfully accelerated and cleanly extracted. Our high current operation demands low loss beam handling to permit hands-on maintenance. Synchrotron beam handling efficiencies of 90% are routine. A new H/sup -/ ion source which was installed in March of 1983 offered the opportunity to get above 8 ..mu..A but an instability caused unacceptable losses when attempting to operate at 10 ..mu..A and above. Simple techniques to control the instabilities were introduced and have worked well. These techniques are discussed below. Other improvements in the regulation of various power supplies have provided greatly improved low energy orbit stability and contributed substantially to the increased beam current.

  16. Design of neutron beams for neutron capture therapy using a 300-kW slab TRIGA reactor

    SciTech Connect

    Liu, H.B.

    1995-03-01

    A design for a slab reactor to produce an epithermal neutron beam and a thermal neutron beam for use in neutron capture therapy (NCT) is described. A thin reactor with two large-area faces, a ``slab`` reactor, was planned using eighty-six 20% enriched TRIGA fuel elements and four B{sub 4}C control rods. Two neutron beams were designed: an epithermal neutron beam from one face and a thermal neutron beam from the other. The planned facility, based on this slab-reactor core with a maximum operating power of 300 kW, will provide an epithermal neutron beam of 1.8 {times} 10{sup 9} n{sub epi}/cm{sup 2}{center_dot}s intensity with low contamination by fast neutrons and gamma rays and a thermal neutron beam of 9.0 {times} 10{sup 9}n{sub th}/cm{sup 2}{center_dot}s intensity with low fast-neutron dose and gamma dose. Both neutron beams will be forward directed. Each beam can be turned on and off independently through its individual shutter. A complete NCT treatment using the designed epithermal or thermal neutron beam would take 30 or 20 min, respectively, under the condition of assuming 10{mu}g {sup 10}B/g in the blood. Such exposure times should be sufficiently short to maintain near-optimal target (e.g., {sup 10}B, {sup 157}Gd, and {sup 235}U) distribution in tumor versus normal tissues throughout the irradiation. With a low operating power of 300 kW, the heat generated in the core can be removed by natural convection through a pool of light water. The proposed design in this study could be constructed for a dedicated clinical NCT facility that would operate very safely.

  17. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  18. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, David W.; Wemple, Charles A.

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  19. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    SciTech Connect

    Boles, J L; Reyes, S; Ahle, L E; Stein, W

    2005-05-13

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  20. Beam-transport optimization for cold-neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Nakajima, Kenji; Ohira-Kawamura, Seiko; Kikuchi, Tatsuya; Kajimoto, Ryoichi; Takahashi, Nobuaki; Nakamura, Mitsutaka; Soyama, Kazuhiko; Osakabe, Toyotaka

    2015-01-01

    We report the design of the beam-transport system (especially the vertical geometry) for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  1. Microdosimetric spectra of the THOR neutron beam for boron neutron capture therapy.

    PubMed

    Hsu, F Y; Tung, C J; Watt, D E

    2003-01-01

    A primary objective of the BNCT project in Taiwan, involving THOR (Tsing Hua Open Pool Reactor), was to examine the potential treatment of hepatoma. To characterise the epithermal neutron beam in THOR, the microdosimetry distributions in lineal energy were determined using paired tissue-equivalent proportional counters with and without boron microfoils. Microdosimetry results were obtained in free-air and at various depths in a PMMA phantom near the exit of the beam port. A biological weighting function, dependent on lineal energy, was used to estimate the relative biological effectiveness of the beam. An effective RBE of 2.7 was found at several depths in the phantom. PMID:12918789

  2. Reactions induced by beams of neutron and proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    1997-02-01

    Within the collaboration Dubna-GANIL (Caen, France) - IPN (Orsay, France) - NPI (Rez, Czech Republic) - IAP (Bucharest, Romania) at GANIL and the Dubna U400M accelerator, experiments have been carried out to study elastic scattering, fusion and fission using secondary ion beams of 6He, 11Li and 8B. The fission cross-section for the 6He isotopes has been found to be significantly higher than for the 4He nuclei. This enhancement depends mainly on the entrance channel and it is connected with the neutron skin of the 6He nuclei. Also, investigation of the elastic scattering of 11Li (neutron halo), 7Be and 8B (proton halo) has been performed. The microscopic analysis supports the existence of a neutron halo in 11Li and the proton skin in 8B and 7Be. Perspectives for investigations in this field at the Laboratory of Nuclear Reactions JINR are also discussed.

  3. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Han, B. X.; Welton, R. F.; Murray, S. N. Jr.; Pennisi, T. R.; Santana, M.; Stockli, M. P.; Kalvas, T.; Tarvainen, O.

    2012-02-15

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  4. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect

    Kalvas, T.; Welton, Robert F; Pennisi, Terry R

    2012-01-01

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  5. Energetic neutron beams generated from femtosecond laser plasma interactions

    SciTech Connect

    Zulick, C.; Dollar, F.; Chvykov, V.; Kalinchenko, G.; Maksimchuk, A.; Raymond, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Davis, J.; Petrov, G. M.

    2013-03-25

    Experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8({+-}0.3) MeV using {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He,{sub 7}{sup 3}Li(p,n){sub 4}{sup 7}Be,and{sub 3}{sup 7}Li(d,n){sub 4}{sup 8}Be reactions. Efficient {sub 1}{sup 2}Li(d,n){sub 4}{sup 8}Be reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D{sub 2}O layer on the surface of a thin film target. The measured neutron yield was {<=}1.0 ({+-}0.5) Multiplication-Sign 10{sup 7} neutrons/sr with a flux 6.2({+-}3.7) times higher in the forward direction than at 90{sup Degree-Sign }. This demonstrates that femtosecond lasers are capable of providing a time averaged neutron flux equivalent to commercial {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He generators with the advantage of a directional beam with picosecond bunch duration.

  6. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ∼ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  7. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility.

    PubMed

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. PMID:26595774

  8. Modification of the neutron beam spectrum for neutron radiography at Tehran Research Reactor (TRR)

    NASA Astrophysics Data System (ADS)

    Moghadam, K. Kamali; Ziaie, F.

    1996-02-01

    Recently due to the replacement of the High Enriched Uranium (HEU) fuel with the Low Enriched Uranium (LEU) fuel and the changes in the reactor core configuration at TRR, the existing Neutron Radiography (NR) system was no longer efficient. Thus, it was decided to modify the system in order to increase the neutron flux and to improve the characteristics of the system. The neutron energy spectrum was measured by foil activation method using SAND-II code and calculated by ANISN/PC code. The general trend of the calculated and measured spectra show good similarity. By introducing different sizes of moderator and gamma absorber behind the collimator, the optimum thermal neutron flux impinge the collimator was calculated using ANISN/PC code. The inlet diameter of the collimator was changed from 1.8 to 5 cm in order to increase the neutron flux at the sample position, which should result in an increase of 8 fold in spite of a small increase in the geometrical unsharpness. The new beam characteristics at the sample position are predicted as an average thermal neutron flux of about 10 6 n cm 2 s 1 and a neutron to gamma ratio of about 10 6 n cm 2 mR -1.

  9. Tagged fast neutron beams En > 6 MeV

    SciTech Connect

    Favela, F.; Huerta, A.; Santa Rita, P.; Ramos, A. T.; Lucio, O. de; Andrade, E.; Ortiz, M. E.; Araujo, V.; Chávez, E.; Acosta, L.; Murillo, G.; Policroniades, R.

    2015-07-23

    Controlled flux of neutrons are produced through the {sup 14}N(d,n){sup 15}O nuclear reaction. Deuteron beams (2-4 MeV) are delivered by the CN-Van de Graaff accelerator and directed with full intensity to our Nitrogen target at SUGAR (SUpersonic GAs jet taRget). Each neutron is electronically tagged by the detection of the associated{sup 15}O. Its energy and direction are known and “beams” of fast monochromatic tagged neutrons (E{sub n}> 6 MeV) are available for basic research and applied work. MONDE is a large area (158 × 63 cm{sup 2}) plastic scintillating slab (5 cm thick), viewed by 16 PMTs from the sides. Fast neutrons (MeV) entering the detector will produce a recoiling proton that induces a light spark at the spot. Signals from the 16 detectors are processed to deduce the position of the spark. Time logic signals from both the {sup 15}O detector and MONDE are combined to deduce a time of flight (TOF) signal. Finally, the position information together with the TOF yields the full momentum vector of each detected neutron.

  10. Neutron beam studies for a medical therapy reactor.

    PubMed

    Neuman, W A

    1990-01-01

    A conceptual design of a Medical Therapy Reactor (MTR) for neutron capture therapy (NCT) has been performed at the Idaho National Engineering Laboratory (INEL). The initial emphasis of the conceptual design was toward the treatment of glioblastoma multiforme and other presently incurable cancers. The design goal of the facility is to provide routine patient treatments both in brief time intervals (approximately 10 minutes) and inexpensively. The conceptual study has shown this goal to be achievable by locating an MTR at a major medical facility. This paper addresses the next step in the conceptual design process: a guide to the optimization of the epithermal-neutron filter and collimator assembly for the treatment of brain tumors. The current scope includes the sensitivity of the treatment beam to variations in filter length, gamma shield length, and collimator lengths as well as exit beam aperture size. The study shows the areas which can provide the greatest latitude in improving beam intensity and quality. Suggestions are given for future areas of optimization of beam filtering and collimation. PMID:2268234

  11. Neutron productions in the fragmentation of relativistic heavy nuclei and formation of a beam of high-energy neutrons

    NASA Astrophysics Data System (ADS)

    Yurevich, V. I.

    2016-03-01

    The production of quasimonoenergetic high-energy neutrons at zero angle (0°) in the spallation of relativistic heavy nuclei is discussed by considering the example of the interaction of lead nuclei with light target nuclei. It is shown that this process can be used to generate a beam of high-energy neutrons at existing heavy ion accelerators. At the same time, itmay lead to the appearance of a parasitic neutron beam because of the interaction of the heavy-ion beam used with beam line and experimental setup materials.

  12. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Khalafi, H.; Kasesaz, Y.; Mirvakili, S. M.; Emami, J.; Ghods, H.; Ezzati, A.

    2016-05-01

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150-250. The thermal neutron flux at the image plane can be varied from 2.26×106 to 6.5×106 n cm-2 s-1. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  13. A Technique for Determining Neutron Beam Fluence to 0.01% Uncertainty

    SciTech Connect

    Yue, A. T.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fomin, N.; Greene, G. L.; Snow, W. M.; Wietfeldt, F. E.

    2014-01-01

    The achievable uncertainty in neutron lifetime measurements using the beam technique has been limited by the uncertainty in the determination of the neutron density in the decay volume. In the Sussex-ILL-NIST series of beam lifetime experiments, the density was determined with a neutron fluence mon itor that detected the charged particle products from neutron absorption in a thin layer of 6Li or lOB. In each of the experiments, the absolute detection efficiency of the neutron monitor was determined from the measured density of the neutron absorber, the thermal neutron cross section for the absorbing ma terial, and the solid angle of the charged particle detectors. The efficiency of the neutron monitor used in the most recent beam lifetime experiment has since been measured directly by operating it on a monochromatic neutron beam in which the total neutron rate is determined with a totally absorbing neutron detector. The absolute nature of this technique does not rely on any knowl edge of neutron absorption cross sections or a measurement of the density of the neutron absorbing deposit. This technique has been used to measure the neutron monitor efficiency to 0.06% uncertainty. VVe show that a new monitor and absolute neutron detector employing the same technique would be capable of achieving determining neutron fluence to an uncertainty of 0.01%.

  14. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  15. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    NASA Astrophysics Data System (ADS)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  16. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.

    PubMed

    Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world. PMID:27308111

  17. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE

    PubMed Central

    Seo, P.-N.; Bowman, J. D.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Leuschner, M. B.; Long, J.; Mahurin, R.; Mitchell, G. S.; Penttila, S. I.; Peralta, G.; Sharapov, E. I.; Wilburn, W. S.

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world. PMID:27308111

  18. np Elastic-scattering experiments with polarized neutron beams

    SciTech Connect

    Chalmers, J.S.; Ditzler, W.R.; Hill, D.; Hoftiezer, J.; Johnson, K.; Shima, T.; Shimizu, H.; Spinka, H.; Stanek, R.; Underwood, D.

    1985-01-01

    Measurements of the spin transfer parameters, K/sub NN/ and K/sub LL/, at 500, 650, and 800 MeV are presented for the reaction p-vector d ..-->.. n-vector pp at 0/sup 0/. The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction is a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV. Measurements of np elastic scattering observables C/sub LL/ and C/sub SL/ covering 35/sup 0/ to 172/sup 0/ are performed using a polarized neutron beam at 500, 650, and 800 MeV. Preliminary results are presented. 3 refs., 6 figs.

  19. Dehydration process of fish analyzed by neutron beam imaging

    NASA Astrophysics Data System (ADS)

    Tanoi, K.; Hamada, Y.; Seyama, S.; Saito, T.; Iikura, H.; Nakanishi, T. M.

    2009-06-01

    Since regulation of water content of the dried fish is an important factor for the quality of the fish, water-losing process during drying (squid and Japanese horse mackerel) was analyzed through neutron beam imaging. The neutron image showed that around the shoulder of mackerel, there was a part where water content was liable to maintain high during drying. To analyze water-losing process more in detail, spatial image was produced. From the images, it was clearly indicated that the decrease of water content was regulated around the shoulder part. It was suggested that to prevent deterioration around the shoulder part of the dried fish is an important factor to keep quality of the dried fish in the storage.

  20. Physics data base for the Beam Plasma Neutron Source (BPNS)

    NASA Astrophysics Data System (ADS)

    Coensgen, F. H.; Casper, T. A.; Correll, D. L.; Damm, C. C.; Futch, A. H.; Molvik, A. W.

    1990-10-01

    A 14-MeV deuterium-tritium (D-T) neutron source for accelerated end-of-life testing of fusion reactor materials has been designed on the basis of a linear two-component collisional plasma system. An intense flux (up to 5 x 10(exp 18)/sq m sec) of 14 MeV neutrons is produced in a fully ionized high-density (n sub e approx. = 3 x 10(exp 21) per cu m) tritium target by transverse injection of 60 MW of neutral beam power. Power deposited in the target is removed by thermal electron conduction to large end chambers, where it is deposited in gaseous plasma collectors. We show in this paper that the major physics issues have now been experimentally demonstrated. These include magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, fueling, Spitzer electron thermal conductivity, and power deposition in a gaseous plasma collector. However, an integrated system was not demonstrated.

  1. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    NASA Astrophysics Data System (ADS)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  2. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. PMID:25544666

  3. Renovation of epithermal neutron beam for BNCT at THOR.

    PubMed

    Liu, Y-W H; Huang, T T; Jiang, S H; Liu, H M

    2004-11-01

    Heading for possible use for clinical trial, THOR (Tsing Hua Open-pool Reactor) at Taiwan was shutdown for renovation of a new epithermal neutron beam in January 2003. In November 2003, concrete cutting was finished for closer distance from core and larger treatment room. This article presents the design base that the construction of the new beam is based on. The filter/moderator design along the beam is Cd(0.1cm)+Al(10 cm)+FLUENTAL (16 cm)+Al(10 cm)+FLUENTAL(24 cm)+Void(18 cm)+Cd(0.1cm)+Bi(10 cm) with 6 cm Pb as reflector. Following the filter/moderator is an 88 cm long, 6 cm thick Bi-lined collimator with Li(2)CO(3)-PE at the end. The collimator is surrounded by Li(2)CO(3)-PE and Pb. The calculated beam parameters under 2 MW at the beam exit is phi(epi) = 3.4 x 10(9) n/cm(2)/s, Df/phi(epi) = 2.8 x 10(-11) cGy cm(2)/n, Dgamma/phi(epi) = 1.3 x 10(-11) cGy cm(2)/n, and J+/phi = 0.8. For a phantom placed 10 cm from beam exit, MCNP calculation shows that the advantage depth is 8.9 cm, and advantage ratio is 5.6 if boron concentration in tumor and normal tissue are assumed to be 65 and 18 ppm. The maximum dose rate for normal tissue is 50 cGy/min. The maximum therapeutic ratio is 6. The construction of the beam is scheduled to be finished by the end of April 2004. PMID:15308189

  4. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 {times} 10{sup 8} n/cm{sup 2} {center_dot} s. The fast neutron and gamma radiation KERMA factors are 10 {times} 10{sup {minus}11}cGy{center_dot}cm{sup 2}/n{sub epi} and 20 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub epi}, respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  5. Initial Performance Characterization for a Thermalized Neutron Beam for Neutron Capture Therapy Research at Washington State University

    SciTech Connect

    David W. Nigg; P.E> Sloan; J.R. Venhuizen; C.A. Wemple

    2005-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and Washington State University (WSU) have constructed a new epithermal-neutron beam for collaborative Boron Neutron Capture Therapy (BNCT) preclinical research at the WSU TRIGATM research reactor facility1. More recently, additional beamline components were developed to permit the optional thermalization of the beam for certain types of studies where it is advantageous to use a thermal neutron source rather than an epithermal source. This article summarizes the results of some initial neutronic performance measurements for the thermalized system, with a comparison to the expected performance from the design computations.

  6. Silicon detectors for monitoring neutron beams in n-TOF beamlines

    SciTech Connect

    Cosentino, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.; Musumarra, A.; Barbagallo, M.; Colonna, N.; Damone, L.

    2015-07-15

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing {sup 6}Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational.

  7. Silicon detectors for monitoring neutron beams in n-TOF beamlines

    NASA Astrophysics Data System (ADS)

    Cosentino, L.; Musumarra, A.; Barbagallo, M.; Colonna, N.; Damone, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.

    2015-07-01

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational.

  8. Silicon detectors for monitoring neutron beams in n-TOF beamlines.

    PubMed

    Cosentino, L; Musumarra, A; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-07-01

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing (6)Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational. PMID:26233385

  9. Prediction of In-Phantom Dose Distribution Using In-Air Neutron Beam Characteristics for Boron Neutron Capture Synovectomy

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2000-08-15

    A monoenergetic neutron beam simulation study was carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints such as knees and fingers. This study focuses on human knee joints. Two figures of merit are used to measure the neutron beam quality, the ratio of the synovium-absorbed dose to the skin-absorbed dose, and the ratio of the synovium-absorbed dose to the bone-absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment and that (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce the particle transport simulation time by a factor of 10 by modeling the moderator only.

  10. Filter/moderator system for a BNCT beam of epithermal neutrons at nuclear reactor MARIA

    NASA Astrophysics Data System (ADS)

    Tyminska, Katarzyna

    2009-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we present a filter/moderator system modeled with MCNP code in order to obtain an epithermal neutron beam for BNCT post at MARIA reactor in Swierk.

  11. Design of neutron beams at the Argonne Continuous Wave Linac (ACWL) for boron neutron capture therapy and neutron radiography

    SciTech Connect

    Zhou, X.L.; McMichael, G.E.

    1994-10-01

    Neutron beams are designed for capture therapy based on p-Li and p-Sc reactions using the Argonne Continuous Wave Linac (ACWL). The p-Li beam will provide a 2.5 {times} 10{sup 9} n/cm{sup 2}s epithermal flux with 7 {times} 10{sup 5} {gamma}/cm{sup 2}s contamination. On a human brain phantom, this beam allows an advantage depth (AD) of 10 cm, an advantage depth dose rate (ADDR) of 78 cGy/min and an advantage ratio (AR) of 3.2. The p-Sc beam offers 5.9 {times} 10{sup 7} n/cm{sup 2}s and a dose performance of AD = 8 cm and AR = 3.5, suggesting the potential of near-threshold (p,n) reactions such as the p-Li reaction at E{sub p} = 1.92 MeV. A thermal radiography beam could also be obtained from ACWL.

  12. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    SciTech Connect

    C.L. Ellison and J. Fuchs

    2010-09-23

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  13. Working group session report: Neutron beam line shielding.

    SciTech Connect

    Russell, G. J.; Ikedo, Y.

    2001-01-01

    We have examined the differences between a 2-D model and a 3-D model for designing the beam-line shield for the HIPPO instrument at the Lujan Center at the Los Alamos National Laboratory. We have calculated the total (neutron and gamma ray) dose equivalent rate coming out of the personal access ports from the HIPPO instrument experiment cave. In order to answer this question, we have investigated two possible worst-case scenarios: (a) failure of the T{sub 0}-chopper and no sample at the sample position; and (b) failure of the T{sub 0}-chopper with a thick sample (a piece of Inconel-718, 10 cm diam by 30 cm long) at the sample position.

  14. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  15. Optimization of the Epithermal Neutron Beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor

    SciTech Connect

    Hu, J.P.; Reciniello, R.N.; Holden, N.E.

    2004-05-01

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  16. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    SciTech Connect

    Islam, M; Ahmad, S; Zheng, Y; Rana, S; Collums, T; Monsoon, J; Benton, E

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  17. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  18. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). PMID:21129990

  19. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. PMID:26474209

  20. Feasibility study of using laser-generated neutron beam for BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-09-01

    The feasibility of using a laser-accelerated proton beam to produce a neutron source, via (p,n) reaction, for Boron Neutron Capture Therapy (BNCT) applications has been studied by MCNPX Monte Carlo code. After optimization of the target material and its thickness, a Beam Shaping Assembly (BSA) has been designed and optimized to provide appropriate neutron beam according to the recommended criteria by International Atomic Energy Agency. It was found that the considered laser-accelerated proton beam can provide epithermal neutron flux of ∼2×10(6) n/cm(2) shot. To achieve an appropriate epithermal neutron flux for BNCT treatment, the laser must operate at repetition rates of 1 kHz, which is rather ambitious at this moment. But it can be used in some BNCT researches field such as biological research. PMID:26115204

  1. Fusion-neutron production in the TFTR with deuterium neutral beam injection

    SciTech Connect

    Hendel, H.W.; England, A.C.; Jassby, D.L.; Mirin, A.A.; Nieschmidt, E.B.

    1986-06-01

    We report measurements of the fusion reaction rate in the Tokamak Fusion Test Reactor (TFTR) covering a wide range of plasma conditions and injected neutral beam powers up to 6.3 MW. The fusion-neutron production rate in beam-injected plasmas decreases slightly with increasing plasma density n/sub e/, even though the energy confinement parameter n/sub e/tau/sub E/ generally increases with density. The measurements indicate and Fokker-Planck simulations show that with increasing density the source of fusion neutrons evolves from mainly beam-beam and beam-target reactions at very low n/sub e/ to a combination of beam-target and thermonuclear reactions at high n/sub e/. At a given plasma current, the reduction in neutron source strength at higher n/sub e/ is due to both a decrease in electron temperature and in beam-beam reaction rate. The Fokker-Planck simulations also show that at low n/sub e/, plasma rotation can appreciably reduce the beam-target reaction rate for experiments with co-injection only. The variation of neutron source strength with plasma and beam parameters is as expected for beam-dominated regimes. However, the Fokker-Planck simulations systematically overestimate the measured source strength by a factor of 2 to 3; the source of this discrepancy has not yet been identified.

  2. Characterization of a thermal neutron beam monitor based on gas electron multiplier technology

    NASA Astrophysics Data System (ADS)

    Croci, Gabriele; Cazzaniga, Carlo; Claps, Gerardo; Tardocchi, Marco; Rebai, Marica; Murtas, Fabrizio; Vassallo, Espedito; Caniello, Roberto; Cippo, Enrico Perelli; Grosso, Giovanni; Rigato, Valentino; Gorini, Giuseppe

    2014-08-01

    Research into valid alternatives to 3He detectors is fundamental to the affordability of new neutron spallation sources like the European Spallation Source (ESS). In the case of ESS it is also essential to develop high-rate detectors that can fully exploit the increase of neutron flux relative to present neutron sources. One of the technologies fulfilling these requirements is the gas electron multiplier (GEM), since it can combine a high rate capability (MHz/mm2), a coverage area up to 1 m2 and a space resolution better than 0.5 mm. Its use as a neutron detector requires conversion of neutrons into charged particles. This paper describes the realization and characterization of a thermal neutron GEM-based beam monitor equipped with a cathode containing ^{10}B for neutron conversion. This device is constituted by a triple GEM detector whose cathode is made of an aluminum sheet covered by a 1 μ m thick ^{{nat}}B4C layer. The method used to realize a long-lasting ^{{nat}}B4C layer is described and the properties of such a layer have been determined. The detector performances (measured on the ISIS-VESUVIO beam line) in terms of beam profile reconstruction, imaging, and measurement of the thermal neutron beam energy spectrum are compatible with those obtained by standard beam monitors.

  3. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm‑2s‑1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  4. Neutron beam optimization for boron neutron capture therapy using the D-D and D-T high-energy neutron sources

    SciTech Connect

    Verbeke, J.M.; Vujic, J.L.; Leung, K.N.

    2000-02-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of boron neutron capture therapy. Two figures-of-merit--the absorbed skin dose and the absorbed tumor dose at a given depth in the brain--are used to measure the neutron beam quality. Based on the results of this study, moderators, reflectors, and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions {sup 2}H(d,n){sup 3}He and {sup 3}H(d,n){sup 4}He down to a suitable energy spectrum. Two different computational models (MCNP and BNCT-RTPE) have been used to study the dose distribution in the brain. With the optimal beam-shaping assembly, a 1-A mixed deuteron/triton beam of energy 150 keV accelerated onto a titanium target leads to a treatment time of 1 h. The dose near the center of the brain obtained with this configuration is > 65% higher than the dose from a typical spectrum produced by the Brookhaven Medical Research Reactor and is comparable to the dose obtained by other accelerator-produced neutron beams.

  5. Application of Pixel-cell Detector Technology for Advanced Neutron Beam Monitors

    SciTech Connect

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors with a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  6. Fan analyzer of neutron beam polarization on REMUR spectrometer at IBR-2 pulsed reactor

    NASA Astrophysics Data System (ADS)

    Nikitenko, Yu. V.; Ul'yanov, V. A.; Pusenkov, V. M.; Kozhevnikov, S. V.; Jernenkov, K. N.; Pleshanov, N. K.; Peskov, B. G.; Petrenko, A. V.; Proglyado, V. V.; Syromyatnikov, V. G.; Schebetov, A. F.

    2006-08-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation in the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multiplayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Å. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (fan-like polarization analyzer) with a solid angle of neutron detection of 2.2×10 -4 rad. This article describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of its tests on a polarized neutron beam.

  7. Polymer gel dosimetry for neutron beam in the Neutron Exposure Accelerator System for Biological Effect Experiments (NASBEE)

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Sato, H.; Hamano, T.; Suda, M.; Yoshii, H.

    2015-01-01

    This study aimed to investigate whether gel dosimetry could be used to measure neutron beams. We irradiated a BANG3-type polymer gel dosimeter using neutron beams in the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) at the National Institute of Radiological Sciences (NIRS) in Japan. First, the polymer gels were irradiated from 0 to 7.0 Gy to investigate the dose-R2 responses. Irradiated gels were evaluated using 1.5-T magnetic resonance R2 images. Second, the polymer gels were irradiated to 1.0, 3.0, and 5.0 Gy to acquire a depth-R2 response curve. The dose-R2 response curve was linear up to approximately 7 Gy, with a slope of 1.25 Gy-1·s-1. Additionally, compared with the photon- irradiated gels, the neutron-irradiated gels had lower R2 values. The acquired depth-R2 curves of the central axis from the 3.0- and 5.0-Gy neutron dose-irradiated gels exhibited an initial build-up. Although, a detailed investigation is needed, polymer gel dosimetry is effective for measuring the dose-related R2 linearity and depth-R2 relationships of neutron beams.

  8. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    PubMed

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given. PMID:17411211

  9. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    NASA Astrophysics Data System (ADS)

    Hino, Masahiro; Oda, Tatsuro; Kitaguchi, Masaaki; Yamada, Norifumi L.; Tasaki, Seiji; Kawabata, Yuji

    2015-10-01

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS

  10. Spatial and spectral characteristics of a compact system neutron beam designed for BNCT facility.

    PubMed

    Ghassoun, J; Chkillou, B; Jehouani, A

    2009-04-01

    The development of suitable neutron sources and neutron beam is critical to the success of Boron Neutron Capture Therapy (BNCT). In this work a compact system designed for BNCT is presented. The system consists of (252)Cf fission neutron source and a moderator/reflector/filter/shield assembly. The moderator/reflector/filter arrangement has been optimized to maximize the epithermal neutron component which is useful for BNCT treatment of deep seated tumors with the suitably low level of beam contamination. The MCMP5 code has been used to calculate the different components of neutrons, secondary gamma rays originating from (252)Cf source and the primary gamma rays emitted directly by this source at the exit face of the compact system. The fluence rate distributions of such particles were also computed along the central axis of a human head phantom. PMID:19168369

  11. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan; Fomin, Nadia; BL3 Collaboration

    2015-10-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.

  12. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia; Mulholland, Jonathan

    2015-04-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4 He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed. This work is supported by the DOE office of Science, NIST and NSF.

  13. Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    SciTech Connect

    Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. . Medical Dept.); Benary, V. . Medical Dept. Tel Aviv Univ. ); Kalef-Ezra, J. . Medical Dept. Ioannina Univ. ); Wielopolski, L. . Medical Dept. State Univ. of New

    1990-01-01

    The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

  14. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    SciTech Connect

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-15

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment

  15. Three-port beam splitter for slow neutrons using holographic nanoparticle-polymer composite diffraction gratings

    SciTech Connect

    Klepp, J.; Fally, M.; Tomita, Y.; Pruner, C.; Kohlbrecher, J.

    2012-10-08

    Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for slow neutrons - splitting the incident neutron intensity equally into the {+-}1st and the 0th diffraction orders - has been realized. As a possible application, a Zernike three-path interferometer is briefly discussed.

  16. Production cross section of neutron-rich isotopes with radioactive and stable beams

    NASA Astrophysics Data System (ADS)

    Mun, Myeong-Hwan; Adamian, G. G.; Antonenko, N. V.; Oh, Yongseok; Kim, Youngman

    2014-03-01

    The production cross section of neutron-rich isotopes of Ca, Zn, Te, Xe, and Pt are predicted in the diffusive multinucleon transfer reactions with stable and radioactive beams. With these isotopes one can treat the neutron shell evolution beyond N =28, 50, 82, and 126. Because of the small cross sections, the production of nuclei near the neutron drip line requires the optimal choice of reaction partners and bombarding energies.

  17. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  18. Toward neutron-rich nuclei via transfer reactions with stable and radioactive beams

    NASA Astrophysics Data System (ADS)

    Mun, Myeong-Hwan; Adamian, G. G.; Antonenko, N. V.; Oh, Yongseok; Kim, Youngman

    2015-05-01

    The possibilities of production of yet-undiscovered neutron-rich isotopes of Ca, Gd, Dy, Er, Yb, Hf, W, Os, Hg, Pb, and Th are explored in various multinucleon transfer reactions with stable and radioactive beams. The probable projectile-target combinations and bombarding energies to produce these neutron-rich isotopes are suggested for future experiments.

  19. Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University.

    PubMed

    Nigg, D W; Venhuizen, J R; Wemple, C A; Tripard, G E; Sharp, S; Fox, K

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2x10(9)n/cm(2)s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components. PMID:15308181

  20. Flux and Instrumentation Upgrade for the Epithermal Neutron Beam Facility at Washington State University

    SciTech Connect

    David W. Nigg; J.R. Venhuizen; C.E. Wemple; G. E. Tripard; S. Sharp; K. Fox

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2×109 n/cm2 s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  1. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  2. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams

    SciTech Connect

    Beach, J.L.; Milavickas, L.R.

