Science.gov

Sample records for pfbc advanced particulate

  1. Advanced PFBC transient analysis

    SciTech Connect

    White, J.S.; Bonk, D.L.

    1997-05-01

    Transient modeling and analysis of advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigation by the US Department of Energy`s Federal Energy Technology Center (FETC). The object of the effort is to identify key operating parameters that affect plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX{trademark}, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper describes the development of a series of TRAX-based transient models of advanced PFBC power plants. These power plants burn coal or other suitable fuel in a PFBC, and the high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When it is utilized, the low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to raise and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

  2. Commercial development of advanced PFBC technology

    SciTech Connect

    McClung, J.D.

    1995-12-31

    In the 1970s, the coal-fired power generation industry recognized that the declining price of electricity over the previous five decades was coming to an end. Maximum use had been made of existing cycle efficiencies and scale-up. As researchers looked for a new approach, the focus shifted from the fully developed Rankine cycle to a new array of coal-fired plants using combined-cycle technology. Now, coal-fired combined-cycle plants are being introduced that shift power production to the Brayton cycle. Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are two technologies at the forefront of this approach. The PFBC approach burns coal in a fluidized bed combustor at elevated pressure. The plant generates electricity from a gas turbine (expanding the hot, pressurized products of combustion) in addition to the conventional steam (bottoming) cycle. Such a plant can achieve thermal efficiencies of about 40 percent and have a levelized busbar cost below any competing coal-based technology. In addition to the economic benefits, the {open_quotes}built-in{close_quotes} feature of environmental control (SO{sub 2} and NO{sub x}) in the combustion process eliminates the need for external gas cleanup such as scrubbers. A PFBC can burn a wider range of coals than a pulverized-coal-fired (PCF) boiler and is simpler to operate and maintain than an IGCC power plant.

  3. Preliminary evaluation of FIBROSIC{trademark} candle filter for particulate control in PFBC

    SciTech Connect

    Lee, S.H.D.; Eggersedt, P.; Zievers, J.F.; Honea, F.I.

    1994-07-01

    The FIBROSIC{trademark} candle filter is made by vacuum-forming a select blend of aluminosilicate fibers with silica and alumina binders and is potentially useful as a hot-gas cleanup device for particulate control in pressurized fluidized-bed combustion (PFBC). It has the advantages of lighter weight, lower cost, and lower tendency for thermal shock breakage over the more widely studied SiC candle filter. Both filter types were tested with Illinois No. 6 high-sulfur coal in a laboratory-scale PFBC/alkali sorber facility for (1) particulate collection efficiency, (2) permeability characteristics, and (3) physical and mechanical strength and integrity. Tests were conducted at 800--825{degrees}C and a system pressure of 9.2 atm. Filter face velocities were 5.1 and 10.2 cm/s (10 and 20 ft/min) during test periods of 8 and 9.5 h for SiC and FIBROSIC{trademark} candle filters, respectively. The filters were periodically cleaned by a reverse jet pulse of N{sub 2} gas. Both filter types achieved particulate collection efficiencies >99.9% and exhibited comparable permeability characteristics. Although the FIBROSIC{trademark} candle filter has inherently lower bursting strength than the SiC, its physical and mechanical strengths were demonstrated to be sufficient to maintain the integrity of the filter element under PFBC conditions.

  4. Influence of various operating conditions on advanced PFBC with staged combustion

    SciTech Connect

    Moersch, O.; Nagel, H.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    The development of PFBC towards advanced or second generation PFBC focuses on an increase of temperature at the gas turbine inlet to bring forth a substantial improvement of the turbine itself and the overall system performance. Most of such advanced systems described in literature include a carbonizer for partial conversion of coal producing a low calorific pressurized syngas and a PFBC burning the remaining char. After hot gas clean-up the syngas and the O{sub 2}-rich fuel gas from the PFBC are led to the combustion chamber of the gas turbine. In the proposed staged combustion concept (PFBC-SC), which also aims at raising the temperatures at the gas turbine inlet, coal is burned substoichiometrically in a pressurized fluidized bed producing a low calorific gas. After hot gas clean-up the gas undergoes post-combustion with pressurized air and enters the gas turbine at approximately 1,450 K. The advantages of PFBC-SC over APFBC as described above are the lower investment costs and the simpler process, because no separate gasifier including hot gas cleaning device is needed. At the IVD's 50 kWth PFBC test facility, experimental investigations were done into substoichiometrical combustion with regard to composition of the produced gas, carbon-conversion and afterburner temperature. The results of the experiments which were carried out at various temperatures (1,073--1,200 K), pressures (1--13 bar), air ratios (0.5--0.9) and with different coals were compared with chemical equilibrium calculations. In contrast to the operating pressure the heating value of the syngas ({ge}CO, H{sub 2}, CH{sub 4}) could be increased significantly with increasing temperatures. Due to the better gasification behavior of subbituminous coal compared with bituminous coal almost equilibrium conditions were achieved. At high pressures and temperatures (13 bar/1,173 K) the carbon conversion rate 97.5% at all air ratios.

  5. PFBC dust cake studies

    SciTech Connect

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.

    1994-10-01

    The Westinghouse Electric Corporation, Science and Technology Center is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to provide economical gas turbine life. The ILEC concept simultaneously controls particulate, sulfur, alkali, and other contaminants in high-pressure fuel gases, or combustion gases, at temperatures up to about 1700 degrees Fahrenheit in advanced, coal-fired, power generation systems. The overall objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the ILEC concept for multi-contaminant control, and to provide test data applicable to the design of subsequent field tests. The current program objective is to conduct ceramic barrier filter testing under simulated PFBC conditions to deal with filter cake permeability and pulse cleaning issues that have been identified in recent PFBC filter field testing.

  6. Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant

    SciTech Connect

    Robertson, A. ); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J.; Smeltzer, E.E. . Science and Technology Center)

    1992-01-01

    The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.

  7. The US Department of Energy PFBC perspective, 1994 update

    SciTech Connect

    Carpenter, L.K.; Dellefield, R.J.

    1994-08-01

    Significant progress in the development and commercialization of pressurized fluidized-bed combustion (PFBC) technology has occurred since the 1992 Fluidized-Bed Combustion (FBC) Conference. The US Department of Energy (DOE) has been and continues to be an active partner in most of these activities. This paper presents the 1994 status of DOE activities and a discussion of the importance DOE places on the development and commercialization of PFBC systems. Specifically, this paper discusses the status and focus of DOE activities. Currently, first-generation PFBC systems are on the brink of commercial deployment. The DOE Clean Coal Technology (CCT) Program is assisting in this process by funding demonstration programs to validate that PFBC technologies are a low-risk, environmentally-attractive, cost-competitive option for utility and industrial users. A brief discussion of the scope and the status of major demonstrations are presented. This paper also presents a snapshot of the PFBC development activities that are part of the DOE Research and Development (R&D) Program, i.e., hot gas particulate removal systems and pilot-plant facilities in support of advanced PFBC combined-cycle systems. The R&D pilot plant activities discussed include advanced component development tests at the Foster Wheeler Development Facility and the status of the fully integrated advanced PFBC being built as part of the Power Systems Development Facility (PSDF) at Wilsonville, Alabama. Finally, a brief perspective is provided as to how PFBC systems will need to further evolve in order to continue to remain viable. As we look into the next century, there will be continual pressure to make power systems cleaner and more efficient. By increasing cycle efficiencies to over 50 percent and further reducing emissions, it is possible for PFBC systems to meet these challenges. Suggested goals and development targets for advanced, super-clean PFBC systems are briefly discussed.

  8. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  9. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Filter system cost comparison for IGCC and PFBC power systems

    SciTech Connect

    Dennis, R.A.; McDaniel, H.M.; Buchanan, T.

    1995-12-01

    A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

  11. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  12. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  13. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    SciTech Connect

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  14. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Specific filter designs for PFBC

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Newby, R.A.; Smeltzer, E.E.

    1993-09-01

    Bubbling bed PFBC technology is currently being demonstrated at commercial scale. Economic and performance improvements in these first generation type PFBC plants can be realized with the application of hot gas particulate filters. Both the secondary cyclone(s) and stack gas ESP(s) could be eliminated saving costs and providing lower system pressure losses. The cleaner gas (basically ash free) provided with the hot gas filter, also permits a wider selection of gas turbines with potentially higher performance. For these bubbling bed PFBC applications, the hot gas filter must operate at temperatures of 1580{degree}F and system pressures of 175 psia (conditions typical of the Tidd PFBC plant). Inlet dust loadings to the filter are estimated to be about 500 to 1000 ppm with mass mean particle diameters ranging from 1.5 to 3 {mu}m. For commercial applications typical of the 70 MW{sub e} Tidd PFBC demonstration unit, the filter must treat up to 56,600 acfm of gas flow. Scaleup of this design to about 320 MW{sub e} would require filtering over 160,000 acfm gas flow. For these commercial scale systems, multiple filter vessels are required. Thus, the filter design should be modular for scaling. An alternative to the bubbling bed PFBC is the circulating bed concept. In this process the hot gas filter will in general be exposed to higher operating temperatures (1650{degree}F) and significantly higher (factor of 10 or more) particle loading.

  16. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  17. PFBC perspectives at the Power Systems Development Facility

    SciTech Connect

    Moore, D.L.; Vimalchand, P.; Haq, Z.U.; McClung, J.D.; Quandt, M.T.

    1994-06-01

    The use of coal for power generation has come under increasing environmental scrutiny over the past five years. Advances in coal-based power generation technology will develop systems that have high efficiency, environmental superiority and lower cost of electricity compared to current coal-based technology. Advanced pressurized-fluidized-bed combustion (APFBC) is one `of the promising emerging power generation technologies striving to achieve these goals. One method of improving the efficiency and lowering the capital cost further for advanced power plants utilizing coal is by employing hot gas cleanup. Although hot gas cleanup has the potential for improving the viability of coal-based power generation, the removal of hot particulates from the gas stream has proven to be a challenging task. The demonstration of APFBC technology and the particulate control devices (PCDs) under realistic conditions for advanced power generation remain important areas for development. The Power Systems Development Facility (PSDF) is being designed to be a flexible facility that will address the development of the PCDs and an advanced second-generation PFBC technology. With the progress made in the last decade, the basic concepts of PFBC technology can be achieved through a number of different flowsheets and reactor configurations. The choices made in developing the flowsheets and the choices made in designing the equipment in order to improve the reliability of operation may well dictate, along with the actual data from operation, the process efficiencies and the capital costs that can be achieved.

  18. PFBC HGCU Test Facility

    SciTech Connect

    Not Available

    1992-01-01

    This is the ninth technical progress report submitted to the Department of Energy in connection with the Cooperative Agreement between DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1991. During the reporting period, work focused on completing Task 2, Hot Gas Clean Up (HGCU) Detailed Design and Task 4, Procurement Activities to support the installation of the Westinghouse advanced particle filter (APE). The following significant events occurred during this report period: The mechanical/structural contractor (Pullman Power Products) mobilized at the Tidd site in December and began erecting steel framing for the APF. A contract modification was issued to Babcock Wilcox Co. for the supply of piping materials required for the combustor internal modifications. A contract was awarded to ANARAD, Inc. for a gas analysis system. A contract was prepared and is being processed for electrical erection.

  19. PFBC HGCU Test Facility

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  20. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  1. The systems and the developmental targets for PFBC

    SciTech Connect

    Dellefield, R.J.

    1993-09-01

    First generation PFBC technology is nearing commercial deployment the ongoing demonstrations, as part of DOE`s Clean Coal Technology (CCT) Program, will enable the technology to be a low-risk, environmentally acceptable option for utilities. Further improvements in environmental and thermal performance will be required to maintain PFBC technology as a competitive option to gasification-based power systems in the 2000s. The cost of electricity, capital costs, emissions, and thermal efficiency of PFBC systems compared to alternatives are covered. The vendors of PFBC systems seem to be responding to these market requirements. Significant progress has been made to increase the efficiency of first generation PFBCs and in reducing the capital cost of first-generation PFBC systems, which should positively influence the number of total sales of new units. The potential for first-generation PFBC systems to be used to retrofit existing utility sites and add a modest increment of power is gaining wide acceptance. Further development of PFBC systems into more efficient, environmentally benign power generation options is continuing. A snapshot of the development activities planned for Advanced PFBC systems, which the DOE considers necessary to develop utility-sized plants, are discussed. The Morgantown Energy Technology Center (METC) is interested in making sure that PFBC systems continue to remain a viable system for the next century, in a climate of continuing pressure, to make power systems cleaner and more efficient. Therefore, METC is initiating an effort to investigate the technical issues associated with PFBC systems that can get to over 50 percent efficiencies and have very low emissions. The goals and development targets for this effort are discussed.

  2. Conceptual design and optimization of a 1-1/2 generation PFBC plant task 14. Topical report

    SciTech Connect

    White, J.S.; Witman, P.M.; Harbaugh, L.; Rubow, L.N.; Horazak, D.A.

    1994-12-01

    The economics and performance of advanced pressurized fluidized bed (PFBC) cycles developed for utility applications during the last 10 years (especially the 2nd-Generation PFBC cycle) are projected to be favorable compared to conventional pulverized coal power plants. However, the improved economics of 2nd-Generation PFBC cycles are accompanied by the perception of increased technological risk related to the pressurized carbonizer and its associated gas cleanup systems. A PFBC cycle that removed the uncertainties of the carbonizer while retaining the high efficiency and low cost of a 2nd-Generation PFBC cycle could improve the prospects for early commercialization and pave the way for the introduction of the complete 2nd-Generation PFBC cycle at some later date. One such arrangement is a PFBC cycle with natural gas topping combustion, referred to as the 1.5-Generation PFBC cycle. This cycle combines the advantages of the 2nd-Generation PFBC plant with the reduced risk associated with a gas turbine burning natural gas, and can potentially be part of a phased approach leading to the commercialization of utility 2nd-Generation PFBC cycles. The 1.5-Generation PFBC may also introduce other advantages over the more complicated 2nd-Generation PFBC system. This report describes the technical and economic evaluation of 1.5-Generation PFBC cycles for utility or industrial power generation.

  3. PFBC plant operations

    SciTech Connect

    Kinsinger, F.L. )

    1992-01-01

    By operating a fluidized bed at elevated pressures, known as pressurized fluidized bed combustion (PFBC), advantages can be gained over atmospheric fluidized bed technology. Operating the process at elevated pressures allows electrical production from both the steam and the gas cycles which results in higher plant efficiencies. Additional benefits of operating at elevated pressures include the further reduction of emissions and the reduction in the physical size of the power plant. This paper describes the operation of a PFBC plant and its application at the Tidd clean coal demonstration project. Actual operating experience will be presented.

  4. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  5. PFBC Utility Demonstration Project

    SciTech Connect

    Not Available

    1992-11-01

    This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

  6. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  7. US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems

    SciTech Connect

    Dennis, R.A.

    1997-05-01

    The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systems has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.

  8. ADVANCED HYBRID PARTICULATE COLLECTOR - PHASE III

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michael E. Collings; Michelle R. Olderbak

    2000-10-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. In Phase II, a 2.5-MW-scale AHPC was designed, constructed, installed, and tested at the Big Stone power station. For Phase III, further testing of an improved version of the 2.5-MW-scale AHPC at the Big Stone power station is being conducted to facilitate commercialization of the AHPC technology.

  9. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    SciTech Connect

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R&D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined.

  10. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  11. TIDD PFBC Demonstration Project

    SciTech Connect

    Not Available

    1994-03-01

    In fluidized bed combustion, coal and sorbent (dolomite or limestone) are fed into a boiler in which air, entering from the bottom, maintains the bed material in a highly turbulent suspended state called fluidization. This turbulence creates good contact between the air and fuel, allowing for high combustion efficiency and excellent adsorption of sulfur dioxide (SO{sub 2}) during the combustion process. In PFBC applications, pressurized air is supplied to the combustor. Pressurizing the air concentrates a larger quantity of oxygen per unit volume. This results in a lower velocity of air through the fuel bed. The lower velocity reduces the total height required for the bed and freeboard above the bed. Also, a smaller plan area is required for the bed area as compared to an atmospheric fluidized bed. This has the advantage of requiring a much smaller pressure vessel to contain the boiler enclosure. The mean bed temperature of a pressurized fluidized bed combustor is typically maintained in the range 1540 to 1580 F. This is well below the ash fusion temperature of coal, yet above the ignition temperature of the coal. Advantages of the low bed temperature are no slag formation and a reduction of NO{sub x} emissions to less than half that of a conventional boiler. The Tidd Plant is a combined cycle pressurized fluidized bed combustion system with a topping gas cycle and a bottoming steam cycle.

  12. Initial operation of the Tidd PFBC hot gas clean up filter

    SciTech Connect

    Mudd, M.J.; Hoffman, J.D.

    1993-09-01

    The objective of this program is to evaluate the design and obtain operating experience for up to two Advanced Particle Filter (APF) systems through long-term testing on a slipstream at Ohio Power Company`s Tidd PFBC Demonstration Plant. Performance and reliability of commercial-scale filter modules will be monitored to aid in an assessment of the readiness and economic viability of this technology for commercial PFBC applications.

  13. Westinghouse Advanced Particle Filter System

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M.

    1996-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

  14. METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS

    SciTech Connect

    M.A. Alvin

    2004-01-02

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

  15. CERAMIC FILTER TESTS AT THE EPA/EXXON PFBC (PRESSURIZED FLUIDIZED BED COAL COMBUSTION) MINIPLANT

    EPA Science Inventory

    The paper describes the performance of the Acurex ceramic bag filter operating at temperatures up to 880C and pressures up to 930 kPa on particulate-laden flue gas from a pressurized fluidized-bed coal combustion (PFBC) unit on a slipstream of gas taken after the second stage cyc...

  16. Market assessment of PFBC ash use

    SciTech Connect

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  17. Design Advances in Particulate Systems for Biomedical Applications.

    PubMed

    Lima, Ana Catarina; Alvarez-Lorenzo, Carmen; Mano, João F

    2016-07-01

    The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field. PMID:27332041

  18. Tidd PFBC demonstration project

    SciTech Connect

    Marrocco, M.

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  19. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to

  20. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-02-01

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  1. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2003-03-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  2. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Steven A. Benson; Michelle R. Olderbak

    2003-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ''Advanced Hybrid''{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  3. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2002-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  4. Mercuty Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak

    2003-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  5. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2001-11-01

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot-Scale. The project team will include the Energy and Environmental Research Center (EERC) as the main contractor, W.L. Gore and Associates, Inc., as a technical and financial partner, and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a

  6. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-05-01

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology

  7. Commercial second-generation PFBC plant transient model: Task 15

    SciTech Connect

    White, J.S.; Getty, R.T.; Torpey, M.R.

    1995-04-01

    The advanced pressurized fluidized bed combustor (APFBC) power plant combines an efficient gas-fired combined cycle, a low-emission PFB combustor, and a coal pyrolysis unit (carbonizer) that converts coal, America`s most plentiful fuel, into the gas turbine fuel. From an operation standpoint, the APFBC plant is similar to an integrated gasification combined cycle (IGCC) plant, except that the PFBC and fluid bed heat exchanger (FBHE) allow a considerable fraction of coal energy to be shunted around the gas turbine and sent directly to the steam turbine. By contrast, the fuel energy in IGCC plants and most other combined cycles is primarily delivered to the gas turbine and then to the steam turbine. Another characteristic of the APFBC plant is the interaction among three large thermal inertias--carbonizer, PFBC, and FBHE--that presents unique operational challenges for modeling and operation of this type of plant. This report describes the operating characteristics and dynamic responses of the APFBC plant and discusses the advantages and shortcomings of several alternative control strategies for the plant. In particular, interactions between PFBC, FBHE, and steam bottoming cycle are analyzed and the effect of their interactions on plant operation is discussed. The technical approach used in the study is described in Section 2. The dynamic model is introduced in Section 3 and described is detail in the appendices. Steady-state calibration and transient simulations are presented in Sections 4 and 5. The development of the operating philosophy is discussed in Section 6. Potential design changes to the dynamic model and trial control schemes are listed in Sections 7 and 8. Conclusions derived from the study are presented in Section 9.

  8. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  9. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2003-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at

  10. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at

  11. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  12. PFBC Utility Demonstration Project. Annual report, 1991

    SciTech Connect

    Not Available

    1992-11-01

    This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 & 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP`s proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

  13. ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

    2001-09-30

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the

  14. Results from Grimethorpe PFBC turbine cascade tests

    SciTech Connect

    Not Available

    1986-12-01

    The test program at the Grimethorpe Pressurized Fluidized-Bed Combustion (PFBC) facility included an assessment of the potential for deposition, corrosion, and erosion of gas turbine blade materials when exposed to PFBC off gases. Flue gas from the combustor was fed through three stages of cyclones before entering the cascade. The impulse foils were approximately the size and shape of the first stage blades in the GE MS-1002 gas turbine. The cascade operated through three test series, accumulating a total of 649 hours. The conditions experienced are summarized. The paper lists the alloys tested, and discusses the efficiency of the cyclones, the particle size distribution of the dusts not removed by the cyclones, and corrosion of the turbine blades. 4 references, 1 figure, 2 tables.

  15. Conceptual design of a gas turbine for PFBC applications

    SciTech Connect

    Bannister, R.L.; McGuigan, A.W.; Risley, T.P.; Smith, O.J.

    1992-12-31

    First generation pressurized fluidized bed (PFBC) technology has potential advantages which include: lower capital cost, Unproved environmental performance, shorter lead times, higher efficiency and enhanced fuel flexibility. Coal firing with combustion turbines experiments have been conducted for over forty years. These efforts have evolved to the point where commercial demonstrations are now feasible. The PFBC is one of these technologies. It will be demonstrated as part of the Clean Coal III initiative. PFBC technology is applicable for new installations, replacement of existing equipment as well as repower and retrofit. Included with these options is the opportunity to reduce dependency on fuel oil and well as enhancing environmental performance and increasing efficiency. The turbo-machinery will require design changes to meet the requirements for PFBC application. The major change to the combustion turbine take place in the center section. This section will include provisions to supply compressed air to the PFBC as well as receive vitiated air from the PFBC. These efforts also have the objective of reducing the degree of change from a standard unit. Under a clean coal program a first generation PFBC demonstration win take place at the Des Moines Energy Center. For this demonstration it will be necessary to remove two stages from the 251B12 compressor. This will make the air supplied by the compressor suitable for the PFBC system. The results from this program will be applicable to the DMEC-1 program.

  16. Conceptual design of a gas turbine for PFBC applications

    SciTech Connect

    Bannister, R.L.; McGuigan, A.W.; Risley, T.P.; Smith, O.J.

    1992-01-01

    First generation pressurized fluidized bed (PFBC) technology has potential advantages which include: lower capital cost, Unproved environmental performance, shorter lead times, higher efficiency and enhanced fuel flexibility. Coal firing with combustion turbines experiments have been conducted for over forty years. These efforts have evolved to the point where commercial demonstrations are now feasible. The PFBC is one of these technologies. It will be demonstrated as part of the Clean Coal III initiative. PFBC technology is applicable for new installations, replacement of existing equipment as well as repower and retrofit. Included with these options is the opportunity to reduce dependency on fuel oil and well as enhancing environmental performance and increasing efficiency. The turbo-machinery will require design changes to meet the requirements for PFBC application. The major change to the combustion turbine take place in the center section. This section will include provisions to supply compressed air to the PFBC as well as receive vitiated air from the PFBC. These efforts also have the objective of reducing the degree of change from a standard unit. Under a clean coal program a first generation PFBC demonstration win take place at the Des Moines Energy Center. For this demonstration it will be necessary to remove two stages from the 251B12 compressor. This will make the air supplied by the compressor suitable for the PFBC system. The results from this program will be applicable to the DMEC-1 program.

  17. Particulate Hot Gas Stream Cleanup Technical Issues

    SciTech Connect

    Potius, D.; Snyder, T.

