Science.gov

Sample records for pfp wastewater sampling

  1. WASTEWATER SAMPLING, TRANSFER AND CONDITIONING SYSTEM

    EPA Science Inventory

    This report describes the construction and field evaluation of an automatic on-line hardware system for reliably sampling, transferring, and conditioning various wastewater-treatment process streams such that the resulting transferred and conditioned samples are suitable for inte...

  2. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  3. Wilsonville wastewater sampling program. Final report

    SciTech Connect

    1983-10-01

    As part of its contrast to design, build and operate the SRC-1 Demonstration Plant in cooperation with the US Department of Energy (DOE), International Coal Refining Company (ICRC) was required to collect and evaluate data related to wastewater streams and wastewater treatment procedures at the SRC-1 Pilot Plant facility. The pilot plant is located at Wilsonville, Alabama and is operated by Catalytic, Inc. under the direction of Southern Company Services. The plant is funded in part by the Electric Power Research Institute and the DOE. ICRC contracted with Catalytic, Inc. to conduct wastewater sampling. Tasks 1 through 5 included sampling and analysis of various wastewater sources and points of different steps in the biological treatment facility at the plant. The sampling program ran from May 1 to July 31, 1982. Also included in the sampling program was the generation and analysis of leachate from SRC product using standard laboratory leaching procedures. For Task 6, available plant wastewater data covering the period from February 1978 to December 1981 was analyzed to gain information that might be useful for a demonstration plant design basis. This report contains a tabulation of the analytical data, a summary tabulation of the historical operating data that was evaluated and comments concerning the data. The procedures used during the sampling program are also documented.

  4. Handbook for sampling and sample preservation of water and wastewater. Report for 1978-1981

    SciTech Connect

    Berg, E.L.

    1992-05-01

    Personnel from Armstrong Laboratory (AL) Water Quality Function found this EPA publication to be an excellent source for sampling and sample preservation of water and wastewater. The information found in this document should assist base Bioenvironmental Engineers in all aspects of water sampling. Sampling, Flow, Measurements, Wastewater sampling, Sediment sampling, Statistical approach to sampling, Ground water sampling, Drinking water Sampling, Sludge sampling.

  5. HANDBOOK FOR SAMPLING AND SAMPLE PRESERVATION OF WATER AND WASTEWATER

    EPA Science Inventory

    The four basic factors which affect the quality of environmental data are Sample Collection, Preservation, Analyses, and Data Recording. Improper action in any one of these areas will result in poor data from which poor judgements are certain. Therefore, this research program was...

  6. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs).

    PubMed

    Ren, Lijiao; Siegert, Michael; Ivanov, Ivan; Pisciotta, John M; Logan, Bruce E

    2013-05-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2 A/m(2) (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. PMID:23567698

  7. System Design Description PFP Thermal Stabilization

    SciTech Connect

    RISENMAY, H.R.

    2000-04-25

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures.

  8. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: Is PFP itself a predictor for subsequent ACL injury?

    PubMed Central

    Myer, Gregory D; Ford, Kevin R; Di Stasi, Stephanie L; Foss, Kim D Barber; Micheli, Lyle J; Hewett, Timothy E

    2014-01-01

    Background Identifying risk factors for knee pain and anterior cruciate ligament (ACL) injury can be an important step in the injury prevention cycle. Objective We evaluated two unique prospective cohorts with similar populations and methodologies to compare the incidence rates and risk factors associated with patellofemoral pain (PFP) and ACL injury. Methods The ‘PFP cohort’ consisted of 240 middle and high school female athletes. They were evaluated by a physician and underwent anthropometric assessment, strength testing and three-dimensional landing biomechanical analyses prior to their basketball season. 145 of these athletes met inclusion for surveillance of incident (new) PFP by certified athletic trainers during their competitive season. The ‘ACL cohort’ included 205 high school female volleyball, soccer and basketball athletes who underwent the same anthropometric, strength and biomechanical assessment prior to their competitive season and were subsequently followed up for incidence of ACL injury. A one-way analysis of variance was used to evaluate potential group (incident PFP vs ACL injured) differences in anthropometrics, strength and landing biomechanics. Knee abduction moment (KAM) cut-scores that provided the maximal sensitivity and specificity for prediction of PFP or ACL injury risk were also compared between the cohorts. Results KAM during landing above 15.4 Nm was associated with a 6.8% risk to develop PFP compared to a 2.9% risk if below the PFP risk threshold in our sample. Likewise, a KAM above 25.3 Nm was associated with a 6.8% risk for subsequent ACL injury compared to a 0.4% risk if below the established ACL risk threshold. The ACL-injured athletes initiated landing with a greater knee abduction angle and a reduced hamstrings-to-quadriceps strength ratio relative to the incident PFP group. Also, when comparing across cohorts, the athletes who suffered ACL injury also had lower hamstring/quadriceps ratio than the players in the PFP

  9. Potential toxic effects of aircraft de-icers and wastewater samples containing these compounds.

    PubMed

    Mohiley, A; Franzaring, J; Calvo, O C; Fangmeier, A

    2015-09-01

    One of the major problems of airport operation is the impact of pollution caused by runoff waters. Runoff waters at an airport may contain high concentrations of different contaminants resulting from various activities of its operation. High quantities of aircraft de-icing/anti-icing fluids are used annually at airports worldwide. Aircraft de-icers and anti-icers may have negative environmental impacts, but their effects on aquatic organisms are virtually unknown. In order to address this issue, aircraft de-icers, pavement de-icers and wastewater samples were obtained from a regional airport. To evaluate the toxicity of wastewater samples and aircraft de-icing/anti-icing fluids (ADAFs), two bio-tests were performed: the Lemna growth inhibition test according to OECD guideline 221 and the luminescent bacteria test according to ISO guideline 11348-2. In the Lemna growth inhibition test, phytotoxicity was assessed using the endpoints frond number and frond area. The luminescent bacteria test involved the marine bacterium Vibrio fischeri. The estimates of effective concentrations (EC50) values were determined using the free software R and the "drc" library. Aquatic plants and marine bacteria showed a higher sensitivity towards ADAFs than to wastewater samples. Experiments showed that aircraft de-icing/anti-icing fluids and wastewater samples were relatively more toxic towards Lemna gibba L. in comparison to V. fischeri. PMID:25925142

  10. Engineering report (conceptual design) PFP solution stabilization

    SciTech Connect

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  11. Eukaryotic viruses in wastewater samples from the United States

    USGS Publications Warehouse

    Symonds, E.M.; Griffin, Dale W.; Breitbart, M.

    2009-01-01

    Human fecal matter contains a large number of viruses, and current bacterial indicators used for monitoring water quality do not correlate with the presence of pathogenic viruses. Adenoviruses and enteroviruses have often been used to identify fecal pollution in the environment; however, other viruses shed in fecal matter may more accurately detect fecal pollution. The purpose of this study was to develop a baseline understanding of the types of viruses found in raw sewage. PCR was used to detect adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses in raw sewage collected throughout the United States. Adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples and 25% and 33% of final effluent samples, respectively. Enteroviruses and noroviruses were detected in 75% and 58% of raw sewage samples, respectively, and both viral groups were found in 8% of final effluent samples. This study showed that adenoviruses, enteroviruses, noroviruses, and picobirnaviruses are widespread in raw sewage. Since adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples, they are potential markers of fecal contamination. Additionally, this research uncovered previously unknown sequence diversity in human picobirnaviruses. This baseline understanding of viruses in raw sewage will enable educated decisions to be made regarding the use of different viruses in water quality assessments. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  12. Critical review on the stability of illicit drugs in sewers and wastewater samples.

    PubMed

    McCall, Ann-Kathrin; Bade, Richard; Kinyua, Juliet; Lai, Foon Yin; Thai, Phong K; Covaci, Adrian; Bijlsma, Lubertus; van Nuijs, Alexander L N; Ort, Christoph

    2016-01-01

    Wastewater-based epidemiology (WBE) applies advanced analytical methods to quantify drug residues in wastewater with the aim to estimate illicit drug use at the population level. Transformation processes during transport in sewers (chemical and biological reactors) and storage of wastewater samples before analysis are expected to change concentrations of different drugs to varying degrees. Ignoring transformation for drugs with low to medium stability will lead to an unknown degree of systematic under- or overestimation of drug use, which should be avoided. This review aims to summarize the current knowledge related to the stability of commonly investigated drugs and, furthermore, suggest a more effective approach to future experiments. From over 100 WBE studies, around 50 mentioned the importance of stability and 24 included tests in wastewater. Most focused on in-sample stability (i.e., sample preparation, preservation and storage) and some extrapolated to in-sewer stability (i.e., during transport in real sewers). While consistent results were reported for rather stable compounds (e.g., MDMA and methamphetamine), a varying range of stability under different or similar conditions was observed for other compounds (e.g., cocaine, amphetamine and morphine). Wastewater composition can vary considerably over time, and different conditions prevail in different sewer systems. In summary, this indicates that more systematic studies are needed to: i) cover the range of possible conditions in sewers and ii) compare results more objectively. To facilitate the latter, we propose a set of parameters that should be reported for in-sewer stability experiments. Finally, a best practice of sample collection, preservation, and preparation before analysis is suggested in order to minimize transformation during these steps. PMID:26618807

  13. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    PubMed

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data

  14. Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples

    DOE PAGESBeta

    Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.; McAlister, Daniel R.

    2016-03-24

    A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.

  15. System Design Description PFP Thermal Stabilization

    SciTech Connect

    RISENMAY, H.R.

    2000-01-27

    DOE has authorized in their letter of August 2, 1999, the operation of these three furnaces, quote ''Operation of the three uncompleted muffle furnaces (No.3, No.4, and No.5) located in Room 235B is authorized, using the same feed charge limits as the two existing furnaces (No.1, and No.2) located in Room 230C,''. The above statement incorrectly refers to Room 230C whereas the correct location is Room 230A. The current effort is directed to initiate the operation and to complete the design activities DOE authorized the operation of the furnaces based on their Safety Evaluation Report (SER). Based on analogy and the principle of similarity, the risks and consequences of accidents both onsite and offsite due to operation of three furnaces are not significantly larger than those already evaluated with the two operating furnaces. Thermal stabilization operations and the material of feed for furnaces in Glovebox HA-21 I are essentially the same as those currently being stabilized in furnaces in Glovebox HC-21 C. Therefore the accident analysis has utilized identical accident scenarios in evaluation and no additional failure modes are introduced by HA-21 I muffle furnace operation that would enhance the consequences of accidents. Authorization Basis documents as referenced below (PFP FSAR and DOE Letter authorizing the operation) appear to contradict each other, i.e. one allows and authorizes the operation and the other imposes the restriction on the operation. The purpose of the PFP FSAR restrictions was to review thoroughly the design and installation of three furnaces and perform acceptance testing before approving the startup for operation. With the experience of operating the two furnaces in Glovebox HC-21C, and the knowledge of risks and hazards the facility operation, the plant is adequately prepared to operate these additional furnaces. ECN 653595 has been prepared to incorporate operation of the muffle furnaces in Glovebox HA-21 I into the PFP FSAR.

  16. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    PubMed

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments. PMID:26256920

  17. PLUTONIUM FINISHING PLANT (PFP) STABILIZATION & PACKAGING PROJECT

    SciTech Connect

    GERBER, M.S.

    2004-01-14

    Fluor Hanford is pleased to submit the Plutonium Finishing Plant (PFP) Stabilization and Packaging Project (SPP) for consideration by the Project Management Institute as Project of the Year for 2004. The SPP thermally stabilized and/or packaged nearly 18 metric tons (MT) of plutonium and plutonium-bearing materials left in PFP facilities from 40 years of nuclear weapons production and experimentation. The stabilization of the plutonium-bearing materials substantially reduced the radiological risk to the environment and security concerns regarding the potential for terrorists to acquire the non-stabilized plutonium products for nefarious purposes. The work was done In older facilities which were never designed for the long-term storage of plutonium, and required working with materials that were extremely radioactive, hazardous, pyrophoric, and In some cases completely unique. I n some Instances, one-of-a-kind processes and equipment were designed, installed, and started up. The SPP was completed ahead of schedule, substantially beating all Interim progress milestone dates set by the Defense Nuclear Facilities Safety Board (DNFSB) and in the Hanford Site's Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA), and finished $1-million under budget.

  18. A DNA pooling based system to detect Escherichia coli virulence factors in fecal and wastewater samples

    PubMed Central

    Luz María Chacón, J; Lizeth Taylor, C; Carmen Valiente, A; Irene Alvarado, P; Ximena Cortés, B

    2012-01-01

    The availability of a useful tool for simple and timely detection of the most important virulent varieties of Escherichia coli is indispensable. To this end, bacterial DNA pools which had previously been categorized were obtained from isolated colonies as well as selected in terms of utilized phenotype; the pools were assessed by two PCR Multiplex for the detection of virulent E. coli eaeA, bfpA, stx1, stx2, ipaH, ST, LT, and aatA genes, with the 16S gene used as DNA control. The system was validated with 66 fecal samples and 44 wastewater samples. At least one positive isolate was detected by a virulent gene among the 20 that were screened. The analysis of fecal samples from children younger than 6 years of age detected frequencies of 25% LT positive strains, 8.3% eae, 8.3% bfpA, 16.7% ipaH, as well as 12.5 % aatA and ST. On the other hand, wastewater samples revealed frequencies of 25.7% eaeA positive, 30.3% stx1, 15.1% LT and 19.7% aatA. This study is an initial step toward carrying out epidemiological field research that will reveal the presence of these bacterial varieties. PMID:24031959

  19. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  20. Occurrence of bacteria producing broad-spectrum beta-lactamases and qnr genes in hospital and urban wastewater samples.

    PubMed

    Röderová, Magdaléna; Sedláková, Miroslava Htoutou; Pudová, Vendula; Hricová, Kristýna; Silová, Romana; Imwensi, Peter Eghonghon Odion; Bardoň, Jan; Kolář, Milan

    2016-04-01

    The aims were to investigate the level of antibiotic-resistant bacteria in hospital and urban wastewater and to determine the similarity of isolates obtained from wastewater and hospitalized patients. Wastewater samples were collected in September 2013 and 2014. After identification using MALDI-TOF MS, beta-lactamase production was determined by relevant phenotypic tests. Genes responsible for the production of single beta-lactamase groups and Qnr proteins were established. The epidemiological relationship of the isolates from wastewater and hospitalized patients was determined by PFGE. A total of 51 isolates of enterobacteria were obtained. Overall, 45.1% of them produced broad-spectrum beta-lactamases. Genes encoding TEM, SHV, CTX-M, CIT, DHA and EBC types of enzymes and Qnr proteins were detected. No broad-spectrum beta-lactamase production was confirmed in the urban wastewater treatment plant. The most important finding was the detection of two identical isolates of K. pneumoniae in 2013, one from a patient's urinary catheter and the other from a wastewater sample. PMID:27196551

  1. Gas chromatographic-mass spectrometric fragmentation study of phytoestrogens as their trimethylsilyl derivatives: Identification in soy milk and wastewater samples

    USGS Publications Warehouse

    Ferrer, I.; Barber, L.B.; Thurman, E.M.

    2009-01-01

    An analytical method for the identification of eight plant phytoestrogens (biochanin A, coumestrol, daidzein, equol, formononetin, glycitein, genistein and prunetin) in soy products and wastewater samples was developed using gas chromatography coupled with ion trap mass spectrometry (GC/MS-MS). The phytoestrogens were derivatized as their trimethylsilyl ethers with trimethylchlorosilane (TMCS) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). The phytoestrogens were isolated from all samples with liquid-liquid extraction using ethyl acetate. Daidzein-d4 and genistein-d4 labeled standards were used as internal standards before extraction and derivatization. The fragmentation patterns of the phytoestrogens were investigated by isolating and fragmenting the precursor ions in the ion-trap and a typical fragmentation involved the loss of a methyl and a carbonyl group. Two characteristic fragment ions for each analyte were chosen for identification and confirmation. The developed methodology was applied to the identification and confirmation of phytoestrogens in soy milk, in wastewater effluent from a soy-milk processing plant, and in wastewater (influent and effluent) from a treatment plant. Detected concentrations of genistein ranged from 50,000 ??g/L and 2000 ??g/L in soy milk and in wastewater from a soy-plant, respectively, to 20 ??g/L and <1 ??g/L for influent and effluent from a wastewater treatment plant, respectively. ?? 2009 Elsevier B.V.

  2. Electromembrane extraction of gonadotropin-releasing hormone agonists from plasma and wastewater samples.

    PubMed

    Nojavan, Saeed; Bidarmanesh, Tina; Mohammadi, Ali; Yaripour, Saeid

    2016-03-01

    In the present study, for the first time electromembrane extraction followed by high performance liquid chromatography coupled with ultraviolet detection was optimized and validated for quantification of four gonadotropin-releasing hormone agonist anticancer peptides (alarelin, leuprolide, buserelin and triptorelin) in biological and aqueous samples. The parameters influencing electromigration were investigated and optimized. The membrane consists 95% of 1-octanol and 5% di-(2-ethylhexyl)-phosphate immobilized in the pores of a hollow fiber. A 20 V electrical field was applied to make the analytes migrate from sample solution with pH 7.0, through the supported liquid membrane into an acidic acceptor solution with pH 1.0 which was located inside the lumen of hollow fiber. Extraction recoveries in the range of 49 and 71% within 15 min extraction time were obtained in different biological matrices which resulted in preconcentration factors in the range of 82-118 and satisfactory repeatability (7.1 < RSD% < 19.8). The method offers good linearity (2.0-1000 ng/mL) with estimation of regression coefficient higher than 0.998. The procedure allows very low detection and quantitation limits of 0.2 and 0.6 ng/mL, respectively. Finally, it was applied to determination and quantification of peptides in human plasma and wastewater samples and satisfactory results were yielded. PMID:26799761

  3. Detection and Molecular Characterization of Aichivirus 1 in Wastewater Samples from Uruguay.

    PubMed

    Burutarán, L; Lizasoain, A; García, M; Tort, L F L; Colina, R; Victoria, M

    2016-03-01

    Aichivirus 1 (AiV-1) is an enteric virus with 30 nm in diameter, belonging to the genus Kobuvirus in the Picornaviridae family being a causative agent of gastroenteritis in humans. The transmission is via the fecal-oral route, through person to person contact, recreation in contaminated waters, or through the consumption of contaminated food or water. The aim of this study was to determine the frequency and the molecular characterization of AiV-1 in wastewater from Uruguay. Biweekly collections from March 2011 to February 2012 were performed in the cities of Bella Unión, Salto, Paysandú, and Fray Bentos, northwestern region of Uruguay. A total of 96 samples were collected; viruses were concentrated by ultracentrifugation, and AiV-1 was detected by using a nested PCR with primers directed to a conserved region (3CD junction) of the viral genome. A high frequency of AiV-1 (n = 54) was observed at all the cities analyzed mainly in the colder months of the year. AiV-1 was not evidenced as an appropriate viral fecal indicator since when compared with other previously detected enteric viruses, no correlation was observed. All 13 characterized AiV-1 belonged to the genotype B after the phylogenetic analysis performed with the sequences obtained from the first round PCR amplicon. This study demonstrates that AiV-1 is a frequently detected enteric viruses present in wastewater and excreted by infected persons in the northwestern region of Uruguay. PMID:26456918

  4. Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

    2014-01-01

    Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample

  5. GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments.

    PubMed

    Tohidi, Fatemeh; Cai, Zongwei

    2015-08-01

    A gas chromatography/mass spectrometry (GC/MS)-based method was developed for simultaneous determination of triclosan (TCS) and its degradation products including 2,4-dichlorophenol (2,4-DCP), 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD), and methyl triclosan (MTCS) in wastewater and sludge samples. The method provides satisfactory detection limit, accuracy, precision and recovery especially for samples with complicated matrix such as sewage sludge. Liquid-liquid extraction and accelerated solvent extraction (ASE) methods were applied for the extraction, and column chromatography was employed for the sample cleanup. Analysis was performed by GC/MS in the selected ion monitoring (SIM) mode. The method was successfully applied to wastewater and sludge samples from three different municipal wastewater treatment plants (WWTPs). Satisfactory mean recoveries were obtained as 91(±4)-106(±7)%, 82(±3)-87(±4)%, 86(±6)-87(±8)%, and 88(±4)-105(±3)% in wastewater and 88(±5)-96(±8)%, 84(±2)-87(±3)%, 84(±7)-89(±4)%, and 88(±3)-97(±5)% in sludge samples for TCS, 2,4-DCP, 2,8-DCDD, and MTCS, respectively. TCS degradation products were detected based on the type of the wastewater and sludge treatment. 2,8-DCDD was detected in the plant utilizing UV disinfection at the mean level of 20.3(±4.8) ng/L. 2,4-DCP was identified in chemically enhanced primary treatment (CEPT) applying chlorine disinfection at the mean level of 16.8(±4.5) ng/L). Besides, methyl triclosan (MTCS) was detected in the wastewater collected after biological treatment (10.7 ± 3.3 ng/L) as well as in sludge samples that have undergone aerobic digestion at the mean level of 129.3(±17.2) ng/g dry weight (dw). PMID:25810102

  6. THE INTEGRATION OF A PROPOSED ZONE CLOSURE APPROACH FOR THE PLUTONIUM FINISHING PLANT (PFP) DECOMMISSIONING & THE PFP ZONE HANFORD SITE WASHINGTON

    SciTech Connect

    HOPKINS, A.M.

    2005-02-23

    The Plutonium Finishing Plant (PFP) and associated processing facilities are located in the 200 area of the Hanford Site in Eastern Washington. This area is part of what is now called the Central Plateau. In order to achieve closure of the contaminated facilities and waste sites at Hanford on the Central Plateau (CP), a geographic re-districting of the area into zones has been proposed in the recently published Plan for Central Plateau Closure. One of the 22 zones proposed in the Central Plateau encompasses the PFP and ancillary facilities. Approximately eighty six buildings are included in the PFP Zone. This paper addresses the approach for the closure of the PFP Zone within the Central Plateau. The PFP complex of buildings forms the bulk of the structures in the PFP Zone. For closure of the above-grade portion of structures within the PFP complex, the approach is to remove them to a state called ''slab-on-grade'' per the criteria contained in PFP End Point Criteria document and as documented in action memoranda. For below-grade portions of the structures (such as below-grade rooms, pipe trenches and underground ducts), the approach is to remove as much residual contamination as practicable and to fill the void spaces with clean fill material such as sand, grout, or controlled density fill. This approach will be modified as planning for the waste sites progresses to ensure that the actions of the PFP decommissioning projects do not negatively impact future planned actions under the CERCLA. Cribs, settling tanks, septic tanks and other miscellaneous below-grade void spaces will either be cleaned to the extent practicable and filled or will be covered with an environmental barrier as determined by further studies and CERCLA decision documents. Currently, between two and five environmental barriers are proposed to be placed over waste sites and remaining building slabs in the PFP Zone.

  7. Linking mutagenic activity to micropollutant concentrations in wastewater samples by partial least square regression and subsequent identification of variables.

    PubMed

    Hug, Christine; Sievers, Moritz; Ottermanns, Richard; Hollert, Henner; Brack, Werner; Krauss, Martin

    2015-11-01

    We deployed multivariate regression to identify compounds co-varying with the mutagenic activity of complex environmental samples. Wastewater treatment plant (WWTP) effluents with a large share of industrial input of different sampling dates were evaluated for mutagenic activity by the Ames Fluctuation Test and chemically characterized by a screening for suspected pro-mutagens and non-targeted software-based peak detection in full scan data. Areas of automatically detected peaks were used as predictor matrix for partial least squares projections to latent structures (PLS) in combination with measured mutagenic activity. Detected peaks were successively reduced by the exclusion of all peaks with lowest variable importance until the best model (high R(2) and Q(2)) was reached. Peaks in the best model co-varying with the observed mutagenicity showed increased chlorine, bromine, sulfur, and nitrogen abundance compared to original peak set indicating a preferential selection of anthropogenic compounds. The PLS regression revealed four tentatively identified compounds, newly identified 4-(dimethylamino)-pyridine, and three known micropollutants present in domestic wastewater as co-varying with the mutagenic activity. Co-variance between compounds stemming from industrial wastewater and mutagenic activity supported the application of "virtual" EDA as a statistical tool to separate toxicologically relevant from less relevant compounds. PMID:26070082

  8. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP Project W-460

    SciTech Connect

    WEISS, E.V.

    2000-03-06

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

  9. XANES Speciation of P in Environmental Samples: An Assessment of Filter Media for on-Site Wastewater Treatment

    SciTech Connect

    Eveborn, D.; Gustafsson, J; Hesterberg, D; Hillier, S

    2009-01-01

    X-ray absorption near edge structure (XANES) spectroscopy is a useful technique for characterization of chemical species of phosphorus in complex environmental samples. To develop and evaluate bed filters as sustainable on-site wastewater treatment solutions, our objective in this study was to determine the chemical forms of accumulated phosphorus in a selection of promising filter materials: Filtralite P, Filtra P, Polonite, Absol, blast furnace slag, and wollastonite. Full-scale operational wastewater-treatment systems were sampled and in addition, filter samples collected from laboratory studies provided access to additional media and complementary samples. Phosphorus species were characterized using phosphorus K-edge XANES spectroscopy, complemented by X-ray powder diffraction (XRPD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). No systematic differences could be seen in the results between laboratory- and full-scale samples. All six filter media contained significant amounts of crystalline calcium phosphates. Some samples also contained amorphous calcium phosphate (>60% of total P in Absol). In Filtralite P and blast furnace slag, more than 35% of the accumulated phosphorus was associated with Fe or Al. Both the power and shortcomings of XANES analysis for characterizing P species in these filter media are discussed.

  10. CSER 99-001: PFP LAB Dentirating calciner

    SciTech Connect

    MILLER, E.M.; DOBBIN, K.D.

    1999-02-22

    A criticality safety evaluation report was prepared for the Plutonium Finishing Plant (PFP) laboratory denigrating calciner, located in Glovebox 188-1, that converts Pu(NO{sub 3}){sub 4} solutions to the high fired stable oxide PuO{sub 2}. Fissile mass limits and volume limits are set for the glovebox for testing operations and training operators using only nitric acid feed to a plutonium oxide bed in the calciner.

  11. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  12. LLD Determination for PFP Residues Using the ANTECH Calorimeters

    SciTech Connect

    WESTSIK, G.A.

    2003-07-07

    The Plutonium Finishing Plant (PFP) facility performs waste characterization measurements for disposal of transuranic waste (TRU) at the Waste Isolation Pilot Plant (WIPP). The WIPP's performance assessment requires monitoring and tracking of the following ten radionuclides in the waste that is accepted and disposed of at the WIPP facility. Activities and mass values must be reported for: {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 242}Pu, {sup 233}U, {sup 234}U, {sup 238}U, {sup 90}Sr and {sup 137}Cs on a payload container basis. In addition the system must be able to report other nuclides, which contribute to the FGE, decay heat or contribute to more than 95% of the total radiological hazard. PFP reports the activity and mass of these radionuclides when positively identified in any waste container. In situations where one of the 10 WIPP tracked radionuclides is not positively identified on a PFP assay, PFP either reports a ''zero'', indicating the nuclide was not positively identified in the waste assay and is not identified by the acceptable knowledge (AK), or ''PFP Residues using the ANTECH Calorimeters''. This revision addresses the LLD for all (AR-1, AR-5, AR-8, P-13, P-14, P-15, and Q-1) of the calorimeters. This revision also makes significant changes in the way in which the LLD is evaluated and reported. The primary change in the evaluation is from using base power measurements to using zero power measurements. This is because over time the base power can fluctuate do to seasonal variations in temperature as well as other effects. Basing the evaluation on the base power causes the LLD to be unacceptably high on some systems. Using the 0 power measurements is more consistent

  13. FY 1993 environmental sampling and analysis report for wastewater discharge at McMurdo Station, Antarctica

    SciTech Connect

    Crockett, A.B.

    1994-04-01

    Wastewater impact assessment at McMurdo has been or is being conducted by four organizations: Antarctic Support Associates (ASA), which conducts the effluent monitoring; Moss Landing Marine Laboratories, which conducts all of the benthic monitoring and most of the biological monitoring; Montana State University, which conducted water quality and water current measurements; and EG&G Idaho, which conducted water quality and sea ice monitoring. All four programs are interrelated and were needed to determine the impact of the wastewater discharge on the marine environment. This report summarizes the relevant monitoring work being conducted by Antarctic Support Associates, Moss Landing, and Montana State personnel, and specifically documents the results of EG&G Idaho`s efforts.

  14. Sampling and analysis of volatile organics emitted from wastewater treatment plant and drain system of an industrial science park.

    PubMed

    Wu, Ben-Zen; Feng, Tien-Zhi; Sree, Usha; Chiu, Kong-Hwa; Lo, Jiunn-Guang

    2006-08-18

    Volatile organic compounds (VOCs) were monitored in the different sections of a wastewater treatment plant (WWTP), the outlet of both the WWTP and rainfall water, and the downstream of the WWTP joining the river in the area or vicinity of an industrial science park located in Hsinchu, Taiwan. Levels of VOCs were determined by collecting air samples over several sampling points and analyzed using gas chromatography. Among VOCs identified in the drainage and effluent system in each season, acetone, isopropanol (IPA) and dimethyl sulfide (DMS) were the major emission species and maximum concentrations were 400.4, 22.8 and 641.2 ppbv, respectively. The ambient air and wastewater sample analysis from neighboring wastewater streams identified pollutants being discharged from unaccounted sources other than the industrial park. According to the 24h semi-continuous monitoring data (27/7/2002-29/7/2002), the total VOC concentration was an average of 93 ppbv (acetone contributed approximately 78%) with a dramatic variation during the day and night. The emission rate of measured VOCs estimated using fixed box model projected an average of 2-4 microg m(-2) h(-1)) during the day and 9-17 microg m(-2) h(-1) during the night. In addition, the isopleth maps show that the acetone and DMS emissions influence adversely the nearby residential area located at less than 100 m downwind from the plant. Eventually, based on this study, an on-line monitoring and alerting system could be built for a long-term performance, and with regular information on the varying pollutants over time construction of a green strategy and creation of a sustainable environment can be achieved. PMID:17723620

  15. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    SciTech Connect

    Kessler, S

    2009-04-21

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5, Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In

  16. Perfluorinated compounds in sediment samples from the wastewater canal of Pančevo (Serbia) industrial area.

    PubMed

    Beškoski, Vladimir P; Takemine, Shusuke; Nakano, Takeshi; Slavković Beškoski, Latinka; Gojgić-Cvijović, Gordana; Ilić, Mila; Miletić, Srdjan; Vrvić, Miroslav M

    2013-06-01

    Perfluoroalkyl sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs) were analyzed in sediment samples from the wastewater canal draining the industrial complex of Pančevo, Serbia (oil refinery, petrochemical plant, and fertilizer factory). The canal is directly connected to Europe's second largest river, the Danube, which drains its water into the Black Sea. Perfluorooctane sulfonate (PFOS) up to 5.7ngg(-1) dry weight (dw) and total Perfluorinated compounds (PFCs) up to 6.3ngg(-1) dw were detected. Compared to other reports, high levels of PFOS were found, even though PFCs are not used in the industrial production associated with this canal. The PFOS concentration in water was recalculated using the adsorption coefficient, KOC from literature. Using the average output of wastewater from the canal, a mass load of 1.38kg PFOS per year discharged in the Danube River has been calculated, which undoubtedly points to the contribution to global persistent organic pollution of surface waters originating from this industrial place. PMID:23415492

  17. Simultaneous determination of gallium and zinc in biological samples, wine, drinking water, and wastewater by derivative synchronous fluorescence spectrometry

    SciTech Connect

    Pozo, M.E.U.; de Torres, A.G.; Pavon, J.M.C.

    1987-04-15

    A simple, rapid, sensitive, and selective method for the simultaneous determination of gallium and zinc using derivative synchronous fluorescence spectrometry has been studied. This determination is based upon the formation of fluorescent complexes with salicylaldehyde thiocarbohydrazone (SATCH). The reaction is carried out at pH 4.7 in aqueous-ethanol medium (52% (v/v) ethanol). The use of second-derivative synchronous fluorescence spectrometry permits the simultaneous determination of gallium and zinc in the concentration intervals of 2-40 and 20-1500 ng/mL, respectively. The effect of interferences was studied. The method has been applied to the determination of gallium and zinc in biological samples (after destruction of the organic matter by using a HNO/sub 3/-H/sub 2/O/sub 2/ mixture), wine, drinking water, and wastewater.

  18. An automated headspace solid-phasemicroextraction followed by gas chromatography–mass spectrometry method to determine macrocyclic musk fragrances in wastewater samples.

    PubMed

    Vallecillos, Laura; Borrull, Francesc; Pocurull, Eva

    2013-11-01

    A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L−1 range between 0.75 and 5 ng L−1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n =5, 1,000 ng L−1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L−1) and WWTP B (12.29 μg L−1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (

  19. Time and Temperature Test Results for PFP Thermal Stabilization Furnaces

    SciTech Connect

    COMPTON, J.A.

    2000-08-09

    The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain

  20. Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream

    USGS Publications Warehouse

    Alvarez, D.A.; Stackelberg, P.E.; Petty, J.D.; Huckins, J.N.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.

    2005-01-01

    Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.

  1. CSER 96-028: PFP vault number 2 storage racks

    SciTech Connect

    Erickson, D.G., Westinghouse Hanford

    1996-12-01

    A nuclear criticality safety analysis has been performed to increase the approved plutonium mass limit for the Vault {number_sign}2 storage racks at PFP. There are three racks in the room with separate cubicles used to hold cans of plutonium oxide (PuO,). The racks were approved to hold up to 2.5 Kg of plutonium in each storage cubicle. The purpose of this CSER is to increase the limit to 4.4 Kg plutonium in PuO, per storage cubicle in one rack. The highest k{sub eff} calculated for all possible scenarios was 0.893 {+-} 0.003, which is well below the criticality safety limit of k{sub eff}= 0.935. Consequently, an increase of plutonium mass to 4.4 Kg per can is within acceptable safety limits.

  2. CSER 97-004: PFP production denitration calciner system

    SciTech Connect

    Hillesland, K.E.

    1997-09-11

    The plutonium stabilization program at the Plutonium Finishing Plant (PFP) includes conversion of acidic plutonium nitrate solution into plutonium oxide. Conversion is facilitated through use of a vertical calciner installed in Glovebox HC-23OC-2, which is located in RM 230C of this facility. This evaluation supports the Criticality Prevention Specification for the calcining process inside this glovebox. As the product of the calciner is a high density plutonium oxide, a number of limits are required to insure criticality safety. The containers allowed are product receiver vessels and 0.5 C slip lid cans and polyjars. The limits allow for two ``unit masses`` of 2 V total volume each, separated by a distance of at least 25.4 cm (10 in.). This evaluation allows for operation of the calciner for product densities not in excess of 5.5 g Pu/cm{sup 3}.

  3. CSER 95-005: PFP vertical denitration calciner

    SciTech Connect

    Geiger, J.L.

    1995-05-31

    The Vertical Denitrating Calciner system will stabilize certain unique solutions containing fissile salts by removing the water and nitrate ion to produce a more easily stored powder. This end is achieved by high-firing the solution in the calciner. The resultant calcine is distinguished by particles which are larger and denser than those produced by the more conventional oxalate precipitation process. This criticality safety evaluation report examines criticality safety for the denitration system, installed in glovebox 188-1 at PFP. The examination shows that, due to the incorporation of standard criticality safety design techniques, the glovebox can be maintained subcritical with minimal reliance on administrative controls. The examination also shows that, ignoring the necessary administrative controls can make a criticality possible in glovebox 188-1. Section 3.0 of this report lists the necessary administrative controls.

  4. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry.

    PubMed

    Caballo, C; Sicilia, M D; Rubio, S

    2015-03-01

    This manuscript describes, for the first time, the simultaneous enantioselective determination of ibuprofen, naproxen and ketoprofen in wastewater based on liquid chromatography tandem mass spectrometry (LC-MS/MS). The method uses a single-step sample treatment based on microextraction with a supramolecular solvent made up of hexagonal inverted aggregates of decanoic acid, formed in situ in the wastewater sample through a spontaneous self-assembly process. Microextraction of profens was optimized and the analytical method validated. Isotopically labeled internal standards were used to compensate for both matrix interferences and recoveries. Apparent recoveries for the six enantiomers in influent and effluent wastewater samples were in the interval 97-103%. Low method detection limits (MDLs) were obtained (0.5-1.2 ng L(-1)) as a result of the high concentration factors achieved in the microextraction process (i.e. actual concentration factors 469-736). No analyte derivatization or evaporation of extracts, as it is required with GC-MS, was necessary. Relative standard deviations for enantiomers in wastewater were always below 8%. The method was applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in influents and effluents from three wastewater treatment plants. All the values found for profen enantiomers were consistent with those previously reported and confirmed again the suitability of using the enantiomeric fraction of ibuprofen as an indicator of the discharge of untreated or poorly treated wastewaters. Both the analytical and operational features of this method make it applicable to the assessment of the enantiomeric fate of profens in the environment. PMID:25618675

  5. The gas chromatographic determination of volatile fatty acids in wastewater samples: evaluation of experimental biases in direct injection method against thermal desorption method.

    PubMed

    Ullah, Md Ahsan; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-04-11

    The production of short-chained volatile fatty acids (VFAs) by the anaerobic bacterial digestion of sewage (wastewater) affords an excellent opportunity to alternative greener viable bio-energy fuels (i.e., microbial fuel cell). VFAs in wastewater (sewage) samples are commonly quantified through direct injection (DI) into a gas chromatograph with a flame ionization detector (GC-FID). In this study, the reliability of VFA analysis by the DI-GC method has been examined against a thermal desorption (TD-GC) method. The results indicate that the VFA concentrations determined from an aliquot from each wastewater sample by the DI-GC method were generally underestimated, e.g., reductions of 7% (acetic acid) to 93.4% (hexanoic acid) relative to the TD-GC method. The observed differences between the two methods suggest the possibly important role of the matrix effect to give rise to the negative biases in DI-GC analysis. To further explore this possibility, an ancillary experiment was performed to examine bias patterns of three DI-GC approaches. For instance, the results of the standard addition (SA) method confirm the definite role of matrix effect when analyzing wastewater samples by DI-GC. More importantly, their biases tend to increase systematically with increasing molecular weight and decreasing VFA concentrations. As such, the use of DI-GC method, if applied for the analysis of samples with a complicated matrix, needs a thorough validation to improve the reliability in data acquisition. PMID:24745750

  6. Deactivation and decommissioning environmental strategy for the Plutonium Finishing Plant (PFP) Complex Hanford Nuclear Reservation

    SciTech Connect

    HOPKINS, A.M.

    2003-02-01

    The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during Plutonium Finishing Plant (PFP) stabilization, deactivation, and eventual dismantlement.

  7. Disposal of TRU Waste from the PFP in pipe overpack containers to WIPP Including New Security Requirements

    SciTech Connect

    HOPKINS, A.M.

    2003-02-01

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site, or a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, hanford incinerator ash and Sand, Slag and Crucible (SS and C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

  8. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    PubMed Central

    Sun, Weimin; Sun, Xiaoxu

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation. PMID:22327600

  9. Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005

    USGS Publications Warehouse

    Ferrell, G.M.

    2009-01-01

    Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

  10. Simultaneous Determination of Sildenafil and Tadalafil in Legal Drugs, Illicit/Counterfeit Drugs, and Wastewater Samples by High-Performance Liquid Chromatography.

    PubMed

    Fidan, Ali Kemal; Bakırdere, Sezgin

    2016-07-01

    A sensitive analytical method was developed for the simultaneous determination of sildenafil and tadalafil in legal drugs, illicit/counterfeit drugs, and wastewater samples. Chromatographic separation of two analytes was achieved on a C18 column with a mobile phase including 50 mM phosphate buffer at pH 6.0 and acetonitrile (35 + 65, v/v) at the flow rate of 1.0 mL/min. Analytes were separated from each other in 6 min with high resolution. LOD/LOQ values were calculated as 28/92 ng/mL for sildenafil citrate and 39/129 ng/mL for tadalafil. Calibration plots for both analytes were linear with correlation coefficients >0.9993. A validated method was successfully applied to legal and illicit erectile-dysfunction drug samples consumed in Istanbul, Turkey, and to wastewater samples. Nine different samples were analyzed for qualitative and quantitative measurement of their ingredients, and the results were compared with the values written on the labels of the drugs. The wastewater sample was also analyzed for its sildenafil and tadalafil content. To calculate the recoveries, a spiking experiment was performed and recovery rates for sildenafil and tadalafil were calculated as 101.30 ± 3.43 and 102.68 ± 1.59, respectively. PMID:27143116

  11. A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system.

    PubMed

    Rodrigues, Guilherme Dias; de Lemos, Leandro Rodrigues; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol; Minim, Luis Antonio; Coimbra, Jane Sélia dos Reis

    2010-01-15

    A greener and more sensitive spectrophotometric procedure has been developed for the determination of phenol and o-cresol that exploits an aqueous two-phase system (ATPS) using a liquid-liquid extraction technique. An ATPS is formed mostly by water and does not require organic solvent. Other ATPS components used in this study were the polymer, polyethylene oxide, and some salts (i.e., Li(2)SO(4), Na(2)SO(4) or K(2)HPO(4)+KOH). The method is based on the reaction between phenol, sodium nitroprusside (NPS) and hydroxylamine hydrochloride (HL) in an alkaline medium (pH 12.0), producing the complex anion [Fe(2)(CN)(10)](10-) that spontaneously concentrates in the top phase of the system. The linear range was 1.50-500microgkg(-1) (R>or=0.9997; n=8) with coefficients of variation equal to 0.38% for phenol and 0.30% for o-cresol (n=5). The method yielded limits of detection (LODs) of 1.27 and 1.88microgkg(-1) and limits of quantification (LOQs) of 4.22 and 6.28microgkg(-1) for phenol and o-cresol, respectively. Recoveries between 95.7% and 107% were obtained for the determination of phenol in natural water and wastewater samples. In addition, excellent agreement was observed between this new ATPS method and the standard 4-aminoantipyrine (4-AAP) method. PMID:20006065

  12. Electromembrane extraction (EME)--an easy, novel and rapid extraction procedure for the HPLC determination of fluoroquinolones in wastewater samples.

    PubMed

    Ramos-Payán, María; Villar-Navarro, Mercedes; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Angel

    2013-03-01

    For the first time, an electromembrane extraction combined with a HPLC procedure using diode array and fluorescence detection has been developed for the determination of seven widely used fluoroquinolones (FQs): marbofloxacin, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, gatifloxacin and grepafloxacin. The drugs were extracted from acid aqueous sample solutions (pH 5), through a supported liquid membrane consisting of 1-octanol impregnated in the walls of a S6/2 Accurel® polypropylene hollow fiber, to an acid (pH 2) aqueous acceptor solution inside the lumen of the hollow fiber. The main operational parameters were optimized, and extractions were carried out in 15 min using a potential of 50 V. Enrichment factors of 40-85 have been obtained using only 15 min of extraction time versus 330 min used in a previously proposed hollow-fiber liquid-phase microextraction procedure. The procedure allows low detection and quantitation limits of 0.005-0.07 and 0.007-0.15 μg L(-1), respectively. The proposed method was successfully applied to the FQs analysis in urban wastewaters. PMID:23307130

  13. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior silylation and gas chromatography.

    PubMed

    González, Alba; Avivar, Jessica; Cerdà, Víctor

    2015-09-25

    A new procedure for the extraction, preconcentration and simultaneous determination of the estrogens most used in contraception pharmaceuticals (estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol), cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA), is proposed. The developed system performs an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (in-syringe-MSA-DLLME) prior derivatization and gas chromatography (GC-MS). Different extraction (carbon tetrachloride, ethyl acetate, chloroform and trichloroethylene) and disperser solvents (acetone, acetonitrile and methanol) were tested. Chloroform and acetone were chosen as extraction and disperser solvent, respectively, as they provided the best extraction efficiency. Then, a multivariate optimization of the extraction conditions was carried out. Derivatization conditions were also studied to ensure the conversion of the estrogens to their respective trimethylsilyl derivatives. Low LODs and LOQs were achieved, i.e. between 11 and 82ngL(-1), and 37 and 272ngL(-1), respectively. Good values for intra and inter-day precision were obtained (RSDs≤7.06% and RSD≤7.11%, respectively). The method was successfully applied to wastewater samples. PMID:26319623

  14. Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction

    SciTech Connect

    Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J.

    1996-01-01

    Solid-phase microextraction (SPME) parameters were examined on water contaminated with hydrocarbons including benzene and alkylbenzenes, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs). Absorption equilibration times ranged from several minutes for low molecular weight compounds such as benzene to 5 h for high molecular weight compounds such as benzo[a]pyrene. Under equilibrium conditions, SPME analysis with GC/FID was linear over 3-6 orders of magnitude, with linear correlation coefficients (r{sup 2}) greater than 0.96. Experimentally determined FID detection limits ranged from nearly 30 ppt (w/w hydrocarbon/sample water) for high molecular weight PAHs (e. g., MW > 202) to nearly 1 ppb for low molecular weight aromatic hydrocarbons. Experimental distribution constants (K) were different with 100- and 7-{mu}m poly(dimethylsiloxane) fibers, and poor correlations with previously published values suggest that K depends on the fiber coating thickness and the sorbent preparation method. SPME analysis gave good quantitative performance with surface waters having high suspended sediment contents, as well as with coal gasification wastewater which contained matrix organics at 10{sup 6} -fold higher concentrations than the target aromatic hydrocarbons. Good agreement was obtained between a 45-min SPME and methylene chloride extraction for the determination of PAH concentrations in creosote-contaminated water. 17 refs., 5 figs., 6 tabs.

  15. Biological nutrient removal from dairy wastewater

    SciTech Connect

    Danalewich, J.R.; Papagiannis, T.G.; Gerards, R.; Vriens, L.; Belyea, R.; Tumbleson, M.E.; Raskin, L.

    1998-07-01

    The authors developed a synthetic wastewater which closely represents actual milk processing wastewater. The design of this synthetic wastewater was facilitated by the collection of composite wastewater samples from 15 milk processing plants in the Upper Midwest. These samples, milk, and milk products were analyzed for various chemical parameters. Based on these results, they diluted evaporated milk and cottage cheese, as well as a number of dry chemicals to create a synthetic wastewater. The concentrations in the resulting synthetic wastewater matched average concentrations of 15 composite wastewater samples. Four continuous-flow activated sludge treatment systems are currently being operated to evaluate biological nutrient removal using this synthetic wastewater as an influent.

  16. Determination of cyclic and linear siloxanes in wastewater samples by ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.

    PubMed

    Cortada, Carol; dos Reis, Luciana Costa; Vidal, Lorena; Llorca, Julio; Canals, Antonio

    2014-03-01

    A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L(-1). Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71 and 116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples. PMID:24468359

  17. Detection of Legionella spp. by a nested-PCR assay in air samples of a wastewater treatment plant and downwind distances in Isfahan

    PubMed Central

    Mirzaee, Seyyed Abbas; Nikaeen, Mahnaz; Hajizadeh, Yaghob; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-01-01

    Background: Wastewater contains a variety of pathogens and bio -aerosols generated during the wastewater treatment process, which could be a potential health risk for exposed individuals. This study was carried out to detect Legionella spp. in the bio -aerosols generated from different processes of a wastewater treatment plant (WWTP) in Isfahan, Iran, and the downwind distances. Materials and Methods: A total of 54 air samples were collected and analyzed for the presence of Legionella spp. by a nested- polymerase chain reaction (PCR) assay. A liquid impingement biosampler was used to capture bio -aerosols. The weather conditions were also recorded. Results: Legionella were detected in 6% of the samples, including air samples above the aeration tank (1/9), belt filter press (1/9), and 250 m downwind (1/9). Conclusion: The result of this study revealed the presence of Legionella spp. in air samples of a WWTP and downwind distance, which consequently represent a potential health risk to the exposed individuals. PMID:25802817

  18. Processing of Non-PFP Plutonium Oxide in Hanford Plants

    SciTech Connect

    Jones, Susan A.; Delegard, Calvin H.

    2011-03-10

    Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

  19. TEXTILE PLANT WASTEWATER TOXICITY

    EPA Science Inventory

    The paper gives results of a study to provide chemical and toxicological baseline data on wastewater samples collected from 32 textile plants in the U.S. Raw waste and secondary effluent wastewater samples were analyzed for 129 consent decree priority pollutants, effluent guideli...

  20. Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction.

    PubMed

    Langenfeld, J J; Hawthorne, S B; Miller, D J

    1996-01-01

    Solid-phase microextraction (SPME) parameters were examined on water contaminated with hydrocarbons including benzene and alkylbenzenes, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs). Absorption equilibration times ranged from several minutes for low molecular weight compounds such as benzene to 5 h for high molecular weight compounds such as benzo[a]pyrene. Under equilibrium conditions, SPME analysis with GC/FID was linear over 3-6 orders of magnitude, with linear correlation coefficients (r(2)) greater than 0.96. Experimentally determined FID detection limits ranged from ∼30 ppt (w/w hydrocarbon/sample water) for high molecular weight PAHs (e.g., MW > 202) to ∼1 ppb for low molecular weight aromatic hydrocarbons. Experimental distribution constants (K) were different with 100- and 7-μm poly(dimethylsiloxane) fibers, and poor correlations with previously published values suggest that K depends on the fiber coating thickness and the sorbent preparation method. The sensitivity of SPME analysis is not significantly enhanced by larger sample volumes, since increasing the water volume (e.g., from 1 to 100 mL) has little effect on the number of analyte molecules absorbed by the fiber, especially for compounds with K < 500. Water sample storage should utilize silanized glassware, since hydrocarbon losses up to 70% could be attributed to unsilanized glassware walls when samples were stored for 48 h. Hydrocarbon losses at part-per-billion concentrations also occurred with surface waters due to partitioning onto part-per-thousand concentrations of suspended solids. Quantitative determinations of aromatic and aliphatic hydrocarbons (e.g., in gasoline-contaminated water) can be performed using GC/MS with deuterated internal standard or standard addition calibration as long as the target components or standards had unique ions for quantitation or sufficient chromatographic resolution from interferences. SPME analysis gave good quantitative performance with

  1. Determination of organophosphorus fire retardants and plasticizers in wastewater samples using MAE-SPME with GC-ICPMS and GC-TOFMS detection.