    1982-01-01

    The Dual Radiation Action Theory of Kellerer and Rossi (DRA), along with presently available microdosimetric techniques, is applied to the detrmination of radiation quality variation within tissue equivalent phantoms irradiated by collimated fast neutron beams. The neutron beams investigated were produced by the bombardment of 22.5 and 16 MeV d+ on beryllium and by the T(d,n)/sup 4/He reaction (15-MeV neutrons). Microdosimetric spectra were obtained at points of varying depth and lateral distance from the central axis within a tissue equivalent phantom, including points within the penumbra. From the microdosimetric spectra the parameter RQ, a first approximation to RBE derived from DRA theory, is calculated for each point. All RQ values are calculated for the same level of effect. For these three different beams the results show that the RQ values for the total radiation spectrum of neutron and gamma radiation remain fairly constant with depth and with lateral distance from the beam axis at 2 and 10 cm depths. The largest central axis variation in RQ is 8% for the d(16)+Be beam. The largest variation between a penumbra and an on-axis RQ value is 4% at 2 cm depth in the d(22.5)+Be beam. The results for the d(22.5)+Be beam disagree with previously reported radiobiological results while the 15 MeV beam results are in good agreement.

  3. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  4. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  5. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    SciTech Connect

    Ellsworth, J. L. Falabella, S. Schmidt, A. Tang, V.

    2014-12-15

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in E{sub z} up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws.

  6. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    SciTech Connect

    Schall, Michael; Cooper, Gary Wayne; Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  7. Radiation transport calculations for the ANS (Advanced Neutron Source) beam tubes

    SciTech Connect

    Engle, W.W., Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs.

  8. Clinical evaluation of neutron beam therapy. Current results and prospects, 1983

    SciTech Connect

    Cohen, L.; Hendrickson, F.R.; Kurup, P.D.; Mansell, J.A.; Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1985-01-01

    Some 9000 patients throughout the world have been treated by some form of neutron beam therapy. These include patients with advanced nonresectable tumors in many different sites treated with a variety of neutron beam generators varying widely in beam energy. Protocols were largely nonrandomized and included both mixed beam studies (neutrons + photons) and neutrons alone in varying doses. In spite of wide variation in equipment, treatment technique, and philosophy, some consistent trends have been identified: (1) in general, the neutron results have been at least as good as those of the photon controls measured in terms of local control, although the incidence of significant side effects have been higher; (2) in none of the randomized studies conducted so far, largely comprising epidermoid carcinomas of the head and neck, has a clear survival advantage for neutrons over photon controls been demonstrated at a statistically significant level; (3) results with mixed beam studies have been uniformly equivocal, with marginally significant differences in favor of the experimental groups compared with the photon controls; (4) adenocarcinomas of the gastrointestinal tract (GI) tract, including tumors of the salivary gland, pancreas, stomach, and bowel, appear to be responsive to high linear energy transfer (LET) radiation; (5) nonepidermoid, radioresistant tumors (sarcoma of bone and soft tissue and melanoma) yield a consistantly high local control rate, with neutron irradiation strikingly superior to those reported with photon therapy; and (6) in the central nervous system, both normal tissues and tumors appear to be exceptionally sensitive to neutron irradiation, therapeutic ratios are small, and the prospect of cure remains remote. It is concluded that neutrons are efficacious for certain specific tumor types, but that essentially new study designs, based on nonrandomized matched case comparisons, will be required to prove the merit of the new modality.

  9. Neutron-beam CT of magmatic rocks: Method development and applications

    NASA Astrophysics Data System (ADS)

    Wilding, M. C.; Shields, K. E.; Heister, L.; Simpson, J.; Gibbons, M.; Richards, W. J.; Lesher, C. E.

    2001-12-01

    A 2-megawatt TRIGA reactor, now owned and operated by UC Davis as a research facility, was especially designed and built by the USAF with a large L/D for neutron-beam radiography of aircraft parts. More recent efforts in computed tomography (CT) have established capabilities of 3-D imaging of a broad range of geological materials, including textured igneous rocks up to 10's cm in size. Neutron-beam imaging is complementary to X-ray CT, especially because of the high neutron cross-sections for many light elements that are not easily detected by X-rays. Our goal is to optimize neutron-beam CT techniques for quantitative studies of igneous textures and mineralogy. To this end, we have made improvements in both image acquisition and data processing. Specifically, we have measured the attenuation coefficient for diabase for beam-hardening corrections. We have characterized the dark charge contribution and developed new strategies for flat field corrections. We have increased our sampling density to 360 images per 180º of rotation, and now correct for beam divergence. Each of these procedures contribute to a reduction in ring artifacts and thus improve image resolution. To maximize attenuation contrast, we collect images with a Cd-filtered neutron-beam. Other energy filtering techniques are also being explored. We will show examples of this imaging technique as well as applications to gabbroic rocks of the Skaergaard intrusion which involve the quantification of compaction gradients.

  10. The modeling of a linear multi-beam deuteron compact accelerator for neutron generation

    NASA Astrophysics Data System (ADS)

    Araujo, Wagner L.; Campos, Tarcisio P. R.

    2012-07-01

    There is a prominent interest in obtaining high-flux neutron generators due to its wide range of applications and possibilities. The beam current that reaches the target is one of the main factors for determining the performance of the generator. In the present paper we address the modeling of a deuteron compact accelerator for neutron generation underlying the electrode placement and providing an optimized multiple beam accelerator geometry. The methodology consists of electrode displacement calculations and simulations of the deuteron and neutron beam transport. A phenomenological model has been proposed based on experimental data, which provides two electrode configuration patterns. Both configurations were compared through electromagnetic simulations considering a single-beam accelerator-type. The configuration with highest ion current has led to a new geometry incorporating multiple beams. The final prototype presents an interesting beam profile achieving deuteron kinetic energy in the order of 180 keV and current up to 198 mA. Estimated yield for this generator was 1012 n/s. A shield was designed, based on Monte Carlo simulations. Dose calculation was appraised showing a neutron and photon dose rate of 7.73 and 14.50 mGy h-1 in front of 46 cm shield. The achieved design offers a suitable performance toward a compact high-flux neutron generator.

  11. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  12. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Baiocco, Giorgio; Lomax, Tony

    2016-08-21

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  13. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  14. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  15. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  16. SIMULATION OF NEUTRON BACKGROUNDS FROM THE ILC EXTRACTION LINE BEAM DUMP

    SciTech Connect

    Darbha, S; Keller, L.; Maruyama, T.

    2008-01-01

    The operation of the International Linear Collider (ILC) as a precision measurement machine is dependent upon the quality of the charge-coupled device (CCD) silicon vertex detector. An integrated fl ux of 1010 neutrons/cm2 incident upon the vertex detector will degrade its performance by causing displacement damage in the silicon. One source of the neutron background arises from the dumping of the spent electron and positron beams into the extraction line beam dumps. The Monte Carlo program FLUKA was used to simulate the collision of the electron beam with the dump and to determine the resulting neutron fl ux at the interaction point (IP). A collimator and tunnel were added and their effect on the fl ux was analyzed. A neutron source was then generated and directed along the extraction line towards a model of the vertex detector to determine the neutron fl ux in its silicon layers. Models of the beampipe and BeamCal, a silicon-tungsten electromagnetic calorimeter in the very forward region of the detector, were placed in the extraction line and their effects on scattering were studied. The IP fl uence was determined to be 3.7x1010 +/- 2.3x1010 neutrons/cm2/year when the tunnel and collimator were in place, with no appreciable increase in statistics when the tunnel was removed. The BeamCal was discovered to act as a collimator by signifi cantly impeding the fl ow of neutrons towards the detector. The majority of damage done to the fi rst layer of the detector was found to come from neutrons with a direct line of sight from the fi rst extraction line quadrupole QDEX1, with only a small fraction scattering off of the beampipe and into the detector. The 1 MeV equivalent neutron fl uence was determined to be 9.3x108 neutrons/cm2/year from the electron beam alone. The two beams collectively contribute double to this fl uence, which is 19% of the threshold value in one year. Future work will improve the detector model and other sources of neutron backgrounds will be

  17. Comparative study of MC-50 and ANITA neutron beams by using 55 nm SRAM

    NASA Astrophysics Data System (ADS)

    Baeg, Sanghyeon; Lee, Soonyoung; Bak, Geun Yong; Jeong, Hyunsoo; Jeon, Sang Hoon

    2012-09-01

    Single event upset (SEU) is mainly caused by neutrons in the terrestrial environment. In addition, SEU effects become more and more problematic as technology scales. It is, therefore, important to understand the SEU behaviors of semiconductor devices under neutron reactions. ANITA (atmospheric-like neutrons from thick target) in TSL (The Svedberg Laboratory), Sweden, resembles the neutron energy and flux spectrum to neutrons at the terrestrial level and are typically used to estimate the soft error rate (SER). On the other hand, the neutron energy and flux spectrum from the MC-50 cyclotron at KIRAMS (Korea Institute of Radiological & Medical Sciences) differs greatly from the atmospheric environment. The main objective of this work is finding the efficacy of the neutron beam at KIRAMS for a SEU analysis by using a comparative analysis; 55 nm SRAM is used to determine SEU difference under the beams at two different locations. Since MCU (multi-cell upset) is the dominant effect in emerging technologies with smaller critical charges, the MCU cross sections from the two different beam tests are compared.

  18. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    PubMed

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed. PMID:26235186

  19. SU-E-T-304: Study of Secondary Neutrons From Uniform Scanning Proton Beams

    SciTech Connect

    Islam, M; Zheng, Y; Benton, E

    2014-06-01

    Purpose: Secondary neutrons are unwanted byproducts from proton therapy and exposure from secondary radiation during treatment could increase risk of developing a secondary cancer later in a patient's lifetime. The purpose of this study is to investigate secondary neutrons from uniform scanning proton beams under various beam conditions using both measurements and Monte Carlo simulations. Methods: CR-39 Plastic Track Nuclear Detectors (PNTD) were used for the measurement. CR-39 PNTD has tissue like sensitivity to the secondary neutrons but insensitive to the therapeutic protons. In this study, we devised two experimental conditions: a) hollow-phantom; phantom is bored with a hollow cylinder along the direction of the beam so that the primary proton passes through the phantom without interacting with the phantom material, b) cylindrical-phantom; a solid cylinder of diameter close to the beam diameter is placed along the beam path. CR-39 PNTDs were placed laterally inside a 60X20X35 cm3 phantom (hollow-phantom) and in air (cylindrical-phantom) at various angles with respect to the primary beam axis. We studied for three different proton energies (78 MeV, 162 MeV and 226 MeV), using a 4 cm modulation width and 5cm diameter brass aperture for the entire experiment and simulation. A comparison of the experiment was performed using the Monte Carlo code FLUKA. Results: The measured secondary neutron dose equivalent per therapeutic primary proton dose (H/D) ranges from 2.1 ± 0.2 to 25.42 ± 2.3 mSv/Gy for the hollow phantom study, and 2.7 ± 0.3 to 46.4 ± 3.4 mSv/Gy for the cylindrical phantom study. Monte Carlo simulations predicated neutron dose equivalent from measurements within a factor of 5. Conclusion: The study suggests that the production of external neutrons is significantly higher than the production of internal neutrons.

  20. Performance of a Medium-Size Area nGEM Detector for Neutron Beam Diagnostics

    NASA Astrophysics Data System (ADS)

    Croci, G.; Cazzaniga, C.; Albani, G.; Muraro, A.; Claps, G.; Cavenago, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Cippo, E. Perelli; Rebai, M.; Tardocchi, M.; Gorini, G.

    Fast neutron detectors with a sub-centimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. Based on the results obtained with small area prototypes, the first medium-size (20 x 35.2 cm2 active area) nGEM detector has been realized for both the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as a beam monitor for fast neutrons beam lines at spallation sources, too. The nGEM is a Triple GEM gaseous detector equipped with polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the performance of the medium-size nGEM detector tested at the VESUVIO beam line of the ISIS spallation source. Being this detector the actual largest area fast neutron detector based on the GEM technology, particular attention was paid in the study of detector response in different points over the active area. Measurements of GEM counting rate (both as a function of VGEM and of time) and of the capability of the detector to reconstruct the beam in different positions are presented. This detector serves as a basis for the realization of an even larger area detector that will be used in the MITICA NBI prototype for ITER that represents the evolution of SPIDER.

  1. Laser wire beam profile monitor in the spallation neutron source (SNS) superconducting linac

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Aleksandrov, A.; Assadi, S.; Blokland, W.; Deibele, C.; Grice, W.; Long, C.; Pelaia, T.; Webster, A.

    2010-01-01

    The spallation neutron source (SNS) at Oak Ridge National Laboratory is an accelerator-based, neutron-scattering facility. SNS uses a large-scale, high-energy superconducting linac (SCL) to provide high beam power utilizing hydrogen ion (H -) beams. For the diagnostics of high-brightness H - beams in the SCL, nonintrusive methods are preferred. This paper describes design, implementation, theoretical analysis, and experimental demonstration of a nonintrusive profile monitor system based on photodetachment, also known as laser wire, installed in the SNS SCL. The SNS laser wire system is the world's largest of its kind with a capability of measuring horizontal and vertical profiles of an operational H - beam at each of the 23 cryomodule stations along the SCL beam line by employing a single light source. Presently 9 laser wire stations have been commissioned that measure profiles of the H - beam at energy levels from 200 MeV to 1 GeV. The laser wire diagnostics has no moving parts inside the beam pipe, causes no contamination on the superconducting cavity, and can be run parasitically on an operational neutron production H - beam.

  2. Peregrine monte carlo dose calculations for radiotherapy using clinically realistic neutron and proton beams

    SciTech Connect

    Cox, L. J., LLNL

    1997-06-16

    Lawrence Livermore National Laboratory (LLNL) has developed an all-particle Monte Carlo radiotherapy dose calculation code--PEREGRINE--for use in clinical radiation oncology. For PEREGRINE, we have assembled high-energy evaluated nuclear databases; created radiation source characterization and sampling algorithms; and simulated and characterized clinical beams for treatment with photons, neutrons and protons. Spectra are available for the Harper Hospital (Detroit, U.S.A.) Be(d,n) neutron therapy beam, the National Accelerator Centre (NAC, Faure, S.A.) Be(p,n) neutron therapy beam and many of the operating modes of the Loma Linda University Medical Center (LLUMC, Loma Linda, USA) proton treatment center. These beam descriptions are being used in PEREGRINE for Monte Carlo dose calculations on clinical configurations for comparisons to measurements. The methods of defining and sampling the beam phase space characterizations are discussed. We show calculations using these clinical beams compared to measurements in homogeneous water phantoms. The state of PEREGRINE's high energy neutron and proton transport database, PCSL, is reviewed and the remaining issues involving nuclear data needs for PEREGRINE are addressed.

  3. A Drabkin-type spin resonator as tunable neutron beam monochromator

    NASA Astrophysics Data System (ADS)

    Piegsa, F. M.; Ries, D.; Filges, U.; Hautle, P.

    2015-09-01

    A Drabkin-type spin resonator was designed and successfully implemented at the multi-purpose beam line BOA at the spallation neutron source SINQ at the Paul Scherrer Institute. The device selectively acts on the magnetic moment of neutrons within an adjustable velocity band and hence can be utilized as a tunable neutron beam monochromator. Several neutron time-of-flight (TOF) spectra have been recorded employing various settings in order to characterize its performance. In a first test application the velocity dependent transmission of a beryllium filter was determined. In addition, we demonstrate that using an exponential current distribution in the spin resonator coil the side-maxima in the TOF spectra usually associated with a Drabkin setup can be strongly suppressed.

  4. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel.

    PubMed

    Vega-Carrillo, H R; Hernández-Dávila, V M; Aguilar, F; Paredes, L; Rivera, T

    2014-01-01

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a (6)LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port. PMID:23746708

  5. Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility

    SciTech Connect

    Awwal, A; Manuel, A; Datte, P; Burkhart, S

    2011-02-28

    The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

  6. The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance

    NASA Astrophysics Data System (ADS)

    Weiß, C.; Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O.; Barros, S.; Bergström, I.; Berthoumieux, E.; Calviani, M.; Guerrero, C.; Sabaté-Gilarte, M.; Tsinganis, A.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Bécares, V.; Beinrucker, C.; Belloni, F.; Bečvář, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Cano-Ott, D.; Cerutti, F.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Dressler, R.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R.; Furman, V.; Ganesan, S.; Gheorghe, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; López, D.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Matteucci, F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Palomo Pinto, R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rubbia, C.; Ryan, J.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, G.; Stamatopoulos, A.; Steinegger, P.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wright, T.; Žugec, P.

    2015-11-01

    At the neutron time-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  7. Geant4 simulation of the n_TOF-EAR2 neutron beam: Characteristics and prospects

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Lo Meo, S.; Guerrero, C.; Cortés-Giraldo, M. A.; Massimi, C.; Quesada, J. M.; Barbagallo, M.; Colonna, N.; Mancusi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.

    2016-04-01

    The characteristics of the neutron beam at the new n_TOF-EAR2 facility have been simulated with the Geant4 code with the aim of providing useful data for both the analysis and planning of the upcoming measurements. The spatial and energy distributions of the neutrons, the resolution function and the in-beam γ-ray background have been studied in detail and their implications in the forthcoming experiments have been discussed. The results confirm that, with this new short (18.5m flight path) beam line, reaching an instantaneous neutron flux beyond 105n/μs/pulse in the keV region, n_TOF is one of the few facilities where challenging measurements can be performed, involving in particular short-lived radioisotopes.

  8. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  9. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.

    PubMed

    Gambarini, G; Magni, D; Regazzoni, V; Borroni, M; Carrara, M; Pignoli, E; Burian, J; Marek, M; Klupak, V; Viererbl, L

    2014-10-01

    Gamma dose and thermal neutron fluence in a phantom exposed to an epithermal neutron beam for boron neutron capture therapy (BNCT) can be measured by means of a single thermoluminescence dosemeter (TLD-700). The method exploits the shape of the glow curve (GC) and requires the gamma-calibration GC (to obtain gamma dose) and the thermal-neutron-calibration GC (to obtain neutron fluence). The method is applicable for BNCT dosimetry in case of epithermal neutron beams from a reactor because, in most irradiation configurations, thermal neutrons give a not negligible contribution to the TLD-700 GC. The thermal neutron calibration is not simple, because of the impossibility of having thermal neutron fields without gamma contamination, but a calibration method is here proposed, strictly bound to the method itself of dose separation. PMID:24435913

  10. Development and demonstration of a multi-channel spheroidal focusing device for neutron beams

    NASA Astrophysics Data System (ADS)

    Hayashida, H.; Soyama, K.; Yamazaki, D.; Maruyama, R.; Yamamura, K.

    2014-07-01

    A multi-channel neutron focusing mirror is a compact device that can effectively enhance neutron intensity because the multi-channel structure can cover a large divergence of a neutron beam. In this study, we attempted to develop a compact multi-channel spheroidal (MS) neutron focusing device for two-dimensional focusing. A prototype of the MS mirror consists of three spheroidal mirrors of different diameters. The mirrors are fabricated through the copper plating method without supermirror coating and are aligned coaxially using ring-shaped spacers. The MS mirror was demonstrated at beam line 10 NOBORU port at J-PARC, which provides neutron beams with time-of-flight spectra. A gain factor of 6 in neutron intensity was obtained over wavelengths greater than 0.5 nm, and an imaging test with sample scanning could be performed with an exposure time of 10 s. A Gd-patterned standard sample was employed and a 2D image with a spatial resolution of 200 μm was successfully obtained.

  11. Resumption of JRR-4 and characteristics of neutron beam for BNCT.

    PubMed

    Nakamura, T; Horiguchi, H; Kishi, T; Motohashi, J; Sasajima, F; Kumada, H

    2011-12-01

    The clinical trials of Boron Neutron Capture Therapy (BNCT) have been conducted using Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Agency (JAEA). On December 28th, 2007, a crack of a graphite reflector in the reactor core was found on the weld of the aluminum cladding. For this reason, specifications of graphite reflectors were renewed; dimensions of the graphite were reduced and gaps of water were increased. All existing graphite reflectors of JRR-4 were replaced by new graphite reflectors. In February 2010 the resumption of JRR-4 was carried out with new graphite reflectors. We measured the characteristics of neutron beam at the JRR-4 Neutron Beam Facility. A cylindrical water phantom of 18.6 cm diameter and 24 cm depth was set in front of the beam port with 1cm gap. TLDs and gold wires were inserted within the phantom when the phantom was irradiated. The results of the measured thermal neutron flux and the gamma dose in water were compared with that of MCNP calculation. The neutron energy spectrum of the calculation model with new reflector had little variation compared to that with old reflector, but intensities of the neutron flux and gamma dose with new reflector were rather smaller than those with old reflector. The calculated results showed the same tendency as that of the experimental results. Therefore, the clinical trials of BNCT in JRR-4 could be restarted. PMID:21621416

  12. Validation of the Pinnacle³ photon convolution-superposition algorithm applied to fast neutron beams.

    PubMed

    Kalet, Alan M; Sandison, George A; Phillips, Mark H; Parvathaneni, Upendra

    2013-01-01

    We evaluate a photon convolution-superposition algorithm used to model a fast neutron therapy beam in a commercial treatment planning system (TPS). The neutron beam modeled was the Clinical Neutron Therapy System (CNTS) fast neutron beam produced by 50 MeV protons on a Be target at our facility, and we implemented the Pinnacle3 dose calculation model for computing neutron doses. Measured neutron data were acquired by an IC30 ion chamber flowing 5 cc/min of tissue equivalent gas. Output factors and profile scans for open and wedged fields were measured according to the Pinnacle physics reference guide recommendations for photon beams in a Wellhofer water tank scanning system. Following the construction of a neutron beam model, computed doses were then generated using 100 monitor units (MUs) beams incident on a water-equivalent phantom for open and wedged square fields, as well as multileaf collimator (MLC)-shaped irregular fields. We compared Pinnacle dose profiles, central axis doses, and off-axis doses (in irregular fields) with 1) doses computed using the Prism treatment planning system, and 2) doses measured in a water phantom and having matching geometry to the computation setup. We found that the Pinnacle photon model may be used to model most of the important dosimetric features of the CNTS fast neutron beam. Pinnacle-calculated dose points among open and wedged square fields exhibit dose differences within 3.9 cGy of both Prism and measured doses along the central axis, and within 5 cGy difference of measurement in the penumbra region. Pinnacle dose point calculations using irregular treatment type fields showed a dose difference up to 9 cGy from measured dose points, although most points of comparison were below 5 cGy. Comparisons of dose points that were chosen from cases planned in both Pinnacle and Prism show an average dose difference less than 0.6%, except in certain fields which incorporate both wedges and heavy blocking of the central axis. All

  13. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    Francesco Ganda; Jasmina Vujic; Ehud Greenspan; Ka-Ngo Leung

    2010-12-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  14. Monte Carlo simulation of neutron noise effects on beam position determination at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Leach, Richard R.; Datte, Philip; Manuel, Anastacia

    2013-09-01

    Images obtained through charged coupled device (CCD) cameras in the National Ignition Facility (NIF) are crucial to precise alignment of the 192 laser beams to the NIF target-chamber center (TCC). Cameras in and around the target chamber are increasingly exposed to the effects of neutron radiation as the laser power is increased for high energy fusion experiments. NIF was carefully designed to operate under these conditions. The present work examines the degradation of the measured TCC camera position accuracy resulting from the effects of neutron radiation on the sensor and verifies operation within design specifications. Both synthetic and real beam images are used for measuring position degradation. Monte Carlo simulations based on camera performance models are used to create images with added neutron noise. These models predict neutron induced camera noise based on exposure estimates of the cumulative single-shot fluence in the NIF environment. The neutron induced noise images are used to measure beam positions on a target calculated from the alignment images with the added noise. The effects of this noise are also determined using noise artifacts from real camera images viewing TCC to estimate beam position uncertainty.

  15. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    SciTech Connect

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  16. Simple microscope using a compound refractive lens and a wide-bandwidth thermal neutron beam

    SciTech Connect

    Cremer, J. T.; Park, H.; Piestrup, M. A.; Gary, C. K.; Pantell, R. H.; Flocchini, R. G.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2007-04-02

    The results of imaging experiments using biconcave, spherical compound refractive lenses (CRLs) and a wide-bandwidth thermal neutron beam are presented. Two CRLs were used, consisting of 155 beryllium and 120 copper lenses. The experiments were performed using a thermal neutron beam line at McClellan Nuclear Radiation Center reactor. The authors obtained micrographs of cadmium slits with up to 5x magnification and 0.3 mm resolution. The CRL resolution was superior to a pinhole camera with the same aperture diameter. The modulation transfer function (MTF) of the CRL was calculated and compared with the measured MTF at five spatial frequencies, showing good agreement.

  17. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  18. Dosimetry of fast neutron beams using CaSO 4:Dy (TLD-900) pellets

    NASA Astrophysics Data System (ADS)

    Pradhan, A. S.; Rassow, J.; Meissner, P.

    1985-05-01

    This paper describes the use of commercially avialable CaSO 4:Dy (TLD-900) pellets for the measurement of absorbed doses of fast neutrons and gamma rays in mixed fields with one single detector. The gamma ray absorbed doses could be estimated by recording the thermoluminiscence (TL) induced during the neutron beam irradiations, whereas the fast neutron absorbed doses were measured by employing a post-irradiation TL accumulation due to activation of sulphur by the threshold nuclear reaction 32S(n, p) 32P in CaSO 4:Dy.

  19. Radiation damage in silicon due to albedo neutrons emitted from hadronic beam dumps (Fe and U)

    SciTech Connect

    Gabriel, T.A.; Bishop, B.L.

    1987-01-01

    Calculations have been carried out to determine the level of radiation damage that can be expected from albedo neutrons when 1- and 5-GeV negative pions are incident on iron and uranium beam dumps. The calculated damage data are presented in several ways including neutron fluence above 0.111 MeV, 1 MeV equivalent neutron fluence, damage energy deposition, and DPA or displacements per atom. Details are presented as to the method of calculation. 14 refs., 1 fig., 1 tab.

  20. Neutron spectra from beam-target reactions in dense Z-pinches

    SciTech Connect

    Appelbe, B. Chittenden, J.

    2015-10-15

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  1. Neutron spectra from beam-target reactions in dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2015-10-01

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  2. THE METHODS OF PRODUCING AND ANALYZING POLARIZED NEUTRON BEAMS FOR HYSPEC AT THE SNS.

    SciTech Connect

    SHAPIRO, S.M.; PASSELL, L.; ZALIZNYAK, A.; GHOSH, V.J.; LEONHARDT, W.L.; HAGEN, M.E.

    2005-04-25

    The Hybrid Spectrometer (HYSPEC), under construction at the SNS on beam line 14B, is the only inelastic scattering instrument designed to enable polarization of the incident and the scattered neutron beams. A Heusler monochromator will replace the graphite crystal for producing polarized neutrons. In the scattered beam it is planned to use a collimator--multi-channel supermirror bender array to analyze the polarization of the scattered beam over the final energy range from 5-20 meV. Other methods of polarization analysis under consideration such as transmission filters using He{sup 3}, Sm, and polarized protons are considered. Their performance is estimated and a comparison of the various methods of polarization is made.

  3. The formation of an ion beam in a vacuum neutron tube

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Tarakanov, V. P.

    2014-09-01

    The formation of a deuteron beam in a diode with a plasma emitter that is integrated into the structure of a vacuum neutron tube is considered. Computations are carried out for plasma with given time dependences of parameters (density, relative concentration, and expansion velocity) at the inlet to an accelerating gap. It is shown that it is possible to increase the ion-beam current possible by sectioning the diode at the given external parameters.

  4. RESULTS OF BACKGROUND SUBTRACTION TECHNIQUES ON THE SPALLATION NEUTRON SOURCE BEAM LOSS MONITORS

    SciTech Connect

    Pogge, James R; Zhukov, Alexander P

    2010-01-01

    Recent improvements to the Spallation Neutron Source (SNS) beam loss monitor (BLM) designs have been made with the goal of significantly reducing background noise. This paper outlines this effort and analyzes the results. The significance of this noise reduction is the ability to use the BLM sensors [1], [2], [3] distributed throughout the SNS accelerator as a method to monitor activation of components as well as monitor beam losses.

  5. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    SciTech Connect

    Maglieri, R; Seuntjens, J; Kildea, J; Liang, L; DeBlois, F; Evans, M; Licea, A; Dubeau, J; Witharana, S

    2014-06-15

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10{sup 2} n/Gy, 0.026 × 10{sup 2} n/Gy and 0.59 × 101{sup 2} n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co

  6. Novel neutralized-beam intense neutron source for fusion technology development

    SciTech Connect

    Osher, J.E.; Perkins, L.J.

    1983-07-08

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D/sup 0/ and T/sup 0/ beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T/sup 0/ + T/sup +/ space-charge-neutralized beam incident on either a LiD or gas D/sub 2/ target with calculated 14-MeV neutron yields of 2 x 10/sup 15//s, 7 x 10/sup 15//s, or 1.6 x 10/sup 16//s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm/sup 2/.

  7. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    PubMed

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed. PMID:7869995

  8. Characterization of a tunable quasi-monoenergetic neutron beam from deuteron breakup

    NASA Astrophysics Data System (ADS)

    Bleuel, D. L.; McMahan, M. A.; Ahle, L.; Barquest, B. R.; Cerny, J.; Heilbronn, L. H.; Jewett, C. C.

    2007-08-01

    A neutron irradiation facility is being developed at the 88-inch cyclotron at Lawrence Berkeley National Laboratory for the purposes of measuring neutron reaction cross sections on radioactive targets and for radiation effects testing. Applications are of benefit to stockpile stewardship, nuclear astrophysics, next generation advanced fuel reactors and cosmic radiation biology and electronics in space. The facility will supply a tunable, quasi-monoenergetic neutron beam in the range of 10-30 MeV or a white neutron source, produced by deuteron breakup reactions on thin and thick targets, respectively. Because the deuteron breakup reaction has not been well studied at intermediate incident deuteron energies, above the target Coulomb barrier and below 56 MeV, a detailed characterization was necessary of the neutron spectra produced by thin targets. Neutron time-of-flight (TOF) methods have been used to measure the neutron spectra produced on thin targets of low-Z (titanium) and high-Z (tantalum) materials at incident deuteron energies of 20 MeV and 29 MeV at 0°. Breakup neutrons at both energies from low-Z targets appear to peak at roughly half of the available kinetic energy, while neutrons from high-Z interactions peak somewhat lower in energy, owing to the increased proton energy due to breakup within the Coulomb field. Furthermore, neutron spectra appear narrower for high-Z targets. These centroids are consistent with recent preliminary proton energy measurements using silicon telescope detectors conducted at LBNL, though there is a notable discrepancy with spectral widths. Prospects for producing a tunable, quasi-monoenergetic neutron facility of 106-108 n/cm2/s at LBNL are promising.

  9. Measurements of Neutron Capture Cross-Section for Tantalum at the Neutron Filtered Beams

    NASA Astrophysics Data System (ADS)

    Gritzay, Olena; Libman, Volodymyr

    2009-08-01

    The neutron capture cross sections of tantalum have been measured for the neutron energies 2 and 59 keV using the WWR-M Kyiv Research Reactor (KRR) of the Institute for Nuclear Research of the National Academy of Science of Ukraine. The cross sections of 181Ta (n, γ) 182Ta reaction were obtained by the activation method using a gamma-spectrometer with Ge(Li)-detector. The obtained neutron capture cross sections were compared with the known experimental data from database EXFOR/CSISRS and the ENDF libraries.

  10. A beam-modification assembly for experimental neutron capture therapy of brain tumors

    SciTech Connect

    Slatkin, D.N.; Kalef-Ezra, J.A.; Saraf, S.K.; Joel, D.D.

    1989-01-01

    Recent attempts to treat intracerebral rat gliomas by boron neutron capture therapy (BNCT) have been somewhat disappointing, perhaps in part because of excessive whole-body and nasopharyngeal irradiation. Intracerebral rat gliomas were treated by BNCT with more success using a new beam-modification assembly. 3 refs., 2 figs.