    1997-07-01

    The characteristics of entrained particles generated by advanced coal conversion technologies and the harsh flue gas environments from which these particles must be removed challenge current ceramic barrier filtration systems. Measurements have shown that the size distribution, morphology, and chemical composition of particles generated by pressurized fluidized-bed combustion (PFBC) and gasification processes differ significantly from the corresponding characteristics of conventional pulverized-coal ash particles. The entrained particulate matter from these advanced conversion technologies often comprise fine size distributions, irregular particle morphologies, high specific surface areas, and significant proportions of added sorbent material. These characteristics can create high ash cohesivity and high pressure losses through the filter cakes. In addition, the distributions of chemical constituents among the collected particles provide local, highly concentrated chemical species that promote reactions between adjacent particles that ultimately cause strong, nodular deposits to form in the filter vessel. These deposits can lead directly to bridging and filter element failure. This project is designed to address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic filter elements. The activities conducted under Task 1, Assessment of Ash Characteristics, are discussed in this paper. Activities conducted under Task 2, Testing and Failure Analysis of Ceramic Filters, are discussed in a separate paper included in the proceedings of the Advanced Coal-Based Power and Environmental Systems `97 Conference. The specific objectives of Task I include the generation of a data base of the key characteristics of Hot Gas Stream Cleanup (HGCU) ashes collected from operating advanced particle filters (APFS) and the identification of relationships between HGCU ash properties and the operation and

  18. Preliminary assessment of alternative PFBC power plant systems

    NASA Astrophysics Data System (ADS)

    Wysocki, J.; Rogali, R.

    1980-07-01

    Design and economic comparisons of the following nominal 1000 MWe pressurized fluidized bed combustion (PFBC) power plants are presented for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) the steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBC designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.

  19. Preliminary assessment of alternative PFBC power plant systems. Final report

    SciTech Connect

    Wysocki, J.; Rogali, R.

    1980-07-01

    This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBC designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.

  20. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  1. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  2. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  3. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  4. A case study of PFBC for low rank coals

    SciTech Connect

    Jansson, S.A.

    1995-12-01

    Pressurized Fluidized Combined-Cycle (PFBC) technology allows the efficient and environmentally friendly utilization of solid fuels for power and combined heat and power generation. With current PFBC technology, thermal efficiencies near 46%, on an LHV basis and with low condenser pressures, can be reached in condensing power plants. Further efficiency improvements to 50% or more are possible. PFBC plants are characterized by high thermal efficiency, compactness, and extremely good environmental performance. The PFBC plants which are now in operation in Sweden, the U.S. and Japan burn medium-ash, bituminous coal with sulfur contents ranging from 0.7 to 4%. A sub- bituminous {open_quotes}black lignite{close_quotes} with high levels of sulfur, ash and humidity, is used as fuel in a demonstration PFBC plant in Spain. Project discussions are underway, among others in Central and Eastern Europe, for the construction of PFBC plants which will burn lignite, oil-shale and also mixtures of coal and biomass with high efficiency and extremely low emissions. This paper will provide information about the performance data for PFBC plants when operating on a range of low grade coals and other solid fuels, and will summarize other advantages of this leading new clean coal technology.

  5. NOVEL CONCEPTS, METHODS AND ADVANCED TECHNOLOGY IN PARTICULATE/GAS SEPARATION

    EPA Science Inventory

    This paper discusses presentations made during a symposium on novel concepts, methods, and advanced technology in particulate/gas separation. The symposium, held at the University of Notre Dame and sponsored by the National Science Foundation and the Environmental Protection Agen...

  6. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    SciTech Connect

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  7. Midwest Power`s perspective of circulating PFBC

    SciTech Connect

    Licht, P.

    1994-04-01

    Midwest Power is involved with a Clean Coal III project to repower an existing facility using a circulating PFBC boiler with a high temperature high pressure gas filter system. This facility must meet least cost planning criteria as well as be a commercial power plant. This paper will address the processes involved, the technical areas of concern, and the financial feasibility of the PFBC technology.

  8. Advances in controlling particulate emissions from fossil-fired power plants

    SciTech Connect

    Chang, R.

    1995-12-31

    Present and possible future Federal, state, and local air pollutant emission regulations coupled with an increasingly competitive business environment and the aging of existing particulate control equipment are motivating utilities to improve particulate control system effectiveness and reduce control cost. To these ends, several cost-effective means of improving particulate control are being developed and tested. Three fossil plant retrofit technologies of note include two flue gas conditioning systems--one ``agentless`` arrangement that uses the SO{sub 2} in the flue gas as the raw material for an SO{sub 3} conditioning system, and a promising new additive that has performed well in laboratory and pilot-scale tests. A second retrofit technology supplements all or most of the existing electrostatic precipitator with a pulse-jet baghouse. A third approach described in this paper is one example of a new class of advanced filtration systems, some of which can remove NO{sub x} and particulate in the same vessel. Technologies like these will enable utilities to boost particulate removal effectiveness after switching to lower-sulfur coal for Clean Air Act compliance, minimize compliance costs, and optimally position themselves for possible further emission regulations.

  9. Tidd PFBC Demonstration Project, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2001-08-31

    The Clean Coal Technology (CCT) Demonstration Program is a government and industry co-funded technology development effort to demonstrate a new generation of innovative coal utilization processes. One goal of the program is to furnish the energy marketplace with a variety of energy efficient, environmentally superior coal-based technologies. Demonstration projects seek to establish the commercial feasibility of the most promising coal technologies that have proceeded beyond the proof-of-concept stage. This report is a post-project assessment of the DOE CCT Demonstration Program, the Tidd PFBC Demonstration Project. A major objective of the CCT Program is to provide the technical data necessary for the private sector to proceed confidently with the commercial replication of the demonstrated technologies. An essential element of meeting this goal is the dissemination of results from the demonstration projects. This post-project assessment (PPA) report is an independent DOE appraisal of the successes that the completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology, as well as an analysis of the commercial market.

  10. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  11. Advanced hybrid particulate collector. Quarterly technical progress report, July 1--September 30, 1996

    SciTech Connect

    Miller, S.J.; Schelkoph, G.L.

    1996-10-01

    The objective for this quarter was to test the advanced hybrid particulate collector (AHPC) in real flue gas conditions. The initial tests were performed on the particulate test combustor (PTC) firing Absoloka subbituminous using two types of bags: PTFE and graphite-impregnated PTFE. Both bag types were evaluated in the on-line and off-line cleaning modes. Findings showed only a small difference in performance between the PTFE and graphite-impregnated PTFE. In the on-line cleaning mode, both the PTFE and graphite-impregnated PTFE bags maintained pressure drop across the bags of between 8.0 and 6.0 in. W.C. In the off-line mode, the pressure drop across both bag types ranged from 8.0 to 5.5 in. W.C. Dust-loading efficiencies averaged 99.986% over all the tests. The objective of the project is to develop a highly reliable AHPC that can provide > 99.99% particulate collection efficiency for all particle sizes from 0.01 to 50 {micro}m, is applicable for use with all US coals, and is cost-comparative with existing technologies.

  12. Particulate Control Device (PCD) Testing at the Power Systems Development Facility, Wilsonville, Alabama

    SciTech Connect

    Longanbach, J.R.

    1995-12-01

    One of the U.S. Department of Energy`s (DOE`s) objectives overseen by the Morgantown Energy Technology Center (METC) is to test systems and components for advanced coal-based power generation systems, including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and integrated gasification/fuel cell (IGFC) systems. Stringent particulate requirements for fuel gas for both combustion turbines and fuel cells that are integral to these systems. Particulates erode and chemically attack the blade surfaces in turbines, and cause blinding of the electrodes in fuel cells. Filtration of the hot, high-pressure, gasified coal is required to protect these units. Filtration can be accomplished by first cooling the gas, but the system efficiency is reduced. High-temperature, high-pressure, particulate control devices (PCDs) need to be developed to achieve high efficiency and to extend the lifetime of downstream components to acceptable levels. Demonstration of practical high-temperature PCDs is crucial to the evolution of advanced, high-efficiency, coal-based power generation systems. The intent at the Power Systems Development Facility (PSDF) is to establish a flexible test facility that can be used to (1) develop advanced power system components, such as high-temperature, high-pressure PCDs; (2) evaluate advanced power system configurations and (3) assess the integration and control issues of these advanced power systems.

  13. Particulate multi-phase flowfield analysis for advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Liaw, Paul; Chen, Yen-Sen; Shang, Huan-Min; Doran, Denise

    1993-01-01

    Particulate multi-phase flowfield with chemical reaction for a 2D advanced solid rocket motor (ASRM) is analyzed using the finite difference Navier-Stokes (FDNS) code. The flowfield in the aft dome cavity of the ASRM is examined and its significant impact on the motor operation and performance is demonstrated. Chemical reaction analysis is performed for H2O, O2, H2, O, H, OH, CO, CO2, Cl, Cl2, HCl, and N2. The turbulent dispersion effect is calculated with the Monte Carlo method. Result show that a recirculation zone exists at the entry of the aft-dome cavity. The particle impingement could cause the erosion and damage nozzle wall. Accumulating in the impingement area the particles change the wall shape and affect the motor performance.

  14. Improving hot gas filtration behavior in PFBC power plants

    SciTech Connect

    Romeo, L.M.; Gil, A.; Cortes, C.

    1999-07-01

    According to a previous paper, a laboratory-scale cold flow model of the hot gas filtration system in Escatron PFBC power plant has been built. The main objectives were to establish the validity of the scaling laws for cyclone separator systems (cyclone and dipleg) and to perform detailed room temperature studies in a rapid and cost effective manner. In Escatron PFBC power plant, the hot gas filtration equipment is a two-stage process performed in nine streams between the fluidized bed and the gas turbine. Due to the unsteadiness in the dipleg and the suction nozzle, and the effect of sintered deposit, the cyclone performance is modified. The performances of cyclone separator system and suction nozzle diplegs are scarcely reported in the open literature. This paper presents the results of a detailed research in which some important conclusions of well known studies about cyclones are verified. Also remarkable is the increase in cyclone efficiency and decrease in pressure drop when the solid load to the cyclone is increased. The possibility to check the fouling by means of pressure drop has not been previously addressed. Finally, the influences of gas input velocity to the cyclone, the transport gas to the ash conveying lines, the solid load and the cyclone fouling have been analyzed. This study has allowed characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements as the two suction nozzle dipleg, pointing out important conclusions for the filtration process in PFBC power plants.

  15. Tidd PFBC Demonstration Project: Public final design report

    SciTech Connect

    Not Available

    1992-10-01

    This Public Final Design Report describes the 70 MW(e) Tidd PFBC Demonstration Plant under construction in Brilliant, Ohio. This project is receiving cost-sharing from the US Department of Energy (DOE), and is being administered by the Morgantown Energy Technology Center in accordance with DOE Cooperative Agreement No. DE-FC21-87 MC24132.000. The project is also receiving costsharing from the State of Ohio. This award is being administered by the Ohio Coal Development Office. The Tidd PFBC Demonstration Project is the first utility-scale demonstration project in the US. Its objective is to demonstrate that the Pressurized Fluidized Bed Combustion (PFBC) combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. Detailed design of the plant began in May 1987, leading to the start of construction in April 1988. First coal fire occurred in November 1990, and the three-year test program began in February 1991.

  16. PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993

    SciTech Connect

    Not Available

    1993-10-01

    This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

  17. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1991

    SciTech Connect

    Not Available

    1992-01-01

    This is the ninth technical progress report submitted to the Department of Energy in connection with the Cooperative Agreement between DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1991. During the reporting period, work focused on completing Task 2, Hot Gas Clean Up (HGCU) Detailed Design and Task 4, Procurement Activities to support the installation of the Westinghouse advanced particle filter (APE). The following significant events occurred during this report period: The mechanical/structural contractor (Pullman Power Products) mobilized at the Tidd site in December and began erecting steel framing for the APF. A contract modification was issued to Babcock & Wilcox Co. for the supply of piping materials required for the combustor internal modifications. A contract was awarded to ANARAD, Inc. for a gas analysis system. A contract was prepared and is being processed for electrical erection.

  18. Second generation PFBC systems research and development: Phase 2, Topping combustor testing at UTSI

    SciTech Connect

    Johanson, N.R.; Foote, J.P.

    1992-12-01

    This report describes a second generation pressurized fluidized bed combustion (PFBC) power plant. The topping combustor testing is briefly described. The topping combustor burns low BTU gas produced from substoichiometric combustion of coal in a pressurized carbonizer. Char produced is burned in a PFBC.

  19. Effect of orientation on the thermal stability in advanced metal particulate tapes

    NASA Astrophysics Data System (ADS)

    Nishio, Hiroaki

    2008-05-01

    The effects of the degree of particle orientation on the normalized magnetization decay and activation volume (Vact) were investigated for advanced data recording tapes prepared from ultrafine metal particulate (MP) composite. In this study, the mean volume of particles (Vphy) for advanced MP tapes varied between 1.7 and 5.3×10-18cm3, inclusive of a surface oxide layer. In MP tape with a larger Vphy (=5.3×10-18cm3), increasing the orientation ratio (OR) for improved recording characteristics was found to decrease the normalized magnetization decay. However, the OR values had little effect on the normalized magnetization decay of MP tape with a smaller Vphy (=1.7×10-18cm3). This may be attributed to the existence of a few particles approaching the theoretical superparamagnetic limit of 0.7×10-18cm3. In order to decrease the normalized magnetization decay, it is particularly important to increase Hc, which improves the anisotropy constant and the distribution of anisotropy field (HA) for advanced data recording tapes with very small Vphy. The value of Vact in the low reverse field, which is a major factor affecting media noise, decreased as OR increased regardless of Vphy. Also, Vact of both tapes decreased as the reverse field decreased in the range of 1.2kOe or less. Vact of an assembly of ultrafine particles was dependent on the distributions of HA and volume of particles, also the value of rotational hysteresis integral that related to the deterioration in the mechanism of magnetization reversal giving rise to an incoherent rotation.

  20. PFBC HGCU Test facility. Technical progress report, Fourth quarter, CY 1994

    SciTech Connect

    1995-01-01

    During this quarter, the Tidd Hot Gas Clean Up System completed a 691-hour test run which began during the third quarter. Table 1 summarizes all test runs since initial operation. Following this test run the system was shut down and the filter opened for inspection and recandling. The system remained out of service during the remainder of the quarter. In addition to monitoring and evaluating the performance of the HGCU system during testing, engineering effort was devoted to posttest inspection of the APF (Advanced Particle Filter) and evaluation of the effects of totally spoiling the primary cyclone. In addition, the authors worked with Westinghouse in the selection of replacement candles that were installed during the fourth quarter. During the unit outage this quarter, the primary cyclone upstream of the APF was modified to force all of the ash to pass through the cyclone and enter the APF without using spoiling air. Appendices to this report describe the dust shroud support strap design; an analysis of the effect of support-transferred vibrations on the failure of ceramic candle filters; the Tidd APF operation; the Tidd APF boroscope inspection; a general inspection of Tidd filter internals; tally of Tidd filters; ash formations in the W-APF-October 1994 post-test inspection; characterization of the as-manufactured and PFBC-exposed 3M CVI-SiC composite filter matrix; strength characterization of the first and second generation candle filters after 1,705 hours of PFBC operation at Tidd; and filters used in the December 1994 recandling effort at Tidd.

  1. Chemistry, mineralogy, and artifical weathering of PFBC by-products

    SciTech Connect

    Fowler, R.K.; Soto, U.I.; Bigham, J.M.

    1995-11-01

    Chemical and mineralogical analyses were performed on spent bed residues and cyclone ashes acquired from the TIDD pressurized fluidized bed combustion (PFBC) demonstration plant operated by American Electric Power in Brilliant, OH. The cyclone ashes were composed of fly ash, dolomite, anhydrite, periclase, and calcite in decreasing order of abundance. By comparison, bed residues contained less dolomite and fly ash but more anhydrite, calcite and periclase. All samples were highly alkaline with paste pH values ranging from 9.9 to 12.3. The major element chemistry of the by-products was dominated by Ca, Mg, S, Fe, Al and Si. All materials met the criteria for ceiling concentrations of Cd, Cr, Cu, Pb, Mo, Ni, Se and Zn as defined for land application of sewage sludges. Arsenic exceeded the ceiling level in one of six samples. An artificial weathering study was conducted to evaluate the impact of PFBC by-products on water quality in mined land reclamation. The study was performed using two mine spoils (pH 3.8 and 5.6) mixed with cyclone ash at rates of 0, 10, 20 and 40 wt % by-product. The composition of leachates from the mixtures was mostly a function of rate of by-product application and equilibration time. In general, the addition of PFBC by-product increased pH, conductivity, and the concentrations of dissolved Ca, K, Mg, Mo, Na, S, and Sr whereas the concentrations of Al, Fe, and Mn decreased. Six metals (Ag, As, Ba, Cd, Cr, and Pb) regulated by the Resource Conservation Recovery Act were below concentration levels defined for drinking water standards. No significant alteration of native spoil minerals was observed over the course of the study; however, hydration/precipitation reactions resulted in the rapid formation of gypsum. No evidence of ettringite crystallization was available after 132 days of periodic leaching.

  2. NiAl-Base Composite Containing High Volume Fraction of AIN Particulate for Advanced Engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. D.; Lowell, C. E.; Garg, A.

    1995-01-01

    Cryomilling of prealloyed NiAl containing 53 at. % AJ was carried out to achieve high nitrogen levels. The consolidation of cryomilled powder by extrusion or hot pressing/ hot isostatic pressing resulted in a fully dense NiAl-base composite containing 30 vol. % of inhomogeneously distributed, nanosized AIN particulate. The NiAl-30AIN composite exhibited the highest compression yield strengths at all temperatures between 300 and 1300 K as compared with other compositions of NiAl-AIN composite. The NiAl-30AIN specimens tested under compressive creep loading between 1300 and 1500 K also exhibited the highest creep resistance with very little surface oxidation indicating also their superior elevated temperature oxidation resistance. In the high stress exponent regime, the strength is proportional to the square root of the AIN content and in the low stress exponent regime, the influence of AIN content on strength appears to be less dramatic. The specific creep strength of this material at 1300 K is superior to a first generation Ni-base single crystal superalloy. The improvements in elevated temperature creep strength and oxidation resistance have been achieved without sacrificing the room temperature fracture toughness of the NiAl-base material. Based on its attractive combination of properties, the NiAl-30AIN composite is a potential candidate for advanced engine applications,

  3. [PFBC Hot Gas Cleanup Test Program

    SciTech Connect

    Not Available

    1992-10-01

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP's pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  4. Testing of candidate materials for their resistance to alkali-vapor adsorption in PFBC and gasification environments. Final report

    SciTech Connect

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1995-08-01

    Laboratory-scale studies were performed to identify metallic material(s) having no, or limited, affinity for alkali vapors in an environment of either the off-gas from pressurized fluidized-bed combustion (PFBC) or the fuel gas from coal gasification. Such materials would be potential candidates for use as components in advanced coal-utilization systems. The following materials were tested for adsorption of NaCl vapor at 870--875 C and atmospheric pressure in a simulated PFBC off-gas (oxidizing) doped with 80 ppmW NaCl vapor: iron-based Type 304 stainless steel (304 SS), nickel-based Hastelloy C-276 and Hastelloy X alloys, cobalt-based Haynes No. 188 alloy, noble-metal-coated 304 SS, aluminized 304 SS, and ZrO{sub 2}-coated 304 SS. The Haynes No. 188 alloy and the aluminized 304 SS were also tested for their NaCl-vapor adsorption in a simulated gasification fuel gas (reducing) under the same test conditions as in the PFBC off-gas test. After 100 h of testing, the specimens were analyzed with a SEM equipped with an energy dispersive X-ray analyzer, and by an AES. The aluminized 304 SS had the least tendency to adsorb NaCl vapor, as well as an excellent resistance to corrosion as a result of the formation of a protective layer of Al{sub 2}O{sub 3} on its surface. In the reducing environment, however, the aluminized 304 SS was badly corroded by H{sub 2}S attack. The Haynes No. 188 showed virtually no NaCl-vapor adsorption and only limited H{sub 2}S attack. The authors recommend further long-term parametric studies to quantitate alkali-vapor adsorption as a function of operating variables for (1) the aluminized 304 SS in the PFBC off-gas environment and (2) the Haynes No. 188 in the gasification fuel gas environment.

  5. PILOT-SCALE ASSESSMENT OF CONVENTIONAL PARTICULATE CONTROL TECHNOLOGY FOR PRESSURIZED FLUIDIZED-BED COMBUSTION EMISSIONS

    EPA Science Inventory

    The report gives results of an evaluation of electrostatic precipitator (ESP) and fabric filter particulate control technology for the EPA/Exxon pressurized fluidized-bed combustion (PFBC) Miniplant in Linden, NJ. EPA's mobile ESP and fabric filter pilot facilities were slipstrea...

  6. Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies

    PubMed Central

    Nemmar, Abderrahim; Holme, Jørn A.; Rosas, Irma; Schwarze, Per E.

    2013-01-01

    Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques. PMID:23865044

  7. Tidd PFBC Demonstration Project. Final report, March 1, 1994--March 30, 1995

    SciTech Connect

    Bauer, D.A.; Hoffman, J.D.; Marrocco, M.; Mudd, M.J.; Reinhart, W.P.; Stogran, H.K.

    1995-08-01

    The Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant was the first utility-scale pressurized fluidized bed combustor to operate in combined-cycle mode in the US. The 45-year old pulverized coal plant was repowered with PFBC components in order to demonstrate that PFBC combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. The three-year demonstration period started on February 28, 1991 and terminated on February 28, 1994. The fourth year of testing started on March 1, 1994 and terminated on March 30, 1995. This report reviews the experience of the 70-MW(e), Tidd PFBC Demonstration Plant during the fourth year of operation.

  8. Liming efficacy and transport in soil of a dry PFBC by-product

    SciTech Connect

    Dick, W.A.

    1995-12-01

    The by-products of pressurized fluidized-bed combustion (PFBC) systems are mixtures of coal ash, anhydrite (CaSO{sub 4}), and unspent alkaline sorbent. Because PFBC by-products are alkaline and contain large concentrations of readily soluble bases (Ca and in some cases Mg) and other essential plant nutrients such as S and K, they have potential use as soil amendments, especially in acidic soils. PFBC by-products (particularly those with large Mg contents) may cause excessively high soluble salt concentrations when applied to soil. This could be detrimental to plant growth and might also impact the release of trace elements from the coal ash component of the by-product. In field experiments on three acidic soils, the liming effectiveness of a PFBC by-product, its effects on corn and alfalfa growth, and its impacts on crop, soil, and water quality were investigated.

  9. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1994-10-01

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper updates the assessment of the Westinghouse hot gas filter design based on ongoing testing and analysis. Results are summarized from recent computational fluid dynamics modeling of the plenum flow during back pulse, analysis of candle stressing under cleaning and process transient conditions and testing and analysis to evaluate potential flow induced candle vibration.

  10. Studies on coal devolatilization and char reactivity under PFBC conditions

    SciTech Connect

    Not Available

    1990-12-01

    A fundamental combustion study was performed at Babcock and Wilcox's Alliance Research Center to characterize the combustion properties of Pittsburgh No. 8 and Texas lignite coals under conditions simulating pressurized fluidized-bed combustion (PFBC) using a bench-scale reactor. Over 400 combustion tests were performed at temperatures ranging from 1425{degree} to 1,725{degree}F, a maximum pressure of 280 psig, maximum superficial gas velocities of approximately 5 ft/sec to 20 ft/sec, and several oxygen concentrations using six coal particle sizes. A database of combustion profiles at PFBC conditions was obtained. A fundamental model of the chemical kinetics of the coal combustion at elevated pressures was developed based on this database. The kinetic models were used to derive the rate constants and activation energies of coal combustion for the two coals. For coal devolatilization, the effects of each test variable on the rate of reaction, the volatile yield, and the reaction order were evaluated. The apparent orders of coal devolatilization for Pittsburgh No. 8 and Texas lignite coals were determined to be less than one and vary with coal properties and test conditions. For char oxidation, the rates were reported as apparent kinetic rates and were derived based on the information which was obtained at the early stage of char oxidation. The kinetic rate constant of Pittsburgh No. 8 coal was found to be insensitive to the tested particle sizes. Increasing temperature, pressure, and superficial gas velocity increased the kinetic rate constant. The kinetic rate constant of Texas lignite coal was found to be approximately 2.5 times that of Pittsburgh No. 8 coal. The kinetic data obtained from this study in the low-temperature range was comparable to those reported by others in the literature. 40 refs., 37 figs., 15 tabs.