    PubMed

    Ellis, Jenny; Shah, Monika; Kubachka, Kevin M; Caruso, Joseph A

    2007-12-01

    Determination of organophosphorus fire retardants and plasticizers at trace levels in wastewater is described. In this work, microwave assisted extraction (MAE) and solid-phase microextraction (SPME) are used for sample preparation to extract and preconcentrate the analytes, followed by analysis by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) for phosphorus-specific detection. Gas chromatography coupled to time of flight mass spectrometry (GC-TOF-MS) was used to confirm the organphosphorus fire retardants in wastewater. The detection limits of organophosphorus fire retardants (OPFRs) were 29 ng L(-1) for tri-n-butyl phosphate (TnBP), 45 ng for L(-1) for tris(2-butoxyethyl)phosphate (TBEP), and 50 ng L(-1) for tris(2-ethylhexyl)phosphate (TEHP). Optimized extraction conditions were performed at 65 degrees C for 30 min and with 10% NaCl. Application of MAE during the sample preparation prior to the SPME allowed the detection of tris(2-ethylhexyl) phosphate, which has been difficult to determine in previous work. Application of the method to wastewater samples resulted in detecting 3.1 microg L(-1) P from TnBP, 5.0 microg L(-1) P from TBEP, and 4.0 microg L(-1) P from TEHP. The presence of these compounds were also confirmed by SPME-GC-TOF-MS. PMID:18049771

  2. Purification and characterization of two functional forms of intracellular protease PfpI from the hyperthermophilic archaeon Pyrococcus furiosus

    SciTech Connect

    Halio, S.B.; Bauer, M.W.; Kelley, R.M.

    1997-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100{degrees}C by the fermentation of peptides and carbohydrates. From this organism, An intracellular protease was purified, previously designated PfpI (P. furiosus protease I). The protease contains exists in at least two functional conformations, which were purified separately. The predominant form from the purification (designated PfpI-C1) is a hexamer with a molecular mass of 124 {+-} 6 kDa (by gel filtration) and comprises about 90% of the total activity. The minor form (designated PfpI-C2) is trimeric with a molecular mass of 59 {+-} 3 kDa. PfpI-C1 hydrolyzed both basic and hydrophobic residues in the P1 position, indicating trypsin- and chymotrypsin-like specificities, respectively. The temperature optimum for Ala-Ala-Phe-7-amido-4-methylcoumarin (AAF-MCA) hydrolysis was {approximately}85{degrees}C both for purified PfpI-C1 and for proteolytic activity in P. furiosus cell extract. In contrast, the temperature optimum for PfpI prepared by incubating a cell extract of P. furiosus at 98{degrees}C in 1% sodium dodecyl sulfate for 24 h at 95 to 100{degrees}C, designated PfpI-H, was {approximately}100{degrees}C. Moreover, the half-life of activity of PfpI-C1 at 98{degrees}C was less than 30 min, in contrast to a value of more than 33 h measured for PfpI-H. PfpI-C1 appears to be a predominant serine-type protease in cell extracts but is converted in vitro, probably in part by deamination of Asn and Gln residues, to a more thermally stable form (PfpI-H) by prolonged heat treatment. The deamination hypothesis is supported by the differences in the measured pI values of PfpI-C1 (6.1) and PfpI-H (3.8). High levels of potassium phosphate (>0.5 mM) were found to extend the half-life of PfpI-C1 activity towards AAF-MCA by up to 2.5-fold at 90{degrees}C, suggesting that compatible solutes play an important role in the in vivo function of this protease. 43 refs., 6 figs., 2 tabs.

  3. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, The Philippines, and Myanmar.

    PubMed

    Watanabe, Yuta; Bach, Leu Tho; Van Dinh, Pham; Prudente, Maricar; Aguja, Socorro; Phay, Nyunt; Nakata, Haruhiko

    2016-05-01

    Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries. PMID:26304512

  4. The Pseudomonas aeruginosa pfpI gene plays an antimutator role and provides general stress protection.

    PubMed

    Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2009-02-01

    Hypermutator Pseudomonas aeruginosa strains, characterized by an increased spontaneous-mutation rate, are found at high frequencies in chronic lung infections. Hypermutability is associated with the loss of antimutator genes related to DNA repair or damage avoidance systems. Only a few antimutator genes have been described in P. aeruginosa, although there is some evidence that additional genes may be involved in naturally occurring hypermutability. In order to find new P. aeruginosa antimutator genes, we constructed and screened a library of random insertions in the PA14 strain. Some previously described P. aeruginosa and/or Escherichia coli antimutator genes, such as mutS, mutL, uvrD, mutT, ung, and mutY, were detected, indicating a good coverage of our insertional library. One additional mutant contained an insertion in the P. aeruginosa PA14-04650 (pfpI) gene, putatively encoding a member of the DJ-1/ThiJ/PfpI superfamily, which includes chaperones, peptidases, and the Parkinson's disease protein DJ-1a. The pfpI-defective mutants in both PAO1 and PA14 showed higher spontaneous mutation rates than the wild-type strains, suggesting that PfpI plays a key role in DNA protection under nonstress conditions. Moreover, the inactivation of pfpI resulted in a dramatic increase in the H(2)O(2)-induced mutant frequency. Global transcription studies showed the induction of bacteriophage Pf1 genes and the repression of genes related to iron metabolism, suggesting that the increased spontaneous-mutant frequency may be due to reduced protection against the basal level of reactive oxygen species. Finally, pfpI mutants are more sensitive to different types of stress and are affected in biofilm formation. PMID:19028889

  5. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    SciTech Connect

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  6. Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area

    NASA Astrophysics Data System (ADS)

    Rabbia, Virginia; Bello-Toledo, Helia; Jiménez, Sebastián; Quezada, Mario; Domínguez, Mariana; Vergara, Luis; Gómez-Fuentes, Claudio; Calisto-Ulloa, Nancy; González-Acuña, Daniel; López, Juana; González-Rocha, Gerardo

    2016-06-01

    Antibiotic resistance is a problem of global concern and is frequently associated with human activity. Studying antibiotic resistance in bacteria isolated from pristine environments, such as Antarctica, extends our understanding of these fragile ecosystems. Escherichia coli strains, important fecal indicator bacteria, were isolated on the Fildes Peninsula (which has the strongest human influence in Antarctica), from seawater, bird droppings, and water samples from inside a local wastewater treatment plant. The strains were subjected to molecular typing with pulsed-field gel electrophoresis to determine their genetic relationships, and tested for antibiotic susceptibility with disk diffusion tests for several antibiotic families: β-lactams, quinolones, aminoglycosides, tetracyclines, phenicols, and trimethoprim-sulfonamide. The highest E. coli count in seawater samples was 2400 cfu/100 mL. Only strains isolated from seawater and the wastewater treatment plant showed any genetic relatedness between groups. Strains of both these groups were resistant to β-lactams, aminoglycosides, tetracycline, and trimethoprim-sulfonamide.In contrast, strains from bird feces were susceptible to all the antibiotics tested. We conclude that naturally occurring antibiotic resistance in E. coli strains isolated from Antarctic bird feces is rare and the bacterial antibiotic resistance found in seawater is probably associated with discharged treated wastewater originating from Fildes Peninsula treatment plants.

  7. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    SciTech Connect

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  8. Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci of samples of wastewater and surface water in Tunisia.

    PubMed

    Ben Said, Leila; Klibi, Naouel; Lozano, Carmen; Dziri, Raoudha; Ben Slama, Karim; Boudabous, Abdellatif; Torres, Carmen

    2015-10-15

    One hundred-fourteen samples of wastewater (n=64) and surface-water (n=50) were inoculated in Slanetz-Bartley agar plates supplemented or not with gentamicin (SB-Gen and SB plates, respectively) for enterococci recovery. Enterococci were obtained from 75% of tested samples in SB media (72% in wastewater; 78% in surface-water), and 85 enterococcal isolates (one/positive-sample) were obtained. Enterococcus faecium was the most prevalent species (63.5%), followed by Enterococcus faecalis (20%), Enterococcus hirae (9.4%), Enterococcus casseliflavus (4.7%), and Enterococcus gallinarum/Enterococcus durans (2.4%). Antibiotic resistance detected among these enterococci was as follows [percentage/detected gene (number isolates)]: kanamycin [29%/aph(3')-IIIa (n=22)], streptomycin [8%/ant(6)-Ia (n=4)], erythromycin [44%/erm(B) (n=34)], tetracycline [18%/tet(M) (n=6)/tet(M)-tet(L) (n=9)], chloramphenicol [2%/cat(A) (n=1)], ciprofloxacin [7%] and trimethoprim-sulfamethoxazole [94%]. High-level-gentamicin resistant (HLR-G) enterococci were recovered from 15 samples in SB-Gen or SB plates [12/64 samples of wastewater (19%) and 3/50 samples of surface-water (6%)]; HLR-G isolates were identified as E. faecium (n=7), E. faecalis (n=6), and E. casseliflavus (n=2). These HLR-G enterococci carried the aac(6')-Ie-aph(2")-Ia and erm(B) genes, in addition to aph(3')-IIIa (n=10), ant(6)-Ia (n=9), tet(M) (n=13), tet(L) (n=8) and cat(A) genes (n=2). Three HLR-G enterococci carried the esp virulence gene. Sequence-types detected among HLR-G enterococci were as follows: E. faecalis (ST480, ST314, ST202, ST55, and the new ones ST531 and ST532) and E. faecium (ST327, ST12, ST296, and the new ones ST985 and ST986). Thirty-two different PFGE patterns were detected among 36 high-level-aminoglycoside-resistant enterococci recovered in water samples. Diverse genetic lineages of HLR-G enterococci were detected in wastewater and surface-water in Tunisia. Water can represent an important source for the

  9. Multianalyte method for the determination of pharmaceuticals in wastewater samples using solid-phase extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Dasenaki, Marilena E; Thomaidis, Nikolaos S

    2015-06-01

    A fast and sensitive multianalyte/multiclass high-performance reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous analysis of 89 pharmaceuticals in influent and effluent wastewater samples. The method developed consists of solid-phase extraction (SPE) using a hydrophilic-lipophilic-balanced polymer followed by LC-MS/MS with electrospray ionization in both positive mode and negative mode. The selected pharmaceuticals belong to different classes--analgesic/anti-inflammatory drugs, antibiotics, antiepileptics, β-adrenoceptor-blocking drugs, lipid-regulating agents, statins, and many others. The influence of the mobile phase composition on the sensitivity of the method, and the optimum conditions for SPE in terms of analyte recovery were extensively studied. Chromatographic separation was performed on an Atlantis T3 (100 mm × 2.1 mm, 3-μm) column with a gradient elution using methanol-0.01% v/v formic acid as the mobile phase in positive ionization mode determination and methanol-acetonitrile-1 mM ammonium formate as the mobile phase in negative ionization mode determination. Recoveries for most of the compounds ranged from 50 to 120%. Precision, expressed as relative standard deviations, was always below 15%, and the method detection limits ranged from 1.06 ng/L (4-hydroxyomeprazole) to 211 ng/L (metformin). Finally, the method developed was applied to the determination of target analytes in wastewater samples obtained from the Psyttalia wastewater treatment plant, Athens, Greece. Although SPE of pharmaceuticals from wastewater samples and their determination by LC-MS/MS is a well-established technique, the uniqueness of this study lies in the simultaneous determination of a remarkable number of compounds belonging to more than 20 drug classes. Moreover, the LC-MS/MS method has been thoroughly optimized so that maximum sensitivity is achieved for most of the compounds, making the

  10. Simultaneous detection of endocrine disrupting chemicals including conjugates in municipal wastewater and sludge with enhanced sample pretreatment and UPLC-MS/MS.

    PubMed

    Zhu, Bing; Ben, Weiwei; Yuan, Xiangjuan; Zhang, Yu; Yang, Min; Qiang, Zhimin

    2015-08-01

    The co-existence of free and conjugated estrogens and the interference from complex matrices often lead to largely variable detected concentrations and sometimes even negative removal efficiencies of typical endocrine disrupting chemicals (EDCs) in wastewater treatment plants (WWTPs). In this study, a highly selective and sensitive method was developed for simultaneous extraction, elution, and detection of 12 EDCs (i.e., 4 free estrogens, 6 conjugated estrogens, and 2 phenolic compounds) in municipal wastewater and sludge. Sample pretreatment and ultra-performance liquid chromatography-tandem mass spectrometry detection were optimized to improve the detection selectivity and sensitivity. The results indicate that the additional purification process was highly effective in reducing the matrix interference, and the limits of quantification reached as low as 0.04-2.2 ng L(-1) in wastewater and 0.05-4.9 ng g(-1) in sludge for all target EDCs. The developed method was successfully applied to explore the behavior of target EDCs in a local WWTP. The conjugates occupied a considerable portion (4.3-76.9% in molar ratio) of each related estrogen in the influent. Most of the target EDCs could not be completely removed in WWTPs, thus posing a potential threat to aquatic ecosystems. PMID:26161687

  11. A Four-Hour Yeast Bioassay for the Direct Measure of Estrogenic Activity in Wastewater without Sample Extraction, Concentration, or Sterilization

    PubMed Central

    Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.

    2010-01-01

    The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779

  12. PFP Commercial Grade Food Pack Cans for Plutonium Handling and Storage Critical Characteristics

    SciTech Connect

    BONADIE, E.P.

    2000-10-26

    This document specifies the critical characteristics for containers procured for Plutonium Finishing Plant's (PFP's) Vault Operations system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to perform its safety function.

  13. CSER 00-006 Storage of Plutonium Residue Containers in 55 Gallon Drums at the PFP

    SciTech Connect

    DOBBIN, K.D.

    2000-05-24

    This criticality safety evaluation report (CSER) provides the required limit set and controls for safe transit and storage of these drums in the 234-5Z Building at the PFP. A mass limit of 200 g of plutonium or fissile equivalent per drum is acceptable

  14. Plutonium Finishing Plan (PFP) Treatment and Storage Unit Waste Analysis Plan

    SciTech Connect

    PRIGNANO, A.L.

    2000-07-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  15. Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water.

    PubMed

    Koczura, Ryszard; Mokracka, Joanna; Jabłońska, Lucyna; Gozdecka, Edyta; Kubek, Martyna; Kaznowski, Adam

    2012-01-01

    The presence and persistence of antibiotic resistant bacteria in the environment is thought to be a growing threat to public health. The route of the spread of multiresistant bacteria from human communities to aquatic environment may lead through wastewater treatment plants that release treated wastewater to a water reservoir. In this study we used multiplex PCR assay to determine the frequency of integron presence in Escherichia coli isolates cultured from wastewater treatment plant (WWTP) (integrons were detected in 11% of E. coli isolates), river water upstream (6%) and downstream (14%) the discharge of WWTP, and clinical specimens (56%). Antimicrobial resistance of the integron-positive isolates, determined by disk diffusion method, varied between E. coli of different origin. Isolates from the downstream river, compared to those cultured from upstream river, were more frequently resistant to kanamycin, cephalotin, co-trimoxazole, trimethoprim, and fluoroquinolones. Moreover, they displayed broader resistance ranges, expressed as the number of classes of antimicrobials to which they were resistant. The results may suggest that WWTP effluent contributes to increased frequency of integron-positive E. coli isolates in the river downstream the WWTP and to their elevated resistance level. PMID:22119028

  16. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge

    NASA Astrophysics Data System (ADS)

    Dimpe, K. M.; Ngila, J. C.; Mabuba, N.; Nomngongo, P. N.

    Heavy metal contamination exists in aqueous wastes and sludge of many industrial discharges and domestic wastewater, among other sources. Determination of metals in the wastewater and sludge requires sample pre-treatment prior to analysis because of certain challenges such as the complexity of the physical state of the sample, which may lead to wrong readings in the measurement. This is particularly the case with low analyte concentration to be detected by the instrument. The purpose of this work was to assess and validate the different sample preparation methods namely, hot plate and microwave-assisted digestion procedures for extraction of metal ions in wastewater and sludge samples prior to their inductively coupled plasma optical emission spectrometric (ICP-OES) determination. For the extraction of As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, three acid mixtures, that is, HNO3/H2O2, HNO3/HClO4/H2O2 and aqua regia + H2O2, were evaluated. Influent wastewater spiked with the SRM (CWW-TM-B) was used for the optimization of acid mixtures affecting the extraction procedure. After sample digestion, the filtration capabilities of cellulose-acetate filter paper and the acrodisc syringe filter with the pore size of 0.45 μm were compared. In terms of performance, acrodisc syringe filter in terms of the improved recoveries obtained, was found to be the best filtration method compared to the filter paper. Based on the analytical results obtained, microwave-assisted digestion (MAD) using aqua regia + H2O2 mixture was found to be the most suitable method for extraction of heavy metals and major elements in all the sample matrices. Therefore, MAD using aqua regia + H2O2 mixture was used for further investigations. The precision of the developed MAD method expressed in terms of relative standard deviations (% RSD) for different metals was found to be <5%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.12% to 2.18 μg L-1 and 0.61% to 3.43 μg L-1

  17. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica

    USGS Publications Warehouse

    Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.

    2004-01-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.

  18. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica.

    PubMed

    Lisle, John T; Smith, James J; Edwards, Diane D; McFeters, Gordon A

    2004-12-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered. PMID:15574926

  19. Direct analysis of six antibiotics in wastewater samples using rapid high-performance liquid chromatography coupled with diode array detector: a chemometric study towards green analytical chemistry.

    PubMed

    Vosough, Maryam; Rashvand, Masoumeh; Esfahani, Hadi M; Kargosha, Kazem; Salemi, Amir

    2015-04-01

    In this work, a rapid HPLC-DAD method has been developed for the analysis of six antibiotics (amoxicillin, metronidazole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamerazine) in the sewage treatment plant influent and effluent samples. Decreasing the chromatographic run time to less than 4 min as well as lowering the cost per analysis, were achieved through direct injection of the samples into the HPLC system followed by chemometric analysis. The problem of the complete separation of the analytes from each other and/or from the matrix ingredients was resolved as a posteriori. The performance of MCR/ALS and U-PLS/RBL, as second-order algorithms, was studied and comparable results were obtained from implication of these modeling methods. It was demonstrated that the proposed methods could be used promisingly as green analytical strategies for detection and quantification of the targeted pollutants in wastewater samples while avoiding the more complicated high cost instrumentations. PMID:25640119

  20. Ultratrace determination of total and available cyanides in industrial wastewaters through a rapid headspace-based sample preparation and gas chromatography with nitrogen phosphorous detection analysis.

    PubMed

    Marton, Daniele; Tapparo, Andrea; Di Marco, Valerio B; Repice, Carla; Giorio, Chiara; Bogialli, Sara

    2013-07-26

    A new analytical method for the determination of both available (free and weak acid dissociable, WAD) and total cyanides in industrial wastewaters has been developed. It is based on the static headspace (HS) sampling procedure followed by a GC separation and the selective nitrogen-phosphorous detection (NPD), in which different thermal treatment allows the speciation of total and available cyanides. Detection limits (0.5μg/L), recovery (84.7-114.6% for free and 76.8-121.5% for total cyanides) and precision (5% at 5μg/L), evaluated on both real and synthetic samples, were fit-for-purpose for the legal requirement (5μg/L) enforced in the Venice lagoon, without significant interfering species. In addition, analytical results of the HS-GC-NPD method have been compared with those obtained using the 4500 CN and EN ISO 14403 official methods for the determination of total and free cyanides, respectively. The new method has been successfully applied for the determination of cyanide concentrations in main influent and final effluent to the Venice lagoon to verify the efficiency of the industrial wastewater treatment plant of Porto Marghera (Venice, Italy). The capability of the proposed method to detect the WAD cyanides has been tested by studying the acid dissociation of K2[Ni(CN)4]. An unexpected speciation picture was obtained for this complex, which suggests that the present definition and analytical strategy of this cyanide class should be reconsidered. PMID:23522617

  1. Collaborative Negotiations: A Successful Approach for Negotiation Compliance Milestones for the transition of the PFP Hanford Nuclear Reservation

    SciTech Connect

    HOPKINS, A.M.

    2003-02-01

    The new approach to negotiations was termed collaborative (win-win) rather than positional (win-lose). Collaborative negotiations were conducted to establish milestones for the decommissioning of the Plutonium Finishing Plant, PFP.

  2. Comparison Evaluation of the PFP FSAR and NRC Regulatory Guide 3.39 with DOE-STD-3009-94

    SciTech Connect

    OSCARSON, E.E.

    2000-07-28

    One of the Plutonium Finishing Plant's (PFP) current Authorization Basis (AB) documents is the Final Safety Analysis Report (FSAR). This FSAR (HNF-SD-CP-SAR-02 1) was prepared to the format and content guidance specified in U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide 3.39, Standard Format and Content of License Applications for Plutonium Processing and Fuel Fabrication Plants (RG 3.39). In April 1992, the US Department of Energy (DOE) issued DOE Order 5480.23 which established the FSAR requirements for DOE nonreactor nuclear facilities. In 1994, DOE issued DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, which is a format and content guide addressing the preparation of FSARs in accordance with DOE Order 5480.23. During the initial preparation and issuance of the PFP FSAR the format and content guidance contained in NRC Regulatory Guide 3.39 was utilized, since it was the most applicable guidance at the time for the preparation of Safety Analysis Reports for plutonium processing plants. With the adoption of DOE Order 5480.23 and DOE-STD-3009-94, DOE required the preparation of SARs to meet the format and content of those DOE documents. The PFP was granted an exemption to continue with RG 3.39 format for future FSAR revisions. PFP modifications and additions have required PFP FSAR modifications that have typically been prepared to the same NRC Regulatory Guide 3.39 format and content, to provide consistency with the PFP FSAR. This document provides a table comparison between the 3009 and RG 3.39 formats to validate the extent of PFP FSAR compliance with the intent of DOE Order 5480.23 and DOE-STD-3009-94. This evaluation was initially performed on Revisions 1 and 1A of the PFP FSAR. With the preparation of a Revision 2 draft to the FSAR, sections with significant changes were reevaluated for compliance and the tables were updated, as appropriate. The tables resulting from this

  3. Walkdown procedure: Seismic adequacy review of safety class 3 & 4 commodities in 2736-Z & ZB buildings at PFP facility

    SciTech Connect

    Ocoma, E.C.

    1995-03-29

    Seismic evaluation of existing safety class (SC) 3 and non-SC 4 commodities at the Plutonium Finishing Plant (PFP) is integrated into an area walkdown program. Field walkdowns of potential PFP seismic deficiencies associated with structural failure and falling will be performed using the DOE SQUG/EPRI methodology. Potential proximity interactions are also addressed. Objective of the walkdown is to qualify as much of the equipment as practical and to identify candidates for further evaluation.

  4. ACUTE TOXIC EFFECTS OF PETROLEUM REFINERY WASTEWATERS ON REDEAR SUNFISH

    EPA Science Inventory

    Static bioassays of 24 hours' duration were performed on samples of wastewaters provided by 22 domestic petroleum refiners. These wastewaters represent three types of water discharges prevalent to this industry: process wastewaters prior to dilution with other streams; API separa...

  5. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples.

    PubMed

    Zamora, D; Torres, A

    2014-01-01

    Reliable estimations of the evolution of water quality parameters by using in situ technologies make it possible to follow the operation of a wastewater treatment plant (WWTP), as well as improving the understanding and control of the operation, especially in the detection of disturbances. However, ultraviolet (UV)-Vis sensors have to be calibrated by means of a local fingerprint laboratory reference concentration-value data-set. The detection of outliers in these data-sets is therefore important. This paper presents a method for detecting outliers in UV-Vis absorbances coupled to water quality reference laboratory concentrations for samples used for calibration purposes. Application to samples from the influent of the San Fernando WWTP (Medellín, Colombia) is shown. After the removal of outliers, improvements in the predictability of the influent concentrations using absorbance spectra were found. PMID:24901626

  6. PFP Commercial Grade Food Pack Cans for Plutonium Handling and Storage Critical Characteristics

    SciTech Connect

    BONADIE, E.P.

    2000-08-22

    This screening addresses the critical characteristics for food industry type cans and containers used for handling and storage of special nuclear materials at the Plutonium Finishing Plant (PFP). HNF-5460, Revision 0 specified a minimum tin plate of 0.50 Ib./base box. Since the food pack cans currently used and that have been tested have a listed tin plate of 0.20 lbs. per base box, Revision 1 reduced the tin plate to {ge} 0.20 Ib./base box (i.e., No. 20 tinned commercial steel or heavier). This revision lists Critical Characteristics for two (2) large filtered containers, and associated shielding over-packs. These new containers are called ''Nuclear Material Containers'' (NMCs). They are supplied in various sizes, which can be nested, one inside another. The PFP will use NMCs with volumes up to 8-quarts as needed to over-pack largely bulged containers.

  7. HANFORD PLUTONIUM FINISHG PLAN (PFP) COMPLETES PLUTONIUM STABILIZATION KEY SAFETY ISSUES CLOSED

    SciTech Connect

    GERBER, M.S.

    2004-02-24

    A long and intense effort to stabilize and repackage nearly 18 metric tons (MT) of plutonium-bearing leftovers from defense production and nuclear experiments concluded successfully in February, bringing universal congratulations to the Department of Energy's Hanford Site in southeast Washington State. The victorious stabilization and packaging endeavor at the Plutonium Finishing Plant (PFP), managed and operated by prime contractor Fluor Hanford, Inc., finished ahead of all milestones in Hanford's cleanup agreement with regulators, and before deadlines set by the Defense Nuclear Facilities Safety Board (DNFSB), a part of the federal Executive Branch that oversees special nuclear materials. The PFP stabilization and packaging project also completed under budget for its four-year tenure, and has been nominated for a DOE Secretarial Award. It won the Project of the Year Award in the local chapter competition of the Project Management Institute, and is being considered for awards at the regional and national level.

  8. Development of a new multi-residue laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry method for the detection and quantification of pesticides and pharmaceuticals in wastewater samples.

    PubMed

    Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien

    2012-11-19

    A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. PMID:23140957

  9. Plutonium Finishing Plant (PFP) Standards/Requirements Identification Document (S/RID)

    SciTech Connect

    Maddox, B.S.

    1996-01-01

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ESH) standards/requirements for the Plutonium Finishing Plant (PFP). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  10. Technical Basis for Work Place Air Monitoring for the Plutonium Finishing Plan (PFP)

    SciTech Connect

    JONES, R.A.

    1999-10-06

    This document establishes the basis for the Plutonium Finishing Plant's (PFP) work place air monitoring program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), Part 835 ''Occupational Radiation Protection''; Hanford Site Radiological Control Manual (HSRCM-1); HNF-PRO-33 1, Work Place Air Monitoring; WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysis Report; and Applicable recognized national standards invoked by DOE Orders and Policies.

  11. Evaluation of the presence of endocrine-disrupting compounds in dissolved and solid wastewater treatment plant samples of Gran Canaria Island (Spain).

    PubMed

    Vega-Morales, T; Sosa-Ferrera, Z; Santana-Rodríguez, J J

    2013-01-01

    Liquid and solid samples from two wastewater treatment plants (WWTPs) on Gran Canaria Island (Spain) have been tested for the presence of compounds with endocrine-disrupting properties. The selected degradation stages were sampled bimonthly from each WWTP over the 12-month period from July 2010 to July 2011. The analytical methods used for the determination of the endocrine-disrupting compounds (EDCs) were based on on-line solid phase extraction, microwave-assisted extraction (MAE), and ultrasonic-assisted extraction (UAE) coupled to UHPLC-MS/MS. All of the hyphenated methodologies employed in this work showed good recoveries (72-104%) and sensitivities, with LODs lower than 7.0 ng L(-1) and 6.3 ng g(-1) for the dissolved and solid fractions, respectively. We have also evaluated the estrogenicity of the samples in terms of their estradiol equivalent concentrations (EEQs). The chemical analysis of the selected EDCs revealed fairly low concentrations for both natural and synthetic oestrogens, alkylphenolic compounds, and bisphenol-A in each of the dissolved, particulate, and sludge samples (ng L(-1) or ng g(-1)). However, the estimated estrogenic activity indicated that the majority of samples could represent an important environmental risk, clearly surpassing the threshold to exert deleterious consequences on living beings. PMID:24163820

  12. Evaluation of the Presence of Endocrine-Disrupting Compounds in Dissolved and Solid Wastewater Treatment Plant Samples of Gran Canaria Island (Spain)

    PubMed Central

    Vega-Morales, T.; Sosa-Ferrera, Z.; Santana-Rodríguez, J. J.

    2013-01-01

    Liquid and solid samples from two wastewater treatment plants (WWTPs) on Gran Canaria Island (Spain) have been tested for the presence of compounds with endocrine-disrupting properties. The selected degradation stages were sampled bimonthly from each WWTP over the 12-month period from July 2010 to July 2011. The analytical methods used for the determination of the endocrine-disrupting compounds (EDCs) were based on on-line solid phase extraction, microwave-assisted extraction (MAE), and ultrasonic-assisted extraction (UAE) coupled to UHPLC-MS/MS. All of the hyphenated methodologies employed in this work showed good recoveries (72–104%) and sensitivities, with LODs lower than 7.0 ng L−1 and 6.3 ng g−1 for the dissolved and solid fractions, respectively. We have also evaluated the estrogenicity of the samples in terms of their estradiol equivalent concentrations (EEQs). The chemical analysis of the selected EDCs revealed fairly low concentrations for both natural and synthetic oestrogens, alkylphenolic compounds, and bisphenol-A in each of the dissolved, particulate, and sludge samples (ng L−1 or ng g−1). However, the estimated estrogenic activity indicated that the majority of samples could represent an important environmental risk, clearly surpassing the threshold to exert deleterious consequences on living beings. PMID:24163820

  13. Purification and Characterization of Two Functional Forms of Intracellular Protease PfpI from the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Halio, S. B.; Bauer, M. W.; Mukund, S.; Adams, M.; Kelly, R. M.

    1997-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100(deg)C by the fermentation of peptides and carbohydrates. From this organism, we have purified to homogeneity an intracellular protease, previously designated PfpI (P. furiosus protease I) (S. B. Halio, I. I. Blumentals, S. A. Short, B. M. Merrill, and R. M. Kelly, J. Bacteriol. 178:2605-2612, 1996). The protease contains a single subunit with a molecular mass of approximately 19 kDa and exists in at least two functional conformations, which were purified separately. The predominant form from the purification (designated PfpI-C1) is a hexamer with a molecular mass of 124 (plusmn) 6 kDa (by gel filtration) and comprises about 90% of the total activity. The minor form (designated PfpI-C2) is trimeric with a molecular mass of 59 (plusmn) 3 kDa. PfpI-C1 hydrolyzed both basic and hydrophobic residues in the P1 position, indicating trypsin- and chymotrypsin-like specificities, respectively. The temperature optimum for Ala-Ala-Phe-7-amido-4-methylcoumarin (AAF-MCA) hydrolysis was (symbl)85(deg)C both for purified PfpI-C1 and for proteolytic activity in P. furiosus cell extract. In contrast, the temperature optimum for PfpI prepared by incubating a cell extract of P. furiosus at 98(deg)C in 1% sodium dodecyl sulfate for 24 h at 95 to 100(deg)C (I. I. Blumentals, A. S. Robinson, and R. M. Kelly, Appl. Environ. Microbiol. 56:1255-1262, 1990), designated PfpI-H, was (symbl)100(deg)C. Moreover, the half-life of activity of PfpI-C1 at 98(deg)C was less than 30 min, in contrast to a value of more than 33 h measured for PfpI-H. PfpI-C1 appears to be a predominant serine-type protease in cell extracts but is converted in vitro, probably in part by deamidation of Asn and Gln residues, to a more thermally stable form (PfpI-H) by prolonged heat treatment. The deamination hypothesis is supported by the differences in the measured pI values of PfpI-C1 (6.1) and PfpI-H (3.8). High levels of potassium phosphate (>0

  14. Automated Sampling Procedures Supported by High Persistence of Bacterial Fecal Indicators and Bacteroidetes Genetic Microbial Source Tracking Markers in Municipal Wastewater during Short-Term Storage at 5°C.

    PubMed

    Mayer, R E; Vierheilig, J; Egle, L; Reischer, G H; Saracevic, E; Mach, R L; Kirschner, A K T; Zessner, M; Sommer, R; Farnleitner, A H

    2015-08-01

    Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better

  15. Automated Sampling Procedures Supported by High Persistence of Bacterial Fecal Indicators and Bacteroidetes Genetic Microbial Source Tracking Markers in Municipal Wastewater during Short-Term Storage at 5°C

    PubMed Central

    Mayer, R. E.; Vierheilig, J.; Egle, L.; Reischer, G. H.; Saracevic, E.; Mach, R. L.; Kirschner, A. K. T.; Zessner, M.; Farnleitner, A. H.

    2015-01-01

    Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better

  16. Sampling and analysis of municipal waste-water sludge incinerator emissions for metals, metal species, and organics

    SciTech Connect

    DeWees, W.G.; Davis, C.A.; McClintock, S.C.; Cone, A.L.; Bostian, H.E.

    1991-01-01

    There is concern regarding chromium and nickel species in the emissions from incineration of municipal wastewater sludge because of the associated cancer risk. The Environmental Protection Agency's (EPA) Office of Water Regulations and Standards (OWRS) is developing new regulations for sewage sludge incinerators and EPA's Risk Reduction Engineering Laboratory (RREL) has been assisting OWRS in the collection of supporting data. The paper reports new data on emissions of chromium and nickel species and associated emissions needed to respond to public comments. The primary objectives of the portion of the RREL/OWRS research program described in the paper are to determine (1) the ratio of hexavalent chromium to total chromium and (2) the ratio of nickel subsulfide to total nickel in sewage sludge incinerator emissions under several incinerator operating conditions. Secondary objectives include comparing the analytical results for emissions of chromium and nickel subspecies determined by different analytical procedures, and gathering data on other metals and inorganic and organic gaseous components in uncontrolled and controlled incinerator emissions.

  17. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones

  18. 40 CFR Table 9 to Subpart Hhhhhhh... - Procedures for Conducting Sampling of Stripped Resin and Process Wastewater

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... samples according to the following schedule . . . Vinyl chloride . . . Total non-vinyl chloride organic... Pollutant Emissions for Polyvinyl Chloride and Copolymers Production Pt. 63, Subpt. HHHHHHH, Table Table...

  19. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    NASA Astrophysics Data System (ADS)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  20. Determination of alkylphenols and alkylphenol carboxylates in wastewater and river samples by hemimicelle-based extraction and liquid chromatography-ion trap mass spectrometry.

    PubMed

    Cantero, Manuel; Rubio, Soledad; Pérez-Bendito, Dolores

    2006-07-01

    Sodium dodecyl sulfate (SDS)-coated alumina and cetylpyridinium chloride (CPC)-coated silica were investigated as new sorbents for the concentration of alkylphenol polyethoxylate (APE) biodegradation products from wastewater and river water samples. Octylphenol (OP), nonylphenol (NP), octylphenol carboxylic acid (OPC) and nonylphenol carboxylic acid (NPC) were quantitatively retained on both supramolecular sorbents on the basis of the formation of mixed hemimicelles and admicelles. SDS hemimicelles-based SPE was proposed for the extraction/concentration of the target compounds prior to their separation and quantitation by liquid chromatography/electrospray ionization in negative mode, ion trap mass spectrometry. No clean-up steps or evaporation of the eluent were required. The recovery of APE metabolites from sewage and river water ranged between 87 and 100%. Concentration factors of about 500, using sample volumes of 1 l, were achieved. Detection limits were between 75 and 193 ng/l. The approach developed was applied to the determination of alklylphenols and alkylphenol carboxylic acids in raw and treated sewage and river samples. The concentrations of APE metabolites found ranged between 0.8 and 78 microg/l. PMID:16412449

  1. Characterization of the olfactory impact around a wastewater treatment plant: optimization and validation of a hydrogen sulfide determination procedure based on passive diffusion sampling.

    PubMed

    Colomer, Fernando Llavador; Espinós-Morató, Héctor; Iglesias, Enrique Mantilla; Pérez, Tatiana Gómez; Campos-Candel, Andreu; Lozano, Caterina Coll

    2012-08-01

    A monitoring program based on an indirect method was conducted to assess the approximation of the olfactory impact in several wastewater treatment plants (in the present work, only one is shown). The method uses H2S passive sampling using Palmes-type diffusion tubes impregnated with silver nitrate and fluorometric analysis employing fluorescein mercuric acetate. The analytical procedure was validated in the exposure chamber. Exposure periods ofat least 4 days are recommended. The quantification limit of the procedure is 0.61 ppb for a 5-day sampling, which allows the H2S immission (ground concentration) level to be measured within its low odor threshold, from 0.5 to 300 ppb. Experimental results suggest an exposure time greater than 4 days, while recovery efficiency of the procedure, 93.0+/-1.8%, seems not to depend on the amount of H2S collected by the samplers within their application range. The repeatability, expressed as relative standard deviation, is lower than 7%, which is within the limits normally accepted for this type of sampler. Statistical comparison showed that this procedure and the reference method provide analogous accuracy. The proposed procedure was applied in two experimental campaigns, one intensive and the other extensive, and concentrations within the H2S low odor threshold were quantified at each sampling point. From these results, it can be concluded that the procedure shows good potential for monitoring the olfactory impact around facilities where H2S emissions are dominant. PMID:22916433

  2. β-Cyclodextrin anchoring onto pericarpium granati-derived magnetic mesoporous carbon for selective capture of lopid in human serum and pharmaceutical wastewater samples.

    PubMed

    Liu, Rui-Lin; Zhang, Zhi-Qi; Jing, Wang-Hui; Wang, Lu; Luo, Zhi-Min; Chang, Rui-Miao; Zeng, Ai-Guo; Du, Wei; Chang, Chun; Fu, Qiang

    2016-05-01

    Functionalized magnetic carbonaceous nanomaterials, which are important materials with many practical and research applications in biomedical, pharmaceutical and biological fields, have recently attracted much attention. In this study, a magnetic mesoporous carbon coated with β-cyclodextrin (MMC@β-CD) was synthesized for the first time from natural pericarpium granati (PG). The as-obtained MMC@β-CD has high surface areas (203m(2)g(-1)), large pore volumes (0.16cm(3)g(-1)), relatively broad mesoporous sizes (6.8nm) and a high saturation magnetization of 26.2emug(-1), which is sufficient for magnetic separation by an external magnetic field. The MMC@β-CD was used as an innovative adsorbent for magnetic solid-phase extraction of lopid via host-guest interaction prior to spectrofluorometric analysis. The proposed method was successfully applied to analyze lopid in human serum and pharmaceutical wastewater samples with recoveries in the range of 85.0-103.5% for the spiked samples. Overall, this work not only provides an inexpensive and eco-friendly method to fabricate MMC@β-CD (or MMC) from PG, but also develops a highly selective approach for capture of lopid in biological samples and environmental substances. PMID:26952464

  3. Magnetic solid phase extraction of gemfibrozil from human serum and pharmaceutical wastewater samples utilizing a β-cyclodextrin grafted graphene oxide-magnetite nano-hybrid.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Talleb, Zeynab

    2015-03-01

    A magnetic solid phase extraction method based on β-cyclodextrin (β-CD) grafted graphene oxide (GO)/magnetite (Fe3O4) nano-hybrid as an innovative adsorbent was developed for the separation and pre-concentration of gemfibrozil prior to its determination by spectrofluorometry. The as-prepared β-CD/GO/Fe3O4 nano-hybrid possesses the magnetism property of Fe3O4 nano-particles that makes it easily manipulated by an external magnetic field. On the other hand, the surface modification of GO by β-CD leads to selective separation of the target analyte from sample matrices. The structure and morphology of the synthesized adsorbent were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The experimental factors affecting the extraction/pre-concentration and determination of the analyte were investigated and optimized. Under the optimized experimental conditions, the calibration graph was linear in the range between 10 and 5000 pg mL(-1) with a correlation coefficient of 0.9989. The limit of detection and enrichment factor for gemfibrozil were 3 pg mL(-1) and 100, respectively. The maximum sorption capacity of the adsorbent for gemfibrozil was 49.8 mg g(-1). The method was successfully applied to monitoring gemfibrozil in human serum and pharmaceutical wastewaters samples with recoveries in the range of 96.0-104.0% for the spiked samples. PMID:25618684

  4. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011

    SciTech Connect

    David Frederick

    2012-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  5. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    SciTech Connect

    Mike lewis

    2013-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  6. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010

    SciTech Connect

    David B. Frederick

    2011-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  7. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  8. Determination of drugs in surface water and wastewater samples by liquid chromatography-mass spectrometry: Methods and preliminary results including toxicity studies with Vibrio fischeri

    USGS Publications Warehouse

    Farre, M.; Ferrer, I.; Ginebreda, A.; Figueras, M.; Olivella, L.; Tirapu, L.; Vilanova, M.; Barcelo, D.

    2001-01-01

    In the present work a combined analytical method involving toxicity and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) was developed for the determination of pharmaceutical compounds in water samples. The drugs investigated were the analgesics: ibuprofen, ketoprofen, naproxen, and diclofenac, the decomposition product of the acetyl salicylic acid: salicylic acid and one lipid lowering agent, gemfibrozil. The selected compounds are acidic substances, very polar and all of them are analgesic compounds that can be purchased without medical prescription. The developed protocol consisted, first of all, on the use Microtox?? and ToxAlert??100 toxicity tests with Vibrio fischeri for the different pharmaceutical drugs. The 50% effective concentration (EC50) values and the toxicity units (TU) were determined for every compound using both systems. Sample enrichment of water samples was achieved by solid-phase extraction procedure (SPE), using the Merck LiChrolut?? EN cartridges followed by LC-ESI-MS. Average recoveries loading 1 l of samples with pH=2 varied from 69 to 91% and the detection limits in the range of 15-56 ng/l. The developed method was applied to real samples from wastewater and surface-river waters of Catalonia (north-east of Spain). One batch of samples was analyzed in parallel also by High Resolution Gas Chromatography coupled with Mass Spectrometry (HRGC-MS) and the results have been compared with the LC-ESI-MS method developed in this work. ?? 2001 Elsevier Science B.V. All rights reserved.

  9. 40 CFR Table 9 to Subpart Hhhhhhh... - Procedures for Conducting Sampling of Stripped Resin and Process Wastewater

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... samples according to the following schedule . . . Vinyl chloride . . . Total non-vinyl chloride organic... Pollutant Emissions for Polyvinyl Chloride and Copolymers Production Pt. 63, Subpt. HHHHHHH, Table 9 Table...

  10. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    SciTech Connect

    WESTSIK, G.A.

    2001-06-06

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a container, particularly for low to medium density (0-2.5 g/cc) container matrices. The SGSAS system provides a full gamma characterization of the container content. This document is an edited version of the Rocky Flats TMU Report for the Can Scan Segment Gamma Scanners, which are in use for the plutonium residues projects at the Rocky Flats plant. The can scan segmented gamma scanners at Rocky Flats are the same design as the PFP SGSAS system and use the same software (with the exception of the plutonium isotopics software). Therefore, all performance characteristics are expected to be similar. Modifications in this document reflect minor differences in the system configuration, container packaging, calibration technique, etc. These results are supported by the Quality Assurance Objective (QAO) counts, safeguards test data, calibration data, etc. for the PFP SGSAS system. Other parts of the TMU analysis utilize various modeling techniques such as Monte Carlo N

  11. PFP Commercial Grade Food Pack Cans for Plutonium Handling and Storage Critical Characteristics

    SciTech Connect

    BONADIE, E.P.

    1999-12-07

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for PFP's Vault Operations system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to perform its safety function. The changes in these specifications have no detrimental effect on the descriptions and parameters related to handling plutonium solids in the authorization basis. Because no parameters or sequences exceed the limits described in the authorization bases, no accident or abnormal conditions are affected. The specifications prescribed in this critical characteristics document do not represent an unreviewed safety question.

  12. Air Monitoring Modeling of Radioactive Releases During Proposed PFP Complex Demolition Activities

    SciTech Connect

    Napier, Bruce A.; Droppo, James G.; Rishel, Jeremy P.

    2011-01-24

    This report is part of the planning process for the demolition of the 234-5Z, 236-Z, 242-Z, and 291-Z-1 structures at the Plutonium Finishing Plant (PFP) facilities on the Hanford Site. Pacific Northwest National Laboratory (PNNL) supports the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC) demolition planning effort by making engineering estimates of potential releases for various potential demolition alternatives. This report documents an analysis considering open-air demolition using standard techniques. It does not document any decisions about the decommissioning approaches; it is expected that this report will be revisited as demolition plans are finalized.

  13. Metal-carbonyl organometallic polymers, PFpP, as resists for high-resolution positive and negative electron beam lithography.

    PubMed

    Zhang, J; Cao, K; Wang, X S; Cui, B

    2015-12-25

    Metal-containing resists for electron beam lithography (EBL) are attracting attention owing to their high dry etching resistance and possibility for directly patterning metal-containing nanostructures. The newly developed organometallic metal carbonyl polymers, PFpP, can function as EBL resists with strong etching resistance. One significant feature of the PFpP resist is its high resolution. Line arrays with line-widths as narrow as 17 nm have been created. The resist can also be used in positive tone. PMID:26481609

  14. Wastewater Collection.

    ERIC Educational Resources Information Center

    Chatterjee, Samar; And Others

    1978-01-01

    Presents a literature review of wastewater collection systems and components. This review covers: (1) planning, (2) construction; (3) sewer system evaluation; (4) maintenance; (5) rehabilitation; (6) overview prevention; and (7) wastewater pumping. A list of 111 references is also presented. (HM)

  15. Highly sensitive determination of 68 psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater by liquid chromatography-tandem mass spectrometry.

    PubMed

    Borova, Viola L; Maragou, Niki C; Gago-Ferrero, Pablo; Pistos, Constantinos; Thomaidis, Nikolaos S

    2014-07-01

    The present work describes the development and validation of a highly sensitive analytical method for the simultaneous determination of 68 compounds, including illicit drugs (opiates, opioids, cocaine compounds, amphetamines, and hallucinogens), psychiatric drugs (benzodiazepines, barbiturates, anesthetics, antiepileptics, antipsychotics, antidepressants, and sympathomimetics), and selected human metabolites in influent and effluent wastewater (IWW and EWW) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method involves a pre-concentration and cleanup step, carried out by solid-phase extraction (SPE) using the adsorbent Strata-XC, followed by the instrumental analysis performed by LC-MS/MS, using a Kinetex pentafluorophenyl (PFP) reversed-phase fused-core column and electrospray ionization (ESI) in both positive and negative modes. A systematic optimization of mobile phases was performed to cope with the wide range of physicochemical properties of the analytes. The PFP column was also compared with two reversed-phase columns: fused-core C18 and XB-C18 (with a cross-butyl C18 ligand). SPE optimization and critical aspects associated with the trace level determination of the target compounds (e.g., matrix effects) have been also considered and discussed. Fragmentation patterns for all the classes were proposed. The validated method provides absolute recoveries between 75 and 120% for most compounds in IWW and EWW. Low method limits of detection were achieved (between 0.04 and 10.0 ng/L for 87% of the compounds), allowing a reliable and accurate quantification of the analytes at trace level. The method was successfully applied to the analysis of these compounds in five wastewater treatment plants in Santorini, a touristic island of the Aegean Sea, Greece. Thirty-two out of 68 compounds were detected in all IWW samples in the range between 0.6 ng/L (for nordiazepam) and 6,822 ng/L (for carbamazepine) and 22 out of 68 in all EWW samples

  16. Ionic liquid coated carbon nanospheres as a new adsorbent for fast solid phase extraction of trace copper and lead from sea water, wastewater, street dust and spice samples.

    PubMed

    Tokalıoğlu, Şerife; Yavuz, Emre; Şahan, Halil; Çolak, Süleyman Gökhan; Ocakoğlu, Kasım; Kaçer, Mehmet; Patat, Şaban

    2016-10-01

    In this study a new adsorbent, ionic liquid (1,8-naphthalene monoimide bearing imidazolium salt) coated carbon nanospheres, was synthesized for the first time and it was used for the solid phase extraction of copper and lead from various samples prior to determination by flame atomic absorption spectrometry. The ionic liquid, carbon nanospheres and ionic liquid coated carbon nanospheres were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, (1)H NMR and (13)C NMR, Brunauer, Emmett and Teller surface area and zeta potential measurements. Various parameters for method optimization such as pH, adsorption and elution contact times, eluent volume, type and concentration, centrifuge time, sample volume, adsorption capacity and possible interfering ion effects were tested. The optimum pH was 6. The preconcentration factor, detection limits, adsorption capacity and precision (as RSD%) of the method were found to be 300-fold, 0.30µgL(-1), 60mgg(-1) and 1.1% for copper and 300-fold, 1.76µgL(-1); 50.3mgg(-1) and 2.2%, for lead, respectively. The effect of contact time results showed that copper and lead were adsorbed and desorbed from the adsorbent without vortexing. The equilibrium between analyte and adsorbent is reached very quickly. The method was rather selective for matrix ions in high concentrations. The accuracy of the developed method was confirmed by analyzing certified reference materials (LGC6016 Estuarine Water, Reference Material 8704 Buffalo River Sediment, and BCR-482 Lichen) and by spiking sea water, wastewater, street dust and spice samples. PMID:27474302

  17. An assessment of the liquid-gas partitioning behavior of major wastewater odorants using two comparative experimental approaches: liquid sample-based vaporization vs. impinger-based dynamic headspace extraction into sorbent tubes.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-01-01

    The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling. PMID:24271272

  18. Analysis by liquid chromatography-electrospray ionization tandem mass spectrometry and acute toxicity evaluation for beta-blockers and lipid-regulating agents in wastewater samples.