  11. Beam asymmetry {Sigma} measurements of {pi}{sup -} photoproduction on neutrons

    SciTech Connect

    Mandaglio, G.; Manganaro, M.; Giardina, G.; Mammoliti, F.; Bellini, V.; Giusa, A.; Randieri, C.; Russo, G.; Sperduto, M. L.; Bocquet, J. P.; Lleres, A.; Rebreyend, D.; D'Angelo, A.; Fantini, A.; Franco, D.; Schaerf, C.; Vegna, V.

    2010-10-15

    The -beam asymmetry {Sigma} in the photoproduction of negative pions on quasi-free neutrons in a deuterium target was measured at the Grenoble Anneau Accelerateur Laser in the energy interval 700-1500 MeV and over a wide angular range, using polarized and tagged photons. Results are compared with recent partial-wave analyses.

  12. Polarized Neutron Beam at the SANS Diffractometer KWS2 of the JCNS

    NASA Astrophysics Data System (ADS)

    Ioffe, A.; Feoktystov, A.; Staringer, S.; Radulescu, A.; Babcock, E.; Salhi, Z.

    This article describes a high-efficiency transmission polarizer that has been installed at the high-intensity SANS diffractometer KWS2 of the Jülich Centre for Neutron Science. The polarizer is primarily designed to be used in the low resolution/high Q-range mode of this diffractometer for the purpose of the separation of coherent scattering on biological objects from an intrinsic background caused by incoherent scattering on their hydrogen atoms. The polarizer operates with a rather divergent incident beam and is placed at about 2m from the sample (upstream in the beam). The diffuse spin-flip scattering that would become critical for such geometry is suppressed due to the use of a strong, about 0.14T, magnetic field. The polarizer has been characterized by a 3He neutron spin filter and provides very high polarization - 93% at 4.5 Å and 99.7% for neutrons with wavelength above 6 Å - for the SANS collimation 4m. The polarizer transmission at 4.5 Å amounts to 94% of the desired spin component. The polarizer is placed in the collimation base of the instrument and can be easily put in and out of the beam thus allowing for "an instant" switch between polarized and non-polarized neutron beams.

  13. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  14. Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yani, S.; Tursinah, R.; Rhani, M. F.; Soh, R. C. X.; Haryanto, F.; Arif, I.

    2016-03-01

    High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible.

  15. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    SciTech Connect

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-23

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  16. CCD detectors for fast neutron radiography and tomography with a cone beam

    NASA Astrophysics Data System (ADS)

    Bogolubov, E.; Bugaenko, O.; Kuzin, S.; Mikerov, V.; Monitch, E.; Monitch, A.; Pertsov, A.

    2005-04-01

    Two new types of luminescent CCD-detectors intended for fast neutron radiography and tomography with a cone neutron beam are described in the paper. A 6 cm thick luminescent screen made of polystyrene is used in the first one to convert fast neutrons. A special optics has been developed to transfer the optical image from the screen to the CCD-matrix. The optics design helps not to loose spatial resolution due to the beam divergence and screen thickness. The second detector is based on the use of a fiber optical screen made of luminescent fibers in the form of a rectangular truncated pyramid. Principles of the detectors operation have been experimentally proved. The obtained results show that the detectors provide a spatial resolution of about 2 mm.

  17. Mechanical research and development of a monocrystalline silicon neutron beam window for CSNS

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Qu, Hua-Min

    2015-09-01

    The monocrystalline silicon neutron beam window is one of the key components of a neutron spectrometer. Monocrystalline silicon is brittle and its strength is generally described by a Weibull distribution due to the material inhomogeneity. The window is designed not simply according to the mean strength but also according to the survival rate. The total stress of the window is stress-linearized into a combination of membrane stress and bending stress by finite element analysis. The window is a thin circular plate, so bending deformation is the main cause of failure and tensile deformation is secondary and negligible. Based on the Weibull distribution of bending strength of monocrystalline silicon, the optimized neutron beam window is designed to be 1.5 mm thick. Its survival rate is 0.9994 and its transmittance is 0.98447, which meets both physical and mechanical requirements.

  18. Neutron spectra measurement and comparison of the HFR and THOR BNCT beams.

    PubMed

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-07-01

    This paper aims to measure the spectra of HB11 (high flux reactor, HFR) and the Tsing Hua open-pool reactor (THOR) boron neutron capture therapy (BNCT) beams by multiple activation foils. The self-shielding corrections were made with the aid of MCNP calculations. The initial spectra were adjusted by a sophisticated process named coarse-scaling adjustment using SAND-EX, which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with excellent continuity. The epithermal neutron flux of the THOR beam is about three times of HB11. The thermal neutron flux, boron and gold reaction rates along the central axis of a PMMA phantom are calculated for both adjusted spectra for comparison. PMID:19409798

  19. Generation and detection of neutron beams with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry A.; Barankov, Roman A.; Clark, Charles W.; Huber, Michael G.; Arif, Muhammad; Cory, David G.

    2015-05-01

    Orbital angular momentum (OAM) states of light, in which photons carry lℏ units of angular momentum along their direction of propagation, are of interest in a variety of applications. The Schrödinger equation for massive particles also supports OAM solutions, and OAM states have been demonstrated with ultracold atoms and electrons. Here we report the first generation and detection of OAM states of neutrons, with l up to 7. These are made using spiral phase plates (SPP), milled out of 6061 aluminum alloy dowels with a high-resolution computer-controlled milling machine. When a SPP is placed in one arm of a Mach-Zehnder neutron interferometer, the interferogram reveals the characteristic patterns of OAM states. Addition of angular momenta is effected by concatenation of SPPs with different values of l; we have found the experimental result 1 + 2 = 3 , in reasonable agreement with theory. The advent of OAM provides an additional, quantized, degree of freedom to neutron interferometry, enlarging the qubit structure available for tests of quantum information processing and foundations of quantum physics.

  20. On-line neutron beam monitoring of the Finnish BNCT facility

    NASA Astrophysics Data System (ADS)

    Tanner, Vesa; Auterinen, Iiro; Helin, Jori; Kosunen, Antti; Savolainen, Sauli

    1999-02-01

    A Boron Neutron Capture Therapy (BNCT) facility has been built at the FiR 1 research reactor of VTT Chemical Technology in Espoo, Finland. The facility is currently undergoing dosimetry characterisation and neutron beam operation research for clinical trials. The healthy tissue tolerance study, which was carried out in the new facility during spring 1998, demonstrated the reliability and user-friendliness of the new on-line beam monitoring system designed and constructed for BNCT by VTT Chemical Technology. The epithermal neutron beam is monitored at a bismuth gamma shield after an aluminiumfluoride-aluminium moderator. The detectors are three pulse mode U 235-fission chambers for epithermal neutron fluence rate and one current mode ionisation chamber for gamma dose rate. By using different detector sensitivities the beam intensity can be measured over a wide range of reactor power levels (0.001-250 kW). The detector signals are monitored on-line with a virtual instrumentation (LabView) based PC-program, which records and displays the actual count rates and total counts of the detectors in the beam. Also reactor in-core power instrumentation and control rod positions can be monitored via another LabView application. The main purpose of the monitoring system is to provide a dosimetric link to the dose in a patient during the treatment, as the fission chamber count rates have been calibrated to the induced thermal neutron fluence rate and to the absorbed dose rate at reference conditions in a tissue substitute phantom.

  1. Ion source and beam guiding studies for an API neutron generator

    SciTech Connect

    Sy, A.; Ji, Q.; Persaud, A.; Ludewigt, B. A.; Schenkel, T.

    2013-04-19

    Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ion current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.

  2. Enhancement of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    SciTech Connect

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1992-12-31

    Improvements for the Brookhaven Medical Research Reactor (BMRR) epithermal neutron beam have been evaluated by MCNP calculations and measurements. Different dosimetric measurements have been made after one fuel element was in place of the graphite stringer in the core. Measurements show an 18% increase of beam intensity without reducing the beam quality. These results are consistent with the predictions of an MCNP calculation. Major changes to enhance the beam include rearranging the fuel elements in the core, placing aluminum pellets in the moderator tank C, redesigning the moderator assembly, replacing the outer bismuth by lead plus 0.05% atomic number density of {sup 6}Li, and modifying the irradiation port to accommodate an air indentation. The MCNP calculated values for the present and new designs were compared to demonstrate the improvements. The results show that the epithermal flux can be increased by 80% at the irradiation port. The neutron dose per epithermal neutron can be reduced by 30%. The beam directionality can be improved by 7%.

  3. Enhancement of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    SciTech Connect

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1992-01-01

    Improvements for the Brookhaven Medical Research Reactor (BMRR) epithermal neutron beam have been evaluated by MCNP calculations and measurements. Different dosimetric measurements have been made after one fuel element was in place of the graphite stringer in the core. Measurements show an 18% increase of beam intensity without reducing the beam quality. These results are consistent with the predictions of an MCNP calculation. Major changes to enhance the beam include rearranging the fuel elements in the core, placing aluminum pellets in the moderator tank C, redesigning the moderator assembly, replacing the outer bismuth by lead plus 0.05% atomic number density of [sup 6]Li, and modifying the irradiation port to accommodate an air indentation. The MCNP calculated values for the present and new designs were compared to demonstrate the improvements. The results show that the epithermal flux can be increased by 80% at the irradiation port. The neutron dose per epithermal neutron can be reduced by 30%. The beam directionality can be improved by 7%.

  4. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. PMID:25564673

  5. Experimental imaging and profiling of absorbed dose in phantoms exposed to epithermal neutron beams for neutron capture therapy

    SciTech Connect

    Gambarini, G.; Colombi, C.

    2003-08-26

    Absorbed-dose images and depth-dose profiles have been measured in a tissue-equivalent phantom exposed to an epithermal neutron beam designed for neutron capture therapy. The spatial distribution of absorbed dose has been measured by means of gel dosimeters, imaged with optical analysis. From differential measurements with gels having different isotopic composition, the contributions of all the components of the neutron field have been separated. This separation is important, owing to the different biological effectiveness of the various kinds of emitted radiation. The doses coming from the reactions 1H(n,{gamma})2H and 14N(n,p)14C and the fast-neutron dose have been imaged. Moreover, a volume simulating a tumour with accumulation of 10B and/or 157Gd has been incorporated in the phantom and the doses due to the reactions with such isotopes have been imaged and profiled too. The results have been compared with those obtained with other experimental techniques and the agreement is very satisfactory.

  6. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter. PMID:26298435

  7. Neutronic performance of the MEGAPIE spallation target under high power proton beam

    NASA Astrophysics Data System (ADS)

    Michel-Sendis, F.; Chabod, S.; Letourneau, A.; Panebianco, S.; Zanini, L.

    2010-07-01

    The MEGAPIE project, aiming at the construction and operation of a megawatt liquid lead-bismuth spallation target, constitutes the first step in demonstrating the feasibility of liquid heavy metal target technologies as spallation neutron sources. In particular, MEGAPIE is meant to assess the coupling of a high power proton beam with a window-concept heavy liquid metal target. The experiment has been set at the Paul Scherrer Institute (PSI) in Switzerland and, after a 4-month long irradiation, has provided unique data for a better understanding of the behavior of such a target under realistic irradiation conditions. A complex neutron detector has been developed to provide an on-line measurement of the neutron fluency inside the target and close to the proton beam. The detector is based on micrometric fission chambers and activation foils. These two complementary detection techniques have provided a characterization of the neutron flux inside the target for different positions along its axis. Measurements and simulation results presented in this paper aim to provide important recommendations for future accelerator driven systems (ADS) and neutron source developments.

  8. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  9. Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons

    PubMed Central

    Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-01-01

    Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699

  10. Development of a fast traveling-wave beam chopper for the National Spallation Neutron Source

    SciTech Connect

    Kurennoy, S.S.; Jason, A.J.; Krawczyk, F.L.; Power, J.

    1997-10-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the National Spallation Neutron Source (NSNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5-MHz beam structure--beam chopping in its front end, at the beam energy 2.5 MeV. The R and D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations the authors study transient effects in such structures to choose an optimal chopper design.

  11. LICORNE: A new and unique facility for producing intense, kinematically focused neutron beams at the IPN Orsay

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipre, P.; Leniau, B.; Matea, I.; Verney, D.; Oberstedt, S.; Billnert, R.; Oberstedt, A.; Georgiev, G.; Ljungvall, J.

    2013-12-01

    LICORNE is a new neutron source recently installed at the tandem accelerator of the Institut de Physique Nucléaire d'Orsay, where a Li7-beam is used to bombard a hydrogen-containing target to produce an intense forward-directed neutron beam. The directionality of the beam, which is the unique characteristic of LICORNE, will permit the installation of γ-ray detectors dedicated to the investigation of fission fragment de-excitation which are unimpeded by neutrons from the source. A first experimental program will focus on the measurement of prompt γ-ray emission in the neutron-induced fission of fertile and fissile isotopes at incident neutron energies relevant for the core design of Generation-IV nuclear reactors. Other potential uses of the LICORNE facility for both fundamental and applied physics research are also presented.

  12. A new measurement of Beam Asymmetry in Pion Photoproduction from the Neutron using CLAS

    SciTech Connect

    D. Sokhan, D. Watts, D. Branford, F. Klein

    2010-08-01

    We present a preliminary analysis of the photon beam asymmetry observable (Sigma) from the photoproduction reaction channel gamma+ n -> p + pi-. This new data was obtained using the near-4pi CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory, USA, employing a linearly polarised photon beam with an energy range 1.1 - 2.3 GeV. The measurement will provide new data to address the poorly established neutron excitation spectrum and will greatly expand the sparse world data-set both in energy and angle.

  13. Performance evaluation of the source description of the THOR BNCT epithermal neutron beam.

    PubMed

    Liu, Yuan-Hao; Tsai, Pi-En; Yu, Hui-Ting; Lin, Yi-Chun; Huang, Yu-Shiang; Huang, Chun-Kai; Liu, Yen-Wan Hsueh; Liu, Hong-Ming; Jiang, Shiang-Huei

    2011-12-01

    This paper aims to evaluate the performance of the source description of the THOR BNCT beam via different measurement techniques in different phantoms. The measurement included (1) the absolute reaction rate measurement of a set of triple activation foils, (2) the neutron and gamma-ray dose rates measured using the paired ionization chamber method, and (3) the relative reaction rate distributions obtained using the indirect neutron radiography. Three source descriptions, THOR-Y09, surface source file RSSA, and THOR-50C, were tested. The comparison results concluded that THOR-Y09 is a well-tested source description not only for neutron components, but also for gamma-ray component. PMID:21570855

  14. 3D imaging using combined neutron-photon fan-beam tomography: A Monte Carlo study.

    PubMed

    Hartman, J; Yazdanpanah, A Pour; Barzilov, A; Regentova, E

    2016-05-01

    The application of combined neutron-photon tomography for 3D imaging is examined using MCNP5 simulations for objects of simple shapes and different materials. Two-dimensional transmission projections were simulated for fan-beam scans using 2.5MeV deuterium-deuterium and 14MeV deuterium-tritium neutron sources, and high-energy X-ray sources, such as 1MeV, 6MeV and 9MeV. Photons enable assessment of electron density and related mass density, neutrons aid in estimating the product of density and material-specific microscopic cross section- the ratio between the two provides the composition, while CT allows shape evaluation. Using a developed imaging technique, objects and their material compositions have been visualized. PMID:26953978

  15. Neutron capture cross section measurements at the beam line 04 of J-PARC/MLF

    SciTech Connect

    Igashira, Masayuki; Harada, Hideo; Kiyanagi, Yoshiaki

    2012-11-12

    An Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) at the beam line 04 of MLF (Material and Life Sciences Experimental Facilities) of J-PARC (Japan Proton Accelerator Research Complex) was installed to measure neutron capture cross sections related to the research and development of innovative nuclear systems, the study on nuclear astrophysics, etc. ANNRI has two gamma-ray spectrometers: one is a Ge detector array placed at 22 m from the coupled type moderator of the spallation neutron source of J-PARC/MLF and the other is a pair of NaI(Tl) detectors at 28 m. Until the 11th of March, 2011, when we had big earthquakes, we measured capture cross sections of Zr-93, Tc-99, Pd-107, I-129, Cm-244, Cm-246, etc. After checking and repairing ANNRI, we restarted measurements, and ANNRI has been open to worldwide users at present.

  16. A measurement of the fast-neutron sensitivity of a Geiger - Müller detector in the pulsed neutron beam from a superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Maughan, R. L.; Yudelev, M.; Kota, C.

    1996-08-01

    The value of a commercially available miniature energy compensated Geiger - Müller (GM) detector has been determined using the modified lead attenuation method of Hough. The measurements were made in a d(48.5) - Be neutron beam produced by the superconducting cyclotron based neutron therapy facility at Harper Hospital. The unique problems associated with making measurements in a 2 ms duration pulsed beam with a 20% duty cycle are discussed. The beam monitoring system, which allows the beam pulse shape at low beam intensities to be measured, is described. By gating the GM output with a discriminator pulse derived from the beam pulse shape, the gamma-ray count rates and dead-time corrections within the 2 ms pulse and between pulses can be measured separately. The value of determined for this GM detector is consistent with the values measured by other workers with identical and similar detectors in neutron beams with comparable, but not identical, neutron spectra.

  17. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    PubMed

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences. PMID:10676516

  18. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    NASA Astrophysics Data System (ADS)

    Lychagin, E. V.; Mityukhlyaev, V. A.; Muzychka, A. Yu.; Nekhaev, G. V.; Nesvizhevsky, V. V.; Onegin, M. S.; Sharapov, E. I.; Strelkov, A. V.

    2016-07-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium (4He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing 4He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator-reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of 4He source with solid methane (CH4) or/and liquid deuterium (D2) moderator-reflector. We show that such a source with CH4 moderator-reflector at the PIK reactor would provide the UCN density of ~1·105 cm-3, and the UCN production rate of ~2·107 s-1. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D2 moderator-reflector would reach the value of ~2·105 cm-3, and the UCN production rate would be equal ~8·107 s-1. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  19. Pulsed neutron-beam focusing by modulating a permanent-magnet sextupole lens

    NASA Astrophysics Data System (ADS)

    Yamada, Masako; Iwashita, Yoshihisa; Ichikawa, Masahiro; Fuwa, Yasuhiro; Tongu, Hiromu; Shimizu, Hirohiko M.; Mishima, Kenji; Yamada, Norifumi L.; Hirota, Katsuya; Otake, Yoshie; Seki, Yoshichika; Yamagata, Yutaka; Hino, Masahiro; Kitaguchi, Masaaki; Garbe, Ulf; Kennedy, Shane J.; Tung Lee, Wai; Andersen, Ken H.; Guerard, Bruno; Manzin, Giuliana; Geltenbort, Peter

    2015-04-01

    We have developed a compact permanent-magnet sextupole lens for neutrons that can focus a pulsed beam with a wide wavelength range-the maximum wavelength being more than double the minimum-while sufficiently suppressing the effect of chromatic aberration. The bore diameter is #x00F8;15 mm. Three units of a double-ring sextupole with a length of 66 mm are cascaded, resulting in a total length of 198 mm. The dynamic modulation range of the unit-averaged field gradient is 1.06 × 104-5.86 × 104Tm^{-2}. Permanent magnets and newly developed torque-canceling elements make the device compact, its production costs low, and its operation simpler than that of other magnetic lenses. The efficacy of this lens was verified using very cold neutrons. The diameter of the focused beam spots over the wavelength range of 27-55 Å was the same as that of the source aperture (2 mm diameter) when the magnification of the optical arrangement was unity. The total beam flux over this wavelength range was enhanced by a factor of 43. The focusing distance from the source to the detector was 1.84 m. In addition, in a demonstration of neutron image magnification, the image of a sample mask magnified by a factor of 4.1 was observed when the magnification of the optical arrangement was 5.0.

  20. Radiobiological intercomparison of clinical neutron beams for growth inhibition in Vicia faba bean roots

    SciTech Connect

    Beauduin, M.; Gueulette, J.; Vynckier, S.; Wambersie, A.

    1989-02-01

    Relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) values of different neutron beams produced at the variable energy cyclotron Cyclone of Louvain-la-Neuve (Belgium) were determined. The neutrons were obtained by bombarding a beryllium target with 34-, 45-, 65-, or 75-MeV protons or with 50-MeV deuterons. The biological system was growth inhibition in Vicia faba bean roots. Taking the p(65) + Be neutron beam as a reference, RBE values were found equal to 1.36 +/- 0.2, 1.20 +/- 0.1, 1.00 (ref), 0.98 +/- 0.1, and 1.18 +/- 0.1, respectively; the doses corresponding to 50% growth inhibition were 0.39, 0.44, 0.53, 0.54, and 0.45 Gy. For the same beams, OER values were found equal to 1.55 +/- 0.1, 1.38 +/- 0.1, 1.29 +/- 0.1, 1.41 +/- 0.1, and 1.60 +/- 0.2, respectively.

  1. Effect of Driver Impedance on Dense Plasma Focus Z-Pinch Neutron Yield and Beam Acceleration

    NASA Astrophysics Data System (ADS)

    Sears, J.; Link, A.; Ellsworth, J.; Falabella, S.; Rusnak, B.; Tang, V.; Schmidt, A.; Welch, D.

    2014-10-01

    We explore the effect of driver characteristics on dense plasma focus (DPF) neutron yield and beam acceleration using particle-in-cell (PIC) simulations of a kJ-scale DPF. Our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. Simulations are benchmarked to measurements of a table top kJ DPF experiment with neutron yield measured with He3-based detectors. Simulated neutron yield scales approximately with the fourth power of peak current, I4. We also probe the accelerating fields by measuring the acceleration of a 4 MeV deuteron beam and by measuring the DPF self-generated beam energy distribution, finding gradients higher than 50 MV/m. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  2. PERFORMING DIAGNOSTICS ON THE SPALLATION NEUTRON SOURCE VISION BEAM LINE TO ELIMINATE HIGH VIBRATION LEVELS AND PROVIDE A SUSTAINABLE OPERATION

    SciTech Connect

    Van Hoy, Blake W

    2014-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had been addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was

  3. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N

  4. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-01

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li2CO3 was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  5. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study.

    PubMed

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-21

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li(2)CO(3) was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice. PMID:17327660

  6. SU-E-T-602: Beryllium Seeds Implant for Photo-Neutron Yield Using External Beam Therapy

    SciTech Connect

    Koren, S; Veltchev, I; Furhang, E

    2014-06-01

    Purpose: To evaluate the Neutron yield obtained during prostate external beam irradiation. Methods: Neutrons, that are commonly a radiation safety concern for photon beams with energy above 10 MV, are induced inside a PTV from Beryllium implemented seeds. A high megavoltage photon beam delivered to a prostate will yield neutrons via the reaction Be-9(γ,n)2?. Beryllium was chosen for its low gamma,n reaction cross-section threshold (1.67 MeV) to be combined with a high feasible 25 MV photon beam. This beam spectra has a most probable photon energy of 2.5 to 3.0 MeV and an average photon energy of about 5.8 MeV. For this feasibility study we simulated a Beryllium-made common seed dimension (0.1 cm diameter and 0.5 cm height) without taking into account encapsulation. We created a 0.5 cm grid loading pattern excluding the Urethra, using Variseed (Varian inc.) A total of 156 seeds were exported to a 4cm diameter prostate sphere, created in Fluka, a particle transport Monte Carlo Code. Two opposed 25 MV beams were simulated. The evaluation of the neutron dose was done by adjusting the simulated photon dose to a common prostate delivery (e.g. 7560 cGy in 42 fractions) and finding the corresponding neutron dose yield from the simulation. A variance reduction technique was conducted for the neutrons yield and transported. Results: An effective dose of 3.65 cGy due to neutrons was found in the prostate volume. The dose to central areas of the prostate was found to be about 10 cGy. Conclusion: The neutron dose yielded does not justify a clinical implant of Beryllium seeds. Nevertheless, one should investigate the Neutron dose obtained when a larger Beryllium loading is combined with commercially available 40 MeV Linacs.

  7. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  8. It may be Possible to Use a Neutron Beam as Propulsion for Spacecraft

    NASA Astrophysics Data System (ADS)

    Kriske, Richard M.

    2016-01-01

    It may be possible to keep Xenon 135 in a Superpositioned state with Xe-136 and Cs 135, the two decay products of Xenon 135. This may be done using a Gamma Ray or an X-ray Laser. At first glance it has the look and feel of yet another Noble Gas Laser. The difference is that it uses Neutron states within the Nucleus. The Neutrons would be emitted with a modulated Gamma or X-ray photon. In essence it may be possible to have a totally new type of Laser---This author calls them "Matter Lasers", where a lower energy photon with fewer Quantum Numbers would be used with a Noble Gas to produce a particle beam with higher energy and more Quantum Numbers. It may be possible to replace cumbersome particle accelerators with this type of Laser, to make mass from energy, via a Neutron Gas. This would be a great technological advance in Rocket Propulsion as well; low mass photon to high mass particle, such as a Higgs particle or a Top Quark. The Xenon 135, could come from a Fission Reactor within the Space Craft, as it is a reactor poison. The workings of an X-ray laser is already known and table top versions of it have been developed. Gamma Ray lasers are already in use and have been tested. A Laser would have a columnated beam with a very precise direction, unlike just a Neutron source which would go in all directions. Of course this beam could be used as a spectroscopic tool as well, in order to determine the composition of the matter that the spacecraft encounters. The spectroscopic tool could look for "Dark Matter" and other exotic types of matter that may occur in outerspace. The spacecraft could potentially reach "near speed of light velocities" in a fairly short time, since the Laser would be firing off massive particles, with great momentum. Lastly the precise Neutron beam could be used as a very powerful weapon or as a way of clearing space debri, since it could "force Nuclear Reactions" onto the object being fired upon, making it the ultimate space weapon, and

  9. Changes in biological effectiveness with depth of the Medicyc neutron therapy beam.

    PubMed

    Courdi, A; Brassart, N; Hérault, J; Gabillat, J M; Mari, D; Pignol, J P; Chauvel, P

    1996-01-01

    V79 cells were exposed to fast neutrons generated by 60 MeV p-->Be produced by the cyclotron Medicyc at four different depths: 1.3, 25.8, 72.2 and 116.8 mm. Survival was assessed by the in vitro colony method. Mean inactivation doses (MID) were significantly different among the four points. The ratio of MID was used to determine the relative efficiency of the neutron beam at these points. Compared to 25.8 mm depth, a 40% increase in biological effect was observed at the superficial point versus a 14 to 16% decrease in effect for the deeper points. This is ascribed to absorption of low energy neutrons near the surface and to beam hardening with depth. Taking in consideration the relative physical dose delivered, these findings suggest that skin-sparing may be markedly reduced and that the lower effectiveness with depth should be kept in mind when dealing with deep tumours. PMID:8949751

  10. Monte Carlo Simulations on Neutron Transport and Absorbed Dose in Tissue-Equivalent Phantoms Exposed to High-Flux Epithermal Neutron Beams

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Gambarini, G.; Negri, A.; Carrara, M.; Burian, J.; Viererbl, L.

    2010-04-01

    Presently there are no standard protocols for dosimetry in neutron beams for boron neutron capture therapy (BNCT) treatments. Because of the high radiation intensity and of the presence at the same time of radiation components having different linear energy transfer and therefore different biological weighting factors, treatment planning in epithermal neutron fields for BNCT is usually performed by means of Monte Carlo calculations; experimental measurements are required in order to characterize the neutron source and to validate the treatment planning. In this work Monte Carlo simulations in two kinds of tissue-equivalent phantoms are described. The neutron transport has been studied, together with the distribution of the boron dose; simulation results are compared with data taken with Fricke gel dosimeters in form of layers, showing a good agreement.

  11. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam

    SciTech Connect

    Endo, Satoru; Tanaka, Kenichi; Takada, Masashi; Onizuka, Yoshihiko; Miyahara, Nobuyuki; Sato, Tatsuhiko; Ishikawa, Masayori; Maeda, Naoko; Hayabuchi, Naofumi; Shizuma, Kiyoshi; Hoshi, Masaharu

    2007-09-15

    Absorbed doses from main charged-particle beams and charged-particle fragments have been measured with high accuracy for particle therapy, but there are few reports for doses from neutron components produced as fragments. This study describes the measurements on neutron doses produced by carbon beams; microdosimetric distributions of secondary neutrons produced by 290 MeV/nucleon carbon beams have been measured by using a tissue equivalent proportional counter at the Heavy Ion Medical Accelerator in Chiba, Japan at the National Institute of Radiological Sciences. The microdosimetric distributions of the secondary neutron were measured on the distal and lateral faces of a body-simulated acrylic phantom (300 mm heightx300 mm widthx253 mm thickness). To confirm the dose measurements, the neutron energy spectra produced by incident carbon beams in the acrylic phantom were simulated by the particle and heavy ion transport code system. The absorbed doses obtained by multiplying the simulated neutron energy spectra with the kerma factor calculated by MCNPX agree with the corresponding experimental data fairly well. Downstream of the Bragg peak, the ratio of the neutron dose to the carbon dose at the Bragg peak was found to be a maximum of 1.4x10{sup -4} and the ratio of neutron dose was a maximum of 3.0x10{sup -7} at a lateral face of the acrylic phantom. The ratios of neutrons to charged particle fragments were 11% to 89% in the absorbed doses at the lateral and the distal faces of the acrylic phantom. We can conclude that the treatment dose will not induce serious secondary neutron effects at distances greater than 90 mm from the Bragg peak in carbon particle therapy.

  12. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    NASA Astrophysics Data System (ADS)

    Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  13. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  14. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma.

    PubMed

    Kageji, T; Nagahiro, S; Mizobuchi, Y; Toi, H; Nakagawa, Y; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n = 8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n = 4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n = 6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4+/-4.2 Gy, 15.7+/-1.2 and 13.9+/-3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8+/-1.3 Gy in positive and was 12.6+/-4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8+/-3.8 Gy in positive and was 13.6+/-4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  15. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac.

    PubMed

    Ghasemi, A; Pourfallah, T Allahverdi; Akbari, M R; Babapour, H; Shahidi, M

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10(-6) (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10(-8) Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10(-5) and 1.74 × 10(-5) Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons. PMID:26170555

  16. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    PubMed Central

    Ghasemi, A.; Pourfallah, T. Allahverdi; Akbari, M. R.; Babapour, H.; Shahidi, M.

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10-6 (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10-8 Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9” and 3” moderators were 1.6 × 10-5 and 1.74 × 10-5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons. PMID:26170555

  17. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-01-01

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases. PMID:27455499

  18. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor.

    PubMed

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezzati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Amini, Sepideh

    2014-12-01

    An irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.2m(2). This facility is filled with removable graphite blocks. The aim of this work is to perform the necessary modifications in the thermal column structure to meet thermal BNCT beam criteria recommended by International Atomic Energy Agency. The main modifications consist of rearranging graphite blocks and reducing the gamma dose rate at the beam exit. Activation foils and TLD700 dosimeter have been used to measure in-air characteristics of the neutron beam. According to the measurements, a thermal flux is 5.6×10(8) (ncm(-2)s(-1)), a cadmium ratio is 186 for gold foils and a gamma dose rate is 0.57Gy h(-1). PMID:25195172

  19. One-dimensional neutron focusing with large beam divergence by 400mm-long elliptical supermirror

    NASA Astrophysics Data System (ADS)

    Nagano, M.; Yamaga, F.; Yamazaki, D.; Maruyama, R.; Hayashida, H.; Soyama, K.; Yamamura, K.