  11. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  12. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    1998-09-01

    This is the eleventh in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task 1 during the past quarter, analyses were completed on samples obtained during a site visit to the Power Systems Development Facility (PSDF). Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. An additional analysis was performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. A manuscript and poster were prepared for presentation at the Advanced Coal-Based Power and Environmental Systems `97 Conference scheduled for July 22 - 24, 1997. A summary of recent project work covering the mechanisms responsible for ash deposit consolidation and ash bridging in APF`s collecting PFB ash was prepared and presented at FETC-MGN in early July. The material presented at that meeting is included in the manuscript prepared for the Contractor`s Conference and also in this report. Task 2 work during the past quarter included mechanical testing and microstructural examination of Schumacher FT20 and Pall 326 as- manufactured, after 540 hr in service at Karhula, and after 1166 hr in service at

  13. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  14. Tidd PFBC Demonstration Project. Quarterly report, January--March 1994

    SciTech Connect

    Not Available

    1994-04-01

    This is the 28th Technical Progress Report submitted to the Department of Energy in connection with the Cooperative Agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period of January 1, 1994 to March 31, 1994. Major activities during this period include: (1) The unit operated for 850 hours on coal, bringing the grand total for coal fire through the end of the quarter to 6318 hours. (2) The unit availability for the first quarter was 40.1%. (3) There were twelve gas turbine starts, eight bed preheater starts, and six operating periods on coal. (4) During this quarter, total gross generation was 40,721 MWH, the peak unit output for one hour was 62 MWH, and the coal consumption was 19,370 tons. (5) Three performance tests were conducted during this quarter; and (6) the plant was able to remain in service during the sub-zero weather in January, providing power to the critically short grid.

  15. Performance of PRD-66 hot gas candle filters in the AEP/TIDD PFBC facility

    SciTech Connect

    Chambers, J.A.

    1996-12-31

    The performance of PRD-66 hot gas filters in American Electric Power`s TIDD PFBC facility is described. PRD-66 hot gas filters are made of an all-oxide composition with a unique layered microstructure which lends corrosion resistance, high temperature stability and excellent resistance to thermal shock damage. The development of the PRD-66 material into a hot gas candle filter is recounted. Testing which guided filter development prior to exposure in the AEP/TIDD PFBC system is discussed. Future plans for testing in coal combustion and other industrial applications are described.

  16. Subtask 2.13 - Advanced Hybrid Particulate Collector-Fundamental Performance

    SciTech Connect

    Stanley Miller

    2007-07-01

    Under the Power Plant Improvement Initiative Program funded by the U.S. Department of Energy, a full-scale Advanced Hybrid{trademark} filter was installed at the Big Stone Plant, with start-up in October 2002. The Advanced Hybrid{trademark} filter was retrofitted into Fields 2-4 of the old Big Stone electrostatic precipitator (ESP). While many aspects of the operation were satisfactory, pressure drop was higher than expected. To achieve acceptable pressure drop and successfully demonstrate the Advanced Hybrid{trademark} filter technology, the first fields of the ESP were also converted into an Advanced Hybrid{trademark} filter in 2005. However, since start-up in June 2005, the first fields have been inoperable for multiple reasons. The fundamental cause of the dysfunctional performance of the first fields was attributed to spacing and alignment problems, which led to excessive sparking and shutdown of the high-voltage power. In spite of attempts to correct the problems, satisfactory performance of the first fields was never achieved. Because of the uncertainties of how to achieve acceptable performance with a new technology, the Big Stone Plant made the decision to convert the entire Advanced Hybrid{trademark} filter housing into a pulse-jet fabric filter.

  17. SYMPOSIUM ON THE TRANSFER AND UTILIZATION OF PARTICULATE CONTROL TECHNOLOGY (4TH). VOLUME 3. ECONOMICS, MECHANICAL COLLECTORS, COAL CHARACTERISTICS, INHALABLE PARTICULATES, ADVANCED ENERGY AND NOVEL DEVICES

    EPA Science Inventory

    The papers in the three volumes (of which this is one) were presented at the Fourth Symposium on the Transfer and Utilization of Particulate Control Technology in Houston, TX, October 11-14, 1982. Volume I relates to fabric filtration; Volume II, to electrostatic precipitation; a...

  18. PFBC HGCU test facility technical progress report. First Quarter, CY 1994

    SciTech Connect

    Not Available

    1994-04-01

    This is the eighteenth Technical Progress Report submitted in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 835 hours during six separate test runs. The system was starting into a seventh run at the end of the quarter. Highlights of this period are summarized below: the longest run during the quarter was approximately 333 hours; filter pressure drop was stable during all test runs this quarter using spoiling air to the primary cyclone upstream of the Advanced Particle Filter (APF); the tempering air system was commissioned this quarter which enabled the unit to operate at full load conditions while limiting the gas temperature in the APF to 1,400 F; during a portion of the one run, the tempering air was removed and the filter operated without problems up to 1,450 F; ash sampling was performed by Battelle personnel upstream and downstream of the APF and ash loading and particle size distribution data were obtained, a summary report is included; a hot area on the APF head was successfully repaired in service; a hot spot on the top of an expansion joint was successfully repaired by drilling holes from the inside of the pipe and pumping in refractory insulation; a corrosion inspection program for the HGCU system was issued giving recommendations for points to inspect; filter internal inspections following test runs 13 and 17 revealed a light coating (up to 1/4 inch thick) of residual ash on the candles and some ash bridging between the dust sheds and inner rows of candles. Data from these inspections are included with this report.

  19. Velocity measurements in PFBC cyclone separator systems dip legs with thermal anemometry

    SciTech Connect

    Romeo, L.M.; Velilla, J.

    1999-07-01

    In order to improve the operational behavior (efficiency and stability) of the cyclone separator system in Escatron PFBC power plant, a laboratory-scale cold model has been built. Scaling laws have been applied to simulate the hydrodynamics and performance of the systems, in order to obtain valuable and relevant results for commercial PFBC technology. It has been demonstrated that the filtration effect of the cyclones in a PFBC power plant is extended down to the dipleg. Previous studies in a laboratory-scale cold model have pointed out the importance of the vortex inside the dipleg and its influence in the separation efficiency. It is due to the fact that the cyclone effect is still active in the dipleg. These studies are based in pressure drop dipleg measurements. Thermal anemometry has been used to measure the gas velocity and turbulence of several installations. In this case it has been used in order to check the vortex activity in the upper section of the dipleg of a cyclone separator system for a PFBC power plant. This paper deals with the results and conclusions of the research about the velocity field inside the dipleg. The possibility of improving cyclone efficiency by means of extending the vortex, the study of the variables affecting the vortex (and also the cyclone efficiency) and the establishment of a flow-pattern in the dipleg are the main objectives of the research and the paper.

  20. Operation results of the first commercial PFBC plant with high temperature ceramic filters

    SciTech Connect

    Kaneko, S.; Suga, N.

    1998-07-01

    Trial operation is now successfully underway at Tomato-Atsuma Unit No. 3 of Hokkaido Electric Power Co. (HEPCO) in Japan. This newly built 85 MWe unit is an innovative PFBC plant, which is the first commercial PFBC in Japan, and equipped with full capacity ceramic filters operated at 850 C. The high temperature ceramic filter effectively removes dusts in the hot gas and the dust loading at gas turbine inlet is much less than that of two-stage cyclones, minimizing the cost and time of gas turbine maintenance. The PFBC plant is composed of a pressurized fluidized-bed boiler, cyclones, ceramic filters, a gas turbine, a steam turbine, etc. and all of the equipment were manufactured and supplied by Mitsubishi Heavy Industries, Ltd. (MHI). Joint R and D program between HEPCO and MHI started 7 years ago, based on their own private funding and without any financial supports from public sectors, studying the optimum design of the first commercial PFBC aiming at environmental and economical advantages. And now fruitful results have been achieved. The commercial operation will start in March 1998 or earlier. Several troubles had been experienced during initial trial operation stage including pressure drop increase in ceramic filters. All these problems were solved one by one by the joint efforts of HEPCO and MHO. Load rejection tests, load swing tests, and automatic power control tests were successfully done in the spring of 1997. And tests with various kinds of coals are scheduled before the commercial operation.

  1. IGCC and PFBC By-Products: Generation, Characteristics, and Management Practices

    SciTech Connect

    Pflughoeft-Hassett, D.F.

    1997-09-01

    The following report is a compilation of data on by-products/wastes from clean coal technologies, specifically integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). DOE had two objectives in providing this information to EPA: (1) to familiarize EPA with the DOE CCT program, CCT by-products, and the associated efforts by DOE contractors in the area of CCT by-product management and (2) to provide information that will facilitate EPA's effort by complementing similar reports from industry groups, including CIBO (Council of Industrial Boiler Owners) and EEI USWAG (Edison Electric Institute Utility Solid Waste Activities Group). The EERC cooperated and coordinated with DOE CCT contractors and industry groups to provide the most accurate and complete data on IGCC and PFBC by-products, although these technologies are only now being demonstrated on the commercial scale through the DOE CCT program.

  2. Characterization of hot-gas filter ash under PFBC operating conditions

    SciTech Connect

    Henderson, A.K.; Swanson, M.L.; Hurley, J.P.; Watne, T.M.

    1998-01-01

    The objective of this program was to perform bench scale dynamic tests of ash formation and long-term ash cake formation in pressurized fluidized bed combustion (PFBC) systems to help in the development of methods to predict possible filter bridging problems and suggest possible strategies for mitigating these problems. During the program, four ash formation tests using a washed coal from the Consol Enlow Fork mine, with two size distributions of Plum Run dolomite at two different temperatures, were completed under conditions simulating the operation of the American Electric Power (AEP) Tidd PFBC. In addition, the same test matrix, plus two tests using no sorbent, was completed with the Belle Ayr Powder River Basin sub-bituminous coal, which will be used at the Southern Company Services (SCS) Wilsonville, Alabama, power systems development facility (PSDF).

  3. Characterization of hot-gas filter ash under PFBC operating conditions

    SciTech Connect

    Henderson, A.K.; Swanson, M.L.; Hurley, J.P.; Watne, E.M.

    1997-12-31

    The objective of this program was to perform bench-scale dynamic tests of ash formation and long-term ash cake formation in pressurized fluidized-bed combustion (PFBC) systems to help in the development of methods to predict possible filter bridging problems and suggest possible strategies for mitigating these problems. During the program, four ash formation tests using a washed coal from the Consol Enlow Fork mine, with two size distributions of Plum Run dolomite at two different temperatures, were completed under conditions simulating the operation of the American Electric Power (AEP) Tidd PFBC. In addition, the same test matrix, plus two tests using no sorbent, was completed with the Belle Ayr Powder River Basin subbituminous coal, which will be used at the Southern Company Services (SCS) Wilsonville, Alabama, power systems development facility (PSDF).

  4. Safety analysis of the waterwall in one PFBC boiler by dynamic model.

    PubMed

    Jinrong, Zhu; Mingyao, Zhang

    2003-10-01

    With the help of a dynamic mathematical model, the differential pressure across the waterwall in a PFBC (pressurized fluidized bed combustion) boiler is analyzed under abnormal conditions. The simulation tests have shown that the differential pressure will exceed design specification when the bursting diaphragm at the outlet pipe of the freeboard is ruptured and its capacity is larger than 50% of the flue gas flow rate of the boiler. PMID:14582889

  5. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS

    SciTech Connect

    M.A. Alvin

    2002-01-31

    Through sponsorship from the Department of Energy's National Energy Technology Laboratory (DOE/NETL), development and manufacture of advanced second generation candle filters was undertaken in the early 1990's. Efforts were primarily focused on the manufacture of fracture toughened, 1.5 m, continuous fiber ceramic composite (CFCC) and filament wound candle filters by 3M, McDermott, DuPont Lanxide Composites, and Techniweave. In order to demonstrate long-term thermal, chemical, and mechanical stability of the advanced second generation candle filter materials, Siemens Westinghouse initiated high temperature, bench-scale, corrosion testing of 3M's CVI-SiC and DuPont's PRD-66 mini-candles, and DuPont's CFCC SiC-SiC and IF&P Fibrosic{sup TM} coupons under simulated, pressurized fluidized-bed combustion (PFBC) conditions. This effort was followed by an evaluation of the mechanical and filtration performance of the advanced second generation filter elements in Siemens Westinghouse's bench-scale PFBC test facility in Pittsburgh, Pennsylvania. Arrays of 1.4-1.5 m 3M CVI-SiC, DuPont PRD-66, DuPont SiC-SiC, and IF&P Fibrosic{sup TM} candles were subjected to steady state process operating conditions, increased severity thermal transients, and accelerated pulse cycling test campaigns which represented {approx}1760 hours of equivalent filter operating life. Siemens Westinghouse subsequently participated in early material surveillance programs which marked entry of the 3M CVI-SiC and DuPont PRD-66 candle filters in Siemens Westinghouse Advanced Particulate Filtration (APF) system at the American Electric Power (AEP) Tidd Demonstration Plant in Brilliant, Ohio. Siemens Westinghouse then conducted an extended, accelerated life, qualification program, evaluating the performance of the 3M, McDermott, and Techniweave oxide-based CFCC filter elements, modified DuPont PRD-66 elements, and the Blasch, Scapa Cerafil{sup TM}, and Specific Surface monolithic candles for use in the APF

  6. AEP`s program for enhanced environmental performance of PFBC plants

    SciTech Connect

    Hafer, D.R.; Bauer, D.A.

    1993-09-01

    While Tidd has achieved many of its original performance and test objectives, current emission standards and the projected performance of competing technologies have caused a reassessment of the goals of AEP`s PFBC program, particularly with regard to sulfur removal and sorbent utilization. The original goal of 90 percent sulfur removal at a Ca/S molar ratio of 1.6 (using Plum Run dolomite) has now been revised to 95 percent removal at a ratio of less than 1.8. While 95 percent sulfur capture is within the capability of today`s PFBC units, the desired Ca/S molar ratio is not presently possible. Therefore, the test program has been redirected to attain this goal. The remainder of the three-year demonstration period will focus on achieving better sorbent utilization, conducting feedstock testing, and performing process evaluations. In addition, a significant part of the remaining test effort at Tidd will focus on establishing and validating the design basis for future commercial PFBC plants. Items being considered to improve sorbent utilization include better sorbent distribution in the bed, optimization of sorbent sizing, ash recycling or recirculation, and selection of sorbent.

  7. PFBC design and arrangement improvements due to application of ceramic tube filters

    SciTech Connect

    Weitzel, P.S.; McDonald, D.K.

    1999-07-01

    The favorable operating performance of two large ceramic tube filters at the 71 MW{sub e} Wakamatsu PFBC unit in Japan builds confidence toward commercial application of PFBC. The Asahi Glass Company, Ltd., ceramic tube filters offer unique improvements to the process design and plant arrangement. Several components in the current + first generation PFBC plant design can be eliminated or their function can be incorporated into the function of the ceramic filter vessels leading to operational and economic advantages. The reduction of combustor vessel size, quantity of ash removal points, ash handling systems, and elimination of cyclones and cyclone ash coolers will provide significant economic and reliability improvements. The plant footprint and building volume are reduced and the access and cooling time for maintenance can be improved. Although hot gas piping protection complications and concerns must be addressed by double wall jacket systems, the majority of systems maintain the principle of cold high-pressure boundary separate from the hot temperature boundary. The impact on performance, operation and maintenance expense and cost of electricity are presented.

  8. Developing technologies for high volume land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.E.

    1995-12-31

    Dry alkaline flue gas desulfurization (FGD) by-products, including Tidd PFBC bed and cyclone ash are being evaluated for beneficial uses via land application for agriculture, mine spoil reclamation, soil stabilization, and road embankment construction in a 5 year, $4.4 million research program based in Ohio. The beneficial use for agriculture and mine reclamation as a soil amendment material is primarily due to its high acid neutralizing capacity and gypsum content. Concentrations of leachate RCRA heavy metals approached primary drinking water quality standards and are well within the criteria for classification as non-toxic fly ash according to Ohio EPA policy. Characterization tests of compressive strength, permeability, and compressibility indicate the by-products are practical materials for use in high volume engineered fills or embankments, base courses, and for soil reinforcement. Large field demonstrations of technical, economic, and environmental feasibility have been completed using Tidd PFBC ash: (1) to reclaim abandoned coal mineland spoil, (2) as an agricultural lime substitute, (3) in stabilized base construction for a cattle feedlot, and (4) for reconstruction of two state highway embankments. An important factor to understand the behavior of this Tidd PFBC residue is that dolomite was the sorbent.

  9. Advances in exposure and toxicity assessment of particulate matter: An overview of presentations at the 2009 Toxicology and Risk Assessment Conference

    SciTech Connect

    Gunasekar, Palur G.; Stanek, Lindsay W.

    2011-07-15

    The 2009 Toxicology and Risk Assessment Conference (TRAC) session on 'Advances in Exposure and Toxicity Assessment of Particulate Matter' was held in April 2009 in West Chester, OH. The goal of this session was to bring together toxicology, geology and risk assessment experts from the Department of Defense and academia to examine issues in exposure assessment and report on recent epidemiological findings of health effects associated with particulate matter (PM) exposure. Important aspects of PM exposure research are to detect and monitor low levels of PM with various chemical compositions and to assess the health risks associated with these exposures. As part of the overall theme, some presenters discussed collection methods for sand and dust from Iraqi and Afghanistan regions, health issues among deployed personnel, and future directions for risk assessment research among these populations. The remaining speakers focused on the toxicity of ultrafine PM and the characterization of aerosols generated during ballistic impacts of tungsten heavy alloys.

  10. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  11. A Review of Advancements in Particulate Matter Sampling and Analysis and its Application to Identifying Source Impacts at Receptor Locations

    EPA Science Inventory

    Time-integrated (typically 24-hr) filter-based methods (historical methods) form the underpinning of our understanding of the fate, impact of source emissions at receptor locations (source impacts), and potential health and welfare effects of particulate matter (PM) in air. Over...

  12. Particulate Matter

    MedlinePlus

    ... Technology Laws & Regulations About EPA Contact Us Particulate Matter (PM) You are here: EPA Home Air & Radiation Six Common Pollutants Particulate Matter Announcements March 13, 2013 - An updated “Strategies ...

  13. In-Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/Liquid Interface: Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Sen, S.; Juretzko, F.; Stefanescu, D. M.; Dhindaw, B. K.; Curreri, P. A.

    1999-01-01

    Results are reported of directional solidification experiments on particulate agglomerate pushing and engulfment by a planar solid/liquid (s/1) interface. These experiments were conducted on the Space Shuttle Columbia during the United States Microgravity Payload 4 (USMP-4) Mission. It was found that the pushing to engulfment transition velocity, V(sub ct),, for agglomerates depends not only on their effective size but also their orientation with respect to the s/l interface. The analytical model for predicting V(sub cr) of a single particle was subsequently enhanced to predict V(sub cr) of the agglomerates by considering their shape factor and orientation.

  14. In Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/Liquid Interface: Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Sen, S.; Juretzko, F.; Stafanescu, D. M.; Dhindaw, B. K.; Curreri, P. A.

    1999-01-01

    Results are reported of directional solidification experiments on particulate agglomerate pushing and engulfment by a planar solid/liquid (s/l) interface. These experiments were conducted on the Space Shuttle Columbia during the United States Microgravity Payload 4 (USMP-4) Mission. It was found that the pushing to engulfment transition velocity, V(sub cr) for agglomerates depends not only on their effective size but also their orientation with respect to the s,1 interface. The analytical model for predicting V(sub cr) of a single particle was subsequently enhanced to predict V(sub cr) of the agglomerates by considering their shape factor and orientation.

  15. Impact of fuel properties on advanced power systems

    SciTech Connect

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G.

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  16. A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC (pressurized fluidized-bed combustion)

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1990-01-01

    Alkali vapors (Na and K) in the hot flue gas from the pressurized fluidized-bed combustion (PFBC) of coal could cause corrosion problems with the gas turbine blades. In a laboratory-scale PFBC test with Beulah lignite, a fixed granular bed of activated bauxite sorbent was used to demonstrate its capability for measuring and controlling alkali vapors in the PFBC flue gas. The Beulah lignite was combusted in a bed of Tymochtee dolomite at bed temperatures ranging from 850 to 875{degrees}C and a system pressure of 9.2 atm absolute. The time-averaged concentration of sodium vapor in the PFBC flue gas was determined from the analysis of two identical beds of activated bauxite and found to be 1.42 and 1.50 ppmW. The potassium vapor concentration was determined to be 0.10 ppmW. The sodium material balance showed that only 0.24% of the total sodium in the lignite was released as vapor species in the PFBC flue gas. This results in an average of 1.56 ppmW alkali vapors in the PFBC flue gas. This average is more than 1.5 orders of magnitude greater than the currently suggested alkali specification limit of 0.024 ppm for an industrial gas turbine. The adsorption data obtained with the activated bauxite beds were also analyzed mathematically by use of a LUB (length of unused bed)/equilibrium section concept. Analytical results showed that the length of the bed, L{sub o} in centimeters, relates to the break through time, {theta}{sub b} in hours, for the alkali vapor to break through the bed as follows: L{sub o} = 33.02 + 1.99 {theta}{sub b}. This formula provides useful information for the engineering design of fixed-bed activated bauxite sorbers for the measurement and control of alkali vapors in PFBC flue gas. 26 refs., 4 figs., 4 tabs.

  17. Performance of heat exchanger materials in Curtiss-Wright PFBC tests

    SciTech Connect

    Not Available

    1983-12-01

    Integration of a pressurized fluidized bed (PFB) coal combustor with a gas turbine/steam turbine combined cycle is an economic and environmentally attractive alternative to pulverized coal steam boilers and flue gas desulfurization for utility power plants burning high sulfur coal. A process by which a coal-fired, air-cooled PFBC may be integrated into a combined cycle system is presented. The process can provide a coal pile-to-busbar efficiency of approximately 40%. About one-third of the air from the gas turbine's compressor is used to fluidize the bed and support combustion, and the remaining air is indirectly heated - essentially to bed temperature - by flowing through an in-bed tubular heat exchanger. In this system, 60% of the total plant power is produced by the gas turbine and 40% is produced by the steam system.

  18. Land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Dick, W.A.; Wolfe, W.

    1993-06-01

    Dry alkaline flue gas desulfurization by-products (dry lime and limestone FGD scrubber ashes) including the American Electric Power (AEP) Tidd PFBC bed and cyclone ash, are being evaluated for beneficial uses via land application for agriculture, mine reclamation, and soil stabilization in a 5 year study that began December, 1990. A 1989 Battelle Memorial Institute report had recommended that the highest priority in stimulating reuse of FGD by-products was the sponsoring of in-field research of coal combustion products generated from high sulfur midwestern coals to (a) better understand and quantify the leach rate, fate and transport of sulfates and trace metals and (b) demonstrate the level of protection necessary to build public acceptance of land-based reuses.

  19. PFBC freeboard firing under part load conditions development of a CFD based design tool

    SciTech Connect

    Edens, T.; Werther, J.; Hartge, E.U.; Jansson, S.A.; Bergqvist, S.

    1999-07-01

    ABB is currently building a second generation Pressurized Fluidized Bed Combined-Cycle (PFBC) plant in Cottbus, Germany. It will generate heat and electricity for the city of Cottbus, burning locally mined brown coal. In this plant, which is based on ABB's P200 PFBC module, a freeboard firing system operated with light oil will for the first time ever be used to maintain a high inlet temperature to the GT35P machine also at part load. This promotes oxidation of CO and makes selective non-catalytic NO{sub x} reduction effective also in this load range. In the present work a modeling tool is being developed in support of the design of the freeboard firing system and to help evaluate the performance of this system during operation. Another purpose of this tool is to check the sensitivity of the temperature distribution in the freeboard against a maldistribution of the fuel. For these purposes a model based on the full set of mass, momentum and energy balances was established. A commercially available computational fluid dynamics (CFD) program package was used to implement and solve the model. For the solution a stepwise approach has been chosen: in a first step the penetration of the oil jet into the freeboard, its dispersion, gasification and combustion has been modeled for a single jet. For these calculations a locally very fine grid was used. In a second step the freeboard with multiple oil jets will be described. In this latter step it will be necessary to reduce the spatial resolution significantly due to the limitation of computational resources. In the present paper the approach will be described in detail and some first computational results concerning the combustion of an oil spray will be presented.