    PubMed

    Hernando, M D; Petrovic, M; Fernández-Alba, A R; Barceló, D

    2004-08-13

    This paper describes a multiresidue method for the extraction and determination of two therapeutic groups of pharmaceuticals, lipid-regulating agents (clofibric acid, bezafibrate, gemfibrocil, fenofibrate) and beta-blockers (atenolol, sotalol, metoprolol, betaxolol) in waters by solid-phase extraction followed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). Recoveries obtained from spiked HPLC water, as well as, from spiked real samples (sewage treatment plants influent and effluents, river and tap water) were all above 60%, with the exception of betaxolol with a 52% recovery. The quantitative MS analysis was performed using a multiple reaction monitoring. The LC-MS-MS method gave detection limits ranging from 0.017 to 1.25 microg/l in spiked effluent. Precision of the method, calculated as relative standard deviation, ranged from 3.7 to 18.5%. Individual and combined effects on Daphnia magna were evaluated for both therapeutic groups. Individual effects in culture medium showed these compounds as not harmful and not toxic, an exception is fenofibrate that was found to be harmful, but at high, in the environment unrealistic concentrations (EC50 of 50 mg/l). Combined effect in wastewater showed synergistic toxic effects at low concentration level (2 microg/l). PMID:15387181

  19. Interface Control Document Between the Double Shell Tanks (DST) System and the Plutonium Finishing Plan (PFP)

    SciTech Connect

    MAY, T.H.

    1999-11-03

    This document identifies the requirements and responsibilities for all parties to support waste transfer from the Plutonium Finishing Plant (PFP) facility to the Double-Shell Tank (DST) System of the River Protection Project (RPP). This Interface Control Document (ICD) will not attempt to control the physical portion of this interface because the physical equipment making up this interface, and any associated interface requirements, are already in place, operational and governed by existing operating specifications and other documentation. The PFP and DST Systems have a direct physical interface (the waste transfer pipeline) that travels between the 241-2 Building (TK-D5) and DST SY-102 via 244-TX double-contained receiver tank (DCRT). The purpose of the ICD process is to formalize working agreements between the RPP DST System and organization/companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort.

  20. Method comparison for enhanced recovery, isolation and qualitative detection of C. jejuni and C. coli from wastewater effluent samples.

    PubMed

    Ugarte-Ruiz, María; Florez-Cuadrado, Diego; Wassenaar, Trudy M; Porrero, María Concepción; Domínguez, Lucas

    2015-03-01

    Seeking a sensitive protocol, culture-dependent methods were compared to detect thermophilic Campylobacter species in untreated urban effluents. We evaluated various combinations of selective media, with and without an enrichment steps, as well as an extra filtration step. Culture-independent real-time quantitative PCR was also included and all detected isolates underwent antimicrobial susceptibility testing. All tested water samples contained Campylobacter DNA, but only 64% were positive after culture. Although enrichment using Preston broth resulted in better recovery of potentially stressed Campylobacter than Bolton or Campyfood broth (CFB), there was no significant increase in efficiency compared to direct plating. The type of selective agar media used, on the other hand, had a significant effect, with CASA plates performing better than mCCDA or CFA ones. Inclusion of an enrichment step increased the ratio of C. coli vs. C. jejuni being isolated. Resistances against all antimicrobials tested were observed in C. coli, but fewer instances of resistance were found in C. jejuni isolates. Whether this difference was the result of selection during the enrichment step could not be determined. The presence of Campylobacter in urban effluents can be considered as a valuable proxy for Campylobacter populations present in urban environments. PMID:25739008

  1. Method Comparison for Enhanced Recovery, Isolation and Qualitative Detection of C. jejuni and C. coli from Wastewater Effluent Samples

    PubMed Central

    Ugarte-Ruiz, María; Florez-Cuadrado, Diego; Wassenaar, Trudy M.; Porrero, María Concepción; Domínguez, Lucas

    2015-01-01

    Seeking a sensitive protocol, culture-dependent methods were compared to detect thermophilic Campylobacter species in untreated urban effluents. We evaluated various combinations of selective media, with and without an enrichment steps, as well as an extra filtration step. Culture-independent real-time quantitative PCR was also included and all detected isolates underwent antimicrobial susceptibility testing. All tested water samples contained Campylobacter DNA, but only 64% were positive after culture. Although enrichment using Preston broth resulted in better recovery of potentially stressed Campylobacter than Bolton or Campyfood broth (CFB), there was no significant increase in efficiency compared to direct plating. The type of selective agar media used, on the other hand, had a significant effect, with CASA plates performing better than mCCDA or CFA ones. Inclusion of an enrichment step increased the ratio of C. coli vs. C. jejuni being isolated. Resistances against all antimicrobials tested were observed in C. coli, but fewer instances of resistance were found in C. jejuni isolates. Whether this difference was the result of selection during the enrichment step could not be determined. The presence of Campylobacter in urban effluents can be considered as a valuable proxy for Campylobacter populations present in urban environments. PMID:25739008

  2. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine.

    PubMed

    Afkhami, Abbas; Saber-Tehrani, Mohammad; Bagheri, Hasan

    2010-09-15

    2,4-Dinitrophenylhydrazine (DNPH) immobilized on sodium dodecyl sulfate coated nano-alumina was developed for the removal of metal cations Pb(II), Cd(II), Cr(III), Co(II), Ni(II) and Mn(II) from water samples. The research results displayed that adsorbent has the highest adsorption capacity for Pb(II), Cr(III) and Cd(II) in ions mixture system. Optimal experimental conditions including pH, adsorbent dosage and contact time have been established. Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by the Freundlich adsorption isotherm equation for Mn(II), Pb(II), Cr(III) and Cd(II) ions and by Langmuir isotherm equation for Ni(II) and Co(II) ions. Desorption experiments by elution of the adsorbent with a mixture of nitric acid and methanol show that the modified alumina nanoparticles could be reused without significant losses of its initial properties even after three adsorption-desorption cycles. Thus, modified nano-alumina with DNPH is favorable and useful for the removal of these metal ions, and the high adsorption capacity makes it a good promising candidate material for Pb(II),Cr(III) and Cd(II) removal. PMID:20542378

  3. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  4. SYBR green real time-polymerase chain reaction as a rapid and alternative assay for the efficient identification of all existing Escherichia coli biotypes approved directly in wastewater samples.

    PubMed

    Chetta, Massimiliano; Bafunno, Valeria; Grillo, Rosalba; Mele, Antonio; Lo Perfido, Pietro; Notarnicola, Michele; Cellini, Francesco; Cifarelli, Rosa Anna

    2012-07-01

    Escherichia coli has been recognized as the principal indicator of fecal contamination of water. Indeed, E. coli is the only species in the coliform group found in relationship with gastrointestinal tract of human and warm-blooded animals and subsequently excreted in large numbers in the human feces. To obtain a complete picture of water quality and therefore, a better protection of public health, different techniques for water analysis have been proposed. In this article, we describe an alternative method that uses SYBR green real time-polymerase chain reaction (RT-PCR) technology to identify and quantify all E. coli biotypes in a group of wastewater samples collected from a wastewater depurator located in South of Italy. This new RT-PCR protocol is accurate in measuring the concentration of chromosomal E. coli DNA using the amplification of three new specific fragments of the following bacteria genes: CadC, HNS, and Allan whose sequence is specific for E. coli family and conserved in all E. coli subtypes. This method allowed us to detect the presence of all E. coli biotypes directly in wastewater samples and estimated the correspondence between colony forming units and bacterial DNA concentrations. The availability of a rapid and sensitive method may be useful to monitor the persistence of E. coli in water, to evaluate the efficiency of wastewater purification treatments and the possible recycle for agricultural use. Furthermore, the development of a simple and routine method to monitor water quality with RT-PCR analysis can encourage the testing of a higher number of samples. PMID:22730251

  5. Plan for the Initiation of HA-211 Furnace Operations at the Plutonium Finishing Plan (PFP)

    SciTech Connect

    WILLIS, H.T.

    2000-01-20

    This plan provides a phased approach authorizing the use of three additional muffle furnaces for thermal stabilization. Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given.

  6. CSER 01-009: PFP 241-Z waste tanks gram mass limit

    SciTech Connect

    MILLER, E.M.

    2001-12-12

    This CSER raises the fissile mass limit for the PFP 241-2 Waste Tanks from 400 to 900 grams. This increase is allowed by increased control of the amount and location of fissile material waste sources to Tank TK-D8. The input of waste to TK-D8 is limited to 150 g or less per addition. The fissile mass in additions, the mass in the tank heel, and the tank inventory book keeping are done and then checked. The tank inventories are calculated conservatively by adding inputs of fissile mass but not subtracting outputs. After a tank is emptied, the tank fissile mass inventory is rebaselined to be equal to a conservatively measured NDA value for the tank.

  7. PLUTONIUM FINISHING PLANT (PFP) SUB-GRADE EE/CA EVALUATION OF ALTERNATIVES A NEW MODEL

    SciTech Connect

    HOPKINS, A.M.

    2007-06-08

    An engineering evaluation/cost analysis (EE/CA) was performed at the Hanford Site's Plutonium Finishing Plant (PFP). The purpose of the EVCA was to identify the sub-grade items to be evaluated; determine the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) hazardous substances through process history and available data; evaluate these hazards; and as necessary, identify the available alternatives to reduce the risk associated with the contaminants. The sub-grade EWCA considered four alternatives for an interim removal action: (1) No Action; (2) Surveillance and Maintenance (S&M); (3) Stabilize and Leave in Place (Stabilization); and (4) Remove, Treat and Dispose (RTD). Each alternative was evaluated against the CERCLA criteria for effectiveness, implementability, and cost.

  8. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    SciTech Connect

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  9. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The

  10. Basis document for PFP plutonium nitrate ion exchange process in Room 228A

    SciTech Connect

    Risenmay, H.R.

    1997-04-23

    The PFP facility currently has approximately 4300 liters of plutonium nitrate solution in storage. This material will be calcined by the Vertical Denigration Calciner (VDC) located in room 230C. However, part of the material needs to be purified to remove constituents that will interfere with the calcination process. An Ion Exchange process using Reillex{trademark} HPQ anion exchange resin was tested by the Plutonium Process Support Laboratories (PPSL) (I). The Ion exchange process is to be installed in glovebox HC-7 in room 228A/234-5Z. The plutonium separated from the interfering constituents will be in a concentrated condition ready to be calcined by the VDC in room 230C. The oxide product of the VDC will be placed into the 2736-Z vaults for long term storage.

  11. Air Dispersion Modeling of Radioactive Releases During Proposed PFP Complex Demolition Activities

    SciTech Connect

    Napier, Bruce A.; Droppo, James G.; Rishel, Jeremy P.

    2011-01-11

    This report is part of the planning process for the demolition of the 234-5Z, 236-Z, 242-Z, and 291-Z-1 structures at the Plutonium Finishing Plant (PFP) on the Hanford Site. Pacific Northwest National Laboratory (PNNL) supports the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC) demolition planning effort by making engineering estimates of potential releases for various potential demolition alternatives. This report documents an analysis considering open-air demolition using standard techniques. It does not document any decisions about the decommissioning approaches; it is expected that this report will be revisited as the final details of the demolition are developed.

  12. Pretreatment of Plutonium Finishing Plant (PFP) sludge: Report for the period October 1990--March 1992

    SciTech Connect

    Lumetta, G.J.; Swanson, J.L.

    1993-04-01

    The current mission of the US Department of Energy's Hanford Site is one of environmental restoration. A major task within this mission is the disposal of large volumes of high-level wastes (HLW) that are stored in underground tanks on the site. Under the current planning assumptions, all high-level tank waste will be vitrified as borosilicate glass and then disposed of in a geologic repository. The costs associated with this disposal scheme are very high. Thus, methods to reduce the volume of glass required to vitrify these wastes are currently being investigated. Plutonium Finishing Plant (PFP) sludge is a unique transuranic waste that is stored in tank 241- SY-102 on the Hanford site. As the name implies, the bulk of this material consists of waste from operations at the Plutonium Finishing Plant; but, other wastes have also been added (e.g., wastes from decontamination activities). Because the quantities of plutonium and americium in the PFP sludge are greater than 100 nCi/g, this sludge must be handled as a HLW. Approximately 6000 glass canisters would result from vitrifying this waste directly. Sludge washing would reduce the required number of canisters to [approximately]2500, with the volume of glass being driven by the low allowable concentration limit for Cr in the vitrification plant feed. The cost of production and subsequent geologic disposal of each canister of glass is expected to be $0.5 M to $1 M. Thus, an economic incentive exists to develop methods of pretreating the sludge to reduce the number of glass canisters needed to contain the final vitrified product.

  13. Pretreatment of Plutonium Finishing Plant (PFP) sludge: Report for the period October 1990--March 1992

    SciTech Connect

    Lumetta, G.J.; Swanson, J.L.

    1993-04-01

    The current mission of the US Department of Energy`s Hanford Site is one of environmental restoration. A major task within this mission is the disposal of large volumes of high-level wastes (HLW) that are stored in underground tanks on the site. Under the current planning assumptions, all high-level tank waste will be vitrified as borosilicate glass and then disposed of in a geologic repository. The costs associated with this disposal scheme are very high. Thus, methods to reduce the volume of glass required to vitrify these wastes are currently being investigated. Plutonium Finishing Plant (PFP) sludge is a unique transuranic waste that is stored in tank 241- SY-102 on the Hanford site. As the name implies, the bulk of this material consists of waste from operations at the Plutonium Finishing Plant; but, other wastes have also been added (e.g., wastes from decontamination activities). Because the quantities of plutonium and americium in the PFP sludge are greater than 100 nCi/g, this sludge must be handled as a HLW. Approximately 6000 glass canisters would result from vitrifying this waste directly. Sludge washing would reduce the required number of canisters to {approximately}2500, with the volume of glass being driven by the low allowable concentration limit for Cr in the vitrification plant feed. The cost of production and subsequent geologic disposal of each canister of glass is expected to be $0.5 M to $1 M. Thus, an economic incentive exists to develop methods of pretreating the sludge to reduce the number of glass canisters needed to contain the final vitrified product.

  14. Design and evaluation of a field study on the contamination of selected volatile organic compounds and wastewater-indicator compounds in blanks and groundwater samples

    USGS Publications Warehouse

    Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.

    2011-01-01

    The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996-2008 and 2002-08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks. Blanks and groundwater samples were collected during 2008-09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples. Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds

  15. Determination of free and bound phenolic compounds in soy isoflavone concentrate using a PFP fused core column.

    PubMed

    Verardo, Vito; Riciputi, Ylenia; Garrido-Frenich, Antonia; Caboni, Maria Fiorenza

    2015-10-15

    In the last years, the consumption of soy-based foods has increased due to the health benefits related to soy bioactives like phenolic compounds. Thus, in the present study, a new chromatographic method using reverse-phase high performance liquid chromatography coupled to diode array detection (RP-HPLC/DAD) was developed using a fused core pentafluorophenyl (PFP) column. The established method allowed the determination of twenty-one free phenolic compounds and eleven bound phenolics in a soy isoflavone concentrate. The method was validated in terms of precision and recovery. Intra and inter-day precision were less than 5% (% RSD) and the recovery was between 97.4% and 103.6%. Limits of quantification (LOQs) ranged between 0.093 and 0.443 μg/mL. Because of that, PFP stationary phase can be easily applied for routine determination of phenolic compounds in soy based foods. PMID:25952864

  16. THE USE OF A TREATABILITY STUDY TO INVESTIGATE THE POTENTIAL FOR SELF HEATING & EXOTHERMIC REACTIONS IN DECONTAMINATION MATERIALS AT PFP

    SciTech Connect

    HOPKINS, A.M.

    2005-02-23

    Cerium Nitrate has been proposed for use in the decontamination of plutonium contaminated equipment at the Plutonium Finishing Plant (PFP) located on the Hanford Nuclear Reservation in eastern Washington. A Treatability Study was conducted to determine the validity of this decontamination technology in terms of meeting its performance goals and to understand the risks associated with the use of Cerium Nitrate under the conditions found at the PFP. Fluor Hanford is beginning the decommissioning of the PFP at the Hanford site. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal as low level waste. Chemicals being considered for decontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids, degreasers, and sequestering agents. Fluor's decontamination procedure involves application of the chemicals, followed by a wipe-down of the contaminated surfaces with rags. This process effectively transfers the decontamination liquids containing the transuranic materials to the rags, which can then be readily packaged for disposal as TRU waste. As part of a treatability study, Fluor Hanford and the Pacific Northwest National Laboratory (PNNL) have evaluated the potential for self-heating and exothermic reactions in the residual decontamination materials and the waste packages. Laboratory analyses and thermal-hydraulic modeling reveal a significant self-heating risk for cerium nitrate solutions when used with cotton rags. Exothermic reactions that release significant heat and off-gas have been discovered for cerium nitrate at higher temperatures. From these studies, limiting conditions have been defined to assure safe operations and waste packaging.

  17. Plan for the Startup of HA-21I Furnace Operations at the Plutonium Finishing Plant (PFP)

    SciTech Connect

    WILLIS, H.T.

    2000-02-17

    Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given. The Startup Plan provides a phased approach that bridges the activities between the completion of the Activity Based Startup Review authorizing the use of the three additional furnaces and the unrestricted operation of the five thermal stabilization muffle furnaces. The four phases are: (1) the initiation of five furnace operations using three empty (simulated full) boat charges from HA-211 and two full charges from HC-21C; (2) three furnace operations (one full charge from HA-211 and two full charges from HC-21C); (3) four furnace operations (two full charges from HA-211 and two full charges from HC-21C); and (4) integrated five furnace operations and unrestricted operations. Phase 1 of the Plan will be considered as the cold runs. This Plan also provides management oversight and administrative controls that are to be implemented until unrestricted operations are authorized. It also provides a formal review process for ensuring that all preparations needed for full five furnace operations are completed and formally reviewed prior to proceeding to the increased activity levels associated with five furnace operations. Specific objectives include: (1) To ensure that activities are conducted in a safe manner. (2) To provide supplemental

  18. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  19. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    SciTech Connect

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  20. ALARA Design Review for the Resumption of the Plutonium Finishing Plant (PFP) Cementation Process Project Activities

    SciTech Connect

    DAYLEY, L.

    2000-06-14

    The requirements for the performance of radiological design reviews are codified in 10CFR835, Occupational Radiation Protection. The basic requirements for the performance of ALARA design reviews are presented in the Hanford Site Radiological Control Manual (HSRCM). The HSRCM has established trigger levels requiring radiological reviews of non-routine or complex work activities. These requirements are implemented in site procedures HNF-PRO-1622 and 1623. HNF-PRO-1622 Radiological Design Review Process requires that ''radiological design reviews [be performed] of new facilities and equipment and modifications of existing facilities and equipment''. In addition, HNF-PRO-1623 Radiological Work Planning Process requires a formal ALARA Review for planned activities that are estimated to exceed 1 person-rem total Dose Equivalent (DE). The purpose of this review is to validate that the original design for the PFP Cementation Process ensures that the principles of ALARA (As Low As Reasonably Achievable) were included in the original project design. That is, that the design and operation of existing Cementation Process equipment and processes allows for the minimization of personnel exposure in its operation, maintenance and decommissioning and that the generation of radioactive waste is kept to a minimum.

  1. Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

    SciTech Connect

    White, W.F.

    1997-05-13

    The purpose of this document is to provide the definition and means of maintaining the Safety Envelope (SE) related to the Criticality Alarm System (CAS). This document provides amplification of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements (OSR), WHC-SD-CP-OSR-010, Rev. 0, 1994, Section 3.1.2, Criticality Detectors and Alarms. This document, with its appendices, provides the following: (1) System functional requirements for determining system operability (Section 3); (2) A list of annotated system block diagrams which indicate the safety envelope boundaries (Appendix C); (3) A list of the Safety Class 1 and 2 Safety Envelope (SC-1/2 SE) equipment for input into the Master Component Index (Appendix B); (4) Functional requirements for individual SC-1/2 SE components, including appropriate setpoints and process parameters (Section 6 and Appendix A); (5) A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the SC-1/2 SE components as required by the LCO (Section 6 and Appendix A).

  2. TOTAL MEASUREMENT UNCERTAINTY IN HOLDUP MEASUREMENTS AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    KEELE, B.D.

    2007-07-05

    An approach to determine the total measurement uncertainty (TMU) associated with Generalized Geometry Holdup (GGH) [1,2,3] measurements was developed and implemented in 2004 and 2005 [4]. This paper describes a condensed version of the TMU calculational model, including recent developments. Recent modifications to the TMU calculation model include a change in the attenuation uncertainty, clarifying the definition of the forward background uncertainty, reducing conservatism in the random uncertainty by selecting either a propagation of counting statistics or the standard deviation of the mean, and considering uncertainty in the width and height as a part of the self attenuation uncertainty. In addition, a detection limit is calculated for point sources using equations derived from summary equations contained in Chapter 20 of MARLAP [5]. The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2007-1 to the Secretary of Energy identified a lack of requirements and a lack of standardization for performing measurements across the U.S. Department of Energy (DOE) complex. The DNFSB also recommended that guidance be developed for a consistent application of uncertainty values. As such, the recent modifications to the TMU calculational model described in this paper have not yet been implemented. The Plutonium Finishing Plant (PFP) is continuing to perform uncertainty calculations as per Reference 4. Publication at this time is so that these concepts can be considered in developing a consensus methodology across the complex.

  3. Co-precipitation of Ni, Cr, Mn, Pb and Zn in industrial wastewater and sediment samples with copper(II) cyclo-hexylmethyldithiocarbamate for their flame atomic absorption spectrometric determination.

    PubMed

    Ipeaiyeda, Ayodele Rotimi; Odola, Adekunle Johnson

    2012-01-01

    A co-precipitation technique for nickel(II), chromium(II), manganese(II), lead(II) and zinc(II) with the aid of copper(II) cyclo-hexylmethyldithiocarbamate was established. The influences of some analytical parameters such as pH, sample volume, amounts of cyclo-hexylmethyldithiocarbamate and copper(II) on the recovery of metal ions were investigated. The heavy metals in the precipitate were determined by flame atomic absorption spectrophotometry. The range of detection limits for the heavy metals was 0.003-0.005 mg/L. The atomic spectrometric technique with co-precipitation procedure was successfully applied for the determination of Ni, Cr, Mn, Pb and Zn in industrial wastewater and sediment samples from Ladipo stream in Lagos, Nigeria. The mean concentrations for these metals using co-precipitation procedure were not significantly different from corresponding concentrations obtained using spectrometric techniques without co-precipitation procedure. PMID:22678206

  4. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples.

    PubMed

    Ferrando-Climent, L; Rodriguez-Mozaz, S; Barceló, D

    2013-07-01

    In the present work, the development, optimization, and validation (including a whole stability study) of a fast, reliable, and comprehensive method for the analysis of ten anticancer drugs in hospital and urban wastewater is described. Extraction of these pharmaceutical compounds was performed using automated off-line solid-phase extraction followed by their determination by ultra-performance liquid chromatography coupled to a triple quadrupole-linear ion trap mass spectrometer. Target compounds include nine cytotoxic agents: cyclophosphamide, ifosfamide, docetaxel, paclitaxel, etoposide, vincristine, tamoxifen, methotrexate, and azathioprine; and the cytotoxic quinolone, ciprofloxacin. Method detection limits (MDL) ranged from 0.8 to 24 ng/L. Levels found of cytostatic agents in the hospital and wastewater influents did not differ significantly, and therefore, hospitals cannot be considered as the primary source of this type of contaminants. All the target compounds were detected in at least one of the influent samples analyzed: Ciprofloxacin, cyclophosphamide, tamoxifen, and azathioprine were found in most of them and achieving maximum levels of 14.725, 0.201, 0.133, and 0.188 μg/L, respectively. The rest of target cancer drugs were less frequently detected and at values ranging between MDL and 0.406 μg/L. Furthermore, a feasible, useful, and advantageous approach based on information acquisition tool (information-dependent acquisition) was used for the screening of human metabolites in hospital effluents, where the hydroxy tamoxifen, endoxifen, and carboxyphosphamide were detected. PMID:23462977

  5. Notice of Construction for the Magnesium Hydroxide Precipitation Process at the Plutonium Finishing Plant (PFP)

    SciTech Connect

    JANSKY, M.T.

    1999-12-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40, Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem per year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also will constitute EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with the Construction and operation activities involving the magnesium hydroxide precipitation process of plutonium solutions within the Plutonium Finishing Plant (PFP).

  6. THE CREATIVE APPLICATION OF SCIENCE TECHNOLOGY & WORK FORCE INNOVATIONS TO THE D&D OF PLUTONIUM FINISHING PLANT (PFP) AT THE HANFORD NUCLEAR RESERVATION

    SciTech Connect

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program. The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D&D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D&D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D&D mission with a can-do attitude. They went into D&D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox cleanout. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these challengers are

  7. Source apportionment of wastewater pollutants using multivariate analyses.

    PubMed

    Kumari, Menka; Tripathi, B D

    2014-07-01

    A faster and cost-effective methodology has been developed to estimate the spatial and seasonal variations in wastewater quality and apportion the influencing sources through multivariate statistical techniques, cluster analysis and principal component analysis (PCA). Partially treated or untreated wastewater is released into the river from various industrial and domestic sources, which poses a serious threat to human health. Wastewater samples were collected from five stations along the river bank. PCA performed on overall wastewater samples revealed that in present study all the five sampling stations were influenced by sewage and industrial effluents mixed together. However, the pollutant levels were significantly different in the three groups of wastewater samples, which were confirmed by univariate analysis of principal component (PC) scores. Based on wastewater similarities, cluster analysis identified three groups (central, upstream and downstream) of sampling stations, which further confirmed univariate analysis of PCs scores. Spatial variations in wastewater quality reveled that the highest pollutant concentration was noted for group 1 and lowest for group 2. Seasonal variations in the wastewater quality revealed that highest values of pollutants were observed in low flow and lowest in high flow. Results of the present study obtained through multivariate analyses may be used to classify wastewater and identify the influencing sources of pollutants. The present study may be useful in reducing 11 % of the cost in future investigations. Thus, in future quality estimation of the representative wastewater samples would be faster as well as cost-effective approach. PMID:24599147

  8. Handbook for Monitoring Industrial Wastewater.

    ERIC Educational Resources Information Center

    Associated Water & Air Resources Engineers, Inc., Nashville, TN.

    This manual for industrial wastewater monitoring covers the philosophy of monitoring needs, planning, sampling, measuring, and analysis. Sufficient detail is given for those who wish to explore more deeply some of the practical and theoretical aspects of any of the phases of a monitoring program. A logical procedure is suggested and direction…

  9. Determination of organic priority pollutants and emerging compounds in wastewater and snow samples using multiresidue protocols on the basis of microextraction by packed sorbents coupled to large volume injection gas chromatography-mass spectrometry analysis.

    PubMed

    Prieto, A; Schrader, S; Moeder, M

    2010-09-17

    This paper describes the development and validation of a new procedure for the simultaneous determination of 41 multi-class priority and emerging organic pollutants in water samples using microextraction by packed sorbent (MEPS) followed by large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS). Apart from method parameter optimization the influence of humic acids as matrix components on the extraction efficiency of MEPS procedure was also evaluated. The list of target compounds includes polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalate esters (PEs), nonylphenols (NPs), bisphenol A (BPA) and selected steroid hormones. The performance of the new at-line microextraction-LVI-GC-MS protocol was compared to standard solid-phase extraction (SPE) and LVI-GC-MS analysis. LODs for 100 mL samples (SPE) ranged from 0.2 to 736 ng L(-1) were obtained. LODs for 800 microL of sample (MEPS) were between 0.2 and 266 ng L(-1). In the case of MEPS methodology even a sample volume of only 800 microL allowed to detect the target compounds. These results demonstrate the high sensitivity of both procedures which permitted to obtain good recoveries (>75%) for all cases. The precision of the methods, calculated as relative standard deviation (RSD) was below 21% for all compounds and both methodologies. Finally, the developed methods were applied to the determination of target analytes in various samples, including snow and wastewater. PMID:20719318

  10. Nitrifying Bacteria in Wastewater Reservoirs

    PubMed Central

    Abeliovich, Aharon

    1987-01-01

    Deep wastewater reservoirs are used throughout Israel to store domestic wastewater effluents for summer irrigation. These effluents contain high concentrations of ammonia (≤5 mM) that are frequently toxic to photosynthetic microorganisms and that lead to development of anoxic conditions. Population dynamics of nitrifying bacteria and rates of nitrification were studied in two wastewater reservoirs that differed in organic load and degree of oxygenation and in the laboratory under controlled conditions, both by serial dilutions in mineral medium and microscopically with fluorescein isothiocyanate-conjugated antibodies prepared against local isolates. The difference in counts by the two methods was within 1 order of magnitude. In the laboratory, an O2 concentration of 0.2 mg liter−1 was close to optimal with respect to growth of NH3 oxidizers on domestic wastewater, while O2 concentrations of 0.05 mg liter−1 supported significant rates of nitrification. It was found that even hypertrophic anaerobic environments such as the anaerobic hypolimnion of the wastewater reservoir or the anaerobic settling ponds are capable of sustaining a viable, although not actively nitrifying, population of Nitrosomonas spp. and Nitrobacter spp., in contrast to their rapid decline when maintained anaerobically in mineral medium in the laboratory. Nitrification rates of NH3 in effluents during storage in the reservoirs were slower by 1 to 2 orders of magnitude compared with corresponding rates in water samples brought to the laboratory. The factors causing this inhibition were not identified. PMID:16347319

  11. Shuttle Wastewater Solution Characterization

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Pham, Chau

    2011-01-01

    During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

  12. Fully automated on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry for the simultaneous analysis of alkylphenol polyethoxylates and their carboxylic and phenolic metabolites in wastewater samples.

    PubMed

    Ciofi, Lorenzo; Ancillotti, Claudia; Chiuminatto, Ugo; Fibbi, Donatella; Pasquini, Benedetta; Bruzzoniti, Maria Concetta; Rivoira, Luca; Del Bubba, Massimo

    2016-05-01

    Three different sorbents (i.e. endcapped octadecylsilane, octasilane and styrene-N-vinylpiperidinone co-polymer) were investigated in order to develop an on-line solid phase extraction-liquid chromatographic tandem mass spectrometric method (on-line SPE-LC-MS/MS) for the simultaneous analysis of alkylphenols polyethoxylate (AP(n)EOs, n = 1-8) and corresponding monocarboxylate (AP1ECs) and phenolic (APs) metabolites. The endcapped octadecylsilane was selected due to its full compatibility with a chromatographic approach, which allowed the elution of positively and negatively ionisable compounds in two distinct retention time windows, using a water-acetonitrile-tetrahydrofuran ternary gradient and a pellicular pentafluorophenyl column. On this SPE sorbent, the composition of the loading/clean-up solution was then optimized in order to achieve the best recoveries of target analytes. Under the best experimental conditions, the total analysis time per sample was 25 min and method detection limits (MDLs) were in the sub-nanograms per litre to nanograms per litre range (0.0081-1.0 ng L(-1)) for AP(n)EOs with n = 2-8, AP1ECs and APs, whereas for AP1EOs, an MDL of about 50 ng L(-1) was found. Using the mass-labelled compound spiking technique, the method performance was tested on inlet and outlet wastewater samples from three activated sludge treatment plants managing domestic and industrial sewages of the urban areas and the textile district of Prato and Bisenzio valley (Tuscany, Italy); in most cases, apparent recovery percentages approximately in the ranges of 50-110% and 80-120% were found for inlet and outlet samples, respectively. The on-line SPE-LC-MS/MS analysis of wastewater samples highlighted the presence of target analytes at concentrations ranging from few nanograms per litre to thousands nanograms per litre, depending on the compound and matrix analysed. AP2ECs were also tentatively identified in outlet samples. PMID:26897380

  13. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    PubMed

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines. PMID:26844393

  14. Pyrethroid insecticides in municipal wastewater.

    PubMed

    Weston, Donald P; Ramil, Heather L; Lydy, Michael J

    2013-11-01

    Pyrethroids are widely used insecticides, but minimal information has been published on their presence in municipal wastewater in the United States. Pyrethroids in wastewater from the Sacramento, California, USA, area consisted of permethrin, bifenthrin, cypermethrin, and cyhalothrin, with a combined concentration of 200 ng/L to 500 ng/L. Sampling within the wastewater collection system leading to the treatment plant suggested pyrethroids did not originate primarily from urban runoff, but could be from any of several drain disposal practices. Wastewater from residential areas was similar in pyrethroid composition and concentration to that from the larger metropolitan area as a whole. Secondary treatment removed approximately 90% of pyrethroids, but those remaining exceeded concentrations acutely toxic to sensitive species. Toxicity to the amphipod, Hyalella azteca, was consistently evident in the final effluent. The large river into which this particular plant discharged provided sufficient dilution such that pyrethroids were undetected in the river, and there was only slight toxicity of unknown cause in 1 river sample, but effects in receiving waters elsewhere will be site-specific. PMID:23893650

  15. FAILURE ANALYSIS: WASTEWATER DRUM BULGING

    SciTech Connect

    Vormelker, P

    2008-09-15

    A 55 gallon wastewater drum lid was found to be bulged during storage in a remote area. Drum samples were obtained for analysis. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  16. SOURCE ASSESSMENT: TEXTILE PLANT WASTEWATER TOXICS STUDY--PHASE I

    EPA Science Inventory

    The report gives results of the first phase of a study to provide chemical and toxicological baseline data on wastewater samples collected from textile plants in the U.S. Raw waste and secondary effluent wastewater samples were analyzed for 129 consent decree priority pollutants,...

  17. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    PubMed Central

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  18. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    PubMed

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  19. ASSESSMENT OF BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE FOR SYNTHETIC RUBBER MANUFACTURING WASTEWATER

    EPA Science Inventory

    An assessment of The Best Available Technology Economically Achievable (BATEA) for treatment of synthetic rubber manufacturing wastewaters has been conducted. This assessment was based on feasibility tests with actual wastewater samples, both end-of-pipe (untreated) and after pri...

  20. Superparamagnetic Fe3 O4 @SiO2 core-shell composite nanoparticles for the mixed hemimicelle solid-phase extraction of benzodiazepines from hair and wastewater samples before high-performance liquid chromatography analysis.

    PubMed

    Esmaeili-Shahri, Effat; Es'haghi, Zarrin

    2015-12-01

    Magnetic Fe3 O4 /SiO2 composite core-shell nanoparticles were synthesized, characterized, and applied for the surfactant-assisted solid-phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high-performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3 O4 nanoparticles were prepared by the chemical co-precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3 /H2 O as precipitant. Second, the surface of Fe3 O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3 O4 /SiO2 composite were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3 O4 /SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10-15 μgmL(-1) . The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996. PMID:26412451

  1. [PMIM]Br@TiO2 nanocomposite reinforced hollow fiber solid/liquid phase microextraction: an effective extraction technique for measurement of benzodiazepines in hair, urine and wastewater samples combined with high-performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Nezhadali, Azizollah; Bahar, Shahriyar; Bohlooli, Shahab; Banaei, Alireza

    2015-02-01

    A new design of hollow fiber solid-liquid phase microextraction (HF-SLPME) was developed for the determination of benzodiazepines (BZPs) in hair, urine and wastewater. The membrane extraction with 1-pentyl-3-methylimidazolium bromide coated titanium dioxide ([PMIM]Br@TiO2) sorbent used in this research is a two-phase supported membrane extraction consisting of an aqueous (donor phase), and n-octanol/nano [PMIM]Br@TiO2 (acceptor phase) system operated in direct immersion sampling mode. The 1-pentyl-3-methylimidazolium bromide (ionic liquid) coated nano TiO2 dispersed in the organic solvent (n-octanol) is held into a porous membrane supported by capillary forces and sonification. It is in contact with the feed phase, which is the aqueous sample. The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of BZPs into one single extract. In order to obtain high extraction efficiency of the analytes using this novel sorbent, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.05-6000ngmL(-1)), low limits of detection (0.08-0.5ngmL(-1)) and good enrichment (533-1190). PMID:25589255

  2. Nano sponge Mn₂O ₃ as a new adsorbent for the preconcentration of Pd(II) and Rh(III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations.

    PubMed

    Yavuz, Emre; Tokalıoğlu, Serife; Sahan, Halil; Patat, Saban

    2014-10-01

    In this study, a nano sponge Mn2O3 adsorbent was synthesized and was used for the first time. Various parameters affecting the recovery values of Pd(II) and Rh(III) were examined. The tolerance limits (≥ 90 %) for both Pd(II) and Rh(III) ions were found to be 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), 50,000 mg L(-1) Mg(II) and 50,000 mg L(-1) Ca(II). A 30s contact time was enough for both adsorption and elution. A preconcentration factor of 100 was obtained by using 100mg of the nano sponge Mn2O3. The reusability of the adsorbent was 120 times. Adsorption capacities for Pd(II) and Rh(III) were found to be 42 and 6.2 mg g(-1), respectively. The detection limits were 1.0 µg L(-1) for Pd(II) and 0.37 µg L(-1) for Rh(III) and the relative standard deviations (RSD, %) were found to be ≤ 2.5%. The method was validated by analyzing the standard reference material, SRM 2556 (Used Auto Catalyst Pellets) and spiked real samples. The optimized method was applied for the preconcentration of Pd(II) and Rh(III) ions in water (sea water and wastewater), rock, street sediment and catalytic converter samples. PMID:25059126

  3. CSER 00-003 Criticality Safety Evaluation report for PFP Magnesium Hydroxide Precipitation Process for Plutonium Stabilization Glovebox 3

    SciTech Connect

    LAN, J.S.

    2000-07-13

    This Criticality Safety Evaluation Report analyzes the stabilization of plutonium/uranium solutions in Glovebox 3 using the magnesium hydroxide precipitation process at PFP. The process covered are the receipt of diluted plutonium solutions into three precipitation tanks, the precipitation of plutonium from the solution, the filtering of the plutonium precipitate from the solution, the scraping of the precipitate from the filter into boats, and the initial drying of the precipitated slurry on a hot plate. A batch (up to 2.5 kg) is brought into the glovebox as plutonium nitrate, processed, and is then removed in boats for further processing. This CSER establishes limits for the magnesium hydroxide precipitation process in Glovebox 3 to maintain criticality safety while handling fissionable material.

  4. AN APPROACH TO CHARACTERIZING & EVALUATING ALTERNATIVES FOR THE DECOMMISSIONING OF SUB-GRADE STRUCTURES AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    HOPKINS, A.M.; KLOS, D.B.

    2007-01-25

    In 2002, the Richland Operations Office (RL) of the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) developed milestones for transitioning the Plutonium Finishing Plant (PFP) facility to a clean slab-on-grade configuration. These milestones required developing an engineering evaluation/cost analysis (EF/CA) for the facility's sub-grade structures and installations as part of a series of evaluations intended to provide for the transition of the facility to a clean slab-on-grade configuration. In addition to supporting decisions for interim actions, the analyses of sub-grade structures and installations performed through this EE/CA will contribute to the remedial investigation feasibility study(ies) and subsequently to the final records of decision for the relevant operable units responsible for site closure in the 200 West Area of the Hanford Site.

  5. Isolation and identification of pathogenic microorganisms at wastewater-irrigated fields: ratios in air and wastewater

    SciTech Connect

    Teltsch, B.; Kedmi, S.; Bonnet, L.; Borenzstajn-Rotem, Y.; Katzenelson, E.

    1980-06-01

    Samples of air and corresponding wastewater samples were taken at wastewater spray-irrigated fields. The concentrations of salmonellae and enteroviruses present in these samples were determined and compared with those of coliforms, and the ratios between them were calculated. The most common Salmonella serotype in the air was Salmonella ohio, whereas in the wastewater, Salmonella anatum was the most common. Enteroviruses isolated and identified were poliovirus, echovirus, and coxsackievirus type B. From the ratios of salmonellas to coliforms and enteroviruses to coliforms in the air, as compared to these ratios in the wastewater, it was concluded that the suitability of coliforms as an indication of airborne contamination caused by spray irrigation is questionable.

  6. The Value of the Freshwater Snail Dip Scoop Sampling Method in Macroinvertebrates Bioassessment of Sugar Mill Wastewater Pollution in Mbandjock, Cameroon

    PubMed Central

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B.; Noumi, Emmanuel

    2008-01-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources. PMID:18441407

  7. DETERMINATION OF DITHIOCARBAMATE PESTICIDES IN WASTEWATERS

    EPA Science Inventory

    A method was modified and validated for the determination of dithiocarbamate pesticides in wastewaters. The developed method consists of sample pH adjustment to pH 12.2; removal of indigenous CS2 by purging in a vortex evaporator; acidification of the sample to hydrolyze dithioca...

  8. Wastewater treatment systems.

    PubMed

    Casaday, J E

    1992-01-01

    Textile rental operators face tough wastewater cleanup challenges in many communities nationwide. Depending on the local POTW regulations and the textile rental company's customer base, wastewater pretreatment isn't always necessary. However, many plants must pretreat or risk being put out of business. In this article, eight manufacturers of wastewater treatment equipment explain their systems to help industry operators comply with POTW limits. PMID:10116442

  9. Improving plasma actuator performance at low pressure, and an analysis of the pointing capabilities of cubeSats using Plasmonic Force Propulsion (PFP) thrusters

    NASA Astrophysics Data System (ADS)

    Friz, Paul Daniel

    This thesis details the work done on two unrelated projects, plasma actuators, an aerodynamic flow control device, and Plasmonic Force Propulsion (PFP) thrusters, a space propulsion system for small satellites. The first half of the thesis is a paper published in the International Journal of Flow Control on plasma actuators. In this paper the thrust and power consumption of plasma actuators with varying geometries was studied at varying pressure. It was found that actuators with longer buried electrodes produce the most thrust over all and that they substantially improved thrust at low pressure. In particular actuators with 75 mm buried electrodes produced 26% more thrust overall and 34% more thrust at low pressure than the standard 15 mm design. The second half details work done modeling small satellite attitude and reaction control systems in order to compare the use of Plasmonic Force Propulsion thrusters with other state of the art reaction control systems. The model uses bang bang control algorithms and assumes the worst case scenario solar radiation pressure is the only disturbing force. It was found that the estimated 50-500 nN of thrust produced by PFP thrusters would allow the spacecraft which use them extremely high pointing and positioning accuracies (<10-9 degrees and 3 pm). PFP thrusters still face many developmental challenges such as increasing specific impulse which require more research, however, they have great potential to be an enabling technology for future NASA missions such as the Laser Interferometer Space Antenna, and The Stellar Imager.

  10. THE INTEGRATION OF THE 241-Z BUILDING DECONTAMINATION & DECOMMISSIONING (D&D) UNDER COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION & LIABILITY ACT (CERCLA) WITH RESOURCE CONSERVATION & RECOVERY ACT (RCRA) CLOSURE AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    HOPKINS, A.M.

    2007-02-20

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.

  11. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water.

    PubMed

    He, Ke; Soares, Ana Dulce; Adejumo, Hollie; McDiarmid, Melissa; Squibb, Katherine; Blaney, Lee

    2015-03-15

    As annual sales of antibiotics continue to rise, the mass of these specially-designed compounds entering municipal wastewater treatment systems has also increased. Of primary concern here is that antibiotics can inhibit growth of specific microorganisms in biological processes of wastewater treatment plants (WWTPs) or in downstream ecosystems. Growth inhibition studies with Escherichia coli demonstrated that solutions containing 1-10 μg/L of fluoroquinolones can inhibit microbial growth. Wastewater samples were collected on a monthly basis from various treatment stages of a 30 million gallon per day WWTP in Maryland, USA. Samples were analyzed for the presence of 11 fluoroquinolone antibiotics. At least one fluoroquinolone was detected in every sample. Ofloxacin and ciprofloxacin exhibited detection frequencies of 100% and 98%, respectively, across all sampling sites. Concentrations of fluoroquinolones in raw wastewater were as high as 1900 ng/L for ciprofloxacin and 600 ng/L for ofloxacin. Difloxacin, enrofloxacin, fleroxacin, moxifloxacin, norfloxacin, and orbifloxacin were also detected at appreciable concentrations of 9-170 ng/L. The total mass concentration of fluoroquinolones in raw wastewater was in the range that inhibited E. coli growth, suggesting that concerns over antibiotic presence in wastewater and wastewater-impacted surface water are valid. The average removal efficiency of fluoroquinolones during wastewater treatment was approximately 65%; furthermore, the removal efficiency for fluoroquinolones was found to be negatively correlated to biochemical oxygen demand removal and positively correlated to phosphorus removal. PMID:25483174

  12. Analysis of Industrial Wastewaters.

    ERIC Educational Resources Information Center

    Mancy, K. H.; Weber, W. J., Jr.

    A comprehensive, documented discussion of certain operating principles useful as guidelines for the analysis of industrial wastewaters is presented. Intended primarily for the chemist, engineer, or other professional person concerned with all aspects of industrial wastewater analysis, it is not to be considered as a substitute for standard manuals…

  13. Removal of ecotoxicity and COD from tank truck cleaning wastewater.

    PubMed

    Dries, Jan; De Schepper, Wim; Geuens, Luc; Blust, Ronny

    2013-01-01

    Tank truck cleaning (TTC) activities generate highly complex wastewater. In a previous study, we found that a significant ecotoxic effect was still present in biologically treated TTC wastewater. The aim of the present study was therefore to investigate the removal of acute toxicity from TTC wastewater by a sequence of technologies routinely applied for industrial wastewater. Acute toxicity was assayed with the widely applied and standardized Vibrio fischeri bioluminescence inhibition test. During a 5-month period, raw wastewater was grab-sampled from a full-scale TTC company and treated by the different unit operations on a laboratory scale. Chemical pretreatment of the wastewater by coagulation with FeCl3 removed approx. 38% of the influent chemical oxygen demand (COD) and reduced the bioluminescence inhibition by 8%. Biological treatment with activated sludge subsequently removed another 77% of the remaining COD. This treatment step also reduced the bioluminescence inhibition but the removal efficiency varied strongly from 5 to 92% for the different samples. Powdered activated carbon almost completely removed the remaining COD and inhibition in all samples. The results suggest that conventional technologies did not suffice for complete removal of toxicity from TTC wastewater, and that advanced wastewater treatment technologies such as activated carbon are required for a satisfactory detoxification. PMID:24292468

  14. Separation of Tritium from Wastewater

    SciTech Connect

    JEPPSON, D.W.

    2000-01-25

    A proprietary tritium loading bed developed by Molecular Separations, Inc (MSI) has been shown to selectively load tritiated water as waters of hydration at near ambient temperatures. Tests conducted with a 126 {micro}C{sub 1} tritium/liter water standard mixture showed reductions to 25 {micro}C{sub 1}/L utilizing two, 2-meter long columns in series. Demonstration tests with Hanford Site wastewater samples indicate an approximate tritium concentration reduction from 0.3 {micro}C{sub 1}/L to 0.07 {micro}C{sub 1}/L for a series of two, 2-meter long stationary column beds Further reduction to less than 0.02 {micro}C{sub 1}/L, the current drinking water maximum contaminant level (MCL), is projected with additional bed media in series. Tritium can be removed from the loaded beds with a modest temperature increase and the beds can be reused Results of initial tests are presented and a moving bed process for treating large quantities of wastewaters is proposed. The moving bed separation process appears promising to treat existing large quantities of wastewater at various US Department of Energy (DOE) sites. The enriched tritium stream can be grouted for waste disposition. The separations system has also been shown to reduce tritium concentrations in nuclear reactor cooling water to levels that allow reuse. Energy requirements to reconstitute the loading beds and waste disposal costs for this process appear modest.

  15. Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.

    PubMed

    Burmistrz, Piotr; Burmistrz, Michał

    2013-01-01

    The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively. PMID:24334890

  16. Mutagenicity and genotoxicity assessment of industrial wastewaters.

    PubMed

    Masood, Farhana; Malik, Abdul

    2013-10-01

    The genotoxicity of industrial wastewaters from Jajmau (Kanpur), was carried out by Ames Salmonella/microsome test, DNA repair-defective mutants, and Allium cepa anaphase-telophase test. Test samples showed maximum response with TA98 strain with and without metabolic activation. Amberlite resins concentrated wastewater samples were found to be more mutagenic as compared to those of liquid-liquid extracts (hexane and dichloromethane extracts). The damage in the DNA repair defective mutants in the presence of Amberlite resins concentrated water samples were found to be higher to that of liquid-liquid-extracted water samples at the dose level of 20 μl/ml culture. Among all the mutants, polA exhibited maximum decline with test samples. Mitotic index (MI) of root tip meristematic cells of A. cepa treated with 5, 10, 25, 50, and 100 % (v/v) wastewaters were significantly lower than the control. Complementary to the lower levels of MI, the wastewaters showed higher chromosomal aberration levels in all cases investigated. PMID:23640391

  17. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    USGS Publications Warehouse

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  18. Wastewater reuse in Italy.

    PubMed

    Barbagallo, S; Cirelli, G L; Indelicato, S

    2001-01-01

    In many parts of Italy, particularly in the South, it has become ever more difficult to meet the water demand. The recent years of drought and the constant increase of water demand for the civil sector have made irrigation supply more problematic. Wastewater reuse could represent a viable solution to meet water demand. The focus of this paper is on the regulation problems, hampering the development of wastewater reuse for irrigation, and on the potentials for reuse, particularly in Southern Italy. Planned exploitation of municipal wastewater could help meeting the irrigation water demand particularly in Southern Italy, where farmers have been practising uncontrolled wastewater reuse for a long time. In Northern and Central Italy, where available water resources generally meet water needs for different purposes, wastewater reuse could play an important role in controlling the pollution of water bodies. Despite the fact that Italian legislation is extremely strict and outdated, for several years in some regions, such as Sicily, wastewater reuse systems have been in operation; furthermore, several projects of wastewater reuse are currently in progress. PMID:11436802

  19. Dataset of producing and curing concrete using domestic treated wastewater.

    PubMed

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2016-03-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m(3) of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m(3) of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96-100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m(3) of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577

  20. Dataset of producing and curing concrete using domestic treated wastewater

    PubMed Central

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2015-01-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577

  1. FRACTIONATION OF MUTAGENS FROM MUNICIPAL SLUDGE AND WASTEWATER

    EPA Science Inventory

    There are potential environmental concerns from the disposal of municipal wastewater effluents and sewage treatment plant sludges. This report summarizes the microbial mutagenic evaluation and chemical analysis of 13 sewage sludge samples from various sewage treatment plants loca...

  2. Electrocoagulation of industrial wastewaters

    SciTech Connect

    Dalrymple, C.W.