    2012-02-01

    Reflective optics is one of the most useful techniques for focusing a neutron beam with a wide wavelength range since there is no chromatic aberration. Neutrons can be focused within a small area of less than 1 mm2 by high-performance aspherical supermirrors with high figure accuracy and a low smooth substrate surface and a multilayer interface. Increasing the mirror size is essential for increasing the focusing gain. We have developed a fabrication process that combines conventional precision grinding, HF dip etching, numerically controlled local wet etching (NC-LWE) figuring, low-pressure polishing and ion beam sputtering deposition of the supermirror coating to fabricate a large aspherical supermirror. We designed and fabricated an piano-elliptical mirror with large clear aperture size using the developed fabrication process. We obtained a figure error of 0.43 μm p-v and an rms roughness of less than 0.2 nm within an effective reflective length of 370 mm. A NiC/Ti supermirror with m = 4 was deposited on the substrate using ion beam sputtering equipment. The results of focusing experiments show that a focusing gain of 52 at the peak intensity was achieved compared with the case without focusing. Furthermore, the result of imaging plate measurements indicated that the FWHM focusing width of the fabricated mirror is 0.128 mm.

  20. Design of an Aluminum Proton Beam Window for the Spallation Neutron Source

    SciTech Connect

    Janney, Jim G; McClintock, David A

    2012-01-01

    An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

  1. Neutron diffraction of titanium aluminides formed by continuous electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Valkov, S.; Neov, D.; Luytov, D.; Petrov, P.

    2016-03-01

    Ti-Al-based alloys were produced by hybrid electron-beam technologies. A composite Ti-Al film was deposited on a Ti substrate by electron-beam evaporation (EBE), followed by electron-beam treatment (EBT) by a continuously scanned electron beam. The speed of the specimens motion during the EBT were V 1 = 1 cm/sec and V 2 = 5 cm/sec, in order to realize two different alloying mechanisms -- by surface melting and by electron-beam irradiation without melting the surface. The samples prepared were characterized by XRD and neutron diffraction to study the crystal structure on the surface and in depth. SEM/EDX analysis was conducted to explore the surface structure and analyze the chemical composition. Nanoindentation measurements were also carried out. No intermetallic phases were registered in the sample treated at velocity V 1, while the sample treated at V 2 exhibited a Ti3Al/TiAl structure on the surface, transformed to Ti/TiAl in depth. The nanoindentation test demonstrated a significant negative hardness gradient from the surface to the depth of the sample.

  2. Neutron beam measurement of industrial polymer materials for composition and bulk integrity

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Rosta, L.; Heaton, M. E.

    2013-10-01

    Neutron beam techniques, among other non-destructive diagnostics, are particularly irreplaceable in the complete analysis of industrial materials and components when supplying fundamental information. In this paper, nanoscale small-angle neutron scattering analysis and prompt gamma activation analysis for the characterization of industrial polymers are considered. The basic theoretical aspects are briefly introduced and some applications are presented. The investigations of the SU-8 polymer in axial airflow microturbines—i.e. microelectromechanical systems—are presented foremost. Also presented are full and feasibility studies on polyurethanes, composites based on cross-linked polymers reinforced by carbon fibres and polymer cement concrete. The obtained results have provided a substantial contribution to the improvement of the considered materials, and indeed confirmed the industrial applicability of the adopted techniques in the analysis of polymers.

  3. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Bottoni, S.; Leoni, S.; Fornal, B.; Raabe, R.; Rusek, K.; Benzoni, G.; Bracco, A.; Crespi, F. C. L.; Morales, A. I.; Bednarczyk, P.; Cieplicka-Oryńczak, N.; Królas, W.; Maj, A.; Szpak, B.; Callens, M.; Bouma, J.; Elseviers, J.; De Witte, H.; Flavigny, F.; Orlandi, R.; Reiter, P.; Seidlitz, M.; Warr, N.; Siebeck, B.; Hellgartner, S.; Mücher, D.; Pakarinen, J.; Vermeulen, M.; Bauer, C.; Georgiev, G.; Janssens, R. V. F.; Balabanski, D.; Sferrazza, M.; Kowalska, M.; Rapisarda, E.; Voulot, D.; Lozano Benito, M.; Wenander, F.

    2015-08-01

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li(98Rb,α xn ) and 7Li(98Rb,t xn ) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.

  4. Neutron spectrometry of JET discharges with ICRH-acceleration of helium beam ions

    SciTech Connect

    Gatu Johnson, M.; Sunden, E. Andersson; Cecconello, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Hellesen, C.; Sangaroon, S.; Weiszflog, M.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V.; Sharapov, S. E. [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon; Euratom Eester, D. van [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon; LPP-ERM Collaboration: JET EFDA Contributors

    2010-10-15

    Recent experiments at JET aimed at producing {sup 4}He ions in the MeV range through third harmonic ion cyclotron resonance heating (ICRH) acceleration of {sup 4}He beams in a {sup 4}He dominated plasma. MeV range D was also present through parasitic ICRH absorption on residual D. In this contribution, we analyze TOFOR neutron spectrometer data from these experiments. A consistent description of the data is obtained with d(d,n){sup 3}He and {sup 9}Be({alpha},n){sup 12}C neutron components calculated using Stix distributions for the fast D and {sup 4}He, taking finite Larmor radius effects into account and with a ICRH power partition of P{sub D}{sup RF}=0.01xP{sub 4He}{sup RF}, in agreement with TOMCAT simulations.

  5. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented. PMID:15308157

  6. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  7. Neutron beam irradiation study of workload dependence of SER in a microprocessor

    SciTech Connect

    Michalak, Sarah E; Graves, Todd L; Hong, Ted; Ackaret, Jerry; Sonny, Rao; Subhasish, Mitra; Pia, Sanda

    2009-01-01

    It is known that workloads are an important factor in soft error rates (SER), but it is proving difficult to find differentiating workloads for microprocessors. We have performed neutron beam irradiation studies of a commercial microprocessor under a wide variety of workload conditions from idle, performing no operations, to very busy workloads resembling real HPC, graphics, and business applications. There is evidence that the mean times to first indication of failure, MTFIF defined in Section II, may be different for some of the applications.

  8. INSTRUMENTS AND METHODS OF INVESTIGATION: Giant pulses of thermal neutrons in large accelerator beam dumps. Possibilities for experiments

    NASA Astrophysics Data System (ADS)

    Stavissky, Yurii Ya

    2006-12-01

    A short review is presented of the development in Russia of intense pulsed neutron sources for physical research — the pulsating fast reactors IBR-1, IBR-30, IBR-2 (Joint Institute for Nuclear Research, Dubna), and the neutron-radiation complex of the Moscow meson factory — the 'Troitsk Trinity' (RAS Institute for Nuclear Research, Troitsk, Moscow region). The possibility of generating giant neutron pulses in beam dumps of superhigh energy accelerators is discussed. In particular, the possibility of producing giant pulsed thermal neutron fluxes in modified beam dumps of the large hadron collider (LHD) under construction at CERN is considered. It is shown that in the case of one-turn extraction ov 7-TeV protons accumulated in the LHC main rings on heavy targets with water or zirconium-hydride moderators placed in the front part of the LHC graphite beam-dump blocks, every 10 hours relatively short (from ~100 µs) thermal neutron pulses with a peak flux density of up to ~1020 neutrons cm-2 s-1 may be produced. The possibility of applying such neutron pulses in physical research is discussed.

  9. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Lillie, R. A.; Santoro, R. T.; Alsmiller, R. G., Jr.; Barnes, J. M.

    1981-02-01

    Two dimensional radiation transport methods were used to estimate the effects of neutron and gamma ray streaming on the performance of the engineering test facility neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10(+3) MW/m(3) which implies a total heat load of 2.2 x 10(+4) MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated.

  10. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  11. Optimizations in angular dispersive neutron powder diffraction using divergent beam geometries

    NASA Astrophysics Data System (ADS)

    Buchsteiner, Alexandra; Stüßer, Norbert

    2009-01-01

    Angular dispersive neutron powder diffractometers are usually built using beam divergencies defined by Soller type collimators. To account for the needs of resolution for crystal structure refinement a good in-pile collimation α1, a high take-off angle above 90∘ at the monochromator and a good collimation α3 in front of the detector bank are chosen whereas the value of α2 for the collimation between monochromator and sample is less crucial. During the last years new strategies were developed at our institute using wide divergent beam geometries defined by fan collimators or slit-type diaphragms which correlate ray direction and wavelength within the beam. Here we present the performance of a newly developed fan collimator, which enables one to adjust the opening of the collimator channels on both sides independently. This fan collimator is positioned in front of the monochromator at the instrument E6 at the Helmholtz Centre Berlin (formerly Hahn-Meitner-Institut Berlin). It will be shown that control of the beam divergency allows optimization of the resolution in a large angular diffraction range. Hence the resolution and intensity can be adapted to the needs of powder diffraction. Monte Carlo simulations using McStas are used to check and prove the optimal setting of the instrument. We obtain a very good agreement between experimental and simulated data and demonstrate the superior outcome of the new instrument configuration with respect to Soller type instruments.

  12. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    NASA Astrophysics Data System (ADS)

    Van Renterghem, W.; Uytdenhouwen, I.

    2016-08-01

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 1020 n/cm2 and 4.74 × 1020 n/cm2 at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 1021/m³ to 9 × 1022/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock.

  13. Neutronics analysis of three beam-filter assemblies for an accelerator-based BNCT facility

    SciTech Connect

    Bleuel, D.L.; Costes, S.V.; Donahue, R.J.; Ludewigt, B.A.

    1997-08-01

    Three moderator materials, AlF{sub 3}/Al, D{sub 2}O and LiF, have been analyzed for clinical usefulness using the reaction {sup 7}Li(p,n) as an accelerator driven neutron source. Proton energies between 2.1 MeV and 2.6 MeV have been investigated. Radiation transport in the reflector/moderator assembly is simulated using the MCNP program. Depth-dose distributions in a head phanton are calculated with the BNCT-RTPE patient treatment planning program from INEEL using the MCNP generated neutron and photon spectra as the subsequent source. Clinical efficacy is compared using the current BMRR protocol for all designs. Depth-dose distributions are compared for a fixed normal tissue tolerance dose of 12.5 Gy-Eq. Radiation analyses also include a complete anthropomorphic phantom. Results of organ and whole body dose components are presented for several designs. Results indicate that high quality accelerator beams may produce clinically favorable treatments to deep-seated tumors when compared to the BMRR beam. Also discussed are problems identified in comparing accelerator and reactor based designs using in-air figures of merit as well as some results of spectrum-averaged RBE`s.

  14. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  15. Using parabolic supermirror lenses to focus and de-focus a neutron beam

    NASA Astrophysics Data System (ADS)

    Rantsiou, Emmanouela; Panzner, Tobias; Hautle, Patrick; Filges, Uwe

    2014-07-01

    We designed a focus/defocus neutron optics system, in order to investigate the performance, precision, efficiency, and operational and designing challenges of such coupled 2- lens systems, which could potentially find applications where small beam cross sections are beneficial, e.g., virtual neutron source concepts and high efficiency chopper systems. Our particular prototype (as described and discussed in this paper) has already been used in an on-going experiment, involving neutron spin filtering with dynamically polarized protons. After the designing and construction phases, we continued by performing a long series of simulations and measurements, in order to facilitate the alignment of the lenses, and investigate and understand the behaviour and output of the system. All measurements were performed at the BOA beamline at PSI. The simulations were particularly useful in aligning the lenses: tilts as small as 0.04° could easily be accounted for in our simulations and guide successfully the experimental aligning procedure of the first lens. Although harder to do in the case of two lenses, we were still able to reproduce fairly successfully with our simulations, tilts from both lenses. We have noticed (both in our experiments and simulations) that the sensitivity of such a set-up is ~ 0.01°.

  16. Study for s-process using neutron beam provided from ANNRI of J-PARC

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takehioto; Toh, Yosuke; Kimura, Akira; Nakamura, Shoji; Shizuma, Toshiyuki; Harada, Hideo

    2016-06-01

    Most isotopes heavier than iron are synthesized by the slow neutron capture reaction process (s-process) in stars. Isomers in stable isotopes have sometimes an important role as a branching point in nucleosynthesis flow in the s-process. An isomer with a half-life of 14.1 y in 113Cd is a branching point from which a nucleosynthesis flow reaches to a rare isotope 115Sn. The astrophysical origin of 115Sn has remained still an open question. The s-process abundance of 115Sn depends on the ratio of the 112Cd(n, γ) 113Cdm reaction cross section to the 112Cd(n, γ) 113Cdgs reaction cross section. However, the isomer production ratio following the neutron capture reaction has not been measured in the energy region higher than the thermal energy. An intense neutron beam experimental system, ANNRI, in J-PARC has a high purity germanium (HPGe) detector system consisting of two cluster detectors. We have measured γ-rays decaying to the ground state and the isomer using the HPGe detectors in conjunction with a time-offlight method at ANNRI.

  17. Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Hardin, Robert A; Liu, Yun; Long, Cary D; Aleksandrov, Alexander V; Blokland, Willem

    2011-01-01

    A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 rad (horizontal) to 4 rad (vertical), corresponding to beam drifts of only 0.5 mm 1 mm at the furthest measurement station located 250 meters away from the light source.

  18. Performance of a New Composite Single-Crystal Filtered Thermal Neutron Beam for Neutron Capture Therapy Research at the University of Missouri

    SciTech Connect

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne; Charles McKibben

    2008-11-01

    The University of Missouri (MU) Institute for Nano and Molecular Medicine, the Idaho National Laboratory (INL) and the University of Missouri Research Reactor (MURR) have undertaken a new collaborative research initiative to further the development of improved boron delivery agents for BNCT. The first step of this effort has involved the design and construction of a new thermal neutron beam irradiation facility for cell and small-animal radiobological research at the MURR. In this paper we present the beamline design with the results of pertinent neutronic design calculations. Results of neutronic performance measurements, initiated in February 2008, will also be available for inclusion in the final paper. The new beam will be located in an existing 152.4 mm (6’) diameter MURR beam tube extending from the core to the right in Figure 1. The neutron beam that emanates from the berylium reflector around the reactor is filtered with single-crystal silicon and single-crystal bismuth segments to remove high energy, fission spectrum neutrons and reactor gamma ray contamination. The irradiation chamber is downstream of the bismuth filter section, and approximately 3.95 m from the central axis of the reactor. There is sufficient neutron flux available from the MURR at its rated power of 10 MW to avoid the need for cryogenic cooling of the crystals. The MURR operates on average 150 hours per week, 52 weeks a year. In order to take advantage of 7800 hours of operation time per year the small animal BNCT facility will incorparate a shutter constucuted of boral, lead, steel and polyethylene that will allow experimenters to access the irradiation chamber a few minutes after irradiation. Independent deterministic and stochastic models of the coupled reactor core and beamline were developed using the DORT two-dimensional radiation transport code and the MCNP-5 Monte Carlo code, respectively. The BUGLE-80 47-neutron, 20-gamma group cross section library was employed for the DORT

  19. Delayed cerebral radiation necrosis after neutron beam radiation of a parotid adenocarcinoma: a case report and review of the literature.

    PubMed

    Hong, Christopher S; Gokozan, Hamza N; Otero, José J; Guiou, Michael; Elder, J Bradley

    2014-01-01

    Cerebral radiation necrosis (CRN) is a well described possible complication of radiation for treatment of intracranial pathology. However, CRN as sequelae of radiation to extracranial sites is rare. Neutron beam radiation is a highly potent form of radiotherapy that may be used to treat malignant tumors of the salivary glands. This report describes a patient who underwent neutron beam radiation for a parotid adenocarcinoma and who developed biopsy-confirmed temporal lobe radiation necrosis thirty months later. This represents the longest time interval described to date, from initial neutron radiation for extracranial pathology to development of CRN. Two other detailed case studies exist in the literature and are described in this report. These reports as well as our patient's case are reviewed, and additional recommendations are made to minimize the development of CRN after extracranial neutron beam radiation. Physicians should include the possible diagnosis of CRN in any patient with new neurologic signs or symptoms and a history of head and neck radiation that included planned fields extending to the base of the skull. Counseling of patients prior to neutron beam radiation should include potential neurologic complications associated with CRN and risks of treatment for CRN including neurosurgical intervention. PMID:25349750

  20. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    SciTech Connect

    Geng, C; Schuemann, J; Moteabbed, M; Paganetti, H

    2015-06-15

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalent was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)

  1. Nanodosimetry in a clinical neutron therapy beam using the variance-covariance method and Monte Carlo simulations.

    PubMed

    Lillhök, J E; Grindborg, J-E; Lindborg, L; Gudowska, I; Carlsson, G Alm; Söderberg, J; Kopeć, M; Medin, J

    2007-08-21

    Nanodosimetric single-event distributions or their mean values may contribute to a better understanding of how radiation induced biological damages are produced. They may also provide means for radiation quality characterization in therapy beams. Experimental nanodosimetry is however technically challenging and Monte Carlo simulations are valuable as a complementary tool for such investigations. The dose-mean lineal energy was determined in a therapeutic p(65)+Be neutron beam and in a (60)Co gamma beam using low-pressure gas detectors and the variance-covariance method. The neutron beam was simulated using the condensed history Monte Carlo codes MCNPX and SHIELD-HIT. The dose-mean lineal energy was calculated using the simulated dose and fluence spectra together with published data from track-structure simulations. A comparison between simulated and measured results revealed some systematic differences and different dependencies on the simulated object size. The results show that both experimental and theoretical approaches are needed for an accurate dosimetry in the nanometer region. In line with previously reported results, the dose-mean lineal energy determined at 10 nm was shown to be related to clinical RBE values in the neutron beam and in a simulated 175 MeV proton beam as well. PMID:17671346

  2. Nanodosimetry in a clinical neutron therapy beam using the variance-covariance method and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lillhök, J. E.; Grindborg, J.-E.; Lindborg, L.; Gudowska, I.; Alm Carlsson, G.; Söderberg, J.; Kopeć, M.; Medin, J.

    2007-08-01

    Nanodosimetric single-event distributions or their mean values may contribute to a better understanding of how radiation induced biological damages are produced. They may also provide means for radiation quality characterization in therapy beams. Experimental nanodosimetry is however technically challenging and Monte Carlo simulations are valuable as a complementary tool for such investigations. The dose-mean lineal energy was determined in a therapeutic p(65)+Be neutron beam and in a 60Co γ beam using low-pressure gas detectors and the variance-covariance method. The neutron beam was simulated using the condensed history Monte Carlo codes MCNPX and SHIELD-HIT. The dose-mean lineal energy was calculated using the simulated dose and fluence spectra together with published data from track-structure simulations. A comparison between simulated and measured results revealed some systematic differences and different dependencies on the simulated object size. The results show that both experimental and theoretical approaches are needed for an accurate dosimetry in the nanometer region. In line with previously reported results, the dose-mean lineal energy determined at 10 nm was shown to be related to clinical RBE values in the neutron beam and in a simulated 175 MeV proton beam as well.

  3. Cavity Misalignment and Off-Axis Field Effects on Transverse Beam Dynamic in Spallation Neutron Source Superconducting Linac

    SciTech Connect

    J. Stovall; Marc Doleans; J. Galambos; Eugene Tanke; Sang-ho Kim; Ronald Sundelin

    2001-05-01

    For highly relativistic beams, transverse motion due to off-axis fields is not a concern because the transverse RF magnetic and electric forces for off-axis particles cancel each other. Since The Spallation Neutron Source (SNS) will accelerate moderately relativistic H- particle beam, transverse motion due to off-axis fields has to be checked. Misaligned cavities have physically the same transverse effect on particles moving on axis as off-axis particles passing through perfectly aligned cavities. The main purpose of this paper is to calculate the impact on the transverse motion of the beam from the superconducting cavity (SC) misalignment in SNS. Quadrupole misalignment is then added to obtain a more general statement for the transverse behavior of the beam under alignment errors. For this issue, we use on-axis and off-axis electromagnetic field data from Superfish to calculate beam properties of the SNS beam all along the SC linac with misaligned cavities.

  4. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    PubMed

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings. PMID:27203706

  5. Ramping up the Spallation Neutron Source beam power with the H{sup -} source using 0 mg Cs/day

    SciTech Connect

    Stockli, M. P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Welton, R. F.

    2010-02-15

    This paper describes the ramp up of the beam power for the Spallation Neutron Source by ramping up the pulse length, the repetition rate, and the beam current emerging from the H{sup -} source. Starting out with low repetition rates ({<=}10 Hz) and short pulse lengths ({<=}0.2 ms), the H{sup -} source and low-energy beam transport delivered from Lawrence Berkeley National Laboratory exceeded the requirements with almost perfect availability. This paper discusses the modifications that were required to exceed 0.2 ms pulse length and 0.2% duty factor with acceptable availability and performance. Currently, the source is supporting neutron production at 1 MW with 38 mA linac beam current at 60 Hz and 0.9 ms pulse length. The pulse length will be increased to {approx}1.1 ms to meet the requirements for neutron production with a power between 1 and 1.4 MW. A medium-energy beam transport (MEBT) beam current of 46 mA with a 5.4% duty factor has been demonstrated for 32 h. A 56 mA MEBT beam current with a 4.1% duty factor has been demonstrated for 20 min at the conclusion of a 12-day production run. This is close to the 59 mA needed for 3 MW neutron productions. Also notable is the Cs{sub 2}CrO{sub 4} cesium system, which dispenses {approx}10 mg of Cs during the startup of the ion source, sufficient for producing the required 38 mA for 4 weeks without significant degradation.

  6. Effective dose evaluation for BNCT treatment in the epithermal neutron beam at THOR.

    PubMed

    Wang, J N; Huang, C K; Tsai, W C; Liu, Y H; Jiang, S H

    2011-12-01

    This paper aims to evaluate the effective dose as well as equivalent doses of several organs of an adult hermaphrodite mathematical phantom according to the definition of ICRP Publication 60 for BNCT treatments of brain tumors in the epithermal neutron beam at THOR. The MCNP5 Monte Carlo code was used for the calculation of the average absorbed dose of each organ. The effective doses for a typical brain tumor treatment with a tumor treatment dose of 20 Gy-eq were evaluated to be 0.59 and 0.35 Sv for the LLAT and TOP irradiation geometries, respectively. In addition to the stochastic effect, it was found that it is also likely to produce deterministic effects, such as cataracts and depression of haematopoiesis. PMID:21530281

  7. RBE variation between fast neutron beams as a function of energy. Intercomparison involving 7 neutrontherapy facilities.

    PubMed

    Gueulette, J; Beauduin, M; Grégoire, V; Vynckier, S; De Coster, B M; Octave-Prignot, M; Wambersie, A; Strijkmans, K; De Schrijver, A; El-Akkad, S; Böhm, L; Slabbert, J P; Jones, D T; Maughan, R; Onoda, J; Yudelev, M; Porter, A T; Powers, W E; Sabattier, R; Breteau, N; Courdi, A; Brassart, N; Chauvel, P

    1996-01-01

    In fast neutron therapy, the relative biological effectiveness (RBE) of a given beam varies to a large extent with the neutron energy spectrum. This spectrum depends primarily on the energy of the incident particles and on the nuclear reaction used for neutron production. However, it also depends on other factors which are specific to the local facility, eg, target, collimation system, etc. Therefore direct radiobiological intercomparisons are justified. The present paper reports the results of an intercomparison performed at seven neutrontherapy centres: Orléans, France (p(34)+Be), Riyadh, Saudi Arabia (p(26)+Be), Ghent, Belgium (d(14.5)+Be), Faure, South Africa (p(66)+Be), Detroit, USA (d(48)+Be), Nice, France (p(65)+Be) and Louvain-la-Neuve, Belgium (p(65)+Be). The selected radiobiological system was intestinal crypt regeneration in mice after single fraction irradiation. The observed RBE values (ref cobalt-60 gamma-rays) were 1.79 +/- 0.10, 1.84 +/- 0.07, 2.24 +/- 0.11, 1.55 +/- 0.04, 1.51 +/- 0.03, 1.50 +/- 0.04 and 1.52 +/- 0.04, respectively. When machine availability permitted, additional factors were studied: two vs one fraction (Ghent, Louvain-la-Neuve), dose rate (Detroit), influence of depth in phantom (Faure, Detroit, Nice, Louvain-la-Neuve). In addition, at Orléans and Ghent, RBEs were also determined for LD50 at 6 days after selective abdominal irradiation and were found to be equal to the RBEs for crypt regeneration. The radiobiological intercomparisons were always combined with direct dosimetric intercomparisons and, when possible in some centres, with microdosimetric investigations. PMID:8949753

  8. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  9. Combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on CMOS APS image sensors

    SciTech Connect

    Wang, Zujun Chen, Wei; Sheng, Jiangkun; Liu, Yan; Xiao, Zhigang; Huang, Shaoyan; Liu, Minbo

    2015-02-15

    The combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) have been discussed and some new experimental phenomena are presented. The samples are manufactured in the standard 0.35-μm CMOS technology. Two samples were first exposed to {sup 60}Co γ-rays up to the total ionizing dose (TID) level of 200 krad(Si) at the dose rates of 50.0 and 0.2 rad(Si)/s, and then exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence). One sample was first exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence), and then exposed to {sup 60}Co γ-rays up to the TID level of 200 krad(Si) at the dose rate of 0.2 rad(Si)/s. The mean dark signal (K{sub D}), the dark signal non-uniformity (DSNU), and the noise (V{sub N}) versus the total dose and neutron fluence has been investigated. The degradation mechanisms of CMOS APS image sensors have been analyzed, especially for the interaction induced by neutron displacement damage and TID damage.

  10. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    SciTech Connect

    Andrews, M. T.; Bentoumi, G.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.; Rogge, R. B.

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  11. The design of an intense accelerator-based epithermal neutron beam prototype for BNCT using near-threshold reactions

    NASA Astrophysics Data System (ADS)

    Lee, Charles L.

    Near-threshold boron neutron capture therapy (BNCT) uses proton energies only tens of rev above the (pan) reaction threshold in lithium in order to reduce the moderation requirements of the neutron source. The goals of this research were to prove the feasibility of this near-threshold concept for BNCT applications, using both calculation and experiment, and design a compact neutron source prototype from these results. This required a multidisciplinary development of methods for calculation of neutron yields, head phantom dosimetry, and accelerator target heat removal. First, a method was developed to accurately calculate thick target neutron yields for both near-threshold and higher energy proton beams, in lithium metal as well as lithium compounds. After these yields were experimentally verified, they were used as neutron sources for Monte Carlo (MCNP) simulations of neutron and photon transport in head phantoms. The theoretical and experimental determination of heat removal from a target backing with multiple fins, as well as numerical calculations of heat deposition profiles based on proton energy loss in target and backing materials, demonstrated that lithium integrity can be maintained for proton beam currents up to 2.5 mA. The final design uses a proton beam energy of 1.95 MeV and has a centerline epithermal neutron flux of 2.2 × 108 n/cm2- sec/mA, an advantage depth of 5.7 cm, an advantage ratio of 4.3, and an advantage depth dose rate of 6.7 RBE- cGy/min/mA, corresponding to an irradiation time of 38 minutes with a 5 mA beam. Moderator, reflector, and shielding weigh substantially less than other accelerator BNCT designs based on higher proton energies, e.g. 2.5 MeV. The near-threshold concept is useful as a portable neutron source for hospital settings, with applications ranging from glioblastomas to melanomas and synovectomy. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  12. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    NASA Astrophysics Data System (ADS)

    Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi

    2014-10-01

    Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

  13. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  14. Determination and validation of prompt k0-factors with a monochromatic neutron beam at the Dhruva reactor

    NASA Astrophysics Data System (ADS)

    Nair, A. G. C.; Acharya, R.; Sudarshan, K.; Tripathi, R.; Reddy, A. V. R.; Goswami, A.

    2006-08-01

    Prompt Gamma-ray Neutron Activation Analysis (PGNAA) was carried out using a reflected neutron beam of 0.018 eV energy at the Dhruva research reactor, Bhabha Atomic Research Centre, Mumbai, India. The neutron beam characteristics, such as dimension, homogeneity and thermal equivalent flux were evaluated. The prompt k0-factors of about 15 elements were determined versus the 1951.1 keV gamma-ray of the 35Cl(n,γ) reaction. These prompt k0-factors are compared with the recommended k0-values for thermal neutrons and were found to be in good agreement, except for Gd, Cd and Hg. The internal mono-standard method was applied to analyze a meteorite and a stainless steel alloy (SS 316 M) using the recommended k0-values from the literature. As to the alloy, the measured concentrations were in good agreement with the nominal composition. For the meteorite sample, the concentrations of the major elements were in good agreement with the values determined using conventional neutron activation analysis.

  15. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  16. MCNP5 and GEANT4 comparisons for preliminary Fast Neutron Pencil Beam design at the University of Utah TRIGA system

    NASA Astrophysics Data System (ADS)

    Adjei, Christian Amevi

    The main objective of this thesis is twofold. The starting objective was to develop a model for meaningful benchmarking of different versions of GEANT4 against an experimental set-up and MCNP5 pertaining to photon transport and interactions. The following objective was to develop a preliminary design of a Fast Neutron Pencil Beam (FNPB) Facility to be applicable for the University of Utah research reactor (UUTR) using MCNP5 and GEANT4. The three various GEANT4 code versions, GEANT4.9.4, GEANT4.9.3, and GEANT4.9.2, were compared to MCNP5 and the experimental measurements of gamma attenuation in air. The average gamma dose rate was measured in the laboratory experiment at various distances from a shielded cesium source using a Ludlum model 19 portable NaI detector. As it was expected, the gamma dose rate decreased with distance. All three GEANT4 code versions agreed well with both the experimental data and the MCNP5 simulation. Additionally, a simple GEANT4 and MCNP5 model was developed to compare the code agreements for neutron interactions in various materials. Preliminary FNPB design was developed using MCNP5; a semi-accurate model was developed using GEANT4 (because GEANT4 does not support the reactor physics modeling, the reactor was represented as a surface neutron source, thus a semi-accurate model). Based on the MCNP5 model, the fast neutron flux in a sample holder of the FNPB is obtained to be 6.52×107 n/cm2s, which is one order of magnitude lower than gigantic fast neutron pencil beam facilities existing elsewhere. The MCNP5 model-based neutron spectrum indicates that the maximum expected fast neutron flux is at a neutron energy of ~1 MeV. In addition, the MCNP5 model provided information on gamma flux to be expected in this preliminary FNPB design; specifically, in the sample holder, the gamma flux is to be expected to be around 108 γ/cm 2s, delivering a gamma dose of 4.54×103 rem/hr. This value is one to two orders of magnitudes below the gamma

  17. Studies of the behavior of a reactor neutron beam at the sample position of a diffractometer using silicon monochromators

    NASA Astrophysics Data System (ADS)

    Ahmed, F. U.; Ahsan, M. H.; Khan, Aysha A.; Kamal, I.; Awal, M. A.; Ahmad, A. A. Z.

    1992-02-01

    A computer program TISTA has been developed for calculation of different aspects of designing a double axis neutron spectrometer at the TRIGA Mark II research reactor of the Atomic Energy Research Establishment, Dhaka, Bangladesh. The mathematical algorithms used in this program are based on the formalisms used by Fischer, Sabine and Bacon. Angle and energy resolutions and flux density as functions of neutron wave length, beam collimation, crystal asymmetry and deviation from zero-Bragg-angle position for different silicon crystal planes (111, 220, 311) have been calculated.

  18. Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2010-12-15

    The production cross sections of neutron-rich isotopes {sup 52,54,56,58,60}Ca, {sup 136,138,140,142}Sn, and {sup 146,148,150,152}Xe are predicted for future experiments in the diffusive multinucleon transfer reactions {sup 86,90,92,94}Kr, {sup 124,130,132,134}Sn, {sup 136,140,142,146}Xe, and {sup 138,144,146}Ba+{sup 48}Ca with stable and radioactive beams at incident energies close to the Coulomb barrier. Because of the small cross sections, the production of neutron-rich isotopes requires the optimal choice of projectile-target combinations and bombarding energies.

  19. A Monte Carlo model system for core analysis and epithermal neutron beam design at the Washington State University Radiation Center

    SciTech Connect

    Burns, T.D. Jr.

    1996-05-01

    The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run with little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.