  20. Identification of the Valence and Coordination Environment of the Particulate Methane Monooxygenase Copper Centers by Advanced EPR Characterization

    PubMed Central

    2015-01-01

    Particulate methane monooxygenase (pMMO) catalyzes the oxidation of methane to methanol in methanotrophic bacteria. As a copper-containing enzyme, pMMO has been investigated extensively by electron paramagnetic resonance (EPR) spectroscopy, but the presence of multiple copper centers has precluded correlation of EPR signals with the crystallographically identified monocopper and dicopper centers. A soluble recombinant fragment of the pmoB subunit of pMMO, spmoB, like pMMO itself, contains two distinct copper centers and exhibits methane oxidation activity. The spmoB protein, spmoB variants designed to disrupt one or the other or both copper centers, as well as native pMMO have been investigated by EPR, ENDOR, and ESEEM spectroscopies in combination with metal content analysis. The data are remarkably similar for spmoB and pMMO, validating the use of spmoB as a model system. The results indicate that one EPR-active Cu(II) ion is present per pMMO and that it is associated with the active-site dicopper center in the form of a valence localized Cu(I)Cu(II) pair; the Cu(II), however, is scrambled between the two locations within the dicopper site. The monocopper site observed in the crystal structures of pMMO can be assigned as Cu(I). 14N ENDOR and ESEEM data are most consistent with one of these dicopper-site signals involving coordination of the Cu(II) ion by residues His137 and His139, the other with Cu(II) coordinated by His33 and the N-terminal amino group. 1H ENDOR measurements indicate there is no aqua (HxO) ligand bound to the Cu(II), either terminally or as a bridge to Cu(I). PMID:25059917

  1. Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization.

    PubMed

    Culpepper, Megen A; Cutsail, George E; Gunderson, William A; Hoffman, Brian M; Rosenzweig, Amy C

    2014-08-20

    Particulate methane monooxygenase (pMMO) catalyzes the oxidation of methane to methanol in methanotrophic bacteria. As a copper-containing enzyme, pMMO has been investigated extensively by electron paramagnetic resonance (EPR) spectroscopy, but the presence of multiple copper centers has precluded correlation of EPR signals with the crystallographically identified monocopper and dicopper centers. A soluble recombinant fragment of the pmoB subunit of pMMO, spmoB, like pMMO itself, contains two distinct copper centers and exhibits methane oxidation activity. The spmoB protein, spmoB variants designed to disrupt one or the other or both copper centers, as well as native pMMO have been investigated by EPR, ENDOR, and ESEEM spectroscopies in combination with metal content analysis. The data are remarkably similar for spmoB and pMMO, validating the use of spmoB as a model system. The results indicate that one EPR-active Cu(II) ion is present per pMMO and that it is associated with the active-site dicopper center in the form of a valence localized Cu(I)Cu(II) pair; the Cu(II), however, is scrambled between the two locations within the dicopper site. The monocopper site observed in the crystal structures of pMMO can be assigned as Cu(I). (14)N ENDOR and ESEEM data are most consistent with one of these dicopper-site signals involving coordination of the Cu(II) ion by residues His137 and His139, the other with Cu(II) coordinated by His33 and the N-terminal amino group. (1)H ENDOR measurements indicate there is no aqua (HxO) ligand bound to the Cu(II), either terminally or as a bridge to Cu(I). PMID:25059917

  2. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect

    Dennis, R.A.

    1995-12-01

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  3. Developing technologies for high-volume land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.

    1995-04-01

    Dry alkaline flue gas desulfurization (FGD) by-products, including Tidd PFBC bed and cyclone ash are being evaluated for beneficial uses via land application for agriculture, mine spoil reclamation, soil stabilization, and road embankment construction in a 5 year, $4.4 million research program based in Ohio. The beneficial use for agriculture and mine reclamation as a soil amendment material is primarily due to its high acid neutralizing capacity and gypsum content. Concentrations of leachate RCRA heavy metals approached primary drinking water quality standards and are well within the criteria for classification as non-toxic fly ash according to Ohio EPA policy. Characterization tests of compressive strength, permeability, and compressibility indicate the by-products are practical materials for use in high volume engineered fills or embankments, base courses, and for soil reinforcement. Large field demonstrations of technical, economic, and environmental feasibility have been completed using Tidd PFBC ash (1) to reclaim abandoned coal mineland spoil, (2) as an agricultural lime substitute, (3) in stabilized base construction for a cattle feedlot, and (4) for reconstruction of two state highway embankments. An important factor to understand the behavior of this Tidd PFBC residue is that dolomite was the sorbent.

  4. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced PM and NO x emission control technologies

    NASA Astrophysics Data System (ADS)

    Biswas, Subhasis; Hu, Shaohua; Verma, Vishal; Herner, Jorn D.; Robertson, William H.; Ayala, Alberto; Sioutas, Constantinos

    Emission control technologies designed to meet the 2007 and 2010 emission standards for heavy-duty diesel vehicles (HDDV) remove effectively the non-volatile fraction of particles, but are comparatively less efficient at controlling the semi-volatile components. A collaborative study between the California Air Resources Board (CARB) and the University of Southern California was initiated to investigate the physicochemical and toxicological characteristics of the semi-volatile and non-volatile particulate matter (PM) fractions from HDDV emissions. This paper reports the physical properties, including size distribution, volatility (in terms of number and mass), surface diameter, and agglomeration of particles emitted from HDDV retrofitted with advanced emission control devices. Four vehicles in combination with six after-treatment devices (V-SCRT ®, Z-SCRT ®, CRT ®, DPX, Hybrid-CCRT ®, EPF) were tested under three driving cycles: steady state (cruise), transient (urban dynamometer driving schedule, UDDS), and idle. An HDDV without any control device is served as the baseline vehicle. Substantial reduction of PM mass emissions (>90%) was accomplished for the HDDV operating with advanced emission control technologies. This reduction was not observed for particle number concentrations under cruise conditions, with the exceptions of the Hybrid-CCRT ® and EPF vehicles, which were efficient in controlling both—mass and number emissions. In general, significant nucleation mode particles (<50 nm) were formed during cruise cycles in comparison with the UDDS cycles, which emit higher PM mass in the accumulation mode. The nucleation mode particles (<50 nm) were mainly internally mixed, and evaporated considerably between 150 and 230 °C. Compared to the baseline vehicle, particles from vehicles with controls (except of the Hybrid-CCRT ®) had a higher mass specific surface area.

  5. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    1998-09-01

    This is the thirteenth quarterly report describing the activities performed under Contract No. DE-AC21-94MC31160. The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters and their components. APF operations have also been limited by the strength and durability of the ceramic materials that have served as barrier filters for the capture of entrained HGCU ashes. Task 2 concerns testing and failure analyses of ceramic filter elements currently used in operating APFs and the characterization and evaluation of new ceramic materials. Task I research activities during the past quarter included characterizations of additional ash samples from Pressurized Fluidized-Bed Combustion (PFBC) facilities to the HGCU data base. Task I plans for the next quarter include characterization of samples collected during a site visit on January 20 to the Department of Energy / Southern Company Services Power Systems Development Facility (PSDF). Further work on the HGCU data base is also planned. Task 2 work during the past quarter included creep testing of a Coors P- I OOA- I specimen machined from Candle FC- 007 after 1166 hours in-service at the Karhula Pressurized Circulating Fluid Bed (PCFB) facility. Samples are currently in preparation for microstructural evaluations of Coors P-IOOA-I.Sixteen cordierite rings manufactured by Specific Surfaces were received for testing. Three of the specimens were exposed to the PFBC environment at the PSDF. These specimens are currently being machined for testing.

  6. Land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.

    1993-09-01

    Dry alkaline flue gas desulfurization by-products (dry lime and limestone FGD scrubber ashes) including the American Electric Power (AEP) Tidd PFBC bed and cyclone ash, are being evaluated for beneficial uses via land application for agriculture, mine reclamation, and soil stabilization in a 5 year study that began December, 1990. A 1989 Battelle Memorial Institute report had recommended that the highest priority in stimulating reuse of FGD by-products was the sponsoring of in-field research of coal combustion products generated from high sulfur midwestern coals to (a) better understand and quantify the leach rate, fate and transport of sulfates and trace metals and (b) demonstrate the level of protection necessary to build public acceptance of land-based reuses (1). The specific objectives of the demonstration project are as follows: To characterize the material generated from dry FGD processes; to demonstrate the utilization of dry FGD by-products as an soil amendment material on agricultural lands and on abandoned and active surface coal mines in Ohio; to demonstrate the use of dry FGD by-product as an engineering material for soil stabilization; to determine the quantities of dry FGD material than can be utilized in each of these applications; to determine the environmental and economic impact of utilizing the material.

  7. PFBC HGCU Test Facility. Second quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1992-07-01

    This is the eleventh technical progress report submitted to the Department of Energy (DOE) in connection with the Cooperative Agreement between DOE and Ohio Power company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Second Quarter of CY 1992. Activities included: The Tidd combustor internals were modified to connect the hot gas system for slipstream operation; Various pre-operational activities were completed, including pneumatic leak testing of the HGCU system, operation of the closed cycle cooling water system, operation of the back pulse compressor and air preheater, and checkout of the back pulse skid. Initial operation of the system using the bypass cyclone occurred during May 21--23, 1992; On May 23, 1992, an expansion joint ruptured, forcing the unit to be shut down. The failure was later determined to be due to stress corrosion. Following the expansion joint failure, a complete engineering review of the system was undertaken and is continuing; Contract Modification No. 6 was issued to Westinghouse during this quarter. This modification is for APF surveillance testing services; A purchase order was issued to Battelle for ash sampling hardware and testing services.

  8. Tidd PFBC Demonstration Project: Quarterly report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-07-01

    This is the 25th Technical Progress Report submitted to the Department of Energy in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from April 1, 1993 to June 30, 1993. Major activities during this period involve: (1) The unit has been out of service since early February due to the failure of the gas turbine. The gas turbine was repaired during this quarter and unit was started on June 29, 1993. (2) The unit was operated for a total of 32 hours (including gas turbine air prewarming). There were three gas turbine starts, two bed preheater starts, and one operating period with coal fire. The peak gross output of 13 MWH was achieved for the period of 2200 to 2300 hours on June 30, 1993. (3) During the quarter, total gross generation was 75 MWH, and coal consumption was 107 tons. (4) New individual ash lines from cyclones to the economizer were installed. (5) New sparge ducts were installed along with sparge duct end fluidization piping and valves. (6) Expansion joint heaters and insulation for hot gas clean-up system were installed. Major items planned for the next period include: installation of SO{sub 2} analyzer equipment, and continuation with the operation and testing of the unit after all the current GT problems are resolved.

  9. PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995

    SciTech Connect

    1995-10-01

    This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

  10. Tidd PFBC Demonstration Project fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the 23rd technical progress report submitted to the Department of Energy in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from October 1, 1992 to December 31, 1992. Major activities during this period involve: (1) The unit was operated for a total of 714 hours (including gas turbine air prewarming). There were seven gas turbine starts, seven bed preheater starts, and seven operating periods with coal fire. The peak gross output of 64 MWH was achieved for the period of 1000 to 1100 hours on November 23, 1992. The longest coal fire was 285 hours beginning at 1211 hours on November 25, 1992. (2) Total gross generation was 24,643, and coal consumption was 11,900 tons. (3) The hot gas clean up system was commissioned. (4) Active end fluidization system to address sparge duct cracking and deformation problem was jointly initiated by ABB carbon, B&W and AEPSC. (5) All testing continued using Plum Run dolomite. This approach was taken as a conservative means to avoid sintering and unit trips which were encountered during the previous two start-ups in September using limestone and (6) monitoring of solid, liquid and gaseous waste streams, as detailed in the operations phase monitoring requirements in the EMP, were performed.

  11. CRADA opportunities in removal of particulates from hot-gas streams by filtration

    SciTech Connect

    Smith, D.H.

    1995-06-01

    Our analyses of samples and operating data from the Pressurized Fluidized Bed Combustion (PFBC), cyclone, and filtration units of the Tidd Clean Coal demonstration facility show that calcined dolomitic sorbent reacted with SO{sub 2} (and O{sub 2}) to form Sulfates (CaSO{sub 4} and CaMgn [SO{sub 4}]n+1) not only in the PFBC bed, but also in the filtration vessel. Analyses of limited data from the journal literature suggest that the filter-vessel reactions may have produced sulfate {open_quotes}necks,{close_quotes} which bonded the particles together, thus substantially increasing the critical angle of repose and shear tensile strengths of the filtered powders. This proposed mechanism rationalizes the {open_quotes}bridging{close_quotes} and other particle-accumulation problems that caused filter breakage. Engineering services potentially available to resolve these problems include elucidation and modeling of ex-situ and in-situ filter-vessel chemistry, measurement and modeling of particulate materials properties, and measurement and modeling of cleaning back-pulse aerodynamics and cleaning efficiencies.

  12. Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect

    Bonk, D.L.; McDaniel, H.M.; DeLallo, M.R. Jr.; Zaharchuk, R.

    1995-04-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach is the atmospheric fluidized bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts.

  13. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  14. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.

  15. Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect

    Bonk, D.L.; McDaniel, H.M.; DeLallo, M.R. Jr.; Zaharchuk, R.

    1995-07-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  16. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Rodgers, L.W.

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  17. Particulate erosion mechanisms

    NASA Technical Reports Server (NTRS)

    Veerabhadrarao, P.; Buckley, D. H.

    1983-01-01

    Particulate damage and erosion of ductile metals are today plaguing design and field engineers in diverse fields of engineering and technology. It was found that too many models and theories were proposed leading to much speculation from debris analysis and failure mechanism postulations. Most theories of solid particle erosion are based on material removal models which do not fully represent the actual physical processes of material removal. The various mechanisms proposed thus far are: melting, low-cycle fatigue, extrusion, delamination, shear localization, adhesive material transfer, etc. The experimental data on different materials highlighting the observed failure modes of the deformation and cutting wear processes using optical and scanning electron microscopy are presented. The most important mechanisms proved from the experimental observations of the specimens exposed to both spherical and angular particles are addressed, and the validity of the earlier theories discussed. Both the initial stages of damage and advanced stages of erosion were studied to gain a fundamental understanding of the process.

  18. South African Particulates

    Atmospheric Science Data Center

    2013-04-16

    ... title:  Airborne Particulates over Southern Africa     View Larger Image ... of airborne particulates, or aerosols, over Southern Africa during the period August 14 - September 29, 2000. Low particle ...

  19. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    SciTech Connect

    Witte, Travis

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  20. Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models

    EPA Science Inventory

    The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...

  1. Diesel particulate control

    SciTech Connect

    Bertelsen, F.I. )

    1988-01-01

    Diesel particulates, because of their chemical composition and extremely small size, have raised health and welfare issues. Health experts have expressed concern that they contribute to or aggravate chronic lung diseases such as asthma, bronchitis and emphysema, and there is the lingering issue about the potential cancer risk from exposure to diesel particulate. Diesel particulates impair visibility, soil buildings, contribute to structural damage through corrosion and give off a pungent odor. Diesel trucks, buses and cars together are such a significant and growing source of particulate emissions. Such vehicles emit 30 to 70 times more particulate matter than gasoline vehicles equipped with catalytic converters. Diesel engines currently power the majority of larger trucks and buses. EPA predicted that, if left uncontrolled, diesel particulate from motor vehicles would increase significantly. Diesel particulate emissions from motor vehicles are particularly troublesome because they frequently are emitted directly into the breathing zone where we work and recreate. The U.S. Congress recognized the risks posed by diesel particulate and as part of the 1977 Clean Air Act Amendments established specific, technology-forcing requirements for controlling these emissions. The U.S. Environmental Protection Agency (EPA) in 1980 established particulate standards for automobiles and light trucks and in 1985, heavy trucks and buses. California, concerned that EPA standards would not adequately protect its citizens, adopted its own set of standards for passenger cars and light trucks. This paper discusses emerging technologies proposed to address the problem.

  2. Pitch based foam with particulate

    DOEpatents

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  3. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  4. CONTROLLING EMISSIONS OF PARTICULATES

    EPA Science Inventory

    The report gives a semi-technical overview of the contribution of particulate matter to the overall U.S. air pollution problem. It also discusses contributions of the Particulate Technology Branch of EPA's Industrial Environmental Research Laboratory at Research Triangle Park, N....

  5. Airborne particulate discriminator

    DOEpatents

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  6. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  7. Fluidizing device for solid particulates

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  8. Diesel particulate emissions

    SciTech Connect

    Williams, P.T.; Abbass, M.K.; Andrews, G.E.; Bartle, K.D.

    1989-01-01

    The relationship between diesel fuel composition and that of the solvent organic fraction of diesel particulates was investigated for an old DI Petter engine and a modern DI Perkins engine. Polycyclic aromatic compounds (PAC) were identified using high-resolution capillary column chromatography with a parallel triple detector system for polycyclic aromatic hydrocarbons (PAH), nitrogen-containing PAH, and sulphur-containing PAH. Identification of the PAC using retention indexes was confirmed using an ion trap detector, which was also used to quantify the low-concentration (<1 ppm) benzo(a)pyrene. It was conclusively shown for both engines that the bulk of the particulate solvent organic fraction, including the PAH fraction, was unburned fuel. However, there was some evidence that high molecular weight five-ring PAH may have an in-cylinder formation contribution, and it is postulated that this could be due to pyrolysis of lower molecular weight unburned fuel PAH. The contribution of lubricating oil to the particulate PAC is discussed, and evidence is presented that shows the unburned fuel PAC accumulates in the lubricating oil and thus contributes to the particulate PAC via the large lubricating oil component of the particulate PAC.

  9. Void/particulate detector

    DOEpatents

    Claytor, Thomas N.; Karplus, Henry B.

    1985-01-01

    Voids and particulates are detected in a flowing stream of fluid contained in a pipe by a detector which includes three transducers spaced about the pipe. A first transducer at a first location on the pipe transmits an ultrasonic signal into the stream. A second transducer detects the through-transmission of the signal at a second location and a third transducer at a third location upstream from the first location detects the back-scattering of the signal from any voids or particulates. To differentiate between voids and particulates a fourth transducer is positioned at a fourth location which is also upstream from the first location. The back-scattered signals are normalized with the through-transmission signal to minimize temperature fluctuations.

  10. Microwave regenerated particulate trap

    SciTech Connect

    McDonald, A.C. Jr.; Yonushonis, T.M.; Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I.

    1997-12-31

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  11. PARTICULATE EMISSION CONTROL

    EPA Science Inventory

    Particle or particulate matter is defined as any finely divided solid or liquid material, other than uncombined water, emitted to the ambient air as measured by applicable reference methods, or an equivalent or alternative method, or by a test method specified in 40CFR50.

  12. Fluidizing device for solid particulates

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1984-06-27

    A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  13. Fluidizing device for solid particulates

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1986-01-01

    A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  14. PFBC system modularity

    SciTech Connect

    Kinsinger, F.L. . Fossil Power Generation Div.)

    1990-01-01

    In 1989 a factory-assembled 70 MWe boiler was transported 750 miles to its final location at a plant site in Ohio. The boiler, its gas clean-up system, and top- support steel were contained within a pressure vessel and shipped as one unit by barge. Components of that assembly originated at various places throughout the eastern United States. In this paper, the relationship between the logistics of moving those various components and their design and fabrication is described.

  15. Void/particulate detector

    DOEpatents

    Claytor, T.N.; Karplus, H.B.

    1983-09-26

    Apparatus for detecting voids and particulates in a flowing stream of fluid contained in a pipe may comprise: (a) a transducer for transmitting an ultrasonic signal into the stream, coupled to the pipe at a first location; (b) a second transducer for detecting the through-transmission of said signal, coupled to the pipe at a second location; (c) a third transducer for detecting the back-scattering of said signal, coupled to the pipe at a third location, said third location being upstream from said first location; (d) circuit means for normalizing the back-scattered signal from said third transducer to the through-transmitted signal from said second transducer; which normalized signal provides a measure of the voids and particulates flowing past said first location.

  16. Rigid particulate matter sensor

    DOEpatents

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  17. Regenerable particulate filter

    DOEpatents

    Stuecker, John N.; Cesarano, III, Joseph; Miller, James E.

    2009-05-05

    A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

  18. Eighth particulate control symposium

    SciTech Connect

    Not Available

    1990-11-01

    The Eighth Symposium on the Transfer and Utilization of Particulate Control Technology was held in San Diego, California, March 20 through 23, 1990. The symposium proceedings contain 80 papers presented by representatives of utility companies, equipment and process suppliers, university representatives, research and development companies, EPA and other federal and state agency representatives, and EPRI staff members. Electrostatic precipitators and fabric filters were the major topics discussed during the symposium. Papers from this conference are organized by session in two volumes. This Volume (2) contains papers presented in the sessions on: low ratio baghouse O M experience, pulse-jet baghouse experience, particulate control for AFBCs, particulate control for dry SO2 control processes, baghouse design and performance, fundamental baghouse studies, high temperature filtration, and control of emissions from RDF incinerators. Both fabric filters and ESPs are discussed in the AFBC and dry SO2 control papers. The high temperature filtration papers deal with ceramic barrier and granular bed filters. The rest of the papers in Volume 2 are concerned with fabric filters on pulverized-coal-fired boilers. Individual projects are processed separately for the data bases.

  19. Diesel particulate emissions

    SciTech Connect

    Abbass, M.K.; Andrews, G.E.; Williams, P.T.; Bartle, K.D.; Davies, I.L.; Tanui, L.K.

    1988-01-01

    The objective was to investigate combustion generated PAH in Diesel engine particulate emissions using a pure single component fuel, hexadecane, in a Perkins 4-236 engine in a single cylinder format. The results were compared with those using a conventional Diesel fuel and with the particulates collected by motoring the engine. To minimise any influence of contamination from the PAH in used lubricating oil, all the tests were carried out with fresh PAH free lubricating oil. The hexadecane particulates were found to contain 6-25% of the PAH and 5-9% of the n-alkanes for Diesel and the motoring tests were found to give 10% of the PAH and 50-200% of the n-alkane for hexadecane. It was concluded that there was an internal source of n-alkane and PAH in the engine and exhaust system, probably absorbed in engine deposits. It was therefore not possible to conclude that the PAH with hexadecane was pyrosynthesised.

  20. Advanced turbine design for coal-fueled engines

    NASA Astrophysics Data System (ADS)

    Bornstein, N. S.

    1992-07-01

    The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500 F (815 C), relatively innocuous salts. In this study it is found that at 1650 F (900 C) and above, calcium sulfate becomes an aggressive corrodent.

  1. Particulate contamination in ampoules.

    PubMed

    Alexander, D M; Veltman, A M

    1985-01-01

    The particulate contamination in 19 formulations of solutions in ampoules supplied by eight South African manufacturers, thirty-three batches in all, was analysed using a HIAC PC 320 light blockage particle analyser linked to a CMB 60 sensor. Results showed that the level of contamination was generally low and that, where comparisons could be made, manufacturers both of the ampoules and the solutions maintained similarly high standards. Problems in this field appeared to be related to the formulation or the quality of the raw material. PMID:2858528

  2. Westinghouse filter update

    SciTech Connect

    Bruck, G.J.; Smeltzer, E.E.; Newby, R.A.; Bachovchin, D.M.

    1993-06-01

    The Department of Energy, Morgantown Energy Technology Center (DOE/METC), with Westinghouse are developing high temperature particulate filters for application in integrated, coal gasification combined cycle (IGCC) and pressurized fluidized bed combustion (PFBC) power generation systems. Development of these IGCC and PFBC advanced power cycles using subpilot and pilot scale facilities include the integrated operation of a high temperature particulate filter. This testing provides the basis for evaluating filter design, performance and operation characteristics in the actual process gas environment. This operating data is essential for the specification of components and materials and successful scaleup of the filter systems for demonstration and commercial application.

  3. Topping combustor application to the Wilsonville Advanced Power Systems Development Facility

    SciTech Connect

    Domeracki, W.F.; Bachovchin, D.M.; Crumm, C.J.; Morton, F.C.

    1997-12-31

    The Advanced Power Systems Development Facility (PSDF) located at Wilsonville Alabama is a Department of Energy (DOE) and Industry cost-shared facility which will be operated by Southern Company Services. This facility is designed to provide long-term hot gas cleanup and process testing for an Advanced Pressurized Fluidized Bed Combustion (PFBC) and Gasification System. It incorporates carbonization with a circulating fluidized bed and topping combustion system. The plant will produce 4 MW of electricity. It is being designed by Foster Wheeler and is scheduled to commence operation in 1998. As in any new technology or project there is usually a number of critical components whose successful development form the foundation for the overall success of the concept. In the development of advanced (PFBC) power generation plants, one of those critical components is the topping combustion system. This paper presents the criteria for the Westinghouse developed Topping Combustor that will fire a coal derived high temperature, ammonia-rich syngas into a high temperature vitiated air stream to drive an Allison Model 501-KM gas turbine.