    1997-12-31

    A wide variety of contaminants (heavy metals, suspended solids, colloids, emulsified oils, organics, radionuclides) have been successfully removed from wastewater and groundwater using and electrocoagulation process. An innovative electrocoagulation system is described. This process involves a procedure which subjects dissolved and suspended wastewater contaminants to the simultaneous addition of metal ions in the presence of direct current. During the treatment process ionic and other charged particles in the wastewater are neutralized with oppositely charged ions generating the coagulation of contaminants. Several case studies are presented. The process is called CURE.

  3. Physics for Water and Wastewater Operators.

    ERIC Educational Resources Information Center

    Koundakjian, Philip

    This physics course covers the following main subject areas: (1) liquids; (2) pressure; (3) liquid flow; (4) temperature and heat; and (5) electric currents. The prerequisites for understanding this material are basic algebra and geometry. The lessons are composed mostly of sample problems and calculations that water and wastewater operators have…

  4. MATERIALS FOR OXYGENATED WASTEWATER TREATMENT PLANT CONSTRUCTION

    EPA Science Inventory

    This research study was initiated to identify resistant materials for construction of wastewater treatment plants using the oxygen activated sludge process. In this investigation, samples of a broad range of construction materials were exposed for periods up to 28 months in the a...

  5. Fluorescence spectroscopy for wastewater monitoring: A review.

    PubMed

    Carstea, Elfrida M; Bridgeman, John; Baker, Andy; Reynolds, Darren M

    2016-05-15

    Wastewater quality is usually assessed using physical, chemical and microbiological tests, which are not suitable for online monitoring, provide unreliable results, or use hazardous chemicals. Hence, there is an urgent need to find a rapid and effective method for the evaluation of water quality in natural and engineered systems and for providing an early warning of pollution events. Fluorescence spectroscopy has been shown to be a valuable technique to characterize and monitor wastewater in surface waters for tracking sources of pollution, and in treatment works for process control and optimization. This paper reviews the current progress in applying fluorescence to assess wastewater quality. Studies have shown that, in general, wastewater presents higher fluorescence intensity compared to natural waters for the components associated with peak T (living and dead cellular material and their exudates) and peak C (microbially reprocessed organic matter). Furthermore, peak T fluorescence is significantly reduced after the biological treatment process and peak C is almost completely removed after the chlorination and reverse osmosis stages. Thus, simple fluorometers with appropriate wavelength selectivity, particularly for peaks T and C could be used for online monitoring in wastewater treatment works. This review also shows that care should be taken in any attempt to identify wastewater pollution sources due to potential overlapping fluorophores. Correlations between fluorescence intensity and water quality parameters such as biochemical oxygen demand (BOD) and total organic carbon (TOC) have been developed and dilution of samples, typically up to ×10, has been shown to be useful to limit inner filter effect. It has been concluded that the following research gaps need to be filled: lack of studies on the on-line application of fluorescence spectroscopy in wastewater treatment works and lack of data processing tools suitable for rapid correction and extraction of

  6. [Aqueous Fingerprint of Printing and Dyeing Wastewater].

    PubMed

    Wang, Shi-feng; Wu, Jing; Cheng, Cheng; Yang, Lin; Zhao, Yu-fei; Lü, Qing; Fu, Xin-mei

    2015-12-01

    Aqueous fingerprint has an advantage to represent the organic components of water samples as compared to traditional parameters such as chemical oxygen demand (COD) and total organic carbon (TOC). Printing and dyeing wastewater is one of the major types of industrial wastewater in China. It is of huge volume and heavy pollution, containing large numbers of luminescent components and being difficult to be degraded. In this study the aqueous fingerprint of printing and dyeing wastewater was investigated with the fluorescent spectrometry. The experimental results showed that there existed two peaks in the aqueous fingerprint of the printing and dyeing wastewater, locating at the excitation/emission wavelength around 230/340 nm and 280/310 nm respectively. The intensity of the excitation/emission wavelength at 230/340 nm was higher than that of 280/310 nm. The locations and intensities of peaks varied within small range. The intensities of the two peaks linearly correlated with coefficient of 0.910 8 and slope of 1.506. The intensity ratio of Peak at 280/310 nm to Peak at 230/340 nm averagely was 0.777, ranging between 0.712 and 0.829. It was found that the aqueous fingerprints of sewage and aniline compounds were significantly different from that of the printing and dyeing wastewater, but the aqueous fingerprints of several types of widely-used dye were similar to that of the printing and dyeing wastewater. Thus dye may be the main luminescent components in the wastewater. The aqueous fingerprint can be used as a novel tool of early warning of waterbodies. PMID:26964226

  7. Effects of winery wastewater on soil, grape nutrition, and wine quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many wineries are interested in recycling wastewater for irrigation. This project investigates the effects on winemaking when winery wastewater (WW) is recycledfor irrigation. Water samples and soils samples were collected from one Napa Valley and one Sonoma vineyard. Leaf and berry samples were col...

  8. Fibre Optic Sensors for Selected Wastewater Characteristics

    PubMed Central

    Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.

    2013-01-01

    Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131

  9. MIUS wastewater technology evaluation

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.

    1976-01-01

    A modular integrated utility system wastewater-treatment process is described. Research in the field of wastewater treatment is reviewed, treatment processes are specified and evaluated, and recommendations for system use are made. The treatment processes evaluated are in the broad categories of preparatory, primary, secondary, and tertiary treatment, physical-chemical processing, dissolved-solids removal, disinfection, sludge processing, and separate systems. Capital, operating, and maintenance costs are estimated, and extensive references are given.

  10. Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco

    NASA Astrophysics Data System (ADS)

    Tahri, Loubna; Elgarrouj, Driss; Zantar, Said; Mouhib, Mohamed; Azmani, Amina; Sayah, Fouad

    2010-04-01

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co 60 gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  11. Segregation of metals-containing wastewater by pH

    SciTech Connect

    Taylor, P.A.; McTaggart, D.R.

    1990-10-01

    A pH-based sampling system has shown that there is a high correlation between low pH and metals contamination for the wastewater from the 4500 area (manhole 190) and the 2000 area (pump station). Wastewater from the Radiochemical Engineering Development Center (REDC) and the High Flux Isotope Reactor (HFIR) has not shown any metals concentrations above the National Pollutant Discharge Elimination System (NPDES) permit limits for the Nonradiological Wastewater Treatment Plant (NRWTP). It is recommended that pH be used as the diversion criteria for wastewater from manhole 190 and the pump station to be sent to the metals tank of the NRWTP. Any wastewater with a pH less than 6.0 or greater than 10.0 should be sent to the metals tank. Based on the results of 29 weeks of sampling, it is expected that on the order of 36m{sup 3}/wk (9500 gal/wk) of wastewater will be diverted to the metals tank of the NRWTP. Wastewater from REDC and HFIR can be sent to the nonmetals tank, but it should be sampled periodically and analyzed by Inductively Coupled Plasma (ICP) spectrophotometer to confirm that the metals concentration is not increasing. 1 ref., 2 figs., 9 tabs.

  12. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  13. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  14. COLLABORATIVE NEGOTIATIONS A SUCCESSFUL APPROACH FOR NEGOTIATING COMPLIANCE MILESTONES FOR THE TRANSITION OF THE PLUTONIUM FINISHING PLANT (PFP), HANFORD NUCLEAR RESERVATION, AND HANFORD, WASHINGTON

    SciTech Connect

    Hebdon, J.; Yerxa, J.; Romine, L.; Hopkins, AM; Piippo, R.; Cusack, L.; Bond, R.; Wang, Oliver; Willis, D.

    2003-02-27

    The Hanford Nuclear Reservation is a former U. S. Department of Energy Defense Production Site. The site is currently listed on the National Priorities List of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and is undergoing cleanup and environmental restoration. The PFP is a former Plutonium metal production facility. The operating mission of the PFP ended with a DOE Headquarters shutdown letter in October of 1996. Generally, the receipt of a shutdown letter initiates the start of Transition (as the first step of Decommissioning) of a facility. The Hanford site is subject to the Hanford Federal Facilities Compliance Act and Consent Order (HFFCCO), an order on consent signed by the DOE, the U. S. Environmental Protection Agency, (EPA) and the Washington Department of Ecology (WDOE). Under the HFFCCO, negotiations for transition milestones begin within six months after the issuance of a shutdown order. In the case of the PFP, the Nuclear Materials disposition and stabilization activities, a DOE responsibility, were necessary as precursor activities to Transition. This situation precipitated a crisis in the negotiations between the agencies, and formal negotiations initiated in 1997 ended in failure. The negotiations reached impasse on several key regulatory and operational issues. The 1997 negotiation was characterized by a strongly positional style. DOE and the regulatory personnel took hard lines early in the negotiations and were unable to move to resolution of key issues after a year and a half. This resulted in unhappy stakeholders, poor publicity and work delays as well as wounded relationships between DOE and the regulatory community. In the 2000-2001 PFP negotiations, a completely different approach was suggested and eventually initiated: Collaborative Negotiations. The collaborative negotiation style resulted in agreement between the agencies on all key issues within 6 months of initiation. All parties were very

  15. Biohydrogen production from industrial wastewaters.

    PubMed

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán

    2015-01-01

    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor. PMID:25607676

  16. Applying a Modified Triad Approach to Investigate Wastewater lines

    SciTech Connect

    Pawlowicz, R.; Urizar, L.; Blanchard, S.; Jacobsen, K.; Scholfield, J.

    2006-07-01

    Approximately 20 miles of wastewater lines are below grade at an active military Base. This piping network feeds or fed domestic or industrial wastewater treatment plants on the Base. Past wastewater line investigations indicated potential contaminant releases to soil and groundwater. Further environmental assessment was recommended to characterize the lines because of possible releases. A Remedial Investigation (RI) using random sampling or use of sampling points spaced at predetermined distances along the entire length of the wastewater lines, however, would be inefficient and cost prohibitive. To accomplish RI goals efficiently and within budget, a modified Triad approach was used to design a defensible sampling and analysis plan and perform the investigation. The RI task was successfully executed and resulted in a reduced fieldwork schedule, and sampling and analytical costs. Results indicated that no major releases occurred at the biased sampling points. It was reasonably extrapolated that since releases did not occur at the most likely locations, then the entire length of a particular wastewater line segment was unlikely to have contaminated soil or groundwater and was recommended for no further action. A determination of no further action was recommended for the majority of the waste lines after completing the investigation. The modified Triad approach was successful and a similar approach could be applied to investigate wastewater lines on other United States Department of Defense or Department of Energy facilities. (authors)

  17. Multiple animal studies for medical chemical defense program in soldier/patient decontamination and drug development on task 85-17: Validation of an analytical method for the detection of soman (GD), mustard (HD), tabun (GA), and VX in wastewater samples. Final report, 13 October 1985-1 January 1989

    SciTech Connect

    Joiner, R.L.; Hayes, L.; Rust, W.; Reeves, L.; Todt, R.

    1989-05-01

    The following report summarizes the development and validation of an analytical method for the analyses of soman (GD), mustard (HD), VX, and tabun (GA) in wastewater. The need for an analytical method that can detect GD, HD, VX, and GA with the necessary sensitivity (< 20 parts per billion (PPB))and selectivity is essential to Medical Research and Evaluation Facility (MREF) operations. The analytical data were generated using liquid-liquid extraction of the wastewater, with the extract being concentrated and analyzed by gas chromatography (GC) methods. The sample preparation and analyses methods were developed in support of ongoing activities within the MREF. We have documented the precision and accuracy of the analytical method through an expected working calibration range (3.0 to 60 ppb). The analytical method was statistically evaluated over a range of concentrations to establish a detection limit and quantitation limit for the method. Whenever the true concentration is 8.5 ppb or above, the probability is at least 99.9 percent that the measured concentration will be ppb or above. Thus, 6 ppb could be used as a lower reliability limit for detecting concentrations in excess of 8.5 ppb. In summary, the proposed sample extraction and analyses methods are suitable for quantitative analyses to determine the presence of GD, HD, VX, and GA in wastewater samples. Our findings indicate that we can detect any of these chemical surety materiel (CSM) in water at or below the established U.S. Army Surgeon General's safety levels in drinking water.

  18. A method for treating wastewater containing formaldehyde.

    PubMed

    Lotfy, Hesham R; Rashed, I G

    2002-02-01

    Many industrial activities utilise formaldehyde as a key chemical in organic synthesis including: synthesis of special chemicals such as pentaerythritol and ethylene glycol, synthetic resins, paper products, medicinal products and drugs and others, too numerous to mention. Therefore, effluents arising from these applications may contain significant amounts of formaldehyde. In a biodegradation experiments of a wastewater sample containing formaldehyde ranging from 31.5 to 125 mg/l, residual formalin (a solution of formaldehyde gas in water) ranging from 40% to 85%, respectively, was found at the end of the run (16 d) showing the inhibition effect of formalin which increased with the increase in formalin concentration. The biodegradation of formalin decreased significantly at concentrations higher than 300 mg/l. A method to convert formaldehyde to an easily biodegradable substance is herein described. In the commercial manufacture of resins from phenol and formalin the reaction is never completely quantitative. As a result during the dehydration stage phenol and formalin are distilled from the wastewater. Phenol is toxic to several biochemical reactions. However, biological transformation of phenol to a non-toxic entity is possible through specialized microbes. Transformation of phenol is inhibited by the presence of formaldehyde. Biotransformation of phenol in a wastewater containing high concentrations of formaldehyde started shortly after treating the wastewater with calculated amounts of sodium sulphite. Sodium sulphite is believed to react with formaldehyde forming sodium formaldehyde bisulphite, which is not only non-toxic to microorganisms but also a biodegradable substance. From the DO measurements before and after the addition of sodium sulphite, the authors noticed that the dissolved oxygen in a wastewater containing formaldehyde is not affected by the addition of the calculated amount of sodium sulphite, which is just enough to consume the measured amount

  19. L AREA WASTEWATER STORAGE DRUM EVALUATION

    SciTech Connect

    Vormelker, P; Cynthia Foreman, C; Zane Nelson, Z; David Hathcock, D; Dennis Vinson, D

    2007-11-30

    This report documents the determination of the cause of pressurization that led to bulging deformation of a 55 gallon wastewater drum stored in L-Area. Drum samples were sent to SRNL for evaluation. The interior surface of these samples revealed blistering and holes in the epoxy phenolic drum liner and corrosion of the carbon steel drum. It is suspected that osmotic pressure drove permeation of the water through the epoxy phenolic coating which was weakened from exposure to low pH water. The coating failed at locations throughout the drum interior. Subsequent corrosion of the carbon steel released hydrogen which pressurized the drum causing deformation of the drum lid. Additional samples from other wastewater drums on the same pallet were also evaluated and limited corrosion was visible on the interior surfaces. It is suspected that, with time, the corrosion would have advanced to cause pressurization of these sealed drums.

  20. False positive identification of E. coli in treated municipal wastewater and wastewater-irrigated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the growth in use of treated wastewater for municipal and agricultural irrigation, accurate monitoring of water quality parameters, including Escherichia coli (E. coli), increases in importance. Chromogenic media, because they are easy to use and provide rapid sample analysis, are often used fo...

  1. Comparison of concentration methods for rapid detection of hookworm ova in wastewater matrices using quantitative PCR.

    PubMed

    Gyawali, P; Ahmed, W; Jagals, P; Sidhu, J P S; Toze, S

    2015-12-01

    Hookworm infection contributes around 700 million infections worldwide especially in developing nations due to increased use of wastewater for crop production. The effective recovery of hookworm ova from wastewater matrices is difficult due to their low concentrations and heterogeneous distribution. In this study, we compared the recovery rates of (i) four rapid hookworm ova concentration methods from municipal wastewater, and (ii) two concentration methods from sludge samples. Ancylostoma caninum ova were used as surrogate for human hookworm (Ancylostoma duodenale and Necator americanus). Known concentration of A. caninum hookworm ova were seeded into wastewater (treated and raw) and sludge samples collected from two wastewater treatment plants (WWTPs) in Brisbane and Perth, Australia. The A. caninum ova were concentrated from treated and raw wastewater samples using centrifugation (Method A), hollow fiber ultrafiltration (HFUF) (Method B), filtration (Method C) and flotation (Method D) methods. For sludge samples, flotation (Method E) and direct DNA extraction (Method F) methods were used. Among the four methods tested, filtration (Method C) method was able to recover higher concentrations of A. caninum ova consistently from treated wastewater (39-50%) and raw wastewater (7.1-12%) samples collected from both WWTPs. The remaining methods (Methods A, B and D) yielded variable recovery rate ranging from 0.2 to 40% for treated and raw wastewater samples. The recovery rates for sludge samples were poor (0.02-4.7), although, Method F (direct DNA extraction) provided 1-2 orders of magnitude higher recovery rate than Method E (flotation). Based on our results it can be concluded that the recovery rates of hookworm ova from wastewater matrices, especially sludge samples, can be poor and highly variable. Therefore, choice of concentration method is vital for the sensitive detection of hookworm ova in wastewater matrices. PMID:26358269

  2. Wetlands for Wastewater Treatment.

    PubMed

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included. PMID:27620086

  3. LC-MS-MS Method for Analysis of Opiates in Wastewater During Football Games II.

    PubMed

    Gul, Waseem; Stamper, Brandon; Godfrey, Murrell; Gul, Shahbaz W; ElSohly, Mahmoud A

    2016-06-01

    Continuing our previous studies analyzing drugs of abuse in municipal wastewater, a method was developed for the analysis of opiates in wastewater samples using liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS). Eight opiate drugs and metabolites were analyzed including codeine, hydrocodone, hydromorphone, 6-monoacetylmorphine (6-MAM, the primary urinary metabolite of heroin), morphine, norhydrocodone (the primary urinary metabolite of hydrocodone), oxycodone and oxymorphone. These drugs were chosen because of their widespread abuse. Wastewater samples were collected at both the Oxford Waste Water Treatment Plant in Oxford, Mississippi (MS) and the University Wastewater Treatment Plant in University, MS. These wastewater samples were collected on weekends in which the Ole Miss Rebel football team held home games (Vaught-Hemingway Stadium, University, MS 38677). The collected samples were analyzed using a validated method and found to contain codeine, hydrocodone, hydromorphone, morphine, norhydrocodone, oxycodone and oxymorphone. None of the samples contained 6-MAM. PMID:27052850

  4. AMES SALMONELLA MUTAGENICITY ASSAY PROCEDURE FOR WATER SAMPLES

    EPA Science Inventory

    This report describes methods for water and wastewater sample collection and processing for the Ames Salmonella mutagenicity assay. uidelines are provided for sampling equipment, composite sample collection, storage, and handling; sample filtration and extraction and concentratio...

  5. Effects of irrigation with treated wastewater on chemical soil properties

    NASA Astrophysics Data System (ADS)

    Parvan, M.; Danesh, S.; Alizadeh, A.

    2009-04-01

    The use of treated wastewater, as a marginal quality water, in agriculture is a justified practice, yet care should be taken to minimize adverse environmental impacts and to prevent soil deterioration. The objective of this research was to investigate the long-term effects of irrigation with treated wastewater on soil properties. The investigation was carried out by comparison of soil properties in two different fields; one irrigated with the effluent from Parkand Abad Wastewater Treatment Plant over a period of six years and the other one irrigated with water over the same period of time. Soil samples were taken from different depths of 0-25, 25-50, 50-100, 100-150 and 150-200 cm in both fields, and analyzed for various chemical properties. The results indicated that EC, TDS and Chlorine were increased significantly, in all depths, in the soil irrigated with the treated wastewater. The use of treated wastewater increased exchangeable potassium, magnesium and phosphorous significantly in the top soil layer (0-25), while the increase in calcium was occurred up to depth of 50 cm. Irrigation with the treated wastewater increased soil sodium content in all depths except for the depth of 100-150 cm. Irrigation with the treated wastewater did not affect the soil pH and nitrogen content significantly.

  6. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    PubMed

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months. PMID:27105406

  7. Microalgae and wastewater treatment

    PubMed Central

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  8. WASTEWATER TECHNOLOGY FACT SHEETS

    EPA Science Inventory

    Resource Purpose:The CWA requires EPA to collect, evaluate, and disseminate technical information on various treatment technologies, management practices, and operating methods. Technical information has been/is/will be developed in such areas as wastewater treatment, wet ...

  9. WASTEWATER INFRASTRUCTURE TECHNOLOGY VERIFICATION

    EPA Science Inventory

    Many of the wastewater collection systems in the United States were developed in the early part of the last century. Maintenance, retrofits, and rehabilitations since then have resulted in patchwork systems consisting of technologies from different eras. More advanced and cos...

  10. Occurrence of Cryptosporidium in a wastewater treatment plant in North Germany.

    PubMed

    Ajonina, Caroline; Buzie, Christopher; Ajonina, Irene U; Basner, Alexander; Reinhardt, Heiko; Gulyas, Holger; Liebau, Eva; Otterpohl, Ralf

    2012-01-01

    Cryptosporidium parvum is one of the most common human parasitic protozoa and is responsible for many waterborne outbreaks in several industrialized countries. The oocyst, which is the infective form, is known to be highly resistant to wastewater treatment procedures and represents a potential hazard to human populations through contaminated raw or treated wastewater. In this investigation, the occurrence of Cryptosporidium in wastewater samples was monitored and removal efficiency was assessed. Treated (effluent) and untreated (influent) wastewater samples were collected seasonally over a period of 2 years. Oocysts were repeatedly detected in influent and effluent samples collected from the treatment plant during all sampling seasons, with a mean concentration of 782 oocysts/L. The seasonal distribution showed that oocysts are predominant during autumn and winter. Molecular analyses via the small (18S) subunit of rRNA amplification and subsequent sequencing with an objective of characterizing the oocysts revealed that Cryptosporidium parvum was the dominant Cryptosporidium parasite present in wastewater. PMID:23095153

  11. Removal of endocrine disrupting compounds from wastewater using polymer particles.

    PubMed

    Murray, Audrey; Örmeci, Banu; Lai, Edward P C

    2016-01-01

    This study evaluated the use of particles of molecularly imprinted and non-imprinted polymers (MIP and NIP) as a wastewater treatment method for endocrine disrupting compounds (EDCs). MIP and NIP remove EDCs through adsorption and therefore do not result in the formation of partially degraded products. The results show that both MIP and NIP particles are effective for removal of EDCs, and NIP have the advantage of not being as compound-specific as the MIP and hence can remove a diverse range of compounds including 17-β-estradiol (E2), atrazine, bisphenol A, and diethylstilbestrol. Removal of E2 from wastewater was also tested to determine the effectiveness of NIP in the presence of interfering substances and natural organic matter. Removal of E2 from wastewater samples was high and increased with increasing NIP. NIP represent an effective way of removing a wide variety of EDCs from wastewater. PMID:26744949

  12. Assessment of electrocoagulation for the treatment of petroleum refinery wastewater.

    PubMed

    El-Naas, Muftah H; Al-Zuhair, Sulaiman; Al-Lobaney, Amal; Makhlouf, Souzan

    2009-10-01

    Batch electrocoagulation experiments were carried out to evaluate the removal of sulfate and COD from petroleum refinery wastewater using three types of electrodes: aluminum, stainless steel, and iron. The effects of current density, electrode arrangement, electrolysis time, initial pH, and temperature were investigated for two wastewater samples with different concentrations of COD and sulfate. The experimental results indicated that the utilization of aluminum, as anode and cathode, was by far the most efficient arrangement in the reduction of both the contaminants. The treatment process was found to be largely affected by the current density and the initial composition of the wastewater. Although electrocoagulation was found to be most effective at 25 degrees C and a pH of 8, the influence of these two parameters on the removal rate was not significant. The results demonstrated the technical feasibility of electrocoagulation as a possible and reliable technique for the pretreatment of heavily contaminated petroleum refinery wastewater. PMID:19717218

  13. Evaluation of constructed wetland treatment performance for winery wastewater.

    PubMed

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater. PMID:14587952

  14. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China.

    PubMed

    Zhang, Ying; Sun, Qing; Zhou, Jiti; Masunaga, Shigeki; Ma, Fang

    2015-09-01

    The toxicity of municipal wastewater to the receiving water bodies is still unknown, due to the lack of regulated toxicity based index for wastewater discharge in China. Our study aims at gaining insight into the acute toxic effects of local municipal wastewater on alga, Scenedesmus obliquus. Four endpoints, i.e. cell density, chlorophyll-A concentration, superoxide dismutase (SOD) activity and cell membrane integrity, of alga were analyzed to characterize the acute toxicity effects of wastewater from municipal wastewater treatment plants (WWTPs) with different treatment techniques: sequencing batch reactor (SBR), Linpor and conventional activated sludge. Influent and effluent from each treatment stage in these three WWTPs were sampled and evaluated for their acute toxicity. Our results showed that all three techniques can completely affect the algal chlorophyll-A synthesis stimulation effects of influent; the algal cell growth stimulation effect was only completely removed by the secondary treatment process in conventional activated sludge technique; toxic effects on cell membrane integrity of two influents from WWTPs with SBR and conventional activated sludge techniques were completely removed; the acute toxicity on SOD activity was partially reduced in SBR and conventional activated sludge techniques while not significantly reduced by Linpor system. As to the disinfection unit, NaClO disinfection enhanced wastewater toxicity dramatically while UV radiation had no remarkable influence on wastewater toxicity. Our results illustrated that SOD activity and chlorophyll-A synthesis were relatively sensitive to municipal wastewater toxicity. Our results would aid to understand the acute toxicity of municipal wastewater, as well as the toxicity removal by currently utilized treatment techniques in China. PMID:25996525

  15. CSER 94-013: Classification and access to PFP 232-Z Incinerator Facility and limits on characterization and disassembly activities in 232-Z burning hood

    SciTech Connect

    Miller, E.M.

    1995-01-12

    This CSER justifies the Limited Control Facility designation for the closed Burning Hood in the PFP 232-Z Incinerator Facility. If the Burning Hood is opened to characterize the plutonium distribution and geometric integrity of the internals or for disassembly of the internals, then the more rigorous Fissionable Material Facility classification is required. Two sets of requirements apply for personnel access, criticality firefighting category for water use, and fissile material movement for the two states of the Burning Hood. The parameters used in the criticality analysis are listed to establish the limits under which this CSER is valid. Determination that the Burning Hood fissile material, moderation, or internal arrangements are outside these limits requires reevaluation of these parameter values and activities at the 232-Z Incinerator Facility. When the Burning Hood is open, water entry is to be prevented by two physical barriers for each water source.

  16. CSER-025: PFP storage of 9.25 inch tall, 4.4 kg Pu cans on existing vault four pedestals

    SciTech Connect

    Hillesland, K.E., Fluor Daniel Hanford

    1997-02-06

    A nuclear criticality safety analysis has been performed to increase the approved plutonium mass limit for cans stored in Vault {number_sign}4 cubicles at PFP. The cubicles were approved to hold up to 2.5 kg of plutonium on each pedestal. The purpose of this CSER is to accommodate the storage of 4.4 kg of plutonium in PuO, (5.0 kg PuO,) in Vault {number_sign}4 cubicles. The highest k{sub eff} calculated for all possible scenarios is 0.868 + 0.003 when every other cubicle is left vacant, which is well below the criticality safety limit of k{sub eff}=0.935. Consequently, an increase of plutonium mass to 4.4 kg per can is within acceptable safety limits for this configuration.

  17. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel Rehim, F.

    2002-11-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD.

  18. Effects of industrial wastewater on growth and biomass production in commonly grown vegetables.

    PubMed

    Uzma, Syeda; Azizullah, Azizullah; Bibi, Roqaia; Nabeela, Farhat; Muhammad, Uzair; Ali, Imran; Rehman, Zia Ur; Häder, Donat-Peter

    2016-06-01

    In developing countries like Pakistan, irrigation of crops with industrial and municipal wastewater is a common practice. However, the impact of wastewater irrigation on vegetables growth has rarely been studied. Therefore, the present study was conducted to determine the effect of industrial wastewater on the germination and seedling growth of some commonly grown vegetables in Pakistan. Wastewater samples were collected from two different industries (marble industry and match alam factory) at Hayatabad Industrial Estate (HIE) in Peshawar, Pakistan, and their effect on different growth parameters of four vegetables including Hibiscus esculentus, Lactuca sativa, Cucumis sativus, and Cucumis melo was investigated. The obtained results revealed that wastewater from marble industry did not affect seed germination except a minor inhibition in H. esculentus. Effluents from match alam factory stimulated seed germination in C. melo and C. sativus but had no effect on seed germination in the other two vegetables. Wastewater increased root and shoot length in H. esculentus, L. sativa and C. melo, but decreased it in C. sativus. Similarly, differential effects of wastewater were observed on fresh and dry biomass of seedlings in all vegetables. It can be concluded that wastewater may have different effects on different crops, depending upon the nature of wastewater and sensitivity of a plant species to wastewater. PMID:27149970

  19. ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...

  20. Biodenitrification of industrial wastewater

    SciTech Connect

    Donaldson, T.L.; Walker, J.F. Jr.; Helfrich, M.V.

    1987-01-01

    The Feed Materials Production Center (FMPC), a US Department of Energy facility at Fernald, Ohio, is constructing a fluidized-bed biodenitrification plant based on pilot work conducted at the Oak Ridge National Laboratory (ORNL) in the late 1970s and early 1980s. This plant is designed to treat approximately 600 to 800 L/min of wastewater having a nitrate concentration as high as 10 g/L. The effluent is to contain less than 0.1 g/L of nitrate. Since this new facility is an extrapolation of the ORNL work to significantly larger scale equipment and to actual rather than synthetic wastewater, design verification studies have been performed to reduce uncertainties in the scaleup. The results of these studies are summarized in this report. 7 refs., 1 fig.

  1. Methicillin-Resistant Staphylococcus aureus (MRSA) Detected at Four U.S. Wastewater Treatment Plants

    PubMed Central

    Goldstein, Rachel E. Rosenberg; Micallef, Shirley A.; Gibbs, Shawn G.; Davis, Johnnie A.; He, Xin; George, Ashish; Kleinfelter, Lara M.; Schreiber, Nicole A.; Mukherjee, Sampa; Joseph, Sam W.

    2012-01-01

    Background: The incidence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections is increasing in the United States, and it is possible that municipal wastewater could be a reservoir of this microorganism. To date, no U.S. studies have evaluated the occurrence of MRSA in wastewater. Objective: We examined the occurrence of MRSA and methicillin-susceptible S. aureus (MSSA) at U.S. wastewater treatment plants. Methods: We collected wastewater samples from two Mid-Atlantic and two Midwest wastewater treatment plants between October 2009 and October 2010. Samples were analyzed for MRSA and MSSA using membrane filtration. Isolates were confirmed using biochemical tests and PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed by Sensititre® microbroth dilution. Staphylococcal cassette chromosome mec (SCCmec) typing, Panton-Valentine leucocidin (PVL) screening, and pulsed field gel electrophoresis (PFGE) were performed to further characterize the strains. Data were analyzed by two-sample proportion tests and analysis of variance. Results: We detected MRSA (n = 240) and MSSA (n = 119) in 22 of 44 (50%) and 24 of 44 (55%) wastewater samples, respectively. The odds of samples being MRSA-positive decreased as treatment progressed: 10 of 12 (83%) influent samples were MRSA-positive, while only one of 12 (8%) effluent samples was MRSA-positive. Ninety-three percent and 29% of unique MRSA and MSSA isolates, respectively, were multidrug resistant. SCCmec types II and IV, the pvl gene, and USA types 100, 300, and 700 (PFGE strain types commonly found in the United States) were identified among the MRSA isolates. Conclusions: Our findings raise potential public health concerns for wastewater treatment plant workers and individuals exposed to reclaimed wastewater. Because of increasing use of reclaimed wastewater, further study is needed to evaluate the risk of exposure to antibiotic-resistant bacteria in treated

  2. Gaseous Emissions from Wastewater Facilities.

    PubMed

    Koh, Sock-Hoon; Shaw, Andrew R

    2016-10-01

    A review of the literature published in 2015 on topics relating to gaseous emissions from wastewater facilities is presented. This review is divided into the following sections: odorant emissions from wastewater treatment plants (WWTPs); greenhouse gas (GHG) emissions from WWTPs; gaseous emissions from wastewater collection systems; physiochemical odor/emissions control methods; biological odor/emissions control methods; odor characterization/monitoring; and odor impacts/ risk assessments. PMID:27620089

  3. Wastewater Collection Systems.

    PubMed

    Vallabhaneni, Srinivas

    2016-10-01

    This chapter presents a review of the literature published in 2015 on topics relating to wastewater collection systems. It presents noteworthy advances in research and industry experiences selected from major literature sources. This review is divided into the following sections: sewer system planning; sewer condition assessment/rehabilitation; pump stations/force mains/ system design; operation and maintenance; asset management; and regulatory issues/ integrated planning. PMID:27620080

  4. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    NASA Astrophysics Data System (ADS)

    Kaboosi, Kami

    2016-05-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  5. Quantification of Bacterial Indicators and Zoonotic Pathogens in Dairy Wastewater Ponds

    PubMed Central

    Klein, Marcus; Leytem, April B.

    2012-01-01

    Zoonotic pathogens in land-applied dairy wastewaters are a potential health risk. The occurrence and abundance of 10 pathogens and 3 fecal indicators were determined by quantitative real-time PCR (qPCR) in samples from 30 dairy wastewaters from southern Idaho. Samples tested positive for Campylobacter jejuni, stx1- and eaeA-positive Escherichia coli, Listeria monocytogenes, Mycobacterium avium subsp. paratuberculosis, and Salmonella enterica, with mean recoveries of genomic DNA corresponding to 102 to 104 cells ml−1 wastewater. The most predominant organisms were C. jejuni and M. avium, being detected in samples from up to 21 and 29 of 30 wastewater ponds, respectively. The qPCR detection limits for the putative pathogens in the wastewaters ranged from 16 cells ml−1 for M. avium to 1,689 oocysts ml−1 for Cryptosporidium. Cryptosporidium and Giardia spp., Yersinia pseudotuberculosis, and pathogenic Leptospira spp. were not detected by qPCR. PMID:22983964

  6. Biotesting of wastewater: Comparative study using the Salmonella and CHO assay systems

    SciTech Connect

    Waters, L.C.; Schenley, R.L.; Owen, B.A.; Jolley, R.L.; Buchanan, M.V. ); Walsh, P.J. ); Hsie, A.W. ); Condie, L.W. )

    1989-01-01

    Means to assess the toxicity of wastewaters are essential to implementing the Federal Clean Water Act. Health risk assessment based on single chemicals is limited by the number of chemicals that can be identified and to those chemicals for which toxicity data are available. Long-term whole animal tests on large numbers of waste-water samples are not practical. In this study, two short-term tests, the Salmonella mutagenicity assay and the Chinese hamster ovary (CHO) cell assay for mutagenicity and cytotoxicity, were evaluated as potentially useful biomonitors of wastewaters. Cytotoxicity and mutagenicity were detected in some unconcentrated wastewater samples using these modifications. Data on eight wastewater samples, representing five different sites, indicated that the Salmonella test is the more sensitive indicator of mutagenic activity in those samples, whereas the CHO test is a sensitive indicator of the presence of cytotoxic components. Wastewater concentrates, prepared by adsorption onto XAD-2 and blue cotton, were compared in the two bioassays. In a single concentrate, the two short-term tests detected distinctly different mutagens. Advantages of using the CHO-AS52 cell line instead of the CHO-K{sub 1}BH{sub 4} line for detecting wastewater mutagens were indicated. This study illustrates the complementary use of multiple bioassays and concentration methods to detect and characterize toxic components in wastewater.

  7. Quantification of bacterial indicators and zoonotic pathogens in dairy wastewater ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zoonotic pathogens in land-applied dairy wastewaters are a potential health risk. The abundance and occurrence of 10 pathogens and 3 fecal indicators was determined by quantitative real-time PCR (qPCR) in 30 dairy wastewaters from southern Idaho. Samples tested positive for Campylobacter jejuni, s...

  8. Quantifying viruses and bacteria in wastewater - results, quality control, and interpretation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Membrane bioreactors (MBR), used for wastewater treatment in Ohio and elsewhere in the United States, have pore sizes large enough to theoretically reduce concentrations of protozoa and bacteria, but not viruses. Sampling for viruses in wastewater is seldom done and not required. Instead, the bac...

  9. Reduce oil and grease content in wastewater

    SciTech Connect

    Capps, R.W. ); Matelli, G.N.; Bradford, M.L. )

    1993-06-01

    Poor water quality is often blamed on biological oxidation unit malfunction. However, poorly treated water entering the bio-unit is more often the problem. At the microscopic level, oil/water-separation dynamics are influenced by pH, fluid velocity, temperature, and unit volumes. Oily water's physical and chemical properties affect pretreatment systems such as API separators, corrugated plate interception (CPI) separators, air flotation and equalization systems. A better understanding of pretreatment systems' limits and efficiencies can improve wastewater quality before it upsets the biological oxidation (BIOX). Oil contamination in refinery wastewater originates from desalting, steam stripping, product treating, tank drains, sample drains and equipment washdown. The largest volumetric contributors are cooling tower blowdowns and contaminated stormwater. The paper describes the BIOX process; oil/water separation; oil/water emulsions and colloidal solutions; air flotation; surfactants; DAF (dissolved air flotation) process; IAF (induced air flotation) process; equalization; load factors; salts; and system design.

  10. Prediction of wastewater quality using amperometric bioelectronic tongues.

    PubMed

    Czolkos, Ilja; Dock, Eva; Tønning, Erik; Christensen, Jakob; Winther-Nielsen, Margrethe; Carlsson, Charlotte; Mojzíková, Renata; Skládal, Petr; Wollenberger, Ulla; Nørgaard, Lars; Ruzgas, Tautgirdas; Emnéus, Jenny

    2016-01-15

    Wastewater samples from a Swedish chemi-thermo-mechanical pulp (CTMP) mill collected at different purification stages in a wastewater treatment plant (WWTP) were analyzed with an amperometric enzyme-based biosensor array in a flow-injection system. In order to resolve the complex composition of the wastewater, the array consists of several sensing elements which yield a multidimensional response. We used principal component analysis (PCA) to decompose the array's responses, and found that wastewater with different degrees of pollution can be differentiated. With the help of partial least squares regression (PLS-R), we could link the sensor responses to the Microtox® toxicity parameter, as well as to global organic pollution parameters (COD, BOD, and TOC). From investigating the influences of individual sensors in the array, it was found that the best models were in most cases obtained when all sensors in the array were included in the PLS-R model. We find that fast simultaneous determination of several global environmental parameters characterizing wastewaters is possible with this kind of biosensor array, in particular because of the link between the sensor responses and the biological effect onto the ecosystem into which the wastewater would be released. In conjunction with multivariate data analysis tools, there is strong potential to reduce the total time until a result is yielded from days to a few minutes. PMID:26342573

  11. An experimental investigation of wastewater treatment using electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  12. Water Pollution: Part I, Municipal Wastewaters; Part II, Industrial Wastewaters.

    ERIC Educational Resources Information Center

    Fowler, K. E. M.

    This publication is an annotated bibliography of municipal and industrial wastewater literature. This publication consists of two parts plus appendices. Part one is entitled Municipal Wastewaters and includes publications in such areas as health effects of polluted waters, federal policy and legislation, biology and chemistry of polluted water,…

  13. Chapter A5. Section 6.1.F. Wastewater, Pharmaceutical, and Antibiotic Compounds

    USGS Publications Warehouse

    Lewis, Michael Edward; Zaugg, Steven D.

    2003-01-01

    The USGS differentiates between samples collected for analysis of wastewater compounds and those collected for analysis of pharmaceutical and antibiotic compounds, based on the analytical schedule for the laboratory method. Currently, only the wastewater laboratory method for field-filtered samples (SH1433) is an approved, routine (production) method. (The unfiltered wastewater method LC 8033 also is available but requires a proposal for custom analysis.) At this time, analysis of samples for pharmaceutical and antibiotic compounds is confined to research studies and is available only on a custom basis.

  14. Wastewater Treatment I. Instructor's Manual.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment Plants."…

  15. Electrophoretic Process For Purifying Wastewater

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Twitty, Garland E.; Sharnez, Rizwan; Egen, Ned B.

    1992-01-01

    Microbes, poisonous substances, and colloidal particles removed by combination of electric fields. Electrophoretic process removes pathogenicorganisms, toxins, toxic metals, and cooloidal soil particles from wastewater. Used to render domestic, industrial, and agricultural wastewater streams potable. Process also useful in bioregenerative and other closed systems like in space stations and submarines, where water must be recycled.

  16. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  17. WASTEWATER TREATMENT BY ARTIFICIAL WETLANDS

    EPA Science Inventory

    Studies of artificial wetlands at Santee, California demonstrated the capacity of wetlands systems for integrated secondary and advanced treatment of municipal wastewaters. When receiving a blend of primary and secondary wastewaters at a blend ratio of 1:2 (6 cm per day: 12 cm pe...

  18. Use of talc as low-cost clarifier for wastewater.

    PubMed

    Grafia, Ana L; Castillo, Luciana A; Barbosa, Silvia E

    2014-01-01

    Talc is proposed as a low-cost mineral for wastewater clarification. In this sense, adsorption of methylene blue (MB) from aqueous solutions was studied comparatively by using sepiolite (qualified as very good adsorbent) and two talc samples with different particle size and purity degree. The MB adsorption was assessed by determining remnant dye in the supernatant using UV-vis spectroscopy and by detecting dye adsorbed on mineral samples through thermogravimetric analysis and infrared spectroscopy. Both isothermal curves and kinetic studies demonstrate that talc is a good dye adsorbent. Particularly, with dye concentrations similar to those of textile wastewater, talc was demonstrated to adsorb the same dye content of sepiolite at similar times. Natural talc could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes. PMID:24552739

  19. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  20. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  1. Simpler radioactive wastewater processing.

    PubMed

    Rodríguez, José Canga; Luh, Volker

    2011-11-01

    José Canga Rodríguez, key account manager, Pharmaceutical and Life Sciences, EnviroChemie, and Volker Luh, CEO of EnviroDTS, describe the development, and recent successful application, of a new technology for dealing safely and effectively with the radioactive "wastewater" generated by patients who have undergone radiotherapy in nuclear medicine facilities. The BioChroma process provides what is reportedly not only a more flexible means than traditional "delay and decay" systems of dealing with this "by-product" of medical treatment, but also one that requires less plant space, affords less risk of leakage or cross-contamination, and is easier to install. PMID:22368885

  2. Preparation of polyelectrolytes for wastewater treatment.

    PubMed

    Radoiu, Marilena T; Martin, Diana I; Calinescu, Ioan; Iovu, Horia

    2004-01-01

    Liquid-phase polymerisation of acrylamide-acrylic acid to form polyelectrolytes used in wastewater cleaning was examined using accelerated electron beam and microwave irradiation methods. Polymerisation was carried out in aqueous solutions at temperatures approximately 60 degrees C. Monomers total concentration was established at 40% (36% acrylamide and 4% acrylic acid). Only using the features of simultaneous radiation-induction and microwave heating can result in the formation of linear polymer chains with good water solubility and low residual monomer concentration. The flocculation capacity of the obtained polymers was tested using two wastewaters, one sampled from a slaughterhouse and the other from a vegetable oil plant. Quality indicators such as total suspended matters (TSM), chemical oxygen demand (COD), biological oxygen demand (BOD) and fat, oils and grease (FOG) were measured before and after the treatment with polymeric flocculants and compared with the results obtained in classical treatment with Al(2)(SO(4))(3). It was found that the combined treatment with polymers and Al(2)(SO(4))(3) increases the degree of purification of both wastewaters up to 99%. PMID:14693435

  3. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater-Associated Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Wan, Min Tao; Chou, Chin Cheng

    2015-06-01

    Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater. PMID:26042365

  4. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    PubMed

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts. PMID:27376367

  5. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    PubMed

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids. PMID:27620110

  6. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  7. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  8. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  9. Chlorinated solvents in a petrochemical wastewater treatment plant: an assessment of their removal using self-organising maps.

    PubMed

    Tobiszewski, Marek; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek

    2012-05-01

    The self-organising map approach was used to assess the efficiency of chlorinated solvent removal from petrochemical wastewater in a refinery wastewater treatment plant. Chlorinated solvents and inorganic anions (11 variables) were determined in 72 wastewater samples, collected from three different purification streams. The classification of variables identified technical solvents, brine from oil desalting and runoff sulphates as pollution sources in the refinery, affecting the quality of wastewater treatment plant influent. The classification of samples revealed the formation of five clusters: the first three clusters contained samples collected from the drainage water, process water and oiled rainwater treatment streams. The fourth cluster consisted mainly of samples collected after biological treatment, and the fifth one of samples collected after an unusual event. SOM analysis showed that the biological treatment step significantly reduced concentrations of chlorinated solvents in wastewater. PMID:22356856

  10. Concentration of Norovirus during Wastewater Treatment and Its Impact on Oyster Contamination

    PubMed Central

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O'Flaherty, Vincent

    2012-01-01

    The concentrations of Escherichia coli, F-specific RNA bacteriophage (FRNA bacteriophage), and norovirus genogroup I (NoV GI) and norovirus genogroup II (NoV GII) in wastewater were monitored weekly over a 1-year period at a wastewater treatment plant (WWTP) providing secondary wastewater treatment. A total of 49 samples of influent wastewater and wastewater that had been treated by primary and secondary wastewater treatment processes (primary and secondary treated wastewater) were analyzed. Using a real-time reverse transcription-quantitative PCR (RT-qPCR), the mean NoV GI and NoV GII concentrations detected in effluent wastewater were 2.53 and 2.63 log10 virus genome copies 100 ml−1, respectively. The mean NoV concentrations in wastewater during the winter period (January to March) (n = 12) were 0.82 (NoV GI) and 1.41 (NoV GII) log units greater than the mean concentrations for the rest of the year (n = 37). The mean reductions of NoV GI and GII during treatment were 0.80 and 0.92 log units, respectively, with no significant difference detected in the extent of NoV reductions due to season. No seasonal trend was detected in the concentrations of E. coli or FRNA bacteriophage in wastewater influent and showed mean reductions of 1.49 and 2.13 log units, respectively. Mean concentrations of 3.56 and 3.72 log10 virus genome copies 100 ml−1 for NoV GI and GII, respectively, were detected in oysters sampled adjacent to the WWTP discharge. A strong seasonal trend was observed, and the concentrations of NoV GI and GII detected in oysters were correlated with concentrations detected in the wastewater effluent. No seasonal difference was detected in concentrations of E. coli or FRNA bacteriophage detected in oysters. PMID:22367079

  11. Removal of Heavy Metals from Industrial Wastewaters Using Local Alum and Other Conventional Coagulants-A Comparative Study

    NASA Astrophysics Data System (ADS)

    Ogunfowokan, A. O.; Durosinmi, L. M.; Oyekunle, J. A. O.; Ogunkunle, O. A.; Igbafe, I. T.

    The present study aimed at effective management and purification of industrial wastewaters using cheaper and locally available local alum for removal of heavy metals as a substitute to convectional coagulants. The effect of local alum, aluminum sulphate and ferric chloride on the metal contents of industrial wastewaters was investigated in the pH range of 5.9-7.5. Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents of the wastewaters. The percentage removal of the metals from the industrial wastewaters increased with mg L-l dosage of the coagulants used with optimal performance generally at a slightly alkaline pH. Local alum proved to be equally effective in removing heavy metals from the industrial wastewater samples compared with the conventional aluminum sulphate and ferric chloride.

  12. Marine carbohydrates of wastewater treatment.

    PubMed

    Sudha, Prasad N; Gomathi, Thandapani; Vinodhini, P Angelin; Nasreen, K

    2014-01-01

    Our natural heritage (rivers, seas, and oceans) has been exploited, mistreated, and contaminated because of industrialization, globalization, population growth, urbanization with increased wealth, and more extravagant lifestyles. The scenario gets worse when the effluents or contaminants are discharged directly. So wastewater treatment is a very important and necessary in nowadays to purify wastewater before it enters a body of natural water, or it is applied to the land, or it is reused. Various methods are available for treating wastewater but with many disadvantages. Recently, numerous approaches have been studied for the development of cheaper and more effective technologies, both to decrease the amount of wastewater produced and to improve the quality of the treated effluent. Biosorption is an emerging technology, which uses natural materials as adsorbents for wastewater treatment. Low-cost adsorbents of polysaccharide-based materials obtained from marine, such as chitin, chitosan, alginate, agar, and carrageenan, are acting as rescue for wastewater treatment. This chapter reviews the treatment of wastewater up to the present time using marine polysaccharides and its derivatives. Special attention is paid to the advantages of the natural adsorbents, which are a wonderful gift for human survival. PMID:25300545

  13. Quality of wastewater reuse in agricultural irrigation and its impact on public health.

    PubMed

    Al-Hammad, Bushra Ahmed; Abd El-Salam, Magda Magdy; Ibrahim, Sahar Yassin

    2014-11-01

    This study is planned to perform a sanitary survey of the largest sewage treatment plant in Riyadh, KSA, fortnightly for 6 months to examine its effluent quality as an example for the growing dependence on reuse of treated municipal wastewater in agricultural irrigation purposes to cope with increasing water shortage. The biological and physico-chemical parameters of 12 wastewater samples from the plant were examined using standard methods. The physico-chemical analysis indicated that the surveyed municipal wastewater treatment plant contained some of the studied parameters, such as turbidity, total suspended solids, biochemical oxygen demand, chemical oxygen demand and residual chlorine above the maximum permissible wastewater limits set by the Saudi Standards. However, heavy metal concentrations in all samples were lower than the recommended standards. Total and faecal coliform counts were above the permissible limits indicating poor sanitation level. Fifty percent of all wastewater samples were contaminated with faecal coliforms but, surprisingly, Escherichia coli were only detected in 8.3 % of the samples. Regular monitoring and enhancement of microbial and physico-chemical parameters of the wastewater quality served by different wastewater treatment plants for reuse in agricultural irrigation is recommended to preserve the environment and public health. PMID:25085428

  14. LC-MS-MS Method for Stimulants in Wastewater During Football Games.

    PubMed

    Gul, Waseem; Stamper, Brandon J; Godfrey, Murrell; ElSohly, Mahmoud A

    2016-03-01

    A method was developed for the analysis of amphetamines and cocaine (Coc) in wastewater samples using liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS). Seven stimulant-type drugs and metabolites were analyzed. These drugs included amphetamine (Amp), methamphetamine (Meth), methylenedioxyamphetamine (MDA), methylenedioxymethamphetamine (MDMA), methylenedioxyethylamphetamine (MDEA), Coc and benzoylecgonine (BE, the major metabolite of Coc). These drugs were chosen because of their widespread use. Wastewater samples were collected at both the Oxford Waste Water Treatment Plant in Oxford, Mississippi (MS) and the University Wastewater Treatment Plant in University, MS. Samples were collected on weekends in which the Ole Miss Rebel football team held home games (Vaught-Hemingway Stadium, University, MS 38677). The collected samples were analyzed using a validated method and found to contain Amp, Meth, MDMA, Coc and BE. The concentrations of Amp and BE significantly rose in the university wastewater during football games. PMID:26538543

  15. Chlorine Analysis - Wastewater. Training Module 5.125.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the laboratory procedures for determining the combined chlorine residual of a wastewater sample. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers the amperometric, DPD,…

  16. MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS

    EPA Science Inventory

    Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...