  20. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  1. Stripping of H- beams by residual gas in the linac at the Los Alamos neutron science center

    SciTech Connect

    Mccrady, Rodney C; Ito, Takeyasu; Cooper, Martin D; Alexander, Saunders

    2010-09-07

    The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H{sup -} ions using Cockroft-Walton-type injectors, a drift-tube linac and a coupled-cavity linac. The vacuum is maintained in the range of 10{sup -6} to 10{sup -7} Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H{sup -} ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H{sup -} beam (protons) that end up at approximately 800 MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. We present here the motivation for the measurement, the measurement technique and results.

  2. Testing The High-Energy Prompt Neutron Signature At Low Beam Energies

    SciTech Connect

    Thompson, Scott J.; Kinlaw, Mathew T.; Hunt, Alan W.

    2011-06-01

    Prompt fission neutrons continue to be examined as a signature for detecting the presence of fissionable material. This technique exploits the neutron energy limitations inherent with photonuclear emissions from non-fissionable material, allowing prompt fission neutrons to be identified and engaged for detecting nuclear material. Prompt neutron signal measurements were acquired with bremsstrahlung endpoint energies of 6 MeV for 18 targets comprised of both fissionable and non-fissionable material; delayed neutron measurements were also collected as a reference. The {sup 238}U target was also shielded with increasing thicknesses of lead or borated polyethylene to compare the resulting detection rates of the prompt and delayed fission neutron signals.

  3. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-07-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography.

  4. Optimization of a moderator-neutron guide system for diffractometers of beam line 7A of the IBR-2M reactor

    NASA Astrophysics Data System (ADS)

    Manoshin, S. A.; Belushkin, A. V.; Kulikov, S. A.; Shabalin, E. P.; Walther, K.; Scheffzuek, C.; Zhuravlev, V. V.

    2009-09-01

    Neutron guides are widely used to transport the neutrons from the moderator to the sample. Due to the constructive features of the ring corridor of the fast pulsed reactor IBR-2, the minimal distance between the moderator and the guide entrance is around 6 m. The main goal of the paper is to optimize the neutron optical system between the moderator and the entrance of the new neutron guides. Using Monte Carlo simulations we calculate the possible best gain of the neutron flux density at the guide exit. After the described optimization process, the optimal system is obtained. The recommendations for construction of the new beam line are provided too. Similar technique and the proposed system could be easily adapted for another similar beam line at the neutron sources.

  5. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  6. Mixed-Field Dosimetry of a Fast Neutron Beam at the Portuguese Research Reactor for the Irradiation of Electronic Circuits - Measurements and Calculations

    NASA Astrophysics Data System (ADS)

    Fernandes, A. C.; Gonçalves, I. C.; Marques, J. G.; Santos, J.; Ramalho, A. J. G.; Osvay, M.

    2003-06-01

    The neutron and photon fields present at the Fast Neutron Beam of RPI were simulated with MCNP-4C and measured with activation foils, TLDs and ionisation chambers. In general, there is a good agreement between calculations and measurements, although the model overestimates the thermal neutron component. Aluminum oxide TLDs were found to be promising for monitoring the photon dose in actual irradiations of circuits.

  7. Aspects of radiation beam quality and their effect on the dose response of polymer gels: Photons, electrons and fast neutrons

    NASA Astrophysics Data System (ADS)

    Berg, Andreas; Bayreder, Christian; Georg, Dietmar; Bankamp, Achim; Wolber, Gerd

    2009-05-01

    Polymer gels are generally assumed to exhibit no significant dependence of the dose response on the energy or type of irradiation for clinically used beam qualities. Based on reports on differences in dose response for low energy photons and particle beams with high linear energy transfer (LET) we here investigate the dose response and energy dependence for a normoxic methacrylic acid polymer gel (MAGAT) for X-rays (100 kV), high energy photon beams (E = 1.2 MeV (60Co), 6 MV and 15 MV) and for three different electron energies (4, 12 and 20 MeV). Due to the possible impact also the sensitivity of the dose response to the dose rate is reported. A reduction in polymer gel relaxation rate has been observed for proton and carbon beams due to the high Linear Energy Transfer (LET) of these types of radiations. We here report on the dose response of an acryl-amide polymer gel (PAG) in a fast neutron field along with collimation as proposed for Boron neutron capture therapy (BNCT).

  8. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials.

    PubMed

    Kasatov, D; Makarov, A; Shchudlo, I; Taskaev, S

    2015-12-01

    Epithermal neutron source based on a tandem accelerator with vacuum insulation and lithium target has been proposed, developed and operated in Budker Institute of Nuclear Physics. The source is regarded as a prototype of a future compact device suitable for carrying out BNCT in oncology centers. In this work the measurements of gamma-ray and neutron radiation are presented for the interaction of a 2 MeV proton beam with various materials (Li, C, F, Al, V, Ti, Cu, Mo, stainless steel, and Ta). The obtained results enabled the optimization of the neutron-generating target and the high energy beam transportation path. PMID:26298434

  9. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    NASA Astrophysics Data System (ADS)

    Muhrer, G.; Schönfeldt, T.; Iverson, E. B.; Mocko, M.; Baxter, D. V.; Hügle, Th.; Gallmeier, F. X.; Klinkby, E. B.

    2016-09-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  10. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations. PMID:23041781

  11. Beam measurements on the H- source and Low Energy Beam Transport system for the Spallation Neutron Source

    SciTech Connect

    Thomae, R.; Gough, R.; Keller, R.; Leung, K.N.; Schenkel, T.; Aleksandrov, A.; Stockli, M.; Welton, R.

    2001-09-01

    The ion source and Low Energy Beam Transport section of the front-end systems presently being built by Berkeley Lab are required to provide 50 mA of H - beam current at 6% duty factor (1 ms pulses at 60 Hz) with a normalized rms emittance of less than 0.20 p-mm-mrad. Experimental results, including emittance, chopping, and steering measurements, on the performance of the ion source and LEBT system operated at the demanded beam parameters will be discussed.

  12. Transport analysis of measured neutron energy spectra in a graphite stack with a collimated deuterium-tritium neutron beam

    SciTech Connect

    Tsechanski, A.; Ofek, R.; Goldfeld, A.; Shani, G.

    1989-02-01

    The Ben-Gurion University measurements of neutron energy spectra in a graphite stack, resulting from the scattering of 14.7-MeV neutrons streaming through a 6-cm-diam collimator in a 121-cm-thick paraffin wall, have been used as a benchmark for the compatability and accuracy of discrete ordinates, P/sub n/, and transport calculations and as a tool for fusion reactor neutronics. The transport analysis has been carried out with the DOT 4.2 discrete ordinates code and with cross sections processed with the NJOY code. Most of the parameters affecting the accuracy of the flux and L system scattering cross sections in the P/sub n/ approximation, the quadrature set employed, and the energy multigroup structure. First, a spectrum calculated with DOT 4.2, with a detector located on the axis of the system, was compared with a spectrum calculated with the MCNP Monte Carlo code, which was a preliminary verification of the DOT 4.2 results. Both calculated spectra were in good agreement. Next, the DOT 4.2 calculations were compared with the measured spectra. The comparison showed that the discrepancies between the measurements and the calculations increase as the distance between the detector and the system axis increases. This trend indicates that when the flux is determined mainly by multiple scatterings, a more divided multigroup structure should be employed.

  13. Identification of materials hidden inside a container by using the 14 MeV tagged neutron beam

    NASA Astrophysics Data System (ADS)

    Sudac, Davorin; Pesente, Silvia; Nebbia, Giancarlo; Viesti, Giuseppe; Valkovic, Vladivoj

    2007-08-01

    The results of the experiments aiming to confirm the presence of explosive inside the container by using the 14 MeV tagged neutron beam are presented. Measurements were performed with paper, sugar, flour, fertilizer, tobacco and explosive (Semtex1a) as target material placed in the center of an empty container. Additional measurements were done with paper and explosive placed in the center of the container filled with the iron matrix of 0.2 gcm-3 density and with the paper target shielded by the 5.1 cm thick iron shield. The results of time of flight measurements and gamma ray spectra obtained by 14 MeV tagged neutron beam have showed that investigated materials could be well distinguished in the triangle plot with coordinates being the number of counts in the carbon peak, the number of counts in oxygen peak and the number of counts in transmitted neutron peak. By using such presentation we have been able to separate paper from Semtex1a, both hidden inside the 0.2 gcm-3 iron matrix. We have also been able to confirm the presence of 64.4 kg of paper behind the 5.1 cm thick iron shield corresponding to the range of 300 keV X-rays.

  14. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    SciTech Connect

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-14

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 10{sup 11} n/cm{sup 2}/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  15. Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams

    DOE PAGESBeta

    Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; Mocko, Michal; Baxter, David V.; Hügle, Thomas; Gallmeier, Franz X.; Klinkby, Esben

    2016-06-14

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystalmore » reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.« less

  16. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. PMID:26595777

  17. Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams

    SciTech Connect

    Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B; Mocko, Michal; Baxter, David V; Hügle, Thomas; Gallmeier, Franz X; Klinkby, Esben

    2016-01-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  18. Interaction of High-Energy Proton Beam with a Thin Target and Multiplicities of Neutron

    SciTech Connect

    Demirkol, I.; Tatar, M.; Safak, M. S.; Arasoglu, A.; Tel, E.

    2007-04-23

    An important ingredient in the performance of accelerator driven systems for energy production, waste transmutation and other applications are the number of spallation neutrons produced per incident proton. The neutron multiplicities, angular and energy distributions are usually calculated using simulation codes. We have presented multiplicities of the neutrons emitted in the interaction of a high-energy proton (1500 MeV) with a thin target Pb, Bi. In this study we have used the code ISABEL to calculate multiplicities of the neutron emitted. The results obtained have been compared with the available data.

  19. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR (High Flux Isotope Reactor) Reactor

    SciTech Connect

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs.

  20. Production of beams of neutron-rich nuclei between Ca and Ni using the ion-guide technique

    SciTech Connect

    Perajarvi, K.; Cerny, J.; Hager, U.; Hakala, J.; Huikari, J.; Jokinen, A.; Karvonen, P.; Kurpeta, J.; Lee, D.; Moore, I.; Penttila, H.; Popov, A.; Aysto, J.

    2004-09-28

    Since several elements between Z = 20-28 are refractory in their nature, their neutron-rich isotopes are rarely available as low energy Radioactive Ion Beams (RIB) in ordinary Isotope Separator On-Line facilities [1-4]. These low energy RIBs would be especially interesting to have available under conditions which allow high-resolution beta-decay spectroscopy, ion-trapping and laser-spectroscopy. As an example, availability of these beams would open a way for research which could produce interesting and important data on neutron-rich nuclei around the doubly magic {sup 78}Ni. One way to overcome the intrinsic difficulty of producing these beams is to rely on the chemically unselective Ion Guide Isotope Separator On-Line (IGISOL) technique [5]. Quasi- and deep-inelastic reactions, such as {sup 197}Au({sup 65}Cu,X)Y, could be used to produce these nuclei in existing IGISOL facilities, but before they can be successfully incorporated into the IGISOL concept their kinematics must be well understood. Therefore the reaction kinematics part of this study was first performed at the Lawrence Berkeley National Laboratory using its 88'' cyclotron and, based on those results, a specialized target chamber was built[6]. The target chamber shown in Fig. 1 was recently tested on-line at the Jyvaaskylaa IGISOL facility. Yields of mass-separated radioactive projectile-like species such as {sup 62,63}Co are about 0.8 ions/s/pnA, corresponding to about 0.06 % of the total IGISOL efficiency for the products that hit the Ni-degrader. (The current maximum 443 MeV {sup 65}Cu beam intensity at Jyvaaskylaa is about 20 pnA.) This total IGISOL efficiency is a product of two coupled loss factors, namely inadequate thermalization and the intrinsic IGISOL efficiency. In our now tested chamber, about 9 % of the Co recoils are thermalized in the owing He gas (p{sub He}=300 mbar) and about 0.7 % of them are converted into the mass-separated ion beams. In the future, both of these physical

  1. Optimization of Beam-Shaping Assemblies for BNCS Using the High-Energy Neutron Sources D-D and D-T

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2001-06-15

    Boron neutron capture synovectomy is a novel approach for the treatment of rheumatoid arthritis. The goal of the treatment is the ablation of diseased synovial membranes in articulating joints. The treatment of knee joints is the focus of this work. A method was developed, as discussed previously, to predict the dose distribution in a knee joint from any neutron and photon beam spectra incident on the knee. This method is validated and used to design moderators for the deuterium-deuterium (D-D) and deuterium-tritium (D-T) neutron sources. Treatment times >2 h were obtained with the D-D reaction. They could potentially be reduced if the {sup 10}B concentration in the synovium was increased. For D-T neutrons, high therapeutic ratios and treatment times <5 min were obtained for neutron yields of 10{sup 14} s{sup -1}. This treatment time makes the D-T reaction attractive for boron neutron capture synovectomy.

  2. Near and sub-barrier fusion of neutron-rich oxygen and carbon nuclei using low-intensity beams

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy K.

    Fusion between neutron-rich light nuclei in the crust of an accreting neutron star has been proposed as a heat source that triggers an X-ray superburst. To explore the probability with which such fusion events occur and examine their decay characteristics, an experimental program using beams of neutron-rich light nuclei has been established. Evaporation residues resulting from the fusion of oxygen and 12C nuclei, are directly measured and distinguished from unreacted beam particles on the basis of their energy and time-of-flight. Using an experimental setup developed for measurements utilizing low-intensity (< 105 ions/s) radioactive beams, the fusion excitation functions for 16O + 12C and 18O + 12C have been measured. The fusion excitation function for 18O + 12C has been measured in the sub-barrier domain down to the 820 mub level, a factor of 30 lower than previous direct measurements. This measured fusion excitation function is compared to the predictions of a density constrained time-dependent Hartree-Fock model. This comparison reveals a shape difference in the fusion excitation functions, indicating a larger tunneling probability for the experimental data as compared to the theoretical calculations. In addition to the measured cross-section, the measured angular distribution of the evaporation residues provides insight into the relative importance of the different de-excitation channels. These evaporation residue angular distributions are compared to the predictions of a statistical model code, evapOR, revealing an under-prediction of the de-excitation channels associated with alpha particle emission.

  3. In-beam spectroscopic studies of shape coexistence and collectivity in the neutron-deficient Z ≈ 82 nuclei

    NASA Astrophysics Data System (ADS)

    Julin, R.; Grahn, T.; Pakarinen, J.; Rahkila, P.

    2016-02-01

    In the present paper we focus on studies of shape coexistence in even-mass nuclei in the neutron-deficient Pb region. They are based on experiments carried out using tagging techniques in the Accelerator Laboratory of the University of Jyväskylä, Finland. Excited states in many of these nuclei can only be accessed via fusion-evaporation reactions employing high-intensity stable-ion beams. The key features in these experiments are high selectivity, clean spectra and instrumentation that enables high count rates. We review three spectroscopic highlights in this region.

  4. Neutron beam tests of CsI(Na) and CaF2(Eu) crystals for dark matter direct search

    NASA Astrophysics Data System (ADS)

    Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.; Huerta, C.

    2016-05-01

    In recent decades, inorganic crystals have been widely used in dark matter direct search experiments. To contribute to the understanding of the capabilities of CsI(Na) and CaF2(Eu) crystals, a mono-energetic neutron beam is utilized to study the properties of nuclear recoils, which are expected to be similar to signals of dark matter direct detection. The quenching factor of nuclear recoils in CsI(Na) and CaF2Eu, as well as an improved discrimination factor between nuclear recoils and γ backgrounds in CsI(Na), are reported.

  5. Thermal analysis and neutron production characteristics of a low power copper beam dump-cum-target for LEHIPA

    NASA Astrophysics Data System (ADS)

    Sawant, Y. S.; Thomas, R. G.; Verma, V.; Agarwal, A.; Prasad, N. K.; Bhagwat, P. V.; Saxena, A.; Singh, P.

    2016-01-01

    Monte Carlo simulations of heat deposition and neutron production have been carried out for the low power beam dump-cum-target for the 20 MeV Low Energy High Intensity Proton Accelerator (LEHIPA) facility at BARC using GEANT4 and FLUKA. Thermal analysis and heat transfer calculations have also been carried out using the computational fluid dynamics code CFD ACE+. In this work we present the details of the analysis of the low power beam dump-cum-target designed for conditioning of the accelerator upto a maximum power of 600 kW with a duty cycle of 2% which corresponds to an average power of 12 kW in the first phase.

  6. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft-Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  7. Ultrahigh charging of dust grains by the beam-plasma method for creating a compact neutron source

    NASA Astrophysics Data System (ADS)

    Akishev, Yu. S.; Karal'nik, V. B.; Petryakov, A. V.; Starostin, A. N.; Trushkin, N. I.; Filippov, A. V.

    2016-01-01

    Generation of high-voltage high-current electron beams in a low-pressure ( P = 0.1-1 Torr) gas discharge is studied experimentally as a function of the discharge voltage and the sort and pressure of the plasma-forming gas. The density of the plasma formed by a high-current electron beam is measured. Experiments on ultrahigh charging of targets exposed to a pulsed electron beam with an energy of up to 25 keV, an electron current density of higher than 1 A/cm2, a pulse duration of up to 1 μs, and a repetition rate of up to 1 kHz are described. A numerical model of ultrahigh charging of dust grains exposed to a high-energy electron beam is developed. The formation of high-energy positive ions in the field of negatively charged plane and spherical targets is calculated. The calculations performed for a pulse-periodic mode demonstrate the possibility of achieving neutron yields of higher than 106 s-1 cm-2 in the case of a plane target and about 109 s-1 in the case of 103 spherical targets, each with a radius of 250 μm.

  8. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    SciTech Connect

    Marland, S. )

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  9. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Rajawat, R. K.; DasGupta, K.

    2016-01-01

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ˜1012-1013 n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  10. Fricke-gel dosimetry in epithermal or thermal neutron beams of a research reactor

    NASA Astrophysics Data System (ADS)

    Gambarini, G.; Artuso, E.; Giove, D.; Volpe, L.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; Pola, A.; Durisi, E.; Borroni, M.; Carrara, M.; Klupak, V.; Marek, M.; Viererbl, L.; Vins, M.; d'Errico, F.

    2015-11-01

    Fricke-xylenol-orange gel has shown noticeable potentiality for in-phantom dosimetry in epithermal or thermal neutron fields with very high fluence rate, as those characteristic of nuclear research reactors. Fricke gels in form of layers give the possibility of achieving spatial distribution of gamma dose, fast neutron dose and dose due to charged particles generated by thermal neutron reactions. The thermal neutron fluence has been deduced from the dose coming from the charge particles emitted by neutron reactions with the isotope 10B. Some measurements have been performed for improving the information on the relative sensitivity of Fricke gel dosimeters to the particles produced by 10B reactions, because at present the precision of dose evaluations is limited by the scanty knowledge about the dependence of the dosimeter sensitivity on the radiation LET. For in-air measurements, the dosimeter material can produce an enhancement of thermal neutron fluence. Measurements and Monte Carlo calculations have been developed to investigate the importance of this effect.

  11. Extending studies of the fusion of heavy nuclei to the neutron rich region using accelerated radioactive ion beams.

    SciTech Connect

    Shapira, Dan

    2011-01-01

    One of the stated goals for proposed and existing facilities that produce and accelerate radioactive ion beams is to explore and achieve a new understanding of the reactions mechanisms leading to the synthesis of the heaviest nuclei. Nuclear synthesis of two large nuclei into a single entity is a complex multistep process. The beam intensities of radioactive ions accelerated at present day facilities are not sufficient to synthesize super heavy elements. However the study of the iso-spin dependence of nuclear synthesis and the many processes competing with it can be carried out at present day facilities. Of special interest are cases where the interacting nuclei and the synthesized product are extremely neutron-rich. The effects of neutron excess on the reaction processes leading to the formation of the synthesized nucleus that emerged in earlier studies are poorly understood and sometimes counter intuitive. Results from measurements performed at HRIBF, as well as our plans for future measurements and the equipment being prepared will be presented.

  12. Neutron spectra produced by 30, 35 and 40 MeV proton beams at KIRAMS MC-50 cyclotron with a thick beryllium target

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Bak, Sang-In; Ham, Cheolmin; In, Eun Jin; Kim, Do Yoon; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.

    2015-10-01

    Neutrons over a wide range of energies are produced by bombarding a 1.05 cm thick beryllium target with protons of different energies delivered by the MC-50 Cyclotron of the Korea Institute of Radiological Medical Sciences (KIRAMS). The neutron flux Φ(En) versus neutron energy En, produced by protons of 30, 35, and 40 MeV energies, was obtained by using the GEANT4 code with a data-based hadronic model. For the experimental validation of the simulated neutron spectra, a number of pure aluminum and iron oxide samples were irradiated with the neutrons produced by 30, 35, and 40 MeV protons at 20 μA beam current. The gamma-ray activities of 24Na and 56Mn produced, respectively, through 27Al(n,α)24Na and 56Fe(n,p)56Mn reactions were measured by a HPGe detector. The neutron flux Φ(En) at each neutron energy from the simulation was multiplied with the evaluated cross-sections σ(En) of the respective nuclear reaction, and the summation ∑ Φ(En) σ(En) was calculated over the neutron spectrum for each proton energy of 30, 35, and 40 MeV. The measured gamma-ray activities of 24Na and 56Mn were found in good agreement with the activities estimated by using the summed values of ∑ Φ(En) σ(En) along with other parameters in a neutron activation method.

  13. Deformation of the very neutron-deficient rare-earth nuclei produced with the SPIRAL 76Kr radioactive beam and studied with EXOGAM + DIAMANT

    NASA Astrophysics Data System (ADS)

    Redon, N.; Prévost, A.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rossé, B.; Stézowski, O.; Nolan, P. J.; Andreoiu, C.; Boston, A. J.; Descovich, M.; Evans, A. O.; Gros, S.; Norman, J.; Page, R. D.; Paul, E. S.; Rainovski, G.; Sampson, J.; de France, G.; Casandjian, J. M.; Theisen, Ch.; Scheurer, J. N.; Nyakó, B. M.; Gál, J.; Kalinka, G.; Molnár, J.; Dombrádi, Zs.; Timár, J.; Zolnai, L.; Juhász, K.; Astier, A.; Deloncle, I.; Porquet, M. G.; Wadsworth, R.; Raddon, P.; Lee, Y.; Wilkinson, A.; Joshi, P.; Simpson, J.; Appelbe, D.; Joss, D.; Lemmon, R.; Smith, J.; Cullen, D.; Brondi, A.; La Rana, G.; Moro, R.; Vardacci, E.; Girod, M.

    2004-02-01

    The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.

  14. Deformation of the very neutron-deficient rare-earth nuclei produced with the SPIRAL 76Kr radioactive beam and studied with EXOGAM + DIAMANT

    SciTech Connect

    Redon, N.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rosse, B.; Stezowski, O.; France, G. de; Casandjian, J. M.

    2004-02-27

    The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.

  15. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams.

    SciTech Connect

    Doyle, Barney Lee; Buller, Daniel L.; Hjalmarson, Harold Paul; Fleming, Robert M; Bielejec, Edward Salvador; Vizkelethy, Gyorgy

    2006-12-01

    Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

  16. Study of suitability of Fricke-gel-layer dosimeters for in-air measurements to characterise epithermal/thermal neutron beams for NCT.

    PubMed

    Gambarini, G; Artuso, E; Giove, D; Felisi, M; Volpe, L; Barcaglioni, L; Agosteo, S; Garlati, L; Pola, A; Klupak, V; Viererbl, L; Vins, M; Marek, M

    2015-12-01

    The reliability of Fricke gel dosimeters in form of layers for measurements aimed at the characterization of epithermal neutron beams has been studied. By means of dosimeters of different isotopic composition (standard, containing (10)B or prepared with heavy water) placed against the collimator exit, the spatial distribution of gamma and fast neutron doses and of thermal neutron fluence are attained. In order to investigate the accuracy of the results obtained with in-air measurements, suitable MC simulations have been developed and experimental measurements have been performed utilizing Fricke gel dosimeters, thermoluminescence detectors and activation foils. The studies were related to the epithermal beam designed for BNCT irradiations at the research reactor LVR-15 (Řež). The results of calculation and measurements have revealed good consistency of gamma dose and fast neutron 2D distributions obtained with gel dosimeters in form of layers. In contrast, noticeable modification of thermal neutron fluence is caused by the neutron moderation produced by the dosimeter material. Fricke gel dosimeters in thin cylinders, with diameter not greater than 3mm, have proved to give good results for thermal neutron profiling. For greater accuracy of all results, a better knowledge of the dependence of gel dosimeter sensitivity on radiation LET is needed. PMID:26249744

  17. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  18. SU-E-T-403: Measurement of the Neutron Ambient Dose Equivalent From the TrueBeam Linac Head and Varian 2100 Clinac

    SciTech Connect

    Harvey, M; Pollard, J; Wen, Z; Gao, S

    2014-06-01

    Purpose: High-energy x-ray therapy produces an undesirable source of stray neutron dose to healthy tissues, and thus, poses a risk for second cancer induction years after the primary treatment. Hence, the purpose of this study was to measure the neutron ambient dose equivalent, H*(10), produced from the TrueBeam and Varian 2100 linac heads, respectively. Of particular note is that there is no measured data available in the literature on H*(10) production from the TrueBeam treatment head. Methods: Both linacs were operated in flattening filter mode using a 15 MV x-ray beam on TrueBeam and an 18 MV x-ray beam for the Varian 2100 Clinac with the jaws and multileaf collimators in the fully closed position. A dose delivery rate of 600 MU/min was delivered on the TrueBeam and the Varian 2100 Clinac, respectively and the H*(10) rate was measured in triplicate using the WENDI-2 detector located at multiple positions including isocenter and longitudinal (gun-target) to the isocenter. Results: For each measurement, the H*(10) rate was relatively constant with increasing distance away from the isocenter with standard deviations on the order of a tenth of a mSv/h or less for the given beam energy. In general, fluctuations in the longitudinal H*(10) rate between the anterior-posterior couch directions were approximately a percent for both beam energies. Conclusion: Our preliminary results suggest an H*(10) rate of about 30 mSv/h (40 mSv/h) or less for TrueBeam (Varian Clinac 2100) for all measurements considered in this study indicating a relatively low contribution of produced secondary neutrons to the primary therapeutic beam.

  19. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. PMID:24387907

  20. Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies.

    PubMed

    Howell, Rebecca M; Hertel, Nolan E; Wang, Zhonglu; Hutchinson, Jesson; Fullerton, Gary D

    2006-02-01

    Effective doses were calculated from the delivery of 6 MV, 15 MV, and 18 MV conventional and intensity-modulated radiation therapy (IMRT) prostate treatment plans. ICRP-60 tissue weighting factors were used for the calculations. Photon doses were measured in phantom for all beam energies. Neutron spectra were measured for 15 MV and 18 MV and ICRP-74 quality conversion factors used to calculate ambient dose equivalents. The ambient dose equivalents were corrected for each tissue using neutron depth dose data from the literature. The depth corrected neutron doses were then used as a measure of the neutron component of the ICRP protection quantity, organ equivalent dose. IMRT resulted in an increased photon dose to many organs. However, the IMRT treatments resulted in an overall decrease in effective dose compared to conventional radiotherapy. This decrease correlates to the ability of an intensity-modulated field to minimize dose to critical normal structures in close proximity to the treatment volume. In a comparison of the three beam energies used for the IMRT treatments, 6 MV resulted in the lowest effective dose, while 18 MV resulted in the highest effective dose. This is attributed to the large neutron contribution for 18 MV compared to no neutron contribution for 6 MV. PMID:16532941

  1. Evaporation Residue Yields in Reactions of Heavy Neutron-Rich Radioactive Ion Beams with 64Ni and 96Zr Targets

    SciTech Connect

    Shapira, Dan; Liang, J Felix; Gross, Carl J; Varner Jr, Robert L; Beene, James R; Stracener, Daniel W; Mueller, Paul Edward; Kolata, Jim J; Roberts, Amy; Loveland, Walter; Vinodkumar, A. M.; Prisbrey, Landon; Sprunger, Peter H; Grzywacz-Jones, Kate L; Caraley, Anne L

    2009-01-01

    As hindrance sets in for the fusion of heavier systems, the effect of large neutron excess in the colliding nuclei on their probability to fuse is still an open question. The detection of evaporation residues (ERs), however, provides indisputable evidence for the fusion (complete and incomplete) in the reaction. We therefore devised a system with which we could measure ERs using low intensity neutron-rich radioactive ion beams with an efficiency close to 100%. We report on measurements of the production of ERs in collisions of {sup 132,134}Sn, {sup 134}Te and {sup 134}Sb ion beams with medium mass, neutron-rich targets. The data taken with {sup 132,134}Sn bombarding a {sup 64}Ni target are compared to available data (ERs and fusion) taken with stable Sn isotopes. Preliminary data on the fusion of {sup 132}Sn with {sup 96}Zr target are also presented.

  2. Evaporation residue yields in reactions of heavy neutron-rich radioactive ion beams with {sup 64}Ni and {sup 96}Zr targets

    SciTech Connect

    Shapira, D.; Liang, J. F.; Gross, C. J.; Varner, R. L.; Beene, J. R.; Stracener, D. W.; Mueller, P. E.; Kolata, J. J.; Roberts, A.; Loveland, W.; Vinodkumar, A. M.; Prisbrey, L.; Sprunger, P.; Jones, K. L.; Caraley, A. L.

    2009-03-04

    As hindrance sets in for the fusion of heavier systems, the effect of large neutron excess in the colliding nuclei on their probability to fuse is still an open question. The detection of evaporation residues (ERs), however, provides indisputable evidence for the fusion (complete and incomplete) in the reaction. We therefore devised a system with which we could measure ERs using low intensity neutron-rich radioactive ion beams with an efficiency close to 100%. We report on measurements of the production of ERs in collisions of {sup 132,134}Sn, {sup 134}Te and {sup 134}Sb ion beams with medium mass, neutron-rich targets. The data taken with {sup 132,134}Sn bombarding a {sup 64}Ni target are compared to available data (ERs and fusion) taken with stable Sn isotopes. Preliminary data on the fusion of {sup 132}Sn with {sup 96}Zr target are also presented.

  3. Monte Carlo simulations and benchmark measurements on the response of TE(TE) and Mg(Ar) ionization chambers in photon, electron and neutron beams

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei

    2015-06-01

    The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7

  4. Portable transfer digital dosemeter for beam output measurements with X and gamma rays, electrons and neutrons.

    PubMed

    Sankaran, A; Gokarn, R S; Gangadharan, P

    1981-04-01

    This instrument was developed in response to a requirement for an accurate, stable and portable transfer dosemeter for calibration, at therapy dose levels, of equipment used for generating X and gamma rays, electrons and neutrons. The detector is a 0.5 cm3 ionization chamber capable of fitting various wall materials reproducibly at the end of the chamber stem. The measuring system uniquely combines the features of a MOSFET electrometer and an automatic Townsend balance. When used for X, gamma and neutron radiations, the instrument measures the tissue kerma in free air on two ranges: 0.001 - 1.999 Gy (0.1 - 199.9 rad) and 0.01 - 19.99 Gy (1 - 1999 rad) or their exposure equivalents, with autoranging feature when the first range is exceeded. The polarizing voltage (180 V) can be reversed for electron and neutron dosimetry. The dosemeter has a measuring accuracy of +/- 0.2% FS +/- 1 digit and operates on four 1.5 V torchlight cells or on AC mains (200-250 V, 50 - 60 Hz). It utilizes solid state devices, CMOS integrated circuits and displays, and is not affected by RF fields. The instrument is enclosed in a brief-case for portability and is easy to operate and maintain in a hospital. PMID:7225720

  5. Los Alamos Neutron Science Center Area-A beam window heat transfer alalysis

    SciTech Connect

    Poston, D.