  4. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect

    Spencer, D.F.

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  5. Apparatus for particulate matter analysis

    DOEpatents

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  6. PARTICULATE CONTROL FOR FUGITIVE DUST

    EPA Science Inventory

    The report gives results of a study of particulate control for fugitive dust. Study results indicate that many Air Quality Control Regions (AQCRs) do not meet ambient air standards for particulates. In a majority of these ACQRs, the emissions from fugitive dust sources are higher...

  7. Diesel particulate trap mounting system

    SciTech Connect

    Miller, P.R.

    1992-01-21

    This patent describes a particulate trap assembly. It comprises an outer housing having a gas inlet and a gas outlet and a passageway interconnecting the gas inlet and the gas outlet; a particulate trapping means located within the passageway of the housing for trapping particles entrained in gas passing through the passageway, the passageway and the particulate trapping means having circumferential extents which fall within relatively large predetermined manufacturing tolerances respectively; tourniquet means surrounding the particulate trapping means for applying a predetermined radial pressure to the trapping means which is substantially independent of the circumferential extents of the passageway and the including an encircling element having a selectably adjustable circumferential extent for permitting the tourniquet means to conform to the circumferential extent of the particulate trapping means when mounted in compressive relationship about the particulate trapping means, and mounting means for retaining the particulate trapping means radially and axially within the passageway in a manner which imposes no further substantial radial compressive force to the particulate trapping means.

  8. Cardiovascular Effects of Concentrated Ambient Fine and Ultrafine Particulate Matter Exposure in Healthy Older Volunteers

    EPA Science Inventory

    Rationale: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Advanced age is among the factors identified as conferring susceptibility to PM inhalation. In order to characteri...

  9. Advanced hot gas filter development. Topical report, May 1995--December 1996

    SciTech Connect

    Hurley, J.L.; June, M.R.

    1997-12-31

    Porous iron aluminide was evaluated for use as a particulate filter in pressurized fluid-bed combustion (PFBC) and integrated gasification combined cycles (IGCC) with a short term test. Three alloy compositions were tested: Fe{sub 3}Al 5% chromium (FAL), Fe{sub 3}Al 2% chromium (FAS) and FeAl 0% chromium. The test conditions simulated air blown (Tampa Electric) and oxygen blown (Sierra Pacific) gasifiers with one test gas composition. Four test conditions were used with hydrogen sulfide levels varying from 783 ppm to 78,3000 ppm at 1 atmosphere along with temperatures ranging between 925 F and 1200 F. The iron aluminide was found capable of withstanding the proposed operating conditions and capable of giving years of service. The production method and preferred composition were established as seamless cylinders of Fe{sub 3}Al 2% chromium with a preoxidation of seven hours at 1472 F.

  10. Spacecraft particulate sizing spectrometer

    NASA Technical Reports Server (NTRS)

    Miranda, Henry A., Jr.

    1992-01-01

    An evaluation prototype device is described, together with conclusions and several recommendations for follow-on flight hardware. The device detects individual particles crossing an external sensing zone, and produces a histogram displaying the size distribution of particles sensed, over the nominal range of 5 to 50 microns. The output is totally independent of the particle refractive index, and is also largely unaffected by particle shape. The reported diameters are in terms of the equivalent sphere, as judged by the scattered light intercepted by the receiving channels, which develop signals whenever a particle crosses the beam of illumination in the sensing zone. Supporting evidence for the latter assertion is discussed on the basis of experimental test data for non-spherical particulates. Also included is a technical appendix which presents theoretical arguments that provide a firm foundation for this assertion.

  11. Instability and Turbulence of Propagating Particulate Flows

    NASA Astrophysics Data System (ADS)

    Balachandar, S.

    2015-11-01

    Propagation of particle-laden fluid into an ambient is a common fluid mechanical process that can be observed in many industrial and environmental applications. Sedimentation fronts, volcanic plumes, dust storms, powder snow avalanches, submarine turbidity currents, explosive powder dispersal and supernovae offer fascinating examples of advancing particulate fronts. The propagating interface can undergo Rayleigh-Taylor, Kelvin-Helmholtz and double-diffusive instabilities and result in the formation of lobes and clefts, spikes and bubbles, and particulate fingers. The interplay between suspended particles and turbulence is often complex due to interaction of competing mechanisms. In problems such as turbidity currents, turbulence controls sediment concentration through resuspension and settling of particles at the bed. Also, turbulent entrainment at the propagating front is observed to be influenced by the sediments. Stable stratification due to suspended sediment concentration can damp and even kill turbulence. This complex turbulence-sediment interaction offers possible explanation for massive sediment deposits observed in nature. The talk will also address challenges and recent advancements in the modeling and simulation of such particle-laden turbulent flows.

  12. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  13. A Course in Particulate Processes.

    ERIC Educational Resources Information Center

    Randolph, Alan D.

    1989-01-01

    Provides an overview of a graduate course on particulate processes, especially on crystal size distribution (CSD). Describes the course and includes a list of course topics. Discusses the CSD simulation and manipulation. (YP)

  14. Measurement of vehicle particulate emissions.

    PubMed Central

    Beltzer, M

    1975-01-01

    A constant volume sampler (CVS) compatible auto exhaust particulate sampling system has been built which samples exhaust isokinetically at constant temperature. This system yields internally consistent results and is capable of frequent and convenient operation. PMID:50931

  15. Electrically heated particulate filter restart strategy

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  16. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  17. [PFBC Hot Gas Cleanup Test Program]. Third Quarterly technical progress report, July--September 1992, CY 1992

    SciTech Connect

    Not Available

    1992-10-01

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP`s pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  18. Electrical diesel particulate filter (DPF) regeneration

    DOEpatents

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  19. Ceramic filters for removal of particulates from hot gas streams

    SciTech Connect

    Goldsmith, R.L.

    1992-11-01

    The primary goal is to demonstrate the performance of a new ceramic filter in removing particulate matter from hot gas streams produced in advanced coal conversion processes. The specific objectives are threefold: (1) Development of full size ceramic filters suitable for hot gas filtration; (2) Demonstration of ceramic filters in long term (ca. 1000 hrs) field trials; and (3) Development of full-scale hot gas filter system designs and costs. To date, field tests of the ceramic filter for particulate removal have been conducted at seven sites on a variety of gas streams and under a variety of test conditions. In general, the following performance characteristics have been observed: 1. Filtration face velocity (equivalent to an ``air to cloth ratio``) for flue gas tests is comparable to that for pulse jet bags operating at the same pressure drop. In hot gas tests, flow-pressure drop characteristics have been observed to be comparable to those for other ceramic filters. 2. Complete regeneration by a simple backpulse technique is achieved; i.e., no increase in clean filter resistance over repetitive cycles is observed. 3. No plugging of the filter passageways by badly caking particulates is observed. 4. Essentially complete particulate removal, including submicron particulate matter, is achieved.

  20. Ceramic filters for removal of particulates from hot gas streams

    SciTech Connect

    Goldsmith, R.L.

    1992-01-01

    The primary goal is to demonstrate the performance of a new ceramic filter in removing particulate matter from hot gas streams produced in advanced coal conversion processes. The specific objectives are threefold: (1) Development of full size ceramic filters suitable for hot gas filtration; (2) Demonstration of ceramic filters in long term (ca. 1000 hrs) field trials; and (3) Development of full-scale hot gas filter system designs and costs. To date, field tests of the ceramic filter for particulate removal have been conducted at seven sites on a variety of gas streams and under a variety of test conditions. In general, the following performance characteristics have been observed: 1. Filtration face velocity (equivalent to an air to cloth ratio'') for flue gas tests is comparable to that for pulse jet bags operating at the same pressure drop. In hot gas tests, flow-pressure drop characteristics have been observed to be comparable to those for other ceramic filters. 2. Complete regeneration by a simple backpulse technique is achieved; i.e., no increase in clean filter resistance over repetitive cycles is observed. 3. No plugging of the filter passageways by badly caking particulates is observed. 4. Essentially complete particulate removal, including submicron particulate matter, is achieved.

  1. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    DOEpatents

    Gonze, Eugene V.; Brown, David B.

    2010-02-02

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  2. ITP Filter Particulate Decontamination Measurement

    SciTech Connect

    Dworjanyn, L.O.

    1993-05-21

    A new test method was developed which showed the installed In- Tank Precipitation Filter Unit {number_sign}3 provided at least 40, 000 x decontamination of the precipitated potassium tetraphenylborate (KTPB) during the cold chemical runs.This filter is expected to meet the needed 40,000 x hot cesium decontamination requirements, assuming that the cesium precipitate, CsTPB, behaves the same as KTPB. The new method permits cold chemicals field testing of installed filters to quantify particulate decontamination and verify filter integrity before going hot. The method involves a 1000 x concentration of fine particulate KTPB in the filtrate to allow direct analysis by counting for naturally radioactive isotope K-40 using the underground SRTC gamma spectroscopy facility. The particulate concentration was accomplished by ultra filtration at Rhone-Poulenc, NJ, using a small cross-flow bench facility, followed by collection of all suspended solids on a small filter disc for K analysis.

  3. Particulate Emission Abatement for Krakow Boiler Houses

    SciTech Connect

    1998-09-01

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which currently comprises over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low- capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  4. Particulate Emission Abatement for Krakow Boilerhouses

    SciTech Connect

    1998-09-14

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are numerous uncontrolled boilers accounting for about half the total fuel use. the large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  5. NONFERROUS INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of the development of particulate emission factors based on cutoff size for inhalable particles for the nonferrous industry. After a review of available information characterizing particulate emissions from nonferrous plants, the data were summarized and ...

  6. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  7. EXTERNAL COMBUSTION PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of the development of particulate emission factors based on cutoff size for inhalable particles for external combustion sources. After a review of available information characterizing particulate emissions from external combustion sources, the data were s...

  8. PAVED ROAD PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of extensive field tests to develop emission factors for particulate emissions generated by traffic entrainment of paved road surface particulate matter. Using roadway surface silt loading as the basis, predictive emission factor equations for each partic...

  9. Particulate matter and preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  10. Source Testing for Particulate Matter.

    ERIC Educational Resources Information Center

    DeVorkin, Howard

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline covers procedures for the testing of particulate matter. These are: (1) basic requirements, (2) information required, (3) collection of samples, (4) processing of samples, (5)…

  11. MODELING PARTICULATE CHARGING IN ESPS

    EPA Science Inventory

    In electrostatic precipitators there is a strong interaction between the particulate space charge and the operating voltage and current of an electrical section. Calculating either the space charge or the operating point when the other is fixed is not difficult, but calculating b...

  12. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  13. Process for particulate removal from coal liquids

    DOEpatents

    Rappe, Gerald C.

    1983-01-01

    Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

  14. Particulate emissions from concentrated animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated animal feeding operations (CAFOs), including open beef cattle feedlots, swine facilities, and poultry facilities, can emit large amounts of particulate matter, including TSP (total suspended particulates), PM10 (particulate matter with equivalent aerodynamic diameter of 10 mm or less) a...

  15. Polymer Particulates in Drug Delivery.

    PubMed

    Kaur, Harmeet; Kumar, Virender; Kumar, Krishan; Rathor, Sandeep; Kumari, Parveen; Singh, Jasbir

    2016-01-01

    Development of effective drug delivery systems is important for medicine and healthcare. Polymer particulates (micro- and nanoparticles) have opened new opportunities in the field of drug delivery by overcoming various limitations of conventional delivery methods. The properties of polymeric particles can be readily tuned by precisely engineering the constituent blocks of polymers for improving drug loading, release rate, pharmacokinetics, targeting, etc. The end-groups of various polymers can be readily modified with ligands making them suitable for recognizing by cell-specific receptors, providing cellular specificity, and superior intracellular delivery. This review will mainly cover delivery of many potential drugs and biomolecules by means of polymeric microparticles, nanoparticles and copolymer micelles or assemblies. An overview about formulation methods of polymer particulates has also been addressed. Attempt has been made to cover all the potential polymers that are well known in pharmaceutical history. PMID:26898740

  16. Polarization signatures of airborne particulates

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  17. Material Instabilities in Particulate Systems

    NASA Technical Reports Server (NTRS)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  18. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  19. Developing Meaningful Measures and Guidelines for Particulates in Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Bilotta, G. S.; Harrison, C.; Joyce, C.; Peacock, C.

    2010-12-01

    Managing global water resources is one of the greatest challenges of the 21st Century. It is a resource that is under growing pressure as global populations rise and the natural supply, in the form of precipitation, is becoming increasingly variable and uncertain with climate change. It is therefore essential that water resources (surface and groundwaters) are managed sustainably in terms of both their quantity and quality. One of the most common causes for the impairment of water quality in surface waters and groundwaters is the presence of particulate matter. Particulate matter, from nano-scale particles and colloids to silt-sized sediments, can have a range of detrimental effects on water resources, from aesthetic issues and higher costs of water treatment, to a decline in the fisheries resource and serious ecological degradation. However at present, there is a poor understanding of the particulate conditions that water quality managers should aim to achieve in order to support good ecological status in different environments. There is also currently a general lack of rigour and standardisation in measurements of particulate matter in aquatic ecosystems, which in turn limits our understanding of the effects of these particles, and importantly, limits our ability to guide effective remediation. This poster describes a research approach that is currently being developed in the UK to address these issues; supporting (1) the development of ecosystem-specific water quality guidelines for particulate matter, and (2) the innovation of more advanced monitoring technologies for particulate matter in aquatic environments. The research project will utilise an established network of 13 reference condition sites (i.e. sites that have minimal anthropogenic disturbance) that contain distinct aquatic communities and are located in contrasting environment types. Hydrological and biological monitoring will be carried-out concurrently with analysis of the physical and geochemical

  20. Zone heated diesel particulate filter electrical connection

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  1. Diesel particulate filter with zoned resistive heater

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  2. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  3. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  4. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  5. Electrically heated particulate filter using catalyst striping

    SciTech Connect

    Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

    2013-07-16

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

  6. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  7. Electrically heated particulate filter embedded heater design

    SciTech Connect

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  8. Particulate residue separators for harvesting devices

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  9. Methods of separating particulate residue streams

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, J. Richard

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  10. Power Systems Development Facility progress report

    SciTech Connect

    Rush, R.E.; Hendrix, H.L.; Moore, D.L.; Pinkston, T.E.; Vimalchand, P.; Wheeldon, J.M.

    1995-11-01

    This is a report on the progress in design and construction of the Power Systems Development Facility. The topics of the report include background information, descriptions of the advanced gasifier, advanced PFBC, particulate control devices, and fuel cell. The major activities during the past year have been the final stages of design, procurement of major equipment and bulk items, construction of the facility, and the preparation for the operation of the Facility in late 1995.

  11. 42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates...

  12. 42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates...

  13. 42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates...

  14. 42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates...

  15. 42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates...

  16. Particulate emission abatement for Krakow boiler houses

    SciTech Connect

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  17. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  18. Southern Fine Particulate Monitoring Project

    SciTech Connect

    Ashley Williamson

    2003-05-31

    This final project report presents experimental details, results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the October, 2001-September, 2002 study period.The host site for these measurement activities is the North Birmingham PM monitoring station by the Jefferson County Health Department in Birmingham, AL.The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. During the course of the project, measurement intercomparison data were developed for these instruments and several complementary measurements at the site. The report details the instrument set and operating procedures and describes the resulting data. Report subsections present an overview summary of the data, followed by detailed description of the systematic time behavior of PM{sub 2.5} and other specific particulate size fractions. Specific subsections are included for particle size distribution, light scattering, and particle sulfate data. The final subsection addresses application of the measurements to the practical questions of fine PM generation and transport, source attribution, and PM{sub 2.5} management strategies.

  19. Hyperspectral imaging applied to complex particulate solids systems

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2008-04-01

    HyperSpectral Imaging (HSI) is based on the utilization of an integrated hardware and software (HW&SW) platform embedding conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Although HSI was originally developed for remote sensing, it has recently emerged as a powerful process analytical tool, for non-destructive analysis, in many research and industrial sectors. The possibility to apply on-line HSI based techniques in order to identify and quantify specific particulate solid systems characteristics is presented and critically evaluated. The originally developed HSI based logics can be profitably applied in order to develop fast, reliable and lowcost strategies for: i) quality control of particulate products that must comply with specific chemical, physical and biological constraints, ii) performance evaluation of manufacturing strategies related to processing chains and/or realtime tuning of operative variables and iii) classification-sorting actions addressed to recognize and separate different particulate solid products. Case studies, related to recent advances in the application of HSI to different industrial sectors, as agriculture, food, pharmaceuticals, solid waste handling and recycling, etc. and addressed to specific goals as contaminant detection, defect identification, constituent analysis and quality evaluation are described, according to authors' originally developed application.

  20. APPLYING DATA ASSIMILATION AND ADJOINT SENSITIVITY TO EPIDEMIOLOGICAL AND POLICY STUDIES OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Source-resolved fine particulate matter (PM) concentrations are needed at high spatial and temporal resolutions for epidemiological studies aimed at identifying more- and less-harmful types of PM. Building on recent advances in air quality modeling, data assimilation, and s...

  1. INTERLABORATORY COMPARISON STUDIES FOR CHARACTERIZATION OF ORGANIC COMPOUNDS IN PARTICULATE MATTER

    EPA Science Inventory

    A working group of investigators, who are characterizing and quantifying the organic compounds in particulate matter (PM) as part of the US EPA's PM 2.5 research program and related studies, was established three years ago to advance the quality and comparability of data on the...

  2. RECEPTOR MODELING OF AMBIENT AND PERSONAL EXPOSURE SAMPLES: 1998 BALTIMORE PARTICULATE MATTER EPIDEMIOLOGY-EXPOSURE STUDY

    EPA Science Inventory

    Sources of particulate matter exposure for an elderly population in a city north of Baltimore, MD were evaluated using advanced factor analysis models. Data collected with Versatile Air Pollutant Samplers (VAPS) positioned at a community site, outside and inside of an elderly ...

  3. PARTICULATE CONTROL HIGHLIGHTS: ADVANCED CONCEPTS IN ELECTROSTATIC PRECIPITATORS: PARTICLE CHARGING

    EPA Science Inventory

    The report gives highlights of an EPA research program aimed at developing and verifying an accurate theory of particle charging for conditions that are typically found in industrial electrostatic precipitators. A new theory was developed, in which the thermal motion of ions is a...

  4. RISK MANAGEMENT FOR INDOOR PARTICULATE MATTER

    EPA Science Inventory

    Because people spend 90% of their time indoors, exposure to particulate matter indoors is a major contributor to the risk associated with particulate matter. The risk due to indoor exposure is probably even higher for susceptible populations such as the elderly, the sick, and t...

  5. Testing Students' Use of the Particulate Theory

    ERIC Educational Resources Information Center

    Williamson, Vickie; Huffman, Jason; Peck, Larry

    2004-01-01

    High School students' understanding about the particulate theory of matter and their use of particulate terminology is investigated. The Physical Changes Concepts Test (PCCT) was administered in two forms, an applied version and a theoretical version, to determine whether students scientifically understood the concepts well enough to apply them to…

  6. Air Quality Criteria for Particulate Matter.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  7. Toward the next generation of air quality monitoring: Particulate Matter

    NASA Astrophysics Data System (ADS)

    Engel-Cox, Jill; Kim Oanh, Nguyen Thi; van Donkelaar, Aaron; Martin, Randall V.; Zell, Erica

    2013-12-01

    Fine particulate matter is one of the key global pollutants affecting human health. Satellite and ground-based monitoring technologies as well as chemical transport models have advanced significantly in the past 50 years, enabling improved understanding of the sources of fine particles, their chemical composition, and their effect on human and environmental health. The ability of air pollution to travel across country and geographic boundaries makes particulate matter a global problem. However, the variability in monitoring technologies and programs and poor data availability make global comparison difficult. This paper summarizes fine particle monitoring, models that integrate ground-based and satellite-based data, and communications, then recommends steps for policymakers and scientists to take to expand and improve local and global indicators of particulate matter air pollution. One of the key set of recommendations to improving global indicators is to improve data collection by basing particulate matter monitoring design and stakeholder communications on the individual country, its priorities, and its level of development, while at the same time creating global data standards for inter-country comparisons. When there are good national networks that produce consistent quality data that is shared openly, they serve as the foundation for better global understanding through data analysis, modeling, health impact studies, and communication. Additionally, new technologies and systems should be developed to expand personal air quality monitoring and participation of non-specialists in crowd-sourced data collections. Finally, support to the development and improvement of global multi-pollutant indicators of the health and economic effects of air pollution is essential to addressing improvement of air quality around the world.

  8. Electrically heated particulate filter propagation support methods and systems

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  9. Radiant zone heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  10. Methods for Coating Particulate Material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  11. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  12. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    PubMed Central

    Priemus, Hugo; Schutte-Postma, Elizabeth

    2009-01-01

    The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM) in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands. PMID:19440439

  13. Electrically heated particulate filter enhanced ignition strategy

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  14. Particulate contamination spectrometer. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  15. The Particulate Air Pollution Controversy

    PubMed Central

    Phalen, Robert F.

    2004-01-01

    Scientists, regulators, legislators, and segments of industry and the lay public are attempting to understand and respond to epidemiology findings of associations between measures of modern particulate air pollutants (PM) and adverse health outcomes in urban dwellers. The associations have been interpreted to imply that tens of thousands of Americans are killed annually by small daily increments in PM. These epidemiology studies and their interpretations have been challenged, although it is accepted that high concentrations of air pollutants have claimed many lives in the past. Although reproducible and statistically significant, the relative risks associated with modern PM are very small and confounded by many factors. Neither toxicology studies nor human clinical investigations have identified the components and/or characteristics of PM that might be causing the health-effect associations. Currently, a massive worldwide research effort is under way in an attempt to identify whom might be harmed and by what substances and mechanisms. Finding the answers is important, because control measures have the potential not only to be costly but also to limit the availability of goods and services that are important to public health. PMID:19330148

  16. Hypocoordinated solids in particulate media.

    PubMed

    Bertrand, Thibault; Schreck, Carl F; O'Hern, Corey S; Shattuck, Mark D

    2014-06-01

    We propose a "phase diagram" for particulate systems with purely repulsive contact forces, such as granular media and colloids. We characterize two classes of behavior as a function of the input kinetic energy per degree of freedom T_{0} and packing fraction deviation from jamming onset Δϕ=ϕ-ϕ_{J} using simulations of frictionless disks. Isocoordinated solids (ICS) exist above jamming; they possess an average contact number equal to the isostatic value z_{iso}. ICS display "strict" harmonic response, where the density of vibrational modes from the Fourier transform of the velocity autocorrelation function is a set of sharp peaks at eigenfrequencies ω_{k}{d} of the dynamical matrix. In contrast, hypocoordinated solids (HCS) occur above and below jamming and possess fluctuating networks of interparticle contacts but do not undergo cage-breaking particle rearrangements. The density of vibrational frequencies for the HCS is not a collection of sharp peaks at ω_{k}{d}, but it does possess a common form over a range of Δϕ and T_{0}. PMID:25019766

  17. Particulate contamination in plastic ampoules.

    PubMed

    Oppenheim, R C; Gillies, I R

    1986-05-01

    Plastic ampoules of Water for Injections, JP, and Injection Sodium Chloride, JP, were investigated to determine their particle load. Four batches were studied. The ampoules were twist-opened as they would be in the clinical setting and the total particle load, both inherent and that created in opening, was determined by reading the contents with a HIAC 420 particle counter with a CMB 60 sensor. The total particle content was found to be minimal, easily complying with world L.V.P. standards and the S.V.P. standard of the USP XXI. The number of particles found in these opened plastic ampoules was significantly lower than that found in clinically snap-opened glass ampoules and also slightly lower than that found in laboratory heat-opened glass ampoules. Whilst the plastic ampoule has a restricted application because it is not suitable for all drugs, it is concluded that when they are used as the immediate container for Water for Injections and Injection Sodium Chloride they are highly effective in reducing the particulate contamination generated in opening. PMID:2872309

  18. Hypocoordinated solids in particulate media

    NASA Astrophysics Data System (ADS)

    Bertrand, Thibault; Schreck, Carl F.; O'Hern, Corey S.; Shattuck, Mark D.