  17. COMPARISON OF DNA EXTRACTION METHODS ON DAIRY CONSTRUCTED WETLAND WASTEWATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct DNA extraction from environmental samples is a useful and culture-independent method for the examination of microbial diversity. To date, there is little information on the effectiveness of commercial DNA extraction kits on wastewater. We compared two commercial DNA extraction kits for amount...

  18. NATIONAL SCREENING SURVEY OF EDCS IN MUNICIPAL WASTEWATER TREATMENT FACILITIES

    EPA Science Inventory

    In 2002 and 2003 the USEPA's Office of Research and Development asked Regional EPA inspectors, state EPA inspectors and municipal plant operators to collect four gallons effluent, either as a grab or composite sample, from up to 50 wastewater treatment plants (WWTP), and ship the...

  19. Assessment of the Unintentional Reuse of Municipal Wastewater

    NASA Astrophysics Data System (ADS)

    Okasaki, S.; Fono, L.; Sedlak, D. L.; Dracup, J. A.

    2002-12-01

    Many surface waters that receive wastewater effluent also serve as source waters for drinking water treatment plants. Recent research has shown that a number of previously undiscovered wastewater-derived contaminants are present in these surface waters, including pharmaceuticals and human hormones, several of which are suspected carcinogens or endocrine disrupters and are, as of yet, unregulated through drinking water standards. This research has been designed to determine the extent of contamination of specific wastewater-derived contaminants in surface water bodies that both receive wastewater effluent and serve as a source of drinking water to a sizeable population. We are testing the hypothesis that surface water supplies during low flow are potentially of worse quality than carefully monitored reclaimed water. The first phase of our research involves: (1) the selection of sites for study; (2) a hydrologic analysis of the selected sites to determine average flow of the source water during median- and low-flow conditions; and (3) the development and testing of chemical analyses, including both conservative and reactive tracers that have been studied in microcosms and wetlands for attenuation rates. The second phase involves the development and use of the hydrologic model QUAL2E to simulate each of the selected watersheds in order to estimate potential stream water quality impairments at the drinking water intake at each site. The results of the model are verified with field sampling at designated locations at each site. We expect to identify several critical river basins where surface water at the drinking water intake contains sufficient wastewater-derived contaminants to warrant concern. If wastewater-derived contaminants are detected, we will estimate the average annual exposure of consumers of this water. We will compare these expected and actual concentrations with typical constituent concentrations found in wastewater that has undergone advanced treatment

  20. A study of irradiation in the treatment of wastewater

    NASA Astrophysics Data System (ADS)

    Bao, Huaying; Liu, Yuanxia; Jia, Haishun

    2002-03-01

    A grafting copolymer of starch and acrylamide was prepared by 60Co- γ pre-irradiation. After purification, the copolymer was modified by a cationic reaction to form a cationic copolymer. The structure of the cationic copolymer was identified by IR and NMR spectroscopy. Using the industrial and sanitary municipal wastewater from the Factory of Wastewater Treatment of Gaobeidian in Beijing as the study sample, three-treatment methods: flocculation deposition, flocculation deposition combined with γ irradiation and the direct irradiation were carried out. COD was applied to evaluate the treatment effect. The preliminary results show that the method of flocculation deposition combined with γ irradiation was effective than the other two.

  1. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    SciTech Connect

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-03-15

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  2. Wastewater treatment with microalgae

    SciTech Connect

    Oswald, W.J. )

    1992-01-01

    In locations where total solar energy inputs average 400 langeleys or more, microscopic algae, grown in properly designed ponds, can contribute significantly and economically to wastewater treatment. While growing, microalgae produce an abundance of oxygen for microbial and biochemical oxidation of organics and other reduced compounds and for odor control. Microalgae also accelerate the inactivation of disease bacteria and parasitic ova by increasing water temperature and pH. Microalgae remove significant amounts of nitrogen and phosphorus and adsorb most polyvalent metals, including those that are toxic. After growth in properly designed paddle wheel mixed high rate ponds, microalgae settle readily, leaving a supernatant free of most pollutants. Such effluents are suitable for irrigation of ornamental plants, crops not eaten raw, aquaculture, and grounwater recharge. The settled and concentrated microalgae may be used for fertilizer, for fermentation to methane, or, assuming no toxicity, for fish, bivalve, or animal feed.

  3. Choose appropriate wastewater treatment technologies

    SciTech Connect

    Belhateche, D.H.

    1995-08-01

    Industrial wastewater treatment has been slow to develop, and in some respects has not kept up with advances in manufacturing technology. An earlier CEP article outlined a procedure for developing an effective wastewater treatment strategy. This article discusses the various wastewater treatment technologies in more detail and includes tables that compare their applications, advantages, and disadvantages. It also provides guidance on when to apply what type of treatment to which waste streams. This information can help bridge the gap between where the plant needs to be, in terms of effluent quality, and where it is, in terms of wastewater characteristics. Technologies include wet air oxidation, supercritical oxidation, incineration, activated sludge, aerated lagoons, stabilization ponds, trickling filters, fixed-film reactors, and anaerobic degradation.

  4. PAPERMILL WASTEWATER TREATMENT BY MICROSTRAINING

    EPA Science Inventory

    An original treatment system was designed, constructed, and operated for removal of suspended solids, turbidity, color, and BOD from the wastewaters of two paper mills which produce technical and other fine papers. The treatment process involves coagulation and flocculation follo...

  5. DESIGN MANUAL: MUNICIPAL WASTEWATER DISINFECTION

    EPA Science Inventory

    This manual provides a comprehensive source of information to be used in the design of disinfection facilities for municipal wastewater treatment plants. he manual includes design information on halogenation/dehalogenation, ozonation, and ultraviolet radiation. he manual presents...

  6. Treating Wastewater With Immobilized Enzymes

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  7. RISK ASSESSMENT OF WASTEWATER DISINFECTION

    EPA Science Inventory

    A risk assessment data base is presented for several waste-water disinfection alternatives, including chlorination, ozonation, chlorination/dechlorination, and ultraviolet radiation. The data base covers hazards and consequences related to onsite use and transportation of the dis...

  8. Methane emissions from wastewater management.

    PubMed

    El-Fadel, M; Massoud, M

    2001-01-01

    Greenhouse gas emissions in the form of methane and carbon dioxide are produced when municipal and industrial wastewater and their residual solid by-product (sludge) are handled under or subject to anaerobic conditions, thus contributing to the global warming potential or the greenhouse effect. This paper presents estimation methods used for determining methane emissions from the management of wastewater. Applications for estimating countrywide methane gas emissions from wastewater management are presented with the country of Lebanon as an example. The relative significance of these emissions is assessed in comparison with methane emissions from developing and developed countries. Uncertainty associated with the estimation process and mitigation measures to reduce potential impacts of methane emissions from wastewater management are also discussed. PMID:11504340

  9. Bacteriophage biocontrol in wastewater treatment.

    PubMed

    Jassim, Sabah A A; Limoges, Richard G; El-Cheikh, Hassan

    2016-04-01

    Waterborne bacterial pathogens in wastewater remains an important public health concern, not only because of the environmental damage, morbidity and mortality that they cause, but also due to the high cost of disinfecting wastewater by using physical and chemical methods in treatment plants. Bacteriophages are proposed as bacterial pathogen indicators and as an alternative biological method for wastewater treatment. Phage biocontrol in large scale treatment requires adaptive and aggressive phages that are able to overcome the environmental forces that interfere with phage-host interactions while targeting unwanted bacterial pathogens and preventing biofilms and foaming. This review will shed light on aspects of using bacteriophage programming technology in wastewater plants to rapidly target and reduce undesirable bacteria without harming the useful bacteria needed for biodegradation. PMID:26941243

  10. Fischer-Tropsch Wastewater Utilization

    DOEpatents

    Shah, Lalit S.

    2003-03-18

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  11. Prioritizing pharmaceuticals in municipal wastewater

    EPA Science Inventory

    Oral presentation at SETAC North America 32nd annual meeting, describing our prioritization of active pharmaceutical ingredients (APIs), based on estimates of risks posed by API residues originating from municipal wastewater. Goals of this project include prioritization of APIs f...

  12. Toxicity and genotoxicity of wastewater from gasoline stations

    PubMed Central

    2009-01-01

    The toxicity and genotoxicity of wastewater from eight gasoline stations in Brasília, Brazil's capital city, was studied by assessing chromosomal aberrations, chromosomal malsegregation and the mitotic index in Alliumcepa root cells, and the occurrence of micronucleus and nuclear abnormalities in peripheral erythrocytes of tilapia fish (Oreochromis niloticus). The content of gasoline station effluents was also analyzed based on several physico-chemical parameters. None of the wastewater samples was genotoxic to A. cepa root cells, although cell proliferation was significantly inhibited, especially at the highest concentrations. Likewise, no micronuclei were observed in O. niloticus peripheral erythrocytes, even after exposure to high concentrations, but there was an increase in the number of nuclear abnormalities and fish mortality. These results show that although the effluent from gasoline stations is processed by an oil/water separation system before being discharged into the main sewage system, the wastewater still contains toxic compounds. PMID:21637464

  13. Toxicity and genotoxicity of wastewater from gasoline stations.

    PubMed

    Oliveira-Martins, Cynthia R; Grisolia, Cesar K

    2009-10-01

    The toxicity and genotoxicity of wastewater from eight gasoline stations in Brasília, Brazil's capital city, was studied by assessing chromosomal aberrations, chromosomal malsegregation and the mitotic index in Alliumcepa root cells, and the occurrence of micronucleus and nuclear abnormalities in peripheral erythrocytes of tilapia fish (Oreochromis niloticus). The content of gasoline station effluents was also analyzed based on several physico-chemical parameters. None of the wastewater samples was genotoxic to A. cepa root cells, although cell proliferation was significantly inhibited, especially at the highest concentrations. Likewise, no micronuclei were observed in O. niloticus peripheral erythrocytes, even after exposure to high concentrations, but there was an increase in the number of nuclear abnormalities and fish mortality. These results show that although the effluent from gasoline stations is processed by an oil/water separation system before being discharged into the main sewage system, the wastewater still contains toxic compounds. PMID:21637464

  14. Occurrence and removal of metals in urban wastewater treatment plants.

    PubMed

    Ustün, Gökhan Ekrem

    2009-12-30

    In this study, nine metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) found in urban wastewater treatment plants (WTPs) in Bursa (Turkey) were monitored for 23 months in 2002 and 2007. Metal influent and effluent concentrations of wastewater stabilization ponds (WSPs) and the activated sludge process (ASP) measured via 24-h composite samples were used to determine removal efficiencies. Average influent concentrations ranged between 2 microg/L (Cd) and 1975 microg/L (Fe). In the stabilization ponds, the removal efficiency was 58% for Cr, while for Cd, Mn, and Pb, it was less than 20%. The activated sludge process yielded high removal efficiencies, ranging from 47% for Ni to 95% for Cr. The use of treated wastewaters for agricultural purposes was investigated, and it was determined that all metal concentrations met application limits, with the exception of Cr in wastewater stabilization pond effluent. Results showed that wastewater stabilization pond effluent reduced the receiving water quality with respect to Cr, Cu, Ni, and Pb. In addition, it was shown that effluent from the activated sludge process temporarily improved the receiving water quality with regard to the Cd, Cu, Mn, and Zn parameters. However, considering the periodic variations of the metals in both processes, water quality, and agricultural practices, it was determined that they should be monitored continuously. PMID:19683867

  15. Non-targeted analyses of organic compounds in urban wastewater.

    PubMed

    Alves Filho, Elenilson G; Sartori, Luci; Silva, Lorena M A; Silva, Bianca F; Fadini, Pedro S; Soong, Ronald; Simpson, Andre; Ferreira, Antonio G

    2015-09-01

    A large number of organic pollutants that cause damage to the ecosystem and threaten human health are transported to wastewater treatment plants (WWTPs). The problems regarding water pollution in Latin America have been well documented, and there is no evidence of substantive efforts to change the situation. In the present work, two methods to study wastewater samples are employed: non-targeted 1D ((13)C and (1)H) and 2D NMR spectroscopic analysis to characterize the largest possible number of compounds from urban wastewater and analysis by HPLC-(UV/MS)-SPE-ASS-NMR to detect non-specific recalcitrant organic compounds in treated wastewater without the use of common standards. The set of data is composed of several compounds with the concentration ranging considerably with treatment and seasonality. An anomalous discharge, the influence of stormwater on the wastewater composition and the presence of recalcitrant compounds (linear alkylbenzene sulfonate surfactant homologs) in the effluent were further identified. The seasonal variations and abnormality in the composition of organic compounds in sewage indicated that the procedure that was employed can be useful in the identification of the pollution source and to enhance the effectiveness of WWTPs in designing preventive action to protect the equipment and preserve the environment. PMID:25354334

  16. The health implications of wastewater reuse in vegetable irrigation: a case study from Malamulele, South Africa.

    PubMed

    Gumbo, Jabulani Ray; Malaka, Eric Mathwalibona; Odiyo, John O; Nare, Lerato

    2010-06-01

    Malamulele is located in an arid region where small-scale irrigation with wastewater is rife. A study was conducted to investigate the health implications of wastewater reuse in vegetable irrigation. Results showed that there are potential health hazards associated with this practice. The wastewater contained 103 helminth eggs/100 ml and zero helminth eggs for control group; vegetable wash water had 3 helminth eggs/100 ml for the exposed group and zero for control. The wastewater results exceeded the WHO guidelines whereas the vegetable wash water counts were within the guideline. Stool samples of farmers and their children indicated common infections with hookworm and Giardia lamblia. Hookworm infections were high (42%) among exposed group in comparison to the control group (27.5%). The farmers were able derive their livelihood from the sale of vegetables. The findings suggest that the health risks of using wastewater are real but can be managed by using the incomes that the farmers earn. PMID:20175010

  17. Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry

    NASA Astrophysics Data System (ADS)

    Dors, Gisanara; Mendes, Adriano A.; Pereira, Ernandes B.; de Castro, Heizir F.; Furigo, Agenor

    2013-03-01

    Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry with porcine pancreatic lipase at different concentrations (from 1.0 to 3.0 g L-1) were performed. The efficiency of the enzymatic pretreatment was measured by the Chemical Oxygen Demand (COD) removal and formation of methane. All samples pretreated with lipase showed a positive effect on the COD removal and formation of methane. After 30 days of anaerobic biodegradation the methane production varied from 569 ± 95 to 1,101 ± 10 mL for crude wastewater and pretreated at 3.0 g L-1 enzyme, respectively. COD removal of wastewater supplemented at different enzyme concentrations was found to be threefold higher than crude wastewater. The use of lipases seems to be a promising alternative for treating lipid-rich wastewaters such as those from the poultry industry.

  18. Anaerobic microbial fuel cell treating combined industrial wastewater: Correlation of electricity generation with pollutants.

    PubMed

    Abbasi, Umara; Jin, Wang; Pervez, Arshid; Bhatti, Zulfiqar Ahmad; Tariq, Madiha; Shaheen, Shahida; Iqbal, Akhtar; Mahmood, Qaisar

    2016-01-01

    Microbial fuel cell (MFC) is a new technology that not only generates energy but treats wastewater as well. A dual chamber MFC was operated under laboratory conditions. Wastewater samples from vegetable oil industries, metal works, glass and marble industries, chemical industries and combined industrial effluents were collected and each was treated for 98h in MFC. The treatment efficiency for COD in MFC was in range of 85-90% at hydraulic retention time (HRT) of 96h and had significant impact on wastewater treatment as well. The maximum voltage of 890mV was generated when vegetable oil industries discharge was treated with columbic efficiency of 5184.7C. The minimum voltage was produced by Glass House wastewater which was 520mV. There was positive significant co-relation between COD concentration and generated voltage. Further research should be focused on the organic contents of wastewater and various ionic species affecting voltage generation in MFC. PMID:26476157

  19. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    PubMed

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON. PMID:27019968

  20. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use-A One Year Study from Vietnam.

    PubMed

    Lien, La Thi Quynh; Hoa, Nguyen Quynh; Chuc, Nguyen Thi Kim; Thoa, Nguyen Thi Minh; Phuc, Ho Dang; Diwan, Vishal; Dat, Nguyen Thanh; Tamhankar, Ashok J; Lundborg, Cecilia Stålsby

    2016-01-01

    Hospital effluents represent an important source for the release of antibiotics and antibiotic resistant bacteria into the environment. This study aims to determine concentrations of various antibiotics in wastewater before and after wastewater treatment in a rural hospital (60 km from the center of Hanoi) and in an urban hospital (in the center of Hanoi) in Vietnam, and it aims to explore the relationship between antibiotic concentrations in wastewater before wastewater treatment and quantities of antibiotics used in the rural hospital, over a period of one year in 2013. Water samples were collected using continuous sampling for 24 h in the last week of every month. The data on quantities of antibiotics delivered to all inpatient wards were collected from the Pharmacy department in the rural hospital. Solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry were used for chemical analysis. Significant concentrations of antibiotics were present in the wastewater both before and after wastewater treatment of both the rural and the urban hospital. Ciprofloxacin was detected at the highest concentrations in the rural hospital's wastewater (before treatment: mean = 42.8 µg/L; after treatment: mean = 21.5 µg/L). Metronidazole was detected at the highest concentrations in the urban hospital's wastewater (before treatment: mean = 36.5 µg/L; after treatment: mean = 14.8 µg/L). A significant correlation between antibiotic concentrations in wastewater before treatment and quantities of antibiotics used in the rural hospital was found for ciprofloxacin (r = 0.78; p = 0.01) and metronidazole (r = 0.99; p < 0.001). PMID:27314366

  1. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use—A One Year Study from Vietnam

    PubMed Central

    Lien, La Thi Quynh; Hoa, Nguyen Quynh; Chuc, Nguyen Thi Kim; Thoa, Nguyen Thi Minh; Phuc, Ho Dang; Diwan, Vishal; Dat, Nguyen Thanh; Tamhankar, Ashok J.; Lundborg, Cecilia Stålsby

    2016-01-01

    Hospital effluents represent an important source for the release of antibiotics and antibiotic resistant bacteria into the environment. This study aims to determine concentrations of various antibiotics in wastewater before and after wastewater treatment in a rural hospital (60 km from the center of Hanoi) and in an urban hospital (in the center of Hanoi) in Vietnam, and it aims to explore the relationship between antibiotic concentrations in wastewater before wastewater treatment and quantities of antibiotics used in the rural hospital, over a period of one year in 2013. Water samples were collected using continuous sampling for 24 h in the last week of every month. The data on quantities of antibiotics delivered to all inpatient wards were collected from the Pharmacy department in the rural hospital. Solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry were used for chemical analysis. Significant concentrations of antibiotics were present in the wastewater both before and after wastewater treatment of both the rural and the urban hospital. Ciprofloxacin was detected at the highest concentrations in the rural hospital’s wastewater (before treatment: mean = 42.8 µg/L; after treatment: mean = 21.5 µg/L). Metronidazole was detected at the highest concentrations in the urban hospital’s wastewater (before treatment: mean = 36.5 µg/L; after treatment: mean = 14.8 µg/L). A significant correlation between antibiotic concentrations in wastewater before treatment and quantities of antibiotics used in the rural hospital was found for ciprofloxacin (r = 0.78; p = 0.01) and metronidazole (r = 0.99; p < 0.001). PMID:27314366

  2. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.

    PubMed

    Oh, Sang Eun; Logan, Bruce E

    2005-11-01

    Hydrogen can be produced from fermentation of sugars in wastewaters, but much of the organic matter remains in solution. We demonstrate here that hydrogen production from a food processing wastewater high in sugar can be linked to electricity generation using a microbial fuel cell (MFC) to achieve more effective wastewater treatment. Grab samples were taken from: plant effluent at two different times during the day (Effluents 1 and 2; 735+/-15 and 3250+/-90 mg-COD/L), an equalization tank (Lagoon; 1670+/-50mg-COD/L), and waste stream containing a high concentration of organic matter (Cereal; 8920+/-150 mg-COD/L). Hydrogen production from the Lagoon and effluent samples was low, with 64+/-16 mL of hydrogen per liter of wastewater (mL/L) for Effluent 1, 21+/-18 mL/L for Effluent 2, and 16+/-2 mL/L for the Lagoon sample. There was substantially greater hydrogen production using the Cereal wastewater (210+/-56 mL/L). Assuming a theoretical maximum yield of 4 mol of hydrogen per mol of glucose, hydrogen yields were 0.61-0.79 mol/mol for the Cereal wastewater, and ranged from 1 to 2.52 mol/mol for the other samples. This suggests a strategy for hydrogen recovery from wastewater based on targeting high-COD and high-sugar wastewaters, recognizing that sugar content alone is an insufficient predictor of hydrogen yields. Preliminary tests with the Cereal wastewater (diluted to 595 mg-COD/L) in a two-chambered MFC demonstrated a maximum of 81+/-7 mW/m(2) (normalized to the anode surface area), or 25+/-2 mA per liter of wastewater, and a final COD of <30 mg/L (95% removal). Using a one-chambered MFC and pre-fermented wastewater, the maximum power density was 371+/-10 mW/m(2) (53.5+/-1.4 mA per liter of wastewater). These results suggest that it is feasible to link biological hydrogen production and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy production. PMID:16289673

  3. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant.

    PubMed

    Ma, Ke; Qin, Zhe; Zhao, Zhongqing; Zhao, Chunxia; Liang, Shuxuan

    2016-09-01

    The toxicity of water-receiving bodies, the effluent and other treatment stages in wastewater treatment plants has recently been of interest to the public due to the lack of a regulated toxicity-based index for wastewater discharge in China. This study aimed to evaluate the conventional pollution parameters and toxicities of wastewaters collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant through dehydrogenase activity (DHA) and bioluminescent bacteria (Vibrio qinghaiensis) tests. The results of an analysis of conventional parameters indicated that the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3N), and total phosphorus (TP) were largely removed after various treatments. However, the TN, NH3N and COD still exceeded the regulated standards. The tested pharmaceutical park effluents were mainly polluted with organic pollutants and nitrogenous. The toxicity test results indicated that the toxicities could be markedly reduced after treatment, with the toxicities of two out of the six effluent samples at different treatment stages being greater than the influent toxicity. Spearman's rank correlation coefficients indicated a significantly positive correlation between the toxicity values obtained using the DHA and Vibrio qinghaiensis tests. Compared with the DHA measurement, the Vibrio qinghaiensis test was faster and more sensitive. Meanwhile, the toxicity indicators were significantly and positively correlated with the TSS, TN, TP and COD concentrations. These results may aid the understanding of the toxicity of pharmaceutical industrial park wastewaters and toxicity removal using the treatment techniques that are currently utilized in China. PMID:27262686

  4. Biopower generation from kitchen wastewater using a bioreactor.

    PubMed

    Khan, Abdul M; Naz, Shamsa

    2014-01-01

    This research provides a comparative study of the power output from mediator-less and mediator microbial fuel cells (MFCs) under aerobic and partially anaerobic conditions using kitchen wastewater (KWW) as a renewable energy source. The wastewater sample was subjected to different physical, chemical, biochemical, and microbial analysis. The chemical oxygen demand (COD), biochemical oxygen demand (BOD), and power output values were greater for the fermented samples than the non-fermented samples. The power output of samples was compared through the development of MFCs by using sand-salt bridge and agar-salt bridge. The H2 that was produced was converted to atomic hydrogen by using the nickel-coated zinc electrode. In addition, the power output was further enhanced by introducing air into the cathodic chamber, where oxygen reacts with the protons to form pure H2O. The study showed that the power output was increased with the increase in COD and BOD values. PMID:24617104

  5. Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow.

    PubMed

    Caucci, Serena; Karkman, Antti; Cacace, Damiano; Rybicki, Marcus; Timpel, Patrick; Voolaid, Veiko; Gurke, Robert; Virta, Marko; Berendonk, Thomas U

    2016-05-01

    To test the hypothesis of a seasonal relationship of antibiotic prescriptions for outpatients and the abundance of antibiotic resistance genes (ARGs) in the wastewater, we investigated the distribution of prescriptions and different ARGs in the Dresden sewer system and wastewater treatment plant during a two-year sampling campaign. Based on quantitative PCR (qPCR), our results show a clear seasonal pattern for relative ARGs abundances. The higher ARGs levels in autumn and winter coincide with the higher rates of overall antibiotic prescriptions. While no significant differences of relative abundances were observed before and after the wastewater treatment for most of the relative ARGs, the treatment clearly influenced the microbial community composition and abundance. This indicates that the ARGs are probably not part of the dominant bacterial taxa, which are mainly influenced by the wastewater treatment processes, or that plasmid carrying bacteria remain constant, while plasmid free bacteria decrease. An exception was vancomycin (vanA), showing higher relative abundance in treated wastewater. It is likely that a positive selection or community changes during wastewater treatment lead to an enrichment ofvanA. Our results demonstrate that in a medium-term study the combination of qPCR and next generation sequencing corroborated by drug-related health data is a suitable approach to characterize seasonal changes of ARGs in wastewater and treated wastewater. PMID:27073234

  6. Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters

    NASA Astrophysics Data System (ADS)

    Dean, J. D.; Mason, R. P.

    2008-12-01

    compare it to another, and to mix an effluent in a receiving water to estimate bioavailability in the near- and far-field. As part of this project, a study was undertaken to evaluate methylmercury and reactive mercury in wastewater effluents. Effluent samples from 7 municipal wastewater plants from around the Unites States were collected weekly over a ten week period from late June through August of 2008. These data represent the first comprehensive study of bioavailable mercury in wastewater effluents and have not been published elsewhere. Initial data suggest that bioavailable (methyl plus reactive) mercury is less than 30 percent of total unfiltered mercury. Reactive mercury percentages (relative to dissolved total mercury) are somewhat higher than were initially predicted from theoretical calculations. This presentation will overview the project as a whole with a focus on the bioavailability study of these 7 wastewater plants.

  7. Occurrence of pharmaceuticals and other organic wastewater constituents in selected streams in northern Arkansas, 2004

    USGS Publications Warehouse

    Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed

    2005-01-01

    The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.

  8. Measuring selected PPCPs in wastewater to estimate the population in different cities in China.

    PubMed

    Gao, Jianfa; O'Brien, Jake; Du, Peng; Li, Xiqing; Ort, Christoph; Mueller, Jochen F; Thai, Phong K

    2016-10-15

    Sampling and analysis of wastewater from municipal wastewater treatment plants (WWTPs) has become a useful tool for understanding exposure to chemicals. Both wastewater based studies and management and planning of the catchment require information on catchment population in the time of monitoring. Recently, a model has been developed and calibrated using selected pharmaceutical and personal care products (PPCPs) measured in influent wastewater for estimating population in different catchments in Australia. The present study aimed at evaluating the feasibility of utilizing this population estimation approach in China. Twenty-four hour composite influent samples were collected from 31 WWTPs in 17 cities with catchment sizes from 200,000-3,450,000 people representing all seven regions of China. The samples were analyzed for 19 PPCPs using liquid chromatography coupled to tandem mass spectrometry in direct injection mode. Eight chemicals were detected in more than 50% of the samples. Significant positive correlations were found between individual PPCP mass loads and population estimates provided by WWTP operators. Using the PPCP mass load modeling approach calibrated with WWTP operator data, we estimated the population size of each catchment with good agreement with WWTP operator values (between 50-200% for all sites and 75-125% for 23 of the 31 sites). Overall, despite much lower detection and relatively high heterogeneity in PPCP consumption across China the model provided a good estimate of the population contributing to a given wastewater sample. Wastewater analysis could also provide objective PPCP consumption status in China. PMID:27295590

  9. Effect of sprinkler pressure and spray plate on culturable microorganism concentrations during simulated irrigation of dairy wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we conducted simulated spray irrigation events of dairy wastewater to assess the impact of pressure and sprinkler type upon post-sprinkler culturable microorganism concentrations. Dairy wastewater was sampled before and after it was pumped through sprinklers typically used on center p...

  10. PERFORMANCE INVESTIGATION OF THE MANNING MODEL S-4000 PORTABLE WASTEWATER SAMPLER AND THE MODEL F-3000 DIPPER FLOWMETER

    EPA Science Inventory

    Performance of the Manning model S-4000 wastewater sampler and the model F-3000 flowmeter was investigated. The S-4000 wastewater sampler was tested at temperatures of 2, 20, and 35C to determine accuracy and precision of the timer and sample volumes. The multiplexer function of ...

  11. Method of measurement of VOCs in the off-gas and wastewater of wastewater treatment plants

    SciTech Connect

    Min Wang; Keener, T.C.; Orton, T.L.; Zhu, H.; Bishop, P.; Pekonen, S.; Siddiqui, K.

    1997-12-31

    VOCs need to be controlled according to Title 3 of the 1990 Clean Air Act Amendments (CAAA), so an accurate estimation of the total VOC emissions must be attained. This paper reports on a study where EPA method 624 was revised so that this method could be used for VOC analysis both in the water and off-gas of wastewater treatment plants. The revised method uses the same approach and equipment as water and soil analyses, thereby providing a great time and cost advantage for anyone needing to perform this type of analysis. Without using a cryogenic preconcentration step, gas samples from Tedlar bags are easily analyzed to concentrations of approximately 20 ppb using scan mode in a GC-MS unit. For the wastewater, scan mode was still used for the identification, but Selected Ion Monitoring (SIM) mode was used for quantitative analysis because of lower VOC concentration in the water. The results show that this method`s detection limit (MDL) was lowered 2--3 orders of magnitude when compared with scan mode. The modified method has been successfully applied to the identification and quantitative analysis of wastewater and off-gas VOCs from a publicly owned treatment works (POTW) aeration basin (120 MGD).

  12. Systematic optimization of an SPE with HPLC-FLD method for fluoroquinolone detection in wastewater.

    PubMed

    He, Ke; Blaney, Lee

    2015-01-23

    This paper describes a selective and ultra-sensitive analytical method for simultaneous determination of 11 fluoroquinolone (FQ) antibiotics in environmental and wastewater samples. The method employs offline solid-phase extraction (SPE) and reversed-phase high performance liquid chromatography with fluorescence detection (HPLC-FLD). A weak cation exchange SPE protocol was developed with a novel loading volume optimization algorithm and a methanol cleanup step to remove background organic matter. Various parameters were optimized to recover FQs from water/wastewater and analyte recovery was generally greater than 80%. Chromatographic separation of the 11 FQs was achieved on a 150 mm pentafluorophenyl column using a gradient elution scheme with methanol, acetonitrile, and 20mM phosphate buffer (pH=2.4). Excitation and emission wavelengths were individually optimized for each FQ using fluorescence spectroscopy; the excitation and emission wavelengths were 276-296 nm and 444-506 nm, respectively. Instrumental quantitation limits were 20-100 pg of mass injected. Of the 11 FQs investigated, seven (i.e., ciprofloxacin, difloxacin, enrofloxacin, fleroxacin, norfloxacin, moxifloxacin, and ofloxacin) were detected during a four-month sampling campaign of wastewater and wastewater-impacted surface water. Concentrations of FQs in raw wastewater, wastewater effluent, and wastewater-impacted surface water were 5-1292, 2-504, and 4-187ng/L, respectively. PMID:25200119

  13. Virus Reduction during Advanced Bardenpho and Conventional Wastewater Treatment Processes.

    PubMed

    Schmitz, Bradley W; Kitajima, Masaaki; Campillo, Maria E; Gerba, Charles P; Pepper, Ian L

    2016-09-01

    The present study investigated wastewater treatment for the removal of 11 different virus types (pepper mild mottle virus; Aichi virus; genogroup I, II, and IV noroviruses; enterovirus; sapovirus; group-A rotavirus; adenovirus; and JC and BK polyomaviruses) by two wastewater treatment facilities utilizing advanced Bardenpho technology and compared the results with conventional treatment processes. To our knowledge, this is the first study comparing full-scale treatment processes that all received sewage influent from the same region. The incidence of viruses in wastewater was assessed with respect to absolute abundance, occurrence, and reduction in monthly samples collected throughout a 12 month period in southern Arizona. Samples were concentrated via an electronegative filter method and quantified using TaqMan-based quantitative polymerase chain reaction (qPCR). Results suggest that Plant D, utilizing an advanced Bardenpho process as secondary treatment, effectively reduced pathogenic viruses better than facilities using conventional processes. However, the absence of cell-culture assays did not allow an accurate assessment of infective viruses. On the basis of these data, the Aichi virus is suggested as a conservative viral marker for adequate wastewater treatment, as it most often showed the best correlation coefficients to viral pathogens, was always detected at higher concentrations, and may overestimate the potential virus risk. PMID:27447291

  14. Gross alpha analytical modifications that improve wastewater treatment compliance

    SciTech Connect

    Tucker, B.J.; Arndt, S.

    2007-07-01

    This paper will propose an improvement to the gross alpha measurement that will provide more accurate gross alpha determinations and thus allow for more efficient and cost-effective treatment of site wastewaters. To evaluate the influence of salts that may be present in wastewater samples from a potentially broad range of environmental conditions, two types of efficiency curves were developed, each using a thorium-230 (Th-230) standard spike. Two different aqueous salt solutions were evaluated, one using sodium chloride, and one using salts from tap water drawn from the Bergen County, New Jersey Publicly Owned Treatment Works (POTW). For each curve, 13 to 17 solutions were prepared, each with the same concentration of Th-230 spike, but differing in the total amount of salt in the range of 0 to 100 mg. The attenuation coefficients were evaluated for the two salt types by plotting the natural log of the counted efficiencies vs. the weight of the sample's dried residue retained on the planchet. The results show that the range of the slopes for each of the attenuation curves varied by approximately a factor of 2.5. In order to better ensure the accuracy of results, and thus verify compliance with the gross alpha wastewater effluent criterion, projects depending on gross alpha measurements of environmental waters and wastewaters should employ gross alpha efficiency curves prepared with salts that mimic, as closely as possible, the salt content of the aqueous environmental matrix. (authors)

  15. Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    Municipal sanitary sewer collection systems play a critical role in protecting public health in our municipalities. They are designed to convey wastewater from their sources to a wastewater treatment plant (WWTP). Collection systems consist of house service laterals, sewers, pu...

  16. Performance of duckweed (Lemna minor L.) on different types of wastewater treatment.

    PubMed

    Ozengin, Nihan; Elmaci, Ayse

    2007-04-01

    Duckweed (Lemna minor L.) has a wide application in Turkey having suitable climatic conditions. In this study, the growth of duckweed was assessed in laboratory scale experiments. They were fed with municipal and industrial wastewater at constant temprature. COD, total nitrogen (TN), total phosphorus (TP) and ortho-phosphate (OP) removal efficiencies of the reactors were monitored by sampling influent and effluent of the system. Removal efficiency in this study reflects optimal results: 73-84% COD removal, 83-87% TN removal, 70-85% TP removal and 83-95% OP removal. The results show that the duckweed-based wastewater treatment is capable of treating the laboratory wastewater. PMID:17915771

  17. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    NASA Astrophysics Data System (ADS)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  18. Simultaneous quantification of poly-dispersed anionic, amphoteric and nonionic surfactants in simulated wastewater samples using C18 high-performance liquid chromatography-quadrupole ion-trap mass spectrometry

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Garland, Jay L.; Johnson, Jodie V.

    2005-01-01

    This paper describes the development of a guantitative method for direct and simultaneous determination of three frequently encountered surfactants, amphoteric (cocoamphoacetate, CAA), anionic (sodium laureth sulfate, SLES), and nonionic (alcohol ethoxylate, AE) using a reversed-phase C18 HPLC coupled with an ESI ion-trap mass spectrometer (MS). Chemical composition, ionization characteristics and fragmentation pathways of the surfactants are presented. Positive ESI was effective for all three surfactants in agueous methanol buffered with ammonium acetate. The method enables rapid determinations in small sample volumes containing inorganic salts (up to 3.5 g L(-1)) and multiple classes of surfactants with high specificity by applying surfactant specific tandem mass spectrometric strategies. It has dynamic linear ranges of 2-60, 1.5-40, 0.8-56 mg L(-1) with R2 egual or greater than 0.999, 0.98 and 0.999 (10 microL injection) for CAA, SLES, and AE, respectively.

  19. Orientation to Municipal Wastewater Treatment. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  20. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of...

  1. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of...

  2. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of...

  3. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of...

  4. 40 CFR 63.1106 - Wastewater provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.111 shall apply. (6) When Table 35 of subpart G of this part refers to 40 CFR 63.119(e)(1) or (e... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Wastewater provisions. 63.1106 Section... Technology Standards § 63.1106 Wastewater provisions. (a) Process wastewater. Except as specified...

  5. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of...

  6. 40 CFR 63.1106 - Wastewater provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.111 shall apply. (6) When Table 35 of subpart G of this part refers to 40 CFR 63.119(e)(1) or (e... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Wastewater provisions. 63.1106 Section... Technology Standards § 63.1106 Wastewater provisions. (a) Process wastewater. Except as specified...

  7. 40 CFR 63.1106 - Wastewater provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.111 shall apply. (6) When Table 35 of subpart G of this part refers to 40 CFR 63.119(e)(1) or (e... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Wastewater provisions. 63.1106 Section... Technology Standards § 63.1106 Wastewater provisions. (a) Process wastewater. Except as specified...

  8. Primary chemical and physical characterization of acute toxic components in wastewaters

    SciTech Connect

    Svenson, A.; Linlin, Z.; Kaj, L. )

    1992-10-01

    A chemical and physical primary characterization work sheet was developed based on the Microtox test, a bacterial bioluminescence system used as a rapid estimate of acute aquatic toxic effects. Measurements of the variation in light reduction upon different pretreatments provided information about the chemical and physical properties of the main toxic component(s) in test wastewater samples. This primary characterization of a wastewater sample was performed within 1 day. Tests of pure toxic chemical compounds and wastewaters with known and unknown primary toxicants are presented. Outlines to the chemical analysis and identification of toxic components may be deduced from the primary characterization. The provisional characterization may also provide information on wastewater treatment techniques.

  9. Wastewater privatization: A beneficial alternative

    SciTech Connect

    Wakeman, R.F.; Drewry, W.A.

    1999-07-01

    Municipalities with wastewater operations face increasing requirements to maximize efficiency, implement capital improvements, and ensure environmental compliance. Privatization is a relatively unused alternative offering benefits in the areas of cost-effective operations, flexible financing, technology access, and compliance assurance. Recent executive direction and tax code changes have opened new doors for mutually beneficial public-private partnerships. Wastewater privatization has historically consisted of short-term contract agreements for treatment operations, but looming infrastructure recapitalization and development requirements have catalyzed an exploration of non-traditional alternatives that include private sector financing, development, and operation of entire wastewater systems, The purpose of this paper is to show why privatization must be considered, evaluate the different levels available, and generate an analytical aid for communities taking their first look at privatization opportunities.

  10. Wastewater Treatment: The Natural Way

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  11. Enhanced industrial wastewater treatment

    SciTech Connect

    Nachabe, A.H.; Durlak, E.

    1997-12-31

    The sodium sulfide/ferrous sulfate (SS/FS) process is a treatment technology for the reduction of hexavalent chromium and precipitation of heavy metals in industrial wastewater treatment plants (IWTP). When the ferrous ion, as ferrous sulfate, is mixed with sulfide, the hexavalent chromium is rapidly reduced to its trivalent state at a neutral pH and then precipitated. SS/FS technology can be used to replace the current hydroxide treatment chemistry in Navy IWTPs. This paper will present the results and lessons learned from full-scale implementation of SS/FS at Naval Undersea Warfare Center (NUWC) Keyport, Washington. The SS/FS treatment process reduced the chemical cost by fifty nine percent and sludge disposal cost by thirty one percent. On an annual basis total cost savings amounted to $31,950 or thirty four percent. The SS/FS treatment process lowered the amount of treatment chemicals used in the IWTP. Furthermore, metal sulfides tend to be two to three orders of magnitude less soluble than their corresponding metal hydroxides. This allows for cleaner effluent, which will help the facility meet environmental discharge requirements. Further benefits include the removal from the shop area of the high pressure sulfur dioxide cylinder (used in the hydroxide process), a faster and more reliable chrome reduction method, neutral pH operation that extends tank and equipment life, and less acid and caustic chemicals stored on the shop floor. As Navy activities respond to the ever increasing pressures to do more with less, the SS/FS process can help them meet the increasingly stringent standards.

  12. Bioremediation of wastewater using microalgae

    NASA Astrophysics Data System (ADS)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  13. Glutaraldehyde degradation in hospital wastewater by photoozonation.

    PubMed

    Kist, Lourdes Teresinha; Rosa, Ellen Caroline; Machado, Enio Leandro; Camargo, Maria Emilia; Moro, Celso Camilo

    2013-01-01

    In this paper, we assessed aqueous solutions of glutaraldehyde (GA), a chemical used for the disinfection of hospital materials, using advanced oxidative processes, O3, and UV, and the combination of the latter two. Assays with different ozone concentrations at distinct pH levels were conducted to determine the best treatment process. GA concentrations before and after each treatment were measured by spectrophotometry. The best treatment was that which combined O3 and UV, yielding a degradation of 72.0-75.0% in relation to the initial concentration with pH between 4 and 9. Kinetics demonstrated that GA degradation is not dependent on pH, as there was a first-order reaction with a rate constant of k = 0.0180 min(-1) for initial pH 9 and of k = 0.0179 min(-1) for initial pH 7, that is, the values are virtually the same. Secondary wastewater samples were also analysed using the septic tank/filter system of a regional hospital in Vale do Rio Pardo, state of Rio Grande do Sul, southern Brazil. In this case, the characteristics of the wastewater were described and, after treatment, a GA degradation rate of 23.3% was noted, with reductions of 75% for chemical oxygen demand, 81% for biochemical oxygen demand, 68% for turbidity, 70% for surfactants and total disinfection in terms of thermotolerant coliforms. PMID:24527619

  14. Dewatering and incinerating wastewater solids

    SciTech Connect

    Shamat, N.; Hart, J.

    1992-10-01

    The solids processing and incineration-energy recovery system at the Metropolitan Waste Control Commission (MWCC) wastewater treatment plant in St. Paul, Minn., is unique in the wastewater treatment field. The system consists of innovative processes including two types of solids dewatering devices-twin-roll filter presses and plate-and-frame diaphragm filter presses, and two new and four rehabilitated multiple-hearth incinerators. Four of the incinerators are equipped with energy recovery boilers, an economizer, heat wheels, and rotary solids dryers. The plant scum and the odorous gases generated from the thermal solids conditioning process are destroyed by combustion in the incinerators.

  15. Optimization of diclofenac quantification from wastewater treatment plant sludge by ultrasonication assisted extraction.

    PubMed

    Topuz, Emel; Sari, Sevgi; Ozdemir, Gamze; Aydin, Egemen; Pehlivanoglu-Mantas, Elif; Okutman Tas, Didem

    2014-05-01

    A rapid quantification method of diclofenac from sludge samples through ultrasonication assisted extraction and solid phase extraction (SPE) was developed and used for the quantification of diclofenac concentrations in sludge samples with liquid chromatography/tandem mass spectrometry (LC-MS/MS). Although the concentration of diclofenac in sludge samples taken from different units of wastewater treatment plants in Istanbul was below the limit of quantification (LOQ; 5ng/g), an optimized method for sludge samples along with the total mass balances in a wastewater treatment plant can be used to determine the phase with which diclofenac is mostly associated. Hence, the results will provide information on fate and transport of diclofenac, as well as on the necessity of alternative removal processes. In addition, since the optimization procedure is provided in detail, it is possible for other researchers to use this procedure as a starting point for the determination of other emerging pollutants in wastewater sludge samples. PMID:24704687

  16. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants

    USGS Publications Warehouse

    Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.

  17. Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants

    PubMed Central

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536

  18. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants.

    PubMed

    Phillips, P J; Chalmers, A T; Gray, J L; Kolpin, D W; Foreman, W T; Wall, G R

    2012-05-15

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40-90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536

  19. Pathogenic parasites and enteroviruses in wastewater: support for a regulation on water reuse.

    PubMed

    Hachich, Elayse M; Galvani, Ana T; Padula, Jose A; Stoppe, Nancy C; Garcia, Suzi C; Bonanno, Vilma M S; Barbosa, Mikaela R F; Sato, Maria Inês Z

    2013-01-01

    Brazilian regulations for nonpotable reuse are being established using World Health Organization guidelines, however, they should be developed based on local monitoring studies. This study intended to analyze enteroviruses, protozoa and viable Ascaris sp. eggs in raw (24) and treated (24) effluents from four Wastewater Treatment Plants of São Paulo State, Brazil. The protozoa were detected with the US Environmental Protection Agency (USEPA) Method 1623 in the treated effluents and by centrifugation/Immunomagnetic Separation in the raw influent samples. Viable Ascaris sp. eggs were analyzed according to a modified USEPA method. Enteroviruses were quantified by using human rhabdomyosarcoma cells after adequate concentration procedures. All wastewater influents were positive for Giardia sp. whereas Cryptosporidium sp. was detected in 58.3% of the samples. Giardia sp. and Cryptosporidium sp. were present in 79.2 and 25.0% respectively, of the treated wastewater samples. Viable Ascaris sp. eggs were detected in 50.0 and 12.5% of influent and treated wastewater samples. Enteroviruses were isolated in the 24 raw influent samples and in 46% of the treated samples. Taking into account the densities of Giardia sp. in some treated wastewaters intended to be used as reclaimed water, Quantitative Microbial Risk Assessment studies should be conducted to establish pathogen quantitative criteria for a future Brazilian regulation for water reuse. PMID:23552239

  20. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell.

    PubMed

    Huang, Xiao; Qu, Yan; Cid, Clément A; Finke, Cody; Hoffmann, Michael R; Lim, Keahying; Jiang, Sunny C

    2016-04-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. PMID:26854604

  1. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell

    PubMed Central

    Huang, Xiao; Qu, Yan; Cid, Clément A.; Finke, Cody; Hoffmann, Michael R.; Lim, Keahying; Jiang, Sunny C.

    2016-01-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [•OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. PMID:26854604

  2. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    PubMed

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  3. Geochemical influences and mercury methylation of a dental wastewater microbiome

    PubMed Central

    Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi

    2015-01-01

    The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452

  4. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg.

    PubMed

    Ajonina, Caroline; Buzie, Christopher; Rubiandini, Rafi Herfini; Otterpohl, Ralf

    2015-01-01

    Microbial pathogens are among the major health problems associated with water and wastewater. Classical indicators of fecal contamination include total coliforms, Escherichia coli, and Clostridium perfringens. These fecal indicators were monitored in order to obtain information regarding their evolution during wastewater treatment processes. Helminth eggs survive for a long duration in the environment and have a high potential for waterborne transmission, making them reliable contaminant indicators. A large quantity of helminth eggs was detected in the wastewater samples using the Bailanger method. Eggs were found in the influent and effluent with average concentration ranging from 11 to 50 eggs/L. Both E. coli and total coliforms concentrations were significantly 1- to 3-fold higher in influent than in effluent. The average concentrations of E. coli ranged from 2.5×10(3) to 4.4×10(5) colony-forming units (CFU)/100 ml. Concentrations of total coliforms ranged from 3.6×10(3) to 7.9×10(5) CFU/100 ml. Clostridium perfringens was also detected in influent and effluent of wastewater treatment plants (WWTP) at average concentrations ranging from 5.4×10(2) to 9.1×10(2) most probable number (MPN)/100 ml. Significant Spearman rank correlations were found between helminth eggs and microbial indicators (total coliform, E. coli, and C. perfringens) in the WWTP. There is therefore need for additional microbial pathogen monitoring in the WWTP to minimize public health risk. PMID:25734765

  5. Effects on crops of irrigation with treated municipal wastewaters.

    PubMed

    Fasciolo, G E; Meca, M I; Gabriel, E; Morábito, J

    2002-01-01

    The fertilizing potential of treated municipal wastewater (oxidation ditch) and crop sanitary acceptability for direct human consumption were evaluated in Mendoza, Argentina. Two experiments were performed on a pilot plot planted with garlic (1998) and onions (1999) using furrow irrigation with three types of water in 10 random blocks: treated effluent (2.5 x 10(3) MPN Escherichia coli/100 ml, 3 helminth eggs/l, and Salmonella (positive); and well water (free of microorganisms), with and without fertilizer. Two responses were evaluated: (1) crop yield, and (2) crop microbiological quality for human consumption at different times after harvest. Crop yields were compared using Variance analysis. Crops' sanitary acceptability was assessed using a two-class sampling program for Salmonella (n=10; c=0), and a three-class program for E. coli (n=5, c=2, M=10(3) and m=10 MPN/g) as proposed by the International Commission on Microbiological Specifications for Foods (ICMSF) for fresh vegetables. Wastewater irrigation acted as well water with fertilizer, increasing garlic and onion yields by 10% and 15%, respectively, compared to irrigation with well water with no fertilizer. Wastewater-irrigated garlic reached sanitary acceptability 90 days after harvest, once attached roots and soil were removed. Onions, which were cleaned immediately after harvest, met this qualification earlier than garlic (55 days). Neither the wastewater-irrigated crops nor the control crops were microbiologically acceptable for consumption raw at harvest. PMID:11833727

  6. Fecal contamination of wastewater treatment plants in Portugal.

    PubMed

    Oliveira, Manuela; Serrano, Isa; Van Harten, Sofia; Bessa, Lucinda J; Bernardo, Fernando; da Costa, Paulo Martins

    2016-07-01

    Reutilization of effluents from wastewater treatment plants (WWTP) for non-potable applications is increasing due to the reduction of sustainable water resources. These products mostly come from municipal WWTP and also from slaughterhouses effluents. The microbiological certification of these products is mandatory before their discharge into the environment. This study evaluates if the treatment applied in WWTP to municipal waters or to poultry slaughterhouse effluents distributed over the Portuguese continental territory is efficient in reducing the microbiological risk associated with the reutilization of those wastewaters and sludges. Fecal indicators Escherichia coli and enterococci were evaluated in 42 and 24 wastewater samples from 14 municipal WWTP and 8 poultry slaughterhouse treatment plants, respectively, by the conventional culture method and a rapid Fluorescent in situ hybridization (FISH) technique. Bacterial enumeration in inflow water from most WWTP was rather high (generally >10(5) cells/ml), for both E. coli and Enterococcus spp., and the bacterial quantification by FISH was generally higher than enumeration by the conventional culture method. In both types of treatment plants studied, bacterial load from effluents and sludges was not statistically different from the inflows, indicating that the treatment applied seems to be equally unable to reduce the microbiological load of the effluents. These findings may jeopardize the safe reuse of treated wastewaters in agriculture and the quality of the water environment. Therefore, products like water, sewage sludge, and biosolids originated from the municipal and slaughterhouse WWTP studied should not be reutilized, and effluents treatment should be urgently reviewed. PMID:27236442

  7. Geochemical influences and mercury methylation of a dental wastewater microbiome.

    PubMed

    Rani, Asha; Rockne, Karl J; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi

    2015-01-01

    The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452

  8. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    USGS Publications Warehouse

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.