    1997-07-01

    Several analyses that investigate heat transfer in the Area-A beam window were conducted. It was found that the Area-A window should be able to withstand the 1-mA, 3-cm beam of the accelerator production of tritium materials test, but that the margins to failure are small. It was also determined that when the window is subjected to the 1-mA, 3-cm beam, the inner window thermocouples should read higher than the current temperature limit of 900{degrees}C, although it is possible that the thermocouples may fail before they reach these temperatures. Another finding of this study was that the actual beam width before April 1997 was 20 to 25% greater than the harp-wire printout indicated. Finally, the effect of a copper-oxide layer on the window coolant passage was studied. The results did not indicate the presence of a large copper-oxide layer; however, the results were not conclusive.

  6. Reactions with a 10Be beam to study the one-neutron halo nucleus 11Be

    NASA Astrophysics Data System (ADS)

    Jones, K. L.

    2016-07-01

    Halo nuclei are excellent examples of few-body systems consisting of a core and weakly-bound halo nucleons. Where there is only one nucleon in the halo, as in 11Be, the many-body problem can be reduced to a two-body problem. The contribution of the 1s1/2 orbital to the ground state configuration in 11Be, characterized by the spectroscopic factor, S, has been extracted from direct reaction data by many groups over the past five decades with discrepant results. An experiment was performed at the Holifield Radioactive Ion Beam Facility using a 10Be primary beam at four different energies with the goal of resolving the discrepancy through a consistent analysis of elastic, inelastic, and transfer channels. Faddeev-type calculations, released after the publication of the experimental results, show that dynamic core excitation in the transfer process can lead to reduced differential cross sections at higher beam energies. This reduction would lead to the extraction of decreasing values of S with increasing beam energy. A 10Be(d,p) measurement at Ed greater than 25 MeV is necessary to investigate the effects of core excitation in the reaction.

  7. Proton beam dosimetry using a TEPC with a 252Cf neutron calibration

    NASA Astrophysics Data System (ADS)

    Nam, Uk-Won; Park, Won-Kee; Lee, Jaejin; Pyo, Jeonghyun; Moon, Bongkon; Kim, Sunghwan

    2015-10-01

    A tissue-equivalent proportional counter (TEPC) can measure the linear energy transfer (LET) of incident radiation and directly calculate the equivalent dose to humans in a complicated radiation field. For radiation monitoring, we developed and characterized a TEPC that can simulate a site diameter of 2 µm for micro-dosimetry. It was calibrated with a 252Cf neutron standard source at the Korea Research Institute of Standards and Science. The channel to LET calibration factor of the TEPC is about 0.72 keV/ µm-channel. Also, we evaluated the possibility of usage the TEPC as a proton dosimeter.

  8. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources.

    PubMed

    Markoff, Diane M; Cianciolo, Vince; Britton, Chuck L; Cooper, Ronald G; Greene, Geoff L

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented (3)He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using (3)He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  9. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources

    PubMed Central

    Markoff, Diane M.; Cianciolo, Vince; Britton, Chuck L.; Cooper, Ronald G.; Greene, Geoff L.

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented 3He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using 3He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  10. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    SciTech Connect

    Horst, Felix Czarnecki, Damian; Zink, Klemens

    2015-11-15

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’ impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose {sup 6}Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on {sup 6}Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types

  11. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    NASA Astrophysics Data System (ADS)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-04-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the "chromatic" displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.

  12. Generation of energetic (>15 MeV) neutron beams from proton- and deuteron-driven nuclear reactions using short pulse lasers

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; Higginson, D. P.; Davis, J.; Petrova, Tz B.; McGuffey, C.; Qiao, B.; Beg, F. N.

    2013-10-01

    A roadmap is proposed for the production of high-energy (>15 MeV) neutrons using short pulse lasers. Different approaches are suggested for the two limiting cases of small (E1 ≪ Q) and large (E1 ≫ Q) projectile energies E1 depending on the Q-value of the nuclear reaction. The neutron fluence from many converter materials is evaluated for two projectiles: protons and deuterons. We found profound differences between proton- and deuteron-driven reactions with regard to both converter material and generated neutron fluence. The optimum converter material for deuteron-driven reactions is low-Z elements such as Li and Be, while for proton-driven reactions the converter material is not critical. For a projectile energy of 50 MeV the deuteron-driven reactions are two orders of magnitude more efficient compared to the proton-driven reactions. Two-dimensional particle-in-cell simulations have been performed for laser pulses with peak intensity 3 × 1020 W cm-2, pulse duration 40 fs, spot size 5 µm and energy 3 J interacting with ultrathin (0.1 µm) CD foil. The calculated deuteron beam is highly directional along the laser propagation direction with maximum energy of 45 MeV. The interaction of the deuteron beam with a lithium converter and the production of neutrons is modeled using a Monte Carlo code. The computed neutron spectra show that a forward directed neutron beam is generated with an opening angle of ˜1 sr, maximum energy of 60 MeV and a fluence in the forward direction 1.8 × 108 n sr-1, ˜20% of which are with energy above 15 MeV.

  13. Modeling and design of a new core-moderator assembly and neutron beam ports for the Penn State Breazeale Nuclear Reactor (PSBR)

    NASA Astrophysics Data System (ADS)

    Ucar, Dundar

    This study is for modeling and designing a new reactor core-moderator assembly and new neutron beam ports that aimed to expand utilization of a new beam hall of the Penn State Breazeale Reactor (PSBR). The PSBR is a part of the Radiation Science and Engineering Facility (RSEC) and is a TRIGA MARK III type research reactor with a movable core placed in a large pool and is capable to produce 1MW output. This reactor is a pool-type reactor with pulsing capability up to 2000 MW for 10-20 msec. There are seven beam ports currently installed to the reactor. The PSBR's existing core design limits the experimental capability of the facility, as only two of the seven available neutron beam ports are usable. The finalized design features an optimized result in light of the data obtained from neutronic and thermal-hydraulics analyses as well as geometrical constraints. A new core-moderator assembly was introduced to overcome the limitations of the existing PSBR design, specifically maximizing number of available neutron beam ports and mitigating the hydrogen gamma contamination of the neutron beam channeled in the beam ports. A crescent-shaped moderator is favored in the new PSBR design since it enables simultaneous use of five new neutron beam ports in the facility. Furthermore, the crescent shape sanctions a coupling of the core and moderator, which reduces the hydrogen gamma contamination significantly in the new beam ports. A coupled MURE and MCNP5 code optimization analysis was performed to calculate the optimum design parameters for the new PSBR. Thermal-hydraulics analysis of the new design was achieved using ANSYS Fluent CFD code. In the current form, the PSBR is cooled by natural convection of the pool water. The driving force for the natural circulation of the fluid is the heat generation within the fuel rods. The convective heat data was generated at the reactor's different operating powers by using TRIGSIMS, the fuel management code of the PSBR core. In the CFD

  14. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility. PMID:19291975

  15. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility. PMID:19291975

  16. Barrel inspection utilizing a 14 MeV neutron beam and associate alpha particle method.

    PubMed

    Sudac, Davorin; Matika, Dario; Nađ, Karlo; Obhođaš, Jasmina; Valkovic, Vladivoj

    2012-07-01

    A multi-sensor system was evaluated for the determination of barrel content with regard to eventual pollution hazards. The proposed system is able to investigate (in situ) the interior of a barrel filled with various unknown substances ranging from chemical and radioactive waste, raw sewage sludge, municipal incinerator ashes to common household trash. The crucial part of the system is a neutron sensor, which enables the identification of substance content without actually opening the barrel at all. A comparative laboratory test with the 3″×3″ and 5″×5″×10″ NaI(Tl) gamma ray detectors was made after which 3″×3″ detector was selected and incorporated in the submarine called "Surveyor". A field test was made in the Croatian Adriatic coast on the island Lošinj. Field tests show that the commercial system utilizing the described method could be constructed for barrel inspection regardless of the measurement environment (underwater, on land, dumping site, isolated location, etc.). PMID:22221463

  17. Producing persistent, high-current, high-duty-factor H{sup -} beams for routine 1 MW operation of Spallation Neutron Source (invited)

    SciTech Connect

    Stockli, Martin P.; Han, B. X.; Hardek, T. W.; Kang, Y. W.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R.

    2012-02-15

    Since 2009, the Spallation Neutron Source (SNS) has been producing neutrons with ion beam powers near 1 MW, which requires the extraction of {approx}50 mA H{sup -} ions from the ion source with a {approx}5% duty factor. The 50 mA are achieved after an initial dose of {approx}3 mg of Cs and heating the Cs collar to {approx}170 deg. C. The 50 mA normally persist for the entire 4-week source service cycles. Fundamental processes are reviewed to elucidate the persistence of the SNS H{sup -} beams without a steady feed of Cs and why the Cs collar temperature may have to be kept near 170 deg. C.

  18. Dependence of charge collection distributions and dose on the gas type filling the ionization chamber for a p(66)Be(49) clinical neutron beam

    SciTech Connect

    Awschalom, M.; Haken, R.K.T.

    1985-01-01

    Measurements of central axis depth charge distributions (CADCD) in a p(66)Be(49) clinical neutron beam using A-150 TE plastic ionization chambers (IC) have shown that these distributions are dependent on the gas type filling the ICs. IC volumes from 0.1 to 8 cm/sup 3/ and nine different gases were investigated. Off axis ratios and build-up measurements do not seem to be as sensitive to gas type. The gas dosimetry constants given in the AAPM Protocol for Neutron Beam Dosimetry for air and methane based TE gases were tested for consistency in water and in TE solution filled phantoms at depths of 10 cm, when used in conjunction with an IC having 5 mm thick walls of A-150. 29 refs., 7 figs., 1 tab.

  19. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  20. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  1. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    PubMed Central

    Zhou, Qian; Cheng Tang; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    OBJECTIVE: The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. METHODS: Thirty-one patients with stage I–III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. RESULTS: The five-year local control rate was 80.6% (25/31), the overall survival rate was 51.6% (16/31), and the disease-free survival rate was 54.8% (17/31). The incidence of serious late complications was 12.9% (4/31). CONCLUSIONS: 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range. PMID:26872078

  2. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    SciTech Connect

    Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van

    2007-04-15

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point

  3. Characterization of uranium carbide target materials to produce neutron-rich radioactive beams

    NASA Astrophysics Data System (ADS)

    Tusseau-Nenez, Sandrine; Roussière, Brigitte; Barré-Boscher, Nicole; Gottberg, Alexander; Corradetti, Stefano; Andrighetto, Alberto; Cheikh Mhamed, Maher; Essabaa, Saïd; Franberg-Delahaye, Hanna; Grinyer, Joanna; Joanny, Loïc; Lau, Christophe; Le Lannic, Joseph; Raynaud, Marc; Saïd, Abdelhakim; Stora, Thierry; Tougait, Olivier

    2016-03-01

    In the framework of a R&D program aiming to develop uranium carbide (UCx) targets for radioactive nuclear beams, the Institut de Physique Nucléaire d'Orsay (IPNO) has developed an experimental setup to characterize the release of various fission fragments from UCx samples at high temperature. The results obtained in a previous study have demonstrated the feasibility of the method and started to correlate the structural properties of the samples and their behavior in terms of nuclear reaction product release. In the present study, seven UCx samples have been systematically characterized in order to better understand the correlation between their physicochemical characteristics and release properties. Two very different samples, the first one composed of dense UC and the second one of highly porous UCx made of multi-wall carbon nanotubes, were provided by the ActILab (ENSAR) collaboration. The others were synthesized at IPNO. The systems for irradiation and heating necessary for the release studies have been improved with respect to those used in previous studies. The results show that the open porosity is hardly the limiting factor for the fission product release. The homogeneity of the microstructure and the pore size distribution contributes significantly to the increase of the release. The use of carbon nanotubes in place of traditional micrometric graphite particles appears to be promising, even if the homogeneity of the microstructure can still be enhanced.

  4. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    NASA Astrophysics Data System (ADS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A. E.; Engelhardt, M.

    2005-04-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2×107 cm s, which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300×1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200 rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points.

  5. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and

  6. Ion beam analysis of MgAl{sub 2}O{sub 4} spinel irradiated with fast neutrons to 50-250 dpa

    SciTech Connect

    Yu, Ning; Maggiore, C.J.; Sickafus, K.E.

    1995-12-31

    Non-destructive ion beam analysis techniques have been employed to examine the radiation damage in MgAl{sub 2}O{sub 4} spinel single crystals irradiated with fast neutrons at 400 and 750{degrees}C to high fluences ({>=}5 x 10{sup 22} n/cm{sup 2}, E{sub n} > 0.1 MeV). Rutherford backscattering and ion channeling measurements using 1-4 MeV He ion beams revealed that the radiation damage saturated after irradiation at 400{degrees}C to 50 displacements per atom. The energy dependence of dechanneling indicated the dominant extended defects present in the highly irradiated spinel are in the form of dislocations. Channeling angular scans of particle induced x-ray emission further suggested that neutron irradiation tends to randomize cation distribution for Mg{sup 2+} and Al{sup 3+} cations on the lattice sites. These results are compared to the microstructure observations of Kinoshita, et al. and the neutron scattering results of Sickafus, et al.

  7. Experimental verification of a method to create a variable energy neutron beam from a monoenergetic, isotropic source using neutron elastic scatter and time of flight

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Flaska, Marek; Kearfott, Kimberlee J.

    2016-08-01

    An experiment was performed to determine the neutron energy of near-monoergetic deuterium-deuterium (D-D) neutrons that elastically scatter in a hydrogenous target. The experiment used two liquid scintillators to perform time of flight (TOF) measurements to determine neutron energy, with the start detector also serving as the scatter target. The stop detector was placed 1.0 m away and at scatter angles of π/6, π/4, and π/3 rad, and 1.5 m at a scatter angle of π/4 rad. When discrete 1 ns increments were implemented, the TOF peaks had estimated errors between -21.2 and 3.6% relative to their expected locations. Full widths at half-maximum (FWHM) ranged between 9.6 and 20.9 ns, or approximately 0.56-0.66 MeV. Monte Carlo simulations were also conducted that approximated the experimental setup and had both D-D and deuterium-tritium (DT) neutrons. The simulated results had errors between -17.2 and 0.0% relative to their expected TOF peaks when 1 ns increments were applied. The largest D-D and D-T FWHMs were 26.7 and 13.7 ns, or approximately 0.85 and 4.98 MeV, respectively. These values, however, can be reduced through manipulation of the dimensions of the system components. The results encourage further study of the neutron elastic scatter TOF system with particular interest in application to active neutron interrogation to search for conventional explosives.

  8. Optimization of a neutron production target and a beam shaping assembly based on the 7Li( p, n) 7Be reaction for BNCT

    NASA Astrophysics Data System (ADS)

    Burlon, A. A.; Kreiner, A. J.; Valda, A. A.; Minsky, D. M.; Somacal, H. R.; Debray, M. E.; Stoliar, P.

    2005-02-01

    In this work a thick LiF target was studied through the 7Li( p, n) 7Be reaction as a neutron source for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) to provide a testing ground for numerical simulations aimed at producing an optimized neutron production target and beam shaping assembly design. Proton beams in the 1.88-2.0 MeV energy range were produced with the tandem accelerator TANDAR ( TANDem ARgentino) at the Comisión Nacional de Energía Atómica (CNEA) in Buenos Aires, Argentina. A cylindrical water-filled head-phantom, containing a boric acid sample, was irradiated to study the resulting neutron flux. The dose deposited in the boric acid sample was inferred through the Compton-suppressed detection of the gamma radiation produced from the 10B( n, αγ) 7Li capture reaction. The thermal neutron flux was evaluated using bare and Cd-covered activation gold foils. In all cases, Monte Carlo simulations have been done showing good agreement with the experimental results. Extensive MCNP simulation trials have then been performed after the preliminary calculation tool validation in order to optimize a neutron beam shaping assembly. These simulations include a thick Li metal target (instead of LiF), a whole-body phantom, two different moderator-reflector assemblies (Al/AlF 3/LiF, Fluental ®, as moderator and lead as reflector and a combination of Al, PTFE (polytetrafluoroethylene) and LiF as moderator and lead as reflector) and the treatment room. The doses were evaluated for proton bombarding energies of 1.92 MeV (near to the threshold of the reaction), 2.0 MeV, 2.3 MeV (near the reaction resonance) and 2.5 MeV, and for three Fluental ® and Al/PTFE/LiF moderator thicknesses (18, 26 and 34 cm). In a later instance, the effect of the specific skin radiosensitivity (an RBE of 2.5 for the 10B( n, α) 7Li reaction) and a 10B uptake 50% greater than the healthy tissue one, was considered for the scalp. To evaluate the doses in the phantom, a comparison of

  9. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  10. Production of Secondary Radioactive Beams of He and Li Neutron-Rich Isotopes in the Fragmentation Reaction {sup 15}N(47 MeV/A)+{sup 9}Be

    SciTech Connect

    Milewska, Aleksandra

    2007-11-26

    Yields of neutron-rich isotopes of He and Li produced in the reaction {sup 15}N(47 MeV/A)+{sup 9}Be have been measured. The experiment was carried out at the fragment separator COMBAS of the Flerov Laboratory of Nuclear Reactions, JINR (Dubna). Ion beams accelerated with the U-400M cyclotron and thick target were used. The products were identified according to their magnetic rigidities and time of flight (TOF) via the separator. The path length of TOF was 7,5 m. As a result of fragmentation, beams of four isotopes of Lithium and two isotopes of Helium were obtained. The inclusive velocities of reaction products were obtained and isotopes yields were calculated.

  11. Effect of Magnetic Fringe Field and Interference on Beam Matching in a Medium Energy Beam Transport Line of the Spallation Neutron Source Linac

    SciTech Connect

    Wang, Jian-Guang; Zhang, Yan

    2011-01-01

    A Medium-Energy Beam Transport (MEBT) line is employed in the SNS linac to match the beam from an RFQ to a DTL and to perform other functions. The MEBT lattice consists of fourteen electromagnetic quadrupoles and other devices. The quads have very small aspect ratios (steel length over aperture diameter), and they are densely packed in the lattice. Significant fringe fields and magnetic interference cause difficulties in beam matching. We have performed 3D simulations of the magnets, computed their optical properties, and compared their performance with what predicted by simple hard edge models. This paper reports our findings and a general solution to the problem.

  12. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  13. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  14. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  15. Triple ion-beam studies of radiation damage effects in a 316LN austenitic alloy for a high power spallation neutron source

    SciTech Connect

    Lee, E.H.; Rao, G.R.; Hunn, J.D.; Rice, P.M.; Lewis, M.B.; Cook, S.W.; Farrell, K.; Mansur, L.K.

    1997-09-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe{sup ++}, 360 keV He{sup +}, and 180 keV H{sup +} to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of {approximately} 1 {micro}m. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss.

  16. SPECIAL ISSUE DEVOTED TO THE 80TH ANNIVERSARY OF ACADEMICIAN N G BASOV'S BIRTH: An optically polarised dense 3He target as a spin filter for slow-neutron beams

    NASA Astrophysics Data System (ADS)

    Kolachevsky, Nikolai N.; Prokof'ichev, Yu V.; Skoi, V. R.; Sobel'man, Igor I.; Sorokin, Vadim N.

    2003-01-01

    The possibility of polarising 3He and preserving the polarisation in an external magnetic field of 0.05 Oe is demonstrated experimentally. A neutron filter with an extremely weak guiding field is fabricated for obtaining polarised neutron beams. The degree of polarisation equal to 25% was obtained for 0.025-eV neutrons. Some fields of application of other polarised noble gases are considered. The cross section for cross-relaxation of nuclear polarisation in the 129Xe — 131Xe mixture is estimated.

  17. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  18. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    SciTech Connect

    Kageji, Teruyoshi . E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-08-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively.

  19. Code System to Calculate Neutron and Gamma-Ray Skyshine Doses Using the Integral Line-Beam Method.

    Energy Science and Technology Software Center (ESTSC)

    2000-11-16

    Version 03 This package includes the SKYNEUT 1.1, SKYDOSE 2.3, MCSKY 2.3 and SKYCONES 1.1 codes plus the DLC-188/SKYDATA library to form a comprehensive system for calculating skyshine doses. See the author's web site for related information: http://athena.mne.ksu.edu/~jks/ SKYNEUT evaluates the neutron and neutron-induced secondary gamma-ray skyshine doses from an isotropic, point, neutron source collimated by three simple geometries: an open silo, a vertical black (perfectly absorbing) wall, and a rectangular building. The source maymore » emit monoenergetic neutrons or neutrons with an arbitrary multigroup spectrum of energies. SKYDOSE evaluates the gamma-ray skyshine dose from an isotropic, monoenergetic, point gamma-photon source collimated by three simple geometries: (1) a source in a silo, (2) a source behind an infinitely long, vertical, black wall, and (3) a source in a rectangular building. In all three geometries an optional overhead slab shield may be specified. MCSKY evaluates the gamma-ray skyshine dose from an isotropic, monoenergetic, point gamma-photon source collimated into either a vertical cone (i.e., silo geometry) or into a vertically oriented structure with an N-sided polygon cross section. An overhead laminate shield composed of two different materials is assumed, although shield thicknesses of zero may be specified to model an unshielded SKYSHINE source. SKYCONES evaluates the skyshine doses produced by a point neutron or gamma-photon source emitting, into the atmosphere, radiation that is collimated into an upward conical annulus between two arbitrary polar angles. The source is assumed to be axially (azimuthally) symmetric about a vertical axis through the source and can have an arbitrary polyenergetic spectrum. Nested contiguous annular cones can thus be used to represent the energy and polar-angle dependence of a skyshine source emitting radiation into the atmosphere.« less

  20. Extraction of pure thermal neutron beam for the proposed PGNAA facility at the TRIGA research reactor of AERE, Savar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Alam, Sabina; Zaman, M. A.; Islam, S. M. A.; Ahsan, M. H.

    1993-10-01

    A study on collimators and filters for the design of a spectrometer for prompt gamma neutron activation analysis (PGNAA) at one of the radial beamports of the TRIGA Mark II reactor at AERE, Savar has been carried out. On the basis of this study a collimator and a filter have been designed for the proposed PGNAA facility. Calculations have been done for measuring neutron flux at various positions of the core of the reactor using the computer code TRIGAP. Gamma dose in the core of the reactor has also been measured experimentally using TLD technique in the present work.

  1. Neutron reflectometry: Filling Δq with neutrons

    NASA Astrophysics Data System (ADS)

    Pleshanov, N. K.

    2016-06-01

    Luminosity of the reflectometer is defined as the neutron flux incident onto the sample surface for measurements made with a given momentum transfer resolution Δq. The filling of Δq with neutrons near a certain q depends not only on the source luminance and the source-sample tract transmittance, but also on the neutron beam tailoring. The correct choice of the working wavelength and measurements with optimum neutron beam parameters increase luminosity in several times. New optimization criteria for neutron reflectometers are suggested. Standard schemes of the reflectivity measurement with monochromatic and white beams are re-examined. Optimization of reflectivity measurements generally requires numerical calculations. Analytically, its potential is demonstrated by considering thermalized neutron beams. Such innovations as velocity selector on the basis of aperiodic multilayers, small angle Soller collimator with traps for neutrons reflected from the channel walls and fan beam time-of-flight technique are proposed to further increase the luminosity of reflectometers.

  2. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source

    PubMed Central

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed. PMID:27308112

  3. Beam dynamics studies on the 100 MeV/100 kW electron linear accelerator for NSC KIPT neutron source

    NASA Astrophysics Data System (ADS)

    Pei, Shi-Lun; Chi, Yun-Long; Wang, Shu-Hong; Pei, Guo-Xi; Zhou, Zu-Sheng; Hou, Mi; Mykola, Ayzatskiy; Ivan, Karnaukhov; Volodymyr, Kushnir; Viktor, Mytrochenko; Andrey, Zelinsky

    2012-07-01

    We designed a 100 MeV/100 kW electron linear accelerator for NSC KIPT, which will be used to drive a neutron source on the basis of subcritical assembly. Beam dynamics studies have been conducted to reach the design requirements (E = 100 MeV, P = 100 kW, dE/E < 1% for 99% particles). In this paper, we will present the progress of the design and the dynamic simulation results. For high intensity and long beam pulse linear accelerators, the BBU effect is one big issue; special care has been taken in the accelerating structure design. To satisfy the energy spread requirement at the linac exit, the particles with large energy difference from the synchronous particle should be eliminated at a low energy stage to ease the design of the collimation system and radiation shielding. A dispersion free chicane with 4 bending magnets is introduced downstream of the 1st accelerating section; the unwanted particles will be collimated there.

  4. In-Beam {gamma}-Ray Spectroscopy of the N=50 Isotones on the Neutron-Rich Side

    SciTech Connect

    Prevost, A.; Astier, A.; Deloncle, I.; Porquet, M.-G.; Lucas, R.

    2005-11-21

    High-spin states of 84Se, produced as a fission fragment in the fusion-fission reaction 18O+208Pb and studied with the EUROBALL IV array, have been identified for the first time. Their interpretation gives new insights about the evolution of the N=50 shell gap at the vicinity of 78Ni. To characterize this evolution, it would be worth using a new device devoted to the high-spin studies of neutron-rich nuclei produced by asymmetric fission modes. Such dedicated studies are reported in a second part.

  5. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  6. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  7. Neutron-induced background by an α-beam incident on a deuterium gas target and its implications for the study of the 2H(α,γ)6Li reaction at LUNA

    NASA Astrophysics Data System (ADS)

    Anders, M.; Trezzi, D.; Bellini, A.; Aliotta, M.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Costantini, H.; Corvisiero, P.; Davinson, T.; Elekes, Z.; Erhard, M.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Junker, M.; Lemut, A.; Marta, M.; Mazzocchi, C.; Menegazzo, R.; Prati, P.; Rossi Alvarez, C.; Scott, D.; Somorjai, E.; Straniero, O.; Szücs, T.

    2013-02-01

    The production of the stable isotope 6Li in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological 6Li plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of 7Li abundances and would point to a predominantly primordial origin of 6Li , contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang 6Li production must be revisited. The main production channel for 6Li in the Big Bang is the 2H(α,γ)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an α-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400keV α-beam energy and for comparison also using an americium-beryllium neutron source.

  8. Neutrons against cancer

    NASA Astrophysics Data System (ADS)

    Dovbnya, A. N.; Kuplennikov, E. L.; Kandybey, S. S.; Krasiljnikov, V. V.

    2014-09-01

    The review is devoted to the analysis and generalization of the research carried out during recent years in industrially advanced countries on the use of fast, epithermal, and thermal neutrons for therapy of malignant tumors. Basic facilities for neutron production used for cancer treatment are presented. Optimal parameters of therapeutic beams are described. Techniques using neutrons of different energy regions are discussed. Results and medical treatment efficiency are given. Comparison of the current state of neutron therapy of tumors and alternative treatments with beams of protons and carbon ions has been conducted. Main attention is given to the possibility of the practical use of accumulated experience of application of neutron beams for cancer therapy.

  9. Neutron Imaging and Applications

    SciTech Connect

    Anderson, Ian S; McGreevy, Robert L; Bilheux, Hassina Z

    2009-04-01

    Neutron Imaging and Applications offers an introduction to the basics of neutron beam production and instrumentation in addition to the wide scope of techniques that provide unique imaging capabilities over a broad and diverse range of applications. An instructional overview of neutron sources, optics and detectors, allows readers to delve more deeply into the discussions of radiography, tomography, phase contrast imaging and prospective applications using advanced neutron holography techniques and polarized beams. A section devoted to overviews in a growing range of applications describes imaging of fuel cells and hydrogen storage devices for a robust hydrogen economy; new directions in material science and engineering; the investigation of precious artifacts of cultural heritage importance; determination of plant physiology and growth processes; imaging of biological tissues and macromolecules, and the practical elements of neutron imaging for homeland security and contraband detection. Written by key experts in the field, researchers and engineers involved with imaging technologies will find Neutron Imaging and Applications a valuable reference.

  10. Frascati neutron generator (FNG)

    NASA Astrophysics Data System (ADS)

    Martone, M.; Angelone, M.; Pillon, Mario

    1995-03-01

    The 14 MeV neutron generator (FNG), in operation at the ENEA Energy Center of Frascati, Italy, is described. It produces up to 1 X 1011 neutrons per second and consists essentially of a deuterium-ion accelerator, a beam transport system, and a target of titanium tritide, where neutrons are produced by the T(d,n)4He fusion reactions. An application of FNG in the context of research activity on controlled thermonuclear fusion research is also briefly described.

  11. Neutron capture therapies

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  12. Neutron capture therapies

    SciTech Connect

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  13. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    NASA Astrophysics Data System (ADS)

    Gutsmiedl, Erwin; Scheuer, Anton

    2002-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256°C and 250°C. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was taken into consideration in the nuclear licensing procedure. Charpy-impact-test samples were carried out in the temperature range between -256°C and 150°C to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to be taken into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼1×10 22 n/cm 2 was investigated. The loss of ductility was determined. As additional criteria the variation of the fracture toughness was studied. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfil the leak criteria before rupture

  14. The Fundamental Neutron Physics Facilities at NIST

    PubMed Central

    Nico, J. S.; Arif, M.; Dewey, M. S.; Gentile, T. R.; Gilliam, D. M.; Huffman, P. R.; Jacobson, D. L.; Thompson, A. K.

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities. PMID:27308110

  15. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1996-06-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

  16. GUIDE FOR POLARIZED NEUTRONS

    DOEpatents

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  17. Neutron Transport Characteristics of a Nuclear Reactor Based Dynamic Neutron Imaging System

    SciTech Connect

    Khaial, Anas M.; Harvel, Glenn D.; Chang, Jen-Shih

    2006-07-01

    An advanced dynamic neutron imaging system has been constructed in the McMaster Nuclear Reactor (MNR) for nondestructive testing and multi-phase flow studies in energy and environmental applications. A high quality neutron beam is required with a thermal neutron flux greater than 5.0 x 10{sup 6} n/cm{sup 2}-s and a collimation ratio of 120 at image plane to promote high-speed neutron imaging up to 2000 frames per second. Neutron source strength and neutron transport have been experimentally and numerically investigated. Neutron source strength at the beam tube entrance was evaluated experimentally by measuring the thermal and fast neutron fluxes, and simple analytical neutron transport calculations were performed based upon these measured neutron fluxes to predict facility components in accordance with high-speed dynamic neutron imaging and operation safety requirements. Monte-Carlo simulations (using MCNP-4B code) with multiple neutron energy groups have also been used to validate neutron beam parameters and to ensure shielding capabilities of facility shutter and cave walls. Neutron flux distributions at the image plane and the neutron beam characteristics were experimentally measured by irradiating a two-dimensional array of Copper foils and using a real-time neutron radiography system. The neutron image characteristics -- such as neutron flux, image size, beam quality -- measured experimentally and predicted numerically for beam tube, beam shutter and radiography cave are compared and discussed in detail in this paper. The experimental results show that thermal neutron flux at image plane is nearly uniform over an imaging area of 20.0-cm diameter and its magnitude ranges from 8.0 x 10{sup 6} - 1.0 x 10{sup 7} n/cm{sup 2}-sec while the neutron-to-gamma ratio is 6.0 x 10{sup 5} n/cm{sup 2}-{mu}Sv. (authors)

  18. Precision Neutron Polarimetry for Neutron Beta Decay

    PubMed Central

    Penttila, S. I.; Bowman, J. D.

    2005-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for a measurement of the three correlation coefficients a, A, and B and the shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from the SNS using a 3He neutron spin filter. The well-known polarizing cross section for n-3He has a 1/v dependence, where v is the neutron velocity, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that by measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with a small loss of the statistical precision and with negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a long run in the neutron beta decay experiment with a statistical error less than 10−4. We discuss various sources of systematic uncertainty in the measurement of A and B and conclude that the fractional systematic errors are less than 2 × 10−4. PMID:27308142

  19. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the beam current limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beamline below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described. {copyright} {ital 1997 American Institute of Physics.}

  20. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  1. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P. )

    1993-12-25

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. We describe what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. We present initial results from a study of beam entropy for an intense space-charge dominated beam.