    2014-06-01

    We propose a "phase diagram" for particulate systems with purely repulsive contact forces, such as granular media and colloids. We characterize two classes of behavior as a function of the input kinetic energy per degree of freedom T0 and packing fraction deviation from jamming onset Δϕ =ϕ-ϕJ using simulations of frictionless disks. Isocoordinated solids (ICS) exist above jamming; they possess an average contact number equal to the isostatic value ziso. ICS display "strict" harmonic response, where the density of vibrational modes from the Fourier transform of the velocity autocorrelation function is a set of sharp peaks at eigenfrequencies ωkd of the dynamical matrix. In contrast, hypocoordinated solids (HCS) occur above and below jamming and possess fluctuating networks of interparticle contacts but do not undergo cage-breaking particle rearrangements. The density of vibrational frequencies for the HCS is not a collection of sharp peaks at ωkd, but it does possess a common form over a range of Δϕ and T0.

  19. OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER

    EPA Science Inventory

    The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...

  20. PARTICULATE SAMPLING SUPPORT: 1977 ANNUAL REPORT

    EPA Science Inventory

    The report describes the activities supporting the particulate sampling efforts of EPA/IERL-RTP during FY 1977. Twenty technical directives were issued in seven categories: cascade impactors (7), cyclones (5), sampling electrostatic precipitators (1), guidelines and manuals (3), ...

  1. PARTICULATE SAMPLING AND SUPPORT: FINAL REPORT

    EPA Science Inventory

    The report summarizes results of research, development, and support tasks performed during the 3-year period. The tasks encompassed many aspects of particulate sampling and measurement in industrial gaseous process and effluent streams. Under this contract, cascade impactors were...

  2. GENERATION OF FUMES SIMULATING PARTICULATE AIR POLLUTANTS

    EPA Science Inventory

    The report describes techniques developed for generating large quantities of reproducible, stable, inorganic, fine-particle aerosol fumes. These fumes simulated particulate air pollutants emitted from power generation, basic oxygen furnaces, electric arc furnaces, and zinc smelti...

  3. Atmospheric particulate mercury in Changchun City, China

    NASA Astrophysics Data System (ADS)

    Fang, Fengman; Wang, Qichao; Liu, Ruhai; Ma, Zhuangwei; Hao, Qingju

    From July 1999 to January 2000, the total suspended particulate matter (TSP) in the atmosphere collected by high-volume sampler was used to determine the particulate Hg of four function districts and one contrast district in the City of Changchun,China. The study results indicated that the value of the volume-based concentration and the mass-based concentration of each district during the heating period are higher than those of the nonheating period. The volume-based concentration of the urban districts is higher than that of the contrast district. Atmospheric Hg concentrations varied temporally and spatially. TSP is the critical factor of particulate Hg concentration; precipitation is the main meteorological factor affecting Hg (p) concentration in the atmosphere; coal combustion and wind-blown soil material are the important sources of atmospheric particulate Hg. During heating period, the coal combustion makes a greater contribution to Hg(p) than that of wind-blown soil materials.

  4. Particulate matter, oxidative stress and neurotoxicity.

    EPA Science Inventory

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary dis...

  5. PARTICULATE DATA REDUCTION SYSTEM (PADRE) USER GUIDE

    EPA Science Inventory

    The report, a user guide, describes the capabilities and use of the Particulate Data Reduction (PADRE) system, an interactive computer program that facilitates entry, reduction, and analysis of cascade impactor data for particle size distributions. Example sessions are provided t...

  6. FILTER MEDIA FOR COLLECTING DIESEL PARTICULATE MATTER

    EPA Science Inventory

    Certification of particulate emissions from diesel motor vehicles involves filtration of measured aliquots of the total air diluted exhaust. Seven commercially available filter media were examined for this purpose. The media included a variety of PTFE membrane filters, glass fibe...

  7. Differential Spectroscopic Imaging of Particulate Explosives Residue

    SciTech Connect

    Bernacki, Bruce E.; Ho, Nicolas

    2008-04-01

    We present experimental results showing transmission and reflection imaging of approximately 100 microgram quantities of particulate explosives residue using a commercial uncooled microbolometer infrared camera and CO2 laser differential wavelength illumination.

  8. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  9. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  10. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  11. Particulate Hot Gas Stream Cleanup Technical Issues

    SciTech Connect

    None, None

    1998-08-31

    This is the fifteenth quarterly report describing the activities performed under Contract No. DE-AC21-94MC31160. The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. Task 1 is designed to generate a data bank of the key characteristics of ashes collected from operating advanced particle filters (APFs) and to relate these ash properties to the operation and performance of these filters and their components. APF operations have also been limited by the strength and durability of the ceramic materials that have served as barrier filters for the capture of entrained HGCU ashes. Task 2 concerns testing and failure analyses of ceramic filter elements currently used in operating APFs and the characterization and evaluation of new ceramic materials. Task 1 research activities during the past quarter included characterizations of samples collected during a site visit on May 18 to the Department of Energy / Southern Company Services Power Systems Development Facility (PSDF) and a particulate sample collected in the Westinghouse filter at Sierra Pacific Power Company's Piñon Pine Power Project. Analysis of this Piñon Pine sample is ongoing: however, this report contains the results of analyses completed to date. Significant accomplishments were achieved on the HGCU data bank during this reporting quarter. The data bank was prepared for presentation at the Advanced Coal-Based Power and Environmental Systems 98 Conference scheduled for July, 1998. Task 2 work during the past quarter consisted of testing two Dupont PRD-66C candle filters, one McDermott ceramic composite candle filter, one Blasch 4-270 candle filter, and one Specific Surface cordierite candle filter. Tensile and thermal expansion testing is complete and the rest of the testing is in progress. Also, some 20-inch long Dupont

  12. Particulate matter in the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Ragent, B.; Esposito, L. W.; Tomasko, M. G.; Marov, M. IA.; Shari, V. P.

    1985-01-01

    The paper presents a summary of the data currently available (June 1984) describing the planet-enshrouding particulate matter in the Venus atmosphere. A description and discussion of the state of knowledge of the Venus clouds and hazes precedes the tables and plots. The tabular material includes a precis of upper haze and cloud-top properties, parameters for model-size distributions for particles and particulate layers, and columnar masses and mass loadings.

  13. Flow studies and particulate collection measurements

    SciTech Connect

    Greiner, G.P.; Furlong, D.A.; Bahner, M.A.

    1990-04-01

    This report describes testing of a Reduced Entrainment electrostatic Precipitator (REP) that has a portion of the main precipitator flow drawn through a porous (fabric) collecting surface. Tests investigated effects of flow through the collecting surface (side flow) on precipitator turbulence and particulate removal efficiency. Testing focused on these effects as being significant to the collection of fine (less than 10 microns) particulate. 17 refs., 41 figs., 10 tabs.

  14. Modeling exposure to particulate matter.

    PubMed

    Moschandreas, Demetrios J; Saksena, Sumeet

    2002-12-01

    Exposure assessment, a component of risk assessment, links sources of pollution with health effects. Exposure models are scientific tools used to gain insights into the processes affecting exposure assessment. The purpose of this paper is to review the process and methodology of estimating inhalation exposure to particulate matter (PM) using various types of models. Three types of models are discussed in the paper. Indirect type of models are physical models that employ inventories of outdoor and indoor sources and their emission rates to identify major sources contributing to exposure to PM, and use fate and transport and indoor air quality models to estimate PM concentrations at receptor sites. PM concentrations and time spent by a subject at each receptor site are input variables to the conventional exposure model that estimates the desired exposure levels. Direct type models use measured exposure or exposure concentrations in conjunction with information obtained from questionnaires to formulate exposure regression models. Stochastic models use exposure measurements, estimates can also be used, to formulate exposure population distributions and investigate associated uncertainty and variability. Since models developed using databases from western countries are not necessarily applicable in developing countries, the difference in requirements among western and developing countries is highlighted in the paper. Employment of exposure modeling methods in developing countries requires development of local information. Such information includes local outdoor and indoor source inventories, local or regional meteorological conditions, adjustment of indoor models to reflect local building construction conditions, and use of questionnaires to obtain local time budget and activity patterns of the subject population. PMID:12492168

  15. Autologous cranial particulate bone grafting reduces the frequency of osseous defects after cranial expansion.

    PubMed

    Gao, Lin Lin; Rogers, Gary F; Clune, James E; Proctor, Mark R; Meara, John G; Mulliken, John B; Greene, Arin K

    2010-03-01

    Primary autologous particulate bone grafting has been demonstrated to heal osseous defects after fronto-orbital advancement. We sought to determine if this technique was equally effective for larger defects resulting from major cranial expansion procedures. We studied children who underwent cranial expansion (other than fronto-orbital advancement) between 1989 and 2008. Defects either were left to heal spontaneously (group 1) or had autologous cranial particulate bone graft placed over dura at the time of cranial expansion (group 2). Particulate bone graft was harvested from the endocortical or ectocortical surface using a hand-driven brace and bit. Outcome variables were ossification and need for revision cranioplasty. The study included 53 children. Mean (SD) age at procedure was 12.2 (8.1) months (range, 1.0-36.0 months) for group 1 (n = 15) and 20.2 (15.1) months (range, 3.3-78.6 months) for group 2 (n = 38) (P = 0.06). There were palpable bony defects in 33.0% (n = 5) of group 1 patients versus 7.9% (n = 3) of group 2 patients (P = 0.03). Corrective cranioplasty was needed in 26.7% of group 1 patients and only 5.3% of those in group 2 (P = 0.04). Primary cranial particulate bone grafting significantly reduced the frequency of osseous defects and secondary cranioplasty following cranial remodeling. PMID:20186093

  16. Fracture Analysis of Particulate Reinforced Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.; Cornie, James A.

    2013-01-01

    A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.

  17. Filter Component Assessment

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Diaz, E.S.; Smeltzer, E.E.

    1996-12-31

    Advanced particulate filtration systems are currently being developed at Westinghouse for use in both coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems. To date, Westinghouse has demonstrated 5855 hours of successful operation of first generation monolithic filter elements in PFBC applications when ash bridging or process thermal transient excursions are avoided. Alternate advanced monolithic and second generation fiber reinforced, filament wound and vacuum infiltrated filters are also being developed which are considered to have enhanced high temperature creep resistance, improved fracture toughness, or enhanced thermal shock characteristics, respectively. Mechanical and component fabrication improvements, as well as degradation mechanisms for each filter element have been identified by Westinghouse during exposure to simulated PFBC operating conditions and alkali-containing steam/air environments. Additional effort is currently being focused on determining the stability of the advanced monolithic high temperature creep resistant clay bonded silicon carbide (SiC) materials, alumina/mullite, and chemically vapor infiltrated (CVI) SiC materials during operation in the Westinghouse Advanced Particulate Filtration (W-APF) system at Foster Wheeler`s pressurized circulating fluidized-bed combustion (PCFBC) test facility in Karhula, Finland. Select advanced filter materials are being defined for additional long-term exposure in integrated gasification combined cycle (IGCC) gas streams. The results of these efforts are summarized in this paper. 6 refs., 7 figs., 11 tabs.

  18. Particulate matter pollution in Mexico City

    SciTech Connect

    Vega R, E.; Mora P, V.; Mugica A, V.

    1998-12-31

    The levels of particulate matter are of concern since they may induce severe effects on public health and is the second atmospheric pollution problem in Mexico City. Another noticeable effect in large cities attributable to particulate matter, is the deterioration of visibility. In this paper the analysis of the data of TSP and PM10 during 1988 to 1996 is presented. The seasonal variation of particulate matter, the typical ratios of PM10/TSP and relationships of the two variables were determined. It was found that PM10 concentrations show an important tendency to decrease during this period, due to some control strategies, although this is not the case for TSP. The monthly trend exhibits a clear relationship with the dry (October through April) and wet (May through September) seasons. The particulate matter concentrations are lower during the wet season. The hourly behavior shows that the highest concentrations are correlated with the traffic rush hours. The most TSP polluted area was the northeast, meanwhile the southeast is the most PM10 polluted area. There is a clear evidence of the particulate matter transportation from these areas to other sites of the City.

  19. An evaluation of disposal and utilization options for advanced coal utilization wastes

    SciTech Connect

    Moretti, C.J.

    1996-05-01

    If the US is to continue to effectively use its substantial coal reserves, new clean coal technologies must be developed to improve power production efficiency and reduce emissions from power plants. In order to gain information about wastes produced by advanced coal utilization processes, a research project is being conducted to characterize the geotechnical and geochemical properties of advanced coal process wastes. The University of North Dakota Energy and Environmental Research Center (EERC) analyzed 34 of these wastes for their bulk chemical and mineral compositions and for the disposal-related physical properties listed in a table. This paper discusses potentially useful waste management practices for eight bulk waste samples obtained from four different clean coal processes: gas reburning with sorbent injection (GRSI); pressurized fluidized-bed combustion (PFBC); SO{sub x}, NO{sub x}, RO{sub x}, BOX (SNRB); and coal reburning (CR). All four processes have been demonstrated at either full-scale or pilot-scale facilities in the US. Since the properties of advanced process wastes are different from conventional coal combustion wastes, an analysis was performed to identify any potential problems that could occur when standard, off-the-shelf waste management technologies are used for handling and disposal of advanced process wastes. When potential problems were identified, possible alternative technologies were evaluated.

  20. Polar nephelometer for atmospheric particulate studies.

    PubMed

    Hansen, M Z; Evans, W H

    1980-10-01

    A unique polar nephelometer was designed and constructed for the measurement of atmospheric particulate characteristics. The nephelometer produces visible light from a self-contained laser to irradiate an air sample drawn into the instrument. The light scattered from the particulates and molecules in the sample is detected as a function of scattering angle for each of four different incident light polarizations. These measurements are used to determine the particulate scattering matrix which is a function of the size, shape, and index of refraction of the particles. The region of sensitivity for the measurements corresponds to the size range of particles that strongly affects visible radiative transfer in the atmosphere, which is the primary application for the derived information. PMID:20234624

  1. PRODUCTION OF SHEET FROM PARTICULATE MATERIAL

    DOEpatents

    Blainey, A.

    1959-05-12

    A process is presented for forming coherent sheet material from particulate material such as granular or powdered metal, granular or powdered oxide, slurries, pastes, and plastic mixes which cohere under pressure. The primary object is to avoid the use of expensive and/ or short lived pressing tools, that is, dies and specially profiled rolls, and so to reduce the cost of the product and to prcvide in a simple manner for the making of the product in a variety of shapes or sizes. The sheet material is formed when the particulate material is laterally confined in a boundary material deformable in all lateral directions under axial pressure and then axially compressing the layer of particulate material together with the boundary material.

  2. Particulate hot gas stream cleanup technical issues. Annual report, October 1994--September 1995

    SciTech Connect

    1995-12-19

    This is the first annual report describing the activities performed under Contract No. DE-AC21-94MC31160. Task I of this contract is concerned with the analyses of HGCU ashes and descriptions of filter performance and is designed to address the problems with filter operation that are apparently linked to the characteristics of the collected ash. Task 2 of this contract includes characterization of new and used filter elements. Some of the problems observed at the Tidd and Karhula PFBC facilities include excessive filtering pressure drop, the formation of large, tenacious ash deposits within the filter vessel, and bent or broken candle filter elements. In addition to these problems related to the characteristics of PFBC ashes and the ceramic materials used to construct candle filters, our previous laboratory characterizations of gasifier and carbonizer ashes have shown that these ashes also have characteristics that might negatively affect filtration.

  3. Particulate control for the year 2000

    SciTech Connect

    Sloat, D.G.; Gaikwad, R.P.

    1997-09-01

    As a response to the Clean Air Act Amendments (CAAAs) of 1990, utilities will be faced with new emission limitations on SO{sub 2} and NO{sub x} that could have a major impact on their current particulate control equipment. Most of the plants affected already have electrostatic precipitators for particulate control. A large number of power plants will be switching to lower sulfur coals as part of the CAAA Title IV Phase 2 SO{sub 2} rules. The lower sulfur coal ash usually does not collect well in a small precipitator so the existing precipitator will need to be upgraded to continue to meet their current emission limitations. Title IV also requires plants to lower NO{sub x} emissions which is often accomplished by modifications to the boiler such as retrofitting low NO{sub x} burners. These boiler modifications can increase the amount of unburned carbon in the ash as well as reduce the size distribution of the fly ash. Both of these changes can negatively impact a precipitator`s performance. Finally, the CAAA Title III identifies 189 pollutants as hazardous air pollutants, also known as air toxics, which have been viewed as a risk to human health. This may result in further tightening of particulate regulations for power plants and place an increased burden on the existing particulate control equipment. This paper evaluates the technologies available to comply with these new and more stringent particulate control requirements. To demonstrate the retrofit alternatives available to meet these new particulate emission requirements, two hypothetical case studies are discussed.

  4. Contribution of organic particulates to respiratory cancer.

    PubMed Central

    Matanoski, G; Fishbein, L; Redmond, C; Rosenkranz, H; Wallace, L

    1986-01-01

    This paper presents some of the issues that remain to be resolved in order to assess the risk of cancer related to exposure to organic particulates. Most reviews of the effects of organic particulates from the outdoor environment on the risk of lung cancer show that this source seems to play a minor role. However, as fuel use and chemical composition of air pollutants change, the contribution of outdoor pollution as a cause of cancer may also change. Indoor air pollution is a more important source of exposure to organic particulates than is outdoor exposure. Although there is clear evidence that in occupational settings organic particulates cause human cancer, there has been almost no study of exposure to these types of particulates within indoor settings. Previous research has focused on cigarette smoke as the major indoor pollutant, but more specific characterization of contaminants in both the workplace and the home is required. The health effects of the higher levels of some of these contaminants in the workplace should be evaluated and the results extrapolated to populations exposed to lower levels in the home. Extensive research is needed to characterize organic particulate mixtures appropriately and test them for carcinogenicity. Studies on the health risks of nitropolynuclear aromatic hydrocarbons and polychlorinated dibenzodioxins and dibenzofurans are reviewed, but their contribution to the overall burden of respiratory cancer in humans cannot be estimated at this time. Characterization of mixtures, assessment of exposures, and linkage of exposures to health effects are the objectives of the recommendations proposed for further research. PMID:3830112

  5. [Suspended particulates and lung health].

    PubMed

    Neuberger, Manfred; Moshammer, Hanns

    2004-01-01

    Based on several severe air pollution episodes, a temporal correlation between high concentrations of particulate matter (PM) and SO2 pollution and acute increases in respiratory and cardiopulmonary mortality had been established in Vienna for the 1970's. After air pollution had decreased in Austria in the 1980's--as documented by data on SO2, and total suspended particles (TSP)--no such associations between day-to-day changes of SO2 and TSP and mortality have been documented any more, however, traffic related pollutants like fine particles and NO2 remained a problem. Therefore, short term effects of PM on lung function, morbidity and mortality were investigated in Vienna, Linz, Graz and a rural control area. Long-term exposure and chronic disease--even more important for public health--were studied in repeated cross-sectional, a mixed longitudinal and a birth cohort study on school children in the city of Linz. Lung function growth was found impaired from long-term exposure to air pollutants and improved in districts where ambient air pollution had decreased. Where only TSP and SO2 had decreased, no continuous improvement of small airway function was found and end-expiratory flow rates stayed impaired where NO2-reduction from technical improvements of cars and industry was counterbalanced by increase of motorized (diesel) traffic. Remaining acute effects of ambient air pollution in 2001 from PM, NO2 and co-pollutants found in a time series study also show that continuing efforts are necessary. Active surface of particles inhaled several hours to days before spirometry was found related to short-term reductions in forced vital capacity-FVC (p<0.01), forced expiratory volume in one second-FEV1 (p<0.01) and maximal expiratory flow rate at 50% of vital capacity-MEF50 (p<0.05). In pupils with asthma or previous airway obstruction 4-week-diaries proved that the following symptoms increased with acute exposure to higher active surface of particles: wheezing (p<0

  6. Coherent Backscattering by Particulate Planetary Media of Nonspherical Particles

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri; Penttila, Antti; Wilkman, Olli; Videen, Gorden

    2014-11-01

    The so-called radiative-transfer coherent-backscattering method (RT-CB) has been put forward as a practical Monte Carlo method to compute multiple scattering in discrete random media mimicking planetary regoliths (K. Muinonen, Waves in Random Media 14, p. 365, 2004). In RT-CB, the interaction between the discrete scatterers takes place in the far-field approximation and the wave propagation faces exponential extinction. There is a significant constraint in the RT-CB method: it has to be assumed that the form of the scattering matrix is that of the spherical particle. We aim to extend the RT-CB method to nonspherical single particles showing significant depolarization characteristics. First, ensemble-averaged single-scattering albedos and phase matrices of nonspherical particles are matched using a phenomenological radiative-transfer model within a microscopic volume element. Second, the phenomenologial single-particle model is incorporated into the Monte Carlo RT-CB method. In the ray tracing, the electromagnetic phases within the microscopic volume elements are omitted as having negligible lengths, whereas the phases are duly accounted for in the paths between two or more microscopic volume elements. We assess the computational feasibility of the extended RT-CB method and show preliminary results for particulate media mimicking planetary regoliths. The present work can be utilized in the interpretation of astronomical observations of asteroids and other planetary objects. In particular, the work sheds light on the depolarization characteristics of planetary regoliths at small phase angles near opposition. The research has been partially funded by the ERC Advanced Grant No 320773 entitled “Scattering and Absorption of Electromagnetic Waves in Particulate Media” (SAEMPL), by the Academy of Finland (contract 257966), NASA Outer Planets Research Program (contract NNX10AP93G), and NASA Lunar Advanced Science and Exploration Research Program (contract NNX11AB25G).

  7. Particulate matter sensor with a heater

    DOEpatents

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  8. Method of dispersing particulate aerosol tracer

    DOEpatents

    O'Holleran, Thomas P.

    1988-01-01

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  9. Measurements of particulate semi-volatile material

    NASA Astrophysics Data System (ADS)

    Pang, Yanbo

    2000-10-01

    A new innovative sampling system, PC-BOSS, was developed by the combination of particle concentrator and BOSS denuder techniques in response to the new EPA PM2.5 standard and to meet top research priorities for particulate matter that were identified by the National Research Council. The PC-BOSS (P_article C_oncentrator- B_righam Young University O_rganic S_ampling S_ystem) can accurately determine not only PM2.5 stable mass and species such as sulfate, but also particulate semi- volatile material. Several field comparison studies of the PC-BOSS with the EPA PM2.5 reference method and state-of-the-art fine particle measurement methods confirm the capability of the PC-BOSS to accurately determine particulate semi-volatile material, especially organic compounds. This is the first routine sampling system for the determination of both particulate semi-volatile inorganic and organic material. Two other denuder system samplers for the determination of PM2.5 total mass including semi-volatile material were also developed for PM2.5 research and exposure monitoring. Results of studies around the United States indicate that the EPA PM2.5 FRM (Federal Reference Method) under- measured PM2.5 mass by 20-30% compared to PC-BOSS results due to the loss of particulate nitrate and semi-volatile organic compounds during sampling. Organic material is mostly responsible for this under- measurement by the FRM. Using our new sampling system in epidemiological and exposure studies will be essential to providing answers to some top research priorities for particulate matter and promote a better PM2.5 standard for the protection of human health because some fractions of particulate semi-volatile organic compounds are toxic and are possibly responsible for health effects associated with exposure to particulate matter. The atmospheric chemistry of organic aerosols in the troposphere and stratosphere is still largely unknown because of the lack of detailed organic aerosol information. The

  10. Much ado about dioxides and particulates

    SciTech Connect

    Doane, F.P.

    1980-02-01

    Technical feature: The effect of carbon dioxide on climate is uncertain, and recent high CO2 levels may not persist. Worldwide warming trends since 1840 are outlined. There is no conclusive evidence that increased burning of fossil fuels has had or will have any ill effect on the climate. While there has been a slight increase in the CO2 content of the atmosphere, the oxidation of humus and bogs rather than fossil fuels seems to be the main source of increased atmospheric CO2 and particulates. Increased plant growth and adsorption of CO2 and particulates by the oceans will maintain an even balance in the atmosphere. (17 references, 2 tables)

  11. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    EPA Science Inventory

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  12. Applications of moving granular-bed filters to advanced systems

    SciTech Connect

    Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

    1993-09-01

    The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

  13. EPA ALKALI SCRUBBING TEST FACILITY: ADVANCED PROGRAM

    EPA Science Inventory

    The report gives results of advanced testing (from June 1975 to February 1976) of 30,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for SO2 and particulate removal at TVA's Shawnee Power Station. No reliability problems were experienced in 1143 hours of lime testing wit...