  9. Carbonyl trapping and antiglycative activities of olive oil mill wastewater.

    PubMed

    Navarro, Marta; Fiore, Alberto; Fogliano, Vincenzo; Morales, Francisco J

    2015-02-01

    The use of natural compounds as antiglycative agents to reduce the load of advanced glycation end products from diet is very promising. Olive mill wastewater is a by-product of the olive oil extraction processes with a high content of hydroxytyrosol, hydroxytyrosol derivatives and molecules containing o-dihydroxyl functions such as verbascoside. Two powders were obtained after the ultrafiltration and nanofiltration of olive mill wastewater, and successive spray drying with maltodextrin and acacia fiber. The samples were characterized by phenolic composition and antioxidant capacity. Antiglycative capacity was evaluated by in vitro BSA-glucose and BSA-methylglyoxal assays, formation of Amadori products and direct trapping of reactive dicarbonyls (methylglyoxal and glyoxal). Both ultrafiltered and nanofiltered olive mill wastewater powders had an activity comparable to quercetin and hydroxytyrosol against the inhibition of protein glycation (IC50 = 0.3 mg mL(-1)). The antiglycative activity of the powder was further investigated after separation by reverse phase solid extraction. Fractions extracted with the methanol content higher than 40% and rich in hydroxytyrosol and verbascoside exerted the highest reactivity against dicarbonyls. Data confirmed that the direct trapping of dicarbonyl compounds is the main route explaining the antiglycative action rather than of the already known antioxidant capacity. Results support further investigations to evaluate the technological feasibility to use olive mill wastewater powders as antiglycative ingredients in foods or in pharmacological preparations in future. PMID:25519075

  10. Microbial Community Analysis of Anaerobic Reactors Treating Soft Drink Wastewater

    PubMed Central

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K.; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  11. Accumulation of contaminants in fish from wastewater treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Keefe, S.H.; Antweiler, R.C.; Taylor, H.E.; Wass, R.D.

    2006-01-01

    Increasing demands on water resources in arid environments make reclamation and reuse of municipal wastewater an important component of the water budget. Treatment wetlands can be an integral part of the water-reuse cycle providing both water-quality enhancement and habitat functions. When used for habitat, the bioaccumulation potential of contaminants in the wastewater is a critical consideration. Water and fish samples collected from the Tres Rios Demonstration Constructed Wetlands near Phoenix, Arizona, which uses secondary-treated wastewater to maintain an aquatic ecosystem in a desert environment, were analyzed for hydrophobic organic compounds (HOC) and trace elements. Semipermeable membrane devices (SPMD) were deployed to investigate uptake of HOC. The wetlands effectively removed HOC, and concentrations of herbicides, pesticides, and organic wastewater contaminants decreased 40-99% between inlet and outlet. Analysis of Tilapia mossambica and Gambusia affinis indicated accumulation of HOC, including p,p???-DDE and trans-nonachlor. The SPMD accumulated the HOC detected in the fish tissue as well as additional compounds. Trace-element concentrations in whole-fish tissue were highly variable, but were similar between the two species. Concentrations of HOC and trace elements varied in different fish tissue compartments, and concentrations in Tilapia liver tissue were greater than those in the whole organism or filet tissue. Bioconcentration factors for the trace elements ranged from 5 to 58 000 and for the HOC ranged from 530 to 150 000. ?? 2006 American Chemical Society.

  12. Assessment of the toxicity of wastewater from the metalworking industry treated using a conventional physico-chemical process.

    PubMed

    Machado, Rodrigo Matuella; Monteggia, Luiz Olinto; Arenzon, Alexandre; Curia, Ana Cristina

    2016-06-01

    This article presents results from a toxicity reduction evaluation program intended to describe wastewater from the metalworking industry that was treated using a conventional physico-chemical process. The toxicity of the wastewater for the microcrustacean Daphnia magna was predominantly expressive. Alkaline cyanide wastewater generated from electroplating accounted for the largest number of samples with expressive toxicity. When the raw wastewater concentrations in the batches were repeated, inexpressive toxicity variations were observed more frequently among the coagulated-flocculated samples. At the coagulation-flocculation step, 22.2 % of the treatments had reduced acute toxicity, 30.6 % showed increased toxicity, and 47.2 % remained unchanged. The conductivity and total dissolved solids contents of the wastewater indicated the presence of salts with charges that were inappropriate for the survival of daphnid. The wastewaters treated by neutralization and coagulation-flocculation had average metallic compound contents that were greater than the reference toxic concentrations reported in other studies, suggesting that metals likely contributed to the toxic effects of the wastewater on freshwater microcrustaceans. Thus, alternative coagulants and flocculants should be assessed, and feasible doses should be determined to improve wastewater treatment. In addition, advanced treatment processes should be assessed for their abilities to remove dissolved toxic salts and ions. PMID:27230425

  13. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment.

    PubMed

    Shannon, K E; Lee, D-Y; Trevors, J T; Beaudette, L A

    2007-08-15

    Bacteria were detected at five stages of municipal wastewater treatment using TaqMan(R) real-time quantitative PCR (qPCR). Thirteen probe and primer sets were tested for diverse pathogens that may be present in wastewater, including Aeromonas hydrophila, Bacillus cereus, Clostridium perfringens, Enterococcus faecalis, Escherichia coli, E. coli O157:H7, Helicobacter pylori, Klebsiella pneumoniae, Legionella pneumophila, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella sp., and Staphylococcus aureus. The sensitivity of the assay was 100 fg of genomic DNA (=22 gene copies), based on a standard curve generated using A. hydrophila purified DNA. Samples from five stages of wastewater treatment were collected, including raw wastewater, primary effluents, mixed liquor, waste activated sludge and final effluents. In duplicate samples, E. coli, K. pneumoniae, C. perfringens and E. faecalis were detected throughout the wastewater process, and their numbers decreased by 3.52-3.98, 4.23-4.33, 3.15-3.39, and 3.24 orders of magnitude respectively, between the raw wastewater and final effluent stage. This qPCR method was effective for the detection of pathogens in wastewater and confirmed that the risk of exposure to pathogens in the wastewater discharge was well within the Environment Canada guidelines. PMID:17462712

  14. Wastewater Treatment I. Student's Guide.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  15. Green Systems for Wastewater Treatment

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Plants found in marshlands and wetlands in many parts of the world may play an increasing part in a very new, yet very old approach to treatment of water and wastewater--the application of biological methods. Biological water pollution control methods being utilized around the world are examined. (BT)

  16. WINERY WASTEWATER CHARACTERISTICS AND TREATMENT

    EPA Science Inventory

    This report has been prepared to fulfill a Research, Development and Demonstration Grant. The grant was awarded to investigate a method of treatment for winery wastewaters. In brief - the grapes are harvested in the fall and are immediately pressed of their juice. The juice is fe...

  17. Measuring Thicknesses of Wastewater Films

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Davenport, R. J.

    1987-01-01

    Sensor determines when thickness of film of electrically conductive wastewater on rotating evaporator drum exceeds preset value. Sensor simple electrical probe that makes contact with liquid surface. Made of materials resistant to chemicals in liquid. Mounted on shaft in rotating cylinder, liquid-thickness sensor extends toward cylinder wall so tip almost touches. Sensor body accommodates probe measuring temperature of evaporated water in cylinder.

  18. Imprinted Polymers in Wastewater Treatment

    SciTech Connect

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  19. Citotoxicity status of electroplating wastewater prior/after neutralization/purification with alkaline solid residue of electric arc furnace dust.

    PubMed

    Orescanin, Visnja; Kopjar, Nevenka; Durgo, Ksenija; Elez, Loris; Gustek, Stefica Findri; Colic, Jasna Franekic

    2009-02-15

    Toxicological safety of new procedure for the neutralisation/purification of wastewater originated from zinc plating facility was investigated. Wastewater was treated with alkaline solid residue-by-product of zinc recovery from electric arc furnace dust. For determination of cytotoxic potential of untreated and purified wastewater MTT test on HEp2 (human laryngeal carcinoma) and HeLa (human cervical carcinoma) cells lines and alkaline comet assay on human leukocytes were used. Then 100% of the sample as well as different dilutions were tested. Compared to negative control 100, 75 and 50% of the sample of untreated wastewater significantly decreased survival of both HEp2 and HeLa cell lines. In the presence of undiluted sample survival percentage of HeLa and HEp2 cells were only 2.3 and 0.3% respectively. Only undiluted purified wastewater showed slight but insignificant decrease of the survival of both cell lines. Even 0.5% of the sample of original electroplating wastewater exhibited significantly higher value of all comet assay parameters compared to negative control. There was no significant difference between negative control and purified wastewater for any of comet assay parameters. Significantly lower level of primary DNA damage recorded after treatment with purified water, even comparable with negative control, confirmed effectiveness of the purification process. PMID:19132590

  20. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation

    EPA Science Inventory

    We measured the concentrations of 56 active pharmaceutical ingredients (APIs) and seven metabolites, including 50 prioritized APIs, in 24-hour composite effluent samples collected from 50 very large municipal wastewater treatment plants across the US. Hydrochlorothiazide was foun...

  1. Waste-water characterization survey, dobbins air force base, georgia. Final report, 9-21 Jun 91

    SciTech Connect

    Acker, A.M.

    1991-12-01

    A wastewater characterization survey was conducted by members of the Armstrong Laboratory Occupational and Environmental Health Directorate Water Quality Function from 9-21 June 1991 at Dobbins AFB, GA. The purpose of this survey was to identify and characterize the wastewater, determine the appropriateness of present disposal methods, determine the need for routine sampling or monitoring, and recommend parameters for wastewater and storm water analysis. Results of the sampling showed the use of industrial chemicals is being well controlled and present disposal methods are appropriate. It is not necessary at this time for routine sampling or monitoring If the Lockheed Plant experiences an upset in its treatment process, the Air Force Reserves and Air National Guard units can expect monitoring requirements to be imposed upon them under the Environmental Protection Agency Pretreatment Rule. The only need for any routine sampling would be as a result of an upset to the Lockheed Wastewater Treatment Plant.

  2. 40 CFR 61.54 - Sludge sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.54 Sludge...—Determination of Mercury in Wastewater Treatment Plant Sewage Sludges. A total of three composite samples shall.... Samples shall not be exposed to any condition that may result in mercury contamination or loss. (2)...

  3. 40 CFR 61.54 - Sludge sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.54 Sludge...—Determination of Mercury in Wastewater Treatment Plant Sewage Sludges. A total of three composite samples shall.... Samples shall not be exposed to any condition that may result in mercury contamination or loss. (2)...

  4. 40 CFR 61.54 - Sludge sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.54 Sludge...—Determination of Mercury in Wastewater Treatment Plant Sewage Sludges. A total of three composite samples shall.... Samples shall not be exposed to any condition that may result in mercury contamination or loss. (2)...

  5. 40 CFR 61.54 - Sludge sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.54 Sludge...—Determination of Mercury in Wastewater Treatment Plant Sewage Sludges. A total of three composite samples shall.... Samples shall not be exposed to any condition that may result in mercury contamination or loss. (2)...

  6. Priority pollutants in wastewater and combined sewer overflow.

    PubMed

    Gasperi, Johnny; Garnaud, Stéphane; Rocher, Vincent; Moilleron, Régis

    2008-12-15

    Implementation of the European Water Framework Directive and its affiliated directives requires Member States to improve their understanding of priority pollutants (PPs) in urban areas and obviously within wastewater systems. As a direct consequence, this study is intended to furnish data on both PP occurrence and the significance of concentrations in wastewater during dry and wet periods within combined sewers. Various sampling sites within the Paris combined sewer network were selected; for each sample, a total of 66 determinants, including metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, organotins, volatile organic compounds, chlorobenzenes, phthalates and alkylphenols, were analysed. A broad range of PPs was observed in wastewater during dry as well as wet weather periods. Of the 66 elements investigated, 33 and 40 priority substances could be observed in raw sewage and wet weather effluent, respectively. As expected, a majority of metals were present in all samples, reflecting their ubiquitous nature. For both periods, chlorobenzenes and most of the pesticides always remained below the limit of quantification, while the majority of other organic pollutants assessed were identified within the microg l(-1) range. As highlighted by the larger number of substances detected in wet weather samples and the significance of their concentrations, runoff via atmospheric inputs and/or surface leaching was found to induce a wider range of PPs (n=40) and lead to higher concentrations of certain metals, PAHs, pesticides and other individual compounds. The data generated during this survey, which constitutes one of the first studies conducted in Europe to report concentrations for a variety of priority substances in wastewater within combined sewers, may be used in the future to identify PPs of potential significance for dry and wet weather periods and targeted for further investigation. PMID:18814902

  7. Genotoxicity Evaluation of Irrigative Wastewater from Shijiazhuang City in China

    PubMed Central

    Yang, Lixue; Zhang, Xiaolin; Wang, Liqin; Yu, Fengxue; Liu, Yi; Chen, Qing; Liu, Dianwu

    2015-01-01

    In the present study, the wastewater sample collected from the Dongming discharging river in Shijiazhuang city was analysed using both chemical analysis and biological assays including the Salmonella mutagenicity test, micronucleus test and single-cell gel electrophoresis. Chemical analysis of the sample was performed using gas chromatography mass spectrometry and inductively coupled plasma mass spectrometry. The Salmonella mutagenicity test was performed on Salmonella typhimurium TA97, TA98, TA100 and TA102 strains with and without S9 mixture. The mice received the wastewater in natura through drinking water at concentrations of 25%, 50%, and 100%. One group of mice was exposed for 2 consecutive days, and the other group of mice was exposed for 15 consecutive days. To establish the levels of primary DNA damage, single-cell gel electrophoresis was performed on treated mouse liver cell. The concentrations of chromium and lead in the sample exceeded the national standard (GB20922-2007) by 0.78 and 0.43-fold, respectively. More than 30 organic compounds were detected, and some of the detected compounds were mutagens, carcinogens and environmental endocrine disrupters. A positive response for Salmonella typhimurium TA98 strain was observed. Mouse exposure via drinking water containing 50% and 100% of wastewater for 15 consecutive days caused a significant increase of MN frequencies in a dose-response manner. Mouse exposure via drinking water containing 50% and 100% of wastewater for 15 consecutive days caused a significant increase of the Olive tail moments in a dose-response manner. All the results indicated that the sample from the Dongming discharging river in Shijiazhuang city exhibited genotoxicity and might pose harmful effects on the local residents. PMID:26658348

  8. Genotoxicity Evaluation of Irrigative Wastewater from Shijiazhuang City in China.

    PubMed

    Liu, Xuehui; Tang, Longmei; Yang, Lixue; Zhang, Xiaolin; Wang, Liqin; Yu, Fengxue; Liu, Yi; Chen, Qing; Liu, Dianwu

    2015-01-01

    In the present study, the wastewater sample collected from the Dongming discharging river in Shijiazhuang city was analysed using both chemical analysis and biological assays including the Salmonella mutagenicity test, micronucleus test and single-cell gel electrophoresis. Chemical analysis of the sample was performed using gas chromatography mass spectrometry and inductively coupled plasma mass spectrometry. The Salmonella mutagenicity test was performed on Salmonella typhimurium TA97, TA98, TA100 and TA102 strains with and without S9 mixture. The mice received the wastewater in natura through drinking water at concentrations of 25%, 50%, and 100%. One group of mice was exposed for 2 consecutive days, and the other group of mice was exposed for 15 consecutive days. To establish the levels of primary DNA damage, single-cell gel electrophoresis was performed on treated mouse liver cell. The concentrations of chromium and lead in the sample exceeded the national standard (GB20922-2007) by 0.78 and 0.43-fold, respectively. More than 30 organic compounds were detected, and some of the detected compounds were mutagens, carcinogens and environmental endocrine disrupters. A positive response for Salmonella typhimurium TA98 strain was observed. Mouse exposure via drinking water containing 50% and 100% of wastewater for 15 consecutive days caused a significant increase of MN frequencies in a dose-response manner. Mouse exposure via drinking water containing 50% and 100% of wastewater for 15 consecutive days caused a significant increase of the Olive tail moments in a dose-response manner. All the results indicated that the sample from the Dongming discharging river in Shijiazhuang city exhibited genotoxicity and might pose harmful effects on the local residents. PMID:26658348

  9. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone.

    PubMed

    Luczkiewicz, Aneta; Kotlarska, Ewa; Artichowicz, Wojciech; Tarasewicz, Katarzyna; Fudala-Ksiazek, Sylwia

    2015-12-01

    In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes. PMID:26286796

  10. Low risk for helminth infection in wastewater-fed rice cultivation in Vietnam.

    PubMed

    Trang, Do Thuy; van der Hoek, Wim; Cam, Phung Dac; Vinh, Khuong Thanh; Hoa, Nguyen Van; Dalsgaard, Anders

    2006-09-01

    This study was done to assess the risk of helminth infection in association with wastewater-fed rice cultivation in an agricultural setting of Nam Dinh city, Vietnam. In a cross sectional survey data were collected for 202 households in a commune where wastewater was used for irrigation and for 201 households in a commune that used river water. Parasitological examination was conducted on single stool samples obtained from 1,088 individuals aged -15 years from the households. The irrigation water used in both communes was enumerated for helminth eggs and thermotolerant coliforms. The prevalence of infection with Ascaris spp., Trichuris spp., and hookworm was 42.2%, 19.9% and 10.5% respectively, with an overall prevalence of infection with any helminth of 53.4%. Surprisingly, the prevalence of infection with Ascaris and Trichuris was lower among people exposed to wastewater (containing 40-200 helminth eggs/l and 10(4) thermotolerant coliforms/100 ml) compared to people exposed to river water that contained lower worm egg and bacterial numbers. Poor sanitation and hygiene practices and not using protective measures were important independent risk factors for helminth infection. For hookworm infection, no significant difference was observed between the wastewater exposed and unexposed groups. Children living in the wastewater use area had a significantly better nutritional status than those in the area using river water. This suggests a generally higher welfare level of the wastewater use area. In conclusion, this study showed no evidence that rice cultivation with wastewater poses a risk for helminth infection. More detailed studies are needed on the reduction of fecal indicators and helminth eggs in peri-urban wastewater-irrigated rice culture systems and on the relative importance of wastewater irrigation compared to other risk factors for human helminth infection such as poor sanitation and poverty. PMID:17036840

  11. Tracing the limits of organic micropollutant removal in biological wastewater treatment.

    PubMed

    Falås, Per; Wick, Arne; Castronovo, Sandro; Habermacher, Jonathan; Ternes, Thomas A; Joss, Adriano

    2016-05-15

    Removal of organic micropollutants was investigated in 15 diverse biological reactors through short and long-term experiments. Short-term batch experiments were performed with activated sludge from three parallel sequencing batch reactors (25, 40, and 80 d solid retention time, SRT) fed with synthetic wastewater without micropollutants for one year. Despite the minimal micropollutant exposure, the synthetic wastewater sludges were able to degrade several micropollutants present in municipal wastewater. The degradation occurred immediately after spiking (1-5 μg/L), showed no strong or systematic correlation to the sludge age, and proceeded at rates comparable to those of municipal wastewater sludges. Thus, the results from the batch experiments indicate that degradation of organic micropollutants in biological wastewater treatment is quite insensitive to SRT increases from 25 to 80 days, and not necessarily induced by exposure to micropollutants. Long-term experiments with municipal wastewater were performed to assess the potential for extended biological micropollutant removal under different redox conditions and substrate concentrations (carbon and nitrogen). A total of 31 organic micropollutants were monitored through influent-effluent sampling of twelve municipal wastewater reactors. In accordance with the results from the sludges grown on synthetic wastewater, several compounds such as bezafibrate, atenolol and acyclovir were significantly removed in the activated sludge processes fed with municipal wastewater. Complementary removal of two compounds, diuron and diclofenac, was achieved in an oxic biofilm treatment. A few aerobically persistent micropollutants such as venlafaxine, diatrizoate and tramadol were removed under anaerobic conditions, but a large number of micropollutants persisted in all biological treatments. Collectively, these results indicate that certain improvements in biological micropollutant removal can be achieved by combining different

  12. Emissions characteristics of cooling towers using reclaimed wastewater in california. Final report, July 1979-July 1981

    SciTech Connect

    Rogozen, M.B.; Phillips, A.R.; Guttman, M.A.; Shokes, R.F.; Fargo, L.

    1981-08-11

    Present and planned use of reclaimed municipal wastewater, industrial process water, and geothermal condensate as makeup to cooling towers have raised questions about the potential for atmospheric emissions of pathogenic microorganisms, organic compounds, heavy metals, and other wastewater constituents. In this study, the makeup and circulating water of six towers were sampled and analyzed for indicator bacteria and virus, volatile and nonvolatile organic compounds, metals, and other components of potential concern. Further water sampling and exhaust air emissions tests were then conducted on four of the towers; for the microbiological emissions tests, a special isokinetic sampling device was developed and employed.

  13. Caffeine in surface and wastewaters in Barbados, West Indies.

    PubMed

    Edwards, Quincy A; Kulikov, Sergei M; Garner-O'Neale, Leah D

    2015-01-01

    Caffeine, a purine alkaloid drug, has been recognized as a contaminant of water bodies in various climatic regions, however, these environmental caffeine concentrations are the first to be reported in the tropical Caribbean. The major objective of this study was to develop an improved method to extract caffeine from surface and wastewaters in the warm Caribbean environment and measure caffeine concentrations in highly populated areas in Barbados. Caffeine was extracted from water via solid phase extraction (SPE); the acidified water samples were loaded onto C-18 cartridges and eluted with pure chloroform. The extracted caffeine was quantified using gas chromatography - mass spectroscopy - multiple reaction monitoring (GC-MS/MS-MRM). Method detection limits of 0.2 ng L(-1) from 1 L water samples were achieved. Caffeine was detected in all environmental water samples investigated. The concentrations of caffeine in surface waters were detected in the range 0.1 - 6.9 μg L(-1). The two wastewater treatment plants, primary and secondary treatment systems, significantly differed in their ability to eliminate caffeine in the raw sewage (38% and 99% caffeine removal efficiencies respectively). Thus, it may be essential to employ secondary treatment to effectively remove caffeine from wastewater systems in Barbados. Caffeine in water bodies are principally attributed to anthropogenic sources as caffeine-producing plants are not commonly grown on the island of Barbados. The study also shows the recalcitrance of caffeine to hydrolytic degradation. PMID:25729634

  14. SAMPLE COLLECTION AND HANDLING FOR MICROBIOLOGICAL EXAMINATION OF BIOSOLIDS

    EPA Science Inventory

    The objective of this presentation is to discuss sample collection and handling methods currently in use for detection and enumeration of microorganisms in biosolids and municipal wastewater sludges. Untreated sludges and biosolids are rarely homogeneous and present a challenge ...

  15. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    NASA Technical Reports Server (NTRS)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  16. Effect of MnSO4 on the chromium removal from the leather industry wastewater.

    PubMed

    Ozdemir, C; Karatas, M; Dursun, S; Argun, M E; Dogan, S

    2005-04-01

    Chromium (VI) is one of the heavy metals in water and wastewater that has the most toxic characteristic. Consequently, it is dangerous for human and environmental health. Various methods are used for removal of the chromium from wastewater, and new methods have been developed in recent years. Recent studies and investigations on the removal of environmental pollution selected methods that were economical, of optimum efficiently and could be carried out easily. In this study, the removal of Cr6+ in the leather industry wastewater is investigated using MnSO4 that was used easily and economically. Experimental studies are performed in two phases. In the first phase, the optimum MnSO4 dose for removal of Cr6+ was determined. In the second phase, the optimum pH was studied. About 96% removal of chromium was launched with 530 mg l(-1) MnSO4 dose at pH value 9 in the wastewater sample. PMID:15906491

  17. Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions.

    PubMed

    Chang, Michelle

    2015-12-15

    Microplastics (<5mm) have been discovered in fresh and saltwater ecosystems, sediments, and wastewater effluent around the world. Their ability to persist and accumulate up food chains should be a concern as research is still experimenting with techniques to assess their long-term effects on the environment. I sought to characterize the microbeads found in facial exfoliating cleansers so as to better understand how to reduce this source of pollution through consumer use and wastewater treatment solutions. By sampling products from national-grossing cosmetic personal care brands, I was able to gather information on the size, color, volume, mass, and concentration of polyethylene beads in the cleansers. From that data, I modeled onto a consumer survey the estimated volume of microplastics entering a wastewater stream. Through inquiry, I learned the practices of two local wastewater treatment facilities. My findings show that consumer decisions and treatment protocols both play crucial parts in minimizing microplastic pollution. PMID:26563542

  18. Wastewater characterization survey, Thule Air Base, Greenland. Final report, 6-22 July 1992

    SciTech Connect

    McCoy, R.P.

    1993-03-01

    A wastewater characterization survey was conducted at Thule AB, Greenland,from 6-22 July 1992 by personnel from the Water Quality Function of Armstrong Laboratory. Extensive sampling of the outfall feeding into North Star Bay and industrial sites within the base cantonment area was performed. Low levels of organic contamination were found in the wastewater. In addition, metals and other pollutants were found in concentrations typical of domestic wastewater, indicating little contamination from industrial activities. Daily flow averaged approximately 100,000 gallons per day (375 cubic meters per day). The average chemical oxygen demand was found to be 130 milligrams per liter. The biochemical oxygen demand (BOD), though not determined experimentally during this survey, can be expected to fall within the range of 75-100 mg/l.... Wastewater characterization, Chemical oxygen demand, Pollutants, Acute marine toxicity, Chronic marine toxicity.

  19. Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge.

    PubMed

    Łebkowska, Maria; Rutkowska-Narożniak, Anna; Pajor, Elżbieta; Pochanke, Zbigniew

    2011-10-01

    The aim of this study was to determine the impact of a static magnetic field (MF) of 7 mT on formaldehyde (FA) biodegradation by activated sludge in synthetic wastewater. The MF had a positive effect on activated sludge biomass growth and dehydrogenase activity. The influence of the MF on the degradation process was observed with a FA concentration of 2400-2880 mg/l. Decreases in FA concentration and chemical oxygen demand (COD) were greater, by 30% and 26% respectively, than those in the control sample. At initial FA concentrations in raw wastewater of 2400 and 2880 mg/l, a decrease in the wastewater biodegradation efficiency was observed. This resulted in an increase of the ecotoxicity of the effluent to Daphnia magna. The value of the sludge biotic index (SBI) was dependent on the FA concentration in raw wastewater and the induction of the MF. PMID:21824771

  20. Biodegradation of wastewater of Najafgarh drain, Delhi using autochthonous microbial consortia : a laboratory study.

    PubMed

    Sharma, Garima; Mehra, N K; Kumar, Rita

    2002-10-01

    There are seventeen drains, which discharge their untreated urban and industrial wastewaters into the Delhi segment of river Yamuna. The Najafgarh drain is the first and the largest drain, and it alone contributes 1667.84 mld i.e. 60% of the total wastewater discharge into the river Yamuna and as such add 81.36 tons of BOD load per day. As per the available data approximately 95% of the wastewater of this drain is biodegradable. In the present study, an attempt has been made to reduce the BOD load and COD levels of wastewater of Najafgarh drain using autochthonous microbial consortium. During this study the raw wastewater samples were treated for 6 h time interval with different concentration of consortium. It was observed that by increasing the existing microbial population in the wastewater sample by 150-200% there is a significant decrease in BOD and COD levels. Finally, BOD/COD ratios before and after biotreatment have been analyzed to assess the efficacy of the natural consortium. PMID:12674375

  1. Impact on the Quality of Life When Living Close to a Municipal Wastewater Treatment Plant.

    PubMed

    Vantarakis, A; Paparrodopoulos, S; Kokkinos, P; Vantarakis, G; Fragou, K; Detorakis, I

    2016-01-01

    The objective of the study was to investigate the impact on the quality of life of people living close to a municipal wastewater treatment plant. A case control study, including 235 inhabitants living within a 500 m radius by a municipal wastewater treatment plant (cases) and 97 inhabitants living in a different area (controls), was conducted. A standardized questionnaire was self-completed by the participants which examined the general health perception and the overall life satisfaction. Also, the concentration of airborne pathogenic microorganisms in aerosol samples collected around the wastewater treatment plant was investigated. Significant risk for symptoms such as headache, unusual tiredness, and concentration difficulties was recorded and an increased possibility for respiratory and skin diseases was reported. A high rate of the cases being irritable and moody was noticed. Significantly higher gastrointestinal symptoms were also reported among the cases in relation to the controls. The prevalence of pathogenic airborne microorganisms originating from the wastewater treatment plant was reported in high numbers in sampling points close to the wastewater treatment plant. More analytical epidemiological investigations are needed to determine the cause as well as the burden of the diseases to inhabitants living surrounding the wastewater treatment plant. PMID:27375747

  2. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; An, Guanfeng

    2015-05-01

    In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes. PMID:25865172

  3. Impact on the Quality of Life When Living Close to a Municipal Wastewater Treatment Plant

    PubMed Central

    Vantarakis, A.; Paparrodopoulos, S.; Kokkinos, P.; Vantarakis, G.; Fragou, K.; Detorakis, I.

    2016-01-01

    The objective of the study was to investigate the impact on the quality of life of people living close to a municipal wastewater treatment plant. A case control study, including 235 inhabitants living within a 500 m radius by a municipal wastewater treatment plant (cases) and 97 inhabitants living in a different area (controls), was conducted. A standardized questionnaire was self-completed by the participants which examined the general health perception and the overall life satisfaction. Also, the concentration of airborne pathogenic microorganisms in aerosol samples collected around the wastewater treatment plant was investigated. Significant risk for symptoms such as headache, unusual tiredness, and concentration difficulties was recorded and an increased possibility for respiratory and skin diseases was reported. A high rate of the cases being irritable and moody was noticed. Significantly higher gastrointestinal symptoms were also reported among the cases in relation to the controls. The prevalence of pathogenic airborne microorganisms originating from the wastewater treatment plant was reported in high numbers in sampling points close to the wastewater treatment plant. More analytical epidemiological investigations are needed to determine the cause as well as the burden of the diseases to inhabitants living surrounding the wastewater treatment plant. PMID:27375747

  4. Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions.

    PubMed

    Wu, Xiaoqin; Conkle, Jeremy L; Ernst, Frederick; Gan, Jay

    2014-10-01

    Global water shortage is placing an unprecedented pressure on water supplies. Treated wastewater is a valuable water resource, but its reuse for agricultural irrigation faces a roadblock: the public concern over the potential accumulation of contaminants of emerging concern (CECs) into human diet. In the present study, we measured the levels of 19 commonly occurring pharmaceutical and personal care products (PPCPs) in 8 vegetables irrigated with treated wastewater under field conditions. Tertiary treated wastewater without or with a fortification of each PPCP at 250 ng/L, was used to irrigate crops until harvest. Plant samples at premature and mature stages were collected. Analysis of edible tissues showed a detection frequency of 64% and 91% in all vegetables from the treated wastewater and fortified water treatments, respectively. The edible samples from the two treatments contained the same PPCPs, including caffeine, meprobamate, primidone, DEET, carbamazepine, dilantin, naproxen, and triclosan. The total concentrations of PPCPs detected in edible tissues from the treated wastewater and fortified irrigation treatments were in the range of 0.01-3.87 and 0.15-7.3 ng/g (dry weight), respectively. Annual exposure of PPCPs from the consumption of mature vegetables irrigated with the fortified water was estimated to be only 3.69 μg per capita. Results from the present study showed that the accumulation of PPCPs in vegetables irrigated with treated wastewater was likely limited under field conditions. PMID:25211705

  5. CERCLA Site discharges to POTWs CERCLA site sampling program: Detailed data report

    SciTech Connect

    Not Available

    1990-08-01

    The document contains wastewater data obtained from sampling at seventeen CERCLA sites during a study of wastewater discharges from CERCLA sites to publicly owned treatment works (POTWs). The document serves as an appendix to the report summarizing the findings of the CERCLA site sampling program in Section 3 (CERCLA Site Data Report) in the USEPA CERCLA Site Discharges to POTWs Treatability Manual.

  6. Satellite Remote Sensing Detection of Wastewater Plumes in Southern California

    NASA Astrophysics Data System (ADS)

    Trinh, R. C.; Holt, B.; Pan, B. J.; Rains, C.; Gierach, M. M.

    2014-12-01

    Wastewater discharged through ocean outfalls can surface near coastlines and beaches, posing a threat to the marine environment and human health. Coastal waters of the Southern California Bight (SCB) are an ecologically important marine habitat and a valuable resource in terms of commercial fishing and recreation. Two of the largest wastewater treatment plants along the U.S. West Coast discharge into the SCB, including the Hyperion Wastewater Treatment Plant (HWTP) and the Orange County Sanitation District (OCSD). In 2006, HWTP conducted an internal inspection of its primary 8 km outfall pipe (60 m depth), diverting treated effluent to a shorter 1.2 km pipe (18 m depth) from Nov. 28 to Nov. 30. From Sep. 11 - Oct. 4, 2012, OCSD conducted a similar diversion, diverting effluent from their 7 km outfall pipe to a shallower 2.2 km pipe, both with similar depths to HWTP. Prevailing oceanographic conditions in the SCB, such as temporally reduced stratification and surface circulation patterns, increased the risk of effluent being discharged from these shorter and shallower pipes surfacing and moving onshore. The aim of this study was to evaluate the capabilities of satellite remote sensing data (i.e., sea surface roughness from SAR, sea surface temperature from MODIS-Aqua and ASTER-Terra, chlorophyll-a and water leaving radiance from MODIS-Aqua) in the identification and tracking of wastewater plumes during the 2006 HWTP and 2012 OCSD diversion events. Satellite observations were combined with in situ, wind, and current data taken during the diversion events, to validate remote sensing techniques and gain surface to subsurface context of the nearshore diversion events. Overall, it was found that satellite remote sensing data were able to detect surfaced wastewater plumes along the coast, providing key spatial information that could inform in situ field sampling during future diversion events, such as the planned 2015 HWTP diversion, and thereby constrain costs.

  7. Health risk assessment along the wastewater and faecal sludge management and reuse chain of Kampala, Uganda: a visualization.

    PubMed

    Fuhrimann, Samuel; Winkler, Mirko S; Schneeberger, Pierre H H; Niwagaba, Charles B; Buwule, Joseph; Babu, Mohammed; Medlicott, Kate; Utzinger, Jürg; Cissé, Guéladio

    2014-11-01

    Reuse of wastewater in agriculture is a common feature in the developing world. While this strategy might contribute to the livelihood of farming communities, there are health risks associated with the management and reuse of wastewater and faecal sludge. We visualise here an assessment of health risks along the major wastewater channel in Kampala, Uganda. The visualization brings to bear the context of wastewater reuse activities in the Nakivubo wetlands and emphasises interconnections to disease transmission pathways. The contextual features are complemented with findings from environmental sampling and a cross-sectional epidemiological survey in selected exposure groups. Our documentation can serve as a case study for a step-by-step implementation of risk assessment and management as described in the World Health Organization's 2006 guidelines for the safe use of wastewater, greywater and excreta in light of the forthcoming sanitation safety planning approach. PMID:25545942

  8. Printing ink and paper recycling sources of TMDD in wastewater and rivers.

    PubMed

    Guedez, Arlen A; Püttmann, Wilhelm

    2014-01-15

    2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant which is preferentially used as defoamer in paints and printing ink and for the treatment of surfaces. Effluents of wastewater treatment plants (WWTPs) have been identified as the domination point sources for TMDD in rivers since the removal rate of the compound in the WWTPs is in general less than 70%. However, the dominating entry pathways of TMDD into the sewage were unknown so far. In this study effluents from both, municipal WWTPs with and without treatment of indirect industrial dischargers and from industrial WWTPs with direct discharge of wastewater into receiving rivers were analyzed for the first time to identify the proportions of TMDD coming from domestic wastewater and from various industrial sources. Moreover, rivers were samples before and after the influent of sewage water from WWTPs. The TMDD concentrations in the water samples were measured using solid phase extraction (SPE) followed by gas chromatography/mass spectrometry (GC/MS). High TMDD concentrations were found in rivers (up to 63.5 μg/L), and in effluents of WWTPs (up to 310 μg/L) affected by wastewater from paper recycling industry and factories producing paint and printing ink. Concentrations of TMDD revealed to be far higher in wastewater from factories processing recycled paper (up to 113 μg/L) compared to wastewater from factories not processing recycled paper (0.066 μg/L). The results indicate that the use of recycling paper in the paper production process is the dominating reason for increased TMDD concentrations in wastewaters and receiving rivers due to the wash out of TMDD from the paper impregnated with printing ink. Very high TMDD concentrations (up to 3300 μg/L) were also detected in wastewater from a printing ink factory and a paint factory. PMID:24061058

  9. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun

    2013-09-01

    Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters. PMID:23589270

  10. ONSITE WASTEWATER TREATMENT AND DISPOSAL SYSTEMS (1980 EDITION) AND ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL (2002 EDITION)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) first issued detailed guidance on the design, construction, and operation of onsite wastewater treatment systems (OWTSs) in 1980. Design Manual: Onsite Wastewater Treatment and Disposal Systems (USEPA.1980) was the most comprehens...

  11. COLLECTION AND ANALYSIS OF PURGEABLE ORGANICS EMITTED FROM WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    An analytical method was developed for the analysis of volatile priority pollutants in airstreams passing through wastewaters using a Tenax GC cartridge in combination with gas chromatography/mass spectrometry/computer. A sampling system was designed and field tested for sampling...

  12. Microbiological Skills for Water and Wastewater Analysis. Report No. M16.

    ERIC Educational Resources Information Center

    Clark, Douglas W.

    This six-chapter handbook is concerned with the proper care and maintenance of microorganisms recovered from water and wastewater samples. These microorganisms must be cultured and identified to determine not only what kinds of cells were present in the original sample, but also what concentrations they appeared in. The skills covered are basic to…

  13. Effects of long-term irrigation with untreated municipal wastewater on soil properties and crop quality.

    PubMed

    Aydin, Mehmet Emin; Aydin, Senar; Beduk, Fatma; Tor, Ali; Tekinay, Arzu; Kolb, Marit; Bahadir, Müfit

    2015-12-01

    Irrigating crops with untreated wastewater leads to elevated concentrations of heavy metals both in soil and cultivated crops. The current study was designed to determine heavy metal (i.e., Pb, Cd, Cr, Cu, Ni, Zn, Hg) accumulation in Konya soils in selected nine sites irrigated with wastewater for over 40 years. Non-irrigated soil samples and soil samples irrigated with well water were taken as control samples. Transport of these pollutants to the wheat samples cultivated in the investigated site was also examined. The obtained results reveal that high alkaline properties and clay structure of Konya soil reduce the mobility of contaminants and cause accumulation in the top layer of soil. Intense effect of wastewater irrigation on soil EC was determined. The highest concentrations of Pb, Cr, Cu, Cd, Zn, Ni, and Hg in wastewater irrigated soil were 5.32, 37.1, 31.5, 11.4, 91.5, 134, and 0.34 mg kg(-1), respectively. Wastewater irrigated soils were strongly polluted by means of Cd (8.23-11.6 mg kg(-1)) and moderately to strongly polluted by means of Ni (47.7-134 mg kg(-1)), exceeding Maximum Admissible Concentrations for Trace Elements in Agricultural Soils and Sewage Sludge Regulation limit values of Turkey. Maximum concentrations found for Pb, Cr, Cu, Cd, Zn, and Ni in wastewater irrigated wheat grain were 8.44, 1.30, 9.10, n.d, 29.31, and 0.94 mg kg(-1), respectively. Besides, Hg was not detected in any samples of wheat grain. Based on the regulation of Turkish Food Codex, Pb contamination in wheat samples grown in the sampling site was evidenced. PMID:26250819

  14. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  15. Evidence of Naturalized Stress-Tolerant Strains of Escherichia coli in Municipal Wastewater Treatment Plants

    PubMed Central

    Zhi, Shuai; Banting, Graham; Li, Qiaozhi; Edge, Thomas A.; Topp, Edward; Sokurenko, Mykola; Scott, Candis; Braithwaite, Shannon; Ruecker, Norma J.; Yasui, Yutaka; McAllister, Tim; Chui, Linda

    2016-01-01

    ABSTRACT Escherichia coli has been proposed to have two habitats—the intestines of mammals/birds and the nonhost environment. Our goal was to assess whether certain strains of E. coli have evolved toward adaptation and survival in wastewater. Raw sewage samples from different treatment plants were subjected to chlorine stress, and ∼59% of the surviving E. coli strains were found to contain a genetic insertion element (IS30) located within the uspC-flhDC intergenic region. The positional location of the IS30 element was not observed across a library of 845 E. coli isolates collected from various animal hosts or within GenBank or whole-genome reference databases for human and animal E. coli isolates (n = 1,177). Phylogenetics clustered the IS30 element-containing wastewater E. coli isolates into a distinct clade, and biomarker analysis revealed that these wastewater isolates contained a single nucleotide polymorphism (SNP) biomarker pattern that was specific for wastewater. These isolates belonged to phylogroup A, possessed generalized stress response (RpoS) activity, and carried the locus of heat resistance, features likely relevant to nonhost environmental survival. Isolates were screened for 28 virulence genes but carried only the fimH marker. Our data suggest that wastewater contains a naturalized resident population of E. coli. We developed an endpoint PCR targeting the IS30 element within the uspC-flhDC intergenic region, and all raw sewage samples (n = 21) were positive for this marker. Conversely, the prevalence of this marker in E. coli-positive surface and groundwater samples was low (≤5%). This simple PCR assay may represent a convenient microbial source-tracking tool for identification of water samples affected by municipal wastewater. IMPORTANCE The results of this study demonstrate that some strains of E. coli appear to have evolved to become naturalized populations in the wastewater environment and possess a number of stress-related genetic

  16. Wastewater treatment plant cogeneration options

    SciTech Connect

    Stringfield, J.G.

    1995-12-31

    This paper reviews municipal sewage cogeneration and digester gas utilization options available to wastewater treatment plants, and will focus on utilizing the digester gas in combustion turbines and engine-generator systems. Defining the digestion and gas generation process is crucial to understanding the best gas utilization system. In municipal wastewater treatment plants biosolids (sludge) reduction is accomplished using aerobic or anaerobic digestion. The basic process of treating sewage solids with digestion is not new and has been practiced as far back as the nineteenth century. High energy usage consumed by aerobic blow systems supplying air to the process and the potential ``free`` energy generated by anaerobic digesters sometimes sways designers to select anaerobic over aerobic digestion. The following areas will be covered in this paper: gas utilization and cogeneration; definition of digestion process; sizing the cogeneration system and reviewing the systems components; emissions requirements and options; and capital, and O and M cost analysis.

  17. 40 CFR Table 6 to Subpart Ggg of... - Wastewater-Compliance Options for Wastewater Tanks

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Wastewater-Compliance Options for Wastewater Tanks 6 Table 6 to Subpart GGG of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION.... GGG, Table 6 Table 6 to Subpart GGG of Part 63—Wastewater—Compliance Options for Wastewater...

  18. Fracking, wastewater disposal, and earthquakes

    NASA Astrophysics Data System (ADS)

    McGarr, Arthur

    2016-03-01

    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  19. Bioenergy from anaerobically treated wastewater

    SciTech Connect

    Richards, E.A.

    1981-01-01

    Breweries and other processing plants including dairy cooperatives, sugar plants, grain mills, gasohol plants, etc., produce wastewater containing complex organic matter, either in solution or as volatile suspended solids, which can be treated anaerobically to effectively reduce the pollutants by 85-95% and generate a CH4 containing gas. An example anaerobic plant to serve a 10 to the power of 6-bbl brewery is discussed.

  20. Comparison of selected methods for recovery of Giardia spp. cysts and Cryptosporidium spp. oocysts in wastewater.

    PubMed

    Medeiros, Raphael Corrêa; Daniel, Luiz Antonio

    2015-09-01

    More precise methods are needed to recover Giardia and Cryptosporidium (oo)cysts from wastewater in order to advance research related to their inactivation, removal, quantification, and species differentiation. This study applied different methods to recover the maximum number of (oo)cysts from wastewater samples using ColorSeed®. Immunomagnetic separation assisted in capturing oocysts mainly in samples with medium and low turbidity. A triple centrifugation method reached recovery rates of 85% and 20%, for Giardia cysts and Cryptosporidium oocysts, respectively, in raw wastewater, and 62.5 and 17.5% in secondary-treated effluent. For low turbidity-treated effluent, membrane filtration reached 67.5% recovery for Giardia cysts and 22.5% for Cryptosporidium oocysts. Simple, quick and low-cost methods do not involve much handling of the samples and could be useful, particularly in developing countries. PMID:26322766

  1. Wastewater characterization survey, Edwards Air Force Base, California. Final report, 17-28 February 1992

    SciTech Connect

    McCoy, R.P.

    1992-08-01

    A wastewater characterization survey was conducted at Edwards Air Force Base from 17-28 February 1992 by personnel from the Water Quality Function of Armstrong Laboratory. Extensive sampling of the treatment plant influent wastewater and sludge beds was performed as well as sampling at nine other sites in the base cantonment area. Some sampling of an Imhoff tank on North Base, five evaporation ponds and the lakebed was also conducted. Low levels of organic contamination were found in the influent and industrial sites downstream of Site 7. Site 7 is a manhole located in an identified Installation Restoration Program (IRP) site. Corrective actions were recommended to prevent organic soil contaminants from intruding into this site prior to the operation of a planned tertiary treatment plant. Organic and inorganic contaminants discharged at other industrial sites were found to be in low concentrations and indicated that good shop practices were followed in minimizing contamination of the wastewater with industrial chemicals.

  2. Sustainability of wastewater treatment technologies.

    PubMed

    Muga, Helen E; Mihelcic, James R

    2008-08-01

    A set of indicators that incorporate environmental, societal, and economic sustainability were developed and used to investigate the sustainability of different wastewater treatment technologies, for plant capacities of <5 million gallons per day (MGD) or 18.9 x 10(3) cubic meters (m(3)/day). The technologies evaluated were mechanical (i.e., activated sludge with secondary treatment), lagoon (facultative, anaerobic, and aerobic), and land treatment systems (e.g., slow rate irrigation, rapid infiltration, and overland flow). The economic indicators selected were capital, operation and management, and user costs because they determine the economic affordability of a particular technology to a community. Environmental indicators include energy use, because it indirectly measures resource utilization, and performance of the technology in removing conventional wastewater constituents such as biochemical oxygen demand, ammonia nitrogen, phosphorus, and pathogens. These indicators also determine the reuse potential of the treated wastewater. Societal indicators capture cultural acceptance of the technology through public participation and also measure whether there is improvement in the community from the specific technology through increased job opportunities, better education, or an improved local environment. While selection of a set of indicators is dependent on the geographic and demographic context of a particular community, the overall results of this study show that there are varying degrees of sustainability with each treatment technology. PMID:17467148

  3. Sampling and Sample Preparation

    NASA Astrophysics Data System (ADS)

    Morawicki, Rubén O.

    Quality attributes in food products, raw materials, or ingredients are measurable characteristics that need monitoring to ensure that specifications are met. Some quality attributes can be measured online by using specially designed sensors and results obtained in real time (e.g., color of vegetable oil in an oil extraction plant). However, in most cases quality attributes are measured on small portions of material that are taken periodically from continuous processes or on a certain number of small portions taken from a lot. The small portions taken for analysis are referred to as samples, and the entire lot or the entire production for a certain period of time, in the case of continuous processes, is called a population. The process of taking samples from a population is called sampling. If the procedure is done correctly, the measurable characteristics obtained for the samples become a very accurate estimation of the population.