  2. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-06-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  3. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  4. First experiments on neutron detection on the accelerator-based source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. S.; Malyshkin, G. N.; Makarov, A. N.; Sorokin, I. N.; Sulyaev, Yu. S.; Taskaev, S. Yu.

    2009-04-01

    A pilot accelerator-based source of epithermal neutrons, which is intended for wide application in clinics for boron neutron capture therapy, has been constructed at the Budker Institute of Nuclear Physics (Novosibirsk). A stationary proton beam has been obtained and near-threshold neutron generation regime has been realized. Results of the first experiments on neutron generation using the proposed source are described.

  5. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  6. Study of secondary neutron interactions with 232Th, 129I, and 127I nuclei with the uranium assembly “QUINTA” at 2, 4, and 8GeV deuteron beams of the JINR Nuclotron accelerator

    DOE PAGESBeta

    Adam, J.; Chilap, V. V.; Furman, V. I.; Kadykov, M. G.; Khushvaktov, J.; Pronskikh, V. S.; Solnyshkin, A. A.; Stegailov, V. I.; Suchopar, M.; Tsoupko-Sitnikov, V. M.; et al

    2015-11-04

    The natural uranium assembly, “QUINTA”, was irradiated with 2, 4, and 8 GeV deuterons. The 232Th, 127I, and 129I samples have been exposed to secondary neutrons produced in the assembly at a 20-cm radial distance from the deuteron beam axis. The spectra of gamma rays emitted by the activated 232Th, 127I, and 129I samples have been analyzed and several tens of product nuclei have been identified. For each of those products, neutron-induced reaction rates have been determined. The transmutation power for the 129I samples is estimated. Furthermore, experimental results were compared to those calculated with well-known stochastic and deterministic codes.

  7. Operation Sun Beam shots Little Feller I and II, Johnie boy, and Small Boy. Project Officer's report. Project 2. 3. Neutron flux measurements

    SciTech Connect

    Rigotti, D.L.; McNeilly, J.H.; Brady, R.E.; Tarbox, J.L.

    1985-09-01

    The objectives of this project were (1) to measure free-field neutron flux and spectrum as required in support of other projects; (2) to document the neutron flux versus ground range; and (3) to determine the effect of various blast containers and shields on detector activation.

  8. Precision neutron polarimetry for neutron beta decay

    SciTech Connect

    Penttila, S. I.; Bowman, J. D.

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a {sup 3}He neutron spin filter. The well-known polarizing cross section for n-{sup 3}He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10{sup -3}. We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10{sup -4}.

  9. Precision Polarization of Neutrons

    NASA Astrophysics Data System (ADS)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  10. Laser generated neutron source for neutron resonance spectroscopy

    SciTech Connect

    Higginson, D. P.; Bartal, T.; McNaney, J. M.; Swift, D. C.; Hey, D. S.; Le Pape, S.; Mackinnon, A.; Kodama, R.; Tanaka, K. A.; Mariscal, D.; Beg, F. N.; Nakamura, H.; Nakanii, N.

    2010-10-15

    A neutron source for neutron resonance spectroscopy has been developed using high-intensity, short-pulse lasers. This technique will allow robust measurement of interior ion temperature of laser-shocked materials and provide insight into material equation of state. The neutron generation technique uses laser-accelerated protons to create neutrons in LiF through (p,n) reactions. The incident proton beam has been diagnosed using radiochromic film. This distribution is used as the input for a (p,n) neutron prediction code which is validated with experimentally measured neutron yields. The calculation infers a total fluence of 1.8x10{sup 9} neutrons, which are expected to be sufficient for neutron resonance spectroscopy temperature measurements.

  11. Materials and neutronic research at the Low Energy Neutron Source

    NASA Astrophysics Data System (ADS)

    Baxter, David V.

    2016-04-01

    In the decade since the Low Energy Neutron Source (LENS) at Indiana University Center for Exploration of Energy and Matter (CEEM) produced its first neutrons, the facility has made important contributions to the international neutron scattering community. LENS employs a 13MeV proton beam at up to 4kW beam power onto one of two Be targets to produce neutrons for research in fields ranging from radiation effects in electronics to studies of the structure of fluids confined in nanoporous materials. The neutron source design at the heart of LENS facilitates relatively rapid hands-on access to most of its components which provides a foundation for a research program in experimental neutronics and affords numerous opportunities for novel educational experiences. We describe in some detail a number of the unique capabilities of this facility.

  12. A small angle neutron scattering (SANS) experiment using very cold neutrons (VCN)

    NASA Astrophysics Data System (ADS)

    Bleuel, M.; Carpenter, J. M.; Micklich, B. J.; Geltenbort, P.; Mishima, K.; Shimizu, H. M.; Iwashita, Y.; Hirota, K.; Hino, M.; Kennedy, S. J.; Lal, J.

    2009-09-01

    This paper describes the results of SANS measurements of small samples using the very cold neutron (VCN) beam of the PF2 instrument at the Institut Laue Langevin (ILL), France. In addition to a classical SANS pinhole collimation, the experiment used a polarizing supermirror as a monochromator and a magnetic sextupole lens to focus the neutron beam in order to gain intensity and avoid any material in the neutron beam besides the sample.

  13. Precision Neutron Polarimetry

    NASA Astrophysics Data System (ADS)

    Sharma, Monisha; Barron-Palos, L.; Bowman, J. D.; Chupp, T. E.; Crawford, C.; Danagoulian, A.; Klein, A.; Penttila, S. I.; Salas-Bacci, A. F.; Wilburn, W. S.

    2008-04-01

    Proposed PANDA and abBA experiments aim to measure the correlation coefficients in the polarized neutron beta decay at the SNS. The goal of these experiments is 0.1% measurement which will require neutron polarimetry at 0.1% level. The FnPB neutron beam will be polarized either using a ^3He spin filter or a supermirror polarizer and the neutron polarization will be measured using a ^3He spin filter. Experiment to establish the accuracy to which neutron polarization can be determined using ^3He spin fliters was performed at Los Alamos National Laboratory in Summer 2007 and the analysis is in progress. The details of the experiment and the results will be presented.

  14. Ultrashort pulsed neutron source.

    PubMed

    Pomerantz, I; McCary, E; Meadows, A R; Arefiev, A; Bernstein, A C; Chester, C; Cortez, J; Donovan, M E; Dyer, G; Gaul, E W; Hamilton, D; Kuk, D; Lestrade, A C; Wang, C; Ditmire, T; Hegelich, B M

    2014-10-31

    We report on a novel compact laser-driven neutron source with an unprecedented short pulse duration (<50  ps) and high peak flux (>10(18)  n/cm(2)/s), an order of magnitude higher than any existing source. In our experiments, high-energy electron jets are generated from thin (<3  μm) plastic targets irradiated by a petawatt laser. These intense electron beams are employed to generate neutrons from a metal converter. Our method opens venues for enhancing neutron radiography contrast and for creating astrophysical conditions of heavy element synthesis in the laboratory. PMID:25396373

  15. Ultrashort Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Pomerantz, I.; McCary, E.; Meadows, A. R.; Arefiev, A.; Bernstein, A. C.; Chester, C.; Cortez, J.; Donovan, M. E.; Dyer, G.; Gaul, E. W.; Hamilton, D.; Kuk, D.; Lestrade, A. C.; Wang, C.; Ditmire, T.; Hegelich, B. M.

    2014-10-01

    We report on a novel compact laser-driven neutron source with an unprecedented short pulse duration (<50 ps ) and high peak flux (>1018 n /cm2/s ), an order of magnitude higher than any existing source. In our experiments, high-energy electron jets are generated from thin (<3 μ m ) plastic targets irradiated by a petawatt laser. These intense electron beams are employed to generate neutrons from a metal converter. Our method opens venues for enhancing neutron radiography contrast and for creating astrophysical conditions of heavy element synthesis in the laboratory.

  16. Epithermal neutron instrumentation at ISIS

    NASA Astrophysics Data System (ADS)

    Gorini, G.; Festa, G.; Andreani, C.

    2014-12-01

    The advent of pulsed neutron sources makes available high epithermal neutron fluxes (in the energy range between 500 meV and 100 eV). New dedicated instrumentation, such as Resonance Detectors, was developed at ISIS spallation neutron source in the last years to apply the specific properties of this kind of neutron beam to the study of condensed matter. New detection strategies like Filter Difference method and Foil Cycling Technique were also developed in parallel to the detector improvement at the VESUVIO beamline. Recently, epithermal neutron beams were also used at the INES beamline to study elemental and isotopic composition of materials, with special application to cultural heritage studies. In this paper we review a series of epithermal neutron instrumentation developed at ISIS, their evolution over time and main results obtained.

  17. Neutrons for technology and science

    SciTech Connect

    Aeppli, G.

    1995-10-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past.

  18. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    NASA Astrophysics Data System (ADS)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji

  19. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  20. A neutron spectrometer for neutron energies between 1 eV and 10 keV

    SciTech Connect

    Wang, C.K.; Blue, T.E.

    1988-01-01

    In boron neutron capture therapy (BNCT), it is the consensus that epithermal neutron beams have advantages over thermal beams in treating deep-seated brain tumors, and large neutron fields have advantages over narrow beams, since whole-brain irradiations are thought to be necessary in many cases. Epithermal neutron sources for BNCT, which include filtered reactor neutron beams and moderated reactor neutron fields, are currently being developed at many institutions around the world. Neutrons with energies between 1 eV and 10 keV are most suitable for treating brain tumors. However, techniques for measuring neutron spectra in a vacuum in this energy range are not well developed. This paper describes a new type of neutron spectrometer that has a set of response functions that peak at equally spaced intervals on a logarithmic energy scale ranging from 1 eV to 10 keV; therefore, neutron spectra (or histograms) in this energy range can be obtained by properly applying spectrum unfolding techniques to the measured data. The spectrometer is applicable for measurements in a vacuum for both narrow neutron beams and wide neutron fields.

  1. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  2. Neutron dosimetry in solid water phantom

    SciTech Connect

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2014-11-07

    The neutron spectra, the Kerma and the absorbed dose due to neutrons were estimated along the incoming beam in a solid water phantom. Calculations were carried out with the MCNP5 code, where the bunker, the phantom and the model of the15 MV LINAC head were modeled. As the incoming beam goes into the phantom the neutron spectrum is modified and the dosimetric values are reduced.

  3. Twisting Neutron Waves

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry

    Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.

  4. A neutron detector to monitor the intensity of transmitted neutrons for small-angle neutron scattering instruments

    NASA Astrophysics Data System (ADS)

    De Lurgio, Patrick M.; Klann, Raymond T.; Fink, Charles L.; McGregor, Douglas S.; Thiyagarajan, Pappannan; Naday, Istvan

    2003-06-01

    A semiconductor-based neutron detector was developed at Argonne National Laboratory (ANL) for use as a neutron beam monitor for small-angle neutron scattering instruments. The detector is constructed using a coating of 10B on a gallium-arsenide semiconductor detector and is mounted directly within a cylindrical (2.2 cm dia. and 4.4 cm long) enriched 10B 4C beam stop in the time-of-flight Small Angle Neutron Diffractometer (SAND) instrument at the Intense Pulsed Neutron Source (IPNS) facility at ANL. The neutron beam viewed by the SAND is from a pulsed spallation source moderated by a solid methane moderator that produces useful neutrons in the wavelength range of 0.5-14 Å. The SAND instrument uses all detected neutrons in the above wavelength range sorted by time-of-flight into 68 constant Δ T/ T=0.05 channels. This new detector continuously monitors the transmitted neutron beam through the sample during scattering measurements and takes data concurrently with the other detectors in the instrument. The 10B coating on the GaAs detector allows the detection of the cold neutron spectrum with reasonable efficiency. This paper describes the details of the detector fabrication, the beam stop monitor design, and includes a discussion of results from preliminary tests using the detector during several run cycles at the IPNS.

  5. The EORTC Boron Neutron Capture Therapy (BNCT) Group: achievements and future projects.

    PubMed

    Sauerwein, W; Zurlo, A

    2002-03-01

    Boron Neutron Capture Therapy (BNCT) is an experimental treatment modality that takes place in a nuclear research reactor. To progress from preclinical studies to patient treatment is a challenge requiring strict quality management and special solutions to licensing, liability, insurance, responsibility and logistics. The European Organisation for the Research and Treatment of Cancer (EORTC) BNCT group has started the first European clinical trial of BNCT for glioblastoma patients at the European High Flux Reactor (HFR) in Petten, The Netherlands, conducted by the Department of Radiotherapy of the University of Essen, Germany. A very strict quality management had to be installed following the European rules on safety and quality assurance for nuclear research reactors, for radioprotection, for radiotherapy and for clinical trials. The EORTC BNCT Group has created a virtual European-wide hospital to handle the complex management of patients treated with BNCT. New clinical trials are currently under development. PMID:11858961

  6. Optical neutron polarizers

    SciTech Connect

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs.

  7. Absolute Neutron Fluence Measurements at the NIST Center for Neutron Research

    NASA Astrophysics Data System (ADS)

    Yue, A.; Dewey, M.; Gilliam, D.; Nico, J.; Anderson, E.; Snow, M.; Greene, G.; Laptev, A.

    2015-10-01

    Precise, absolute fluence measurements of cold and thermal neutron beams are of primary importance to beam-type determinations of the neutron lifetime, measurements of standard neutron cross sections, and the development of standards for neutron dosimetry. At the National Institute of Standards and Technology (NIST), a totally absorbing neutron detector based on absolute counting of the 10B(n,α1)7Li reaction 478 keV gamma ray has been used to perform fluence measurements with a precision of 0.06%. This detector has been used to improve the neutron fluence determination in the 2000 NIST beam neutron lifetime by a factor of five, significantly reducing the uncertainty in the lifetime result. Ongoing and possible future uses of the Alpha-Gamma device include 1) Calibration of the neutron fluence monitors that will be used in the upcoming NIST beam neutron lifetime measurement BL2; 2) The first direct, absolute measurement of the 6Li(n,t)4He neutron cross section at sub-thermal neutron energy; 3) Measurements of the 10B(n, γ)11B and 235U(n,f) neutron cross sections; 4) A re-calibration of the national neutron standard NBS-1. The apparatus, measurement technique, and applications will be discussed.

  8. Neutron radiography using neutron imaging plate.

    PubMed

    Chankow, Nares; Punnachaiya, Suvit; Wonglee, Sarinrat

    2010-01-01

    The aims of this research are to study properties of a neutron imaging plate (NIP) and to test it for use in nondestructive testing (NDT) of materials. The experiments were carried out by using a BAS-ND 2040 Fuji NIP and a neutron beam from the Thai Research Reactor TRR-1/M1. The neutron intensity and Cd ratio at the specimen position were approximately 9x10(5) ns/cm(2) s and 100 respectively. It was found that the photostimulated luminescence (PSL) readout of the imaging plate was directly proportional to the exposure time and approximately 40 times faster than the conventional NR using Gd converter screen/X-ray film technique. The sensitivities of the imaging plate to slow neutron and to Ir-192 gamma-rays were found to be approximately 4.2x10(-3) PSL/mm(2) per neutron and 6.7x10(-5) PSL/mm(2) per gamma-ray photon respectively. Finally, some specimens containing light elements were selected to be radiographed with neutrons using the NIP and the Gd converter screen/X-ray film technique. The image quality obtained from the two recording media was found to be comparable. PMID:19828321

  9. Beam-beam instability

    SciTech Connect

    Chao, A.W.

    1983-08-01

    The subject of beam-beam instability has been studied since the invention of the colliding beam storage rings. Today, with several colliding beam storage rings in operation, it is not yet fully understood and remains an outstanding problem for the storage ring designers. No doubt that good progress has been made over the years, but what we have at present is still rather primitive. It is perhaps possible to divide the beam-beam subject into two areas: one on luminosity optimization and another on the dynamics of the beam-beam interaction. The former area concerns mostly the design and operational features of a colliding beam storage ring, while the later concentrates on the experimental and theoretical aspects of the beam-beam interaction. Although both areas are of interest, our emphasis is on the second area only. In particular, we are most interested in the various possible mechanisms that cause the beam-beam instability.

  10. Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials.

    PubMed

    Price, Robert A

    2005-01-01

    The behaviour of packaged and unpackaged ESAPMOS4 RadFET radiation detectors (NMRC Cork, Ireland) was investigated when used in the mixed photon and neutron environment of a medical linear accelerator operating above the nucleon separation energy and in a 14 MeV neutron field provided by a D-T generator. Within the uncertainty of the experimental set-up (4% at 95% confidence level) the unpackaged device was found to have essentially zero activation dose-burden whereas the packaged device exhibits a considerable degree of post irradiation absorbed dose due to deactivation radiation. PMID:16381751

  11. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  12. Cyclotron-based neutron source for BNCT

    NASA Astrophysics Data System (ADS)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  13. Monoenergetic Neutrons for Stellar Applications

    NASA Astrophysics Data System (ADS)

    Mosconi, M.; Heil, M.; Käppeler, F.; Plag, R.; Mengoni, A.; Nolte, R.

    2009-09-01

    With modern techniques, neutron-capture cross sections can be determined with uncertainties of a few percent. However, Maxwellian averaged cross sections calculated from such data require a correction (because low-lying excited states are thermally populated in the hot stellar photon bath) which has to be determined by theoretical calculations. These calculations can be improved with information from indirect measurements, in particular by the inelastic scattering cross section. For low-lying levels, the inelastically scattered neutrons are difficult to separate from the dominant elastic channel. This problem is best solved by means of pulsed, monoenergetic neutron beams. For this reason, a pulsed beam of 30 keV neutrons with an energy spread of 7 to 9 keV FWHM and a width from 10 to 15 ns has been produced at Forschungszentrum Karlsruhe using the 7Li(p, n)7Be reaction directly at the reaction threshold. With this neutron beam the inelastic scattering cross section of the first excited level at 9.75 keV in 187Os was determined with a relative uncertainty of 6%. The use of monoenergetic neutron beams has been further pursued at the Physikalisch-Technische Bundesanstalt in Braunschweig, including the 3H(p, n)3He reaction for producing neutrons with an energy of 64 keV.

  14. Controlling neutron orbital angular momentum.

    PubMed

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  15. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  16. Wolter Optics for Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Mildner, D. F. R.; Gubarev, M. V.

    2010-01-01

    Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics

  17. Neutron scattering studies in the actinide region

    SciTech Connect

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on {sup 14}N, {sup 181}Ta, {sup 232}Th, {sup 238}U and {sup 239}Pu; Prompt fission spectra for {sup 232}Th, {sup 235}U, {sup 238}U and {sup 239}Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus.

  18. Neutron diffraction on pulsed sources

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Balagurov, A. M.

    2016-03-01

    The current capabilities of and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades have been mainly the emergence of third-generation pulsed sources with a megawatt time-averaged power and advances in neutron optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method from F L Shapiro, the centennial of whose birth was celebrated in 2015. The state of the art with respect to neutron sources for studies on extracted beams is reviewed in a special section.

  19. Neutron phase spin echo

    NASA Astrophysics Data System (ADS)

    Piegsa, Florian M.; Hautle, Patrick; Schanzer, Christian

    2016-04-01

    A novel neutron spin resonance technique is presented based on the well-known neutron spin echo method. In a first proof-of-principle measurement using a monochromatic neutron beam, it is demonstrated that relative velocity changes of down to a precision of 4 ×10-7 can be resolved, corresponding to an energy resolution of better than 3 neV. Currently, the sensitivity is only limited by counting statistics and not by systematic effects. An improvement by another two orders of magnitude can be achieved with a dedicated setup, allowing energy resolutions in the 10 peV regime. The new technique is ideally suited for investigations in the field of precision fundamental neutron physics, but will also be beneficial in scattering applications.

  20. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  1. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  2. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  3. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  4. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  5. An Alpha-Gamma Counter for Absolute Neutron Flux Measurement

    NASA Astrophysics Data System (ADS)

    Yue, A.; Greene, G.; Dewey, M.; Gilliam, D.; Nico, J.; Laptev, A.

    2012-03-01

    An alpha-gamma counter was used to measure the absolute neutron flux of a monochromatic cold neutron beam to sub-0.1,% precision. Simultaneously, the counter was used to calibrate a thin neutron flux monitor based on neutron absorption on ^6Li to the same precision. This monitor was used in the most precise beam-based measurement of the neutron lifetime, where the limiting systematic effect was the uncertainty in the neutron counting efficiency (0.3,%). The counter uses a thick target of ^10B-enriched boron carbide to completely absorb the beam. The rate of absorbed neutrons is determined by counting 478 keV gamma rays from neutron capture on ^10B with calibrated high-purity germanium detectors. The calibration results and the implications for the neutron lifetime will be discussed.

  6. Operation Sun Beam, Shot Small Boy. Project Officer's report - Project 2. 2. Measurement of fast-neutron dose rate as a function of time

    SciTech Connect

    Kronenberg; Markow; Balton, I.A.

    1985-09-01

    The dose rates of fast neutrons as a function of time were obtained. In view of the fact that the measurement of the neutron spectrum as a function of time was only an attempt and was instrumented very marginally, the objective of the experiment was achieved. However, because of the paucity of data points, the information was marginal and was obtained only because of multiple duplication at each station. The detectors worked well in all cases where they were not damaged by rough handling. The biggest drawback in the experiment was difficulty with electronic equipment, in particular with the amplifiers that had to be designed and built in the laboratory within a very limited time. The reliability of the recorded data was good, and it was concluded that effects other than radiation did not influence th sensor outputs.

  7. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    DOE PAGESBeta

    Fomin, N.; Greene, G. L.; Allen, R. R.; Cianciolo, V.; Crawford, C.; Tito, T. M.; Huffman, P. R.; Iverson, E. B.; Mahurin, R.; Snow, W. M.

    2014-11-04

    In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  8. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    SciTech Connect

    Cizewski, J. A.; Peters, W. A.; Allen, J.; Hatarik, R.; Matthews, C.; O'Malley, P.; Jones, K. L.; Kozub, R. L.; Howard, J.; Patterson, N.; Paulauskas, S. V.; Rogers, J.; Sissom, D. J.; Pain, S. D.; Adekola, A.; Bardayan, D. W.; Blackmon, J. C.; Liang, F.; Nesaraja, C. D.; Pittman, S. T.

    2009-03-10

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  9. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  10. Surface Mounted Neutron Generators

    NASA Astrophysics Data System (ADS)

    Elizondo-Decanini, Juan M.

    2012-10-01

    A deuterium-tritium (DT) base reaction pulsed neutron generator packaged in a flat computer chip shape of 1.54 cm (0.600 in) wide by 3.175 cm (1.25 in) length and 0.3 cm (0.120 in) thick has been successfully demonstrated to produce 14 MeV neutrons at a rate of 10^9 neutrons per second. The neutron generator is based on a deuterium ion beam accelerated to impact a tritium loaded target. The accelerating voltage is in the 15 to 20 kV in a 3 mm (0.120 in) gap, the ion beam is shaped by using a lens design to produce a flat ion beam that conforms to the flat rectangular target. The ion source is a simple surface mounted deuterium filled titanium film with a fused gap that operates at a current-voltage design to release the deuterium during a pulse length of about 1 μs. We present the general description of the working prototypes, which we have labeled the ``NEUTRISTOR.''[4pt] Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. Work funded by the LDRD office.

  11. Imaging with cold neutrons

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  12. Measurement of the Neutron Lifetime by Counting Trapped Protons

    PubMed Central

    Wietfeldt, F. E.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fei, X.; Snow, W. M.; Greene, G. L.; Pauwels, J.; Eykens, R.; Lamberty, A.; Van Gestel, J.

    2005-01-01

    We measured the neutron decay lifetime by counting in-beam neutron decay recoil protons trapped in a quasi-Penning trap. The absolute neutron beam fluence was measured by capture in a thin 6LiF foil detector with known efficiency. The combination of these measurements gives the neutron lifetime: τn = (886.8 ± 1.2 ± 3.2) s, where the first (second) uncertainty is statistical (systematic) in nature. This is the most precise neutron lifetime determination to date using an in-beam method. PMID:27308145

  13. Accelerators and Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Burlon, A. A.; Kreiner, A. J.; Valda, A.

    2002-08-01

    Within the frame of Accelerator Based Boron Neutron Capture Therapy (AB-BNCT), the 7Li (p,n) 7Be reaction, relatively near its energy threshold is one of the most promising, due to its high yield and low neutron energy. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron flux. The 10B(n,αγ)7Li boron neutron capture reaction produces a 0.478 MeV gamma ray in 94% of the cases. The neutron yield was measured through the detection of this gamma ray using a hyperpure germanium detector with an anti-Compton shield. In addition, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4×108 cm-2s-1mA-1 was obtained at 4.2 cm from the phantom surface. In order to optimize the design of the neutron production target and the beam shaping assembly extensive Monte Carlo Neutron and Photon (MCNP) simulations have been performed. Neutron fields from a thick LiF and a Li metal target (with both a D2O-graphite and a Al/AlF3-graphite moderator/reflector assembly) were evaluated along the centerline of a head and a whole body phantom. Simulations were carried out for 1.89, 2.0 and 2.3 MeV proton beams. The results show that it is more advantageous to irradiate the target with 2.3 MeV near-resonance protons, instead of very near threshold, because of the higher neutron yield at this energy. On the other hand, the Al/AlF3-graphite exhibits a more efficient performance than D2O in terms of tumor to maximum healthy tissue dose ratio. Treatment times of less than 15 min and tumor control probabilities larger than 98% are obtained for a 50 mA, 2.3 MeV proton beam. The alternative neutron-producing reaction 13C(d,n) is also briefly reviewed. A

  14. The ratio R{sub dp} of the quasielastic nd {yields} p(nn) to the elastic np {yields} pn charge-exchange-process yields at the proton emitting angle {theta}{sub p,lab} = 0 deg. over 0.55-2.0 GeV neutron beam energy region. Experimental results

    SciTech Connect

    Sharov, V. I. Morozov, A. A.; Shindin, R. A.; Antonenko, V. G.; Borzakov, S. B.; Borzunov, Yu. T.; Chernykh, E. V.; Chumakov, V. F.; Dolgii, S. A.; Finger, M.; Finger, M.; Golovanov, L. B.; Guriev, D. K.; Janata, A.; Kirillov, A. D.; Kovalenko, A. D.; Krasnov, V. A.; Kuzmin, N. A.; Kurilkin, A. K.; Kurilkin, P. K.

    2009-06-15

    New experimental results on ratio R{sub dp} of the quasielastic charge-exchange yield at the outgoing proton angle {theta}{sub p,lab} = 0 deg. for the nd {yields} p(nn) reaction to the elastic np {yields} pn charge-exchange yield, are presented. The measurements were carried out at the Nuclotron of the Veksler and Baldin Laboratory of High Energies of the JINR (Dubna) at the neutron-beam kinetic energies of 0.55, 0.8, 1.0, 1.2, 1.4, 1.8, and 2.0 GeV. The intense neutron beam with small momentum spread was produced by breakup of deuterons which were accelerated and extracted to the experimental hall. In both reactions mentioned above the outgoing protons with the momenta p{sub p} approximately equal to the neutron-beam momentum p{sub n,beam} were detected in the directions close to the direction of incident neutrons, i.e., in the vicinity of the scattering angle {theta}{sub p,lab} = 0 deg. Measured in the same data-taking runs, the angular distributions of the charge-exchange-reaction products were corrected for the well-known instrumental effects and averaged in the vicinity of the incident-neutron-beam direction. These corrected angular distributions for every of nd {yields} p(nn) and np {yields} pn charge-exchange processes were proportional to the differential cross sections of the corresponding reactions. The data were accumulated by Delta-Sigma setup magnetic spectrometer with two sets of multiwire proportional chambers located upstream and downstream of the momentum analyzing magnet. Inelastic processes were considerably reduced by the additional detectors surrounding the hydrogen and deuterium targets. The time-of-flight system was applied to identify the detected particles. The accumulated data treatment and analysis, as well as possible sources of the systematic errors are discussed.

  15. Neutron irradiation of polycrystalline yttrium aluminate garnet, magnesium aluminate spinel and α-alumina.

    NASA Astrophysics Data System (ADS)

    Neeft, E. A. C.; Konings, R. J. M.; Bakker, K.; Boshoven, J. G.; Hein, H.; Schram, R. P. C.; van Veen, A.; Conrad, R.

    1999-08-01

    Polycrystalline pellets of yttrium aluminate garnet (Y 3Al 5O 12), magnesium aluminate spinel (MgAl 2O 4) and α-alumina (α-Al 2O 3) have been irradiated in the high flux reactor (HFR) at Petten to a neutron fluence of 1.7 × 10 26 m -2 ( E>0.1 MeV) at a temperature of about 815 K. Volume changes smaller than 1% have been measured for Y 3Al 5O 12 and MgAl 2O 4. Transmission electron microscopy (TEM) results of Y 3Al 5O 12 show no difference between the unirradiated TEM samples and neutron-irradiated samples. For MgAl 2O 4, dislocation loops in some grains are found in the irradiated samples. TEM results of Al 2O 3 show a dense network of dislocation loops after neutron irradiation. The increase in volume is 4.2% for a neutron fluence of 1.7 × 10 26 m -2.

  16. New sources and instrumentation for neutron science

    NASA Astrophysics Data System (ADS)

    Gil, Alina

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  17. BINP accelerator based epithermal neutron source.

    PubMed

    Aleynik, V; Burdakov, A; Davydenko, V; Ivanov, A; Kanygin, V; Kuznetsov, A; Makarov, A; Sorokin, I; Taskaev, S

    2011-12-01

    Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915-2.5 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for proton beam and neutrons developed are described, results of experiments on proton beam transport and neutron generation are shown, discussed, and plans are presented. PMID:21439836

  18. Construction of the WSU Epithermal Neutron Filter

    SciTech Connect

    Venhuizen, James Robert; Nigg, David Waler; Tripard, G.

    2002-09-01

    Moderating material has been installed in the original thermal-neutron filter region of the Washington State University (WSU) TRIGA™ type reactor to produce an epithermal-neutron beam. Attention has been focused upon the development of a convenient, local, epithermal-neutron beam facility at WSU for collaborative Idaho National Engineering and Environmental Laboratory (INEEL)/WSU boron neutron capture therapy (BNCT) preclinical research and boronated pharmaceutical screening in cell and animal models. The design of the new facility was performed in a collaborative effort1,2 of WSU and INEEL scientists. This paper summarizes the physical assembly of this filter.

  19. Evaluation of Pore Networks in Caprocks at Geologic Storage Sites: A Combined Study using High Temperature and Pressure Reaction Experiments, Small Angle Neutron Scattering, and Focused Ion Beam-Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Mouzakis, K. M.; Sitchler, A.; Wang, X.; McCray, J. E.; Kaszuba, J. P.; Rother, G.; Dewers, T. A.; Heath, J. E.

    2011-12-01

    Low permeability rock units, often shales or mudstones, that overlie geologic formations under consideration for CO2 sequestration will help contain injected CO2. CO2 that does flow through these rocks will dissolve into the porewaters, creating carbonic acid lowering the pH. This perturbation of the system may result in mineral dissolution or precipitation, which can change the pore structure and impact the flow properties of the caprocks. In order to investigate the impacts that reaction can have on caprock pore structure, we performed a combination of high pressure high temperature reaction experiments, small angle neutron scattering (SANS) experiments and high resolution focused ion beam-scanning electron microscope (FIB-SEM) imaging on samples from the Gothic shale and Marine Tuscaloosa Group. Small angle neutron scattering was performed on unreacted and reacted caprocks at the High Flux Isotope Reactor at Oak Ridge National Laboratory. New precipitates and pores are observed in high-resolution images of the reacted samples. The precipitates have been preliminarily identified as gypsum or anhydrite, and sulfide minerals. Results from small angle neutron scattering, a technique that provides information about pores and pore/mineral interfaces at scales ~ 5 to 300 nm, show an increased porosity and specific surface area after reaction with brine and CO2. However, there appear to be differences in how the pore networks change between the two samples that are related to sample mineralogy and original pore network structure. Changes to pores and formation of new pores may lead to different capillary sealing behavior and permeability. This combination of controlled laboratory experiments, neutron scattering and high-resolution imaging provides detailed information about the geochemical processes that occur at the pore scale as CO2 reacts with rocks underground. Such information is integral to the evaluation of large-scale CO2 sequestration as a feasible technology

  20. Mechanical approach to the neutrons spectra collimation and detection

    SciTech Connect

    Sadeghi, H.; Roshan, M. V.