  14. CHARACTERIZATION OF PARTICULATE EMISSIONS FROM NON-FERROUS SMELTERS

    EPA Science Inventory

    Chemical composition and particle size data for particulate emissions for stationary sources are required for environmental health effect assessments, air chemistry studies, and air quality modelling Investigations such as source apportionment. n this study, particulate emissions...

  15. ASPHALTIC CONCRETE INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report describes the development of particulate emission factors based on cutoff size for inhalable particles for the asphaltic concrete industry. After review of available information characterizing particulate emissions from asphalt concrete plants, the data were summarized...

  16. Pipelining particulate solid material as stable foam slurry

    SciTech Connect

    Fitch, J.L.

    1980-04-29

    A method of transporting particulate solid material through a pipeline in the form of a stable foam slurry is described. A pumpable slurry is formed of the particulate solid material in a stable foam carrier medium and the slurry is flowed through the pipeline to a receiving point. A method of transporting particulate solid materials through a pipeline is described wherein a pumpable slurry is formed of the particulate solid material. The particulate material is present in the stable foam in an amount of at least 20% by volume based on the total volume of the stable foam slurry. The particulate solid material may be coal particles, other forms of particulate carbonaceous material, such as coke, lignite and pitch, ores, and still other particulate material which is insoluble in the stable foam. The foam may be formed from a liquid, usually water, gas, and a foam stabilizing agent, such as a soap or a surfactant. 4 claims.

  17. METALLURGICAL COKE INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report gives results of a study to develop particulate emission factors based on cutoff size for inhalable particles for the metallurgical coke industry. After a review of available information characterizing particulate emissions from metallurgical coke plants, the data were...

  18. ALTERNATIVES FOR HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL

    EPA Science Inventory

    The report gives the status of the most promising high-temperature/high-pressure (HTP) particulate control devices being developed. Data are presented and anticipated performance and development problems are discussed. HTP particulate control offers efficiency and potential econo...

  19. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  20. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  1. Miniature Sensors for Airborne Particulate Matter

    EPA Science Inventory

    Our group is working to design a small,lightweight, low-cost real-time particulate matter(PM) sensor to enable better monitoring of PMconcentrations in air, with the goal of informingpolicymakers and regulators to provide betterpublic health. The sensor reads the massconcentratio...

  2. STUDIES OF PARTICULATE REMOVAL FROM DIESEL EXHAUST

    EPA Science Inventory

    The report gives results of a characterization of the collection of particulate emissions from diesel exhaust by several different methods, using 5.7 liter GM diesel engines (as sources) and such controls as fiber and gravel bed filters, trap/cyclones, and ESPs. Overall and fract...

  3. Control Techniques for Particulate Air Pollutants.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a comprehensive review of the approaches commonly recommended for controlling the sources of particulate air pollution. Not all possible combinations of control techniques that might bring about more stringent control of each individual source are reviewed. The many agricultural, commercial, domestic, industrial, and municipal…

  4. Particulate control system for biomass firing technologies

    SciTech Connect

    Easom, B.H.; Smolensky, L.A.; Wysk, S.R.

    1996-12-31

    The new particulate control equipment, the so-called Core Separator, overcomes most of the limitations inherent in conventional particulate control systems and can be effectively adapted for biomass applications. The Core Separator is a mechanical collector; however, this technology overcomes the performance limitation inherent in cyclones by performing the tasks of separation and collection in two separate components. The separation process is less affected by secondary flows and is much more efficient than the collection process. Also, the components of the system are arranged in such a way that the separation process determines the system efficiency. As a result, particulate emission rates downstream of this system are one fourth of those from the most efficient cyclones. This technology has been demonstrated through commercial unit installations in the U.S. and abroad. It has been used for industrial separations including coal fly ash, minerals, and chemical recovery applications. It is considered a lower-cost alternative to fabric filters and electrostatic precipitators, albeit one that can meet or exceed regulations for particulate emissions. Development of this technology has been funded by the U.S. Department of Energy, Environmental Protection Agency, and Electric Power Research Institute.

  5. PARTICULATE EMISSION PROFILE OF A COTTON GIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PARTICULATE MATTER (PM) IS ONE OF SIX CRITERIA POLLUTANTS REGULATED BY THE ENVIRONMENTAL PROTECTION AGENCY (EPA) WITH NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS). IN GENERAL, PM IS THE ONLY AIR POLLUTANT OF CONCERN EMITTED FROM COTTON GINS. THE EPA HAS NAAQS FOR PM10 (PARTICLES WITH AN AERODYNA...

  6. PARTICULATE MATTER RESEARCH Plan (Draft, 2004)

    EPA Science Inventory

    The draft Particulate Matter Research Program Strategy describes the EPA Office of Research and Developments research strategy in the areas of health, exposure, risk assessment, and risk management research. The scope of the strategy corresponds to the dual responsibility of EPA ...

  7. Particulate contamination of sterile syringes and needles.

    PubMed

    Taylor, S A

    1982-08-01

    Commercially available sterile needles and syringes have been examined for particulate contamination using the Hiac light blockage technique. The number of particles delivered was small compared with the total number permitted for large volume parenterals. Where syringes are used in particle counting techniques, the contribution of particles should be taken into account. PMID:6126558

  8. PARTICULATE MATTER MULTI-YEAR PLAN

    EPA Science Inventory

    EPA's research on particulate matter (PM) represents the largest portion of the Clean Air research program. In building this program, EPA has been guided by expert advice from the National Research Council of the National Academy of Sciences, and from several other organizations ...

  9. EVALUATIONS OF NOVEL PARTICULATE CONTROL DEVICES

    EPA Science Inventory

    The report gives results of fractional and overall mass efficiency tests of four novel particulate control devices. Three were wet scrubbers: an Aronetics (Chemico) Two-Phase Jet Scrubber, an Entoleter Centrifield Scrubber, and a CEA Variable-Throat Venturi Scrubber. The fourth w...

  10. SPATIAL PREDICTION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    A new national monitoring network for the measurement of fine particular matter (PM2.5) is currently under development. A primary goal of this network is to collect monitoring data in residential communities for the evaluation of compliance with particulate air quality standards...

  11. HIGH TEMPERATURE PARTICULATE CONTROL WITH CERAMIC FILTERS

    EPA Science Inventory

    The report gives results of an assessment of using ceramic materials as filters for fine particulate removal at high temperatures. The program was in two phases. Phase I, directed toward the development of a porous alumina membrane filter, had limited success because of the fragi...

  12. REINVENTING PERSONAL EXPOSURE TO PARTICULATE MATTER

    EPA Science Inventory

    Recent epidemiologic studies of modern air pollution show statistically significant relationships between fluctuations of daily non-trauma mortality and fluctuations of daily ambient particulate matter (PM) levels at low concentrations. A review of historic smoke-fog (smog)episo...

  13. Atmospheric particulate measurements in Norfolk, Virginia

    NASA Technical Reports Server (NTRS)

    Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.

    1975-01-01

    Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.

  14. PARTICULATE DATA REDUCTION (PADRE) SYSTEM REFERENCE MANUAL

    EPA Science Inventory

    The report describes how to access and use the Particulate Data Reduction (PADRE) System, an interactive computer program that facilitates entry, reduction, and analysis of cascade impactor data for particle size distributions. It also summarizes its logic and capabilities. The p...

  15. Method and means for diesel exhaust particulate emission control

    SciTech Connect

    Ludecke, O.A.

    1983-04-19

    A method and means for controlling diesel particulate emissions involves providing an exhaust trap filter to collect exhaust particulates at a point near the engine exhaust ports and providing means to periodically vent burning combustion chamber gases to the exhaust filter to initiate combustion and incineration of the collected particulates. Various means for conducting burning mixture to ignite the particulates in the filter are disclosed.

  16. Source apportionment of particulate matter in Denmark

    NASA Astrophysics Data System (ADS)

    Moenster, J.; Glasius, M.; Nielsen, O. J.; Bilde, M.; Jensen, F. P.

    2005-12-01

    Atmospheric particulate matter (PM) has received considerable attention over the last decade as an important component of air pollution, particularly due to its health effects on the exposed population. Typically the mass of particles with diameters smaller that 10 μm (PM10) has been used in large cohort studies to estimate health effects such as increase in hospitalization rate, asthma attacks and premature deaths. Particles smaller than 2.5 μm (PM2.5) and ultra fine particles have been used in various epidemiological studies and correlations between exposure to fine and ultra fine particles and health effects have been found. Limits of acceptable concentrations of PM10, PM2.5 and some carcinogenic species have been made, and it is important to find the origin of the particulate matter to prevent exceeds of these limits. This can be done by measuring particle mass, organic/inorganic fractions of particles, the chemical components and other relevant factors, and then use receptor modeling for source apportionment of the particulate matter. We have done measurements at street level and urban background in Copenhagen, Denmark, to determine the origin of different sizes of particulate matter and the toxic organic compounds connected to these particles. We also did measurements in a small village with less traffic and more residential wood combustion for a comparison between traffic and wood combustion generated pollution. Our results show a significant amount of particulate matter coming from non local sources and are dominated by long-range transported inorganic salts. The amount of these is highly depended on the wind direction and thus on the origin of the wind plume. The origin of the carcinogenic organic compound benzo(a)pyrene was found to be local combustion sources. To prevent events of high particulate matter concentration in Copenhagen, Denmark, a reduction of emission from the local traffic will only lead to a minor effect, since the majority of the

  17. Development of Particulates and Aerosols Research

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Rivera, Monica

    2005-01-01

    During the past year several accomplishments were made for both the Particulate Matter Characterization and Measurement System, (PMCMS) and PAGEMS projects. The PAGEMS focus is to measure particulate emissions as a function of combustor parameters such as inlet temperature, inlet pressure and fuel air ratio. These measurements are used to evaluate combustor performance in hopes of correlating particulate emissions with engine conditions. These measurements have taken place at in-house NASA combustor facilities and off-site facilities. Ths work is unique because particulate measurements at high- pressure conditions are not commonly made. Some calibration of the PAGEMS instrumentation was done as well as minor modifications to the PAGEMS plumbing setup. These led to measurement improvements. The instrumentation and measurement process for PAGEMS was assessed and new instruments such as a thermodenuder, thermal mass flow meters and a cyclone separator were purchased to improve the PAGEMS instrumentation and measurement process. A worksheet was created to simulate varying inlet conditions to the DMA. This worksheet allows the user to assess the error in the measurements when certain conditions exist. Two technical papers were written with the PAGEMS team for the EXCAVATE field project. A paper was also reviewed for an in house publication. Also data was processed and analyzed for another field project (PAX) and will be part of a third PAGEMS paper. Accomplishments were also made with the PMCMS project. The calibration of the radial differential mobility analyzer, (RDMA) in the particle sizing system in the PMCMS was completed and provided satisfactory results. The voltages used for the RDMA depending on the particle of interest were corrected. The measurement capability of the PMCMS was increased by replacing the MetOne CPC with a TSI CPC. Lastly, assistance was provided to three college summer students with calibration of their particulate equipment and Monica Rivera

  18. Electrically heated particulate filter preparation methods and systems

    SciTech Connect

    Gonze, Eugene V

    2012-01-31

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

  19. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter (PM... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities... particulate matter to a control device. (b) Affected facilities must meet the fugitive emission limits...

  20. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter (PM... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities... particulate matter to a control device. (b) Affected facilities must meet the fugitive emission limits...

  1. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter (PM... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities... particulate matter to a control device. (b) Affected facilities must meet the fugitive emission limits...

  2. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter (PM... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities... particulate matter to a control device. (b) Affected facilities must meet the fugitive emission limits...

  3. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities... particulate matter to a control device. (b) Affected facilities must meet the fugitive emission limits...

  4. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  5. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  6. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  7. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  8. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  9. 40 CFR 60.342 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  10. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  11. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and...

  12. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  13. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.132... and Bronze Production Plants § 60.132 Standard for particulate matter. (a) On and after the date on... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022...

  14. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.402... Plants § 60.402 Standard for particulate matter. (a) On and after the date on which the performance test... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  15. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  16. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.132... and Bronze Production Plants § 60.132 Standard for particulate matter. (a) On and after the date on... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022...

  17. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  18. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  19. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  20. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  1. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  2. 40 CFR 60.342 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  3. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  4. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and...

  5. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  6. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  7. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  8. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  9. 40 CFR 60.682 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  10. 40 CFR 60.342 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  11. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  12. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.132... and Bronze Production Plants § 60.132 Standard for particulate matter. (a) On and after the date on... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022...

  13. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.402... Plants § 60.402 Standard for particulate matter. (a) On and after the date on which the performance test... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  14. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  15. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  16. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  17. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  18. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.122... Smelters § 60.122 Standard for particulate matter. (a) On and after the date on which the performance test... furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  19. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  20. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  1. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  2. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  3. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  4. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  5. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  6. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  7. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  8. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  9. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  10. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  11. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  12. 40 CFR 60.182 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  13. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  14. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  15. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  16. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  17. 40 CFR 60.142a - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  18. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  19. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  20. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  1. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  2. 40 CFR 60.272a - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  3. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.122... Smelters § 60.122 Standard for particulate matter. (a) On and after the date on which the performance test... furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  4. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.122... Smelters § 60.122 Standard for particulate matter. (a) On and after the date on which the performance test... furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  5. 40 CFR 60.402 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.402... Plants § 60.402 Standard for particulate matter. (a) On and after the date on which the performance test... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  6. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  7. 40 CFR 60.472 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  8. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  9. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  10. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  11. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  12. 40 CFR 60.682 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  13. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.122... Smelters § 60.122 Standard for particulate matter. (a) On and after the date on which the performance test... furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  14. 40 CFR 60.472 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  15. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  16. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  17. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  18. 40 CFR 60.682 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  19. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  20. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  1. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  2. 40 CFR 60.122 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.122... Smelters § 60.122 Standard for particulate matter. (a) On and after the date on which the performance test... furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  3. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  4. 40 CFR 60.92 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  5. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  6. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  7. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  8. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.132... and Bronze Production Plants § 60.132 Standard for particulate matter. (a) On and after the date on... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022...

  9. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  10. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  11. 40 CFR 60.472 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  12. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  13. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and...

  14. 40 CFR 60.132 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.132... and Bronze Production Plants § 60.132 Standard for particulate matter. (a) On and after the date on... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022...

  15. 40 CFR 60.272 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  16. 40 CFR 60.282 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  17. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  18. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  19. 40 CFR 60.162 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  20. 40 CFR 60.262 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  1. 40 CFR 60.172 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  2. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  3. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  4. 40 CFR 60.142 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  5. Particulate bioluininescence in dinoflagellates: dissociation and partial reconstitution.

    PubMed

    Fuller, C W; Kreiss, P; Seliger, H H

    1972-09-01

    With the same extraction conditions used for Gonyaulax polyedra, soluble and particulate bioluminescence can be isolated from two additional species, Pyrodinium bahamense and Pyrocystis lunula. We have been able, for all three species, to dissociate soluble luciferin and luciferase from the particulate system. Luciferin can be incorporated into both reacted and unreacted particulate systems. PMID:17780988

  6. A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.; Kim, W.; Sivathanu, Yudaya

    2007-01-01

    One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described.

  7. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  8. Particulate Concentration Levels in Chinatown, Oakland, California

    NASA Astrophysics Data System (ADS)

    Chen, B.; Yeung, A.; Yu, J. F.

    2007-12-01

    Chinatown is located near the center of the busy business district of downtown Oakland, California. It is one of the most inhabited and congested areas in the City of Oakland, averaging 4,000 vehicles and 3,000 pedestrians per hour at a key intersection in the center of the neighborhood. Particles produced by automobiles and construction can settle into the bronchi of lungs and induce asthma attacks, irritate cardiovascular tissue, and possibly lead to lung cancer and death. Particulate pollution is a serious problem that is estimated to cause between 20,000 and 50,000 deaths per year in the US alone. Hence, evaluation of the air quality of the Chinatown neighborhood is important, because it helps to address issues that are of great concern to residents of the area. The primary goal of our project was to measure particulate concentration levels at various intersections in Oakland's Chinatown to determine if the air quality met U.S. EPA standards, and to take note of any trends that may occur over a period of months. We were primarily concerned with particles that are 2.5 micrometers diameter and smaller, as smaller particles are easily inhaled and directly affect the respiratory system. We were interested in identifying any intersections that may have had significantly higher levels than other intersections. Using a map of Chinatown, we chose 12 intersections and made measurements at these points over the course of six months, beginning in February and ending in July of 2007. Particulate matter measurements were made using a FLUKE 893 Particle Counter. Measurements recorded on the first day of our study, February 4, 2007, which was the day of an annual street festival, yielded the highest values for particulate matter concentration in our dataset. This was followed by a significant drop in concentration the following week, and then a gradual increase of concentration as the months progressed. No one location yielded values significantly higher than any other, and

  9. Particulate contaminant relocation during shuttle ascent

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1986-01-01

    The dislodgement, venting, and redeposition of particles on a surface in the shuttle bay by the vibroacoustic, gravitational, and aerodynamic forces present during shuttle ascent have been investigated. The particles of different sizes which are displaced, vented, and redistributed have been calculated; and an estimate of the increased number of particles on certain surfaces and the decrease on others has been indicated. The average sizes, velocities, and length of time for certain particles to leave the bay following initial shuttle doors opening and thermal tests have been calculated based on indirect data obtained during several shuttle flights. Suggestions for future measurements and observations to characterize the particulate environment and the techniques to limit the in-orbit particulate contamination of surfaces and environment have been offered.

  10. Continuous measurement of diesel particulate emissions

    SciTech Connect

    Cha, S.; Black, F.; King, F.

    1988-01-01

    Evaluation of emerging diesel-particulate emissions control technology will require analytical procedures capable of continuous measurement of transient organic and elemental carbon emissions. Procedures based on the flame ionization properties of organic carbon and the opacity or light extinction properties of elemental carbon are described. The instrumentation provided adequate time resolution to observe the transient concentrations associated with typical automobile driving patterns. Accuracy and precision are evaluated by comparing integrated average results to measurements, using classical gravimetric filtration techniques. Emissions from two diesel passenger cars with substantially different chemical compositions are examined. Mass-specific extinction coefficients are developed using the Beer-Lambert Law and a simplified linear model that proved adequate for particulate concentrations typical of diluted passenger-car exhaust.

  11. Atmospheric particulate analysis using angular light scattering

    NASA Technical Reports Server (NTRS)

    Hansen, M. Z.

    1980-01-01

    Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.

  12. Innovations in high-temperature particulate filtration

    SciTech Connect

    Lippert, T.

    1997-05-01

    Fluidized-bed combustion and coal gasification expose sensitive equipment, such as high-speed turbines, to hot combustion offgases. In order to prevent erosion, corrosion, and other damage to sensitive equipment, such systems now incorporate high-temperature particulate filters. One device often considered for such applications uses a design similar to a baghouse (i.e., multiple banks of porous filter bags that remove particulate from gas streams). In this case, however, instead of polyester or teflon fabric, the filter elements are made of rigid ceramic or similar materials. These devices are sometimes called `candle filters,` and the individual ceramic filter elements are frequently called `candles.` Three high-temperature applications of candle filters are described here. 2 refs., 3 figs.

  13. Face crack reduction strategy for particulate filters

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2012-01-31

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  14. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  15. Apparatus for measuring surface particulate contamination

    DOEpatents

    Woodmansee, Donald E.

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  16. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    SciTech Connect

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  17. Sensor Technologies for Particulate Detection and Characterization

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.

    2008-01-01

    Planned Lunar missions have resulted in renewed attention to problems attributable to fine particulates. While the difficulties experienced during the sequence of Apollo missions did not prove critical in all cases, the comparatively long duration of impending missions may present a different situation. This situation creates the need for a spectrum of particulate sensing technologies. From a fundamental perspective, an improved understanding of the properties of the dust fraction is required. Described here is laboratory-based reference instrumentation for the measurement of fundamental particle size distribution (PSD) functions from 2.5 nanometers to 20 micrometers. Concomitant efforts for separating samples into fractional size bins are also presented. A requirement also exists for developing mission compatible sensors. Examples include provisions for air quality monitoring in spacecraft and remote habitation modules. Required sensor attributes such as low mass, volume, and power consumption, autonomy of operation, and extended reliability cannot be accommodated by existing technologies.

  18. Toxicity of inhaled traffic related particulate matter

    NASA Astrophysics Data System (ADS)

    Gerlofs-Nijland, Miriam E.; Campbell, Arezoo; Miller, Mark R.; Newby, David E.; Cassee, Flemming R.

    2009-02-01

    Traffic generated ultrafine particulates may play a major role in the development of adverse health effects. However, little is known about harmful effects caused by recurring exposure. We hypothesized that repeated exposure to particulate matter results in adverse pulmonary and systemic toxic effects. Exposure to diesel engine exhaust resulted in signs of oxidative stress in the lung, impaired coagulation, and changes in the immune system. Pro-inflammatory cytokine levels were decreased in some regions of the brain but increased in the striatum implying that exposure to diesel engine exhaust may selectively aggravate neurological impairment. Data from these three studies suggest that exposure to traffic related PM can mediate changes in the vasculature and brain of healthy rats. To what extent these changes may contribute to chronic neurodegenerative or vascular diseases is at present unclear.

  19. Effects of particulate air pollution on asthmatics

    SciTech Connect

    Perry, G.B.; Chai, H.; Dickey, D.W.; Jones, R.H.; Kinsman, R.A.; Morrill, C.G.; Spector, S.L.; Weiser, P.C.

    1983-01-01

    Twenty-four asthmatic subjects in Denver were followed from January through March 1979, a three-month period in which Denver air pollution levels are generally high and variable. Dichotomous, virtual impactor samplers provided daily measurements (micrograms/m3) of inhaled particulate matter (total mass, sulfates, and nitrates) for coarse (2.5--15 micrograms in aerodynamic diameter) and fine fractions (less than 2.5 micrometers). Carbon monoxide, sulfur dioxide, ozone, temperature, and barometric pressure were also measured. Twice daily measurements of each subject's peak expiratory flow rates, use of as-needed aerosolized bronchodilators, and report of airways obstruction symptoms characteristic of asthma were tested for relationships to air pollutants using a random effects model across subjects. During the time actually observed, there were very few days in which high levels of suspended particulates were recorded. Of the environmental variables studied, only fine nitrates were associated with increased symptom reports and increased aerosolized bronchodilator usage.

  20. Self-Cleaning Particulate Prefilter Media

    NASA Technical Reports Server (NTRS)

    Weber, Olivia; Lalwani, San-jiv; Sharma, Anjal

    2012-01-01

    A long-term space mission requires efficient air revitalization performance to sustain the crew. Prefilter and particulate air filter media are susceptible to rapid fouling that adversely affects their performance and can lead to catastrophic failure of the air revitalization system, which may result in mission failure. For a long-term voyage, it is impractical to carry replacement particulate prefilter and filter modules due to the usual limitations in size, volume, and weight. The only solution to this problem is to reagentlessly regenerate prefilter and filter media in place. A method was developed to modify the particulate prefilter media to allow them to regenerate reagentlessly, and in place, by the application of modest thermocycled transverse or reversed airflows. The innovation may allow NASA to close the breathing air loop more efficiently, thereby sustaining the vision for manned space exploration missions of the future. A novel, self-cleaning coatings technology was developed for air filter media surfaces that allows reagentless in-place regeneration of the surface. The technology grafts thermoresponsive and nonspecific adhesion minimizing polymer nanolayer brush coatings from the prefilter media. These polymer nanolayer brush architectures can be triggered to contract and expand to generate a "pushing-off" force by the simple application of modestly thermocycled (i.e. cycling from ambient cabin temperature to 40 C) air streams. The nonspecific adhesion-minimizing properties of the coatings do not allow the particulate foulants to adhere strongly to the filter media, and thermocycled air streams applied to the media allow easy detachment and in-place regeneration of the media with minimal impact in system downtime or astronaut involvement in overseeing the process.

  1. Generator powered electrically heated diesel particulate filter

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  2. Recent developments in particulate-based vaccines.