  4. Remediation of coal mining wastewaters using chitosan microspheres.

    PubMed

    Geremias, R; Pedrosa, R C; Benassi, J C; Fávere, V T; Stolberg, J; Menezes, C T B; Laranjeira, M C M

    2003-12-01

    This study aimed to evaluate the potential use of chitosan and chitosan/poly(vinylalcohol) microspheres incorporating with tetrasulphonated copper (II) phthalocyanine (CTS/PVA/TCP) in the remediation of coal mining wastewaters. The process was monitored by toxicity tests both before and after adsorption treatments with chitosan and microspheres. Physicochemical parameters, including pH and trace-metal concentration, as well as bioindicators of water pollution were used to that end. Wastewater samples colleted from drainage of underground coal mines, decantation pools, and contaminated rivers were scrutinized. Acute toxicity tests were performed using the Brine Shrimp Test (BST) in order to evaluate the remediation efficiency of different treatments. The results showed that the pH of treated wastewater samples were improved to values close to neutrality. Chitosan treatments were also effective in removing trace-metals. Pre-treatment with chitosan followed by microsphere treatment (CTS/PVA/TCP) was more effective in decreasing toxicity than the treatment using only chitosan. This was probably due to the elimination of pollutants other than trace-metals. Thus, the use of chitosan and microspheres is an adequate alternative towards remediation of water pollution from coal mining. PMID:14977147

  5. Phenolic profile and antioxidant activities of olive mill wastewater.

    PubMed

    El-Abbassi, Abdelilah; Kiai, Hajar; Hafidi, Abdellatif

    2012-05-01

    Olive trees play an important role in the Moroccan agro-economy, providing both employment and export revenue. However, the olive oil industry generates large amounts of wastes and wastewaters. The disposal of these polluting by-products is a significant environmental problem that needs an adequate solution. On one hand, the phytotoxic and antimicrobial effects of olive mill wastewaters are mainly due to their phenolic content. The hydrophilic character of the polyphenols results in the major proportion of natural phenols being separated into the water phase during the olive processing. On other hand, the health benefits arising from a diet containing olive oil have been attributed to its richness in phenolic compounds that act as natural antioxidants and are thought to contribute to the prevention of heart diseases and cancers. Olive mill wastewater (OMW) samples have been analysed in terms of their phenolic constituents and antioxidant activities. The total phenolic content, flavonoids, flavanols, and proanthocyanidins were determined. The antioxidant and radical scavenging activity of phenolic extracts and microfiltred samples was evaluated using different tests (iron(II) chelating activity, total antioxidant capacity, DPPH assays and lipid peroxidation test). The obtained results reveal the considerable antioxidant capacity of the OMW, that can be considered as an inexpensive potential source of high added value powerful natural antioxidants comparable to some synthetic antioxidants commonly used in the food industry. PMID:26434308

  6. Monitoring hospital wastewaters for their probable genotoxicity and mutagenicity.

    PubMed

    Sharma, Pratibha; Mathur, N; Singh, A; Sogani, M; Bhatnagar, P; Atri, R; Pareek, S

    2015-01-01

    Cancer is a leading cause of death worldwide. Excluding the genetic factors, environmental factors, mainly the pollutants, have been implicated in the causation of the majority of cancers. Wastewater originated from health-care sectors such as hospitals may carry vast amounts of carcinogenic and genotoxic chemicals to surface waters or any other source of drinking water, if discharged untreated. Humans get exposed to such contaminants through a variety of ways including drinking water. The aim of the present study was, thus, to monitor the genotoxic and mutagenic potential of wastewaters from three big hospitals located in Jaipur (Rajasthan), India. One of them was operating an effluent treatment plant (ETP) for treatment of its wastewater and therefore both the untreated and treated effluents from this hospital were studied for their genotoxicity. Two short-term bacterial bioassays namely the Salmonella fluctuation assay and the SOS chromotest were used for the purpose. Results of fluctuation assay revealed the highly genotoxic nature of all untreated effluent samples with mutagenicity ratios (MR) up to 23.13 ± 0.18 and 42.25 ± 0.35 as measured with Salmonella typhimurium strains TA98 and TA100, respectively. As determined with the chromotest, all untreated effluents produced significant induction factors (IF) ranging from 3.29 ± 1.11 to 13.35 ± 3.58 at higher concentrations. In contrast, treated effluent samples were found to be slightly genotoxic in fluctuation test only with an MR = 3.75 ± 0.35 for TA100 at 10 % concentration. Overall, the results indicated that proper treatment of hospital wastewaters may render the effluents safe for disposal contrary to the untreated ones, possessing high genotoxic potential. PMID:25487460

  7. Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment.

    PubMed

    Muñoz, Ivan; José Gómez, M; Molina-Díaz, Antonio; Huijbregts, Mark A J; Fernández-Alba, Amadeo R; García-Calvo, Eloy

    2008-12-01

    Life cycle impact assessment (LCIA), a feature of the Life cycle assessment (LCA) methodology, is used in this work outside the LCA framework, as a means to quantify the potential environmental impacts on ecotoxicity and human toxicity of wastewater containing priority and emerging pollutants. In order to do this, so-called characterisation factors are obtained for 98 frequently detected pollutants, using two characterisation models, EDIP97 and USES-LCA. The applicability of this methodology is shown in a case study in which wastewater influent and effluent samples from a Spanish wastewater treatment plant located in the Mediterranean coast were analysed. Characterisation factors were applied to the average concentration of each pollutant, obtaining impact scores for different scenarios: discharging wastewater to aquatic recipient, and using it for crop irrigation. The results show that treated wastewater involves a substantially lower environmental impact when compared to the influent, and pharmaceuticals and personal care products (PPCPs) are very important contributors to toxicity in this wastewater. Ciprofloxacin, fluoxetine, and nicotine constitute the main PPCPs of concern in this case study, while 2,3,7,8-TCDD, Nickel, and hexachlorobenzene are the priority pollutants with highest contribution. Nevertheless, it must be stressed that the new characterisation factors are based on very limited data, especially with regard to toxicology, and therefore they must be seen as a first screening to be improved in the future when more and higher quality data is available. PMID:18951608

  8. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea.

    PubMed

    Kim, Hee-Young; Seok, Hyun-Woo; Kwon, Hye-Ok; Choi, Sung-Deuk; Seok, Kwang-Seol; Oh, Jeong Eun

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑11PFAAs concentrations were detected in the influent and effluent from the paper (median: 411ng/L) and textile (median: 106ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49-66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0ng/g) and chemical (median: 81.5ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146ton/yr. The textile industry had the highest discharge load with 0.055ton/yr (PFOA: 0.039ton/yr, PFOS: 0.010ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored. PMID:27152994

  9. Reproductive success and contaminants in tree swallows (Tachycineta bicolor) breeding at a wastewater treatment plant.

    PubMed

    Dods, Patti L; Birmingham, Erinn M; Williams, Tony D; Ikonomou, Michael G; Bennie, Donald T; Elliott, John E

    2005-12-01

    The uptake and effects of contaminants were measured in the insectivorous tree swallow (Tachycineta bicolor) at a wastewater treatment site. The study examined reproductive, immunological, and growth endpoints in tree swallows exposed to chlorinated hydrocarbon contaminants and to 4-nonylphenol in wastewater lagoons at the Iona Wastewater Treatment Plant, Vancouver (BC, Canada). Clutch size was significantly lower in tree swallows breeding at Iona Island in 2000 and 2001 compared to the reference site. In 2000, fledging success was significantly lower and mean mass of nestling livers was significantly higher in the tree swallows breeding at the Iona Island Wastewater Treatment Plant. Additional factors that may influence reproductive success, such as parental provisioning and diet composition, did not differ significantly between sites. Levels of 4-nonylphenol detected in sediment and insects were elevated at the Iona Island Wastewater Treatment Plant (2000: lagoon sediment 82,000 ng/g dry wt, insects 310 ng/g wet wt; 2001: lagoon sediment 383,900 ng/g dry wt, insects 156 ng/g wet wt) compared to the reference site (2000: pond sediment 1,100 ng/g dry wt, insects not sampled; 2001: pond sediment 642 ng/g dry wt, insects 98 ng/g wet wt). These results indicate that tree swallows might be a useful indicator species for exposure to 4-nonylphenol at wastewater treatment sites: however, further work is necessary to determine the extent of uptake and effects of 4-nonylphenol in riparian insectivorous birds. PMID:16445092

  10. Pharmaceutical occurrence in groundwater and surface waters in forests land-applied with municipal wastewater.

    PubMed

    McEachran, Andrew D; Shea, Damian; Bodnar, Wanda; Nichols, Elizabeth Guthrie

    2016-04-01

    The occurrence and fate of pharmaceutical and personal care products in the environment are of increasing public importance because of their ubiquitous nature and documented effects on wildlife, ecosystems, and potentially humans. One potential, yet undefined, source of entry of pharmaceuticals into the environment is via the land application of municipal wastewater onto permitted lands. The objective of the present study is to determine the extent to which pharmaceuticals are mitigated by or exported from managed tree plantations irrigated with municipal wastewater. A specific focus of the present study is the presence of pharmaceutical compounds in groundwater and surface water discharge. The study site is a municipality that land-applies secondary treated wastewater onto 930 hectares of a 2000-hectare managed hardwood and pine plantation. A suite of 33 pharmaceuticals and steroid hormones was targeted in the analysis, which consisted of monthly grab sampling of groundwater, surface water, and wastewater, followed by concentration and cleanup via solid phase extraction and separation, detection, and quantification via liquid chromatography coupled with tandem mass spectrometry. More than one-half of all compounds detected in irrigated wastewater were not present in groundwater and subsequent surface water. However, antibiotics, nonsteroidal anti-inflammatory drugs, caffeine, and other prescription and over-the-counter drugs remained in groundwater and were transported into surface water at concentrations up to 10 ng/L. These results provide important documentation for pharmaceutical fate and transport in forest systems irrigated with municipal wastewater, a previously undocumented source of environmental entry. PMID:26297815

  11. [Capability and microbial community analysis of a membrane bioreactor for acrylic fiber wastewater treatment].

    PubMed

    Wei, Jian; Song, Yong-Huil; Zhao, Le

    2014-12-01

    Sequencing batch membrane bioreactor (SBMBR) was used for the treatment of acrylic fiber polymerization wastewater and acrylonitrile wastewater. The operation efficiencies of SBMBR under different wastewater ratios and operation conditions were investigated, and the microbial community structure of the SBMBR system was analyzed by using PCR-DGGE technology. The results showed that SBMBR had a high removal efficiency on pollutants in acrylic fiber wastewater, and the lacking of carbon source and alkalinity were the main limiting factors for nitrogen removal. Under the designed operation conditions of 90 min anoxic/150 min aerobic cyclic operation and HRT of 24 h, the average COD, NH4(+) -N and TN removal efficiencies were 82.5%, 98.7% and 74.6%, respectively. The effluent of the SBMBR could steadily meet the Grade I standards of the Wastewater Comprehensive Discharge Standard of China (GB 8978-1996). The PCR-DGGE analyses showed that the microbial communities in SBMBR had a significant shift with the changes of influent characteristics and operation conditions. By cloning and sequencing analyses of selected dominant bacteria, 22 16S rDNA sequence were successfully identified from 9 sludge samples, from which 7 dominant functional microorganisms for the degradation of organic pollutants in acrylic fiber wastewater were screened out. PMID:25826932

  12. A framework for identifying characteristic odor compounds in municipal wastewater effluent.

    PubMed

    Agus, Eva; Zhang, Lifeng; Sedlak, David L

    2012-11-15

    Municipal wastewater often contains trace amounts of organic compounds that can compromise aesthetics of drinking water and undermine public confidence if a small amount of effluent enters the raw water source of a potable water supply. To efficiently identify compounds responsible for odors in wastewater effluent, an analytical framework consisting of gas chromatography with mass spectrometry (GC-MS) and gas chromatography with olfactometry detection (GC-Olf) coupled with flavor profile analysis (FPA) was used to identify and monitor compounds that could affect the aesthetics of drinking water. After prioritizing odor peaks detected in wastewater effluent by GC-Olf, the odorous components were tentatively identified using retention indices, mass spectra and odor descriptors. Wastewater effluent samples were typically dominated by earthy-musty odors with additional odors in the amine, sulfidic and fragrant categories. 2,4,6-trichloroanisole (246TCA), geosmin and 2-methylisoborneol (2MIB) were the main sources of the earthy/musty odors in wastewater effluent. The other odors were attributable to a suite of compounds, which were detected in some but not all of the wastewater effluents at levels well in excess of their odor thresholds. In most cases, the identities of odorants were confirmed using authentic standards. The fate of these odorous compounds, including 2-pyrrolidone, methylnaphthalenes, vanillin and 5-hydroxyvanillin (5-OH-vanillin), should be considered in future studies of water systems that receive effluent from upstream sources. PMID:22981490

  13. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus.

    PubMed

    Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Wang, Bo; Shi, Si-Lan; Chen, Xue-Fang; Lin, Xiao-Qing; Wang, Can; Luo, Jun; Chen, Xin-De

    2016-01-20

    In this study, lipid fermentation wastewater (fermentation broth after separation with yeast biomass) with high Chemical Oxygen Demand (COD) value of 25,591 mg/L was used as substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus for the first time. After 5 days of fermentation, the highest BC yield (0.659 g/L) was obtained. Both monosaccharide and polysaccharides present in lipid fermentation wastewater could be utilized by G. xylinus simultaneously during fermentation. By this bioconversion, 30.0% of COD could be removed after 10 days of fermentation and the remaining wastewater could be used for further BC fermentation. The crystallinity of BC samples in lipid fermentation wastewater increased gradually during fermentation but overall the environment of lipid fermentation wastewater showed small influence on BC structure by comparison with that in traditional HS medium by using FE-SEM, FTIR, and XRD. By this work, the possibility of using lipid fermentation wastewater containing low value carbohydrate polymer (extracellular polysaccharides) for high value carbohydrate polymer (BC) production was proven. PMID:26572346

  14. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    He, Shijun; Sun, Weihua; Wang, Jianlong; Chen, Lvjun; Zhang, Youxue; Yu, Jiang

    2016-07-01

    A textile and dyeing wastewater treatment plant is going to be upgraded due to the stringent discharge standards in Jiangsu province, China, and electron beam irradiation is considering to be used. In order to determine the suitable location of the electron accelerator in the process of wastewater treatment plant, the effects of electron beam (EB) irradiation on the biodegradability of various real wastewater samples collecting from the different stages of the wastewater treatment plant, the values of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and the ratio of BOD5 and COD (BOD5/COD), were compared before and after EB irradiation. During EB irradiation process, color indices and absorbance at 254 nm wavelength (UV254) of wastewater were also determined. The results showed that EB irradiation pre-treatment cannot improve the biodegradability of raw textile and dyeing wastewater, which contains a large amount of biodegradable organic matters. In contrast, as to the final effluent of biological treatment process, EB irradiation can enhance the biodegradability to 224%. Therefore, the promising way is to apply EB irradiation as a post-treatment of the conventional biological process.

  15. Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis

    PubMed Central

    Ort, Christoph; van Nuijs, Alexander L N; Berset, Jean-Daniel; Bijlsma, Lubertus; Castiglioni, Sara; Covaci, Adrian; de Voogt, Pim; Emke, Erik; Fatta-Kassinos, Despo; Griffiths, Paul; Hernández, Félix; González-Mariño, Iria; Grabic, Roman; Kasprzyk-Hordern, Barbara; Mastroianni, Nicola; Meierjohann, Axel; Nefau, Thomas; Östman, Marcus; Pico, Yolanda; Racamonde, Ines; Reid, Malcolm; Slobodnik, Jaroslav; Terzic, Senka; Thomaidis, Nikolaos; Thomas, Kevin V

    2014-01-01

    Aims To perform wastewater analyses to assess spatial differences and temporal changes of illicit drug use in a large European population. Design Analyses of raw wastewater over a 1-week period in 2012 and 2013. Setting and Participants Catchment areas of wastewater treatment plants (WWTPs) across Europe, as follows: 2012: 25 WWTPs in 11 countries (23 cities, total population 11.50 million); 2013: 47 WWTPs in 21 countries (42 cities, total population 24.74 million). Measurements Excretion products of five illicit drugs (cocaine, amphetamine, ecstasy, methamphetamine, cannabis) were quantified in wastewater samples using methods based on liquid chromatography coupled to mass spectrometry. Findings Spatial differences were assessed and confirmed to vary greatly across European metropolitan areas. In general, results were in agreement with traditional surveillance data, where available. While temporal changes were substantial in individual cities and years (P ranging from insignificant to <10−3), overall means were relatively stable. The overall mean of methamphetamine was an exception (apparent decline in 2012), as it was influenced mainly by four cities. Conclusions Wastewater analysis performed across Europe provides complementary evidence on illicit drug consumption and generally concurs with traditional surveillance data. Wastewater analysis can measure total illicit drug use more quickly and regularly than is the current norm for national surveys, and creates estimates where such data does not exist. PMID:24861844

  16. Influence of a non-hospital medical care facility on antimicrobial resistance in wastewater.

    PubMed

    Bäumlisberger, Mathias; Youssar, Loubna; Schilhabel, Markus B; Jonas, Daniel

    2015-01-01

    The global widespread use of antimicrobials and accompanying increase in resistant bacterial strains is of major public health concern. Wastewater systems and wastewater treatment plants are considered a niche for antibiotic resistance genes (ARGs), with diverse microbial communities facilitating ARG transfer via mobile genetic element (MGE). In contrast to hospital sewage, wastewater from other health care facilities is still poorly investigated. At the instance of a nursing home located in south-west Germany, in the present study, shotgun metagenomics was used to investigate the impact on wastewater of samples collected up- and down-stream in different seasons. Microbial composition, ARGs and MGEs were analyzed using different annotation approaches with various databases, including Antibiotic Resistance Ontologies (ARO), integrons and plasmids. Our analysis identified seasonal differences in microbial communities and abundance of ARG and MGE between samples from different seasons. However, no obvious differences were detected between up- and downstream samples. The results suggest that, in contrast to hospitals, sewage from the nursing home does not have a major impact on ARG or MGE in wastewater, presumably due to much less intense antimicrobial usage. Possible limitations of metagenomic studies using high-throughput sequencing for detection of genes that seemingly confer antibiotic resistance are discussed. PMID:25821977

  17. Application of simple and low-cost toxicity tests for ecotoxicological assessment of industrial wastewaters.

    PubMed

    Aydin, Mehmet Emin; Aydin, Senar; Tongur, Süheyla; Kara, Gülnihal; Kolb, Marit; Bahadir, Müfit

    2015-01-01

    The objective of this study was to identify and to apply appropriate biotests having the advantages of being highly sensitive, easy to run, relatively inexpensive and able to substitute fish toxicity tests due to ethical reasons of animal welfare. To perform an ecotoxicological assessment of industrial wastewaters, different microbiotests were conducted to substitute the fish toxicity test with Lebistes reticulatus through Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, Lemna minor and Lepidium sativum representing different trophic levels in the aquatic and terrestrial ecosystems. Also, Algaltox F(TM) with Pseudokirchneriella subcapitata and Protox F(TM) with Tetrahymena thermophila tests were carried out. However, they could not be applied successfully for the wastewater samples. Wastewater samples from seven different industrial zones comprising different industries were subjected to characterization through measuring their physical-chemical parameters and their toxicity versus the above-mentioned organisms. T. platyurus, D. magna and L. reticulatus were the most sensitive test organisms investigated for the wastewaters. Considering toxic unit values, generally wastewater samples were toxic according to Thamnotox F(TM), Daphtox F(TM) and fish toxicity tests. As an important outcome, it was concluded that Daphtox F(TM) and Thamnotox F(TM) could be a good alternative for the fish toxicity test, which is so far the sole toxicity test accepted by the Turkish Water Pollution Control Regulation. PMID:25951939

  18. Assessment of estrogenic activity in Tunisian water and wastewater by E-screen assay.

    PubMed

    Limam, Atef; Talorete, Terence P N; Ali, Mourad Ben Sik; Kawano, Mitsuko; Jenhani, Amel Ben Rejeb; Abe, Yukuo; Ghrabi, Ahmed; Isoda, Hiroko

    2007-01-01

    Wastewater and surface water samples from three wastewater treatment plants (WWTPs) and three rivers in Tunisia were assayed for estrogenic activity using the E-screen assay and enzyme-linked immunosorbent assay (ELISA). Results showed that all the Tunisian raw wastewater samples as well as the Roriche river water sample induced a strong proliferative response in human MCF-7 breast cancer cells. Tunisian raw wastewater had an average 17beta-estradiol content of 2,705.4 pg/ml, whereas that of the Roriche river was 36.7 pg/ml, which is sufficient for inducing endocrine-mediated responses in aquatic organisms. Results further showed that the Mornag WWTP, which uses the activated-sludge treatment system, has a higher estrogen removal efficiency than the stabilization ponds of the Gammart and pilot WWTPs. This study, which is the first of such studies in Tunisia, and probably the first in the North African region, underscores the need to detect and monitor the estrogenic activity of water and wastewater, given the scarcity of water in Tunisia and the detrimental impact of endocrine-disrupting compounds on the physiology of both animals and humans. PMID:18382414

  19. In vivo endocrine disruption assessment of wastewater treatment plant effluents with small organisms.

    PubMed

    Castillo, Luis; Seriki, Kemi; Mateos, Stéphanie; Loire, Nicolas; Guédon, Nathalie; Lemkine, Gregory F; Demeneix, Barbara A; Tindall, Andrew J

    2013-01-01

    Surface water receives a variety of micro-pollutants that could alter aquatic organisms' reproduction and development. It is known that a few nanograms per litre of these compounds can induce endocrine-disrupting effects in aquatic species. Many compounds are released daily in wastewater, and identifying the compounds responsible for inducing such disruption is difficult. Methods using biological analysis are therefore an alternative to chemical analysis, as the endocrine disruption potential of the stream as a whole is considered. To detect hormonal disruption of thyroid and oestrogenic functions, fluorescent Xenopus laevis tadpoles and medaka (Oryzias latipes) fish larvae bearing genetic constructs integrating hormonal responsive elements were used for physiological screens for potential endocrine disruption in streams from an urban wastewater treatment plant. The Xenopus model was used to assess thyroid disruption and the medaka model oestrogenic disruption in wastewater samples. Assays using the genetically modified organisms were conducted on 9 influent and 32 effluent samples. The thyroidal effect of wastewater was either reduced or removed by the treatment plant; no oestrogenic effect was detected in any of the wastewater samples. PMID:23823564

  20. Wastewater testing compared to random urinalyses for the surveillance of illicit drug use in prisons

    PubMed Central

    Brewer, Alex J.; Banta-Green, Caleb J.; Ort, Christoph; Robel, Alix E.

    2015-01-01

    Introduction and Aims Illicit drug use is known to occur among inmate populations of correctional (prison) facilities. Conventional approaches to monitor illicit drug use in prisons include random urinalyses (RUAs). Conventional approaches are expected to be prone to bias because prisoners may be aware of which days of the week RUAs are conducted. Therefore, we wanted to compare wastewater loads for methamphetamine and cocaine during days with RUA testing and without. Design and Methods We collected daily 24-hour composite samples of wastewater by continuous sampling, computed daily loads for one month and compared the frequency of illicit drug detection to the number of positive RUAs. Diurnal data also were collected for three days in order to determine within-day patterns of illicit drugs excretion. Results Methamphetamine was observed in each sample of prison wastewater with no significant difference in daily mass loads between RUA testing and non-testing days. Cocaine and its major metabolite, benzoylecgonine, were observed only at levels below quantification in prison wastewater. Six RUAs were positive for methamphetamine during the month while none were positive for cocaine out of the 243 RUAs conducted. Discussion and Conclusions Wastewater analyses offer data regarding the frequency of illicit drug excretion inside the prison that RUAs alone could not detect. PMID:25100044

  1. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    PubMed

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage. PMID:26379202

  2. PFP Harrington hand chain hoists

    SciTech Connect

    Black, K.M.; Morley, J.M.

    1994-08-31

    This technical Evaluation of Equipment Maintenance (TEEM) is provided principally to document vendor suggested maintenance requirements and deviations from vendor suggested requirements, and provide documentation to support preventive maintenance procedures. As additional maintenance activities are identified, they will be documented in later revisions. The report describes daily or before use checks, weekly checks, semi-annual checks, and 5-year check procedures.

  3. Parasitological risk assessment from wastewater reuse for disposal in soil in developing countries.

    PubMed

    Cutolo, Silvana A; Piveli, Roque P; Santos, Jéferson G; Montes, Célia R; Sundefeld, Gilberto; Campos, Fábio; Gomes, Tamara M; Melfi, Adolpho J

    2012-01-01

    The purpose of this work is to analyze the parasitological risks of treated wastewater reuse from a stabilization pond in the city of Piracicaba, in the State of São Paulo (Brazil), and the level of treatment required to protect public health. Samples were taken from raw and treated wastewater in stabilization ponds and submitted to a parasitological, microbiological and physicochemical analysis. The study revealed on treated wastewater the presence of Ascaris sp. and Entamoeba coli with an average density of 1 cysts L(-1) and 6 eggs L(-1), respectively. For Ascaris, the annual risks of infection due to the accidental ingestion of wastewater irrigation were 7.5 × 10(-2) in 208 days and 8.7 × 10(-2) in 240 days. For Total Coliforms and Escherichia coli in treated wastewater, the average density was 1.0 × 10(5) MPN/100 ml and 2.7 × 10(4) MPN/100 ml respectively, representing 99% and 94% removal efficiency, respectively. For BOD, COD, TS and TSS removal efficiency was 69, 80, 50 and 71%, respectively. The removal efficiency for nitrogen; ammonia nitrogen and total phosphate was 24, 19 and 68%, respectively. The average density of helminths eggs in treated wastewater is higher compared to the density of the limit value of ≤1 egg L(-1) and tolerable risk is above the level recommended by the World Health Organization. Multiple barriers are necessary for the reduction of organic matter, chemical contaminants and parasites from treated wastewater. Standards for the sanitary control of treated wastewater to be reused in agricultural irrigation areas should be compiled for developing countries in order to minimize public health risks. PMID:22466580

  4. Chlorine disinfection by-products in wastewater effluent: Bioassay-based assessment of toxicological impact.

    PubMed

    Watson, K; Shaw, G; Leusch, F D L; Knight, N L

    2012-11-15

    The potential ecological impact of disinfection by-products (DBPs) present in chlorinated wastewater effluents is not well understood. In this study, the chlorinated effluent of traditional wastewater treatment plants (WWTPs) and advanced water reclamation plants (AWRPs) supplying highly-treated recycled water were analyzed for nitrosamines and trihalomethanes (THMs), and a battery of bioassays conducted to assess effluent toxicity. An increase in general toxicity from DBPs was revealed for all wastewaters studied using an in vitro bioluminescence assay. Examples of androgenic activity and estrogenic activity arising from DBPs at specific sampling sites were also observed. The in vivo model (Artemia franciscana) was generally not adversely affected by exposure to DBPs from any of the chlorinated wastewaters studied. The observed toxicity could not be related to the concentrations of THMs and nitrosamines present, indicating that DBPs not monitored in this study were responsible for this. This work highlights the complexity of DBPs mixtures formed in chlorinated wastewaters, illustrating that toxicity of wastewater DBPs cannot be predicted by chemical monitoring of THMs and nitrosamines. The results suggest bioassays may be particularly useful monitoring tools in assessing toxicity arising from DBPs of these complex waters. The research concludes that DBPs formed in the chlorinated wastewaters studied can be toxic and may have a deleterious impact on aquatic organisms that are exposed to them, and therefore, that chlorination or chlorination/dechlorination may not be adequate treatment strategies for the protection of receiving waters. Chlorinated wastewater toxicity (from DBPs) is not well-understood in the Australian context, and this study serves to advise regulators on this issue. PMID:22981491

  5. Wastewater characterization survey, O'Hare International Airport (IAP), Air Reserve Station, Illinois. Final report, 13-24 April 1992

    SciTech Connect

    Acker, A.M.; Fields, M.K.; Davis, R.P.

    1993-02-01

    A wastewater characterization survey was conducted by members of the Armstrong Laboratory Occupational and Environmental Health Directorate Water Quality Function from 13-24 April 1992 at O'Hare International Airport (IAP)-Air Reserve Station, Illinois. The purpose of this survey was to identify and characterize the wastewater. Results of the sampling showed the use of industrial chemicals is being well controlled. The base should be commended for good shop practices to minimize the disposal of industrial waste through the sanitary sewerage system.... O'Hare International Airport (IAP)-Air Reserve Station, Illinois, Wastewater characterization.

  6. Temporal dynamics of norovirus determined through monitoring of municipal wastewater by pyrosequencing and virological surveillance of gastroenteritis cases.

    PubMed

    Kazama, Shinobu; Masago, Yoshifumi; Tohma, Kentaro; Souma, Nao; Imagawa, Toshifumi; Suzuki, Akira; Liu, Xiaofang; Saito, Mayuko; Oshitani, Hitoshi; Omura, Tatsuo

    2016-04-01

    Norovirus is a leading etiological agent of viral gastroenteritis. Because of relatively mild disease symptoms and frequent asymptomatic infections, information on the ecology of this virus is limited. Our objective was to examine the genetic diversity of norovirus circulating in the human population by means of genotyping the virus in municipal wastewater. We investigated norovirus genogroups I and II (GI and GII) in municipal wastewater in Japan by pyrosequencing and quantitative PCR (qPCR) from November 2012 to March 2013. Virological surveillance for gastroenteritis cases was concurrently conducted in the same area. A total of fourteen distinct genotypes in total (GI.1, 3, 4, 6, 7, GII.2, 4, 5, 6, 7, 12, 13, 14, and 17), with up to eight genotypes detected per sample, were observed in wastewater using pyrosequencing; only four genotypes (GI.6, GII.4, 5, and 14) were obtained from clinical samples. Seventy-eight percent of norovirus-positive stool samples contained GII.4, but this genotype was not dominant in wastewater. The norovirus GII.4 Sydney 2012 variant, which appeared and spread during our study period, was detected in both the wastewater and clinical samples. These results suggest that an environmental approach using pyrosequencing yields a more detailed distribution of norovirus genotypes/variants. Thus, wastewater monitoring by pyrosequencing is expected to provide an effective analysis of the distribution of norovirus genotypes causing symptomatic and asymptomatic infections in human populations. PMID:26874777

  7. Concentrations and mass loadings of hormones, alkylphenols, and alkylphenol ethoxylates in healthcare facility wastewaters.

    PubMed

    Nagarnaik, P M; Mills, M A; Boulanger, B

    2010-02-01

    Healthcare facility wastewaters are an anticipated source of known endocrine disrupting chemicals to the environment. In this study, the composition and magnitude of eight steroid hormones, octylphenol (OP), nonylphenol (NP), 16 nonylphenol ethoxylates (NPEOs), and 10 octylphenol ethoxylates (OPEOs) in wastewater from a(n) hospital, nursing facility, assisted living facility, and independent living facility are presented. Steroid hormone concentrations were variable for each sampling location, ranging from a non-detectable concentration of 17beta-ethynylestradiol in all samples to 127ngL(-1) androstenedione in the hospital's wastewater composite. OP and NP were not detected in any site's samples. However, NPEOs were found at each sampling location with a maximum combined concentration of 260microgL(-1) for NPEOs with a chain length between 3 and 18 units in the assisted living facility composite sample. OPEOs were only found in the hospital and nursing facilities samples with a maximum combined OPEO concentration of 13microgL(-1) for OPEOs with a chain length between 2 and 12 units in hospital wastewater. The total mass loading of hormones to the municipal sewer system from each facility ranged from 2.5mgd(-1) at the assisted living facility to 138mgd(-1) at the hospital. The total mass loading of the alklyphenol ethoxylates (NPEO+OPEO) is considerably higher than the estimated hormone mass loadings, ranging from 1.8gd(-1) at the independent living facility to 54gd(-1) at the hospital facility. PMID:20079514

  8. Detection of microsporidia in drinking water, wastewater and recreational rivers.

    PubMed

    Izquierdo, Fernando; Castro Hermida, José Antonio; Fenoy, Soledad; Mezo, Mercedes; González-Warleta, Marta; del Aguila, Carmen

    2011-10-15

    Diarrhea is the main health problem caused by human-related microsporidia, and waterborne transmission is one of the main risk factors for intestinal diseases. Recent studies suggest the involvement of water in the epidemiology of human microsporidiosis. However, studies related to the presence of microsporidia in different types of waters from countries where human microsporidiosis has been described are still scarce. Thirty-eight water samples from 8 drinking water treatment plants (DWTPs), 8 wastewater treatment plants (WWTPs) and 6 recreational river areas (RRAs) from Galicia (NW Spain) have been analyzed. One hundred liters of water from DWTPs and 50 L of water from WWTPs and RRAs were filtered to recover parasites, using the IDEXX Filta-Max® system. Microsporidian spores were identified by Weber's stain and positive samples were analyzed by PCR, using specific primers for Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem. Microsporidia spores were identified by staining protocols in eight samples (21.0%): 2 from DWTPs, 5 from WWTPs, and 1 from an RRA. In the RRA sample, the microsporidia were identified as E. intestinalis. To the best of our knowledge, this is the first report of human-pathogenic microsporidia in water samples from DWTPs, WWTPs and RRAs in Spain. These observations add further evidence to support that new and appropriate control and regulations for drinking, wastewater, and recreational waters should be established to avoid health risks from this pathogen. PMID:21774958

  9. Removal of endotoxin from dairy wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of various treatments on removing endotoxin (ET) from wastewater was tested by using the treated water to induce a systemic reaction via intratracheal inoculation (20 ml/goat, 6 goats/group). Treatments (T1-T7) of wastewater were as follows: 1) autoclaved 15 min, centrifuged and contain...

  10. Persistence of Ebola Virus in Sterilized Wastewater

    PubMed Central

    2015-01-01

    In the wake of the ongoing 2014/2015 Ebola virus outbreak, significant questions regarding the appropriate handling of Ebola virus-contaminated liquid waste remain, including the persistence of Ebola virus in wastewater. To address these uncertainties, we evaluated the persistence of Ebola virus spiked in sterilized domestic sewage. The viral titer decreased approximately 99% within the first test day from an initial viral titer of 106 TCID50 mL–1; however, it could not be determined if this initial rapid decrease was due to aggregation or inactivation of the viral particles. The subsequent viral titer decrease was less rapid, and infectious Ebola virus particles persisted for all 8 days of the test. The inactivation constant (k) was determined to be −1.08 (2.1 days for a 90% viral titer decrease). Due to experimental conditions, we believe these results to be an upper bound for Ebola virus persistence in wastewater. Wastewater composition is inherently heterogeneous; subsequently, we caution that interpretation of these results should be made within a holistic assessment, including the effects of wastewater composition, dilution, and potential exposure routes within wastewater infrastructure. While it remains unknown if Ebola virus may be transmitted via wastewater, these data demonstrate a potential exposure route to infectious Ebola virus via wastewater and emphasize the value of a precautionary approach to wastewater handling in an epidemic response. PMID:26523283

  11. GENOTOXIC PROPERTIES OF MUNICIPAL WASTEWATERS IN OHIO

    EPA Science Inventory

    Wastewaters from six municipal wastewater treatment plants in Ohio were tested at different stages of treatment for mutagenicity in the Ames/Salmonella assay. The chlorinated secondary effluents were also evaluated for induction of sister chromatid exchanges in Chinese hamster ov...

  12. Operation and Maintenance of Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Drury, Douglas D.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment: (1) operators, training, and certification; (2) solutions to operating problems; (3) collection systems; (4) operations manuals; (5) wastewater treatment facility case histories; (5) land application; and (6) treatment of industrial wastes. A list of 36 references is also presented. (HM)

  13. Swine wastewater treatment in constructed wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the passive technologies being used for animal wastewater treatment is constructed wetlands. We have investigated swine lagoon wastewater treatment in both continuous marsh and marsh-pond-marsh (MPM) type constructed wetlands for their nitrogen treatment efficiency, ammonia volatilization, de...

  14. A Technology of Wastewater Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  15. ANTIMONY REMOVAL TECHNOLOGY FOR MINING INDUSTRY WASTEWATERS

    EPA Science Inventory

    This report assessed the current state-of-the-art of antimony removal technology for mining industry wastewaters. Through literature review and personal interviews, it was found that most mines and mills reporting significant quantities of antimony in their raw wastewater had app...

  16. PRODUCTION OF NATURAL PLASTICS IN WASTEWATER TREATMENT

    EPA Science Inventory

    Site Sourcing
    Locating our research on site at a wastewater plant proved less reasonable than simply shipping biosolids from the site to our lab. By not locating at one particular site, we were able to experiment with biosolids from several wastewater t...

  17. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  18. Changes in Plant Nutrients, and Microbial Biomass in Different Soil Depths After Long-Term Surface Application of Secondary Treated Wastewater

    NASA Astrophysics Data System (ADS)

    Al-Rashidi, Radhi; Rusan, Munir; Obaid, Karem

    2013-12-01

    Long-term effects of surface application of secondary treated wastewater on plant nutrients dynamics, the cycling of C and N within the system through the determination of microbial biomass, and associated health hazards were studied in different soil locations. Sites that have been irrigated with wastewater for the last 1, 4, 10, and 17 years were identified and used as sampling locations for this study. Two other sites that have not been irrigated with wastewater were sampled as a control. Soil samples were taken from several sites within each location, and at the following depths: 0-20, 20-40, and 40-60 cm. Results obtained indicated that microbial biomass C and N were increased significantly with increasing application period of treated wastewater. Barley plant tissues analysis showed that plant nutrients content was significantly higher in sites which received wastewater for a long period than other sites. No significances in accumulation of lead (Pb) in barley plant tissues were observed with sites received wastewater for different periods. The bacteriological analysis showed that the total bacterial count of surface soil (0-20 cm) was higher in sites irrigated with wastewater for the last 10 and 17 years. The total coliforms ranged from 0.92x102 cfu/g soil to 3.3x102 cfu/g soil, while fecal coliform were less and detected only in top soils at sites irrigated with wastewater for the last 10 and 17 years.

  19. Biological treatment of printing ink wastewater.

    PubMed

    Zhang, Y; Shi, H; Qian, Y

    2003-01-01

    Printing ink wastewater is usually very difficult to treat biologically and its chemical oxygen demand (COD) far exceeds standards of discharge. The COD in wastewater is usually 3,000 to 8,000 mg/L after flocculation and sedimentation. Herein, a strain of bacterium was isolated from the sludge and identified as Bacillus sp. and utilized to treat printing ink wastewater. The application of bacteria to degrade printing ink in wastewater is discussed in this paper. The influence of N and P sources on COD removal, and COD removal in combination with glucose was also discussed. More than 85 per cent of the COD could be removed using the proposed biological process. A novel internal airlift loop bioreactor with bacteria immobilized onto ceramic honeycomb support was used for the wastewater treatment. PMID:12578205

  20. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  1. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment.

    PubMed

    Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S; Licha, Tobias

    2016-04-01

    Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L(-1) and 6.1/522 ng L(-1), respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two sampling

  2. Comparative toxicity of SRC-I wastewater to aquatic organisms. Final technical report

    SciTech Connect

    Bailey, H.C.

    1984-01-01

    SRI International performed a series of acute and chronic toxicity studies on SRC-I wastewaters using fish, zooplankton, and algae as test organisms. The tests were designed to determine the toxicity of SRC-I wastewaters to quatic organisms and based on differences in toxicity of the various water samples, to evaluate the efficacy of various wastewater treatment methods. Survival data from acute and chronic daphnid studies indicate that phenol recovery markedly reduced wastewater toxicity. In treatment processes that did not include phenol recovery, powdered activated carbon reduced toxicity more effectively than granulated activated carbon. All treated water supported algal growth in excess of that in controls, particularly those waters subjected to phenol recovery. The toxicity of each SRC-I wastewater sample was compared with that of a corresponding synthetic salt solution to determine whether the salt load was the toxic element. The wastewaters typically exhibited higher toxicity than their associated salt solutions. The effect was greatest in the daphnid chronic studies. The aquatic ecotoxicity tests were performed as part of ICRC's post-Base-line environmental R and D program. One objective of the program was to evaluate the impact of phenol recovery on effluent quality. Another objective was to assess the potential impact of wastewater discharge on aquatic organisms. The results of this study have been integrated with results from the rest of the R and D program, and are documented in ICRC's Integration Report for SRC-I Post-Baseline Environmental R and D. 7 references, 10 figures and 22 tables.

  3. Tracking Down Antibiotic-Resistant Pseudomonas aeruginosa Isolates in a Wastewater Network

    PubMed Central

    Slekovec, Céline; Plantin, Julie; Cholley, Pascal; Thouverez, Michelle; Talon, Daniel; Bertrand, Xavier; Hocquet, Didier

    2012-01-01

    The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs), generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA) from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge) of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant). Extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were identified by gene sequencing. All non-wild-type isolates (n = 56) and a similar number of wild-type isolates (n = 54) were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5%) contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×106 CFU/l or/kg). Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination. PMID:23284623

  4. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy

    USGS Publications Warehouse

    Phillips, Patrick; Gibson, Cathy A; Fisher, Shawn C.; Fisher, Irene; Reilly, Timothy J.; Smalling, Kelly; Romanok, Kristin; Foreman, William; ReVello, Rhiannon C.; Focazio, Michael J.; Jones, Daniel K.

    2016-01-01

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region.

  5. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy.

    PubMed

    Phillips, Patrick J; Gibson, Catherine A; Fisher, Shawn C; Fisher, Irene J; Reilly, Timothy J; Smalling, Kelly L; Romanok, Kristin M; Foreman, William T; ReVello, Rhiannon C; Focazio, Michael J; Jones, Daniel K

    2016-06-30

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region. PMID:27177500

  6. Freezing cleans food processing wastewater

    SciTech Connect

    Not Available

    1998-01-01

    Snowfluent is a technology which atomizes wastewater effluent and sprays it into the air as ice crystals at cold temperatures. It has been found effective in treating municipal sewage and food processing wastes. This bulletin reviews pilot- and production-scale studies conducted at an Alberta malt producer to test whether the Snowfluent process has further applications for the treatment of food processing wastes. The study was designed to determine the percentage of nutrients removed by the technology, the point at which contaminants are reduced, the effect of the process on the shallow water table, and the health risk to operators involved.

  7. Freezing cleans food processing wastewater

    SciTech Connect

    1998-12-31

    Snowfluent is a technology which atomizes wastewater effluent and sprays it into the air as ice crystals at cold temperatures. It has been found effective in treating municipal sewage and food processing wastes. This bulletin reviews pilot- and production-scale studies conducted at an Alberta malt producer to test whether the Snowfluent process has further applications for the treatment of food processing wastes. The study was designed to determine the percentage of nutrients removed by the technology, the point at which contaminants are reduced, the effect of the process on the shallow water table, and the health risk to operators involved.

  8. Steel industry wastes. [Wastewater treatment

    SciTech Connect

    Vachon, D.T.; Schmidt, J.W.; Schmidtke, N.W.

    1982-06-01

    A literature review dealing with waste processing of steel industry wastes is presented. The costs for the U.S. steel industry to comply with environmental standards are such that water reuse and recycling may be necessary. The review examines conventional coke plant wastewater treatments such as flotation, phenol extraction, ammonia stripping, and biological nitrification, and alternative treatment processes for blast furnace scrubber blowdown such as alkaline chlorination, ozonation, and reverse osmosis. A review of pickling operations and finishing processes is also included with their appropriate waste methods highlighted.

  9. Rapid concentration and sensitive detection of hookworm ova from wastewater matrices using a real-time PCR method.

    PubMed

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2015-12-01

    The risk of human hookworm infections from land application of wastewater matrices could be high in regions with high hookworm prevalence. A rapid, sensitive and specific hookworm detection method from wastewater matrices is required in order to assess human health risks. Currently available methods used to identify hookworm ova to the species level are time consuming and lack accuracy. In this study, a real-time PCR method was developed for the rapid, sensitive and specific detection of canine hookworm (Ancylostoma caninum) ova from wastewater matrices. A. caninum was chosen because of its morphological similarity to the human hookworm (Ancylostoma duodenale and Necator americanus). The newly developed PCR method has high detection sensitivity with the ability to detect less than one A. caninum ova from 1 L of secondary treated wastewater at the mean threshold cycle (CT) values ranging from 30.1 to 34.3. The method is also able to detect four A. caninum ova from 1 L of raw wastewater and from ∼4 g of treated sludge with mean CT values ranging from 35.6 to 39.8 and 39.8 to 39.9, respectively. The better detection sensitivity obtained for secondary treated wastewater compared to raw wastewater and sludge samples could be attributed to sample turbidity. The proposed method appears to be rapid, sensitive and specific compared to traditional methods and has potential to aid in the public health risk assessment associated with land application of wastewater matrices. Furthermore, the method can be adapted to detect other helminth ova of interest from wastewater matrices. PMID:26297680

  10. Solar enhanced wastewater treatment in waste stabilization ponds.

    PubMed

    Agunwamba, J C; Utsev, J T; Okonkwo, W I

    2009-05-01

    One of the most popular off-site wastewater treatment plants used in the tropics is the waste stabilization pond (WSP). Although it has several advantages, its use in urban areas is limited because of its large land area requirement. Hence, this research is aimed at investigating if a solar-enhanced WSP (SEWSP) can increase treatment efficiency and consequently reduce the land area requirement. The SEWSPs of varying sizes, made of a metallic tank with inlet and outlet valves and a solar reflector, were constructed to increase the incident sunlight intensity. Wastewater samples collected from the inlet and outlet of the SEWSPs were examined for physio-chemical and biological characteristics for a period of 2 months. The parameters examined were total suspended solids, dissolved oxygen, 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), coliform, and Escherichia coli. The efficiencies of the SEWSPs, with respect to these parameters, fluctuated with temperature variation, with the shallowest SEWSP giving the highest treatment efficiency. The research revealed that the cost of treating wastewater using SEWSPs was approximately 2 times lower than the conventional WSP for the same treatment efficiencies. PMID:19472946

  11. Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent.

    PubMed

    Du, Bowen; Price, Amy E; Scott, W Casan; Kristofco, Lauren A; Ramirez, Alejandro J; Chambliss, C Kevin; Yelderman, Joe C; Brooks, Bryan W

    2014-01-01

    A comparative understanding of effluent quality of decentralized on-site wastewater treatment systems, particularly for contaminants of emerging concern (CECs), remains less understood than effluent quality from centralized municipal wastewater treatment plants. Using a novel experimental facility with common influent wastewater, effluent water quality from a decentralized advanced aerobic treatment system (ATS) and a typical septic treatment system (STS) coupled to a subsurface flow constructed wetland (WET) were compared to effluent from a centralized municipal treatment plant (MTP). The STS did not include soil treatment, which may represent a system not functioning properly. Occurrence and discharge of a range of CECs were examined using isotope dilution liquid chromatography-tandem mass spectrometry during fall and winter seasons. Conventional parameters, including total suspended solids, carbonaceous biochemical oxygen demand and nutrients were also evaluated from each treatment system. Water quality of these effluents was further examined using a therapeutic hazard modeling approach. Of 19 CECs targeted for study, the benzodiazepine pharmaceutical diazepam was the only CEC not detected in all wastewater influent and effluent samples over two sampling seasons. Diphenhydramine, codeine, diltiazem, atenolol, and diclofenac exhibited significant (p<0.05) seasonal differences in wastewater influent concentrations. Removal of CECs by these wastewater treatment systems was generally not influenced by season. However, significant differences (p<0.05) for a range of water quality indicators were observed among the various treatment technologies. For example, removal of most CECs by ATS was generally comparable to MTP. Lowest removal of most CECs was observed for STS; however, removal was improved when coupling the STS to a WET. Across the treatment systems examined, the majority of pharmaceuticals observed in on-site and municipal effluent discharges were predicted

  12. Effects of wastewater disinfection on waterborne bacteria and viruses

    USGS Publications Warehouse

    Blatchley, E. R., III; Gong, W.-L.; Alleman, J.E.; Rose, J.B.; Huffman, D.E.; Otaki, M.; Lisle, J.T.

    2007-01-01

    Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage

  13. Screening new psychoactive substances in urban wastewater using high resolution mass spectrometry.

    PubMed

    González-Mariño, Iria; Gracia-Lor, Emma; Bagnati, Renzo; Martins, Claudia P B; Zuccato, Ettore; Castiglioni, Sara

    2016-06-01

    Analysis of drug residues in urban wastewater could complement epidemiological studies in detecting the use of new psychoactive substances (NPS), a continuously changing group of drugs hard to monitor by classical methods. We initially selected 52 NPS potentially used in Italy based on seizure data and consumption alerts provided by the Antidrug Police Department and the National Early Warning System. Using a linear ion trap-Orbitrap high resolution mass spectrometer, we designed a suspect screening and a target method approach and compared them for the analysis of 24 h wastewater samples collected at the treatment plant influents of four Italian cities. This highlighted the main limitations of these two approaches, so we could propose requirements for future research. A library of MS/MS spectra of 16 synthetic cathinones and 19 synthetic cannabinoids, for which analytical standards were acquired, was built at different collision energies and is available on request. The stability of synthetic cannabinoids was studied in analytical standards and wastewater, identifying the best analytical conditions for future studies. To the best of our knowledge, these are the first stability data on NPS. Few suspects were identified in Italian wastewater samples, in accordance with recent epidemiological data reporting a very low prevalence of use of NPS in Italy. This study outlines an analytical approach for NPS identification and measurement in urban wastewater and for estimating their use in the population. PMID:27086019

  14. Toxigenic Clostridium difficile PCR Ribotypes from Wastewater Treatment Plants in Southern Switzerland

    PubMed Central

    Romano, Vincenza; Krovacek, Karel; Mauri, Federica; Demarta, Antonella; Dumontet, Stefano

    2012-01-01

    The occurrence of Clostridium difficile in nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterized C. difficile strains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A+ B+ CDT+), whereas 51% showed the profile A+ B+ CDT−. Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes of C. difficile involved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater. PMID:22798376

  15. Pyrosequencing Analysis of Bacterial Diversity in 14 Wastewater Treatment Systems in China

    PubMed Central

    Wang, Xiaohui; Hu, Man; Xia, Yu; Ding, Kun

    2012-01-01

    To determine if there is a core microbial community in the microbial populations of different wastewater treatment plants (WWTPs) and to investigate the effects of wastewater characteristics, operational parameters, and geographic locations on microbial communities, activated sludge samples were collected from 14 wastewater treatment systems located in 4 cities in China. High-throughput pyrosequencing was used to examine the 16S rRNA genes of bacteria in the wastewater treatment systems. Our results showed that there were 60 genera of bacterial populations commonly shared by all 14 samples, including Ferruginibacter, Prosthecobacter, Zoogloea, Subdivision 3 genera incertae sedis, Gp4, Gp6, etc., indicating that there is a core microbial community in the microbial populations of WWTPs at different geographic locations. The canonical correspondence analysis (CCA) results showed that the bacterial community variance correlated most strongly with water temperature, conductivity, pH, and dissolved oxygen (DO) content. Variance partitioning analyses suggested that wastewater characteristics had the greatest contribution to the bacterial community variance, explaining 25.7% of the variance of bacterial communities independently, followed by operational parameters (23.9%) and geographic location (14.7%). Results of this study provided insights into the bacterial community structure and diversity in geographically distributed WWTPs and discerned the relationships between bacterial community and environmental variables in WWTPs. PMID:22843531

  16. Determination of changes in wastewater quality through a treatment works using fluorescence spectroscopy.

    PubMed

    Bridgeman, John; Baker, Andy; Carliell-Marquet, Cynthia; Carstea, Elfrida

    2013-01-01

    Fluorescence spectroscopy was used to characterize municipal wastewater at various stages of treatment in order to understand how its fluorescence signature changes with treatment and how the signal relates to biochemical oxygen demand (BOD) and chemical oxygen demand (COD). The impact of size fractionation on the fluorescence signal was also investigated. Fluorescence measurements were taken for unfiltered and filtered (0.45 and 0.20 microm) samples of crude, settled and secondary treated wastewater (activated sludge and trickling filter), and final effluent. Good correlations were observed for unfiltered, diluted wastewater samples between BOD and fluorescence intensity at excitation 280 nm, emission 350 nm (Peak T1) (r = 0.92) and between COD and Peak T1 intensity (r = 0.85). The majority of the T1 and T2 signal was found to be derived from the <0.20 microm fraction. Initial results indicate that fluorescence spectroscopy, and changes in Peak T1 intensity in particular, could be used for continuous, real-time wastewater quality assessment and process control of wastewater treatment works. PMID:24617065

  17. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    PubMed

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy. PMID:20418628

  18. Chemical attributes of soil fertilized with cassava mill wastewater and cultivated with sunflower.

    PubMed

    Dantas, Mara Suyane Marques; Rolim, Mário Monteiro; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Pedrosa, Elvira Maria Regis; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m(3) ha(-1)); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  19. Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion.