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  1. CR-39 detector based thermal neutron flux measurements, in the photo neutron project

    NASA Astrophysics Data System (ADS)

    Mameli, A.; Greco, F.; Fidanzio, A.; Fusco, V.; Cilla, S.; D'Onofrio, G.; Grimaldi, L.; Augelli, B. G.; Giannini, G.; Bevilacqua, R.; Totaro, P.; Tommasino, L.; Azario, L.; Piermattei, A.

    2008-08-01

    PhoNeS (photo neutron source) is a project aimed at the production and moderation of neutrons by exploiting high energy linear accelerators, currently used in radiotherapy. A feasibility study has been carried out with the scope in mind to use the high energy photon beams from these accelerators for the production of neutrons suitable for boron neutron capture therapy (BNCT). Within these investigations, it was necessary to carry out preliminary measurements of the thermal neutron component of neutron spectra, produced by the photo-conversion of X-ray radiotherapy beams supplied by three LinAcs: 15 MV, 18 MV and 23 MV. To this end, a simple passive thermal neutron detector has been used which consists of a CR-39 track detector facing a new type of boron-loaded radiator. Once calibrated, this passive detector has been used for the measurement of both the thermal neutron component and the cadmium ratio of different neutron spectra. In addition, bubble detectors with a response highly sensitive to thermal neutrons have also been used. Both thermal neutron detectors are simple to use, very compact and totally insensitive to low-ionizing radiation such as electrons and X-rays. The resultant thermal neutron flux was above 10 6 n/cm 2s and the cadmium ratio was no greater than 15 for the first attempt of photo-conversion of X-ray radiotherapy beams.

  2. Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments

    SciTech Connect

    Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L.

    2011-07-01

    Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

  3. Dynamics of beam halo in mismatched beams

    SciTech Connect

    Wangler, T.P.; Garnett, R.W.; Gray, E.R.; Ryne, R.D.; Wang, T.S.

    1996-09-01

    High-power proton linacs for nuclear materials transmutation and production, and new accelerator-driven neutron spallation sources must be designed to control beam-halo formation, which leads to beam loss. The study of particle-core models is leading to a better understanding of the causes and characteristics of beam halo produced by space-charge forces in rms mismatched beams. Detailed studies of the models have resulted in predictions of the dependence of the maximum amplitude of halo particles on a mismatch parameter and on the space-charge tune-depression ratio. Scaling formulas have been derived which will provide guidance for choosing the aperture radius to contain the halo without loss.

  4. Methods for Neutron Spectrometry

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.

    1961-01-09

    The appropriate theories and the general philosophy of methods of measurement and treatment of data neutron spectrometry are discussed. Methods of analysis of results for liquids using the Van Hove formulation, and for crystals using the Born-von Karman theory, are reviewed. The most useful of the available methods of measurement are considered to be the crystal spectrometer methods and the pulsed monoenergetic beam/time-of-flight method. Pulsed-beam spectrometers have the advantage of higher counting rates than crystal spectrometers, especially in view of the fact that simultaneous measurements in several counters at different angles of scattering are possible in pulsed-beam spectrometers. The crystal spectrometer permits several valuable new types of specialized experiments to be performed, especially energy distribution measurements at constant momentum transfer. The Chalk River triple-axis crystal-spectrometer is discussed, with reference to its use in making the specialized experiments. The Chalk River rotating crystal (pulsed-beam) spectrometer is described, and a comparison of this type instrument with other pulsed-beam spectrometers is made. A partial outline of the theory of operation of rotating-crystal spectrometers is presented. The use of quartz-crystal filters for fast neutron elimination and for order elimination is discussed. (auth)

  5. Basic physics with spallation-neutron sources

    SciTech Connect

    Michaudon, A.F.

    1994-05-01

    The neutron has unique intrinsic properties widely used in basic and applied sciences. The neutron plays a well-known role in applied sciences and technology and is a unique probe well suited for the exploration of condensed-matter properties. But the neutron is also used for many other basic-physics studies, including nuclear physics, particle physics, fundamental physics, astrophysics, and cosmology. These last studies are briefly reviewed in this paper. Spallation-neutron sources today have unmatched neutron-beam properties for such studies and have great potential in future technological developments whereby these studies could be carried out under much improved conditions.

  6. An Ultra-Short Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Pomerantz, Ishay; McCary, Eddie; Meadows, Alexander R.; Arefiev, Alexey; Bernstein, Aaron C.; Chester, Clay; Cortez, Jose; Donovan, Michael E.; Dyer, Gilliss; Gaul, Erhard W.; Hamilton, David; Kuk, Donghoon; Lestrade, Arantxa; Wang, Chunhua; Ditmire, Todd; Hegelich, Manuel B.

    2014-10-01

    We report on a novel compact laser-driven neutron source with unprecedented short pulse duration (<50 ps) and high flux (>1018 neutrons/cm2/s), an order of magnitude higher than any existing source. In our experiments, high-energy electron jets are generated from thin (<1 μm) plastic targets irradiated by a petawatt laser. These intense electron beams are employed to generate neutrons from a metal converter. Our method opens venues for enhancing neutron radiography contrast, conducting time-resolved neutron-damage studies at their characteristic evolution time-scales and for creating astrophysical conditions of heavy element synthesis in the laboratory.

  7. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  8. Compact neutron generator developement and applications

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-18

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.

  9. Prompt Fission Neutron Energy Spectra Induced by Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Staples, Parrish Alan

    Prompt fission neutron energy spectra for ^{235}U and ^{239 }Pu have been measured for fission neutron energies greater than the energy of the incident neutrons inducing fission. The measurements were undertaken to investigate the shape dependence of the fission neutron spectra upon both the incident neutron energy and the mass of the nucleus undergoing fission. Measurements were made for both nuclides at the following incident neutron energies; 0.50 MeV, 1.50 MeV, 2.50 MeV and 3.50 MeV. The data are presented either as relative yields or as ratios of a measured spectrum to the ^{235}U spectrum at 0.50 MeV. Incident neutrons were produced by the ^7Li(p,n)^7Be reaction using a pulsed, bunched proton beam from the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell Pinanski Energy Center. The neutrons were detected by a thin liquid scintillator with good time resolution capabilities; time-of-flight techniques were used for neutron energy determination; in addition pulse-shape-discrimination was used to reduce gamma-ray background levels. The measurements are compared to calculations based on the Los Alamos Model of Madland and Nix to test its predictive capabilities. The data are fit by the Watt equation to determine the mean energy of the spectra, and to facilitate comparison of the results to previous measurements. The data are also compared directly to previous measurements.

  10. Accelerator based epithermal neutron source for neutron capture therapy

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  11. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  12. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations. PMID:25479433

  13. Neutral Beam Ion Confinement in NSTX

    SciTech Connect

    D.S. Darrow; E.D. Fredrickson; S.M. Kaye; S.S. Medley; and A.L. Roquemore

    2001-07-24

    Neutral-beam (NB) heating in the National Spherical Torus Experiment (NSTX) began in September 2000 using up to 5 MW of 80 keV deuterium (D) beams. An initial assessment of beam ion confinement has been made using neutron detectors, a neutral particle analyzer (NPA), and a Faraday cup beam ion loss probe. Preliminary neutron results indicate that confinement may be roughly classical in quiescent discharges, but the probe measurements do not match a classical loss model. MHD activity, especially reconnection events (REs) causes substantial disturbance of the beam ion population.

  14. Development of neutron depth profiling at CMRR

    NASA Astrophysics Data System (ADS)

    Li, Run-dong; Yang, Xin; Wang, Guan-bo; Dou, Hai-feng; Qian, Da-zhi; Wang, Shu-yu

    2015-07-01

    A neutron depth profiling (NDP) system has been developed at China Mianyang Research Reactor (CMRR) at Institute of Nuclear Physics and Chemistry (INPC), CAEP. The INPC-NDP system utilizes cold neutrons which are transported along the C1 neutron guide from the cold neutron source. It consists of a beam entrance, a target chamber, a beam stopper, and data acquisition electronics for charged particle pulse-height analysis. A 90 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The neutron beam intensity of 2.1×108 n cm-2 s-1 was calibrated by the Au foil activation method at the sample position. The INPC-NDP system was tested by using a Standard Reference Materials SRM-2137. The measured results agreed well with the reference values.

  15. Optimization of neutron source

    SciTech Connect

    Hooper, E.B.

    1993-11-09

    I consider here the optimization of the two component neutron source, allowing beam species and energy to vary. A simple model is developed, based on the earlier publications, that permits the optimum to be obtained simply. The two component plasma, with one species of hot ion (D{sup +} or T{sup +}) and the complementary species of cold ion, is easy to analyze in the case of a spatially uniform cold plasma, as to good approximation the total number of hot ions is important but not their spatial distribution. Consequently, the optimization can ignore spatial effects. The problem of a plasma with both types of hot ions and cold ions is rather more difficult, as the neutron production by hot-hot interactions is sensitive to their spatial distributions. Consequently, consideration of this problem will be delayed to a future memorandum. The basic model is that used in the published articles on the two-component, beam-plasma mirror source. I integrate the Fokker-Planck equation analytically, obtaining good agreement with previous numerical results. This simplifies the optimization, by providing a functional form for the neutron production. The primary result is expressed in terms of the power efficiency: watts of neutrons/watts of primary power. The latter includes the positive ion neutralization efficiency. At 150 keV, the present model obtains an efficiency of 0.66%, compared with 0.53% of the earlier calculation.

  16. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  17. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  18. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  19. Neutron Imaging Developments at LANSCE

    SciTech Connect

    Nelson, Ronald Owen; Hunter, James F.; Schirato, Richard C.; Vogel, Sven C.; Swift, Alicia L.; Ickes, Timothy Lee; Ward, William Carl; Losko, Adrian Simon; Tremsin, Anton; Sevanto, Sanna Annika; Espy, Michelle A.; Dickman, Lee Thoresen; Malone, Michael

    2015-10-29

    Thermal, epithermal, and high-energy neutrons are available from two spallation sources at the 800 MeV proton accelerator. Improvements in detectors and computing have enabled new capabilities that use the pulsed beam properties at LANSCE; these include amorphous Si (aSi) detectors, intensified charge-coupled device cameras, and micro-channel plates. Applications include water flow in living specimens, inclusions and fission products in uranium oxide, and high-energy neutron imaging using an aSi flat panel with ZnS(Ag) scintillator screen. images of a metal/plastic cylinder from photons, low-energy and high-energy neutrons are compared.

  20. Fast Pulsing Neutron Generators for Security Application

    SciTech Connect

    Ji, Q.; Regis, M.; Kwan, J. W.

    2009-04-24

    Active neutron interrogation has been demonstrated to be an effective method of detecting shielded fissile material. A fast fall-time/fast pulsing neutron generator is needed primarily for differential die-away technique (DDA) interrogation systems. A compact neutron generator, currently being developed in Lawrence Berkeley National Laboratory, employs an array of 0.6-mm-dia apertures (instead of one 6-mm-dia aperture) such that gating the beamlets can be done with low voltage and a small gap to achieve sub-microsecond ion beam fall time and low background neutrons. Arrays of 16 apertures (4x4) and 100 apertures (10x10) have been designed and fabricated for a beam extraction experiment. The preliminary results showed that, using a gating voltage of 1200 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is approximately 0.15 mu s at beam energies of 1000 eV.

  1. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    SciTech Connect

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4..pi.. required for a spectral measurement with this system is approx. 10/sup 10/ n where the neutron yield is predominantly below 4 MeV and approx. 10/sup 8/ n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described.

  2. Microstructured silicon neutron detectors for security applications

    NASA Astrophysics Data System (ADS)

    Esteban, S.; Fleta, C.; Guardiola, C.; Jumilla, C.; Pellegrini, G.; Quirion, D.; Rodriguez, J.; Lozano, M.

    2014-12-01

    In this paper we present the design and performance of a perforated thermal neutron silicon detector with a 6LiF neutron converter. This device was manufactured within the REWARD project workplace whose aim is to develop and enhance technologies for the detection of nuclear and radiological materials. The sensor perforated structure results in a higher efficiency than that obtained with an equivalent planar sensor. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and the intrinsic detection efficiency for thermal neutrons and the gamma sensitivity were obtained. The Geant4 Monte Carlo code was used to simulate the experimental conditions, i.e. thermal neutron beam and the whole detector geometry. An intrinsic thermal neutron detection efficiency of 8.6%±0.4% with a discrimination setting of 450 keV was measured.

  3. Towards a laser neutron driver.

    PubMed

    Keskilidou, E; Moustaizis, S D; Mikheev, L; Auvray, P; Rouiller, C

    2005-01-01

    During the last few years, important experimental investigations have been made concerning the possibility of induced nuclear fission of high-Z elements by electromagnetic interaction (photofission, electron fission, neutron fission). Fast ions, neutrons and fission fragments from such interactions can be used to pump a laser medium, to produce energy from the (232)Th-(233)U nuclear fission cycle. The main aim of the present work is to study a three-step process, in a relatively new experimental scheme, in order to improve the number of both neutrons and fast ions. In the proposed scheme, high-energy particles and photons are produced by high-intensity laser beam interaction with a solid or gas target, which are utilized later on to trigger the nuclear reactions for the production of (photo) neutrons. These neutrons can give rise to fission of (232)Th that leads through a cascade of decays to (233)U --a highly fissionable material. Such a process will enhance, by an important factor, the final neutron flux and the energetic fission fragments. The use of a high intensity pulsed laser beam will control the turn-on and turn-off of the nuclear reactions and allow one to ensure the security of the whole operation. Finally, the produced neutrons are used to accomplish a major population inversion in an appropriate gas medium for the last stage of amplification of a high-contrast ultra-short laser seed pulse. PMID:15990323

  4. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  5. Characterization of neutron calibration fields at the TINT's 50 Ci americium-241/beryllium neutron irradiator

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Channuie, J.; Ratanatongchai, W.

    2015-05-01

    Reliable measurement of neutron radiation is important for monitoring and protection in workplace where neutrons are present. Although Thailand has been familiar with applications of neutron sources and neutron beams for many decades, there is no calibration facility dedicated to neutron measuring devices available in the country. Recently, Thailand Institute of Nuclear Technology (TINT) has set up a multi-purpose irradiation facility equipped with a 50 Ci americium-241/beryllium neutron irradiator. The facility is planned to be used for research, nuclear analytical techniques and, among other applications, calibration of neutron measuring devices. In this work, the neutron calibration fields were investigated in terms of neutron energy spectra and dose equivalent rates using Monte Carlo simulations, an in-house developed neutron spectrometer and commercial survey meters. The characterized neutron fields can generate neutron dose equivalent rates ranging from 156 μSv/h to 3.5 mSv/h with nearly 100% of dose contributed by neutrons of energies larger than 0.01 MeV. The gamma contamination was less than 4.2-7.5% depending on the irradiation configuration. It is possible to use the described neutron fields for calibration test and routine quality assurance of neutron dose rate meters and passive dosemeters commonly used in radiation protection dosimetry.

  6. Portable real time neutron spectrometry II

    NASA Astrophysics Data System (ADS)

    Maurer, R. H.; Roth, D. R.; Fainchtein, R.; Goldsten, J. O.; Kinnison, J. D.

    2000-01-01

    We describe the continued development of a portable, real-time neutron spectrometer. The spectrometer is composed of two distinct detector systems: a Helium 3 gas filled proportional counter for the lower neutron energy interval between 20 KeV and 2 MeV and a bulk silicon solid state detector for the higher energy interval between 2 MeV and 500 MeV. Modeling and experimental results with mono-energetic neutron beams are reported. .

  7. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  8. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  9. Tagging fast neutrons from an (241)Am/(9)Be source.

    PubMed

    Scherzinger, J; Annand, J R M; Davatz, G; Fissum, K G; Gendotti, U; Hall-Wilton, R; Håkansson, E; Jebali, R; Kanaki, K; Lundin, M; Nilsson, B; Rosborge, A; Svensson, H

    2015-04-01

    Shielding, coincidence, and time-of-flight measurement techniques are employed to tag fast neutrons emitted from an (241)Am/(9)Be source resulting in a continuous polychromatic energy-tagged beam of neutrons with energies up to 7MeV. The measured energy structure of the beam agrees qualitatively with both previous measurements and theoretical calculations. PMID:25644080

  10. Spallation neutron source target station design, development, and commissioning

    NASA Astrophysics Data System (ADS)

    Haines, J. R.; McManamy, T. J.; Gabriel, T. A.; Battle, R. E.; Chipley, K. K.; Crabtree, J. A.; Jacobs, L. L.; Lousteau, D. C.; Rennich, M. J.; Riemer, B. W.

    2014-11-01

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  11. Slow neutron leakage spectra from spallation neutron sources

    SciTech Connect

    Das, S.G.; Carpenter, J.M.; Prael, R.E.

    1980-02-01

    An efficient technique is described for Monte Carlo simulation of neutron beam spectra from target-moderator-reflector assemblies typical of pulsed spallation neutron sources. The technique involves the scoring of the transport-theoretical probability that a neutron will emerge from the moderator surface in the direction of interest, at each collision. An angle-biasing probability is also introduced which further enhances efficiency in simple problems. These modifications were introduced into the VIM low energy neutron transport code, representing the spatial and energy distributions of the source neutrons approximately as those of evaporation neutrons generated through the spallation process by protons of various energies. The intensity of slow neutrons leaking from various reflected moderators was studied for various neutron source arrangements. These include computations relating to early measurements on a mockup-assembly, a brief survey of moderator materials and sizes, and a survey of the effects of varying source and moderator configurations with a practical, liquid metal cooled uranium source Wing and slab, i.e., tangential and radial moderator arrangements, and Be vs CH/sub 2/ reflectors are compared. Results are also presented for several complicated geometries which more closely represent realistic arrangements for a practical source, and for a subcritical fission multiplier such as might be driven by an electron linac. An adaptation of the code was developed to enable time dependent calculations, and investigated the effects of the reflector, decoupling and void liner materials on the pulse shape.

  12. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  13. Neutron production from polyethylene and common spacecraft materials.

    PubMed

    Maurer, R H; Roth, D R; Kinnison, J D; Jordan, T M; Heilbronn, L H; Miller, J; Zeitlin, C J

    2001-12-01

    We report experimental measurements of neutron production from collisions of neutron beams with polyethylene blocks simulating tissue at the Los Alamos National Laboratory Neutron Science Center and 1 GeV/amu iron nuclei with spacecraft shielding materials at the Brookhaven National Laboratory AGS. PMID:12033226

  14. Conceptual design of a polarized 3He neutron spin filter for polarized neutron spectrometer POLANO at J-PARC

    NASA Astrophysics Data System (ADS)

    Ino, T.; Ohoyama, K.; Yokoo, T.; Itoh, S.; Ohkawara, M.; Kira, H.; Hayashida, H.; Sakai, K.; Hiroi, K.; Oku, T.; Kakurai, K.; Chang, L. J.

    2016-04-01

    A 3He neutron spin filter (NSF) has been designed for a new polarized neutron chopper spectrometer called the Polarization Analysis Neutron Spectrometer with Correlation Method (POLANO) at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. It is designed to fit in a limited space on the spectrometer as an initial neutron beam polarizer and is polarized in situ by spin exchange optical pumping. This will be the first generation 3He NSF on POLANO, and a polarized neutron beam up to 100 meV with a diameter of 50 mm will be available for research on magnetism, hydrogen materials, and strongly correlated electron systems.

  15. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    NASA Astrophysics Data System (ADS)

    Snow, W. M.; Anderson, E.; Barrón-Palos, L.; Bass, C. D.; Bass, T. D.; Crawford, B. E.; Crawford, C.; Dawkins, J. M.; Esposito, D.; Fry, J.; Gardiner, H.; Gan, K.; Haddock, C.; Heckel, B. R.; Holley, A. T.; Horton, J. C.; Huffer, C.; Lieffers, J.; Luo, D.; Maldonado-Velázquez, M.; Markoff, D. M.; Micherdzinska, A. M.; Mumm, H. P.; Nico, J. S.; Sarsour, M.; Santra, S.; Sharapov, E. I.; Swanson, H. E.; Walbridge, S. B.; Zhumabekova, V.

    2015-05-01

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10-7 rad/m.

  16. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    SciTech Connect

    Snow, W. M.; Anderson, E.; Bass, T. D.; Dawkins, J. M.; Fry, J.; Haddock, C.; Horton, J. C.; Luo, D.; Micherdzinska, A. M.; Walbridge, S. B.; Barrón-Palos, L.; Maldonado-Velázquez, M.; Bass, C. D.; Crawford, B. E.; Crawford, C.; Esposito, D.; Gardiner, H.; Gan, K.; Heckel, B. R.; Swanson, H. E. [University of Washington and others

    2015-05-15

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10{sup −7} rad/m.

  17. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power.

    PubMed

    Snow, W M; Anderson, E; Barrón-Palos, L; Bass, C D; Bass, T D; Crawford, B E; Crawford, C; Dawkins, J M; Esposito, D; Fry, J; Gardiner, H; Gan, K; Haddock, C; Heckel, B R; Holley, A T; Horton, J C; Huffer, C; Lieffers, J; Luo, D; Maldonado-Velázquez, M; Markoff, D M; Micherdzinska, A M; Mumm, H P; Nico, J S; Sarsour, M; Santra, S; Sharapov, E I; Swanson, H E; Walbridge, S B; Zhumabekova, V

    2015-05-01

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10(-7) rad/m. PMID:26026552

  18. Characterization of pulsed (plasma focus) neutron source with image plate and application to neutron radiography

    SciTech Connect

    Andola, Sanjay; Niranjan, Ram; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.; Shaikh, A. M.

    2013-02-05

    Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.

  19. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  20. Neutron sources: Present practice and future potential

    SciTech Connect

    Cierjacks, S.; Smith, A.B.

    1988-01-01

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs.

  1. Nested Focusing Optics for Compact Neutron Sources

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  2. Neutron sources: present practice and future potential

    SciTech Connect

    Cierjacks, S.; Smith, A.B.

    1988-01-01

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500+ MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-production efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: (i) fundamental neutron-nuclear research, (ii) nuclear-data acquisition, (iii) materials-damage studies, (iv) engineering test, and (v) biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections.

  3. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    NASA Astrophysics Data System (ADS)

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  4. MAGNETIC NEUTRON SCATTERING

    SciTech Connect

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  5. Measurement of delayed-neutron yield from 237Np fission induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-01

    The delayed-neutron yield from thermal-neutron-induced fission of the 237Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from 237Np fission induced by thermal neutrons is ν d = 0.0110 ± 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna).

  6. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  7. Time of flight fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Loveman, R.; Bendahan, J.; Gozani, T.; Stevenson, J.

    1995-05-01

    Neutron radiography with fast or thermal neutrons is a standard technique for non-destructive testing (NDT). Here we report results for fast neutron radiography both as an adjunct to pulsed fast neutron analysis (PFNA) and as a stand-alone method for NDT. PFNA is a new technique for utilizing a collimated pulsed neutron beam to interrogate items and determine their elemental composition. By determining the time of flight for gamma-rays produced by (n,n' gamma X) reactions, a three dimensional image can be produced. Neutron radiography data taken with the same beam provides an important constraint for image reconstruction, and in particular is important in inferring the amount of hydrogen within the interrogated item. As a stand-alone device, the radiography measurement can be used to image items as large as cargo containers as long as their density is not too high. The use of a pulsed beam gives the further advantage of a time of flight measurement on the transmitted neutrons. By gating the radiography signal on the time of flight appropriate to the energy of the primary neutrons, most build-up from scattered neutrons can be eliminated. The pulsed beam also greatly improves the signal to background and extends the range of the neutron radiography. Simulation results will be presented which display the advantage of this constraint in particular for statistically limited data. Experimental results will be presented which show some of the limitations likely in a PFNA system utilizing neutron radiography data. Experimental and simulation results will demonstrate possible uses for this type of radiographic data in identifying contraband substances such as drugs.

  8. The University of Texas Cold Neutron Source

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Ríos-Martínez, Carlos; Wehring, Bernard W.

    1994-12-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50 × 15 mm cross-section, 58Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS.

  9. Drug and tobacco detection using neutron transmission/attenuation

    NASA Astrophysics Data System (ADS)

    Miller, Thomas G.

    1994-10-01

    A neutron transmission/attenuation spectrometer has been used to obtain the neutron attenuation signature of cocaine, heroin, hashish, methamphetamine, pipe tobacco and chewing tobacco. A pulsed `white neutron' source was created by bombarding a thick beryllium target with a 5 MeV pulsed deuteron beam. The neutron intensity was measured from about 0.75 MeV to about 4 MeV with the suitcase in and out of the neutron beam to determine the neutron attenuation. Experiments were performed for drugs and tobacco alone and when imbedded in an `average suitcase'. The experimentally determined neutron attenuation curves were used to determine the atomic ratios C/O, N/O, and H/C through the samples using measured neutron cross sections.

  10. The physics experimental study for in-hospital neutron irradiator

    SciTech Connect

    Li Yiguo; Xia Pu; Zou Shuyun; Zhang Yongbao; Zheng Iv; Zheng Wuqing; Shi Yongqian; Gao Jijin; Zhou Yongmao

    2008-07-15

    MNSRs (Miniature Neutron Source Reactor) are low power research reactors designed and manufactured by China Institute of Atomic Energy (CIAE). MNSRs are mainly used for NAA, training and teaching, testing of nuclear instrumentation. The first MNSR, the prototype MNSR, was put into operation in 1984, later, eight other MNSRs had been built both at home and abroad. For MNSRs, highly enriched uranium (90%) is used as the fuel material. The In-Hospital Neutron Irradiator (IHNI) is designed for Boron Neutron Capture Therapy (BNCT) based on Miniature Neutron Source Reactor(MNSR). On both sides of the reactor core, there are two neutron beams, one is thermal neutron beam, and the other opposite to the thermal beam, is epithermal neutron beam. A small thermal neutron beam is specially designed for the measurement of blood boron concentration by the prompt gamma neutron activation analysis (PGNAA). In this paper, the experimental results of critical mass worth of the top Be reflectors worth of the control rod, neutron flux distribution and other components worth were measured, the experiment was done on the Zero Power Experiment equipment of MNSR. (author)

  11. POLARIZED NEUTRONS IN RHIC

    SciTech Connect

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  12. An Evaluation of Grazing-Incidence Optics for Neutron Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Ramsey, B. D.; Engelhaupt, D. E.; Burgess, J.; Mildner, D. F. R.

    2007-01-01

    The focusing capabilities of neutron imaging optic based on the Wolter-1 geometry have been successfully demonstrated with a beam of long wavelength neutrons with low angular divergence.. A test mirror was fabricated using an electroformed nickel replication process at Marshall Space Flight Center. The neutron current density gain at the focal spot of the mirror is found to be at least 8 for neutron wavelengths in the range from 6 to 20 A. Possible applications of the optics are briefly discussed.

  13. Nested neutron microfocusing optics on SNAP

    SciTech Connect

    Ice, Gene E; Choi, Jae-Young; Takacs, P. Z.; Khounsary, Ali; Puzyrev, Yevgeniy S; Molaison, Jamie J; Tulk, Christopher A; Andersen, K H; Bigault, T

    2010-01-01

    The high source intensity of the Spallation Neutron Source (SNS), together with efficient detectors and large detector solid angles, now makes possible neutron experiments with much smaller sample volumes than previously were practical. Nested Kirkpatrick-Baez supermirror optics provide a promising and efficient way to further decrease the useable neutron sample size by focusing polychromatic neutrons into microbeams. Because the optics are nondispersive, they are ideal for spallation sources and for polychromatic and wide bandpass experiments on reactor sources. Theoretical calculations indicate that nested mirrors can preserve source brilliance at the sample for small beams and for modest divergences that are appropriate for diffraction experiments. Although the flux intercepted by a sample can be similar with standard beam-guided approaches, the signal-to-background is much improved with small beams on small samples. Here we describe the design, calibration and performance of a nested neutron mirror pair for the Spallation Neutrons At Pressure (SNAP) beamline at the SNS. High-pressure neutron diffraction is but one example of a large class of neutron experiments that will benefit from spatially-resolved microdiffraction.

  14. Optimization of Germanium Monochromators for Neutron Diffractometers

    NASA Astrophysics Data System (ADS)

    Ahmed, F. U.; Yunus, S. M.; Kamal, I.; Begum, S.; Khan, Aysha A.; Ahsan, M. H.; Ahmad, A. A. Z.

    A computer program TISTA has been employed to study the behavior of reactor-neutrons at the sample position of a neutron spectrometer diffracted from Ge(111), (220), and (311) monochromators. Our aim is to design a double axis neutron spectrometer and to determine the behavior of beam intensity and resolution at the sample position. The study will be helpful to design experiments with the existing triple axis neutron spectrometer at TRIGA Mark II research reactor, Dhaka, Bangladesh. The optimum values of crystal and instrument parameters have been determined through these calculations. The flux density of neutrons and the resolutions of a spectrometer at the sample position have been calculated as functions of beam collimation, zero-Bragg-angle deviation, crystal curvature, distance between sample and monochromator, crystal asymmetry, thickness, mosaic spread, crystal length, etc. The present results are compared with those of copper and silicon monochromators.

  15. Neutron radiography at the NRAD facility

    SciTech Connect

    McClellan, G.C.; Richards, W.J.

    1984-01-01

    The NRAD facility uses a 150 kW TRIGA reactor as a source of neutrons and is integrated with a hot cell such that highly radioactive specimens can be radiographed without removing them from the hot cell environment. A second beam tube is located in a separate shielded addition to HFEF and permits neutron radiography of irradiated or unirradiated specimens without subjecting them to the alpha-contaminated hot cell environment. Both beams are optimized for neutron radiography of highly radioactive nuclear fuels. Techniques for using these facilities are described. Advantages include: the ability to perform thermal and epithermal neutron radiography on specimens either inside or outside the hot cell, lack of competition for the use of the reactor, versatility of facility design, and the addition of neutron tomography. (LEW)

  16. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy

    SciTech Connect

    Kononov, O.E.; Kononov, V.N.; Bokhovko, M.V.; Korobeynikov, V.V.; Soloviev, A.N.; Chu, W.T.

    2004-02-20

    A modeling investigation was performed to choose moderator material and size for creating optimal epithermal neutron beams for BNCT based on a proton accelerator and the 7Li(p,n)7Be reaction as a neutrons source. An optimal configuration is suggested for the beam shaping assembly made from polytetrafluoroethylene and magnesium fluorine. Results of calculation were experimentally tested and are in good agreement with measurements.

  17. Dose measurements around spallation neutron sources.

    PubMed

    Fragopoulou, M; Stoulos, S; Manolopoulou, M; Krivopustov, M; Zamani, M

    2008-01-01

    Neutron dose measurements and calculations around spallation sources appear to be of great importance in shielding research. Two spallation sources were irradiated by high-energy proton beams delivered by the Nuclotron accelerator (JINR), Dubna. Neutrons produced by the spallation sources were measured by using solid-state nuclear track detectors. In addition, neutron dose was calculated after polyethylene and concrete, using a phenomenological model based on empirical relations applied in high-energy physics. The study provides an analytical and experimental neutron benchmark analysis using the transmission factor and a comparison between the experimental results and calculations. PMID:18957519

  18. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    SciTech Connect

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  19. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGESBeta

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  20. Radiation shielding for neutron guides

    NASA Astrophysics Data System (ADS)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.