    PubMed

    Perrie, Yvonne; Kirby, Daniel; Bramwell, Vincent W; Mohammed, Afzal R

    2007-01-01

    Vaccines remain a key tool in the defence against major diseases. However, in the development of vaccines a trade off between safety and efficacy is required with newer vaccines, based on sub-unit proteins and peptides, displaying improved safety profiles yet suffering from low efficacy. Adjuvants can be employed to improve their potency, but currently there are only a limited number of adjuvant systems licensed for clinical use. Of the new adjuvants being investigated, particulate systems offer several advantages including: passive targeting to the antigen-presenting cells within the immune system, protection against adjuvant degradation, and ability for sustained antigen release. There has been a range of particulate vaccine delivery systems outlined in recent patents including polymer-based microspheres (which are generally more focused on the use of synthetic polymers, in particular the polyesters) and surfactant-based vesicles. Within these formulations, several patented systems are exploiting the use of cationic lipids which, despite their limitations in gene therapy, clearly offer strong potential as adjuvants. Within this review, the current range of particulate system technologies being investigated as potential adjuvants are discussed with regard to both their respective advantages and the potential hurdles which must be overcome for such systems to be converted into successful pharmaceutical products. PMID:19075879

  3. Prediction of particulate contamination on aperture window

    NASA Technical Reports Server (NTRS)

    Lee, Aleck L.; Fong, Michael C.

    1994-01-01

    This paper presents an analysis to predict the effects of light scattering by surface particles on the sensor window of a missile during ascent flight. The particulate contaminant distribution on the window is calculated by tallying the number of particles in a set of size ranges. The particulate contamination at the end of the mission is predicted by adding the contributions from the events of ground and flight operations. The surface particle redistributions caused by vibroacoustically induced surface acceleration was found to contribute the most of the particulate surface contamination. The analytical surface obscuration calculation with a set of particle counts was compared to the results of image analyzer measurement. The analytical results, which were calculated with a given function of particle shape depending on the size, were more conservative than the measurement. A scattering calculation using a verified BSDF model showed that the scattering was less than 0.001 at 20 off the direction of the incident light in the mid IR wavelength when the surfaces were at Level 300 initially.

  4. Differential spectroscopic imaging of particulate explosives residue

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Hô, Nicolas

    2008-04-01

    We present experimental results showing transmission and reflection imaging of approximately 100 μg quantities of particulate explosives residue using a commercial uncooled microbolometer infrared camera and CO II laser differential wavelength illumination. Fine particulates may be generated during bomb-making activities and these particulates can tenaciously adhere to packing material, as well as to the clothing or skin of the bomb maker and could be detectable during transportation. A rapid screening method that detects this residue can serve as a first-line screening method in conjunction with more sensitive, but invasive, approaches. Explosives exhibit absorption features in the mid-infrared molecular fingerprint region that spans 3 to 15 μm, which can be probed with many high-brightness sources such as fixed wavelength and tunable quantum cascade lasers, CO II, CO, and OPO lasers. Commercial uncooled microbolometer cameras typically have detection sensitivity from 7.5 to 13 μm, spanning an absorption region for explosives detection with adequate signal-to-noise ratio. By illuminating a target on and off its absorption wavelengths, ratio images of suspected residue can be obtained without any sample preparation or cooperation and contact with the target. Our proof-of-principle experiment employed tunable CO II lasers, with a tuning range from 9.2 to 10.6 μm, overlapping minor absorption features of RDX and Tetryl.

  5. Cometary particulate analyzer design definition study

    NASA Technical Reports Server (NTRS)

    Utterback, N. G.

    1981-01-01

    A concept for remotely determining the relative abundance of elements contained in cometary particulates collected by a spacecraft was conducted with very encouraging results. The technique utilizes a short high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser-produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. A prototype analyzer system was designed, constructed, and tested. Results show that: (1) energy-time focus performs as predicted in improving resolution; (2) power densities sufficient to produce usable ionization efficiencies can be obtained; (3) complex alloys such as stainless steel can be analyzed; and (4) a tiny, simple and reliable laser used in the demonstration easily meets spacecraft power and mass limitations. A mass resolution of 150 was experimentally demonstrated at mass 108, and an analytical extrapolation predicts a resolution sufficient to separate masses 250 and 251.

  6. Propagation behavior of permeability reduction in heterogeneous porous media due to particulate transport

    NASA Astrophysics Data System (ADS)

    Xu, Jianping

    2016-04-01

    In this letter we explore the propagation behavior of permeability reduction due to particulate transport in heterogeneous porous media. By simulating an advection-dispersion–based model we find that an attenuating sequence exists in terms of the propagation of particle concentration, permeability reduction and heterogeneity perturbation. The advancing speed of the fronts of the mentioned physical quantities attenuates successively from const to \\text{const}(1/n)1/t1-1/n to \\text{const}1/t (where n > 1 and t denotes time) regardless of the heterogeneity patterns. Then we move on to discuss the micro-dynamics of the propagation sequence, involving how it originates and how it connects with the macroscopic results. Moreover, exploiting the propagation mechanism enables us to know the condition under which we can apply the hypothesis of media homogeneity to describe the behavior of the particulate transport system in porous media.

  7. Measurement of the effects of particulate contamination on X-ray reflectivity

    NASA Technical Reports Server (NTRS)

    Slane, P.; Mclaughlin, E. R.; Schwartz, D. A.; Van Speybroeck, L. P.; Bilbro, J. W.

    1989-01-01

    Because particles of sizes larger than a few tenths microns adversely affect high resolution X-ray telescopes by scattering and absorbing X-rays, the cleanliness required to maintain the about 1 percent overall calibration precision desired for the Advanced X-ray Astrophysics Facility (AXAF) is being investigated. At the grazing angles used for the AXAF mirrors, each particle shadows a surface area about 100 times its geometric area, necessitating glass occlusion specifications much more stringent than typically stipulated for visible-light particulate contamination. On test flats coated with gold, controlled levels of contamination have been deposited spanning the range from 5 x 10 to the -5th to 0.005 fractional area covered, and the absorption component of extinction has been measured over a range of grazing angles and X-ray energies to verify the predicted effects of particulate contamination.

  8. Characterizing the origins of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Wagstrom, Kristina Michelle

    When developing policy targeted at decreasing air pollution, it is essential that we have a strong understanding of when and where the pollution originated. Towards this goal, we have implemented and evaluated two different source attribution schemes in PMCAMx, a three-dimensional atmospheric chemical transport model. The two schemes, an online (OPSA) and offline version (PSAT), are both designed for computational efficiency and the ability to track source contributions to primary and secondary particulate matter. The two versions showed good agreement with each other and with more accurate, computationally demanding methods. The off-line algorithm (Particulate Source Apportionment Technology, PSAT) is simpler to implement, has a lower computational cost and is suitable for a range of source apportionment studies. We have utilized this algorithm to study the age distribution of atmospheric particulate matter mass in space and time. The average calculated ages are on the order of a few days for particulate matter near the ground, but are highly variable in space and time. Primary aerosol species had average ages of approximately 24 hours over this polluted continental region while the average ages for secondary species were 48-72 hours near the surface. As expected, the average age of all aerosol components increases vertically in the atmosphere. Age increases rapidly away from the sources of aerosol and its precursors and for non-volatile species it increases with particle size. PSAT is an excellent tool for the study of source-receptor relationships. We have studied the extent of pollutant transport in the Eastern United States using two approaches. The first PSAT-based approach is focused on source regions and the second is focused on receptor regions. For the source region focused approach, transport of pollutants is quantified by tracking the emissions from these regions. For the receptor region focused approach, PSAT tracks the pollutants emitted from a series

  9. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines.

    PubMed

    Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen

    2015-05-01

    The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations. PMID:25743879

  10. Particulate trap system for engine exhaust using electrically powered regeneration

    SciTech Connect

    Rao, V.D.N.; Wade, W.R.; Aimone, M.G.

    1986-01-07

    This patent describes an apparatus for removing oxidizable particulates from an automotive engine having a driven output part, and consists of: a) a particulate filter trap disposed in such stream; b) electrically heated elements proximate to the filter to promote oxidation of particulates collected in the filter; c) an alternator for converting the motion of the engine driven output part to a supply of electrical energy which can be connected to the elements and effective to heat the elements to at least the incineration temperature of the particulates while the engine is at least at an idle condition; d) electrically actuated means for diverting the stream of exhaust gases away from at least a portion of the filter trap and for delayedly admitting a flow of a fluid medium effective to transfer heat between the elements and collected particulates and to supply oxygen for supporting oxidation of the particulates.

  11. Methods and apparatus for handling or treating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  12. Estimates of Particulate Mass in Multi Canister Overpacks (MCO)

    SciTech Connect

    SLOUGHTER, J.P.

    2000-02-16

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulates that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage.

  13. Comparison of frozen and freeze-dried particulate bone allografts.

    PubMed

    Malinin, Theodore; Temple, H Thomas

    2007-10-01

    Freeze-dried and frozen particulate bone allografts are used interchangeably on the assumption that the biologic behavior of these grafts is similar. Dissimilarities in biologic behavior and differences in the rate and extent of bone incorporation of freeze-dried and frozen particulate grafts were demonstrated in a comparative study using a non-human primate model. Freeze-dried particulate allografts induced new bone formation and healing of the osseous defects much faster than the frozen allografts. PMID:17658506

  14. Dynamical constraint on particulate sizes for Saturn's B ring spokes

    SciTech Connect

    Eplee, R.E. Jr.; Smith, B.A.

    1987-03-01

    The exponential charge decay time for particulates constituting the spokes in Saturn's B ring is presently proposed as a dynamical time scale for their evolution. Mean particulate radius is determined to be 0.01 + or - 0.03 microns, on the basis of a consideration of solar UV photoemission as the charge decay mechanism which leads to the determination of a dynamical constraint that can be placed on the particulate sizes. 15 references.

  15. Diesel particulate filter regeneration via resistive surface heating

    DOEpatents

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  16. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  17. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  18. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  19. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  20. 40 CFR 60.62 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.62... Plants § 60.62 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton)....

  1. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  2. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  3. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  4. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  5. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  6. Managing particulates in cell therapy: Guidance for best practice.

    PubMed

    Clarke, Dominic; Stanton, Jean; Powers, Donald; Karnieli, Ohad; Nahum, Sagi; Abraham, Eytan; Parisse, Jean-Sebastien; Oh, Steve

    2016-09-01

    The intent of this article is to provide guidance and recommendations to cell therapy product sponsors (including developers and manufacturers) and their suppliers in the cell therapy industry regarding particulate source, testing, monitoring and methods for control. This information is intended to help all parties characterize the processes that generate particulates, understand product impact and provide recommendations to control particulates generated during manufacturing of cell therapy products. PMID:27426934

  7. Shielded regeneration heating element for a particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  8. X-Ray Absorption Characterization of Diesel Exhaust Particulates

    SciTech Connect

    Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

    1999-11-18

    We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

  9. Flight prototype regenerative particulate filter system development

    NASA Technical Reports Server (NTRS)

    Green, D. C.; Garber, P. J.

    1974-01-01

    The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.

  10. Neutron Imaging of Diesel Particulate Filters

    SciTech Connect

    Strzelec, Andrea; Bilheux, Hassina Z; FINNEY, Charles E A; Daw, C Stuart; Foster, Prof. Dave; Rutland, Prof. Christopher J.; Schillinger, Burkhard; Schulz, Michael

    2009-01-01

    This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

  11. Polarimetric discrimination of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk; Gregory, Don

    2012-06-01

    A polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection from 300 to 1100 nm has been constructed and tested. Exploratory research has been conducted which may lead to the standoff detection of bio-aerosols in the atmosphere. The polarization properties of bsubtilis (surrogate for anthrax spore) have been compared to ambient particulate matter species such as pollen, dust and soot (all sampled onto microscope slides) and differentiating features have been identified. The application of this technique for the discrimination of bio-aerosol from background clutter has been demonstrated.

  12. Electrically heated particulate filter with reduced stress

    DOEpatents

    Gonze, Eugene V.

    2013-03-05

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  13. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M.

    1998-11-19

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  14. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  15. Particulate filtration for sorbent-based H2 storage

    NASA Astrophysics Data System (ADS)

    van Hassel, Bart A.; Karra, Jagadeswara R.

    2016-01-01

    A method was developed for sizing the particulate filter that can be used inside a sorption-based onboard hydrogen storage system for light-duty vehicles. The method is based on a trade-off between the pressure drop across the particulate filter (during the fill of the H2 storage tank or during its discharge while driving) and the effect of this pressure drop on the usable amount of H2 gas from the H2 storage system. The permeability and filtration efficiency of the particulate filters (in the absence and presence of MOF-5 particulates) was quantified in this study, with an emphasis on meeting DOE's H2 purity requirements.

  16. The Effect of Viewing Order of Macroscopic and Particulate Visualizations on Students' Particulate Explanations

    ERIC Educational Resources Information Center

    Williamson, Vickie M.; Lane, Sarah M.; Gilbreath, Travis; Tasker, Roy; Ashkenazi, Guy; Williamson, Kenneth C.; Macfarlane, Ronald D.

    2012-01-01

    A prior study showed that students best make predictions about the outcome of opening a valve between two flasks containing a fluid or vacuum when they view both a demonstration video and a particulate animation, but the study showed no influence from the order in which these visualizations were used. The purpose of this current research was to…

  17. MODELING FINE PARTICULATE MASS AND VISIBILITY USING THE EPA REGIONAL PARTICULATE MODEL

    EPA Science Inventory

    Particulate matter in the atmosphere can adversely impact air quality and human health, as well as significantly affect the environment. articles in the submicrometer size range, when inhaled, may pose certain health hazards. articles in this size range also scatter light, causin...

  18. Advances in drying: Volume 4

    SciTech Connect

    Mujumdar, A.S.

    1987-01-01

    Topics covered in this volume include recent thoughts in modeling of drying phenomena, use of computers in rational design of drying particulates, recent advances in drying of wood, and heat/mass transfer phenomena in drying of solids. As the readers will no doubt notice, special effort is made to ensure the truly international nature of the contents of this serial publication. As existing knowledge on drying and dryers becomes more widely and readily accessible, it is expected that more and more dryers will be designed rationally rather than built solely with the benefit of empiricism.

  19. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  20. Method of forming particulate materials for thin-film solar cells

    DOEpatents

    Eberspacher, Chris; Pauls, Karen Lea

    2004-11-23

    A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.

  1. Analysis of particulates on tape lift samples

    NASA Astrophysics Data System (ADS)

    Moision, Robert M.; Chaney, John A.; Panetta, Chris J.; Liu, De-Ling

    2014-09-01

    Particle counts on tape lift samples taken from a hardware surface exceeded threshold requirements in six successive tests despite repeated cleaning of the surface. Subsequent analysis of the particle size distributions of the failed tests revealed that the handling and processing of the tape lift samples may have played a role in the test failures. In order to explore plausible causes for the observed size distribution anomalies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to perform chemical analysis on collected particulates. SEM/EDX identified Na and S containing particles on the hardware samples in a size range identified as being responsible for the test failures. ToF-SIMS was employed to further examine the Na and S containing particulates and identified the molecular signature of sodium alkylbenzene sulfonates, a common surfactant used in industrial detergent. The root cause investigation suggests that the tape lift test failures originated from detergent residue left behind on the glass slides used to mount and transport the tape following sampling and not from the hardware surface.

  2. Adsorption of aluminium by stream particulates.

    PubMed

    Tipping, E; Ohnstad, M; Woof, C

    1989-01-01

    An experimental study was made of the adsorption of aluminium by fine particulates from Whitray Beck, a hill stream in NW England. Adsorption increased with Al(3) activity, pH and concentration of particles, and could be quantitatively described by the empirical equation: [Formula: see text] [particles] where square brackets indicate concentrations, curly brackets, activities, and alpha, beta and gamma are constants with values of 5.14x10(-10) (mol litre(-1))(2.015) (g particles litre(-1))(-1), 0.457, and 1.472, respectively. For the experimental data, the equation gave a correlation ratio of 0.99. The equation accounts reasonably well for the adsorption of Al by particulates from seven other streams. In applying the equation, it must be borne in mind that the desorption kinetics of Al depend on pH, and rapid reversibility (<15min) can only be assumed for pHor=10%) of total monomeric Al. PMID:15092454

  3. Device for removing particulates in exhaust gas

    SciTech Connect

    Shinsei, K.; Takada, H.

    1986-11-18

    A device is described for removing particulates from a flow of exhaust has exhausted from a diesel engine before the flow of exhaust gas is exhausted to the outside atmosphere, comprising: a particulate filter having a filter inlet; a regenerative burner for producing combustion gas, having a burner outlet, the regenerating burner including a housing having a first closed end and a second open end and defining a combustion chamber therein. An injection nozzle is disposed at the closed end to inject a fuel and air mixture into the combustion chamber, and an ignition plug is disposed at the closed end to be adjacent to the injection nozzle; and means, including only one exhaust gas conduit connected to the filter inlet for directing the flow of exhaust gas thereto, for concurrently directing the flow of exhaust gas, and all of the combustion gas produced by the regenerating burner from the burner outlet into the filter through the exhaust gas conduit and the filter inlet.

  4. Particulate distribution function evolution for ejecta transport

    SciTech Connect

    Hammerberg, James Edward; Plohr, Bradley J

    2010-01-01

    The time evolution of the ejecta distribution function in a gas is discussed in the context of the recent experiments of W. Buttler and M. Zellner for well characterized Sn surfaces. Evolution equations are derived for the particulate distribution function when the dominant gas-particle interaction in is particulate drag. In the approximation of separability of the distribution function in velocity and size, the solution for the time dependent distribution function is a Fredholm integral equation of the first kind whose kernel is expressible in terms of the vacuum time dependent velocity distribution function measured with piezo probes or Asay foils. The solution of this equation in principle gives the size distribution function. We discuss the solution of this equation and the results of the Buttler - Zellner experiments. These suggest that correlations in velocity and size are necessary for a complete description of the transport dala. The solutions presented also represent an analytic test problem for the calculated distribution function in ejecta transport implementations.

  5. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues

    NASA Astrophysics Data System (ADS)

    Varrica, D.; Bardelli, F.; Dongarrà, G.; Tamburo, E.

    2013-01-01

    Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate matter PM10 and PM2.5 were obtained combining several well established and advanced characterization techniques, such as scanning electron microscopy - energy dispersive spectrometry (SEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron radiation X-ray absorption spectroscopy (SR-XAS). The advantage of SR-XAS is that samples do not undergo any chemical treatment prior to measurements, thus excluding possible alterations. These analyses revealed that the samples of wheel rims dust, road dust, and atmospheric particulate matter are composed by an admixture of Sb(III) and Sb(V) in different relative abundances. Brake linings turned out to be composed by Sb(III) oxide (Sb2O3) and stibnite (Sb2S3). Stibnite was also detected in some of the particulate matter samples. The obtained data suggest that Sb2S3 during the brake abrasion process is easily decomposed forming more stable compounds such as antimony mixed oxidic forms. Sb redox speciation, in particular and well studied circumstances, may enhance the potential and selectivity of this element as a tracer of motor vehicle emissions in apportioning studies.

  6. A teacher as researcher study of high school chemistry student ideas about the particulate nature of water

    NASA Astrophysics Data System (ADS)

    Kruckeberg, Robert Fredrick

    The objective of this study was to advance the pedagogical content knowledge base for teaching high school chemistry by conducting qualitative research on students' scientific understanding of water prior to, during, and after formal instruction on the particulate nature of matter. The study was conducted within a constructivist theoretical framework, with an emphasis on John Dewey's pragmatic social constructivism. The teacher-as-researcher conducted three sets of clinical interviews based on three related contexts: representation of water in the liquid state, interaction of water with a solute, and water vaporizing and condensing. Interviews and class work were analyzed to determine the extent to which students used the particulate nature of matter to reorganize their understanding of water. Findings present student responses in terms of four different aspects of the particulate model, where students frequently emphasized certain aspects of the model to the exclusion of others. These aspects were identified as "Simple Particles," "Mechanical Kinetic," "Differential Chemical", and "Electrostatic Interactive." Students exhibited significant difficulty in extending micro-mechanical aspects of the model into an electrostatic-interactive understanding of water. Applications of the particulate model were often highly context dependent. Students showed a variety of unique, alternative interpretations of the particulate nature of water that were supported by rich qualitative interview responses. Student difficulties understanding the particulate nature of water were attributed to alternative conceptions prior to instruction as well as the content and sequencing of the traditional biology-chemistry-physics science curriculum. The study recommends changes in curriculum sequencing, improved instruction in the nature of science and scientific models, and the need for introducing students to ideas in physics, especially electrostatics, prior to the study of introductory

  7. 40 CFR 92.128 - Particulate handling and weighing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Particulate handling and weighing. 92.128 Section 92.128 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.128 Particulate handling and weighing. (a) At...

  8. 40 CFR 92.128 - Particulate handling and weighing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Particulate handling and weighing. 92.128 Section 92.128 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.128 Particulate handling and weighing. (a)...

  9. 40 CFR 92.128 - Particulate handling and weighing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Particulate handling and weighing. 92.128 Section 92.128 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.128 Particulate handling and weighing. (a)...

  10. Process for off-gas particulate removal and apparatus therefor

    DOEpatents

    Carl, Daniel E.

    1997-01-01

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

  11. Process for off-gas particulate removal and apparatus therefor

    DOEpatents

    Carl, D.E.

    1997-10-21

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  12. DEVELOPMENTS IN PARTICULATE CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper discusses recent developments in particulate control for coal-fired power plants. The developments are responding to a double challenge to conventional coal-fired power plant emissions control technology: (1) lower particulate emissions require more efficient control de...

  13. Genotoxic activity of particulate material in petroleum refinery effluents

    SciTech Connect

    Metcalfe, C.D.; Sonstegard, R.A.; Quilliam, M.A.

    1985-08-01

    The purpose of this study was to evaluate the genotoxic hazard associated with the discharge of suspended particulates in oil refinery effluents. Particulate extracts were tested by in vitro assays for mutagenic (Ames test) and clastogenic (sister chromatid exchange assay) activity, both with and without mammalian microsomal activation.

  14. The Relocation of Particulate Contamination During Space Flight

    NASA Technical Reports Server (NTRS)

    Barengoltz, J.; Edgars, D.

    1975-01-01

    A computer simulation program to model the redistribution of particulate contaminants on a spacecraft after launch is developed. The component models for particulate adhesion, meteoroid impact, and electrostatic forces are described and intermediate results are presented. The results of a sample calculation show that the recontamination process is important.

  15. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  16. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  17. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  18. 40 CFR 52.1880 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met because...

  19. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  20. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  1. Method for immobilizing particulate materials in a packed bed

    DOEpatents

    Even, W.R. Jr.; Guthrie, S.E.; Raber, T.N.; Wally, K.; Whinnery, L.L.; Zifer, T.

    1999-02-02

    The present invention pertains generally to immobilizing particulate matter contained in a packed bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that (a) the particulate retains its essential chemical nature, (b) the local movement of the particulate particles is not unduly restricted, (c) bulk powder migration and is prevented, (d) physical and chemical access to the particulate is unchanged over time, and (e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of an individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport. 4 figs.

  2. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  3. 40 CFR 52.427 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nonattainment area has attained the 1997 annual PM2.5 NAAQS. This determination, in accordance with 40 CFR 51... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based...

  4. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  5. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  6. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  7. 40 CFR 52.332 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....332, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10...

  8. 40 CFR 52.1880 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met because...

  9. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  10. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  11. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  12. 40 CFR 52.427 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... area has attained the 1997 annual PM2.5 NAAQS. This determination, in accordance with 40 CFR 51.1004(c... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter...: Particulate matter. Determination of attainment. EPA has determined, as of May 16, 2012, that based on 2007...

  13. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  14. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  15. Method for removing particulate matter from a gas stream

    DOEpatents

    Postma, Arlin K.

    1984-01-01

    Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

  16. 40 CFR 52.1341 - Control strategy: particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... This determination, in accordance with 40 CFR 51.1004(c), suspends the requirements for this area to... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: particulate matter... Control strategy: particulate matter. Determination of Attainment. EPA has determined, as of May 23,...

  17. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted...

  18. 40 CFR 52.477 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  19. 40 CFR 52.332 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Editorial Note: For Federal Register citations affecting § 52.332, see the List of CFR Sections Affected... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10...

  20. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...