    PubMed

    Samaras, Vasilios G; Stasinakis, Athanasios S; Mamais, Daniel; Thomaidis, Nikolaos S; Lekkas, Themistokles D

    2013-01-15

    The concentrations of nine emerging contaminants, including pharmaceutically active compounds (PhACs) (ibuprofen, IBF; naproxen, NPX; diclofenac, DCF; ketoprofen, KFN) and endocrine disrupting chemicals (triclosan, TCS; bisphenol, BPA; nonylphenol, NP; nonylphenol monoethoxylate, NP1EO; nonylphenol diethoxylate, NP2EO), were determined in wastewater and sludge samples of two wastewater treatment plants (WWTPs) in Greece. Average concentrations in raw and treated wastewater ranged from 0.39 (KFN) to 12.52 μg L(-1) (NP) and from wastewater was bound to the particulate phase, while PhACs and BPA were mainly detected in the aqueous phase. Removal of target compounds during wastewater treatment ranged between 39% (DCF) and 100% (IBF). Except of DCF and BPA, similar removal efficiencies were observed in both WWTPs and no effect of WWTP's size and operational conditions was noticed. Use of mass balances showed that accumulation on sludge was a significant removal mechanism for NPs and TCS, while biodegradation/biotransformation was the major mechanism for the other compounds. Sampling of raw and digested sludge demonstrated that IBF and NPX are significantly removed (>80%) during anaerobic digestion, whereas removal of EDCs was lower, ranging up to 55% for NP1EO. PMID:23257325

  20. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    PubMed Central

    Dantas, Mara Suyane Marques; Monteiro Rolim, Mário; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Maria Regis Pedrosa, Elvira; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  1. The effects of silver nanoparticles on intact wastewater biofilms

    PubMed Central

    Sheng, Zhiya; Van Nostrand, Joy D.; Zhou, Jizhong; Liu, Yang

    2015-01-01

    Silver nanoparticles (Ag-NPs) have strong antibacterial properties, which may adversely affect biological wastewater treatment processes. To determine the overall effect, intact biofilm samples were collected from the rotating biological contactor at the local wastewater treatment plant and treated with 200 mg Ag/L Ag-NPs for 24 h. The biofilm uptake of Ag-NPs was monitored with transmission electron microscopy. Forty-five minutes after Ag-NP application, Ag-NPs were seen in the biofilm extracellular polymeric substances (EPS). After 24 h, Ag-NPs had entered certain microbial cells, while other cells contained no observable Ag-NPs. Some cells were dying after the uptake of Ag-NPs. However, there was no significant reduction in cultivable bacteria in the biofilms, based on heterotrophic plate counts (HPC). While this may indicate that wastewater biofilms are highly resistant to Ag-NPs, the HPC represents only a small portion of the total microbial population. To further investigate the effects of Ag-NPs, a GeoChip microarray was used to directly detect changes in the functional gene structure of the microbial community in the biofilm. A clear decrease (34.6% decreases in gene number) in gene diversity was evident in the GeoChip analysis. However, the complete loss of any specific gene was rare. Most gene families present in both treated and untreated biofilms. However, this doesn’t necessarily mean that there was no change in these families. Signal intensity decreased in certain variants in each family while other variants increased to compensate the effects of Ag-NPs. The results indicate that Ag-NP treatment decreased microbial community diversity but did not significantly affect the microbial community function. This provides direct evidence for the functional redundancy of microbial community in engineered ecosystems such as wastewater biofilms. PMID:26217316

  2. The effects of silver nanoparticles on intact wastewater biofilms.

    PubMed

    Sheng, Zhiya; Van Nostrand, Joy D; Zhou, Jizhong; Liu, Yang

    2015-01-01

    Silver nanoparticles (Ag-NPs) have strong antibacterial properties, which may adversely affect biological wastewater treatment processes. To determine the overall effect, intact biofilm samples were collected from the rotating biological contactor at the local wastewater treatment plant and treated with 200 mg Ag/L Ag-NPs for 24 h. The biofilm uptake of Ag-NPs was monitored with transmission electron microscopy. Forty-five minutes after Ag-NP application, Ag-NPs were seen in the biofilm extracellular polymeric substances (EPS). After 24 h, Ag-NPs had entered certain microbial cells, while other cells contained no observable Ag-NPs. Some cells were dying after the uptake of Ag-NPs. However, there was no significant reduction in cultivable bacteria in the biofilms, based on heterotrophic plate counts (HPC). While this may indicate that wastewater biofilms are highly resistant to Ag-NPs, the HPC represents only a small portion of the total microbial population. To further investigate the effects of Ag-NPs, a GeoChip microarray was used to directly detect changes in the functional gene structure of the microbial community in the biofilm. A clear decrease (34.6% decreases in gene number) in gene diversity was evident in the GeoChip analysis. However, the complete loss of any specific gene was rare. Most gene families present in both treated and untreated biofilms. However, this doesn't necessarily mean that there was no change in these families. Signal intensity decreased in certain variants in each family while other variants increased to compensate the effects of Ag-NPs. The results indicate that Ag-NP treatment decreased microbial community diversity but did not significantly affect the microbial community function. This provides direct evidence for the functional redundancy of microbial community in engineered ecosystems such as wastewater biofilms. PMID:26217316

  3. Dissolved air flotation of polishing wastewater from semiconductor manufacturer.

    PubMed

    Liu, J C; Lien, C Y

    2006-01-01

    The feasibility of the dissolved air flotation (DAF) process in treating chemical mechanical polishing (CMP) wastewater was evaluated in this study. Wastewater from a local semiconductor manufacturer was sampled and characterised. Nano-sized silica (77.6 nm) with turbidity of 130 +/- 3 NTU was found in the slightly alkaline wastewater with traces of other pollutants. Experimental results indicated removal efficiency of particles, measured as suspended particle or turbidity, increased with increasing concentration of cationic collector cetyltrimethyl ammonium bromide (CTAB). When CTAB concentration was 30 mg/L, pH of 6.5 +/- 0.1 and recycle ratio of 30%, very effective removal of particles (> 98%) was observed in saturation pressure range of 4 to 6 kg/cm2, and the reaction proceeded faster under higher pressure. Similarly, the reaction was faster under the higher recycle ratio, while final removal efficiency improved slightly as the recycle ratio increased from 20 to 40%. An insignificant effect of pH on treatment efficiency was found as pH varied from 4.5 to 8.5. The presence of activator, Al3+ and Fe3+, enhanced the system performance. It is proposed that CTAB adsorbs on silica particles in polishing wastewater through electrostatic interaction and makes particles more hydrophobic. The increase in hydrophobicity results in more effective bubble-particle collisions. In addition, flocculation of silica particles through bridging effect of collector was found; it is believed that flocculation of particles also contributed to flotation. Better attachment between gas bubble and solid, higher buoyancy and higher air to solid ratio all lead to effective flotation. PMID:16752774

  4. Beyond the conventional life cycle inventory in wastewater treatment plants.

    PubMed

    Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. PMID:26901804

  5. 7 CFR 3201.98 - Wastewater systems coatings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wastewater systems coatings. 3201.98 Section 3201.98... Designated Items § 3201.98 Wastewater systems coatings. (a) Definition. Coatings that protect wastewater... procurement preference for qualifying biobased wastewater systems coatings. By that date, Federal...

  6. 7 CFR 3201.98 - Wastewater systems coatings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wastewater systems coatings. 3201.98 Section 3201.98... Designated Items § 3201.98 Wastewater systems coatings. (a) Definition. Coatings that protect wastewater... procurement preference for qualifying biobased wastewater systems coatings. By that date, Federal...

  7. 40 CFR 63.132 - Process wastewater provisions-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1 wastewater stream or residual removed from a Group 1 wastewater stream to an on-site treatment... residual, or to an off-site treatment operation. (1) The owner or operator transferring the wastewater... may not transfer the wastewater stream or residual to the treatment operation. (3) By providing...

  8. 40 CFR 63.132 - Process wastewater provisions-general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1 wastewater stream or residual removed from a Group 1 wastewater stream to an on-site treatment... residual, or to an off-site treatment operation. (1) The owner or operator transferring the wastewater... may not transfer the wastewater stream or residual to the treatment operation. (3) By providing...

  9. 40 CFR 63.132 - Process wastewater provisions-general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1 wastewater stream or residual removed from a Group 1 wastewater stream to an on-site treatment... residual, or to an off-site treatment operation. (1) The owner or operator transferring the wastewater... may not transfer the wastewater stream or residual to the treatment operation. (3) By providing...

  10. "Protein" Measurement in Biological Wastewater Treatment Systems: A Critical Evaluation.

    PubMed

    Le, Chencheng; Kunacheva, Chinagarn; Stuckey, David C

    2016-03-15

    Five commercially available assay kits were tested on the same protein sample with the addition of 17 different types of interfering substances typically found in the biological wastewater treatment, and a comparison of the use of these assays with 22 different protein and peptide samples is also presented. It was shown that a wide variety of substances can interfere dramatically with these assays; the metachromatic response was also clearly influenced by different proteinaceous material. Measurement of the "protein" content in the effluent of an anaerobic membrane bioreactor was then carried out using these assay methods. Quantitative results of the "protein" concentration in the different effluent samples, with or without spiked additions of Bovine Serum Albumin (BSA), showed considerable disagreement. We concluded that the "protein" measured in wastewater samples using standard colorimetric assays often shows false positive results and has little correlation to their real value. A new analytical method needs to be developed in order to gain greater insight into the biological transformations occurring in anaerobic digestion, and how soluble microbial products (SMPs) are produced. PMID:26893149

  11. Prevalence and genetic diversity of klassevirus in wastewater in Japan.

    PubMed

    Haramoto, Eiji; Otagiri, Mikie

    2013-03-01

    Klassevirus is a novel virus belonging to the family Picornaviridae. This study examined the prevalence and genetic diversity of klassevirus in wastewater. Raw sewage (100 ml) and secondary-treated sewage (2 l) were collected monthly for 14 months between January 2011 and February 2012 from a wastewater treatment plant in Japan. Klassevirus in the sample was concentrated by the electronegative membrane-vortex method, followed by qualitative detection by means of three types of reverse transcription (RT)-nested polymerase chain reactions (PCRs). Klassevirus was detected in seven of the 14 raw sewage (50 %) and four of the 14 secondary-treated sewage (29 %) samples by the RT-nested PCRs targeting the 2C and/or 3D regions. In contrast, none of the samples tested positive for the virus by the RT-nested PCR targeting the VP0/VP3 region. Based on direct nucleotide sequence analysis of the klassevirus-positive nested PCR fragments, the tested samples showed high nucleotide sequence similarities of 94.7-100.0 % and 93.2-100.0 % in the 2C and 3D regions, respectively, indicating the presence of a single klassevirus strain. To our knowledge, this is the first study evaluating seasonal prevalence and genetic diversity of klassevirus in environmental waters. PMID:23412720

  12. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study. PMID:26623940

  13. Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE.

    PubMed

    Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke

    2014-06-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system. PMID:24715657

  14. Monitoring the effects of wastewater treatment strategies.

    PubMed

    de-la-Ossa-Carretero, J A; Del-Pilar-Ruso, Y; Giménez-Casalduero, F; Sánchez-Lizaso, J L

    2016-02-01

    Wastewater disposal in coastal waters causes widespread environmental problems. Secondary treatment is expected to reduce the adverse effects of insufficiently treated wastewater. The environmental impact of sewage disposal via 18 wastewater treatment plants was analysed using the benthic opportunistic polychaetes and amphipods (BOPA) index. In previous studies this index proved to be an effective tool for monitoring sewage pollution. The impact of these discharges was highly related to treatment level, which ranged from pre-treatment to biological, as well as to flow rates and outfall position. Locations affected by pre-treated wastewater showed environmental degradation, especially marked near outfalls with higher flow rates. At most locations, biologically treated wastewater did not cause a significant impact and an improvement in ecological integrity was detected after this secondary treatment had been implemented. The impact of discharge was highly related to chemical oxygen demand (COD), suspended solids and nutrient concentrations, which are all lower in biologically treated wastewater. A 'moderate' ecological status was observed not only near sewage outfalls with high wastewater flow rates (>1,500,000 m(3)/month) with a COD over 200 mg/l but also near those with lower flow rates but with a COD over 400 mg/l. To reduce the impact of sewage disposal, it is necessary to carry out adequate treatment, have site outfalls deep enough, and implement water recycling. PMID:26801153

  15. Priorities for toxic wastewater management in Pakistan

    SciTech Connect

    Rahman, A.

    1996-12-31

    This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, while the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.

  16. Effects of Wastewater on Forested Wetlands

    USGS Publications Warehouse

    Doyle, Thomas W.

    2002-01-01

    Cycling nutrient-enriched wastewater from holding ponds through natural, forested wetlands is a practice that municipal waste treatment managers are considering as a viable option for disposing of wastewater. In this wastewater cycling process, sewer effluent that has been circulated through aerated ponds is discharged into neighboring wetland systems. To understand how wastewater cycling affects forest and species productivity, researchers at the USGS National Wetlands Research Center conducted dendroecological investigations in a swamp system and in a bog system that have been exposed to wastewater effluent for many decades. Dendroecology involves the study of forest changes over time as interpreted from tree rings. Tree-ring chronologies describe the pattern and history of growth suppression and release that can be associated with aging and disturbances such as hurricanes, floods, and fires. But because of limited monitoring, little is known about the potential for long-term effects on forested wetlands as a result of wastewater flooding. USGS researchers used tree rings to detect the effect of wastewater cycling on tree growth. Scientists expected to find that tree-ring width would be increased as a result of added nutrients.

  17. Treatment and Disposal of Unanticipated 'Scavenger' Wastewater

    SciTech Connect

    Payne, W.L.

    2003-09-15

    The Savannah River Site often generates wastewater for disposal that is not included as a source to one of the site's wastewater treatment facilities that are permitted by the South Carolina Department of Health and Environmental Control. The techniques used by the SRS contract operator (Westinghouse Savannah River Company) to evaluate and treat this unanticipated 'scavenger' wastewater may benefit industries and municipalities who experience similar needs. Regulations require that scavenger wastewater be treated and not just diluted. Each of the pollutants that are present must meet effluent permit limitations and/or receiving stream water quality standards. if a scavenger wastewater is classified as 'hazardous' under the Resource Conservation and Recovery Act (RCRA) its disposal must comply with RCRA regulations. Westinghouse Savannah River Company obtained approval from SCDHEC to dispose of scavenger wastewater under specific conditions that are included within the SRS National Pollutant Discharge Elimination System permit. Scavenger wastewater is analyzed in a laboratory to determine its constituency. Pollutant values are entered into spreadsheets that calculate treatment plant removal capabilities and instream concentrations. Disposal rates are computed, ensuring compliance with regulatory requirements and protection of treatment system operating units. Appropriate records are maintained in the event of an audit.

  18. Impact of approach used to determine removal levels of drugs of abuse during wastewater treatment.

    PubMed

    Rodayan, Angela; Majewsky, Marius; Yargeau, Viviane

    2014-07-15

    In this study the levels of 19 drugs of abuse were estimated throughout a wastewater treatment plant using polar organic chemical integrative samplers (POCIS), 24h composite samples and grab samples. Overall removal efficiencies and removals in between each treatment unit were calculated using load data for each sampling technique as well as removals that take into account the hydraulic residence time distribution of the treatment plant (time-shifted mass balancing approach). Amphetamine-type stimulants, cocaine and its major metabolite, benzoylecgonine and opioid levels determined with 24h composite samples were generally comparable to those obtained with POCIS and grab samples. Negative mass balances resulting from the estimation of overall removal efficiencies by POCIS, day-to-day mass balancing of 24h composite and grab sample data did not occur when the hydraulic retention time (HRT) distributions of the plant were taken into account for calculation. Among the compounds investigated, cocaine exhibited the highest overall removal (90%) while codeine had the lowest with 13%, respectively. Sampling between the treatment units revealed that highest removal occurs during biological treatment as compared to primary or secondary clarification. Methylenedioxyamphetamine (MDA), fentanyl, dihydrocodeine and heroin were not detected in wastewater at any of the sampling locations at the treatment plant regardless of the sampling technique. The study demonstrates the benefits of applying the time-shifted mass balancing approach to the calculation of removals of drugs of abuse during wastewater treatment. PMID:24726517

  19. Microbial Diversity in Soil Treatment Systems for Wastewater

    NASA Astrophysics Data System (ADS)

    Van Cuyk, S.; Spear, J.; Siegrist, R.; Pace, N.

    2002-05-01

    There is an increasing awareness and concern over land based wastewater system performance with respect to the removal of bacteria and virus. The goal of this work is to describe and identify the organismal composition of the microbiota in the applied wastewater effluent, the rich biomat that develops at the infiltrative surface, and in the soil percolate in order to aid in the understanding of bacterial and virus purification in soil treatment systems. The traditional reliance on pure culture techniques to describe microbiota is circumvented by the employment of a molecular approach. Microbial community characterization is underway based on cloning and sequencing of 16S rRNA genes for phylogenetic analyses, to determine the nature and quantity of microbiota that constitute these ecosystems. Knowledge of the organisms naturally present can influence the design and treatment capacity of these widely used land based systems. Laboratory, intermediate and field scale systems are currently under study. Since human pathogens are known to exist in sewage effluents, their removal in wastewater infiltration systems and within the underlying soil are in need of a more fundamental understanding. The relationship between design parameters and environmental conditions, including a microbial characterization, is essential for the prevention of contamination in groundwater sources. Preliminary results indicate the presence of uncultured organisms and phylogenetic kinds that had not been detected in these systems using other methods. Acinetobacter johnsonii and Acrobacter cryaerophilus were the two dominant species found in septic tank effluent, comprising 20% and 11% of the library respectively. In soil samples collected from the infiltrative surface of a column dosed with STE, there was no dominant bacterial species present. Percolate samples collected from the outflow of the column showed that a tuber borchii symbiont, a common soil microorganism, dominated the bacterial

  20. Hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil.

    PubMed

    Gao, Hongxia; Liu, Yingli; Guan, Weijun; Li, Qingzhao; Liu, Nan; Gao, Zhenjie; Fan, Jianjun

    2015-03-01

    The objective of this study is to investigate the hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil using in vivo and in vitro experiments on mice and rat. Soil samples were collected from a wastewater-irrigated area and groundwater-irrigated area, i.e. clean water-irrigated area as control group. The organic contaminants were extracted using an ultrasonic oscillator. In vivo experiment was performed by contamination of hepatocytes of rat using the organic extract, and comet assay was used to analyse the DNA damage of hepatocytes. For in vitro experiment, mice were first gavaged with extracts, and then the indicators for kidney functions, liver functions and oxidative damage of tissues were investigated. The result shows, for in vitro experiments, compared with clean water-irrigated area groups, the average DNA tailing length for the wastewater-irrigated area group is larger, and for the wastewater-irrigated area groups with extract concentration 0.6 g/ml and 0.9 g/ml, the tailing rate increases significantly (P < 0.05). For in vivo experiments, the change of weight across each group shows no significant difference (P < 0.05). Compared with clean water-irrigated groups, the liver indices have decreased for all groups of the wastewater-irrigated area, while both kidney and liver indices decreased for wastewater-irrigated area high-dose group (P < 0.05 or P < 0.01). The total proteins for wastewater-irrigated low-dose group and Gamma-glutamyl transpeptidase, creatinine for high-dose group all increased (P < 0.01). Compared with the reagent control group, total superoxide dismutase activity of liver for wastewater-irrigated groups and glutathione peroxidase activity for high-dose group, malondialdehyde content all decreased (P < 0.05 or P < 0.01); glutathione peroxidase activity of kidney tissue for wastewater-irrigated high-dose group decreased (P < 0.01). The result shows that the joint toxicity in

  1. Simulation of wastewater treatment plant within integrated urban wastewater models.

    PubMed

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail. PMID:20453339

  2. AN INTRALABORATORY COMPARATIVE STUDY OF HYDRIDE GENERATION AND GRAPHITE FURNACE ATOMIC ABSORPTION TECHNIQUES FOR DETERMINING ORGANIC AND INORGANIC ARSENIC IN COMPLEX WASTEWATERS

    EPA Science Inventory

    A detailed intralaboratory comparison of the determination of arsenic in complex wastewater samples by hydride generation and graphite furnace atomic absorption techniques has been conducted. Two hydride generation techniques were employed. One consisted of the use of sodium boro...

  3. Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment.

    PubMed

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2014-01-01

    In the present work, an extensive study on the presence of eighteen pharmaceuticals and personal care products (PPCPs) in eight wastewater treatment plants (WWTPs) of Greece has been conducted. The study covered four sampling periods over 1-year, where samples (influents; effluents) from eight WWTPs of various cities in Greece were taken. All WWTPs investigated are equipped with conventional activated sludge treatment. A common pre-concentration step based on SPE was applied, followed by LC-UV/Vis-ESI-MS. Further confirmation of positive findings was accomplished by using LC coupled to a high resolution Orbitrap mass spectrometer. The results showed the occurrence of all target compounds in the wastewater samples with concentrations up to 96.65 μg/L. Paracetamol, caffeine, trimethoprim, sulfamethoxazole, carbamazepine, diclofenac and salicylic acid were the dominant compounds, while tolfenamic acid, fenofibrate and simvastatin were the less frequently detected compounds with concentrations in effluents below the LOQ. The removal efficiencies showed that many WWTPs were unable to effectively remove most of the PPCPs investigated. Finally, the study provides an assessment of the environmental risk posed by their presence in wastewaters by means of the risk quotient (RQ). RQs were more than unity for various compounds in the effluents expressing possible threat for the aquatic environment. Triclosan was found to be the most critical compound in terms of contribution and environmental risk, concluding that it should be seriously considered as a candidate for regulatory monitoring and prioritization on a European scale on the basis of realistic PNECs. The results of the extensive monitoring study contributed to a better insight on PPCPs in Greece and their presence in influent and effluent wastewaters. Furthermore, the unequivocal identification of two transformation products of trimethoprim in real wastewaters by using the advantages of the LTQ Orbitrap capabilities

  4. Thermophilic anaerobic digestion of high strength wastewaters

    SciTech Connect

    Wiegant, W.M.; Claassen, J.A.; Lettinga, G.

    1985-09-01

    Investigations on the thermophilic anaerobic treatment of high-strength wastewaters (14-65 kg COD/mT) are presented. Vinasse, the wastewater of alcohol distilleries, was used as an example of such wastewaters. Semicontinuously fed digestion experiments at high retention times revealed that the effluent quality of digestion at 55C is comparable with that at 30C at similar loading rates. The amount of methane formed per kilogram of vinasse drops almost linearly with increasing vinasse concentrations. The treatment of vinasse was also investigated using upflow anaerobic sludge blanket (UASB) reactors.

  5. Electrocoagulation of wastewater from almond industry.

    PubMed

    Valero, David; Ortiz, Juan M; García, Vicente; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2011-08-01

    This work was carried out to study the treatment of almond industry wastewater by the electrocoagulation process. First of all, laboratory scale experiments were conducted in order to determine the effects of relevant wastewater characteristics such as conductivity and pH, as well as the process variables such as anode material, current density and operating time on the removal efficiencies of the total organic carbon (TOC) and the most representative analytical parameters. Next, the wastewater treatment process was scaled up to pre-industrial size using the best experimental conditions and parameters obtained at laboratory scale. Finally, economic parameters such as chemicals, energy consumption and sludge generation have been discussed. PMID:21683427

  6. Nitrogen and phosphorus removal from wastewater

    SciTech Connect

    Nicholas, D. M.

    1985-06-11

    Wastewater is passed sequentially through an anaerobic treating zone and an oxic treating zone, followed by separation from the treated liquor of a dense sludge containing activated biomass, at least part of which is recycled to provide the activated biomass employed in treating the influent wastewater. Of the part of the sludge so recycled a minor portion is introduced into the anaerobic treating zone for admixture with the wastewater influent and the remaining major portion is introduced into the oxic treating zone, into which oxic zone oxygen-containing gas is admitted to effect oxygenation of the contents of that zone.

  7. Reusing rinse wastewater at a semiconductor plant

    SciTech Connect

    Shah, A.R.; Ploeser, J.H.

    1999-08-01

    Two pilot rinse wastewater reuse projects were developed as part of a long-term water conservation program for a Motorola semiconductor manufacturing site in Phoenix, Ariz. The conceptual designs for the projects grew out of a detailed wastewater reuse study that characterized wastewater streams at their generation points. Both treatment techniques were specifically researched, bench-tested, and adapted to further water conservation efforts while ensuring 100 percent compliance with appropriate effluent regulations and industrial discharge permit conditions. Together, the pilot projects save the city of Phoenix approximately 45 mil gal (17 {times} 10{sup 4} m{sup 3}) of water annually.

  8. MICROBIOLOGICAL CONTENT AND HEALTH EFFECT OF FISHPONDS ENRICHED WITH WASTEWATER EFFLUENT

    EPA Science Inventory

    During July to December 1980, a study was carried out on kibbutzim (cooperative agricultural settlements) in Israel, to determine the microbiological quality and health effect of fishponds enriched with human wastewater. Ponds on seven kibbutzim were sampled, two of which were ch...

  9. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and disinfection to remove microorganisms from municipal wastewaters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor activated-sludge (MBR) and two conventional secondary activated-sludge municipal wastewater treatment plants during three disinfection seasons (May–Oct.). In total, 73 regular samples were ...

  10. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri.

    PubMed

    Yu, Xin; Zuo, Jiane; Tang, Xinyao; Li, Ruixia; Li, Zaixing; Zhang, Fei

    2014-02-15

    The toxicity of pharmaceutical wastewaters has recently been the focus of the public in China. This study aimed to evaluate the conventional pollution parameters and toxicities of different raw and treated pharmaceutical wastewaters to algae Scenedesmus obliquus and bacteria Vibrio fischeri. Wastewater samples were collected from 16 pharmaceutical wastewater treatment plants in China. The results of the conventional parameters analysis indicated that the total suspended solids, chemical oxygen demand (COD), ammonia (NH3-N), and total phosphorus (TP) were largely removed after treatment. Pharmaceutical effluents were mainly polluted with organics and phosphorus as indicated by the average COD (388 mg/L) and TP (3.16 mg/L) concentrations. The toxicity test results indicated that the influent samples were toxic to both test species. Although the toxicities could be remarkably reduced after treatment, 10 out of the 16 effluent samples exceeded the acute toxicity discharge limit of the Chinese national standards. Spearman rank correlation coefficients indicated a significantly positive correlation between the toxicity values of S. obliquus and V. fischeri. Compared with S. obliquus, V. fischeri detected more pharmaceutical effluent samples with toxicities. Meanwhile, the toxicity indicators were significantly and positively correlated with the COD and NH3-N concentrations based on a Spearman rank correlation analysis. PMID:24374566

  11. 40 CFR Appendix D to Part 63 - Alternative Validation Procedure for EPA Waste and Wastewater Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... validated according to the procedures in Sections 5.1 and 5.3 of Test Method 301, 40 CFR part 63, appendix A... Method 25D of 40 CFR part 60, appendix A. 2.1. Sampling and Analysis 2.1.1. For each waste matrix... EPA Waste and Wastewater Methods D Appendix D to Part 63 Protection of Environment...

  12. 40 CFR Appendix D to Part 63 - Alternative Validation Procedure for EPA Waste and Wastewater Methods

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... validated according to the procedures in Sections 5.1 and 5.3 of Test Method 301, 40 CFR part 63, appendix A... Method 25D of 40 CFR part 60, appendix A. 2.1. Sampling and Analysis 2.1.1. For each waste matrix... EPA Waste and Wastewater Methods D Appendix D to Part 63 Protection of Environment...

  13. 40 CFR Appendix D to Part 63 - Alternative Validation Procedure for EPA Waste and Wastewater Methods

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... validated according to the procedures in Sections 5.1 and 5.3 of Test Method 301, 40 CFR part 63, appendix A... Method 25D of 40 CFR part 60, appendix A. 2.1. Sampling and Analysis 2.1.1. For each waste matrix... EPA Waste and Wastewater Methods D Appendix D to Part 63 Protection of Environment...

  14. Ecotoxicological evaluation of wastewater treatment plant effluent discharges: a case study in Prato (Tuscany, Italy).

    PubMed

    Lanciotti, E; Galli, S; Limberti, A; Giovannelli, L

    2004-01-01

    Textile wastewaters, which contain numerous chemicals such as dyes, surfactants, solvents, organic and inorganic salts, can cause severe pollution problems for the receiving freshwaters. The ecotoxicity of wastewaters in Prato, where there are about 14,000 textile and related factories, was investigated from 1996-1999 by means of bioassays. 147 samples of reclaimed wastewater were collected at the outlets of 4 centralized wastewater treatment plants. The acute and chronic toxicity of the effluents was measured with bioassays using three different target organisms: green algae (Pseudokirchneriella subcapitata), crustaceans (Daphnia magna) and bioluminescent bacteria (Vibrio fischeri). Toxicity was expressed as Effective Concentration 50 (EC50) and Toxic Units (TU). The results indicated that the effluents did not have significant acute toxicity: only 2.74% (EC50<100%, TU>1) of the 146 samples tested with crustaceans and 6.52% (EC50<50%, TU>2) of the 78 tested with bioluminescent bacteria showed toxic effects. With algae, slight chronic toxicity was found in 49.33% (mean EC50 value=86.56%, mean TU=1.16) of the 140 samples tested. The highest relative response was found with the algal assay using Pseudokirchneriella subcapitata: 49.33% of 140 samples showed chronic toxicity at 96 hours (EC50<100%). PMID:15366513

  15. ANALYSIS OF INDUSTRIAL WASTEWATER FOR ORGANIC POLLUTANTS IN CONSENT DECREE SURVEY

    EPA Science Inventory

    In response to a need of the Effluent Guidelines Division of the U.S. EPA Office of Water Regulations and Standards, industrial wastewater survey sample extracts were analyzed for organic pollutants other than the Priority Pollutants. Chromatographic analyses were performed on ca...

  16. Evaluation of Sources of Nitrate Beneath Food Processing Wastewater-Application Sites near Umatilla, Oregon

    USGS Publications Warehouse

    Frans, Lonna; Paulson, Anthony; Richerson, Phil; Striz, Elise; Black, Curt

    2009-01-01

    Water samples from wells were collected beneath and downgradient of two food-processing wastewater-application sites near Umatilla, Oregon. These samples were analyzed for nitrate stable isotopes, nutrients, major ions, and age-dating constituents to determine if nitrate-stable isotopes can be used to differentiate food-processing waste from other potential sources of nitrate. Major-ion data from each site were used to determine which samples were associated with the recharge of the food-processing wastewater. End-member mixing analysis was used to determine the relative amounts of each identified end member within the samples collected from the Terrace Farm site. The delta nitrogen-15 (delta 15N) of nitrate generally ranged between +2 and +9 parts per thousand and the delta oxygen-18 (delta 18O) of nitrate generally ranged between -2 and -7 parts per thousand. None of the samples that were determined to be associated with the wastewater were different from the samples that were not affected by the wastewater. The nitrate isotope values measured in this study are also characteristic of ammonium fertilizer, animal and human waste, and soil nitrate; therefore, it was not possible to differentiate between food-processing wastewater and the other nitrate sources. Values of delta 15N and delta 18O of nitrate provided no more information about the sources of nitrate in the Umatilla River basin than did a hydrologic and geochemical understanding of the ground-water system derived from interpreting water-level and major-ion chemistry data.

  17. Human pharmaceuticals in wastewaters from urbanized areas of Argentina.

    PubMed

    Elorriaga, Yanina; Marino, Damián J; Carriquiriborde, Pedro; Ronco, Alicia E

    2013-04-01

    The study contributes with a first survey of pharmaceuticals in municipal wastewaters discharging into fresh and estuarine waters from areas with varying degrees of urbanization of Argentina. Analyses were done on the soluble fraction by HPLC-MS after SPE extraction. In all of the samples were detected caffeine and ibuprofen within the range of 0.9-44.2 and 0.4-13.0 μg/L, and lower levels of carbamazepine, atenolol and diclofenac between 0.2-2.3, 0.2-1.7 and <0.03-1.2 μg/L, respectively. Profiles of compounds were similar in all studied locations. PMID:23229304

  18. Determination of phosphite in a full-scale municipal wastewater treatment plant.

    PubMed

    Yu, Xiaolong; Geng, Jinju; Ren, Hongqiang; Chao, Han; Qiu, Huimin

    2015-02-01

    Phosphite (HPO3(2-), +3), a reduced P species in the P biogeochemical cycle, was monitored in a full-scale municipal wastewater treatment plant (MWTP) that uses an anaerobic/anoxic/aerobic-membrane bioreactor (A(2)/O-MBR) technology for treating mixed wastewater (56% industrial wastewater and 44% domestic wastewater) from June 2013 to May 2014. Wastewater samples were collected from influent after having gone through the fine grille, anaerobic tank, anoxic tank, and aerobics tank, respectively. The final stage yielded effluent. Results confirmed the presence of phosphite in the MWTP ranging from 4.62 ± 1.00 μg P L(-1) to 34.30 ± 3.49 μg P L(-1) in influent and from 1.15 ± 0.5 μg P L(-1) to 4.42 ± 0.9 μg P L(-1) in effluent. Phosphite accounted for approximately 0.15% to 2.27% of total soluble phosphorus (TSP). During the A(2)/O-MBR process, the average removal of phosphite was 82.41 ± 7.45%. The anaerobic biological treatment removed the most phosphite from wastewater in this study. Spatially, phosphite concentrations decreased gradually as the wastewater treatment process progressed. Seasonally, the phosphite concentrations in spring and winter were higher than those in summer and autumn. The phosphite concentration in effluent was of the same order of magnitude as that in nearby natural water, which suggested MWTP effluent may be an important phosphite contributor to the natural water. PMID:25564363

  19. Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment.

    PubMed

    Singh, Kunwar P; Rai, Premanjali; Singh, Arun K; Verma, Priyanka; Gupta, Shikha

    2014-10-01

    Six pharmaceuticals of different categories, such as nonsteroidal anti-inflammatory drugs (ibuprofen, ketoprofen, naproxen, diclofenac), anti-epileptic (carbamazepine), and anti-microbial (trimethoprim), were investigated in wastewater of the urban areas of Ghaziabad and Lucknow, India. Samples were concentrated by solid phase extraction (SPE) and determined by high-performance liquid chromatography (HPLC) methods. The SPE-HPLC method was validated according to the International Conference on Harmonization guidelines. All the six drugs were detected in wastewater of Ghaziabad, whereas naproxen was not detected in Lucknow wastewater. Results suggest that levels of these detected drugs were relatively higher in Ghaziabad as compared to those in Lucknow, and diclofenac was the most frequently detected drug in both the study areas. Detection of these drugs in wastewater reflects the importance of wastewater inputs as a source of pharmaceuticals. In terms of the regional distribution of compounds in wastewater of two cities, higher spatial variations (coefficient of variation 112.90-459.44%) were found in the Lucknow wastewater due to poor water exchange ability. In contrast, lower spatial variation (162.38-303.77%) was observed in Ghaziabad. Statistical analysis results suggest that both data were highly skewed, and populations in two study areas were significantly different (p < 0.05). A risk assessment based on the calculated risk quotient (RQ) in six different bioassays (bacteria, duckweed, algae, daphnia, rotifers, and fish) showed that the nonsteroidal anti-inflammatory drugs (NSAIDs) posed high (RQ >1) risk to all the test species. The present study would contribute to the formulation of guidelines for regulation of such emerging pharmaceutical contaminants in the environment. PMID:25004851

  20. Atmospheric pressure plasma jet for bacterial decontamination and property improvement of fruit and vegetable processing wastewater

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam H.; Shariff, Samir M. Al; Ouf, Salama A.; Benghanem, Mohamed

    2016-05-01

    An atmospheric pressure plasma jet was tested for decontaminating and improving the characteristics of wastewater derived from blackberry, date palm, tomato and beetroot processing industries. The jet was generated by blowing argon gas through a cylindrical alumina tube while a high voltage was applied between two electrodes surrounding the tube. Oxygen gas was mixed with argon at the rate of 0.2% and the argon mass flow was fixed at 4.5 slm. Images show that the generated plasma jet penetrated the treated wastewater samples. Plasma emission spectra show the presence of O and OH radicals as well as excited molecular nitrogen and argon. Complete decontamination of wastewater derived from date palm and tomato processing was achieved after 120 and 150 s exposure to the plasma jet, respectively. The bacterial count of wastewater from blackberry and beetroot was reduced by 0.41 and 2.24 log10 colony-forming units (CFU) per ml, respectively, after 180 s. Escherichia coli was the most susceptible bacterial species to the cold plasma while Shigella boydii had the minimum susceptibility, recording 1.30 and 3.34 log10 CFU ml‑1, respectively, as compared to the 7.00 log10 initial count. The chemical oxygen demands of wastewater were improved by 57.5–93.3% after 180 s exposure to the plasma jet being tested. The endotoxins in the wastewater were reduced by up to 90.22%. The variation in plasma effectiveness is probably related to the antioxidant concentration of the different investigated wastewaters.

  1. Antibiotic, Pharmaceutical, and Wastewater-Compound Data for Michigan, 1998-2005

    USGS Publications Warehouse

    Haack, Sheridan Kidd

    2010-01-01

    Beginning in the late 1990's, the U.S. Geological Survey began to develop analytical methods to detect, at concentrations less than 1 microgram per liter (ug/L), emerging water contaminants such as pharmaceuticals, personal-care chemicals, and a variety of other chemicals associated with various human and animal sources. During 1998-2005, the U.S. Geological Survey analyzed the following Michigan water samples: 41 samples for antibiotic compounds, 28 samples for pharmaceutical compounds, 46 unfiltered samples for wastewater compounds (dissolved and suspended compounds), and 113 filtered samples for wastewater compounds (dissolved constituents only). The purpose of this report is to summarize the status of emerging contaminants in Michigan waters based on data from several different project-specific sample-collection efforts in Michigan during an 8-year period. During the course of the 8-year sampling effort, antibiotics were determined at 20 surface-water sites and 2 groundwater sites, pharmaceuticals were determined at 11 surface-water sites, wastewater compounds in unfiltered water were determined at 31 surface-water sites, and wastewater compounds in filtered water were determined at 40 surface-water and 4 groundwater sites. Some sites were visited only once, but others were visited multiple times. A variety of quality-assurance samples also were collected. This report describes the analytical methods used, describes the variations in analytical methods and reporting levels during the 8-year period, and summarizes all data using current (2009) reporting criteria. Very few chemicals were detected at concentrations greater than current laboratory reporting levels, which currently vary from a low of 0.005 ug/L for some antibiotics to 5 ug/L for some wastewater compounds. Nevertheless, 10 of 51 chemicals in the antibiotics analysis, 9 of 14 chemicals in the pharmaceuticals analysis, 34 of 67 chemicals in the unfiltered-wastewater analysis, and 56 of 62 chemicals in

  2. Fungal contamination in two Portuguese wastewater treatment plants.

    PubMed

    Viegas, C; Faria, T; Gomes, A Quintal; Sabino, R; Seco, A; Viegas, S

    2014-01-01

    The presence of filamentous fungi was detected in wastewater and air collected at wastewater treatment plants (WWTP) from several European countries. The aim of the present study was to assess fungal contamination in two WWTP operating in Lisbon. In addition, particulate matter (PM) contamination data was analyzed. To apply conventional methods, air samples from the two plants were collected through impaction using an air sampler with a velocity air rate of 140 L/min. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. For molecular methods, air samples of 250 L were also collected using the impinger method at 300 L/min airflow rate. Samples were collected into 10 ml sterile phosphate-buffered saline with 0.05% Triton X-100, and the collection liquid was subsequently used for DNA extraction. Molecular identification of Aspergillus fumigatus and Stachybotrys chartarum was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR Detection System (Corbett). Assessment of PM was also conducted with portable direct-reading equipment (Lighthouse, model 3016 IAQ). Particles concentration measurement was performed at five different sizes: PM0.5, PM1, PM2.5, PM5, and PM10. Sixteen different fungal species were detected in indoor air in a total of 5400 isolates in both plants. Penicillium sp. was the most frequently isolated fungal genus (58.9%), followed by Aspergillus sp. (21.2%) and Acremonium sp. (8.2%), in the total underground area. In a partially underground plant, Penicillium sp. (39.5%) was also the most frequently isolated, also followed by Aspergillus sp. (38.7%) and Acremonium sp. (9.7%). Using RT-PCR, only A. fumigatus was detected in air samples collected, and only from partial

  3. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater

    PubMed Central

    Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A.; Schets, Franciska M.; de Roda Husman, Ana Maria

    2015-01-01

    Objective The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. Methods The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol. Results Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX

  4. Microbial risk in wastewater irrigated lettuce: comparing Escherichia coli contamination from an experimental site with a laboratory approach.

    PubMed

    Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J

    2016-01-01

    This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops. PMID:27508380

  5. Fate and transformation of silver nanoparticles in urban wastewater systems.

    PubMed

    Kaegi, Ralf; Voegelin, Andreas; Ort, Christoph; Sinnet, Brian; Thalmann, Basilius; Krismer, Jasmin; Hagendorfer, Harald; Elumelu, Maline; Mueller, Elisabeth

    2013-08-01

    Discharge of silver nanoparticles (Ag-NP) from textiles and cosmetics, todays major application areas for metallic Ag-NP, into wastewater is inevitable. Transformation and removal processes in sewers and wastewater treatment plants (WWTP) will determine the impact of Ag-NP on aquatic and terrestrial environments, via the effluents of the WWTP and via the use of digested sludge as fertilizer. We thus conducted experiments addressing the behavior of Ag-NP in sewers and in WWTP. We spiked Ag-NP to a 5 km long main trunk sewer and collected 40 wastewater samples after 500 m, 2400 m and 5000 m each according to the expected travel times of the Ag-NP. Excellent mass closure of the Ag derived by multiplying the measured Ag concentrations times the volumetric flow rates indicate an efficient transport of the Ag-NP without substantial losses to the sewer biofilm. Ag-NP reacted with raw wastewater in batch experiments were sulfidized to roughly 15% after 5 h reaction time as revealed by X-ray absorption spectroscopy (XAS). However, acid volatile sulfide (AVS) concentrations were substantially higher in the sewer channel (100 μM) compared to the batch experiments (3 μM; still sufficient to sulfidize spiked 2 μM Ag) possibly resulting in a higher degree of sulfidation in the sewer channel. We further investigated the removal efficiency of 10 nm and 100 nm Ag- and gold (Au)-NP coated with citrate or polyvinylpyrrolidone in activated sludge batch experiments. We obtained very high removal efficiencies (≈ 99%) irrespective of size and coating for Ag- and Au-NP, the latter confirming that the particle type was of minor importance with respect to the degree of NP removal. We observed a strong size dependence of the sulfidation kinetics. We conclude that Ag-NP discharged to the wastewater stream will become sulfidized to various degrees in the sewer system and are efficiently transported to the WWTP. The sulfidation of the Ag-NP will continue in the WWTP, but primarily

  6. Design manual: municipal wastewater stabilization ponds

    SciTech Connect

    Middlebrooks, E.J.; Reynolds, J.H.; Montgomery, J.M.; Middlebrooks, C.; Schneiter, R.W.

    1983-10-01

    The manual provides a concise overview of wastewater stabilization pond systems through discussion of factors affecting treatment, process design principles and applications, aspects of physical design and construction, suspended solids removal alternatives, and cost and energy requirements.

  7. DESIGN MANUAL: MUNICIPAL WASTEWATER STABILIZATION PONDS

    EPA Science Inventory

    The manual provides a concise overview of wastewater stabilization pond systems through discussion of factors affecting treatment, process design principles and applications, aspects of physical design and construction, suspended solids removal alternatives, and cost and energy r...

  8. Wastewater Disinfectants: Many Called--Few Chosen

    ERIC Educational Resources Information Center

    Smith, James W.

    1978-01-01

    Gives a comparative study of disinfectants used to rid wastewater of pathogens. Concentrates on the effects of chlorine and ozone, with some mention of ultra-violet irradiation, bromine chloride, and chlorine dioxide. (MA)

  9. VIRUSES IN WATER AND RECLAIMED WASTEWATER

    EPA Science Inventory

    A study was initiated to determine the occurrence and concentration of viruses in high quality wastewater treatment plant effluents from two treatment plants in California. Disinfected secondary effluent was compared to disinfected and filtered secondary effluents. Biweekly quant...

  10. TEXTILE DYEING WASTEWATERS: CHARACTERIZATION AND TREATMENT

    EPA Science Inventory

    The report gives results of an examination of the biological, chemical, and physical treatability of wastewaters from selected typical dye baths. Twenty systems providing a broad cross section of dye classes, fibers, and application techniques, were examined. Wastes, produced usi...

  11. ORGANIC COMPOUNDS IN ORGANOPHOSPHORUS PESTICIDE MANUFACTURING WASTEWATERS

    EPA Science Inventory

    Preliminary survey information on the organophosphorus pesticide industry wastewater streams and analytical methods to monitor levels of organic compounds present in these streams are presented. The identification and quantification of organophosphorus compounds was emphasized, b...

  12. Hungry microbes eat away wastewater sludge problem

    SciTech Connect

    Kratch, K.

    1995-09-01

    Accumulations of diluted resin solids and sludge in an equalization pond were reducing a White City, Ore., chemical plant`s wastewater treatment capacity by 90%. Dyno Polymers, a division of Norway-based Dyno Industries, manufacturers formaldehyde, urea-formaldehyde and phenol-formaldehyde resins for the wood products industry. High-solids and biosolids bulking in the plant`s aeration pond overloaded the clarifier, and an overabundance of solids in the excess-wastewater holding pond made pumping nearly impossible. The plant`s drains carry production wastewater, truck washout water and equipment rinsewater flows to a central sump. The wastewater is pumped to the facility`s biological treatment system, where it enters an equalization pond and flows to an aeration pond equipped with two 50-horsepower aerators. The water then flows to a clarifier, where solids are settled out and removed before the water is reused or discharged to a public sewer system.

  13. BIOLOGICAL TREATMENT OF HIGH STRENGTH PETROCHEMICAL WASTEWATER

    EPA Science Inventory

    The biological treatment of a complex petrochemical wastewater containing high concentrations of organic chlorides, nitrates, and amines was initially studied using a sequence of anaerobic methanogenesis and oxygen activated sludge. Bench-scale and pilot-plant treatability studie...

  14. WASTEWATER RENOVATION AND RETRIEVAL ON CAPE COD

    EPA Science Inventory

    A rapidly increasing population on maritime Cape Cod has generated considerable interest in alternative wastewater disposal techniques which promise to maintain high groundwater quality and promote its conservation. The authors undertake an assessment of agricultural spray-irriga...

  15. HEALTH RISKS OF HUMAN EXPOSURE TO WASTEWATER

    EPA Science Inventory

    The primary objective of this research was to determine the health effects, if any, associated with occupational exposure to biological agents present in municipal wastewater. An additional objective was to determine the sensitivity of the methodology for detecting potential heal...

  16. RAPID INFILTRATION WASTEWATER TREATMENT FOR SMALL COMMUNITIES

    EPA Science Inventory

    Rapid infiltration treatment performance of three infiltration basins receiving primary treated municipal wastewater is evaluated for optimum total nitrogen control using a series of manual operational techniques and by remote control computer operation of a sprinkler system. Thr...

  17. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  18. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  19. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  20. Automatic online buffer capacity (alkalinity) measurement of wastewater using an electrochemical cell.

    PubMed

    Cheng, Liang; Charles, Wipa; Cord-Ruwisch, Ralf

    2016-10-01

    The use of an automatic online electrochemical cell (EC) for measuring the buffer capacity of wastewater is presented. pH titration curves of different solutions (NaHCO3, Na2HPO4, real municipal wastewater, and anaerobic digester liquid) were obtained by conventional chemical titration and compared to the online EC measurements. The results show that the pH titration curves from the EC were comparable to that of the conventional chemical titration. The results show a linear relationship between the response of the online EC detection system and the titrimetric partial alkalinity and total alkalinity of all tested samples. This suggests that an EC can be used as a simple online titration device for monitoring the buffer capacity of different industrial processes including wastewater treatment and anaerobic digestion processes. PMID:26935968